seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
30582813202
import random def check(comp, user): if comp == user: return 0 if comp==0 and user==1: return -1 if comp==1 and user==2: return -1 if comp==2 and user==0: return -1 return 1 comp = random.randint(0,2) user = int(input("Enter 0 for Stone, 1 for Paper ad 2 for Scissor")) print("You", user) print("Computer", comp) score = check(comp, user) if score==0: print("It is a draw") elif score ==-1: print("You lose") else: print("You win")
jatingupta05/StonePaperScissor
StonePaperScissor.py
StonePaperScissor.py
py
524
python
en
code
0
github-code
6
70082164988
from routersim.interface import LogicalInterface from .messaging import FrameType from .messaging import ICMPType, UnreachableType from .mpls import MPLSPacket, PopStackOperation from .observers import Event, EventType from scapy.layers.inet import IP,ICMP,icmptypes from copy import copy import ipaddress class ForwardingTable: def __init__(self, event_manager, parent_logger): self.fib = None self.event_manager = event_manager self.logger = parent_logger.getChild('forwarding') def __str__(self): return "Forwarding Table" def set_fib(self, fib): self.fib = fib self.logger.debug("Installed new forwarding table") def lookup_ip(self, ip_address): as_network = ipaddress.ip_network(ip_address) # ASSUMPTION: fib is sorted with highest prefix first # so we should always arrive at something more specific first # yes, this is very inefficient if self.fib is None: return None for prefix in self.fib[FrameType.IPV4]: if as_network.overlaps(prefix): self.event_manager.observe( Event( EventType.FORWARDING, self, f"Identified forwarding entry for {ip_address}" ) ) return [self.fib[FrameType.IPV4][prefix]] return None def lookup_label(self, label): if self.fib is None: return None if self.fib is None or FrameType.MPLSU not in self.fib: return None return [self.fib[FrameType.MPLSU][str(label)]] def print_fib(self): print("** IPV4 FIB ***") for prefix in self.fib[FrameType.IPV4]: entry = self.fib[FrameType.IPV4][prefix] print(f"{entry}") print("") print("** MPLS FIB ***") for prefix in self.fib[FrameType.MPLSU]: entry = self.fib[FrameType.MPLSU][prefix] print(f"{entry}") class PacketForwardingEngine(): def __init__(self, forwarding_table: ForwardingTable, router): self.router = router self.forwarding = forwarding_table self.arp_cache = router.arp.cache self.logger = router.logger.getChild("pfe") # Intended for internal communications def accept_frame(self, frame, dest_interface=None): self.router.event_manager.observe( Event( EventType.PACKET_SEND, self.router, f"PFE Sending {frame.type}", object=frame, target=dest_interface, sub_type="LOCAL_SEND") ) # parameter naming was confusing... self.process_frame(frame, dest_interface=dest_interface, from_self=True) def process_frame(self, frame, source_interface=None, from_self=False, dest_interface=None): def process_ip(pdu, dest_interface=None): if pdu.inspectable() and not from_self: self.router.process_packet(source_interface, pdu) return # should be an IPPacket potential_next_hops = self.forwarding.lookup_ip( pdu.dst ) if potential_next_hops is not None: pdu.ttl -= 1 # TODO: Fire event? hop_action = potential_next_hops[0] self.logger.info(f"Will apply action {hop_action.action}") if not isinstance(hop_action.action, str): newpdu = hop_action.action.apply(pdu, self.router, self.router.event_manager) self.logger.info(f"New pdu is {newpdu}") if isinstance(newpdu, MPLSPacket): hop_action.interface.phy.send(FrameType.MPLSU, newpdu) else: self.logger.warn("Didn't get back an MPLSPacket") else: if hop_action.action == 'FORWARD' or dest_interface is not None: # TODO: If we know the dest_interface should we be blindly sending on it? # I'm not too happy about this quite yet # really the link between the RE and PFE is wonky if dest_interface is None: self.logger.debug(f"Using {potential_next_hops[0].interface} for {pdu}") dest_interface = potential_next_hops[0].interface self.logger.debug(f"Using {dest_interface} for {pdu} (potential NH: {potential_next_hops[0]}") self.send_encapsulated( potential_next_hops[0].next_hop_ip, FrameType.IPV4, pdu, dest_interface ) elif hop_action.action == 'CONTROL': if from_self: self.logger.error(f"Unexpectedly have frame from self we need to forward {pdu}") raise Exception(f"Unexpectedly have frame from self we need to forward {pdu}") self.router.process_packet(source_interface, pdu) elif hop_action.action == 'REJECT' and source_interface is not None: #print(f"Sending reject from {source_interface.name}:{source_interface.address().ip} to {pdu.source_ip}") packet = IP( dst=pdu.src, src=source_interface.address().ip ) / ICMP( type = ICMPType.DestinationUnreachable, code=UnreachableType.NetworkUnreachable ) / ( pdu.dst, pdu.src, pdu.payload.payload # IRL its first 8 bytes ) source_interface.send_ip(packet) else: self.logger.info(f"**** Have action {hop_action.action}") else: self.logger.warn("**** Need to issue ICMP UNREACHABLE") pass # send unreachable pdu = copy(frame.pdu) if frame.type == FrameType.IPV4: self.logger.info("Calling process_ip") process_ip(pdu, dest_interface) # This means we're supposed to look at it # special case of control plane... elif frame.type == FrameType.ARP: # So, dilemma: Here we PROBABLY want to make sure # this only happens on switch interfaces? # would is also happen on routed interfaces? self.router.process_arp(source_interface, pdu) # TODO: If we're switching, we also want to forward it! elif frame.type == FrameType.CLNS: self.router.process['isis'].process_pdu(source_interface, frame.pdu) elif frame.type == FrameType.MPLSU: # pdu should be an MPLSPacket potential_next_hops = None try: potential_next_hops = self.forwarding.lookup_label( pdu.label_stack[len(pdu.label_stack)-1] ) except: if pdu.label_stack[0] == '3': newpdu = PopStackOperation().apply(pdu, self.router, event_manager=self.router.event_manager) if isinstance(newpdu, IP): process_ip(newpdu) return self.logger.warn(f"Unable to find {pdu.label_stack[0]}") if potential_next_hops is not None: fibentry = potential_next_hops[0] newpdu = fibentry.action.apply(pdu, self.router, event_manager=self.router.event_manager) if isinstance(newpdu, MPLSPacket): fibentry.interface.parent.send( FrameType.MPLSU, newpdu, logical=None) elif isinstance(newpdu, IP): fibentry.interface.send_ip(newpdu) else: print(f"Unknown de-encapsulated packet type!") else: self.logger.error(f"**** No action found for label {pdu.label_stack[0]}") def send_encapsulated(self, next_hop: ipaddress.IPv4Address, type: FrameType, packet, interface: LogicalInterface): if next_hop is None: dest_ip = packet.dst dest_ip_as_net = ipaddress.ip_network(f"{dest_ip}/32") if interface.address().network.overlaps(dest_ip_as_net): next_hop = dest_ip else: raise Exception("Valid IP is required") hw_address = self.arp_cache[next_hop] if hw_address is None: # TODO: Drop it? self.router.arp.request(next_hop, interface) else: interface.send(hw_address, type, packet)
jdewald/router-sim
routersim/forwarding.py
forwarding.py
py
9,267
python
en
code
5
github-code
6
38573517447
from brian2 import * import math import queue numberGC = 10 defaultclock.dt = 0.01*second gT = 0 # target gain. Should vary a bit depexnding on day of training. pT = 0 # target phase shift. unitlessErrorDelay = 0 # set the delay here so that the file prints right errorDelay = unitlessErrorDelay*second if errorDelay != 0: delayQueue = queue.Queue(maxsize = int(errorDelay/defaultclock.dt)) startMVN = 1 for i in range(0,int(errorDelay/defaultclock.dt)): delayQueue.put(startMVN) # fill the queue with initial values Vdelayed = delayQueue.get() # get one of them, open TauPG = 15*60*second w = 0.6*(1/second) # rate at which the platform rotates. vCF = 0 FiftyMinutesInTimeSteps = int(((second)/defaultclock.dt)*60*50) ## make the neuron groups MF = NeuronGroup(1,'M = cos(t*w) : 1') # Cosine Function for the mossy fibers GC = NeuronGroup(numberGC,model = '''G = cos((t*w) + x) : 1 x : 1''') # Some phase delays of the above function for i in range(0, numberGC): GC.x[i] = (i/numberGC)*math.pi*2 # makes it so that the delays are distributed evenly PC = NeuronGroup(1,model = '''P : 1 V : 1''') # The functions are defined by the synapses later. P is the purkinje cell activity, V is MVN activity, which is sent back so that it cen be used for the weight calculation. MVN = NeuronGroup(1,model = '''M : 1 P : 1 V = M - P : 1''') ## make the synapses # Spg = Synapses(GC,PC,model='''P_post = Wpg*G_pre : 1 (summed) # Wpg = x_pre : 1''') if (errorDelay == 0): Spg = Synapses(GC,PC,method='euler',model='''P_post = Wpg*G_pre : 1 (summed) dWpg/dt = ((V_post - gT*cos(w*(t + pT)))*G_pre)/TauPG : 1/second''') # sums granule cell activity into the purkinje cell, as weights are applied. else: Spg = Synapses(GC,PC,method='euler',model='''P_post = Wpg*G_pre : 1 (summed) dWpg/dt = ((Vdelayed - gT*cos(w*(t - errorDelay + pT)))*G_pre)/TauPG : 1/second''') # sums granule cell activity into the purkinje cell, as weights are applied. # Vpast[int(t/(defaultclock.dt*second))] - Smv = Synapses(MF,MVN, model='''M_post = M_pre : 1 (summed)''') ## I made them summed because that makes it work. Spv = Synapses(PC,MVN, model='''P_post = P_pre : 1 (summed) V_pre = V_post : 1 (summed)''') ## I made them summed because that makes it work. ## connect the synapses Spg.connect() Smv.connect() Spv.connect() ## create the state monitors # You can flag these on or off to see the graphs they produce. MF_state = StateMonitor(MF,'M',record=0) #GC_state = StateMonitor(GC,'G',record=True) Weight_state = StateMonitor(Spg,'Wpg',record=True) PC_state = StateMonitor(PC,'P',record=0) MVN_state = StateMonitor(MVN,'V',record=0) ## run the model # They are set up like this to immitate the paradigm for the paper. if errorDelay != 0: for i in range(0,FiftyMinutesInTimeSteps): run(defaultclock.dt) #print(MVN_state.V[0]) #print(list(MVN_state.V[0])[-1]) Vpast = delayQueue.put(list(MVN_state.V[0])[-1]) Vdelayed = delayQueue.get() #print(Vdelayed) gT = -0.5 print("report") for i in range(0,FiftyMinutesInTimeSteps): run(defaultclock.dt) Vpast = delayQueue.put(list(MVN_state.V[0])[-1]) Vdelayed = delayQueue.get() gT = -1 print("report") for i in range(0,FiftyMinutesInTimeSteps*2): run(defaultclock.dt) Vpast = delayQueue.put(list(MVN_state.V[0])[-1]) Vdelayed = delayQueue.get() else: run(FiftyMinutesInTimeSteps*second) gT = -0.5 run(FiftyMinutesInTimeSteps*second) gT = -1 run(FiftyMinutesInTimeSteps*2*second) # gT = -0.5 # # for i in range(0,5): # run(0.1*second) # gT = -1 # # for i in range(0,10): # run(0.1*second) ## plot results if 'MF_state' in locals(): figure() subplot(211) plot(MF_state.t/ms,MF_state.M[0]) if 'GC_state' in locals(): for i in range(0, numberGC): figure() subplot(211) plot(GC_state.t/ms,GC_state.G[i]) if 'Weight_state' in locals(): for i in range(0, numberGC): figure() # subplot(211) plot(Weight_state.t/ms,Weight_state.Wpg[i]) if 'PC_state' in locals(): figure() subplot(211) plot(PC_state.t/ms,PC_state.P[0]) if 'MVN_state' in locals(): figure() subplot(211) plot(MVN_state.t/ms,-MVN_state.V[0]) xlabel('time') ylabel('Eye movement') show() numpy.savetxt("MVN_state_" + str(unitlessErrorDelay) + ".csv", MVN_state.V[0], delimiter=",") numpy.savetxt("MF_state_" + str(unitlessErrorDelay) + ".csv", MF_state.M[0], delimiter=",")
ThePerson2/CA6_Project
SMAE.py
SMAE.py
py
4,435
python
en
code
0
github-code
6
24650911393
import asyncio import curses import typing from curses_tools import draw_frame class Obstacle: def __init__( self, row: int, column: int, rows_size: int = 1, columns_size: int = 1, uid: str | None = None, ) -> None: self.row = row self.column = column self.rows_size = rows_size self.columns_size = columns_size self.uid = uid def get_bounding_box_frame(self) -> str: """Get frame of bounding box Returns: Bounding box frame. """ # increment box size to compensate obstacle movement rows, columns = self.rows_size + 1, self.columns_size + 1 return '\n'.join(_get_bounding_box_lines(rows, columns)) def get_bounding_box_corner_pos(self) -> tuple[int, int]: """Get left upper position of bounding box.""" return self.row - 1, self.column - 1 def dump_bounding_box(self) -> tuple[int, int, str]: """Get data for drawing the border of an obstacle.""" row, column = self.get_bounding_box_corner_pos() return row, column, self.get_bounding_box_frame() def has_collision( self, obj_corner_row: int, obj_corner_column: int, obj_size_rows: int = 1, obj_size_columns: int = 1, ) -> bool: """Determine if collision has occurred. Args: obj_corner_row: Left upper obj corner row; obj_corner_column: Left upper obj corner column; obj_size_rows: Obj width; obj_size_columns: Obj height. """ return has_collision( (self.row, self.column), (self.rows_size, self.columns_size), (obj_corner_row, obj_corner_column), (obj_size_rows, obj_size_columns), ) def _get_bounding_box_lines( rows: int, columns: int, ) -> typing.Generator[str, None, None]: """Get line of bounding_box frame. Args: rows: Box width; columns: Box height. """ yield ' ' + '-' * columns + ' ' for _ in range(rows): yield '|' + ' ' * columns + '|' yield ' ' + '-' * columns + ' ' async def show_obstacles( canvas: curses.window, obstacles: list[Obstacle], ) -> None: """Display bounding boxes of every obstacle in a list. Args: canvas: Main window; obstacles: List of obstacles. """ while True: boxes = [obstacle.dump_bounding_box() for obstacle in obstacles] for row, column, frame in boxes: draw_frame(canvas, row, column, frame) await asyncio.sleep(0) for row, column, frame in boxes: draw_frame(canvas, row, column, frame, negative=True) def _is_point_inside( corner_row: int, corner_column: int, size_rows: int, size_columns: int, point_row: int, point_row_column: int, ) -> bool: """Check if a point is inside a rectangle of a given size. Args: corner_row: Left upper rectangle row position; corner_column: Left upper rectangle column position size_rows: Rectangle width; size_columns: Rectangle height; point_row: Left upper point row position; point_row_column: Left upper point column position; """ rows_flag = corner_row <= point_row < corner_row + size_rows columns_flag = ( corner_column <= point_row_column < corner_column + size_columns ) return rows_flag and columns_flag def has_collision( obstacle_corner: tuple[int, int], obstacle_size: tuple[int, int], obj_corner: tuple[int, int], obj_size: tuple[int, int] = (1, 1), ) -> bool: """Determine if collision has occurred. Args: obstacle_corner: Left upper corner obstacle position; obstacle_size: Obstacle size (width, height); obj_corner: Left upper corner obj position; obj_size: Obj size (width, height). """ opposite_obstacle_corner = ( obstacle_corner[0] + obstacle_size[0] - 1, obstacle_corner[1] + obstacle_size[1] - 1, ) opposite_obj_corner = ( obj_corner[0] + obj_size[0] - 1, obj_corner[1] + obj_size[1] - 1, ) return any( [ _is_point_inside( *obstacle_corner, *obstacle_size, *obj_corner, ), _is_point_inside( *obstacle_corner, *obstacle_size, *opposite_obj_corner, ), _is_point_inside( *obj_corner, *obj_size, *obstacle_corner, ), _is_point_inside( *obj_corner, *obj_size, *opposite_obstacle_corner, ), ] )
Alex-Men-VL/space_game
src/obstacles.py
obstacles.py
py
4,841
python
en
code
0
github-code
6
22368252597
import os, sys import numpy as np import pandas as pd import pickle import argparse from keras import backend from keras.models import load_model from keras.optimizers import * from sklearn.metrics import accuracy_score from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from model import * from io_data import * backend.set_image_dim_ordering('tf') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' parser = argparse.ArgumentParser() parser.add_argument('--train', help='train data path') parser.add_argument('--test', help='test data path') parser.add_argument('-l', '--log', help='log path') parser.add_argument('-m', '--model', help='model path') parser.add_argument('-o', '--output', help='output path') parser.add_argument('-s', '--sample', type=int, help='novel sample') parser.add_argument('-e', '--evaluate', type=int, help='novel sample') parser.add_argument('-r', '--randomseed', type=int, help='randomseed') args = parser.parse_args() log_path = args.log model_path = args.model train_path = args.train test_path = args.test sample = args.sample output_path = args.output evaluate = args.evaluate randomseed = args.randomseed width = 32 height= 32 channel = 3 n_batch = 100 epoch = 30 print('Read data') np.random.seed(randomseed) train_imgs, label, test_imgs = read_test(train_path, test_path, sample=sample) height, width, channel = train_imgs.shape[1:] # training imgs flip horizontally model, cnn_model = Recognition() model.load_weights(model_path) train_imgs = cnn_model.predict(train_imgs) test_imgs = cnn_model.predict(test_imgs) T = train_imgs.shape[0] train_imgs = np.reshape(train_imgs, (20, sample, -1)) train_imgs = np.mean(train_imgs, axis=1) label = np.array([label[i*sample] for i in range(20)]) test_imgs = np.reshape(test_imgs, (test_imgs.shape[0], -1)) knc = KNeighborsClassifier(n_neighbors=1) knc.fit(train_imgs, label) predict1 = knc.predict(test_imgs) pca = PCA(n_components=64) pca.fit(np.vstack([train_imgs, test_imgs])) train_pca = pca.transform(train_imgs) test_pca = pca.transform(test_imgs) knc = KNeighborsClassifier(n_neighbors=1) knc.fit(train_pca, label) predict2 = knc.predict(test_pca) save_predict(predict1, os.path.join(output_path, str(sample)+'_knn_predict.csv')) save_predict(predict2, os.path.join(output_path, str(sample)+'_PCA_knn_predict.csv')) del model
tom6311tom6311/dlcv2018final
task2/knn/code/knn_test.py
knn_test.py
py
2,377
python
en
code
0
github-code
6
17875196708
#https://projecteuler.net/problem=5 #Smallest Multiple def lcm(a, b): if a > b: n = a else: n = b while not (n % a == 0) or not (n % b == 0): n += 1 return n n = 20 l = 1 for i in range(1, n+1): l = lcm(l, i) print(l)
SreenathSreekrishna/euler
python/p5.py
p5.py
py
257
python
en
code
0
github-code
6
18287710970
import random def GetQuestions(sub,quesNum): # Getting the questions inside a variable as a list with open(sub,"r") as f: unfilteredQuestion = f.readlines() # Removing new line escape sequence from the list filteredQuestions = [] for items in unfilteredQuestion: if items[0:-1] == '': continue filteredQuestions.append(items[0:-1]) # Generating 10 random unique numbers def generateRandNum(): endIndex = len(filteredQuestions) - 1 allRandNum = random.sample(range(0,endIndex),quesNum) return allRandNum allRandNum = [] finalQuestions = [] # Appending random 10 questions inside finalQuestion list for items in generateRandNum(): finalQuestions.append(filteredQuestions[items]) return finalQuestions
CharanGeek/DPP_Generator
GettingQuestions.py
GettingQuestions.py
py
824
python
en
code
0
github-code
6
4534308606
#!/usr/bin/env python # -*- coding: UTF-8 -*- # REF [site] >> https://scrapy.org/ import scrapy class BlogSpider(scrapy.Spider): name = 'blogspider' start_urls = ['https://blog.scrapinghub.com'] def parse(self, response): for title in response.css('.post-header>h2'): yield {'title': title.css('a ::text').get()} for next_page in response.css('a.next-posts-link'): yield response.follow(next_page, self.parse) #-------------------------------------------------------------------- # Usage: # scrapy runspider scrapy_test.py #if '__main__' == __name__: # main()
sangwook236/SWDT
sw_dev/python/ext/test/networking/scrapy_test.py
scrapy_test.py
py
581
python
en
code
17
github-code
6
3457609091
import RPi.GPIO as GPIO import time # ===== CONFIGURATIONS and FUNCTIONS ==== # ===== (Please, don't touch!) ========== ## ==== CARRIAGE CONFIGS ================ GPIO.setwarnings(False) DIR1 = 20 # Direction GPIO Pin Mag STEP1 = 21 # Step GPIO Pin Mag DIR2 = 16 # Direction GPIO Pin Car STEP2 = 12 # Step GPIO Pin Car DIR3 = 6 # Direction GPIO Pin Lenta STEP3 = 5 # Step GPIO Pin Lenta DIR4 = 7 # Direction GPIO Pin Lift STEP4 = 8 # Step GPIO Pin Lift CW = 1 # Clockwise Rotation CCW = 0 # Counterclockwise Rotation SPR = 75 # Steps per Revolution (360 / 7.5) 328 - last Servo = 17 #servo pin in1 = 11 # GPIO pin led 1 last - 24 in2 = 9 # GPIO pin led 2 last - 23 in3 = 3 # GPIO pin led 1 last - 24 in4 = 4 # GPIO pin led 2 last - 23 End = False Step = 0 StepMagnet = 0 StepMove = 0 place = 0 FirstHoarder = 2250 SecondHoarder = 1450 ThirdHoarder = 650 FourthHoarder = 0 GPIO.setmode(GPIO.BCM) GPIO.setup(DIR1, GPIO.OUT) GPIO.setup(STEP1, GPIO.OUT) GPIO.output(DIR1, CW) GPIO.setup(DIR2, GPIO.OUT) GPIO.setup(STEP2, GPIO.OUT) GPIO.output(DIR2, CW) GPIO.setup(DIR3, GPIO.OUT) GPIO.setup(STEP3, GPIO.OUT) GPIO.output(DIR3, CW) GPIO.setup(DIR4, GPIO.OUT) GPIO.setup(STEP4, GPIO.OUT) GPIO.output(DIR4, CW) GPIO.setup(Servo, GPIO.OUT) GPIO.setup(in1,GPIO.OUT) GPIO.setup(in2,GPIO.OUT) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.LOW) GPIO.setup(25, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(10, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(24, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(23, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(27, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(4, GPIO.IN, pull_up_down=GPIO.PUD_UP) pwm=GPIO.PWM(Servo, 50) MODE = (13, 19, 26) # Microstep Resolution GPIO Pins GPIO.setup(MODE, GPIO.OUT) RESOLUTION = {'Full': (0, 0, 0), 'Half': (1, 0, 0), '1/4': (0, 1, 0), '1/8': (1, 1, 0), '1/16': (0, 0, 1), '1/32': (1, 0, 1)} GPIO.output(MODE, RESOLUTION['1/8']) step_count = SPR * 32 delay = .0208 / 32 def MagnetFullDown(): global StepMagnet while StepMagnet <= 7090: GPIO.output(DIR1, CCW) GPIO.output(STEP1, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP1, GPIO.LOW) time.sleep(delay) StepMagnet += 1 print('MagnetFullDown') StepMagnet = 0 print(StepMagnet) def MagnetHalfDown(): global StepMagnet while StepMagnet <= 2000: GPIO.output(DIR1, CCW) GPIO.output(STEP1, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP1, GPIO.LOW) time.sleep(delay) StepMagnet += 1 print('MagnetHalfDown') StepMagnet = 0 print(StepMagnet) def MoveTo(): global Step if Step > place: while Step >= place: GPIO.output(DIR4, CCW) GPIO.output(STEP4, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP4, GPIO.LOW) time.sleep(delay) Step -= 1 else: while Step <= place: GPIO.output(DIR4, CW) GPIO.output(STEP4, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP4, GPIO.LOW) time.sleep(delay) Step += 1 def ToFirstHoarder(): global FirstHoarder global place place = FirstHoarder MoveTo() print('ToFirstHoarder') print(Step) def ToSecondHoarder(): global SecondHoarder global place place = SecondHoarder MoveTo() print('ToSecondHoarder') print(Step) def ToThirdHoarder(): global ThirdHoarder global place place = ThirdHoarder MoveTo() print('ToThirdHoarder') print(Step) def ToFourthHoarder(): global FourthHoarder global place place = FourthHoarder MoveTo() print('ToFourthHoarder') print(Step) def LiftUp(): global End global StepMove while End == False: LiftDown = GPIO.input(18) GPIO.output(DIR3, CW) GPIO.output(STEP3, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP3, GPIO.LOW) time.sleep(delay) StepMove += 1 if LiftDown == False: print('LiftDown') time.sleep(0.2) End = True End = False StepMove = 0 print(StepMove) def CarriageStart(): global End global Step while End == False: CarriageStart = GPIO.input(23) GPIO.output(DIR4, CW) GPIO.output(STEP4, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP4, GPIO.LOW) time.sleep(delay) Step = Step + 1 if CarriageStart == False: print('CarriageStart') time.sleep(0.2) End = True End = False print(Step) def MagnetOn(): GPIO.output(in1,GPIO.HIGH) GPIO.output(in2,GPIO.LOW) def MagnetUp(): global End global StepMagnet while End == False: MagnetUp = GPIO.input(25) GPIO.output(DIR1, CW) GPIO.output(STEP1, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP1, GPIO.LOW) time.sleep(delay) StepMagnet += 1 if MagnetUp == False: print('MagnetUp') time.sleep(0.2) End = True End = False StepMagnet = 0 print(StepMagnet) def LentaUp(): global StepMove while StepMove <= 5000: GPIO.output(DIR2, CW) #for x in range(step_count): GPIO.output(STEP2, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP2, GPIO.LOW) time.sleep(delay) StepMove += 1 print(StepMove) StepMove = 0 def LiftDown(): global End global StepMove while End == False: LiftUp = GPIO.input(27) GPIO.output(DIR3, CCW) #for x in range(step_count): GPIO.output(STEP3, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP3, GPIO.LOW) time.sleep(delay) StepMove += 1 if LiftUp == False: print('LiftUp') time.sleep(0.2) End = True End = False print(End) print(StepMove) StepMove = 0 def CarriageEnd(): global End global Step while End == False: CarriageEnd = GPIO.input(22) GPIO.output(DIR4, CCW) #for x in range(step_count): GPIO.output(STEP4, GPIO.HIGH) time.sleep(delay) GPIO.output(STEP4, GPIO.LOW) time.sleep(delay) Step = Step + 1 if CarriageEnd == False: print('CarriageEnd') time.sleep(0.2) End = True End = False print(End) print(Step) Step = 0 def MagnetOff(): GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.LOW) def Servo(): pwm.start(0) global End pwm.ChangeDutyCycle(5) while End == False: ServoForward = GPIO.input(10) if ServoForward == False: End = True print('ServoForward') End = False pwm.ChangeDutyCycle(10) while End == False: ServoBackward = GPIO.input(24) if ServoBackward == False: End = True print('ServoBackward') End = False print(End) MagnetUp() CarriageEnd() CarriageStart() MagnetUp() MagnetFullDown() MagnetOn() MagnetUp() ToFirstHoarder() MagnetHalfDown() MagnetOff() MagnetUp() Servo() LiftDown() LentaUp() LiftUp() GPIO.cleanup()
Mekek/NTI-ATC
фабрика/AiOi/facility.py
facility.py
py
7,522
python
en
code
0
github-code
6
16312750556
print('-'*30) print('Kwik-E-Mart') print('-'*30) preçototal = thousand = menor = contador = 0 barato = '' while True: produto = str(input('Nome do Produto: ')) preço = float(input('preço R$: ')) preçototal += preço contador += 1 if preço > 1000: thousand += 1 if contador == 1 or preço < menor: # Simplificação menor = preço barato = produto compra = ' ' while compra not in 'SN': compra = str(input('Deseja continuar? [S/N]: ')).strip()[0].upper() if compra == 'N': break print(f'{"Fim do programa":-^40}') print(f'O valor da sua compra deu R${preço:.2f}') print(f'Temos {thousand} produtos acima de R$1000.00 ') print(f'O produto mais barato custa R${menor:.2f}')
igorfreits/Studies-Python
Curso-em-video/Mundo-2/AULA15-Interrompendo-repetições-while(break)/#070 - Estatísticas em produtos.py
#070 - Estatísticas em produtos.py
py
764
python
pt
code
1
github-code
6
33489134927
import sys import os fi = open(sys.argv[1], 'r') fo = open(sys.argv[2], 'w') vocab = {} for line in fi: u = line.split()[0] v = line.split()[1] vocab[u] = 1 vocab[v] = 1 for ent in vocab.keys(): fo.write(ent + '\n') fi.close() fo.close()
mnqu/REPEL
preprocess/entity.py
entity.py
py
245
python
en
code
26
github-code
6
37091838482
import RPi.GPIO as GPIO from RF24 import * import time import spidev GPIO.setmode(GPIO.BCM) pipes = [0xe7e7e7e7e7, 0xc2c2c2c2c2] radio = RF24(25,8) radio.begin() #radio.setPayloadSize(32) radio.setChannel(0x60) radio.setDataRate(RF24_2MBPS) radio.setPALevel(RF24_PA_MIN) radio.setAutoAck(True) radio.enableDynamicPayloads() radio.enableAckPayload() radio.openReadingPipe(1, pipes[1]) radio.printDetails() radio.startListening() while True: ackPL = [1] while not radio.available(): time.sleep(1/100) receivedMessage =radio.read(radio.getDynamicPayloadSize()) print("Received: {}".format(receivedMessage)) print("Translating the receivedMessage into unicode characters...") string = "" for n in receivedMessage: # Decode into standard unicode set if (n >= 32 and n <= 126): string += chr(n) print(string) radio.writeAckPayload(1, bytearray(ackPL)) print("Loaded payload reply of {}".format(ackPL))
julio-burgos/Rx_TX_RF24
Basic/recv.py
recv.py
py
983
python
en
code
1
github-code
6
33623583816
import arcpy import traceback import split_tool name_mod = arcpy.GetParameterAsText(4) output_file = "G:\\GIS\\Models_Tools\\Production\\EPModel\\tests\\testing\\test_zone\\ep_model_testing\\errors\\{0}_errors.txt".format(name_mod) messages_file = "G:\\GIS\\Models_Tools\\Production\\EPModel\\tests\\testing\\test_zone\\ep_model_testing\\errors\\{0}_messages.txt".format(name_mod) try: final_message = split_tool.main() with open(messages_file, "w+") as w_file: w_file.write(final_message) except: with open(output_file, "w+") as w_file: w_file.write(traceback.format_exc());
cwmat/ShapeSplitter
src/test_wrapper.py
test_wrapper.py
py
606
python
en
code
0
github-code
6
21632483915
# Вариант 29 # Дана строка, содержащая по крайней мере один символ пробела. Вывести подстроку, # расположенную между первым и вторым пробелом исходной строки. Если строка # содержит только один пробел, то вывести пустую строку. a = input('Введите строку: ') # Ввод строки с клавиатуры space_count = 0 # Счетчик количества пробелов spaces = [] # Позиции пробелов count = 0 # Счетчик итераций(для внесения позиции пробела в spaces) new_string = '' # Новая строка, которая станет конечной for i in a: # Цикл подсчета пробелов и внесения их позиций в spaces count += 1 if i == ' ': space_count += 1 # Использовал простой счетчик, а не a.count потому что count не вернет позиции пробелов, spaces.append(count) # и все равно пришлось бы бегать циклом по строке if space_count == 0: # Проверка количества пробелов print('Нет пробелов!') elif space_count == 1: # Проверка количества пробелов print('') else: # Проверка количества пробелов new_string = a[spaces[0]:spaces[1]] # Присваивание значения переменной new_string print(new_string) # Вывод конечной строки
Abyka12/Proj_1sem_Mogilko
PZ_7/PZ_7_2.py
PZ_7_2.py
py
1,715
python
ru
code
0
github-code
6
32129181331
import logging import pandas as pd from flask import Flask, request, jsonify from data_preprocessing import process_data_for_training import psycopg2 from psycopg2 import sql # Create a Flask app app = Flask(__name__) app.logger.setLevel(logging.DEBUG) app.logger.addHandler(logging.StreamHandler()) db_params = { 'dbname': 'app_db', 'user': 'app_user', 'password': 'password', 'host': 'db', 'port': '5432' } def fetch_warranty_data(): # Establish a connection to the database connection = psycopg2.connect(**db_params) cursor = connection.cursor() # Build the dynamic SQL query select_query = sql.SQL("SELECT * FROM api.claims") cursor.execute(select_query) rows = cursor.fetchall() columns = [desc[0] for desc in cursor.description] warranty_df = pd.DataFrame(rows, columns=columns) cursor.close() connection.close() return warranty_df # Define the API endpoint for data preparation @app.route("/train", methods=["POST"]) def train(): data = request.data.decode('utf-8') warranty_data = fetch_warranty_data() train(process_data_for_training(data, warranty_data)) return 'New model generated' # Run the Flask app if __name__ == "__main__": app.run(host="0.0.0.0", port=5000, debug=True)
evialina/automotive_diagnostic_recommender_system
training-service/script.py
script.py
py
1,290
python
en
code
0
github-code
6
72474633149
""" ~ working with data in text files ~ A common thing to do with Python is to process data files. You can use the built-in `csv` module to work with delimited text. We'll open the files like this: - inside a `with` block -- notice the indentation on subsequent lines - in `r` ("read") mode - as some_variable that gives you a handle to the file object - with the newline argument set to a blank string Inside the with block, we'll create a `csv.reader` object and hand it the file object variable as an argument. You can then _iterate_ over the rows in the data file, with each row as a list of items in the row. """ import csv with open('../data/lotto.csv', 'r', newline='') as infile: reader = csv.reader(infile) for row in reader: county = row[0] retailer = row[1] address = row[2] city = row[3] date_claimed = row[4] game = row[5] amount = row[6] claimant_name = row[7] claimant_city = row[8] claimant_state = row[9] # print(city) """ You can also use a `csv.DictReader` object instead of a `csv.reader` object, which will treat each row as a dictionary instead of a list. The keys will be the items in the header row. I like using `csv.DictReader` better because it's easier to keep track of where everything is. """ with open('../data/lotto.csv', 'r', newline='') as infile: reader = csv.DictReader(infile) for row in reader: county = row['County'] retailer = row['Selling Retailer'] address = row['Business Address'] city = row['City'] date_claimed = row['Date Claimed'] game = row['Game'] amount = row['Prize Amount'] claimant_name = row["Primary Claimant's Name"] claimant_city = row["Claimant's City"] claimant_state = row['State'] # print(city) """ ~ use conditional logic to filter data ~ """ with open('../data/lotto.csv', 'r', newline='') as infile: reader = csv.DictReader(infile) for row in reader: county = row['County'] retailer = row['Selling Retailer'] address = row['Business Address'] city = row['City'] date_claimed = row['Date Claimed'] game = row['Game'] amount = row['Prize Amount'] claimant_name = row["Primary Claimant's Name"] claimant_city = row["Claimant's City"] claimant_state = row['State'] if city.strip() == 'KINGSTON': print(row) """ ~ writing to a CSV ~ Unsurprisingly, you can also write to a CSV (use 'w' mode). The `csv.writer` object's `writerow()` method expects a list; the `csv.DictWriter`'s method expects a dictionary. """ # write lists with open('test-writer.csv', 'w') as outfile: writer = csv.writer(outfile) headers = ['name', 'age', 'profession'] writer.writerow(headers) journos = [ ['Frank', 52, 'Reporter'], ['Sally', 37, 'Editor'], ['Pat', 41, 'Producer'] ] for journo in journos: writer.writerow(journo) # write dictionaries # notice that you have to specify the headers when you # create the `DictWriter` object -- you pass a list to # the `fieldnames` keyword argument -- and they have # to match exactly the keys in the dictionaries # of the rows you're writing out with open('test-dictwriter.csv', 'w') as outfile: headers = ['name', 'age', 'profession'] writer = csv.DictWriter(outfile, fieldnames=headers) writer.writeheader() journos = [ {'name': 'Frank', 'age': 52, 'profession': 'Reporter'}, {'name': 'Sally', 'age': 37, 'profession': 'Editor'}, {'name': 'Pat', 'age': 41, 'profession': 'Producer'} ] for journo in journos: writer.writerow(journo) """ EXERCISES: - Open the lotto.csv file and loop over the rows -- print only the records where the claimant's state is NY - Create a couple of rows of data -- anything, doesn't matter -- and write them out to a CSV file """
cjwinchester/ire-2017-python-101
completed/1-data-files-completed.py
1-data-files-completed.py
py
3,991
python
en
code
2
github-code
6
74750167547
import torch from transformers import T5ForConditionalGeneration, T5Tokenizer import re def title_generation(data): print("[!] Server logs: Title generation has started") text = data["content"] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained( "Michau/t5-base-en-generate-headline" ) tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline") model = model.to(device) encoding = tokenizer.encode_plus(text, return_tensors="pt") input_ids = encoding["input_ids"].to(device) attention_masks = encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=64, num_beams=3, early_stopping=True, ) result = tokenizer.decode(beam_outputs[0]) print("[!] Server logs: Title generation completed") regex_pattern = r"(?<=<pad> )(.*)(?=</s>)" result = re.search(regex_pattern, result).group(0) data["title"] = result return data
SVijayB/Gist
scripts/title_generation.py
title_generation.py
py
1,106
python
en
code
4
github-code
6
9634403295
''' Functions for computing energies of sets of auxiliaries. ''' import numpy as np from auxgf import util def energy_2body_aux(gf, se, both_sides=False): ''' Calculates the two-body contribution to the electronic energy using the auxiliary representation of the Green's function and self-energy, according to the Galitskii-Migdal formula. Parameters ---------- gf : Aux auxiliary representation of Green's function se : Aux auxiliary representation of self-energy both_sides : bool, optional if True, calculate both halves of the functional and return the mean, default False Returns ------- e2b : float two-body contribution to electronic energy ''' #TODO in C if isinstance(se, (tuple, list)): n = len(se) if isinstance(gf, (tuple, list)): return sum([energy_2body_aux(gf[i], se[i], both_sides=both_sides) for i in range(n)]) / n else: return sum([energy_2body_aux(gf, se[i], both_sides=both_sides) for i in range(n)]) / n nphys = se.nphys e2b = 0.0 for l in range(gf.nocc): vxl = gf.v[:nphys,l] vxk = se.v[:,se.nocc:] dlk = 1.0 / (gf.e[l] - se.e[se.nocc:]) e2b += util.einsum('xk,yk,x,y,k->', vxk, vxk.conj(), vxl, vxl.conj(), dlk) if both_sides: for l in range(gf.nocc, gf.naux): vxl = gf.v[:nphys,l] vxk = se.v[:,:se.nocc] dlk = -1.0 / (gf.e[l] - se.e[:se.nocc]) e2b += util.einsum('xk,yk,x,y,k->', vxk, vxk.conj(), vxl, vxl.conj(), dlk) else: e2b *= 2.0 return np.ravel(e2b.real)[0] def energy_mp2_aux(mo, se, both_sides=False): ''' Calculates the two-body contribution to the electronic energy using the MOs and the auxiliary representation of the self-energy according the the MP2 form of the Galitskii-Migdal formula. Parameters ---------- mo : (n) ndarray MO energies se : Aux auxiliary representation of self-energy both_sides : bool, optional if True, calculate both halves of the functional and return the mean, default False Returns ------- e2b : float two-body contribution to electronic energy ''' if isinstance(se, (tuple, list)): n = len(se) if util.iter_depth(mo) == 2: return sum([energy_mp2_aux(mo[i], se[i], both_sides=both_sides) for i in range(n)]) / n else: return sum([energy_mp2_aux(mo, se[i], both_sides=both_sides) for i in range(n)]) / n nphys = se.nphys occ = mo < se.chempot vir = mo >= se.chempot vxk = se.v_vir[occ] dxk = 1.0 / util.outer_sum([mo[occ], -se.e_vir]) e2b = util.einsum('xk,xk,xk->', vxk, vxk.conj(), dxk) if both_sides: vxk = se.v_occ[vir] dxk = -1.0 / util.outer_sum([mo[vir], -se.e_occ]) e2b += util.einsum('xk,xk,xk->', vxk, vxk.conj(), dxk) e2b *= 0.5 return np.ravel(e2b.real)[0]
obackhouse/auxgf
auxgf/aux/energy.py
energy.py
py
3,055
python
en
code
3
github-code
6
30439578880
import networkx as nx from networkx.generators.degree_seq import expected_degree_graph # make a random graph of 500 nodes with expected degreees of 50 n = 500 # n nodes p = 0.1 w = [p * n for i in range(n)] # w = p*n for all nodes G = expected_degree_graph(w) # configuration model print("Degree Histogram") print("degree (#nodes) ****") dh = nx.degree_histogram(G) low = min(nx.degree(G)) for i in range(low, len(dh)): bar = ''.join(dh[i] * ['*']) print("%2s (%2s) %s" % (i, dh[i], bar))
oimichiu/NetworkX
graph/ex24.py
ex24.py
py
503
python
en
code
0
github-code
6
10769330374
"""my_first_django URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.shortcuts import render from django.urls import include, path from rest_framework_simplejwt.views import ( TokenObtainPairView, TokenRefreshView, TokenVerifyView ) from rest_framework import routers from myapp.views.person import PersonViewSet from myapp.views.user import UserViewSet, GroupViewSet router = routers.DefaultRouter() router.register(r'users', UserViewSet) router.register(r'groups', GroupViewSet) router.register(r'persons', PersonViewSet) def index(request): return render(request, 'index.html') urlpatterns = [ path("", index, name='index'), path("admin/", admin.site.urls), path("api/", include(router.urls)), path("myapp/", include("myapp.urls")), path("accounts/", include("django.contrib.auth.urls")), path("api-auth/", include("rest_framework.urls")), path('api/token/', TokenObtainPairView.as_view(), name='token_obtain_pair'), path('api/token/refresh/', TokenRefreshView.as_view(), name='token_refresh'), path('api/token/verify/', TokenVerifyView.as_view(), name='token_verify'), ]
shine-codestove/my_first_django
my_first_django/urls.py
urls.py
py
1,750
python
en
code
1
github-code
6
28237649684
import typing import requests from requests import Session from zenora.errors import MissingAccess, AvatarError, InvalidSnowflake # Request functions def fetch( url: str, headers: typing.Dict[str, str], params: typing.Dict[str, str] = {}, ) -> typing.Dict: r = requests.get(url=url, headers=headers, params=params) r.raise_for_status() return r.json() def post( url: str, headers: typing.Dict[str, str], params: typing.Dict[str, str] = {}, ) -> typing.Dict: r = requests.post(url=url, headers=headers, json=params) r.raise_for_status() return r.json() def patch( url: str, headers: typing.Dict[str, str], params: typing.Dict[str, str] = {}, ) -> typing.Dict: r = requests.patch(url=url, headers=headers, json=params) r.raise_for_status() return r.json() def delete( url: str, headers: typing.Dict[str, str], params: typing.Dict[str, str] = {}, ) -> typing.Dict: r = requests.delete(url=url, headers=headers, json=params) r.raise_for_status() return r # Utility functions def error_checker(data: typing.Dict) -> None: if data.get("user_id") or data.get("channel_id"): raise InvalidSnowflake( data.get("user_id")[0] if data.get("user_id") is not None else data.get("channel_id")[0] ) elif data.get("code"): if data.get("code") == 50001: raise MissingAccess(data.get("message")) else: raise InvalidSnowflake(data.get("message")) elif data.get("avatar"): if isinstance(data.get("avatar"), list): raise AvatarError(data.get("avatar")[0]) def get_file(url): # Downloading Image from link r = requests.get(url=url, stream=True) return r
StarrMan303/zenora
zenora/utils/helpers.py
helpers.py
py
1,778
python
en
code
0
github-code
6
37187209809
# solved by satyam kumar (reference https://www.youtube.com/watch?v=gBTe7lFR3vc) # question link https://leetcode.com/problems/linked-list-cycle/ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def hasCycle(self, head: Optional[ListNode]) -> bool: # x=[] # # for empty linked list # if head==None: # return False # while head.next!=None: # # if cycle exists # if head.next in x: # return True # # storing the address # x.append(head.next) # head=head.next # return False slow=head fast=head # while True: # if slow==None or fast==None: # return False # try: # slow=slow.next # fast=fast.next.next # except: # return False # if slow==fast: # return True while fast and fast.next: slow=slow.next fast=fast.next.next if slow==fast: return True return False
saty035/DSA_Python
Linked List Cycle_leetcode/Linked List Cycle.py
Linked List Cycle.py
py
1,397
python
en
code
2
github-code
6
21797961836
# make a time series of instantaneous electric power consumption graph from a csv file import csv import glob import re import os import numpy as np import matplotlib.pyplot as plt import pandas as pd from statistics import mean # define variables timestep = 0.01 def csv_to_graph(path): data = pd.read_csv(path, index_col=0, skipinitialspace=True) # comvert csv data to a list format data current = np.array(data['current'].values.tolist()) # find the peak value from the list data peak_value_index = np.argmax(current) # extract useful values from arround the peak value arround_peak_value = current[peak_value_index-100:peak_value_index+500] # calucurate const value const_value = arround_peak_value[len(arround_peak_value)-400:len(arround_peak_value)] avg_const_value = round(mean(const_value),2) text_avg_const_value = "mean const value = " + str(avg_const_value) # make a time series graph count = np.arange(0, len(arround_peak_value)/100, timestep) plt.plot(count, arround_peak_value) plt.xlim(0.0, 6.0) plt.ylim(0.0, 10.0) plt.xlabel('t [s]') plt.ylabel('current [A]') font_dict = dict(style="italic", size=16) bbox_dict = dict(facecolor="#ffffff", edgecolor="#000000", fill=True) plt.text(2.5, 9, text_avg_const_value, font_dict, bbox=bbox_dict) plt.grid() plt.show() def make_result_file(path): # define variables peak_value = [] mean_const_value = [] # make file list file_list = glob.glob(path+'*.csv') # extract the peak value and average const value of each file # and append each value to the list for file in file_list: print(file) data = pd.read_csv(file, index_col=0, skipinitialspace=True) # comvert csv data to a list format data current = np.array(data['current'].values.tolist()) # find the peak value from the list data peak_value_index = np.argmax(current) # extract useful values from arround the peak value arround_peak_value = current[peak_value_index-100:peak_value_index+500] # calucurate const value const_value = arround_peak_value[len(arround_peak_value)-400:len(arround_peak_value)] avg_const_value = round(mean(const_value),2) # calcurate mean value of peak value and average const value peak_value.append(np.max(current)) mean_const_value.append(avg_const_value) # make a result file(write each value) file_name = path + 'result.txt' f = open(file_name, 'a') for i in range(len(file_list)): peak = peak_value[i] const = mean_const_value[i] f.write("FILE%s: Peak value: %s, Mean const value: %s \n" % (i, peak, const)) mean_peak = round(mean(peak_value),2) mean_const = round(mean(mean_const_value),2) f.write("Mean peak value: %s, Mean const value: %s\n" % (mean_peak, mean_const)) f.close() # analyze the step down experiment data def analyze_gradation_exp(file_list): # import csv format file for file in file_list: data = pd.read_csv(file, index_col=0, skipinitialspace=True) # comvert csv data to a list format data current = np.array(data['current'].values.tolist()) # extract the peak value from the list data peak_value_index = np.argmax(current) start_index = peak_value_index # clip the time series data by 1 sec grad_data = [] for i in range(int(len(current[start_index:])/99)): grad_data.append(current[start_index:start_index+99*i]) start_index = start_index + 99 # calcurate mean value of each data set for data in grad_data: mean_grad = mean(data) print(mean_grad) # write results on a text file if __name__ == "__main__": # import csv format file """ # useage: make a time series of power consumption graph path = "test.csv" csv_to_graph(path) """ # useage: make result files path = 'C:/Users/is0232xf/OneDrive - 学校法人立命館/ソースコード/BIWAKO_unit_test/csv/diagonal/25%/' make_result_file(path) """ files = os.listdir(path) # get subdirectory list files_dir = [f for f in files if os.path.isdir(os.path.join(path, f))] for subdir in files_dir: dir = path + subdir + '/' make_result_file(dir) """
is0232xf/BIWAKO_unit_test
csv_to_graph.py
csv_to_graph.py
py
4,460
python
en
code
0
github-code
6
42095752382
import os, settings from app import myApp import uuid from flask import request, render_template from pdf_core import PdfHelper from threading import Timer @myApp.route('/', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': # create a list with all pdf files files = [] for uploadedFile in request.files.getlist('file'): if allowed_file(uploadedFile.filename): files.append(uploadedFile) # join pdf files pdfHelper = PdfHelper() uniqueFilenamePath = os.path.join(settings.RESULT_PATH, str(uuid.uuid4()) + ".pdf") pdfHelper.merge_pdfs(files, uniqueFilenamePath) # remove the file after 10 min t = Timer(60*10, delete, (uniqueFilenamePath,)) t.start(); # close the files for uploadedFile in files: uploadedFile.close() return render_template('show_links.html', link=uniqueFilenamePath) return render_template('index.html') def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in settings.ALLOWED_EXTENSIONS def delete(dest): if os.path.exists(dest): os.remove(dest)
icruces/blog-PDFMerging
app/views.py
views.py
py
1,305
python
en
code
2
github-code
6
74416653309
# Ta stała globalna przechowuje procent kwoty # wynagrodzenia przekazywany na fundusz emerytalny. CONTRIBUTION_RATE = 0.05 def main(): gross_pay = float(input('Podaj kwotę wynagrodzenia: ')) bonus = float(input('Podaj kwotę premii: ')) show_pay_contrib(gross_pay) show_bonus_contrib(bonus) # Funkcja show_pay_contrib() pobiera argument w postaci # kwoty wynagrodzenia i wyświetla obliczoną wysokość składki # naliczoną dla podanego wynagrodzenia. def show_pay_contrib(gross): contrib = gross * CONTRIBUTION_RATE print('Wysokość składki naliczona dla wynagrodzenia wynosi: ', format(contrib, '.2f'), sep='') # Funkcja show_bonus_contrib() pobiera argument w postaci # kwoty premii i wyświetla obliczoną wysokość składki # naliczoną dla podanej premii. def show_bonus_contrib(bonus): contrib = bonus * CONTRIBUTION_RATE print('Wysokość składki naliczona dla premii wynosi ', format(contrib, '.2f'), sep='') # Wywołanie funkcji main(). main()
JeanneBM/Python
Owoce Programowania/R05/28. Retirement.py
28. Retirement.py
py
1,038
python
pl
code
0
github-code
6
6185400966
# codesignal level1 n2 def centuryFromYear(year): return (year - 1) // 100 + 1 # tests print('century from hear 1905: ',centuryFromYear(1905)) # expected 20 print('century from hear 1700: ',centuryFromYear(1700)) # expected 17 # codesignal level1 n3 def checkPalindrome(inputString): length = len(inputString) mid = length // 2 return inputString[:mid-1:-1] == inputString[:mid] if length%2 == 0 else inputString[:mid] == inputString[:mid:-1] # tests print('checkPalindrome: "aabaa", expected True is: ',checkPalindrome("aabaa")) print('checkPalindrome: "abac", expected False is: ',checkPalindrome("abac")) print('checkPalindrome: "a", expected True is: ',checkPalindrome("a")) print('checkPalindrome: "abacaba", expected True is: ',checkPalindrome("abacaba")) # codesignal level2 n1 def adjacentElementsProduct(inputArray): result = 0 temp = 0 for i in range(len(inputArray)): if i == 0: continue temp = inputArray[i-1] * inputArray[i] if result == 0: result = temp else : result = temp if temp > result else result return result # tests print('max of two multiplied members in list: [3, 6, -2, -5, 7, 3] is 21 = ',adjacentElementsProduct([3, 6, -2, -5, 7, 3])) print('max of two multiplied members in list: [5, 1, 2, 3, 1, 4] is 6 = ',adjacentElementsProduct([5, 1, 2, 3, 1, 4])) # codesignal level2 n2 - polygon shape area calculator def shapeArea(n): return (n * n) + ((n - 1) * (n - 1)) # tests print('polygon area of 2 squares is 5 = ',shapeArea(2)) print('polygon area of 7000 squares is 97986001 = ',shapeArea(7000)) # codesignal level2 n3 - find missing numbers count if list becomes sorted def makeArrayConsecutive2(statues): full = list( range( min(statues), max(statues) ) ) result = [] for i in range( 0, len(full) ): if full[i] not in statues: result.append( full[i] ) return len( result ) # tests print('missing numbers count in list [6, 2, 3, 8] is 3 = ',makeArrayConsecutive2([6, 2, 3, 8])) print('missing numbers count in list [6, 2, 10, 3, 15, 8] is 8 = ',makeArrayConsecutive2([6, 2, 10, 3, 15, 8])) # codesignal level2 n4 - is it possible to get increasing sequence by removing only 1 member def almostIncreasingSequence(sequence): j = first_bad_pair(sequence) if j == -1: return True # List is increasing if first_bad_pair(sequence[j - 1:j] + sequence[j + 1:]) == -1: return True # Deleting earlier element makes increasing if first_bad_pair(sequence[j:j + 1] + sequence[j + 2:]) == -1: return True # Deleting later element makes increasing return False # additional function for l2 n2 - almostIncreasingSequence def first_bad_pair(sequence): for i in range(len(sequence) - 1): if sequence[i] >= sequence[i + 1]: return i return -1 # tests print('almostIncreasingSequence of [1, 3, 2, 1] is false = ',almostIncreasingSequence([1, 3, 2, 1])) print('almostIncreasingSequence of [123, -17, -5, 1, 2, 3, 12, 43, 45] is true = ',almostIncreasingSequence([123, -17, -5, 1, 2, 3, 12, 43, 45])) # codesignal level2 n5 - matrix of ghosts def matrixElementsSum(matrix): result = 0 ignore = [] for i in range(len(matrix)): for j in range(len(matrix[i])): if matrix[i][j] > 0 and j not in ignore: result += matrix[i][j] elif matrix[i][j] == 0 and j not in ignore: ignore.append(j) return result # tests print('matrix of ghosts [[0,1,1,2],[0,5,0,0],[2,0,3,3]] sum is 9 = ',matrixElementsSum([[0,1,1,2],[0,5,0,0],[2,0,3,3]])) print('matrix of ghosts [[4,0,1],[10,7,0],[0,0,0],[9,1,2]] sum is 15 = ',matrixElementsSum([[4,0,1],[10,7,0],[0,0,0],[9,1,2]])) # codesignal level3 n1 - find longest string in list and how many have same length def allLongestStrings(inputArray): result = [] longest = max(inputArray, key=len) length = len(longest) for i in inputArray: if len(i) == length: result.append(i) return result # tests print('all longest strings of ["aba","aa","ad","vcd","aba"] is ["aba","vcd","aba"] = ',allLongestStrings(["aba","aa","ad","vcd","aba"])) print('all longest strings of ["abc","eeee","abcd","dcd"] is ["eeee","abcd"] = ',allLongestStrings(["abc","eeee","abcd","dcd"])) # codesignal level3 n2 def commonCharacterCount(s1, s2): result = 0 ignore = [] for i in s1: for j in range(len(s2)): if i == s2[j] and j not in ignore: ignore.append(j) result += 1 break return result # tests print('commonCharacterCount of "aabcc" and "adcaa" is 3 = ',commonCharacterCount("aabcc","adcaa")) print('commonCharacterCount of "zzzz" and "zzzzzzz" is 4 = ',commonCharacterCount("zzzz","zzzzzzz")) print('commonCharacterCount of "abca" and "xyzbac" is 3 = ',commonCharacterCount("abca","xyzbac")) # codesignal level3 n3 - lottery win when one half of matrix sum is equal to other half def isLucky(n): half = len(list(n)) // 2 sum1 = 0 sum2 = 0 for i in n[:half]: sum1 += int(i) for j in n[half:]: sum2 += int(j) return sum1 == sum2 # tests print('the ticket with "134008" is lucky: true = ',isLucky('134008')) print('the ticket with "239017" is lucky: false = ',isLucky('239017')) # codesignal level3 n4 - sort low to high humans ignoring trees def sortByHeight(a): new = [] tmp = [] for v in a: if v != -1: tmp.append(v) tmp.sort() z = 0 for j,x in enumerate(a): if x == -1: new.insert(j, x) else: new.insert(j, tmp[z]) z += 1 return new # tests print('sorted: ',sortByHeight([-1, 150, 190, 170, -1, -1, 160, 180])) print('sorted: ',sortByHeight([23, 54, -1, 43, 1, -1, -1, 77, -1, -1, -1, 3])) # codesignal level3 n5 - invert string in parentheses def reverseInParentheses(inputString): stack = [] for x in inputString: if x == ")": tmp = "" while stack[-1] != "(": tmp += stack.pop() stack.pop() # pop the ( for item in tmp: stack.append(item) else: stack.append(x) return "".join(stack) # tests "(bar)" print('==========\n1) inverted: ',reverseInParentheses("(bar)")) # expected "rab" print('==========\n2) inverted: ',reverseInParentheses("foo(bar)baz")) # expected "foorabbaz" print('==========\n3) inverted: ',reverseInParentheses("foo(bar)baz(blim)")) # expected "foorabbazmilb" print('==========\n4) inverted: ',reverseInParentheses("foo(bar(baz))blim")) # expected "foobazrabblim" # codesignal level4 n1 - alternating sums def alternatingSums(a): return [sum(a[::2]), sum(a[1::2])] # tests print('==========\n1) inverted: ',alternatingSums([50, 60, 60, 45, 70])) # expected [180, 105] print('==========\n2) inverted: ',alternatingSums([100, 50])) # expected [100, 50] print('==========\n3) inverted: ',alternatingSums([100, 50, 10, 20, 30, 40])) # expected [140, 110] # codesignal level4 n2 - alternating sums def addBorder(picture): output = [] border = "" for i in range(0,len(picture[0])+2): border += "*" output.append(border) for i in range(0,len(picture)): output.append("*"+picture[i]+"*") output.append(border) return output # tests print('==========\n1) bordered: ',addBorder(["abc","ded"])) # expected print('==========\n2) bordered: ',addBorder(["a"])) # expected # codesignal level4 n3 - similar when swapping at least 2 array members def areSimilar(a, b): if a == b: return True not_same = [] tmp = b for i,v in enumerate(a): # when more than 2 elements values do not match if len(not_same) > 2: return False # result is false # when value of same index in both lists do not match if v != b[i]: not_same.append(i) # remember the value that did not matched if len(not_same) == 2: tmp[not_same[1]], tmp[not_same[0]] = b[not_same[0]], b[not_same[1]] print(f"a: {a}, b: {b}, tmp: {tmp}, not_same: {not_same}") return True if tmp == a else False return False # tests print('=========\n1) areSimilar is false =', areSimilar([1, 1, 4], [1, 2, 3])) print('=========\n2) areSimilar is false =', areSimilar([1, 2, 2], [2, 1, 1])) print('=========\n3) areSimilar false =', areSimilar([832, 998, 148, 570, 533, 561, 894, 147, 455, 279], [832, 570, 148, 998, 533, 561, 455, 147, 894, 279])) # codesignal level4 n4 - def arrayChange(inputArray): sum = 0 q = inputArray[0] for i in inputArray[1:]: if i <= q: sum += q-i+1 q = q+1 else: q = i return sum # tests print('=========\n1) arrayChange is 3 =', arrayChange([1, 1, 1])) print('=========\n2) arrayChange is 5 =', arrayChange([-1000, 0, -2, 0])) # codesignal level4 n5 - def palindromeRearranging(inputString): r = {} for v in inputString: if v not in r: r[v] = 1 else: r[v] += 1 count = [x for x in r if r[x] % 2] if len(count) > 1: return False else: return True # tests print('=========\n1) palindromeRearranging is true =', palindromeRearranging("aabb")) print('=========\n2) palindromeRearranging is false =', palindromeRearranging("abca")) # codesignal level5 n1 - def areEquallyStrong(yourLeft, yourRight, friendsLeft, friendsRight): return True if yourLeft == friendsLeft and yourRight == friendsRight or yourLeft == friendsRight and yourRight == friendsLeft else False # tests print('=========\n1) areEquallyStrong is true =', areEquallyStrong(10, 15, 15, 10)) print('=========\n2) areEquallyStrong is false =', areEquallyStrong(15, 10, 15, 9)) # codesignal level5 n2 - def arrayMaximalAdjacentDifference(inputArray): diff = 0 tmp = inputArray[0] for i in inputArray[1:]: if tmp > i and diff < tmp - i: diff = tmp - i if tmp < i and diff < i - tmp: diff = i - tmp tmp = i return diff # tests print('=========\n1) arrayMaximalAdjacentDifference is 2 =', arrayMaximalAdjacentDifference([10, 11, 13])) print('=========\n2) arrayMaximalAdjacentDifference is 0 =', arrayMaximalAdjacentDifference([1, 1, 1, 1])) print('=========\n3) arrayMaximalAdjacentDifference is 7 =', arrayMaximalAdjacentDifference([-1, 4, 10, 3, -2])) # codesignal level5 n3 - def isIPv4Address(inputString): splited = inputString.split('.') if len(splited) != 4: return False for x in splited: if x == '' or not x.isdigit() or int(x) < 0 or 255 < int(x): return False return True # tests print('=========\n1) isIPv4Address is true =', isIPv4Address("172.16.254.1")) print('=========\n2) isIPv4Address is false =', isIPv4Address("172.316.254.1")) print('=========\n3) isIPv4Address is false =', isIPv4Address(".254.255.0")) # codesignal 22 def avoidObstacles(inputArray): for i in range(1, max(inputArray)): divs = any([x for x in inputArray if not x%i]) if not divs: return i return max(inputArray) + 1 # tests print(avoidObstacles([5, 3, 6, 7, 9])) print(avoidObstacles([2, 3])) print(avoidObstacles([1, 4, 10, 6, 2])) # codesignal 23 def pixel(matrix,i,j): total = 0 for x in range(i - 1, i + 2): for y in range(j - 1, j + 2): total += matrix[x][y] return total//9 def boxBlur(image): sol = [] row = len(image) col = len(image[0]) for i in range(1, row - 1): temp = [] for j in range(1, col - 1): temp.append(pixel(image, i, j)) sol.append(temp) return sol # tests print(boxBlur([[1,1,1], [1,7,1], [1,1,1]]), 'result should be: [[1]]') print(boxBlur([[36,0,18,9], [27,54,9,0], [81,63,72,45]]), 'result should be: [[40,30]]')
Venckus/tribeofai_workshop_class_e
study/codesignal_intro.py
codesignal_intro.py
py
11,981
python
en
code
0
github-code
6
26048697220
from sept.errors import OperatorNotFoundError, OperatorNameAlreadyExists class OperatorManager(object): def __init__(self): super(OperatorManager, self).__init__() self._cache = {} from sept.builtin.operators import ALL_OPERATORS for operator_klass in ALL_OPERATORS: self._cache[operator_klass.name] = operator_klass @property def operators(self): # Don't include the NULL operator return sorted( filter(lambda op: op._private is False, self._cache.values()), key=lambda op: op.name, ) def add_custom_operators(self, custom_operators, dont_overwrite=True): for custom_operator in custom_operators: if custom_operator.name in self._cache and dont_overwrite: raise OperatorNameAlreadyExists( "An Operator with the name {name} already exists as " "{value}. If you wish to overwrite that value, make sure " "you pass `dont_overwrite=True` when adding custom " "operators.".format( name=custom_operator.name, value=self._cache[custom_operator.name], ) ) self._cache[custom_operator.name] = custom_operator() def getOperator(self, operator_name, args=None): if operator_name in self._cache: operator_klass = self._cache[operator_name] return operator_klass.create(args) raise OperatorNotFoundError( "Could not find an Operator with the name {}".format(operator_name) )
Ahuge/sept
sept/operator_manager.py
operator_manager.py
py
1,654
python
en
code
8
github-code
6
72940803068
# This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. import os, requests, json # python request examples # https://www.pythonforbeginners.com/requests/using-requests-in-python def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press ⌘F8 to toggle the breakpoint. def restexample01(): github_url = "https://api.github.com/user/repos" data = json.dumps({'name': 'test', 'description': 'some test repo'}) r = requests.post(github_url, data, auth=('user', '*****')) print(r.json) # Press the green button in the gutter to run the script. if __name__ == '__main__': restexample01() print_hi("PyCharm. It's end of the code") # See PyCharm help at https://www.jetbrains.com/help/pycharm/
lean35/python101
main.py
main.py
py
915
python
en
code
0
github-code
6
70132131389
from typing import Tuple from sqlalchemy import and_, desc from quizard_backend import db from quizard_backend.utils.exceptions import raise_not_found_exception from quizard_backend.utils.transaction import in_transaction def dict_to_filter_args(model, **kwargs): """ Convert a dictionary to Gino/SQLAlchemy's conditions for filtering. Example: A correct Gino's query is: User.query.where( and_( User.role_id == 10, User.location == "Singapore" ) ).gino.all() The given `kwargs` is: { "role_id": 10, "location": "Singapore", } This function unpacks the given dictionary `kwargs` into `and_(*clauses)`. """ return (getattr(model, k) == v for k, v in kwargs.items()) async def get_one(model, **kwargs): return ( await model.query.where(and_(*dict_to_filter_args(model, **kwargs))) .limit(1) .gino.first() ) async def get_many( model, columns=None, after_id=None, limit=15, in_column=None, in_values=None, order_by="internal_id", descrease=False, **kwargs, ): # Get the `internal_id` value from the starting row # And use it to query the next page of results last_internal_id = 0 if after_id: row_of_after_id = await model.query.where(model.id == after_id).gino.first() if not row_of_after_id: raise_not_found_exception(model, **kwargs) last_internal_id = row_of_after_id.internal_id # Get certain columns only if columns: query = db.select([*(getattr(model, column) for column in columns)]) else: query = model.query query = query.where( and_( *dict_to_filter_args(model, **kwargs), model.internal_id < last_internal_id if descrease and last_internal_id else model.internal_id > last_internal_id, getattr(model, in_column).in_(in_values) if in_column and in_values else True, ) ) return ( await query.order_by( desc(getattr(model, order_by)) if descrease else getattr(model, order_by) ) .limit(limit) .gino.all() ) async def get_latest_quiz_attempts(model, user_id, limit=15, after_id=None, **kwargs): # Get the `internal_id` value from the starting row # And use it to query the next page of results last_internal_id = 0 if after_id: row_of_after_id = await model.query.where(model.id == after_id).gino.first() if not row_of_after_id: raise_not_found_exception(model, **kwargs) last_internal_id = row_of_after_id.internal_id return ( await db.status( db.text( """SELECT * FROM ( SELECT DISTINCT ON (quiz_attempt.quiz_id, quiz_attempt.user_id) quiz_attempt.quiz_id, quiz_attempt.user_id, quiz_attempt.is_finished, quiz_attempt.internal_id FROM quiz_attempt WHERE quiz_attempt.user_id = :user_id {} ORDER BY quiz_attempt.quiz_id, quiz_attempt.user_id, quiz_attempt.internal_id DESC ) t ORDER By t.internal_id DESC limit :limit;""".format( "and quiz_attempt.internal_id < :last_internal_id" if after_id else "" ) ), {"user_id": user_id, "limit": limit, "last_internal_id": last_internal_id}, ) )[1] async def get_one_latest(model, **kwargs): return ( await model.query.where(and_(*dict_to_filter_args(model, **kwargs))) .order_by(desc(model.internal_id)) .limit(1) .gino.first() ) async def get_many_with_count_and_group_by( model, *, columns, in_column=None, in_values=None ): return ( await db.select( [*[getattr(model, column) for column in columns], db.func.count()] ) .where( getattr(model, in_column).in_(in_values) if in_column and in_values else True ) .group_by(*[getattr(model, column) for column in columns]) .gino.all() ) @in_transaction async def create_one(model, **kwargs): return await model(**kwargs).create() @in_transaction async def update_one(row, **kwargs): if not kwargs: return row await row.update(**kwargs).apply() return row @in_transaction async def update_many(model, get_kwargs, update_kwargs): status: Tuple[str, list] = await model.update.values(**update_kwargs).where( and_(*and_(*dict_to_filter_args(model, **get_kwargs))) ).gino.status() return status[0] @in_transaction async def delete_many(model, **kwargs): status: Tuple[str, list] = await model.delete.where( and_(*dict_to_filter_args(model, **kwargs)) ).gino.status() return status[0]
donjar/quizard
api/quizard_backend/utils/query.py
query.py
py
5,219
python
en
code
5
github-code
6
8255764779
from xadrez.tabuleiro.Cor import Cor from xadrez.tabuleiro.Peca import Peca from xadrez.tabuleiro.Posicao import Posicao from xadrez.xadrez.Torre import Torre class Rei(Peca): def __init__(self, tab, cor, partida): super().__init__(tab, cor) self.partida = partida def __str__(self): return "R" def podeMover(self, pos): p = self.tabuleiro.peca(pos) return p == None or p.cor != self.cor def __crie_matriz(self, n_linhas, n_colunas): matriz = [] valor = False for _ in range(n_linhas): linha = [] for _ in range(n_colunas): linha += [valor] matriz += [linha] return matriz def existeInimigo(self, pos): p = self.tabuleiro.peca(pos) return p != None and p.cor != self.cor def testeTorreParaRoque(self, pos): p = self.tabuleiro.peca(pos) return p != None and isinstance(p, Torre) and p.cor != self.cor and p.qteMovimentos == 0 def movimentosPossiveis(self): mat = self.__crie_matriz(self.tabuleiro.linhas, self.tabuleiro.colunas) posicao = Posicao(0, 0) # ESQUERDA posicao.definirValores(self.posicao.linha, self.posicao.coluna - 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # DIREITA posicao.definirValores(self.posicao.linha, self.posicao.coluna + 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # ACIMA posicao.definirValores(self.posicao.linha - 1, self.posicao.coluna) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # ABAIXO posicao.definirValores(self.posicao.linha + 1, self.posicao.coluna - 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # NO posicao.definirValores(self.posicao.linha - 1, self.posicao.coluna - 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # NE posicao.definirValores(self.posicao.linha - 1, self.posicao.coluna + 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # SE posicao.definirValores(self.posicao.linha + 1, self.posicao.coluna + 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True # SO posicao.definirValores(self.posicao.linha + 1, self.posicao.coluna - 1) if (self.tabuleiro.posicaoValida(posicao) and self.podeMover(posicao)): mat[posicao.linha][posicao.coluna] = True if (self.qteMovimentos == 0 and not self.partida.xeque): posT1 = Posicao(self.posicao.linha, self.posicao.coluna + 3) if (self.testeTorreParaRoque(posT1)): p1 = Posicao(posicao.linha, posicao.coluna + 1) p2 = Posicao(posicao.linha, posicao.coluna + 2) if (self.tabuleiro.peca(p1) == None and self.tabuleiro.peca(p2) == None): mat[posicao.linha][posicao.coluna + 2] = True posT2 = Posicao(self.posicao.linha, self.posicao.coluna - 4) if (self.testeTorreParaRoque(posT2)): p1 = Posicao(posicao.linha, posicao.coluna - 1) p2 = Posicao(posicao.linha, posicao.coluna - 2) p3 = Posicao(posicao.linha, posicao.coluna - 3) if (not any([self.tabuleiro.peca(p1), self.tabuleiro.peca(p2), self.tabuleiro.peca(p3)])): mat[posicao.linha][posicao.coluna - 2] = True return mat
josuelopes512/xadrez_python
xadrez/xadrez/Rei.py
Rei.py
py
4,027
python
pt
code
0
github-code
6
74199244988
from db import Mysql_Object import tkinter as tk import random as rd import tkinter.messagebox as msgbox class manage_page: def __init__(self, master): # 连接数据库 self.sql = Mysql_Object('localhost', 'root', '123456', 'parkinglot_management') self.win = master self.win.resizable(0, 0) self.win.title('入场管理界面') # 窗口居中 ww, wh = 800, 400 sw, sh = self.win.winfo_screenwidth(), self.win.winfo_screenheight() x, y = (sw - ww) / 2, (sh - wh) / 2 self.win.geometry("%dx%d+%d+%d" % (ww, wh, x, y)) # 搭建存储文本框的frame self.f1 = tk.Frame(self.win, width=ww - 20, height=wh - 80, bg="lightgreen") self.f1.pack(padx=10, pady=10) # 创建多行文本框 self.t1 = tk.Text(self.f1, width=ww - 40, height=21) self.t1.pack(side="top", padx=10, pady=10) lb = tk.Label(self.win, text="工号: ") lb.pack(side="left", padx=10, anchor="nw") show_free = tk.Label(self.win, text=self.get_id()) show_free.pack(side='left', padx=10, anchor='nw') # var_num = tk.IntVar() # e1 = tk.Entry(window, textvariable=var_num) # e1.pack(side="left", padx=10, pady=10, anchor="sw") lb2 = tk.Label(self.win, text='输入车牌:') lb2.pack(side='left', padx=10, anchor='nw') self.var_spot = tk.StringVar() e_spot = tk.Entry(self.win, textvariable=self.var_spot, width=5) e_spot.pack(side='left', padx=15, anchor='nw') btn_cf = tk.Button(self.win, text="查看预约", command=self.search_reserve) btn_cf.pack(side="left", padx=10, anchor="nw") lb3 = tk.Label(self.win, text='选择车位:') lb3.pack(side='left', padx=10, anchor='nw') self.chosen_no = tk.IntVar() e_spot = tk.Entry(self.win, textvariable=self.chosen_no, width=5) e_spot.pack(side='left', padx=10, anchor='nw') btn_sel = tk.Button(self.win, text="查询空闲车位", command=self.select_spot) btn_sel.pack(side="left", padx=10, anchor="nw") btn_cfs = tk.Button(self.win, text='确认车位', command=self.cf_spot) btn_cfs.pack(side="left", padx=10, anchor="nw") btn_del = tk.Button(self.win, text="通行", command=self.let_goin) btn_exit = tk.Button(self.win, text="退出", command=self.win.destroy) # 放置 btn_exit.pack(side="right", padx=10, pady=10, anchor="se") btn_del.pack(side="right", pady=10, anchor="se") #获取工号 def get_id(self): msg = self.get_msg()[0].strip().strip("'") return msg # 查看空闲车位信息 def select_spot(self): self.t1.delete(1.0, tk.END) self.t1.insert(1.0, "车位号\t\t车辆标签\t\t车位类型\t\t占用状态\n") msg = self.sql.select_sql("select * from parkingspot where Slabel='临时' and Sstate='未占用'")[1] # print(msg) for spot in msg: self.t1.insert('end', "{}\t\t{}\t\t{}\t\t{}\n".format(spot[0], spot[1], spot[2], spot[3])) #这里返回查询的预约记录 def search_reserve(self): # print(self.var_spot) msg = "select * from parkingspot where Cno='{}'".format(self.var_spot.get()) msg = self.sql.select_sql(msg) self.t1.delete(1.0, tk.END) self.t1.insert(1.0, "车位号\t\t车辆标签\t\t车位类型\t\t占用状态\t\t车牌号\t\t预约时间\t\t预约状态\n") for msg in msg[1]: self.t1.insert('end', "{}\t\t{}\t\t{}\t\t{}\t\t{}\t\t{}\t\t{}\n".format(msg[0], msg[1], msg[2], msg[3], msg[4], msg[5], msg[7])) # 确认车位 def cf_spot(self): msg = "update parkingspot set Sstate='占用', Cno='{}', Suse_time='{}' where Sno='{}'".format(self.var_spot.get(), self.get_randusetiem(), self.chosen_no.get()) self.sql.excute_sql(msg) msgbox.showinfo(message="确认成功") self.select_spot() # 获得随机使用时间 def get_randusetiem(self): return rd.randint(10, 300) #这里实现通行 def let_goin(self): #这里写入通行逻辑操作 msgbox.showinfo(message="车辆已入场") def get_msg(self): with open('current_user.text', 'r') as f: msg = f.read().strip('(').strip(')').split(',') # print(msg) return msg if __name__ == '__main__': window = tk.Tk() manage_page(window) window.mainloop()
jmzdmj/ParkingLotSystem
ParkingLotSystem/managein_page.py
managein_page.py
py
4,638
python
en
code
0
github-code
6
1883488340
import sys import pefile import re # Pega os headers de um executável def get_headers(executable): pe = pefile.PE(executable) sections = [] for section in pe.sections: sections.append(section.Name.decode('utf-8')) return sections # Pega os headers dos argumentos de entrada sections1 = get_headers(sys.argv[1]) sections2 = get_headers(sys.argv[2]) # Imprime a intersecção entre as listas commonSections = list(set(sections1).intersection(sections2)) print("Seções comuns: [", end="") for i, section in enumerate(commonSections): print("'{}'".format(section), end="") if i < len(commonSections) - 1: print(', ', end="") print("]\n") # Imprime a diferença da lista 1 para a lista 2 difference12 = list(set(sections1).difference(sections2)) print(re.sub(".*/", "", sys.argv[1]) + ": [", end="") for i, section in enumerate(difference12): print("'{}'".format(section), end="") if i < len(difference12) - 1: print(', ', end="") print("]\n") # Imprime a diferença da lista 2 para a lista 1 difference21 = list(set(sections2).difference(sections1)) print(re.sub(".*/", "", sys.argv[2]) + ": [", end="") for i, section in enumerate(difference21): print("'{}'".format(section), end="") if i < len(difference21) - 1: print(', ', end="") print("]\n")
kkatzer/CDadosSeg
T2/Parte2/T2P2b.py
T2P2b.py
py
1,323
python
en
code
0
github-code
6
19167053066
""" Common utilities for derp used by various classes. """ from collections import namedtuple import cv2 from datetime import datetime import heapq import logging import pathlib import numpy as np import os import socket import time import yaml import zmq import capnp import messages_capnp Bbox = namedtuple("Bbox", ["x", "y", "w", "h"]) TOPICS = { "camera": messages_capnp.Camera, "controller": messages_capnp.Controller, "action": messages_capnp.Action, "imu": messages_capnp.Imu, "quality": messages_capnp.Quality, } DERP_ROOT = pathlib.Path(os.environ["DERP_ROOT"]) MODEL_ROOT = DERP_ROOT / "models" RECORDING_ROOT = DERP_ROOT / "recordings" CONFIG_ROOT = DERP_ROOT / "config" MSG_STEM = "/tmp/derp_" def is_already_running(path): """ For the given PID path check if the PID exists """ if isinstance(path, str): path = pathlib.Path(path) if not path.exists(): return False with open(str(path)) as pid_file: pid = int(pid_file.read()) try: os.kill(pid, 0) except OSError: return False return True def write_pid(path): with open(str(path), 'w') as pid_file: pid_file.write(str(os.getpid())) pid_file.flush() def init_logger(name, recording_path, level=logging.INFO): logger = logging.getLogger(name) formatter = logging.Formatter('%(asctime)s %(levelname)-5s %(message)s') fileHandler = logging.FileHandler(recording_path / ('%s.log' % name), mode='w') fileHandler.setFormatter(formatter) streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) logger.setLevel(level) logger.addHandler(fileHandler) logger.addHandler(streamHandler) return logger def make_recording_path(): date = datetime.utcfromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S") folder = RECORDING_ROOT / ("recording-%s-%s" % (date, socket.gethostname())) folder.mkdir(parents=True) return folder def get_timestamp(): return int(time.time() * 1e9) def publisher(path): context = zmq.Context() sock = context.socket(zmq.PUB) sock.bind("ipc://" + path) # sock.bind("tcp://*:%s" % port) return context, sock def subscriber(paths): context = zmq.Context() sock = context.socket(zmq.SUB) # sock.connect("tcp://localhost:%s" % port) for path in paths: sock.connect("ipc://" + path) sock.setsockopt(zmq.SUBSCRIBE, b"") return context, sock def topic_file_reader(folder, topic): return open("%s/%s.bin" % (folder, topic), "rb") def topic_exists(folder, topic): path = folder / ("%s.bin" % topic) return path.exists() def topic_file_writer(folder, topic): return open("%s/%s.bin" % (folder, topic), "wb") def print_image_config(name, config): """ Prints some useful variables about the camera for debugging purposes """ top = config["pitch"] + config["vfov"] / 2 bot = config["pitch"] - config["vfov"] / 2 left = config["yaw"] - config["hfov"] / 2 right = config["yaw"] + config["hfov"] / 2 hppd = config["width"] / config["hfov"] vppd = config["height"] / config["vfov"] print( "%s top: %6.2f bot: %6.2f left: %6.2f right: %6.2f hppd: %5.1f vppd: %5.1f" % (name, top, bot, left, right, hppd, vppd) ) def get_patch_bbox(target_config, source_config): """ Gets a different sub-persepective given a smaller desired hfov/vfov and different yaw/pitch """ hfov_ratio = target_config["hfov"] / source_config["hfov"] vfov_ratio = target_config["vfov"] / source_config["vfov"] hfov_offset = source_config["yaw"] - target_config["yaw"] vfov_offset = source_config["pitch"] - target_config["pitch"] patch_width = int(source_config["width"] * hfov_ratio + 0.5) patch_height = int(source_config["height"] * vfov_ratio + 0.5) x_center = (source_config["width"] - patch_width) // 2 y_center = (source_config["height"] - patch_height) // 2 x_offset = int(hfov_offset / source_config["hfov"] * source_config["width"] + 0.5) y_offset = int(vfov_offset / source_config["vfov"] * source_config["height"] + 0.5) x = x_center + x_offset y = y_center + y_offset if (x >= 0 and x + patch_width <= source_config["width"] and y >= 0 and y + patch_height <= source_config["height"]): return Bbox(x, y, patch_width, patch_height) return None def crop(image, bbox): """ Crops the Bbox(x,y,w,h) from the image. Copy indicates to copy of the ROI"s memory""" return image[bbox.y : bbox.y + bbox.h, bbox.x : bbox.x + bbox.w] def resize(image, size): """ Resize the image to the target (w, h) """ is_larger = size[0] > image.shape[1] or size[1] > image.shape[0] interpolation = cv2.INTER_LINEAR if is_larger else cv2.INTER_AREA return cv2.resize(image, size, interpolation=interpolation) def perturb(frame, camera_config, shift=0, rotate=0): # Estimate how many pixels to rotate by, assuming fixed degrees per pixel pixels_per_degree = camera_config["width"] / camera_config["hfov"] # Figure out where the horizon is in the image horizon_frac = ((camera_config["vfov"] / 2) + camera_config["pitch"]) / camera_config["vfov"] # For each row in the frame shift/rotate it indexs = np.arange(len(frame)) vertical_fracs = np.linspace(0, 1, len(frame)) # For each vertical line, apply shift/rotation rolls for index, vertical_frac in zip(indexs, vertical_fracs): magnitude = rotate * pixels_per_degree if vertical_frac > horizon_frac: ground_angle = (vertical_frac - horizon_frac) * camera_config["vfov"] ground_distance = camera_config["z"] / np.tan(deg2rad(ground_angle)) ground_width = 2 * ground_distance * np.tan(deg2rad(camera_config["hfov"]) / 2) magnitude += (shift / ground_width) * camera_config["width"] magnitude = int(magnitude + 0.5 * np.sign(magnitude)) if magnitude > 0: frame[index, magnitude:, :] = frame[index, : frame.shape[1] - magnitude] frame[index, :magnitude, :] = 0 elif magnitude < 0: frame[index, :magnitude, :] = frame[index, abs(magnitude) :] frame[index, frame.shape[1] + magnitude :] = 0 return frame def deg2rad(val): return val * np.pi / 180 def rad2deg(val): return val * 180 / np.pi def load_image(path): return cv2.imread(str(path)) def save_image(path, image): return cv2.imwrite(str(path), image) def load_config(config_path): """ Load a configuration file, also reading any component configs """ with open(str(config_path)) as config_fd: config = yaml.load(config_fd, Loader=yaml.FullLoader) for component in config: if isinstance(config[component], dict) and "path" in config[component]: component_path = CONFIG_ROOT / config[component]["path"] with open(str(component_path)) as component_fd: component_config = yaml.load(component_fd, Loader=yaml.FullLoader) component_config.update(config[component]) config[component] = component_config if "name" not in config[component]: config[component]["name"] = component_path.stem if "name" not in config: config["name"] = config_path.stem return config def dump_config(config, config_path): """ Write a configuration file """ with open(str(config_path), 'w') as config_fd: yaml.dump(config, config_fd) def extract_latest(desired_times, source_times, source_values): out = [] pos = 0 val = 0 for desired_time in desired_times: while pos < len(source_times) and source_times[pos] < desired_time: val = source_values[pos] pos += 1 out.append(val) return np.array(out) def load_topics(folder): if isinstance(folder, str): folder = pathlib.Path(folder) out = {} for topic in TOPICS: if not topic_exists(folder, topic): continue topic_fd = topic_file_reader(folder, topic) out[topic] = [msg for msg in TOPICS[topic].read_multiple(topic_fd)] topic_fd.close() return out def replay(topics): heap = [] for topic in topics: for msg in topics[topic]: heapq.heappush(heap, [msg.publishNS, topic, msg]) while heap: yield heapq.heappop(heap) def decode_jpg(jpg): return cv2.imdecode(np.frombuffer(jpg, np.uint8), cv2.IMREAD_COLOR) def encode_jpg(image, quality): return cv2.imencode(".jpg", image, [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tostring() def extract_car_actions(topics): out = [] autonomous = False speed_offset = 0 steer_offset = 0 for timestamp, topic, msg in replay(topics): if topic == "controller": autonomous = msg.isAutonomous speed_offset = msg.speedOffset steer_offset = msg.steerOffset elif topic == "action": if autonomous or msg.isManual: out.append([timestamp, msg.speed + speed_offset, msg.steer + steer_offset]) if not out: out.append([0, 0, 0]) return np.array(out)
notkarol/derplearning
derp/util.py
util.py
py
9,198
python
en
code
40
github-code
6
41815384400
from urllib import response import requests from pprint import pprint from time import sleep import os from sqlalchemy import null url = "http://10.0.1.10:8080" # ------------------------ PRINT ------------------------ def menu(): os.system('clear') or None print("-------------------:-------------------") print("| 1 | Cadastrar Usuario |") print("| 2 | Exibir Usuario |") print("| 3 | Alterar Usuario |") print("| 4 | Excluir Usuario |") print("-------------------:-------------------") print("| 5 | Cadastrar Projeto |") print("| 6 | Exibir Projeto |") print("| 7 | Alterar Projeto |") print("| 8 | Excluir Projeto |") print("-------------------:-------------------") print("| 9 | SAIR |") print("-------------------:-------------------") def menu1(): os.system('clear') or None print("-------------------:-------------------") print("| 1 | Pessoa Física |") print("| 2 | Pessoa Jurídica Sair[0] |") print("-------------------:-------------------") def menu2(): print("-------------------:-------------------") print("| Deseja alterar? |") print("| [1] Sim [2] Não |") print("-------------------:-------------------") def main(): opc = None while opc != "9": menu() opc = input("Informe uma opcao: ") if opc == "1": #Cadastrar Usuario cadastroUser() elif opc == "2": #Exibir Usuario exibirUser() elif opc == "3": #Alterar Usuario alterarUser() elif opc == "4": #Excluir Usuario excluirUser() elif opc == "5": #Cadastrar Projeto cadastroProj() elif opc == "6": #Exibir Projeto exibirProj() elif opc == "7": #Alterar Projeto alterarProj() elif opc == "8": #Excluir Projeto excluirProj() elif opc == "9": exit() input("Pressione ENTER para continuar!\n") def jsonPrint(resp): if resp.status_code == 200: pprint(resp.json()) elif resp.status_code == 201: print("deletado!") print(resp) else: print(resp) # ------------------------ USER ------------------------ def cadastroUser(): opc = None while opc != 1 and opc != 2 and opc != 0: menu1() opc = input("Informe uma opcao: ") if opc == "1": #Fisica nome = input("Informe nome: ") idade = input("Informe idade: ") cpf = input("Informe cpf: ") instEnsino = input("Informe Instuicao de ensino: ") data = {"nome": nome, "idade": idade, "cpf": cpf, "instEnsino": instEnsino} requests.post(f"{url}/fisica", json=data) break elif opc == "2": #Juridica nome = input("Informe nome: ") segmento = input("Informe segmento: ") cnpj = input("Informe cnpj: ") data = {"nome": nome, "segmento": segmento, "cnpj": cnpj} requests.post(f"{url}/juridica", json=data) break elif opc == "0": break else: print("Opção invalida!") input("Pressione ENTER para continuar!\n") def exibirUser(): opc = None while opc != 1 and opc != 2 and opc != 0: menu1() opc = input("Informe uma opcao: ") if opc == "1": #Fisica cpf = input("Informe o cpf: ") resp = requests.get(f"{url}/fisica/" + cpf) jsonPrint(resp) break elif opc == "2": #Juridica cnpj = input("Informe o cnpj: ") resp = requests.get(f"{url}/juridica/" + cnpj) jsonPrint(resp) break elif opc == "0": break else: print("Opção invalida!") input("Pressione ENTER para continuar!\n") def alterarUser(): opc = None while opc != 1 and opc != 2 and opc != 0: menu1() opc = input("Informe uma opcao: ") if opc == "1": #Fisica cpf = input("Informe o cpf: ") resp = requests.get(f"{url}/fisica/" + cpf) jsonPrint(resp) menu2() opc1 = input("Informe uma opcao: ") if opc1 == "1": nome = input("Informe nome: ") idade = input("Informe idade: ") instEnsino = input("Informe Instuicao de ensino: ") data = {"nome": nome, "idade": idade, "cpf": cpf, "instEnsino": instEnsino} requests.put(f"{url}/fisica/" + cpf, json=data) else: break input("Pressione ENTER para continuar!\n") elif opc == "2": #Juridica cnpj = input("Informe o cnpj: ") resp = requests.get(f"{url}/juridica/" + cnpj) jsonPrint(resp) menu2() opc1 = input("Informe uma opcao: ") if opc1 == "1": nome = input("Informe nome: ") segmento = input("Informe segmento: ") data = {"nome": nome, "segmento": segmento, "cnpj": cnpj} requests.put(f"{url}/juridica/" + cnpj, json=data) else: break elif opc == "0": break else: print("Opção invalida!") input("Pressione ENTER para continuar!\n") def excluirUser(): opc = None while opc != 1 and opc != 2 and opc != 0: menu1() opc = input("Informe uma opcao: ") if opc == "1": cpf = input("Informe o cpf: ") resp = requests.delete(f"{url}/fisica/" + cpf) jsonPrint(resp) elif opc == "2": cnpj = input("Informe o cnpj: ") resp = requests.delete(f"{url}/juridica/" + cnpj) jsonPrint(resp) elif opc == "0": break else: print("Opção invalida!") input("Pressione ENTER para continuar!\n") # ------------------------ PROJETO ------------------------ def cadastroProj(): cpf = None cnpj = None nome = input("Informe nome: ") segmento = input("Informe o segmento: ") descricao = input("Informe a descrição: ") opc = None while opc != 1 and opc != 2 and opc != 0: menu1() opc = input("Informe uma opcao: ") if opc == "1": #Fisica cpf = input("Informe cpf: ") cnpj = "-" break elif opc == "2": #Juridica cnpj = input("Informe cnpj: ") cpf = "-" break elif opc == "0": break else: print("Opção invalida!") input("Pressione ENTER para continuar!\n") data = {"nome": nome, "segmento": segmento, "descricao": descricao, "cpf": cpf, "cnpj": cnpj} requests.post(f"{url}/projeto", json=data) def exibirProj(): nome = input("Nome do Projeto: ") resp = requests.get(f"{url}/projeto/" + nome) jsonPrint(resp) def alterarProj(): opc = None while opc != 1 and opc != 2 and opc != 0: nome = input("Informe o nome: ") resp = requests.get(f"{url}/projeto/" + nome) jsonPrint(resp) menu2() opc = input("Informe uma opcao: ") if opc == "1": newname = input("Informe nome: ") segmento = input("Informe o segmento: ") descricao = input("Informe a descrição: ") data = {"nome": newname, "segmento": segmento, "descricao": descricao} requests.put(f"{url}/projeto/" + nome, json=data) break else: break def excluirProj(): nome = input("Informe o nome: ") resp = requests.delete(f"{url}/projeto/" + nome) jsonPrint(resp) if __name__ == "__main__": main()
hencabral/Python-BoxCode-API
cliente.py
cliente.py
py
8,346
python
pt
code
0
github-code
6
25182089444
# adapated from munch 2.5.0 from collections.abc import Mapping class Munch(dict): """A dictionary that provides attribute-style access. >>> b = Munch() >>> b.hello = 'world' >>> b.hello 'world' >>> b['hello'] += "!" >>> b.hello 'world!' >>> b.foo = Munch(lol=True) >>> b.foo.lol True >>> b.foo is b['foo'] True A Munch is a subclass of dict; it supports all the methods a dict does... >>> sorted(b.keys()) ['foo', 'hello'] Including update()... >>> b.update({ 'ponies': 'are pretty!' }, hello=42) >>> print (repr(b)) Munch({'ponies': 'are pretty!', 'foo': Munch({'lol': True}), 'hello': 42}) As well as iteration... >>> sorted([ (k,b[k]) for k in b ]) [('foo', Munch({'lol': True})), ('hello', 42), ('ponies', 'are pretty!')] And "splats". >>> "The {knights} who say {ni}!".format(**Munch(knights='lolcats', ni='can haz')) 'The lolcats who say can haz!' See unmunchify/Munch.toDict, munchify/Munch.fromDict for notes about conversion. """ def __init__(self, *args, **kwargs): # pylint: disable=super-init-not-called self.update(*args, **kwargs) # only called if k not found in normal places def __getattr__(self, k): """Gets key if it exists, otherwise throws AttributeError. nb. __getattr__ is only called if key is not found in normal places. >>> b = Munch(bar='baz', lol={}) >>> b.foo Traceback (most recent call last): ... AttributeError: foo >>> b.bar 'baz' >>> getattr(b, 'bar') 'baz' >>> b['bar'] 'baz' >>> b.lol is b['lol'] True >>> b.lol is getattr(b, 'lol') True """ try: # Throws exception if not in prototype chain return object.__getattribute__(self, k) except AttributeError: try: return self[k] except KeyError as exc: raise AttributeError(k) from exc def __setattr__(self, k, v): """Sets attribute k if it exists, otherwise sets key k. A KeyError raised by set-item (only likely if you subclass Munch) will propagate as an AttributeError instead. >>> b = Munch(foo='bar', this_is='useful when subclassing') >>> hasattr(b.values, '__call__') True >>> b.values = 'uh oh' >>> b.values 'uh oh' >>> b['values'] Traceback (most recent call last): ... KeyError: 'values' """ try: # Throws exception if not in prototype chain object.__getattribute__(self, k) except AttributeError: try: self[k] = v except KeyError as exc: raise AttributeError(k) from exc else: object.__setattr__(self, k, v) def __delattr__(self, k): """Deletes attribute k if it exists, otherwise deletes key k. A KeyError raised by deleting the key--such as when the key is missing--will propagate as an AttributeError instead. >>> b = Munch(lol=42) >>> del b.lol >>> b.lol Traceback (most recent call last): ... AttributeError: lol """ try: # Throws exception if not in prototype chain object.__getattribute__(self, k) except AttributeError: try: del self[k] except KeyError as exc: raise AttributeError(k) from exc else: object.__delattr__(self, k) def toDict(self): """Recursively converts a munch back into a dictionary. >>> b = Munch(foo=Munch(lol=True), hello=42, ponies='are pretty!') >>> sorted(b.toDict().items()) [('foo', {'lol': True}), ('hello', 42), ('ponies', 'are pretty!')] See unmunchify for more info. """ return unmunchify(self) @property def __dict__(self): return self.toDict() def __repr__(self): """Invertible* string-form of a Munch. >>> b = Munch(foo=Munch(lol=True), hello=42, ponies='are pretty!') >>> print (repr(b)) Munch({'ponies': 'are pretty!', 'foo': Munch({'lol': True}), 'hello': 42}) >>> eval(repr(b)) Munch({'ponies': 'are pretty!', 'foo': Munch({'lol': True}), 'hello': 42}) >>> with_spaces = Munch({1: 2, 'a b': 9, 'c': Munch({'simple': 5})}) >>> print (repr(with_spaces)) Munch({'a b': 9, 1: 2, 'c': Munch({'simple': 5})}) >>> eval(repr(with_spaces)) Munch({'a b': 9, 1: 2, 'c': Munch({'simple': 5})}) (*) Invertible so long as collection contents are each repr-invertible. """ return f"{self.__class__.__name__}({dict.__repr__(self)})" def __dir__(self): return list(self.keys()) def __getstate__(self): """Implement a serializable interface used for pickling. See https://docs.python.org/3.6/library/pickle.html. """ return {k: v for k, v in self.items()} def __setstate__(self, state): """Implement a serializable interface used for pickling. See https://docs.python.org/3.6/library/pickle.html. """ self.clear() self.update(state) __members__ = __dir__ # for python2.x compatibility @classmethod def fromDict(cls, d): """Recursively transforms a dictionary into a Munch via copy. >>> b = Munch.fromDict({'urmom': {'sez': {'what': 'what'}}}) >>> b.urmom.sez.what 'what' See munchify for more info. """ return munchify(d, cls) def copy(self): return type(self).fromDict(self) def update(self, *args, **kwargs): """ Override built-in method to call custom __setitem__ method that may be defined in subclasses. """ for k, v in dict(*args, **kwargs).items(): self[k] = v def get(self, k, d=None): """ D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None. """ if k not in self: return d return self[k] def setdefault(self, k, d=None): """ D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D """ if k not in self: self[k] = d return self[k] def munchify(x): """Recursively transforms a dictionary into a Munch via copy. >>> b = munchify({'urmom': {'sez': {'what': 'what'}}}) >>> b.urmom.sez.what 'what' munchify can handle intermediary dicts, lists and tuples (as well as their subclasses), but ymmv on custom datatypes. >>> b = munchify({ 'lol': ('cats', {'hah':'i win again'}), ... 'hello': [{'french':'salut', 'german':'hallo'}] }) >>> b.hello[0].french 'salut' >>> b.lol[1].hah 'i win again' nb. As dicts are not hashable, they cannot be nested in sets/frozensets. """ # Munchify x, using `seen` to track object cycles seen = dict() def munchify_cycles(obj): # If we've already begun munchifying obj, just return the already-created munchified obj try: return seen[id(obj)] except KeyError: pass # Otherwise, first partly munchify obj (but without descending into any lists or dicts) and save that seen[id(obj)] = partial = pre_munchify(obj) # Then finish munchifying lists and dicts inside obj (reusing munchified obj if cycles are encountered) return post_munchify(partial, obj) def pre_munchify(obj): # Here we return a skeleton of munchified obj, which is enough to save for later (in case # we need to break cycles) but it needs to filled out in post_munchify if isinstance(obj, Mapping): return Munch({}) elif isinstance(obj, list): return type(obj)() elif isinstance(obj, tuple): type_factory = getattr(obj, "_make", type(obj)) return type_factory(munchify_cycles(item) for item in obj) else: return obj def post_munchify(partial, obj): # Here we finish munchifying the parts of obj that were deferred by pre_munchify because they # might be involved in a cycle if isinstance(obj, Mapping): partial.update((k, munchify_cycles(obj[k])) for k in obj.keys()) elif isinstance(obj, list): partial.extend(munchify_cycles(item) for item in obj) elif isinstance(obj, tuple): for item_partial, item in zip(partial, obj): post_munchify(item_partial, item) return partial return munchify_cycles(x) def unmunchify(x): """Recursively converts a Munch into a dictionary. >>> b = Munch(foo=Munch(lol=True), hello=42, ponies='are pretty!') >>> sorted(unmunchify(b).items()) [('foo', {'lol': True}), ('hello', 42), ('ponies', 'are pretty!')] unmunchify will handle intermediary dicts, lists and tuples (as well as their subclasses), but ymmv on custom datatypes. >>> b = Munch(foo=['bar', Munch(lol=True)], hello=42, ... ponies=('are pretty!', Munch(lies='are trouble!'))) >>> sorted(unmunchify(b).items()) #doctest: +NORMALIZE_WHITESPACE [('foo', ['bar', {'lol': True}]), ('hello', 42), ('ponies', ('are pretty!', {'lies': 'are trouble!'}))] nb. As dicts are not hashable, they cannot be nested in sets/frozensets. """ # Munchify x, using `seen` to track object cycles seen = dict() def unmunchify_cycles(obj): # If we've already begun unmunchifying obj, just return the already-created unmunchified obj try: return seen[id(obj)] except KeyError: pass # Otherwise, first partly unmunchify obj (but without descending into any lists or dicts) and save that seen[id(obj)] = partial = pre_unmunchify(obj) # Then finish unmunchifying lists and dicts inside obj (reusing unmunchified obj if cycles are encountered) return post_unmunchify(partial, obj) def pre_unmunchify(obj): # Here we return a skeleton of unmunchified obj, which is enough to save for later (in case # we need to break cycles) but it needs to filled out in post_unmunchify if isinstance(obj, Mapping): return dict() elif isinstance(obj, list): return type(obj)() elif isinstance(obj, tuple): type_factory = getattr(obj, "_make", type(obj)) return type_factory(unmunchify_cycles(item) for item in obj) else: return obj def post_unmunchify(partial, obj): # Here we finish unmunchifying the parts of obj that were deferred by pre_unmunchify because they # might be involved in a cycle if isinstance(obj, Mapping): partial.update((k, unmunchify_cycles(obj[k])) for k in obj.keys()) elif isinstance(obj, list): partial.extend(unmunchify_cycles(v) for v in obj) elif isinstance(obj, tuple): for value_partial, value in zip(partial, obj): post_unmunchify(value_partial, value) return partial return unmunchify_cycles(x)
SAIL-Labs/AMICAL
amical/externals/munch/__init__.py
__init__.py
py
11,370
python
en
code
9
github-code
6
37568054562
# import libraries import sys import nltk nltk.download(['punkt', 'wordnet', 'stopwords']) import re import numpy as np import pandas as pd from sqlalchemy import create_engine from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.pipeline import Pipeline import pickle def load_data(database_filepath): """ Loads table from database as a Pandas Dataframe and returns the following: X -- feature dataset containing the messages to be categorized y -- label dataset containing the 36 categories that each message is assigned to. category_names -- list containing category names Keyword arguments: database_filepath -- filepath (including file name) of the database containing the messages and categories """ engine = create_engine('sqlite:///' + database_filepath) df = pd.read_sql_table('messages_and_categories', engine) X = df['message'] y = df.drop(columns=['id', 'message', 'original', 'genre']) category_names = list(y.columns) return X, y, category_names def tokenize(text): """ Cleans, tokenizes, lemmatizes messages in preparation for classification algorithm 1) finds and replaces urls with a placeholder 2) finds and replaces non alphanumeric characters with a space 3) removes stop words from tokenized messages 4) strips leading and trailing spaces and lowcases lemmatized tokens Keyword arguments: text -- raw message that will be cleaned, tokenized """ url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") text = re.sub(r'\W+', ' ', text) tokens = word_tokenize(text) tokens = [t for t in tokens if t not in stopwords.words("english")] lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): """ Creates a pipeline and grid search for hyperparameter tuning returns pipeline with the specified parameter search space """ pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(estimator=AdaBoostClassifier())) ]) # specify parameters for grid search parameters = { 'vect__ngram_range': ((1, 1), (1, 2),(2,2)), 'tfidf__use_idf': (True, False), 'tfidf__norm': ('l1', 'l2'), 'clf__estimator__learning_rate': [0.1, 0.5], 'clf__estimator__n_estimators': [50, 60, 70] } # create grid search object cv = GridSearchCV(pipeline, param_grid=parameters, verbose=216) return cv def evaluate_model(model, X_test, Y_test, category_names): """ Generates predicted values for test data based on fit model. Outputs a classification report for each category. Keyword arguments: model -- fit model based on training data X_test, Y_test -- message and target category values for testing category_names -- list of possible categories for each message """ Y_pred = model.predict(X_test) for i, label in enumerate(category_names): print(category_names[i]) print(classification_report(Y_test[label], Y_pred[:,i])) def save_model(model, model_filepath): """ Export the classifier to a pickle file Keyword arguments: model -- final model model_filepath -- location and name of saved pickle file """ with open(model_filepath, 'wb') as model_filepath: pickle.dump(model, model_filepath) def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state = 42) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print(model.best_score_) print(model.best_params_) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
goitom/project_2_disaster_response
models/train_classifier.py
train_classifier.py
py
5,371
python
en
code
0
github-code
6
25546051885
import os import json import flask from vrprot.alphafold_db_parser import AlphafoldDBParser import vrprot from . import map_uniprot from . import settings as st from . import util from .classes import NodeTags as NT def get_scales(uniprot_ids=[], mode=st.DEFAULT_MODE): return vrprot.overview_util.get_scale(uniprot_ids, mode) def run_pipeline(proteins: list, parser: AlphafoldDBParser = st.parser, **kwargs): # create the output directory for the corresponding coloring mode if they do not exist # output_dir = os.path.join(st._MAPS_PATH, parser.processing) output_dir = os.path.join(st._MAPS_PATH) parser.update_output_dir(output_dir) # initialize the structures dictionary of the parser and check wether some processing files do already exist parser.init_structures_dict(proteins) for protein in proteins: parser.update_existence(protein) # run the batched process try: parser.fetch_pipeline(proteins, **kwargs) # batch([parser.fetch_pdb, parser.pdb_pipeline], proteins, parser.batch_size) except vrprot.exceptions.ChimeraXException as e: return {"error": "ChimeraX could not be found. Is it installed?"} result = get_scales(proteins, parser.processing) # update the existence of the processed files for protein in proteins: parser.update_existence(protein) return result def fetch_from_request(request: flask.Request, parser: AlphafoldDBParser = st.parser): # get information from request pdb_id = request.args.get("id") if pdb_id is None: return { "error": "No PDB ID provided.", "example": f"{request.host}/vrprot/fetch?id=P69905", } # extract processing mode and alphafold version from request parser = util.parse_request(parser, request) # if mode is not part of the list of available modes, return an error if isinstance(parser, dict): return parser # create a list of proteins to be processed proteins = [pdb_id] return fetch(proteins, parser) def fetch(proteins: list[str], parser: AlphafoldDBParser = st.parser): # run the batched process parser.not_fetched = set() parser.already_exists = set() result = run_pipeline(proteins, parser) # Try whether you can find an updated UniProt id second_try = {} if len(parser.not_fetched) > 0: try: mapped_ac = map_uniprot.main( parser.not_fetched, source_db=map_uniprot.Databases.uniprot_ac, target_db=map_uniprot.Databases.uniprot, ) for re in mapped_ac["results"]: a, b = True, True while a and b: a = re.get("from") b = re.get("to") b = b.get("uniProtKBCrossReferences") for entry in b: if entry.get("database") == "AlphaFoldDB": b = entry.get("id") second_try[b] = a if a in parser.not_fetched: parser.not_fetched.remove(a) break break result.update(run_pipeline(second_try, parser)) tmp = parser.not_fetched.copy() for ac in tmp: if ac in second_try: parser.not_fetched.remove(ac) parser.not_fetched.add(second_try[ac]) except Exception as e: print(e) return { "not_fetched": list(parser.not_fetched), "already_exists": list(parser.already_processed), "results": result, "alternative_ids": {v: k for k, v in second_try.items()}, } def for_project( project: str, request: flask.request, parser: AlphafoldDBParser = st.parser ): # get information from request if project is None: return {"error": "No project provided."} # extract processing mode and alphafold version from request parser = util.parse_request(parser, request) # if mode is not part of the list of available modes, return an error if isinstance(parser, dict): return parser # extract node data from the projects nodes.json file nodes_files = os.path.join(st._PROJECTS_PATH, project, "nodes.json") if not os.path.isfile(nodes_files): return {"error": "Project does not exist."} with open(nodes_files, "r") as f: nodes = json.load(f)["nodes"] # extract the uniprot ids from the nodes proteins = [",".join(node[NT.uniprot]) for node in nodes if node.get(NT.uniprot)] # run the batched process result = run_pipeline(proteins, parser, on_demand=False) return {"not_fetched": list(parser.not_fetched), "results": result} def fetch_list_from_request( request: flask.Request, parser: AlphafoldDBParser = st.parser ): # get information from request pdb_ids = request.args.get("ids") if pdb_ids is None: return { "error": "No PDB IDs provided.", "example": f"http://{request.host}/vrprot/list?ids=P02655,At1g58602", } # extract processing mode and alphafold version from request parser = util.parse_request(parser, request) # if mode is not part of the list of available modes, return an error if isinstance(parser, dict): return parser # create a list of proteins to be processed proteins = [id for id in pdb_ids.split(",")] return fetch_list(proteins, parser) def fetch_list(proteins: list[str], parser: AlphafoldDBParser = st.parser): # run the batched process result = run_pipeline(proteins, parser, on_demand=False) return {"not_fetched": list(parser.not_fetched), "results": result}
menchelab/ProteinStructureFetch
src/workflows.py
workflows.py
py
5,793
python
en
code
0
github-code
6
3235447487
from __future__ import annotations from typing import TYPE_CHECKING from avilla.core.context import Context from avilla.core.event import RelationshipCreated, RelationshipDestroyed from avilla.core.selector import Selector from avilla.core.trait.context import EventParserRecorder from cai.client.events.group import ( GroupLuckyCharacterChangedEvent, GroupLuckyCharacterClosedEvent, GroupLuckyCharacterInitEvent, GroupLuckyCharacterNewEvent, GroupLuckyCharacterOpenedEvent, GroupMemberJoinedEvent, GroupMemberLeaveEvent, GroupMemberMutedEvent, GroupMemberPermissionChangeEvent, GroupMemberSpecialTitleChangedEvent, GroupMemberUnMutedEvent, GroupNameChangedEvent, TransferGroupEvent, ) if TYPE_CHECKING: from ..account import CAIAccount from ..protocol import CAIProtocol event = EventParserRecorder["CAIProtocol", "CAIAccount"] @event("GroupMemberJoinedEvent") async def group_member_joined_event( protocol: CAIProtocol, account: CAIAccount, raw: GroupMemberJoinedEvent ): group = Selector().land(protocol.land.name).group(str(raw.group_id)) member = group.member(str(raw.uin)) context = Context( account=account, client=member, endpoint=group, scene=group, selft=group.member(account.id), ) return RelationshipCreated(context, member, group, context.self), context @event("GroupMemberLeaveEvent") async def group_member_leave_event( protocol: CAIProtocol, account: CAIAccount, raw: GroupMemberLeaveEvent ): group = Selector().land(protocol.land.name).group(str(raw.group_id)) member = group.member(str(raw.uin)) context = Context( account=account, client=member, endpoint=group, scene=group, selft=group.member(account.id), ) res = RelationshipDestroyed(context, member, group, context.self) if raw.operator and raw.operator != raw.uin: res.mediums.append(group.member(str(raw.operator))) return res, context
RF-Tar-Railt/Avilla-CAI
avilla/cai/event/group.py
group.py
py
2,023
python
en
code
3
github-code
6
23750393543
""" 최적화 비중을 계산해주는 모듈 @author: Younghyun Kim Created on 2021.10.05 """ import numpy as np import pandas as pd import cvxpy as cp import torch from cvxpylayers.torch import CvxpyLayer class ClassicOptimizer: """ Classic Optimizer """ def __init__(self, m=100, buying_fee=0.01, selling_fee=0.01, min_cash_rate=0.01): """ Initialization Args: m: big number """ self.m = m self.buying_fee = buying_fee self.selling_fee = selling_fee self.min_cash_rate = min_cash_rate def max_sr(self, returns, nonneg=True, adjust=True): """ Maximize Sharpe Ratio Args: returns: pd.DataFrame or np.array Return: weights: np.array(N) """ if isinstance(returns, pd.DataFrame): returns = returns.values creturns = returns * self.m cov = np.cov(creturns.transpose()) cov = np.nan_to_num(cov) mu = creturns.mean(0).reshape(-1) mu_min = abs(mu.min()) if mu[mu > 0].shape[0] == 0: mu += mu_min mu = np.nan_to_num(mu) weights = cp.Variable(returns.shape[1]) cov_cp = cp.Parameter((cov.shape[1], cov.shape[0]), symmetric=True) objective = cp.Minimize(cp.sum_squares(cov_cp @ weights)) constraints = [mu.T @ weights >= 1] if nonneg: constraints.append(0 <= weights) prob = cp.Problem(objective, constraints) assert prob.is_dpp() cov = torch.FloatTensor(cov.astype(float)) cvxpylayer = CvxpyLayer(prob, parameters=[cov_cp], variables=[weights]) weights, = cvxpylayer(cov) if adjust: weights = self.adjust_weights(weights) return weights.numpy() def min_var(self, returns): """ Minimum Variance Portfolio Args: returns: pd.DataFrame or np.array Return: weights: np.array(N) """ if isinstance(returns, pd.DataFrame): returns = returns.values creturns = returns * self.m cov = np.cov(creturns.transpose()) cov = np.nan_to_num(cov) weights = cp.Variable(returns.shape[1]) cov_cp = cp.Parameter((cov.shape[1], cov.shape[0]), symmetric=True) objective = cp.Minimize(cp.sum_squares(cov_cp @ weights)) constraints = [cp.sum(weights) == 1, 0 <= weights] prob = cp.Problem(objective, constraints) assert prob.is_dpp() cov = torch.FloatTensor(cov.astype(float)) cvxpylayer = CvxpyLayer(prob, parameters=[cov_cp], variables=[weights]) weights, = cvxpylayer(cov) return weights.numpy() def max_div(self, returns, nonneg=True, adjust=True): """ Maximum Diversification Portfolio Args: returns: pd.DataFrame or np.array Return: weights: np.array(N) """ if isinstance(returns, pd.DataFrame): returns = returns.values creturns = returns * self.m cov = np.cov(creturns.transpose()) cov = np.nan_to_num(cov) sig = creturns.std(0).reshape(-1) sig = np.nan_to_num(sig) weights = cp.Variable(returns.shape[1]) cov_cp = cp.Parameter((cov.shape[1], cov.shape[0]), symmetric=True) objective = cp.Minimize(cp.sum_squares(cov_cp @ weights)) constraints = [sig.T @ weights >= 1] if nonneg: constraints.append(0 <= weights) prob = cp.Problem(objective, constraints) assert prob.is_dpp() cov = torch.FloatTensor(cov.astype(float)) cvxpylayer = CvxpyLayer(prob, parameters=[cov_cp], variables=[weights]) weights, = cvxpylayer(cov) if adjust: weights = self.adjust_weights(weights) return weights.numpy() def mv_mean(self, returns): """ Mean-Variance Portfolio with min ret based on mean ret Args: returns: pd.DataFrame or np.array Return: weights: np.array(N) """ if isinstance(returns, pd.DataFrame): returns = returns.values creturns = returns * self.m cov = np.cov(creturns.transpose()) cov = np.nan_to_num(cov) weights = cp.Variable(returns.shape[1]) cov_cp = cp.Parameter((cov.shape[1], cov.shape[0]), symmetric=True) mu = creturns.mean(0).reshape(-1) mu_min = abs(mu.min()) if mu[mu > 0].shape[0] == 0: mu += mu_min mu = np.nan_to_num(mu) mret = mu.mean().item() objective = cp.Minimize(cp.sum_squares(cov_cp @ weights)) constraints = [cp.sum(weights) == 1, mu.T @ weights >= mret, 0 <= weights] prob = cp.Problem(objective, constraints) assert prob.is_dpp() cov = torch.FloatTensor(cov.astype(float)) cvxpylayer = CvxpyLayer(prob, parameters=[cov_cp], variables=[weights]) weights, = cvxpylayer(cov) return weights.numpy() def pm_port(self, returns, topk=5, return_type='pct'): """ Price Momentum Equal Weight Portfolio with TopK Args: returns: pd.DataFrame or np.array topk: top K return_type: return type(log or pct) Return: weights: np.array(N) """ if isinstance(returns, pd.DataFrame): returns = returns.values if return_type == 'pct': returns = np.log(returns + 1.) crets = returns.sum(0) crets = np.nan_to_num(crets) crank = crets.argsort() weights = np.zeros(returns.shape[1]) weights[crank[-topk:]] = 1. / topk return weights def lowvol_port(self, returns, topk=5): """ Lowvol Equal Weight Portfolio with TopK Args: returns: pd.DataFrame or np.array topk: top K Return: weights: np.array(N) """ if isinstance(returns, pd.DataFrame): returns = returns.values sig = returns.std(0) sig = np.nan_to_num(sig) srank = sig.argsort() weights = np.zeros(returns.shape[1]) weights[srank[:topk]] = 1. / topk return weights def ew_port(self, n): """ Equal Weight Portfolio with n assets Args: n: asset num Return: weights: np.array(n) """ weights = torch.ones(n) / n return weights def solve_amount(self, asset_prices, asset_embs, optimal_emb, wealth): """ Solving method for trading amounts Args: asset_prices: np.array 수량 계산에 필요한 자산 별 가격(1 X N) asset_embs = np.array 자산 별 임베딩(N X M) optimal_emb: 최적 포트폴리오 임베딩(1 X M) wealth: 총 투자금 Return: buying_amount: 종목 별 수량 prob_value: 최적과 최종 포트폴리오 거리(L2) """ wealth =\ wealth * (1. - max(self.buying_fee, self.selling_fee)) # 비용 고려 wealth = wealth * (1. - self.min_cash_rate) # 최소 보유 현금 고려 asset_embs_v = asset_embs.transpose() * asset_prices / wealth asset_prices = asset_prices.reshape(-1) buying_amount = cp.Variable(asset_prices.shape[0]) optimal_emb = optimal_emb.reshape(-1) objective = cp.Minimize(self.m * cp.sum_squares((asset_embs_v @ buying_amount) - optimal_emb)) constraints = [buying_amount >= 0, asset_prices.T @ buying_amount == wealth] prob = cp.Problem(objective, constraints) prob.solve() buying_amount = np.round(buying_amount.value, 0) return buying_amount, prob.value def get_replicated_buying_amounts(self, closes, asset_embs, weights, insts=['A069500', 'A229200', 'A114800', 'A251340'], topk=10, wealth=50000000): """ closes: pd.Series 종목 별 종가(stock_num) asset_embs: torch.tensor 종목 별 임베딩(1, stock_num, emb_dim) weights: torch.tensor 종목 별 투자비중(1, stock_num) insts: list 복제에 활용될 시장 ETF(default: K200, KQ150) topk: 복제하기 위한 상위 종목 수 * closes, asset_embs, weights는 종목 별 순서가 일치해야함 Return: amounts: pd.DataFrame 매수수량 aweights: pd.DataFrame 매수수량을 바탕으로 한 투자비중 value_est: closes를 바탕으로 계산한 총금액 prob_value: 임베딩 거리 """ ins = [] for inst in insts: ind = np.argwhere(closes.index == inst).item() ins.append(ind) ranks = weights.argsort(descending=True) ranks = ranks.cpu().numpy().reshape(-1) sel = np.unique(np.concatenate((ranks[:topk], ins), axis=-1)) optimal_emb = self.calc_optimal_emb(asset_embs, weights) embs = asset_embs[0, sel].cpu().numpy() optimal_emb = optimal_emb.view(-1, 1).cpu().numpy() amounts, prob_value = self.solve_amount(closes.iloc[sel].values, embs, optimal_emb, wealth) amounts = pd.DataFrame(amounts.reshape(-1, 1), index=closes.index[sel], columns=['amounts']) amounts = amounts[amounts['amounts'] > 0] closes = pd.DataFrame(closes.values, index=closes.index, columns=amounts.columns) value_est = (amounts.values.ravel() * closes.loc[amounts.index].values.ravel()).sum() aweights = (amounts * closes.loc[amounts.index]) / value_est return amounts, aweights, value_est, prob_value def calc_optimal_emb(self, asset_embs, weights): """ calculate optimal embedding Args: asset_embs: torch.tensor (batch_size, stock_num, emb_dim) weights: torch.tensor (batch_size, stock_num) """ optimal_emb = torch.matmul(weights, asset_embs) return optimal_emb def adjust_weights(self, weights): """ 비중 조정 * nonneg일때, weights /= weights.sum() * weights[weights > 0].sum() > 0 일때, weights /= weights[weights > 0].sum() * weights[weights > 0].sum() < 0이고, weights[weights < 0] != 0일때, weights /= -weights[weights < 0].sum() """ if (weights != 0).sum() > 0: weights = weights / abs(weights).max() wpos_sum = weights[weights > 0].sum() wneg_sum = -weights[weights < 0].sum() if weights.sum() != 0: weights /= max(wpos_sum, wneg_sum) return weights
kimyoungh/singlemolt
statesman/classic_optimizer.py
classic_optimizer.py
py
11,771
python
en
code
0
github-code
6
35061353854
from tkinter import Button, Checkbutton, Entry, IntVar, Label, Tk from tkinter import messagebox from solve import Solver q = Solver() def show_plot(): if accur_entry.get().isdigit(): n = int(accur_entry.get()) else: messagebox.showerror(message="put integer") return potential = pot.get() if wave.get().isdigit(): number = int(wave.get()) else: messagebox.showerror(message="put integer") return if spread.get().isdigit(): s = int(spread.get()) else: messagebox.showerror(message="put integer") return if n != q.n or potential != q.pot or s != q.range: print(accur_entry.get(), q.n) print(potential, q.pot) print(s, q.range) q._init(n, potential, s) if pp.get() == 1: q.plopoten() q.show() if pi.get() == 1: if ow.get() == 1: for i in range(number): q.plot(False, i) else: q.plot(False, number) else: if ow.get() == 1: for i in range(number): q.plot(True, i) else: q.plot(True, number) q.show() window = Tk() window.title("stationary state grapher") ow = IntVar() pi = IntVar() pp = IntVar() window.config(padx=20, pady=20) accur = Label(text="give number of grid points") accur_entry = Entry() accur_entry.insert(0, "2000") pot_lab = Label(text="give potential") wave_lab = Label(text="wave number ") wave = Entry() spread_lab = Label(text="give the bounded range ") spread = Entry() spread.insert(0, "100") prob = Checkbutton(text="see probability ", variable=pi, onvalue=1, offvalue=0) only_wave = Checkbutton(text="see all the waves upto that number", variable=ow, onvalue=1, offvalue=0) plot = Button(text="show the plot", width=32, command=show_plot) pot = Entry() pot.focus() potplot = Checkbutton(text="plot potential function ", variable=pp, onvalue=1, offvalue=0) # grid accur.grid(row=0, column=0) accur_entry.grid(row=0, column=1) pot_lab.grid(row=1, column=0) pot.grid(row=1, column=1) wave_lab.grid(row=3, column=0) wave.grid(row=3, column=1) spread_lab.grid(row=2, column=0) spread.grid(row=2, column=1) prob.grid(row=4, column=0, columnspan=2) only_wave.grid(row=5, column=0, columnspan=2) potplot.grid(row=6, column=0, columnspan=2) plot.grid(row=7, column=0, columnspan=2) window.mainloop()
shomarzzz/quantum-solver
gui.py
gui.py
py
2,469
python
en
code
0
github-code
6
39259262942
#!/usr/bin/env python3 import rclpy from rclpy.node import Node import speech_recognition as sr from custom_if.srv import SendSentence from functools import partial import time ### Node class class SpeechToText(Node): def __init__(self): super().__init__("stt_node") self.get_logger().info("STT node is up.") self.stt = sr.Recognizer() # Methods self.listen_to_user() ## Listen and write def listen_to_user(self): self.call_nlu("Welcome") # Inner loop while True: with sr.Microphone() as source: self.stt.adjust_for_ambient_noise(source, duration=0.2) audio = self.stt.listen(source) try: sentence = "{0}".format(self.stt.recognize_google(audio, language="it-IT")) if 'Marvin' in sentence.split(" "): self.call_nlu(sentence) except sr.UnknownValueError: self.get_logger().warn("Waiting for a command.") except sr.RequestError as e: self.get_logger().error("STT Error; {0}".format(e)) # Definition of the client request to the TTS def call_nlu(self, sentence): client = self.create_client(SendSentence, "send_command") while not client.wait_for_service(1.0): self.get_logger().warn("Waiting for Server...") request = SendSentence.Request() request.sentence = sentence future = client.call_async(request) future.add_done_callback(partial(self.callback_call_nlu, sentence=sentence)) def callback_call_nlu(self, future, sentence): try: response = future.result() self.get_logger().info(f"Request solved: {response}") except Exception as e: self.get_logger().error("Request failed.") def main(args=None): rclpy.init(args=args) node = SpeechToText() rclpy.spin(node) rclpy.shutdown() if __name__ == "__main__": main()
Alessandro-Scarciglia/VoiceAssistant
speech_to_text/speech_to_text/speech_to_text.py
speech_to_text.py
py
1,732
python
en
code
0
github-code
6
22034975052
from lib2to3.pgen2 import token from brownie import Test, accounts, interface from eth_utils import to_wei from web3 import Web3 def main(): deploy() def deploy(): amount_in = Web3.toWei(1000000, "ether") # DAI address DAI = "0x6B175474E89094C44Da98b954EedeAC495271d0F" # DAI whale DAI_WHALE = "0xcffad3200574698b78f32232aa9d63eabd290703" # WETH WETH = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2" # WETH whale WETH_WHALE = "0xeD1840223484483C0cb050E6fC344d1eBF0778a9" print("===Transferring gas cost covers===") # covering the transaction cost # accounts[0].transfer(DAI_WHALE, "1 ether") # accounts[0].transfer(WETH_WHALE, "1 ether") tokenA = interface.IERC20(DAI) tokenB = interface.IERC20(WETH) print("===Transferring the tokenA and tokenB amounts from whales to account[0]===") tokenA.transfer(accounts[0], Web3.toWei(2400, "ether"), {"from": DAI_WHALE}) tokenB.transfer(accounts[0], Web3.toWei(1, "ether"), {"from": WETH_WHALE}) contract = Test.deploy({"from": accounts[0]}) tokenA.approve(contract.address, Web3.toWei(2400, "ether"), {"from": accounts[0]}) tokenB.approve(contract.address, Web3.toWei(1, "ether"), {"from": accounts[0]}) print("Adding liquidity...") tx = contract.addLiquidity( DAI, WETH, Web3.toWei(2400, "ether"), Web3.toWei(1, "ether"), {"from": accounts[0]}, ) tx.wait(1) print("Added Liquidity...") for i in tx.events["Log"]: print(i) print("=== Removing Liquidity ===") tx = contract.removeLiquidity(DAI, WETH, {"from": accounts[0]}) tx.wait(1) for i in tx.events["Log"]: print(i)
emrahsariboz/DeFi
uniswap/scripts/_deployAndAddLiquidity.py
_deployAndAddLiquidity.py
py
1,713
python
en
code
0
github-code
6
37272423624
import sys from aspartix_parser import Apx_parser import itertools def conflict_free(arguments, attacks): confl_free_sets = [] combs = [] for i in range(1, len(arguments) + 1): els = [list(x) for x in itertools.combinations(arguments, i)] combs.extend(els) combs_sorted = [list(combs_sorted) for combs_sorted in combs][::-1] # print("Combs: ", combs_sorted) for i in combs_sorted: att_count = 0 # print(i) for att in attacks: # print(att) if set([str(att)[2], str(att)[4]]).issubset(set(i)) or any([i in item for item in confl_free_sets]): # any(x in item for item in confl_free_sets for x in i):#(True if list(filter(lambda x:i in x,confl_free_sets)) else False):#(any([set(i).issubset(set(item)) in item for item in confl_free_sets])): break else: att_count += 1 # print(att_count) # if ((str(att)[2] and str(att)[4]) not in i) and (not any([i in item for item in confl_free_sets])): # att_count += 1 # print(att_count) if att_count == len(attacks): confl_free_sets.append(i) return confl_free_sets def admissible(confl_free, attacks): admissible_sets = [] for ext in confl_free: count = 0 # print(ext) for att in attacks: if str(att)[4] not in ext: count += 1 # print(att, count) else: # print(att, count) for atr in attacks: # print(att, atr, count, str(atr)[4], str(att)[2]) if (str(att)[2] == str(atr)[4]) and (str(atr)[2] in ext): count += 1 # print(count) if count == len(attacks): admissible_sets.append(ext) return admissible_sets # def complete(admissible_sets, attacks): # complete_ext = [] # for adm in admissible_sets: # for att in attacks: # if (str(att)[2] in adm) and # # return complete_ext def preferred(admissible_sets): preferred_exts = [] for adm in admissible_sets: count = 0 # print(adm, count) for adm_t in admissible_sets: if set(adm).issubset(set(adm_t)) and adm_t != adm: pass else: count += 1 # print(adm, adm_t, count) if count == len(admissible_sets): preferred_exts.append(adm) return preferred_exts def stable_extensions(stable_exts): pass if __name__ == '__main__': filepath = 'example.apx' if sys.argv[1:]: filepath = sys.argv[1] arguments = [] attacks = [] parser = Apx_parser(filepath) arguments, attacks = parser.read_file() parser.close() print(arguments, attacks) print("There are ", len(arguments), " arguments and ", len(attacks), " attacks.") # print(str(attacks[0])[4]) confl_free = conflict_free(arguments, attacks) print("Conflict free extensions: ", "[]", sorted(confl_free)) admissible_sets = admissible(confl_free, attacks) print("Admissible extensions: ", "[]", sorted(admissible_sets)) # complete_ext = complete(admissible_sets, attacks) preferred_exts = preferred(admissible_sets) print("Preferred extensions: ", sorted(preferred_exts)) stable_exts = stable_extensions(preferred_exts) print("Stable extensions: ", stable_exts)
Vladimyr23/aspartix_file_parsing_and_reasoning_with_args
Python_parser_and_reasoning_semantics/semantics.py
semantics.py
py
3,690
python
en
code
0
github-code
6
27672884251
from typing import Dict, Tuple from copy import deepcopy import torch from config import tqc_config from modules import Actor, TruncatedQuantileEnsembledCritic class TQC: def __init__(self, cfg: tqc_config, actor: Actor, critic: TruncatedQuantileEnsembledCritic) -> None: self.cfg = cfg self.device = cfg.device self.tau = cfg.tau self.discount = cfg.discount self.batch_size = cfg.batch_size self.target_entropy = -float(actor.action_dim) self.log_alpha = torch.tensor([0.0], dtype=torch.float32, device=self.device, requires_grad=True) self.alpha_optimizer = torch.optim.AdamW([self.log_alpha], lr=cfg.alpha_lr) self.alpha = self.log_alpha.exp().detach() self.actor = actor.to(self.device) self.actor_optim = torch.optim.AdamW(self.actor.parameters(), lr=cfg.actor_lr) self.critic = critic.to(self.device) self.critic_target = deepcopy(critic).to(self.device) self.critic_optim = torch.optim.AdamW(self.critic.parameters(), lr=cfg.critic_lr) self.quantiles_total = critic.num_critics * critic.num_quantiles self.quantiles2drop = cfg.quantiles_to_drop_per_critic * cfg.num_critics self.top = self.quantiles_total - self.quantiles2drop huber_tau = torch.arange(self.cfg.num_quantiles, device=self.device).float() / self.top + 1 / (2 * self.top) self.huber_tau = huber_tau[None, None, :, None] self.total_iterations = 0 def train(self, states: torch.Tensor, actions: torch.Tensor, rewards: torch.Tensor, next_states: torch.Tensor, dones: torch.Tensor) -> Dict[str, float]: self.total_iterations += 1 # critic step critic_loss = self.critic_loss(states, actions, rewards, next_states, dones) self.critic_optim.zero_grad() critic_loss.backward() self.critic_optim.step() # actor step actor_loss, batch_entropy, qz_values = self.actor_loss(states) self.actor_optim.zero_grad() actor_loss.backward() self.actor_optim.step() # alpha step alpha_loss = self.alpha_loss(states) self.alpha_optimizer.zero_grad() alpha_loss.backward() self.alpha_optimizer.step() self.alpha = self.log_alpha.exp().detach() self.soft_critic_update() return { "critic_loss": critic_loss.item(), "actor_loss": actor_loss.item(), "actor_batch_entropy": batch_entropy, "qz_values": qz_values, "alpha": self.alpha.item(), "alpha_loss": alpha_loss.item() } def actor_loss(self, states: torch.Tensor) -> Tuple[torch.Tensor, float, float]: actions, log_prob = self.actor(states, need_log_prob=True) qz_values = self.critic(states, actions).mean(dim=2).mean(dim=1, keepdim=True) loss = self.alpha * log_prob - qz_values batch_entropy = -log_prob.mean().item() return loss.mean(), batch_entropy, qz_values.mean().item() def critic_loss(self, states: torch.Tensor, actions: torch.Tensor, rewards: torch.Tensor, next_states: torch.Tensor, dones: torch.Tensor) -> torch.Tensor: with torch.no_grad(): next_actions, next_log_prob = self.actor(next_states, need_log_prob=True) next_z = self.critic_target(next_states, next_actions) sorted_next_z = torch.sort(next_z.reshape(self.batch_size, -1)).values sorted_next_z_top = sorted_next_z[:, :self.top] sorted_next_z_top = sorted_next_z_top - self.alpha * next_log_prob.unsqueeze(-1) quantiles_target = rewards + self.discount * (1.0 - dones) * sorted_next_z_top current_z = self.critic(states, actions) loss = self.quantile_huber_loss(current_z, quantiles_target) return loss def quantile_huber_loss(self, quantiles: torch.Tensor, target: torch.Tensor) -> torch.Tensor: pairwise_diff = target[:, None, None, :] - quantiles[:, :, :, None] abs_val = pairwise_diff.abs() huber_loss = torch.where(abs_val > 1.0, abs_val - 0.5, pairwise_diff.pow(2) / 2) loss = torch.abs(self.huber_tau - (pairwise_diff < 0).float()) * huber_loss return loss.mean() def alpha_loss(self, state: torch.Tensor) -> torch.Tensor: with torch.no_grad(): action, log_prob = self.actor(state, need_log_prob=True) loss = -self.log_alpha * (log_prob + self.target_entropy) return loss.mean() def soft_critic_update(self): for param, tgt_param in zip(self.critic.parameters(), self.critic_target.parameters()): tgt_param.data.copy_(self.tau * param.data + (1 - self.tau) * tgt_param.data)
zzmtsvv/rl_task
offline_tqc/tqc.py
tqc.py
py
5,082
python
en
code
8
github-code
6
41267353320
from tkinter import * class JogoDaForca: def __init__(self, master): self.master = master master.title("Jogo da Forca") master.geometry("300x300") # palavra secreta self.palavra_secreta = "banana" # letras adivinhadas self.letras_adivinhadas = [] # número de tentativas self.tentativas_restantes = 6 # widgets self.lbl_palavra = Label(master, text=self.esconder_palavra()) self.lbl_palavra.pack() self.lbl_letras_adivinhadas = Label(master, text=self.formatar_letras_adivinhadas()) self.lbl_letras_adivinhadas.pack() self.lbl_tentativas = Label(master, text="Tentativas restantes: {}".format(self.tentativas_restantes)) self.lbl_tentativas.pack() self.lbl_mensagem = Label(master, text="") self.lbl_mensagem.pack() self.ent_palpite = Entry(master) self.ent_palpite.pack() self.btn_adivinhar = Button(master, text="Adivinhar", command=self.adivinhar_letra) self.btn_adivinhar.pack() def esconder_palavra(self): palavra_escondida = "" for letra in self.palavra_secreta: if letra in self.letras_adivinhadas: palavra_escondida += letra else: palavra_escondida += "_" return palavra_escondida def formatar_letras_adivinhadas(self): return "Letras adivinhadas: {}".format(", ".join(self.letras_adivinhadas)) def adivinhar_letra(self): palpite = self.ent_palpite.get() if len(palpite) != 1: self.lbl_mensagem.configure(text="Por favor, digite uma letra de cada vez.") return if palpite in self.letras_adivinhadas: self.lbl_mensagem.configure(text="Você já adivinhou essa letra.") return self.letras_adivinhadas.append(palpite) if palpite not in self.palavra_secreta: self.tentativas_restantes -= 1 self.lbl_tentativas.configure(text="Tentativas restantes: {}".format(self.tentativas_restantes)) if self.tentativas_restantes == 0: self.lbl_mensagem.configure(text="Você perdeu!") self.btn_adivinhar.configure(state=DISABLED) return if self.esconder_palavra() == self.palavra_secreta: self.lbl_mensagem.configure(text="Você ganhou!") self.btn_adivinhar.configure(state=DISABLED) return self.lbl_palavra.configure(text=self.esconder_palavra()) self.lbl_letras_adivinhadas.configure(text=self.formatar_letras_adivinhadas()) self.ent_palpite.delete(0, END) def iniciar_jogo(self): self.master.mainloop() root = Tk() jogo_da_forca = JogoDaForca(root) jogo_da_forca.iniciar_jogo()
Matheus-A-Santana/Estudos
Aprendendo Python/jogo-da-forca.py
jogo-da-forca.py
py
2,829
python
pt
code
0
github-code
6
24072421464
""" Parser.py Used to parse URLs into a linked list of dictionaries. """ from bs4 import BeautifulSoup import requests import re class Node: # pragma: no cover """ Creates a Node that contains data, and a next node Data holds any object. Next points to the next node, and should always be a node. """ def __init__( self, data): """Initialize Node Class""" self.data = data self.next = None class LinkedList: # pragma: no cover """ Creates a Linked List, with a head, and a tail. Head only contains the first link in the list, and should be called at the beginning of scan. Tail only contains the last link in the list, and should not be called. """ def __init__( self): """Initialize Linked List Class""" self.head = None self.tail = None def add_list_item( self, item): """Add an item to the Linked List""" if not isinstance(item, Node): item = Node(item) if self.head is None: self.head = item elif self.tail.data == item: return else: self.tail.next = item self.tail = item def parse_url_feed( incoming) -> LinkedList: """ Receives either a list of URLs or a single URL, and returns a Linked List of Dictionaries """ total_feed = LinkedList() url_list = return_list(incoming) for url_entry in url_list: if not check_url(url_entry): raise Exception("Invalid URL. Must Be a RSS Feed URL ending in " ".rss, .html, or .xml: " + url_entry) parse_value = find_parser(url_entry) response = requests.get(url_entry) soup = BeautifulSoup(response.content, parse_value) if soup.rss is not None: feed = rss_parse(soup) total_feed.add_list_item(feed) elif soup.find_all(re.compile("atom.xml")) is not None: feed = atom_parse(soup) total_feed.add_list_item(feed) return total_feed def check_url( url: str) -> bool: """Checks to see if the URL given is parseable""" url = str(url) if len(url) == 0: return False result1 = re.search("rss?", url) result2 = re.search("xml?", url) result3 = re.search("tml?", url) result4 = re.search("feeds?", url) if result1 is not None: return True elif result2 is not None: return True elif result3 is not None: return True elif result4 is not None: return True else: return False def find_parser( response: str) -> str: """Checks to see which parser to use""" if len(response) <= 3: raise Exception("Invalid URL Length") result = re.search("tml?", response) if result is not None: return "lxml" else: return "lxml-xml" def return_list( incoming) -> list: """ Checks to see if incoming is a String or a List. If a String, adds the string to a list and returns. """ url_list = [] if isinstance(incoming, str): url_list.append(incoming) elif isinstance(incoming, list): url_list = incoming return url_list def rss_parse( soup: BeautifulSoup) -> LinkedList: # pragma: no cover """ When URL is an RSS feed, returns a linked list of dictionaries containing the titles and links """ feed = LinkedList() tag = soup.rss tag = tag.channel channel_dict = {"RSS_String": tag.title.string, "Link": tag.link.string} feed.add_list_item(channel_dict) for item in tag.find_all(re.compile("item?")): feed_dict = {} for title in item.find_all(re.compile("title?")): for entry in title.find_all(string=True): feed_dict["RSS_String"] = entry feed_dict["RSS_String"] = truncate(feed_dict["RSS_String"]) for link in item.find_all(re.compile("link?")): for entry in link.find_all(string=True): feed_dict["Link"] = entry feed.add_list_item(feed_dict) return feed def atom_parse( soup: BeautifulSoup) -> LinkedList: # pragma: no cover """ When URL is an Atom feed, returns a linked list of dictionaries containing the titles and links """ feed = LinkedList() tag = soup.feed for entry in tag.find_all("entry"): feed_dict = {} for title in entry.find_all("title"): for string in title.find_all(string=True): feed_dict["RSS_String"] = string feed_dict["RSS_String"] = truncate(feed_dict["RSS_String"]) for link in entry.find_all(re.compile("link?")): feed_dict["Link"] = link.get('href') feed.add_list_item(feed_dict) return feed def truncate( input_line: str) -> str: """ When a string is over 80 characters long, string is limited to 79 characters for readability in GUI window, An ellipsis (...) is added to denote unseen text """ if len(input_line) >= 80: input_line = input_line[0:79] return input_line + "..." else: return input_line
Jhawk1196/CS3250PythonProject
src/parser.py
parser.py
py
5,232
python
en
code
0
github-code
6
31111113064
#https://leetcode.com/problems/palindrome-linked-list/ class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def makeList(arr): dummy = ListNode(0) curr = dummy for i in arr: curr.next = ListNode(i) curr = curr.next return dummy.next def traverse(head): curr = head while curr: print (curr.val) curr = curr.next #space and time is O(N) #def isPalindrome(self, head: ListNode) -> bool: # vals = [] # while head: # vals.append(head.val) # head = head.next # return vals == vals[::-1] def pal(head): slow = head fast = head if not head: return True #corner cases when len=1 or len=2 if head.next == None: return True elif head.next.next == None: if head.val == head.next.val: return True else: return False #for lengths n>=3 while fast.next and fast.next.next: fast = fast.next.next slow = slow.next # head->node----->mid<------node<-revhead prev = None curr = slow while curr: nextt = curr.next curr.next = prev prev = curr curr = nextt revhead = prev flag = True while head and revhead: if head.val != revhead.val: flag = False break head = head.next revhead = revhead.next print(flag) return flag head = makeList([1,2,3,3,2,1]) pal(head)
sparsh-m/30days
d6_2.py
d6_2.py
py
1,321
python
en
code
0
github-code
6
25354214474
def repeatedString(s, n): mul=n//len(s) rem=n%len(s) if rem>0: rem_string=s[:rem] s= list(s) num=s.count('a') num*=mul if rem>0: num+=rem_string.count('a')
nikjohn7/Coding-Challenges
Hackerrank/Python/4.py
4.py
py
199
python
en
code
4
github-code
6
39791046463
# -*- coding: utf-8 -*- # @Author: ShuaiYang # @Date: 2019-04-02 19:05:45 # @Last Modified by: ShuaiYang # @Last Modified time: 2019-04-02 19:05:47 # -*- coding: utf-8 -*- # @Author: ShuaiYang # @Date: 2019-04-02 16:57:49 # @Last Modified by: ShuaiYang # @Last Modified time: 2019-04-02 19:05:20 import tensorflow as tf # 首先,创建一个TensorFlow常量=>2 const = tf.constant(2.0, name='const') # 创建TensorFlow变量b和c b = tf.Variable(2.0, name='b') c = tf.Variable(1.0, dtype=tf.float32, name='c') # 创建operation d = tf.add(b, c, name='d') e = tf.add(c, const, name='e') a = tf.multiply(d, e, name='a') # 1. 定义init operation init_op = tf.global_variables_initializer() with tf.Session() as sess: # 2. 运行init operation sess.run(init_op) # 计算 a_out = sess.run(a) print("Variable a is {}".format(a_out))
yangshuai8318243/TensorflowTestCode
netTestCode/testVar.py
testVar.py
py
852
python
en
code
1
github-code
6
38041664142
import random def cards(): cards_typs = [ ["Card 2", 2], ["Card 3", 3], ["Card 4", 4], ["Card 5", 5], ["Card 6", 6], ["Card 7", 7], ["Card 8", 8], ["Card 9", 9], ["Card 10", 10], ["Valete", 10], ["Dama", 10], ["Rei", 10], ["ÁS", 11] # Adicionei o valor 11 para o ÁS ] random_cards = random.randint(0, 12) card_valor = cards_typs[random_cards] return card_valor def calcular_soma(cartas): for valor in cards_do_usuario: soma = sum(cards_do_usuario) print("soma",soma) return soma cards_do_usuario = [] for i in range(0, 2): card = cards() nome_do_cartao = card[0] # Obtém o nome do cartão valor_do_cartao = card[1] # Obtém o valor do cartão cards_do_usuario.append((valor_do_cartao)) opecao = input("Você deseja jogar BLACKJACK? S/N").lower() print("2 Cartas:") for valor in cards_do_usuario: print(f"{valor}") if opecao == "s": cont = 1 else: cont = 0 while cont == 1: hit = int(input("Puxar uma CARTA? (1 para HIT, 0 para parar)")) if hit == 1: card = cards() # Sorteie uma carta valor_do_cartao = card[1] cards_do_usuario.append((valor_do_cartao)) # Adiciona a carta à lista print("Carta:") for valor in cards_do_usuario: print(f"{valor}") soma_cartas = calcular_soma(cards_do_usuario) print(f"Soma das cartas: {soma_cartas}") if soma_cartas > 21: print("Você Perdeu") break # Saia do loop enquanto se a soma for maior que 21 if soma_cartas <= 21: print("Você Ganhou") break if hit == 0: cont = 0 soma = 0 # Exibir as cartas sorteadas print("Cartas sorteadas:") for valor in cards_do_usuario: print(f"{valor}")
arthurksilva/blackjack
blackjack.py
blackjack.py
py
1,896
python
pt
code
0
github-code
6
3229327686
#!/usr/bin/python ### File Information ### """ Rejector """ __author__ = '[email protected]' import os import fnmatch from config import Config class Rejector: """ Rejector: 1. Check whether conflicts happen. 2. Resolve conflicts automatically. """ CONFILCT_START = "<<<<<<<" CONFLICT_MID = "=======" CONFILCT_END = ">>>>>>>" def __init__(self, target): self.mTarget = target self.mConflictNum = 0 def getConflictNum(self): if fnmatch.fnmatch(self.mTarget, "*.xml"): self.resolveConflict() else: self.collectConflict() return self.mConflictNum def collectConflict(self): """ Check whether conflict happen or not in the target """ self.mConflictNum = 0 top = 0 size = 0 # delLinesNumbers record the lines of conflicts delLineNumbers = [] needToDel = False targetFile = open(self.mTarget, "r+") lineNum = 0 lines = targetFile.readlines() for line in lines: size = self.mConflictNum if line.startswith(Rejector.CONFILCT_START): top += 1 # Modify the conflict in the original lines[lineNum] = "%s #Conflict %d\n" % (line.rstrip(), size) self.mConflictNum += 1 #conflicts.append("#Conflict %d , start at line %d\n" % (size, lineNum)) #conflicts[size] += line delLineNumbers.append(lineNum) elif line.startswith(Rejector.CONFILCT_END): # Modify the conflict in the original lines[lineNum] = "%s #Conflict %d\n" % (line.rstrip(), size-top) #conflicts[size-top] += line #conflicts[size-top] += "#Conflict %d , end at line %d\n\n" % (size-top, lineNum) delLineNumbers.append(lineNum) needToDel = False if top == 0: break; top -= 1 else: if top > 0: #conflicts[size-top] += line if line.startswith(Rejector.CONFLICT_MID): # Modify the conflict in the original #lines[lineNum] = "%s #Conflict %d\n" % (line.rstrip(), size-top) needToDel = True if needToDel: delLineNumbers.append(lineNum) lineNum += 1 # Create a reject file if conflict happen if self.mConflictNum > 0: rejFilename = Rejector.createReject(self.mTarget) rejFile = open(rejFilename, "wb") rejFile.writelines(lines) rejFile.close() # Remove conflict blocks, and write back target. for lineNum in delLineNumbers[::-1]: del lines[lineNum] targetFile.seek(0) targetFile.truncate() targetFile.writelines(lines) targetFile.close() return self @staticmethod def createReject(target): relTarget = os.path.relpath(target, Config.PRJ_ROOT) rejFilename = os.path.join(Config.REJ_ROOT, relTarget) dirname = os.path.dirname(rejFilename) if not os.path.exists(dirname): os.makedirs(dirname) return rejFilename def resolveConflict(self): rejFileHandle = open(self.mTarget, "r+") top = 0 lineNum = 0 delLineNumbers = [] needToDel = True lines = rejFileHandle.readlines() for line in lines: if line.startswith(Rejector.CONFILCT_START): top += 1 delLineNumbers.append(lineNum) elif line.startswith(Rejector.CONFILCT_END): top -= 1 delLineNumbers.append(lineNum) needToDel = True if top < 0: break; else: if top > 0: if needToDel: delLineNumbers.append(lineNum) if line.startswith(Rejector.CONFLICT_MID): needToDel = False lineNum += 1 for lineNum in delLineNumbers[::-1]: del lines[lineNum] rejFileHandle.seek(0) rejFileHandle.truncate() rejFileHandle.writelines(lines) rejFileHandle.close()
baidurom/tools
autopatch/rejector.py
rejector.py
py
4,416
python
en
code
12
github-code
6
21273783061
class Session: def __init__(self, id, checkin_date, checkout_date): self.id = id self.checkin_date = checkin_date self.checkout_date = checkout_date class Reservation: def __init__(self,reservationid,date_of_arrival= None ,date_of_departure = None ,customerid = None ,paymentid = None ,hotelid = None ,roomid = None ,reservation_charge = None ,rating = None): self.reservationid = reservationid self.date_of_arrival = date_of_arrival self.date_of_departure = date_of_departure self.customerid = customerid self.paymentid = paymentid self.hotelid = hotelid self.roomid = roomid self.reservation_charge = reservation_charge self.rating = rating def __str__(self) -> str: return str(self.reservationid) + " " + self.date_of_arrival + " " + self.date_of_departure + " " + str(self.customerid) + " " + str(self.paymentid) + " " + str(self.hotelid) + " " + str(self.roomid) + " " + str(self.reservation_charge) class Hotel: def __init__(self, hotelId, name=None, street=None, zipcode=None, city=None, country=None, rating=None, rating_count=None): self.hotelId = hotelId self.name = name self.street = street self.zipcode = zipcode self.city = city self.country = country self.rating = rating self.rating_count = rating_count self.rooms = 0 self.facilities = "" self.image_location = "" def set_rooms(self, rooms): self.rooms = rooms def add_facilities(self, facility_list): for i in range(len(facility_list)): if i > 0: self.facilities += ', ' self.facilities += facility_list[i] def __str__(self): return self.name class Room: def __init__(self, room_type, bed_type, cost, discount,singleId = None): self.roomId = [] self.room_type = room_type self.bed_type = bed_type self.cost = cost self.discount = discount self.facilities = "" self.count = 1 self.singleId = singleId def add_facilities(self, facility_list): for i in range(len(facility_list)): if i > 0: self.facilities += ', ' self.facilities += facility_list[i] def __str__(self): return str(self.singleId) + " " + self.room_type class Service: def __init__(self, serviceId, service_type, service_subtype, cost,count = None): self.serviceId = serviceId self.service_type = service_type self.service_subtype = service_subtype self.cost = cost self.count = count if service_type == 'Food': self.unit = 'serving' else: self.unit = 'hour'
zarif98sjs/innOcity
hotel/models.py
models.py
py
2,816
python
en
code
5
github-code
6
25847894028
import math from autocad_session import channel def extract_rectangles(): ret = [] cord_names = [f"{point}{value}" for point in ['a', 'b', 'c', 'd'] for value in ['x', 'y']] for obj in channel.session.doc.ModelSpace: # Test if it is a rectangle if "Polyline" in obj.ObjectName and obj.Closed: coordinates = obj.Coordinates if len(coordinates) != 8: continue len_a = math.dist(coordinates[:2], coordinates[2:4]) len_b = math.dist(coordinates[2:4], coordinates[4:6]) if ( len_a == math.dist(coordinates[4:6], coordinates[6:8]) and len_b == math.dist(coordinates[:2], coordinates[6:8]) ): cord_dict = {cord_names[i]: value for i, value in enumerate(coordinates)} ret.append( dict( len_a=len_a, len_b=len_b, # Floating point conversion problems, not using obj.Area area=len_a * len_b, perimeter=2 * len_b + 2 * len_b, **cord_dict, ) ) return ret
akila122/pycad
actions/extract_rectangle.py
extract_rectangle.py
py
1,237
python
en
code
0
github-code
6
18308754842
from tempfile import gettempdir import urllib.request import platform import zipfile from os.path import join from os import walk pth = "https://github.com/AequilibraE/aequilibrae/releases/download/V0.6.0.post1/mod_spatialite-NG-win-amd64.zip" outfolder = gettempdir() dest_path = join(outfolder, "mod_spatialite-NG-win-amd64.zip") urllib.request.urlretrieve(pth, dest_path) fldr = join(outfolder, "temp_data") zipfile.ZipFile(dest_path).extractall(fldr) if "WINDOWS" in platform.platform().upper(): # We now set sqlite. Only needed in thge windows server in Github plats = { "x86": "https://sqlite.org/2020/sqlite-dll-win32-x86-3320100.zip", "x64": "https://sqlite.org/2020/sqlite-dll-win64-x64-3320100.zip", } outfolder = "C:/" zip_path64 = join(outfolder, "sqlite-dll-win64-x64-3320100.zip") urllib.request.urlretrieve(plats["x64"], zip_path64) zip_path86 = join(outfolder, "sqlite-dll-win32-x86-3320100.zip") urllib.request.urlretrieve(plats["x86"], zip_path86) root = "C:/hostedtoolcache/windows/Python/" file = "sqlite3.dll" for d, subD, f in walk(root): if file in f: if "x64" in d: zipfile.ZipFile(zip_path64).extractall(d) else: zipfile.ZipFile(zip_path86).extractall(d) print(f"Replaces {d}")
AequilibraE/aequilibrae
tests/setup_windows_spatialite.py
setup_windows_spatialite.py
py
1,347
python
en
code
140
github-code
6
18609666305
#!/usr/bin/env python # -*- coding: UTF-8 -*- from waveapi import events from waveapi import model from waveapi import robot from pyactiveresource.activeresource import ActiveResource import logging import settings CC_XMPP = 'cc:xmpp' CC_TWITTER = 'cc:twitter' logger = logging.getLogger('GAE_Robot') logger.setLevel(logging.INFO) class Notification(ActiveResource): _site = settings.MPUB_SITE ### Webhooks start def OnParticipantsChanged(properties, context): """Invoked when any participants have been added/removed.""" added = properties['participantsAdded'] for p in added: if p != settings.ROBOT_NICK+'@appspot.com': Notify(context, "Hi, " + p) def OnRobotAdded(properties, context): """Invoked when the robot has been added.""" root_wavelet = context.GetRootWavelet() root_wavelet.CreateBlip().GetDocument().SetText("Connected to XMPP...") def OnBlipSubmitted(properties, context): """Invoked when new blip submitted.""" blip = context.GetBlipById(properties['blipId']) doc = blip.GetDocument() creator = blip.GetCreator() text = doc.GetText() try: if creator in settings.ADMINS and text != '' and text !='cc:xmpp' and text !='cc:twitter': if CC_XMPP in text: text = text.replace('cc:xmpp','') note = Notification({'escalation':10, 'body':text, 'recipients':{'recipient':[{'position':1,'channel':'gchat','address':settings.MPUB_XMPP}]}}) note.save() if CC_TWITTER in text: text = text.replace('cc:twitter','') note = Notification({'escalation':10, 'body':text, 'recipients':{'recipient':[{'position':1,'channel':'twitter','address':settings.MPUB_TWITTER}]}}) note.save() except: logger.debug(context, 'Submit failed. (blip=%s)' % properties['blipId']) pass ### Webhooks end def Notify(context, message): root_wavelet = context.GetRootWavelet() root_wavelet.CreateBlip().GetDocument().SetText(message) if __name__ == '__main__': myRobot = robot.Robot(settings.ROBOT_NICK, image_url='http://%s.appspot.com/assets/bot.png' % settings.ROBOT_NICK, version='1', profile_url='http://%s.appspot.com/' % settings.ROBOT_NICK) myRobot.RegisterHandler(events.WAVELET_PARTICIPANTS_CHANGED, OnParticipantsChanged) myRobot.RegisterHandler(events.WAVELET_SELF_ADDED, OnRobotAdded) myRobot.RegisterHandler(events.BLIP_SUBMITTED, OnBlipSubmitted) myRobot.Run(debug=settings.DEBUG)
zh/gae-robot
gaerobot.py
gaerobot.py
py
2,435
python
en
code
4
github-code
6
14676087381
nums = input().split() print("Resumo dos Ímpares Positivos") print() cont = "" soma = 0 for l in nums: numero = int(l) if l % "2" != "0"and l > "0": soma += numero cont += nums[l] quant = len(cont) if quant == 0: print(f"Quantidade: {quant}") print(f"Maior: Não existe") print(f"menor: Não existe") lista = list(cont) maior = lista[0] menor = lista[0] for valor in lista: if valor > maior: maior = valor if valor < menor: menor = valor print(f"Quantidade: {quant}") print(f"Maior: {maior}") print(f"Menor: {menor}") print(soma)
lucas-santiagoo/Resumo-dos-mpares-Positivos
solucao.py
solucao.py
py
721
python
pt
code
0
github-code
6
14720838146
import torch import torch.nn as nn from collections import OrderedDict from networks.reshape import Reshape class ImageEncoder(nn.Module): def __init__(self, input_channels, layers_channels, prefix, useMaxPool=False, addFlatten=False): ''' If useMaxPool is set to True, Max pooling is used to reduce the image dims instead of stride = 2. ''' super(ImageEncoder, self).__init__() layers = OrderedDict() pr_ch = input_channels stride = 1 if useMaxPool else 2 for i in range(len(layers_channels)): layers[prefix + '_conv' + str(i)] = nn.Conv2d(in_channels=pr_ch, out_channels=layers_channels[i], kernel_size=3, stride=stride, padding=1) layers[prefix + '_relu' + str(i)] = nn.ReLU() if (useMaxPool): layers[prefix + '_maxpool' + str(i)] = nn.MaxPool2d(2, stride=2) pr_ch = layers_channels[i] if addFlatten: layers[prefix + '_flat'] = nn.Flatten() self.net = nn.Sequential(layers) def forward(self, data): return self.net(data) class ImageEncoderFlatInput(ImageEncoder): def __init__(self, input_channels, layers_channels, prefix, useMaxPool=False, addFlatten=False): super(ImageEncoderFlatInput, self).__init__(input_channels, layers_channels, prefix, useMaxPool, addFlatten) self.reshapeInput = Reshape(-1, input_channels, 32, 32) def forward(self, data): return self.net(self.reshapeInput(data))
PradeepKadubandi/DemoPlanner
networks/imageencoder.py
imageencoder.py
py
1,593
python
en
code
0
github-code
6
3982882771
from time import time import sys, argparse, heightfield, os, povray_writer, load_info, read_lidar, cameraUtils, calculate_tile #/media/pablo/280F8D1D0A5B8545/TFG_files/cliente_local/ #/media/pablo/280F8D1D0A5B8545/TFG_files/strummerTFIU.github.io/ def tiles_to_render(c1, c2, zoom): """ Return the tiles needed to render the scene and the limit coordinates. Normal test >>> tiles_to_render((700000, 4600000), (702000, 4602000), 8) ((130, 122), (131, 123), (699452.3984375, 4600406.1953125), (704062.296875, 4595796.296875)) Over limit test >>> tiles_to_render((700000, 4600000), (2702000, 4602000), 8) ('null', 'null', 'null', 'null') """ # Calculate tiles tile1_x, tile1_y = calculate_tile.calculate_tile(c1[0], c1[1], zoom) tile2_x, tile2_y = calculate_tile.calculate_tile(c2[0], c2[1], zoom) if tile1_x == 'null' or tile1_y == 'null' or tile2_x == 'null' or tile2_y == 'null': return ('null', 'null', 'null', 'null') w_tiles = tile2_x - tile1_x + 1 h_tiles = tile2_y - tile1_y + 1 if w_tiles != h_tiles: tile_max = max(w_tiles, h_tiles) w_tiles = tile_max h_tiles = tile_max tile2_x = tile1_x + w_tiles - 1 tile2_y = tile1_y + h_tiles - 1 # Calculate new coordinates c_nw = calculate_tile.calculate_coordinates(tile1_x, tile1_y, zoom) c_se = calculate_tile.calculate_coordinates(tile2_x + 1, tile2_y + 1, zoom) if c_nw == 'null' or c_se == 'null': return('null', 'null', 'null', 'null') return ((tile1_x, tile1_y), (tile2_x, tile2_y), c_nw, c_se) def dir_view_tile(tile, dir_view, zoom): """ Transform north tile number to specified POV tile number. >>> dir_view_tile((222, 111), 'E', 9) (111, 289) """ if dir_view == 'S': return calculate_tile.tile_to_south(tile, zoom) elif dir_view == 'E': return calculate_tile.tile_to_east(tile, zoom) elif dir_view == 'W': return calculate_tile.tile_to_west(tile, zoom) else: return tile def render(tile1, tile2, c1, c2, dir_view, angle, result, lidar): """ Generate the POV-Ray file which represents the scene passed as parameters. """ # Apply a offset off_c1_0 = 0 off_c1_1 = 0 off_c2_0 = 0 off_c2_1 = 0 if dir_view == 'N': off_c1_1 = 500 off_c2_1 = -2500 elif dir_view == 'S': off_c1_1 = 2500 off_c2_1 = -500 elif dir_view == 'E': off_c1_0 = -2500 off_c2_0 = 500 else: off_c1_0 = -500 off_c2_0 = 2500 # Find mdts and ortophotos and write heighfields info mdt_list = load_info.find_mdt(c1[0] + off_c1_0, c1[1] + off_c1_1, c2[0] + off_c2_0, c2[1] + off_c2_1) if len(mdt_list) == 0: return ('null', 'null', 'null') orto_list = load_info.find_orto(c1[0] + off_c1_0, c1[1] + off_c1_1, c2[0] + off_c2_0, c2[1] + off_c2_1, mdt_list) areas_list = load_info.find_a_interest(c1[0], c1[1], c2[0], c2[1]) lidar_list = load_info.find_lidar(areas_list, c1, c2) if len(orto_list) <= 10: if lidar == True: spheres = read_lidar.generate_spheres(lidar_list, areas_list, c1, c2) else: spheres = "" # Create camera, heighfields and spheres cam = cameraUtils.calculate_camera(c1, c2, angle, dir_view) heightfields = povray_writer.write_heightfields(mdt_list, orto_list) # Generate a string which contain the heightfields to pov file. # Generate povray file tile_size_x = 256 tile_size_y = int(256 / cam.get_aspectRatio() + 0.5) povray_writer.write_povray_file(cam, heightfields, spheres) w_tiles = tile2[0] - tile1[0] + 1 h_tiles = tile2[1] - tile1[1] + 1 w = tile_size_x * w_tiles h = tile_size_y * h_tiles # Rendering using new povray file print("Rendering " + result) os.system('povray +Irender.pov +O' + result + ' -D +A -GA +W' + str(w) + ' +H' + str(h) + '> /dev/null 2>&1') return (tile_size_x, tile_size_y, w_tiles) else: print("Error: The zone to render must be smaller (orto_list > 10). Try with other coordinates.") def tessellation(result, tile1, tile_size_x, tile_size_y, w_tiles, zoom, dir_view, angle, dist_tile): """ Create tiles for a few zooms and give them a number. """ if dist_tile[-1] != "/": dist_tile += "/" print("Creating tiles from [" + str(tile1[0]) + ", " + str(tile1[1]) + "]...") os.system("mkdir " + dist_tile + angle + '> /dev/null 2>&1') os.system("mkdir " + dist_tile + angle + "/" + dir_view + '> /dev/null 2>&1') os.system("mkdir " + dist_tile + angle + "/" + dir_view + "/" + str(zoom) + '> /dev/null 2>&1') os.system("convert " + result + " -crop " + str(tile_size_x) + "x" + str(tile_size_y) + " -set filename:tile \"%[fx:page.x/" + str(tile_size_x) + "+" + str(tile1[0]) + "]_%[fx:page.y/" + str(tile_size_y) + "+" + str(tile1[1]) + "]\" +adjoin \"" + dist_tile + angle + "/" + dir_view + "/" + str(zoom) + "/map_%[filename:tile].png\"") count = int(zoom) - 8 aux_zoom = int(zoom) - 1 aux1_x = int(tile1[0] / 2) aux1_y = int(tile1[1] / 2) while(count > 0): # -1 zoom lvl w_tiles = w_tiles / 2 w = tile_size_x * w_tiles h = tile_size_y * w_tiles os.system("mkdir " + dist_tile + angle + "/" + dir_view + "/" + str(aux_zoom) + '> /dev/null 2>&1') os.system("convert " + result + " -resize " + str(w) + "x" + str(h) + " " + result) os.system("convert " + result + " -crop " + str(tile_size_x) + "x" + str(tile_size_y) + " -set filename:tile \"%[fx:page.x/" + str(tile_size_x) + "+" + str(aux1_x) + "]_%[fx:page.y/" + str(tile_size_y) + "+" + str(aux1_y) + "]\" +adjoin \"" + dist_tile + angle + "/" + dir_view + "/" + str(aux_zoom) + "/map_%[filename:tile].png\"") count -= 1 aux_zoom -= 1 aux1_x = aux1_x / 2 aux1_y = aux1_y / 2 os.system("rm " + result) def main(): # Arguments parser = argparse.ArgumentParser(description="First version of Pablo's TFG.") parser.add_argument("mdt_directory", help="Directory of the MDT files to transform.") parser.add_argument("png_directory", help="PNG files transformed destination directory.") parser.add_argument("orto_directory", help="Ortophotos files directory.") parser.add_argument("lidar_directory", help="Directory of LAZ files.") parser.add_argument("dir_view", help="Direction of the view (only N, S, E or W).") parser.add_argument("angle", help="Angle of the view (only 45 or 30).") parser.add_argument("zoom", help="Zoom.") parser.add_argument("--max_height", dest="max_height", type=int, default=2200, metavar="MAX_HEIGHT", help="Max height transforming MDT files. Higher heights will be considered MAX_HEIGHT " + "(default value = 2200)") parser.add_argument("--renderAll", help="Render all available zones.", action="store_true") parser.add_argument("--renderTiles", help="Render especified tiles.", action="store_true") parser.add_argument("--transform", help="Transform all mdt in mdt_directory from .asc to .png.", action="store_true") parser.add_argument("--load", help="Load info from mdts, pnoas and lidar files.", action="store_true") parser.add_argument("--tile", help="Tessellation result/s.", action="store_true") parser.add_argument("--deletePov", help="Delete povray file.", action="store_true") parser.add_argument("--lidar", help="Activate LiDAR render.", action="store_true") args = parser.parse_args() if (args.angle == "30") or (args.angle == "45"): if (args.dir_view == 'S') or (args.dir_view == 'N') or (args.dir_view == 'W') or (args.dir_view == 'E'): t_exe_i = time() if args.mdt_directory[-1] != "/": args.mdt_directory += "/" if args.png_directory[-1] != "/": args.png_directory += "/" if args.orto_directory[-1] != "/": args.orto_directory += "/" if args.lidar_directory[-1] != "/": args.lidar_directory += "/" # Transform to heightfield if args.transform: os.system('mkdir ' + args.png_directory) for base, dirs, files in os.walk(args.mdt_directory): for asc_file in files: heightfield.transform_file_to_heightfield(args.mdt_directory + asc_file, args.png_directory + asc_file[:-4] + ".png", args.max_height) # Load info data to file if args.load: load_info.load_info(args.png_directory, args.orto_directory, args.lidar_directory) if args.tile: dist_tile = input("Introduce tiles destination directory: ") else: os.system("mkdir result_dir") dist_tile = "./result_dir/" minX = 560000 maxX = 789000 minY = 4410000 maxY = 4745000 if args.renderTiles: tile_init = input("Introduce tile number (x y) for upper left vertex: ").split() tile_init = (int(tile_init[0]), int(tile_init[1])) if tile_init[0] >= 0 and tile_init[0] <= (2 ** int(args.zoom) - 1) and tile_init[1] >= 0 or tile_init[1] <= (2 ** int(args.zoom) - 1): tile_end = input("Introduce tile number (x,y) for bottom right vertex: ").split() tile_end = (int(tile_end[0]), int(tile_end[1])) if tile_end[0] >= 0 and tile_end[0] <= (2 ** int(args.zoom) - 1) and tile_end[1] >= 0 or tile_end[1] <= (2 ** int(args.zoom) - 1 and tile_end[0] >= tile_init[0] and tile_end[1] >= tile_init[1]): result = "./result.png" if args.dir_view == 'S': tile_1 = calculate_tile.tile_from_south(tile_end, int(args.zoom)) tile_2 = calculate_tile.tile_from_south(tile_init, int(args.zoom)) elif args.dir_view == 'E': tile_1_aux = calculate_tile.tile_from_east(tile_init, int(args.zoom)) tile_2_aux = calculate_tile.tile_from_east(tile_end, int(args.zoom)) tile_1 = (tile_2_aux[0], tile_1_aux[1]) tile_2 = (tile_1_aux[0], tile_2_aux[1]) elif args.dir_view == 'W': tile_1_aux = calculate_tile.tile_from_west(tile_init, int(args.zoom)) tile_2_aux = calculate_tile.tile_from_west(tile_end, int(args.zoom)) tile_1 = (tile_1_aux[0], tile_2_aux[1]) tile_2 = (tile_2_aux[0], tile_1_aux[1]) else: tile_1 = tile_init tile_2 = tile_end tile_1 = [x - 1 if x % 2 != 0 else x for x in tile_1] tile_2 = [x - 1 if x % 2 == 0 else x for x in tile_2] tile1_x = tile_1[0] tile1_y = tile_1[1] tile2_x = tile_2[0] tile2_y = tile_2[1] n_tiles = 2 ** (int(args.zoom) - 8) print([tile1_x, tile1_y]) print([tile2_x, tile2_y]) while tile1_x % n_tiles != 0: tile1_x -= 1 while tile1_y % n_tiles != 0: tile1_y -= 1 while tile2_x % n_tiles == 0 and n_tiles != 1: tile2_x -= 1 while tile2_x % n_tiles == 0 and n_tiles != 1: tile2_x -= 1 print([tile1_x, tile1_y]) print([tile2_x, tile2_y]) x_number = 0 while(tile1_x + x_number <= tile2_x): aux1_x = tile1_x + x_number y_number = 0 while(tile1_y + y_number <= tile2_y): aux1_y = tile1_y + y_number c_nw = calculate_tile.calculate_coordinates(aux1_x, aux1_y, int(args.zoom)) c_se = calculate_tile.calculate_coordinates(aux1_x + n_tiles, aux1_y + n_tiles, int(args.zoom)) if c_nw == 'null' or c_se == 'null': print("ERROR: Wrong tiles.") else: print("Rendering from tile [" + str(aux1_x) + ", " + str(aux1_y) + "] to [" + str(aux1_x + n_tiles - 1) + "," + str(aux1_y + n_tiles -1) + "] with coordinates from [" + str(c_nw[0]) + ", " + str(c_nw[1]) + "] to [" + str(c_se[0]) + ", " + str(c_se[1]) + "].") tile_size_x, tile_size_y, w_tiles = render((aux1_x, aux1_y), (aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), c_nw, c_se, args.dir_view, args.angle, result, args.lidar) if tile_size_x == 'null' and tile_size_y == 'null': print("ERROR: Nothing to render. Continuing...") else: if args.dir_view == 'S': tile_init = calculate_tile.tile_to_south((aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), int(args.zoom)) elif args.dir_view == 'E': tile1_aux = calculate_tile.tile_to_east((aux1_x, aux1_y), int(args.zoom)) tile2_aux = calculate_tile.tile_to_east((aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), int(args.zoom)) tile_init = (tile1_aux[0], tile2_aux[1]) elif args.dir_view == 'W': tile1_aux = calculate_tile.tile_to_west((aux1_x, aux1_y), int(args.zoom)) tile2_aux = calculate_tile.tile_to_west((aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), int(args.zoom)) tile_init = (tile2_aux[0], tile1_aux[1]) else: tile_init = (aux1_x, aux1_y) tessellation(result, tile_init, tile_size_x, tile_size_y, w_tiles, args.zoom, args.dir_view, args.angle, dist_tile) y_number += n_tiles x_number += n_tiles else: print("ERROR: Introduce tiles correctly.") else: print("ERROR: Introduce tiles correctly.") else: if args.renderAll: if int(args.zoom) > 7 and int(args.zoom) < 13: iTile_z5_x = 9 iTile_z5_y = 8 fTile_z5_x = 26 fTile_z5_y = 25 tile1_x = iTile_z5_x * (2 ** (int(args.zoom) - 5)) tile1_y = iTile_z5_y * (2 ** (int(args.zoom) - 5)) tile2_x = fTile_z5_x * (2 ** (int(args.zoom) - 5)) tile2_y = fTile_z5_y * (2 ** (int(args.zoom) - 5)) #tile1_x = 672 result = "./result.png" n_tiles = 2 ** (int(args.zoom) - 8) x_number = 0 while(tile1_x + x_number <= tile2_x): aux1_x = tile1_x + x_number y_number = 0 while(tile1_y + y_number <= tile2_y): aux1_y = tile1_y + y_number c_nw = calculate_tile.calculate_coordinates(aux1_x, aux1_y, int(args.zoom)) c_se = calculate_tile.calculate_coordinates(aux1_x + n_tiles, aux1_y + n_tiles, int(args.zoom)) if c_nw == 'null' or c_se == 'null': print("ERROR: Wrong tiles.") else: print("Rendering from tile [" + str(aux1_x) + ", " + str(aux1_y) + "] to [" + str(aux1_x + n_tiles - 1) + "," + str(aux1_y + n_tiles -1) + "] with coordinates from [" + str(c_nw[0]) + ", " + str(c_nw[1]) + "] to [" + str(c_se[0]) + ", " + str(c_se[1]) + "].") tile_size_x, tile_size_y, w_tiles = render((aux1_x, aux1_y), (aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), c_nw, c_se, args.dir_view, args.angle, result, args.lidar) if tile_size_x == 'null' and tile_size_y == 'null': print("ERROR: Nothing to render. Continuing...") else: if args.dir_view == 'S': tile_init = calculate_tile.tile_to_south((aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), int(args.zoom)) elif args.dir_view == 'E': tile1_aux = calculate_tile.tile_to_east((aux1_x, aux1_y), int(args.zoom)) tile2_aux = calculate_tile.tile_to_east((aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), int(args.zoom)) tile_init = (tile1_aux[0], tile2_aux[1]) elif args.dir_view == 'W': tile1_aux = calculate_tile.tile_to_west((aux1_x, aux1_y), int(args.zoom)) tile2_aux = calculate_tile.tile_to_west((aux1_x + n_tiles - 1, aux1_y + n_tiles - 1), int(args.zoom)) tile_init = (tile2_aux[0], tile1_aux[1]) else: tile_init = (aux1_x, aux1_y) tessellation(result, tile_init, tile_size_x, tile_size_y, w_tiles, args.zoom, args.dir_view, args.angle, dist_tile) y_number += n_tiles x_number += n_tiles else: print("ERROR: zoom for --renderAll option must be 7 < z < 13.") else: # Ask for coordinates coordinates = input("Introduce UTM X and Y coordinates, separated by a blank space and respecting the values min " + "and max for the coordinates, for upper left vertex (" + str(minX) + " <= X1 <= " + str(maxX) + " " + str(minY) + " <= Y1 <= " + str(maxY) + "): ") coordinates1 = coordinates.split() if (len(coordinates1) == 2 and float(coordinates1[0]) >= minX and float(coordinates1[0]) <= maxX and float(coordinates1[1]) >= minY and float(coordinates1[1]) <= maxY): coordinates = input("Introduce UTM X and Y coordinates, separated by a blank space and respecting the values min " + "and max for the coordinates, for bottom right vertex (" + coordinates1[0] + " <= X2 <= " + str(maxX) + " " + str(minY) + " <= Y2 <= " + coordinates1[1] + "): ") coordinates2 = coordinates.split() if (len(coordinates2) == 2 and float(coordinates2[0]) >= minX and float(coordinates2[0]) <= maxX and float(coordinates2[1]) >= minY and float(coordinates2[1]) <= maxY and coordinates1[0] < coordinates2[0] and coordinates1[1] > coordinates2[1]): # Offset to adjust later during join process coordinates1[0] = float(coordinates1[0]) coordinates2[0] = float(coordinates2[0]) coordinates1[1] = float(coordinates1[1]) coordinates2[1] = float(coordinates2[1]) result = "./result.png" tile1, tile2, c_nw, c_se = tiles_to_render(coordinates1, coordinates2, int(args.zoom)) if tile_1 == 'null': print("ERROR: Introduce UTM coordinates correctly.") else: if args.dir_view == 'S': tile_init = calculate_tile.tile_to_south(tile2, int(args.zoom)) elif args.dir_view == 'E': tile1_aux = calculate_tile.tile_to_east(tile1, int(args.zoom)) tile2_aux = calculate_tile.tile_to_east(tile2, int(args.zoom)) tile_init = (tile1_aux[0], tile2_aux[1]) elif args.dir_view == 'W': tile1_aux = calculate_tile.tile_to_west(tile1, int(args.zoom)) tile2_aux = calculate_tile.tile_to_west(tile2, int(args.zoom)) tile_init = (tile2_aux[0], tile1_aux[1]) else: tile_init = tile1 tile_size_x, tile_size_y, w_tiles = render(tile1, tile2, c_nw, c_se, args.dir_view, args.angle, result, args.lidar) tessellation(result, tile_init, tile_size_x, tile_size_y, w_tiles, args.zoom, args.dir_view, args.angle, dist_tile) print("DONE!") else: print("ERROR: Introduce UTM coordinates correctly.") else: print("ERROR: Introduce UTM coordinates correctly.") if args.deletePov: os.system('rm render.pov') t_exe_f = time() t_exe = t_exe_f - t_exe_i print("Execution time: " + str(int(t_exe / 60)) + "min " + str(int(t_exe % 60)) + "s.") else: print("ERROR: dir_view must be N, S, W or E.") else: print("ERROR: angle must be 45 or 30.") if __name__ == "__main__": main()
strummerTFIU/TFG-IsometricMaps
src/main_program.py
main_program.py
py
18,332
python
en
code
0
github-code
6
34889766883
class Pitcher: """Class containing starting pitcher data""" def __init__(self, pitcher_block=None, home_team=None): self.pitcher_block = pitcher_block self.home_team = home_team self.player_name = None self.player_id = None self.player_handedness = None self.pitcher_df = None def set_pitcher_block(self, pitcher_block): self.pitcher_block = pitcher_block def set_home_team(self, home_team: bool): self.home_team = home_team def set_player_name(self): self.player_name = self.pitcher_block.select(".starting-lineups__pitcher-name")[ int(self.home_team) ].a.get_text() def set_player_id(self): self.player_id = ( self.pitcher_block.select(".starting-lineups__pitcher-name")[int(self.home_team)] .a["href"] .split("-")[2] ) def set_player_handedness(self): self.player_handedness = ( self.pitcher_block.select(".starting-lineups__pitcher-pitch-hand")[int(self.home_team)] .get_text() .strip() ) def set_batter_df(self): if self.player_position != "P": batter_data = { "mlb_pitcher_name": self.player_name, "mlb_pitcher_id": self.player_id, "team_tricode": "", "game_time": "", "handedness": self.player_handedness, "park": "", "home_team": "", "mlb_opp_team_tricode": "", } self.batter_df = pd.Series(batter_data).to_frame() def set_vars(self): self.set_player_name() self.set_player_id() self.set_player_handedness()
xzachx/mlb_data_scraper
mlb_data_scraper/pitcher.py
pitcher.py
py
1,752
python
en
code
0
github-code
6
25003790859
import math from typing import Tuple import tensorflow as tf class ParityDataset(tf.keras.utils.Sequence): def __init__(self, n_samples: int, n_elems: int = 64, batch_size: int = 128): """ Parameters ---------- n_samples : int Number of samples. n_elems : int, optional Number of elements in the input vector. The default is 64. batch_size : int, optional Batch size. The default is 128. """ self.n_samples = n_samples self.n_elems = n_elems self.batch_size = batch_size def __len__(self) -> int: return int(math.floor(self.n_samples) / self.batch_size) @tf.function def __batch_generation(self) -> Tuple[tf.Tensor, tf.Tensor]: X = [] Y = [] for _ in range(self.batch_size): n_non_zero = tf.random.uniform((), 1, self.n_elems + 1, tf.int32) x = tf.random.uniform((n_non_zero,), 0, 2, tf.int32) * 2 - 1 x = tf.concat( [x, tf.zeros((self.n_elems - n_non_zero), dtype=tf.int32)], axis=0 ) x = tf.random.shuffle(x) y = tf.math.reduce_sum(tf.cast(tf.equal(x, 1), tf.int32)) % 2 X.append(x) Y.append(y) X = tf.cast(tf.stack(X), tf.keras.backend.floatx()) Y = tf.cast(tf.stack(Y), tf.keras.backend.floatx()) return X, Y def __getitem__(self, index: int) -> Tuple[tf.Tensor, tf.Tensor]: batch_X, batch_Y = self.__batch_generation() return batch_X, batch_Y
EMalagoli92/PonderNet-TensorFlow
pondernet_tensorflow/dataset/parity_dataset.py
parity_dataset.py
py
1,598
python
en
code
1
github-code
6
75092480826
from flint import acb class DirichletSeries: """ Class represents Dirichlet series with given coefficients. Can be called with various s values multiple times. """ def __init__(self, coefs): """ :param coefs: tuple of N series coefficients """ self.coefs = coefs self.coefs_num = len(coefs) def __call__(self, s) -> acb: """ Return the sum of this series given parameter s. :param s: complex number :return: complex value - sum of series in point s """ value = acb('0') for i in range(self.coefs_num): value += self.coefs[i] * acb(i + 1).pow(-s) return value
Deimos-Apollon/Dzeta-project
src/dirichlet_series/dirichlet_series_class.py
dirichlet_series_class.py
py
703
python
en
code
1
github-code
6
2888676781
import numpy as np from matplotlib import pyplot as plt if __name__ == '__main__': ch, time, date = np.genfromtxt("events220302_1d.dat", unpack=True, dtype=(int, float, 'datetime64[ms]')) mask1 = ch==1 mask2 = ch==2 time1 = time[mask1] time2 = time[mask2] date1 = date[mask1] date2 = date[mask2] limit = np.datetime64("2022-03-02T13") fig, ax = plt.subplots(2,1, sharex=True) ax[0].errorbar(date1[date1 < limit], time1[date1 < limit], fmt='.k', markersize=0.6) ax[1].errorbar(date2[date2 < limit], time2[date2 < limit], fmt='.k', markersize=0.6) ax[0].set_ylabel("FPGA timestamp [s]") ax[1].set_ylabel("FPGA timestamp [s]") ax[0].set_title("CHANNEL 1") ax[1].set_title("CHANNEL 2") ax[1].set_xlabel("Local time [dd hh:mm]") plt.show()
brinus/Sciami_lab4
UNIX_vs_FPGA.py
UNIX_vs_FPGA.py
py
841
python
en
code
0
github-code
6
30513150384
import json from .bx24.requests import Bitrix24 from .report.report_to_html import Report from .params import TYPE_MERGE_FIELD from.field_contacts_merge.data_update import FieldsContactsUpdate from api_v1.models import Email, Contacts, Companies, Deals bx24 = Bitrix24() # добавление контакта в БД def contacts_create(res_from_bx, lock): for _, contacts in res_from_bx.items(): for contact in contacts: emails = [] if "EMAIL" in contact: emails = contact.pop("EMAIL") # замена пустых значений на None contact = replace_empty_value_with_none__in_dict(contact) # сохранение контакта lock.acquire() contact_item, created = Contacts.objects.update_or_create(**contact) lock.release() if emails: lock.acquire() email_create(emails, contact_item) lock.release() # добавление EMAIL в БД def email_create(emails, contact): for email in emails: # uniq_value = f"{email['VALUE']}{contact_name}" if email['VALUE'] and contact_name else None Email.objects.update_or_create(VALUE=email['VALUE'], VALUE_TYPE=email['VALUE_TYPE'], contacts=contact) # добавление компаний в БД def companies_create(res_from_bx, lock): for _, companies in res_from_bx.items(): for company in companies: # сохранение компании lock.acquire() company_item, created = Companies.objects.update_or_create(**company) lock.release() # добавление сделок в БД def deals_create(res_from_bx, lock): for _, deals in res_from_bx.items(): for deal in deals: # сохранение сделок lock.acquire() deal_item, created = Deals.objects.update_or_create(**deal) lock.release() # связывание записей таблиц контактов и компаний в БД def company_bind_contact(res_from_bx, lock): for id_company, contacts in res_from_bx.items(): for contact in contacts: # сохранение компании lock.acquire() company_obj = Companies.objects.filter(ID=id_company).first() contact_obj = Contacts.objects.filter(ID=contact['CONTACT_ID']).first() if company_obj and contact_obj: res = company_obj.contacts.add(contact_obj) lock.release() # связывание записей таблиц контактов и сделок в БД def deal_bind_contact(res_from_bx, lock): for id_deal, contacts in res_from_bx.items(): for contact in contacts: lock.acquire() deal_obj = Deals.objects.filter(ID=id_deal).first() contact_obj = Contacts.objects.filter(ID=contact['CONTACT_ID']).first() if deal_obj and contact_obj: res = deal_obj.contacts.add(contact_obj) lock.release() # замена пустых значений в словаре на None def replace_empty_value_with_none__in_dict(d): for key in d: if not d[key]: d[key] = None return d # объединение контактов с переданным списком идентификаторов def merge_contacts(ids, lock, report): fields = get_fields_contact() # список контактов (возвращает словарь {<id_контакта>: <данные>}) contacts = get_data_contacts(ids) if not contacts: return # объединение значений полей contacts_update = FieldsContactsUpdate(bx24, contacts) # ID последнего созданного контакта id_contact_last = contacts_update.get_id_max_date() # ID компании для добавления в последний созданный контакт companies = contacts_update.get_field_company_non_empty() # ID сделок для добавления в последний созданный контакт deals = contacts_update.get_field_deal_non_empty() data = {} for field, field_data in fields.items(): if field_data['isReadOnly'] is True: continue elif field in TYPE_MERGE_FIELD['max_length']: data[field] = contacts_update.get_field_rule_max_length(field) elif field in TYPE_MERGE_FIELD['concat_asc_date']: data[field] = contacts_update.get_field_rule_concat_asc_date(field) elif field in TYPE_MERGE_FIELD['concat_desc_date']: data[field] = contacts_update.get_field_rule_concat_desc_date(field) elif field_data['type'] == 'crm_multifield': field_content = contacts_update.get_field_type_crm_multifield(field) if field_content: data[field] = field_content elif field_data['type'] == 'file': field_content = contacts_update.get_field_type_file(field) if field_content: data[field] = field_content else: field_content = contacts_update.get_field_non_empty(field) if field_content: data[field] = field_content # обновление контакта res_update_contact = update_data_contacts(id_contact_last, data) # добавление компаний к контакту res_add_companies = add_companies_to_contact(id_contact_last, companies) # добавление сделок к контакту res_add_deals = add_deals_to_contact(id_contact_last, deals) if res_update_contact and res_add_companies and res_add_deals: deals_obj = get_dealid_by_contacts(id_contact_last, ids, deals) # добавление данных в отчет lock.acquire() report.add_fields(fields) report.add(contacts, id_contact_last, data, companies, deals_obj) lock.release() del_companies_to_contact(ids, id_contact_last) def get_dealid_by_contacts(id_contact_last, ids_contacts, deals): deals_obj = {} deals_contact_last = Deals.objects.filter(contacts=id_contact_last).values_list("ID", flat=True) deals_obj["summary"] = deals + list(deals_contact_last) for id_contact in ids_contacts: deals_contact = Deals.objects.filter(contacts=id_contact).values_list("ID", flat=True) deals_obj[str(id_contact)] = list(deals_contact) return deals_obj # удаление контактов def del_companies_to_contact(ids_contacts, id_contact_last): for id_contact in ids_contacts: if int(id_contact) in [id_contact_last, int(id_contact_last)]: continue res_del = bx24.call( 'crm.contact.delete', {'id': id_contact} ) # добавляет компании к контакту def add_companies_to_contact(id_contact, companies): print('companies = ', companies) if not companies: return True response = bx24.call( 'crm.contact.company.items.set', { 'id': id_contact, 'items': [{'COMPANY_ID': company_id} for company_id in companies] } ) if 'result' not in response: return return response['result'] # добавляет контакта к сделке def add_deals_to_contact(id_contact, deals): if not deals: return True batch = {} for deal_id in deals: batch[deal_id] = f'crm.deal.contact.add?id={deal_id}&fields[CONTACT_ID]={id_contact}' response = bx24.batch(batch) if response and 'result' in response and 'result' in response['result']: return response['result']['result'] # обновляет данные контакта def update_data_contacts(id_contact, data): response = bx24.call( 'crm.contact.update', { 'id': id_contact, 'fields': { **data, }, 'params': {"REGISTER_SONET_EVENT": "Y"} } ) if 'result' not in response: return return response['result'] # запрашивает данные контактов по id def get_data_contacts(ids): cmd = {} for id_contact in ids: cmd[id_contact] = f'crm.contact.get?id={id_contact}' response = bx24.batch(cmd) if 'result' not in response or 'result' not in response['result']: return return response['result']['result'] # запрашивает и возвращает список всех полей контакта def get_fields_contact(): response_fields = bx24.call('crm.contact.fields', {}) if 'result' not in response_fields: return return response_fields['result'] # привязывает к сделке компанию полученную из первого связанного контакта - в Битрикс24 def add_company_in_deal(id_deal): response = bx24.batch( { 'deal': f'crm.deal.get?id={id_deal}', 'contacts': f'crm.deal.contact.items.get?id={id_deal}' } ) if 'result' not in response or 'result' not in response['result']: # print('Ответ от биртикс не содержит поле "result"') return 400, 'Ответ от биртикс не содержит поле "result"' if 'deal' not in response['result']['result']: # print('Ответ от биртикс не содержит поле "deal"') return 400, 'Ответ от биртикс не содержит поле "deal"' if 'contacts' not in response['result']['result']: # print('Ответ от биртикс не содержит поле "contacts"') return 400, 'Ответ от биртикс не содержит поле "contacts"' deal = response['result']['result']['deal'] contacts = response['result']['result']['contacts'] company_id = deal.get('COMPANY_ID', None) if (company_id and company_id != '0') or not contacts: # print('В сделке присутствует связанная компания или отсутствуют контакты') return 200, 'В сделке присутствует связанная компания или отсутствуют контакты' contact_id = contacts[0].get('CONTACT_ID') # Получение данных контакта по его id response_contact = bx24.call( 'crm.contact.get', {'id': contact_id} ) if 'result' not in response_contact: # print('Ответ на запрос "crm.contact.get" не содержит поле "result"') return 400, 'Ответ на запрос "crm.contact.get" не содержит поле "result"' contact = response_contact['result'] company_id = contact.get('COMPANY_ID', None) if not company_id: return 200, 'К контакту не привязана компания' response_deal_update = bx24.call( 'crm.deal.update', { 'id': id_deal, 'fields': { 'COMPANY_ID': company_id } } ) return 200, 'Ok' # def copy_timeline_and_activity(): # pass # "crm.timeline.comment.list", # { # filter: { # "ENTITY_ID": 10, # "ENTITY_TYPE": "deal", # }, # select: ["ID", "COMMENT ", "FILES"] # }, # # "crm.timeline.comment.add", # { # fields: # { # "ENTITY_ID": 10, # "ENTITY_TYPE": "deal", # "COMMENT": "New comment was added" # } # }, # "crm.activity.list", # { # order: {"ID": "DESC"}, # filter: # { # "OWNER_TYPE_ID": 3, # "OWNER_ID": 102 # }, # select: ["*", "COMMUNICATIONS"] # }, # "crm.activity.list", # { # order: {"ID": "DESC"}, # filter: # { # "OWNER_TYPE_ID": 3, # "OWNER_ID": 102 # }, # select: ["*", "COMMUNICATIONS"] # }, # OWNER_TYPE_ID - это # {"ID": 1, "NAME": "Лид"}, # {"ID": 2, "NAME": "Сделка"}, # {"ID": 3, "NAME": "Контакт"}, # {"ID": 4, "NAME": "Компания"}, # {"ID": 7, "NAME": "Предложение"}, # {"ID": 5, "NAME": "Счёт"}, # {"ID": 8, "NAME": "Реквизиты"} # OWNER_ID - это соответсnвенно ID сущности. # crm.activity.binding.add({activityId: number, entityTypeId: number, entityId: number)
Oleg-Sl/Quorum_merge_contacts
merge_contacts/api_v1/service/handler.py
handler.py
py
12,833
python
ru
code
0
github-code
6
21299192914
"""Module to evaluate full pipeline on the validation set. python evaluate.py """ #!/usr/bin/env python # coding: utf-8 import os import sys import glob import numpy as np import image_preprocessing import cnn import bayesian_network import json import pandas as pd # class mapping classes = {"Positive": 0, "Neutral": 1, "Negative": 2, "None": 3} # function to classify an image def classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list): with open('val_labels.json', mode='r', encoding='utf-8') as f: image_labels_dict = json.load(f) labels = image_labels_dict[image_name] # print("RadhaKrishna") # print(labels) # preprocess the image image_preprocessing.preprocess(image_folder_path, image_name) # get mean cnn predictions for the faces from the image cnn_label, cnn_dict, faces_detected = cnn.predict_image(cnn_model, image_folder_path + "Aligned/", image_name) # get the bayesian and bayesian + cnn predictions for the image bayesian_label, bayesian_cnn_label, emotion_dict, emotion_cnn_dict = bayesian_network.inference(bayesian_model, labels_list, labels, cnn_label) # print("Faces detected: " + str(faces_detected)) # print("Real Label: " + str(real_label)) # print("CNN Label: " + str(cnn_label)) # print("Bayesian Label: " + str(bayesian_label)) # print("Bayesian + CNN Label: " + str(bayesian_cnn_label)) return classes[real_label], classes[str(cnn_label)], classes[str(bayesian_label)], classes[str(bayesian_cnn_label)], faces_detected # load the cnn model cnn_model = cnn.load_model() # load the bayesian model bayesian_model, labels_list = bayesian_network.load_model() # function to evaluate the pipeline on a given directory def evaluate(image_folder_path, real_label): # print("RadhaKrishna") # get the count of total number of files in the directory _, _, files = next(os.walk(image_folder_path)) file_count = len(files)-1 # list to store the predictions predictions = [] # set count = 1 i = 1 # for each image in the directory for file in sorted(glob.glob(image_folder_path + "*.jpg")): # extract the image name image_name = (file.split('/'))[-1] print("Image: " + image_name) print(str(i) + "/" + str(file_count)) # create a dict to store the image name and predictions prediction = {"Image": image_name} prediction["Actual"], prediction["CNN"], prediction["Bayesian"], prediction["Bayesian + CNN"], prediction["Faces Detected"] = classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list) # append the dict to the list of predictions predictions.append(prediction) # increase the count i+=1 # return the predictions list return predictions # class list class_list = ['Positive', 'Neutral', 'Negative'] predictions_list = [] # for each class in the class list for emotion_class in class_list: # evaluate all the images in that folder predictions = evaluate('input/val/' + emotion_class + '/', emotion_class) # add the predictions to the predictions list predictions_list += predictions # create a pandas dataframe from the predictions list df = pd.DataFrame(predictions_list) # store the dataframe to a file df.to_pickle('predictions')
samanyougarg/Group-Emotion-Recognition
evaluate.py
evaluate.py
py
3,390
python
en
code
43
github-code
6
23202639490
import struct import socket import sys import ipaddress import threading import os class client: """ Responsible for keeping track of the clients information """ def __init__(self, ip_address, ll_address): """ Initialises all variables needed Constructor: __init___(self, ip_address, ll_address) """ self.ip_address = ip_address self.ip_no_mask = ip_address.split("/")[0] self.ll_address = ll_address self.gateway = None self.arpTable = {} #dictionary self.MTU = 1500 self.id_counter = 0 def get_idCounter(self): """ get_idCounter(None) -> (Int) Returns the current packet counter """ return self.id_counter def set_idCounter(self, value): """ set_idCounter(value) sets the packet id counter """ self.id_counter = value def get_ip(self): """ get_ip(None) -> (string) Gets the ip address without CIDR suffix """ return self.ip_no_mask def get_MTU(self): """ get_MTU(None) -> (Int) Returns the Maximum Transmission Unit """ return self.MTU def set_MTU(self, value): """ set_MTU(None) Sets the Maximum Transmission Unit for the network """ self.MTU = value def get_llAddr(self): """ get_llAddr(None) -> (Int) """ return self.ll_address #adds to the arp table def addToArpTable(self, ip_address, ll_address): """ addToArpTable(ip_address, linklayer_address) Adds to ARP Table """ self.arpTable[ip_address] = ll_address def viewArpTable(self): """ viewArpTable(None) Prints all entries within ARP table """ for key, value in self.arpTable.items(): print("Key: ", key, " Value: ", value) def setGateway(self, ipaddress): """ setGateway(ipaddress) Sets the Gateway IP Address """ self.gateway = ipaddress def getGateway(self): """ getGateway(None) -> (String) Returns the Gateway IP address : None if not set """ return self.gateway def hasGateway(self): """ hasGateway(None) -> (Boolean) Checks to see if Gateway has been set Returns True if set else False """ if self.gateway == None: return False else: return True def hasMapping(self, ipaddr): """ hasMapping(ipaddr) -> (Boolean) Checks to see if an IP address has a mapping to a Link Layer Address Returns True if set else False """ if ipaddr in self.arpTable: if self.arpTable.get(ipaddr) != None: return True return False def get_link_layer_addr(self, ipaddress): """ get_link_layer_addr(ipaddress) -> (Int) Returns Link layer address mapped to an IP address """ return self.arpTable.get(ipaddress) def hasArpEntry(self, ipaddress): """ hasArpEntry(ipaddress) -> (Boolean) Checks to see if an IP address has a mapping to a Link Layer Address Returns True if set else False Prints to console if 'No Arp entry found' if ARP table doesnt have a mapping """ if self.arpTable.get(ipaddress) != None: return True else: print("No ARP entry found") return False def get_subnetId(self, CIDR_ipaddress): """ get_subnetId(CIDR_ipaddress) -> (IPv4Interface) Returns Subnet ID """ return ipaddress.ip_interface(CIDR_ipaddress) def same_subnet(self, other_ip_address): """ same_subnet(other_ip_address) -> (Boolean) Compares two IP addresses to see if they are within the same subnet """ return ipaddress.IPv4Address(other_ip_address) >= ipaddress.ip_network(self.ip_address,strict=False).network_address and \ ipaddress.IPv4Address(other_ip_address) <= ipaddress.ip_network(self.ip_address,strict=False).broadcast_address class IPv4_packet: """ Responsible for dealing with the packet creation when sending packets to other clients """ def __init__(self, length, fid, flags, offset, src_ip, dst_ip, payload): """ Initialises all header information Constructor: ___init___(self, length, fid, flags, offset, src_ip, dst_ip, payload) """ self.version = 0b0100 self.header_length = 0b0101 self.type_of_service = 0b00000000 self.total_length = length self.identifier = fid self.flags = flags self.fragment_offset = offset self.time_to_live = 0b00100000 self.protocol = 0b00000000 self.header_checksum = int(format(0b00, '016b')) self.src_address = src_ip self.dest_address = dst_ip self.payload = payload.encode() self.version_hLength_tos = ((self.version << 4) + self.header_length) << 8 + self.type_of_service self.flags_fragoffset = (self.flags << 13) + self.fragment_offset self.ttl_prot = ((self.time_to_live << 8) + self.protocol) self.ip_header = struct.pack('! 6H', self.version_hLength_tos, self.total_length, self.identifier,\ self.flags_fragoffset, self.ttl_prot, self.header_checksum) #print(type(self.ip_header), " - ", type(self.src_address)," - ", type(self.dest_address)," - ", type(self.payload)) self.packet = self.ip_header+self.src_address + self.dest_address + self.payload def getPacket(self): """ getPacket(None) -> (Packet) Returns the packet object """ return self.packet def __bytes__(self): """ __bytes__(None) -> (Bytes) Returns a bytes representation of the packet object """ return self.packet def return_args(string): """ return_args(string) -> <List> separates the arguments and returns them as a list """ args = string.split(' ',maxsplit=2) if len(args) == 3: if args[0]=="msg": return (args[0].strip(),args[1].strip(),args[2],None) #msg ip data elif args[0] == "arp" and args[1] == "set": ip, port = args[2].split(" ") return(args[0].strip(),args[1].strip(), ip.strip(), port.strip()) else: return (args[0].strip(),args[1].strip(), args[2].strip(),None) elif len(args) == 2: return (args[0].strip(" "),args[1].strip(" "),None,None) return (None,None,None,None) def main(): """ Main Function """ arp = client(str(sys.argv[1]),str(sys.argv[2])) s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.settimeout(2) port = int(arp.get_llAddr()) s.bind(('LOCALHOST',port)) global terminate terminate = False; thr = threading.Thread(target=receive_data, args=(s,)) thr.start() while True: #sys.stdout.flush() arg1 = arg2 = arg3 = arg4 = "-1" sys.stdout.write("> ") command = input() str(command) arg1,arg2,arg3,arg4 = return_args(command) if str(command) == "gw set " + str(arg3): arp.setGateway(str(arg3)) elif str(command) == "gw get": gway = arp.getGateway() if gway == None: print("None") else: print(gway) elif str(command) == "arp set "+str(arg3)+" "+str(arg4): arp.addToArpTable(str(arg3), int(arg4)) elif str(command) == "arp get "+ str(arg3): ll_add = arp.get_link_layer_addr(str(arg3)) if ll_add != None: print(ll_add) else: print("None") elif str(command) == 'msg '+ str(arg2) +' '+str(arg3): #see if ip is in same gateway dstn_ip = str(arg2) dstn_port = -1 message = str(arg3) if arp.same_subnet(dstn_ip): if arp.hasMapping(dstn_ip): dstn_port = arp.get_link_layer_addr(dstn_ip) send_msg(s,arp,dstn_ip,dstn_port,message[1:-1]) else: print("No ARP entry found") else: #send to gateway #Check if gateway is set if arp.hasGateway(): dstn_port = arp.get_link_layer_addr(arp.getGateway()) send_msg(s,arp,dstn_ip,dstn_port,message[1:-1]) else: print("No gateway found") elif str(command) == "mtu set "+ str(arg3): arp.set_MTU(int(arg3)) elif str(command) == "mtu get": print(arp.get_MTU()) elif str(command) == "exit": terminate = True break sys.stdout.flush() #send message def send_msg(s,arp_details, dest_ip,dest_port, msg): """ send_msg(socket, arp_details, dest_ip, dest_port, msg) Responsible for sending a packet to another client """ source_ip = socket.inet_aton(arp_details.get_ip()) destination_ip = socket.inet_aton(dest_ip) payload_size = arp_details.get_MTU() - 20 #MTU - IP Header if len(msg) <= payload_size: t = IPv4_packet(len(msg) + 20, arp_details.get_idCounter(), 0, 0, source_ip, destination_ip, msg) ipv4_packet = bytes(t) s.sendto(ipv4_packet,('LOCALHOST',dest_port)) else: payload, payload_size = payloads_creator(arp_details, msg) offsets = calc_frag_offsets(payload_size, len(msg)) for i in range(len(payload)): #amount of offsets if i != len(payload) - 1: #length, fid, flags, offset, src_ip, dst_ip, payload packet = IPv4_packet(len(payload[i]) + 20, arp_details.get_idCounter(), 0b001, offsets[i], source_ip, destination_ip, payload[i]) bytes_packet = bytes(packet) s.sendto(bytes_packet,('LOCALHOST',dest_port)) #print("i != offsets length: ", i) else: #print("i == offsets length: ", i) packet = IPv4_packet(len(payload[i]) + 20, arp_details.get_idCounter(), 0b000, offsets[i], source_ip, destination_ip, payload[i]) bytes_packet = bytes(packet) s.sendto(bytes_packet,('LOCALHOST',dest_port)) arp_details.set_idCounter(arp_details.get_idCounter() + 1) return def payloads_creator(arp_details, message): """ payloads_creator(arp_details, message) Handles the creation of the payloads in respect to the Maximum Transmission Unit of the clients network """ payloads = [] count = 0 mtu = arp_details.get_MTU() payload_size = int((mtu - 20)/8) * 8 #divisible by 8 #print("payload size: ",payload_size) #print(len(message)) while count <= len(message): payloads.append(message[count:count + payload_size]) count = count + payload_size #print(len(payloads)) #print("payloads length: ",len(payloads)) #print(payloads) return payloads, payload_size def calc_frag_offsets(max_payload_size, msg_size): """ calc_frag_offests(max_payload_size, msg_size) -> <List> Creates a list of packet offsets for packet fragmentation """ #returns a list of offsets offsets = [] if (msg_size) % (max_payload_size) == 0: # -20 because its only the data offset_amount = (msg_size / max_payload_size) for i in range(int(offset_amount - 1)): offset = (i*(max_payload_size)/8) offsets.append(int(offset)) else: offset_amount = round((msg_size / (max_payload_size)+1)) for i in range(offset_amount): offset = (i*(max_payload_size)/8) offsets.append(int(offset)) return offsets def receive_data(s): """ receive_data(s) Responsible for handling the receiving of data received from other clients """ #print(threading.current_thread().name) packets = {} while True: try: data, addr = s.recvfrom(1500) packets, evaluate_flag = add_packet_to_dict(data, packets) if evaluate_flag == 1: evaluate_packets(packets) packets = {} except OSError as e: if terminate == True: break def add_packet_to_dict(data, packets_dict): """ add_packet_to_dict(data, packets_dict) -> (Dict, Int) Creates a dictionary with all packets / packet fragments received """ eval_flag = 0 pLength, pid, flags_offset, protocol, source_ip = struct.unpack('! 2x 3H x B 2x 4s 4x ', data[:20]) offset = flags_offset & 0x1FFF flags = flags_offset >> 13 protocol = format(int(protocol), '#04x') source_ip = socket.inet_ntoa(bytes(source_ip)) key = source_ip+" " +str(pid) if key in packets_dict: packets_dict[key].append(data) if flags == 0: eval_flag = 1 else: packets_dict[key] = [data] if flags == 0: eval_flag = 1 return packets_dict, eval_flag def evaluate_packets(p_dict): """ evaluate_packets(p_dict) evaluates the packets within the dictionary and outputs the correct message depending on protocol """ for key, value in p_dict.items(): #loop through dict items source_ip = -1 protocol = -1 msg_list =[] msg = "" for v in value: # loop through each value at key pLength, pid, flags_offset, protocol, source_ip = struct.unpack('! 2x 3H x B 2x 4s 4x ', v[:20]) offset = flags_offset & 0x1FFF flags = flags_offset >> 13 source_ip = socket.inet_ntoa(bytes(source_ip)) msg = v[20:].decode() protocol = format(int(protocol), '#04x') msg_list.append(msg) msg = msg.join(msg_list) if protocol == "0x00": print('\b\bMessage received from {}: "{}"'.format(source_ip, msg)) else: print("\b\bMessage received from {} with protocol {}".format(source_ip, protocol)) print("> ", end='', flush=True) return if __name__ == '__main__': main()
TSampey/COMS3200-Assign3
assign3.py
assign3.py
py
12,355
python
en
code
0
github-code
6
73529467707
import os.path from sklearn import metrics from torch import nn, optim # noinspection PyUnresolvedReferences from tests.pytest_helpers.data import dataloaders, image # noinspection PyUnresolvedReferences from tests.pytest_helpers.nn import sample_model def test_fit(sample_model, dataloaders): try: model = sample_model( nn.CrossEntropyLoss, optim.Adam, [(metrics.accuracy_score, {})] ) model.fit(dataloaders) except: assert False def test_prediction(sample_model, image): _image = image('../sampleData/images/cat1.jpeg') model = sample_model(nn.CrossEntropyLoss, optim.Adam, [(metrics.recall_score, {'average': 'macro'})]) predictions = model.predict(_image) assert list(predictions.size()) == [1, 2] def test_save(sample_model, dataloaders): model = sample_model( nn.CrossEntropyLoss, optim.Adam, [(metrics.accuracy_score, {})] ) model.fit(dataloaders) assert os.path.exists('./bestModel.pkl.tar')
default-303/easyTorch
tests/testUtils/test_trainer.py
test_trainer.py
py
1,039
python
en
code
2
github-code
6
27513864943
import copy from timsconvert import * def run_tims_converter(args): # Load in input data. logging.info(get_timestamp() + ':' + 'Loading input data...') if not args['input'].endswith('.d'): input_files = dot_d_detection(args['input']) elif args['input'].endswith('.d'): input_files = [args['input']] # Convert each sample for infile in input_files: # Reset args. run_args = copy.deepcopy(args) # Set input file. run_args['infile'] = infile # Set output directory to default if not specified. if run_args['outdir'] == '': run_args['outdir'] = os.path.split(infile)[0] # Make output filename the default filename if not specified. if run_args['outfile'] == '': run_args['outfile'] = os.path.splitext(os.path.split(infile)[-1])[0] + '.mzML' logging.info(get_timestamp() + ':' + 'Reading file: ' + infile) schema = schema_detection(infile) # Log arguments. for key, value in run_args.items(): logging.info(get_timestamp() + ':' + str(key) + ': ' + str(value)) if args['experiment'] == 'lc-tims-ms': logging.info(get_timestamp() + ':' + 'Processing LC-TIMS-MS data...') data = bruker_to_df(infile) write_lcms_mzml(data, infile, run_args['outdir'], run_args['outfile'], run_args['centroid'], run_args['ms2_only'], run_args['ms1_groupby'], run_args['encoding'], run_args['ms2_keep_n_most_abundant_peaks']) elif args['experiment'] == 'maldi-dd': # Initialize Bruker DLL. # Only initialize if converting MALDI data. LCMS data currently uses AlphaTims. logging.info(get_timestamp() + ':' + 'Initialize Bruker .dll file...') bruker_dll = init_bruker_dll(BRUKER_DLL_FILE_NAME) logging.info(get_timestamp() + ':' + '.tsf file detected...') logging.info(get_timestamp() + ':' + 'Processing MALDI dried droplet data...') if run_args['maldi_output_file'] == 'individual': if run_args['maldi_plate_map'] == '': logging.info(get_timestamp() + ':' + 'Plate map is required for MALDI dried droplet data in ' 'multiple file mode...') logging.info(get_timestamp() + ':' + 'Exiting...') sys.exit(1) elif run_args['maldi_output_file'] == '': logging.info(get_timestamp() + ':' + 'MALDI output file mode must be specified ("individual" or ' '"combined")...') logging.info(get_timestamp() + ':' + 'Exiting...') sys.exit(1) data = tsf_data(infile, bruker_dll) write_maldi_dd_mzml(data, run_args['infile'], run_args['outdir'], run_args['outfile'], run_args['ms2_only'], run_args['ms1_groupby'], run_args['centroid'], run_args['encoding'], run_args['maldi_output_file'], run_args['maldi_plate_map']) elif args['experiment'] == 'maldi-tims-dd': # Initialize Bruker DLL. # Only initialize if converting MALDI data. LCMS data currently uses AlphaTims. logging.info(get_timestamp() + ':' + 'Initialize Bruker .dll file...') bruker_dll = init_bruker_dll(BRUKER_DLL_FILE_NAME) logging.info(get_timestamp() + ':' + '.tdf file detected...') logging.info(get_timestamp() + ':' + 'Processing MALDI-TIMS dried droplet data...') if run_args['maldi_output_file'] == 'individual': if run_args['maldi_plate_map'] == '': logging.info( get_timestamp() + ':' + 'Plate map is required for MALDI dried droplet data in ' 'multiple file mode...') logging.info(get_timestamp() + ':' + 'Exiting...') sys.exit(1) elif run_args['maldi_output_file'] == '': logging.info( get_timestamp() + ':' + 'MALDI output file mode must be specified ("individual" or ' '"combined")...') logging.info(get_timestamp() + ':' + 'Exiting...') sys.exit(1) data = tdf_data(infile, bruker_dll) write_maldi_dd_mzml(data, run_args['infile'], run_args['outdir'], run_args['outfile'], run_args['ms2_only'], run_args['ms1_groupby'], run_args['centroid'], run_args['encoding'], run_args['maldi_output_file'], run_args['maldi_plate_map']) elif args['experiment'] == 'maldi-ims': # Initialize Bruker DLL. # Only initialize if converting MALDI data. LCMS data currently uses AlphaTims. logging.info(get_timestamp() + ':' + 'Initialize Bruker .dll file...') bruker_dll = init_bruker_dll(BRUKER_DLL_FILE_NAME) logging.info(get_timestamp() + ':' + '.tsf file detected...') logging.info(get_timestamp() + ':' + 'Processing MALDI imaging mass spectrometry data...') data = tsf_data(infile, bruker_dll) write_maldi_ims_imzml(data, run_args['outdir'], run_args['outfile'], 'frame', run_args['encoding'], run_args['imzml_mode'], run_args['centroid']) elif args['experiment'] == 'maldi-tims-ims': # Initialize Bruker DLL. # Only initialize if converting MALDI data. LCMS data currently uses AlphaTims. logging.info(get_timestamp() + ':' + 'Initialize Bruker .dll file...') bruker_dll = init_bruker_dll(BRUKER_DLL_FILE_NAME) logging.info(get_timestamp() + ':' + '.tdf file detected...') logging.info(get_timestamp() + ':' + 'Processing MALDI-TIMS imaging mass spectrometry data...') data = tdf_data(infile, bruker_dll) write_maldi_ims_imzml(data, run_args['outdir'], run_args['outfile'], 'frame', run_args['encoding'], run_args['imzml_mode'], run_args['centroid']) run_args.clear() if __name__ == '__main__': # Parse arguments. arguments = get_args() # Hardcode centroid to True. Current code does not support profile. arguments['centroid'] = True # Check arguments. args_check(arguments) arguments['version'] = '0.1.0' # Initialize logger. logname = 'log_' + get_timestamp() + '.log' if arguments['outdir'] == '': if os.path.isdir(arguments['input']): logfile = os.path.join(arguments['input'], logname) else: logfile = os.path.split(arguments['input'])[0] logfile = os.path.join(logfile, logname) else: logfile = os.path.join(arguments['outdir'], logname) for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=logfile, level=logging.INFO) if arguments['verbose']: logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) logger = logging.getLogger(__name__) # Run. run_tims_converter(arguments)
orsburn/timsconvert
bin/run.py
run.py
py
7,351
python
en
code
null
github-code
6
74750230586
import os import pathlib import shutil from datetime import datetime from pathlib import Path from my_logger_object import create_logger_object def copy_component(component_kb_list, component_name, source_folder, target_folder): # source_folder = r"C:\CodeRepos\GetOfficeKBs\Folder_Office2016_KBs\x64_msp" # target_folder = r"C:\CodeRepos\GetOfficeKBs\Folder_Latest_KB_Numbers\x64_msp" # component_name = "" if not os.path.exists(target_folder): os.makedirs(target_folder) for root, dirs, files in os.walk(source_folder): for file_name in files: component_name_in_file = file_name.split("-")[0].strip() if component_name == component_name_in_file: soure_file_path = root + os.sep + file_name target_file_path = target_folder + os.sep + file_name kb_number_in_file = file_name.split("_")[1].strip() if (component_name + "," + kb_number_in_file) not in component_kb_list: component_kb_list.append(component_name + "," + kb_number_in_file) if os.path.isfile(soure_file_path): try: shutil.copy(soure_file_path, target_file_path) except: logger.debug("exception") current_script_folder = str(pathlib.Path(__file__).parent.absolute()) + os.sep FILENAME = current_script_folder + "log_" + os.path.basename(__file__) + ".log" logger = create_logger_object(FILENAME) logger.info("The script starts running.") logger.info("The script folder is " + current_script_folder) component_list = [] try: f = open(current_script_folder + "output_msp_file_name_for_specified_kb.txt", "r") for line in f: component_str = line.split(",")[-1].strip() if component_str in component_list: logger.info("Duplicate component number: " + component_str) else: component_list.append(component_str) except Exception as ex: logger.info("Encounter exception when loading expected kb list." + str(ex)) finally: f.close() logger.info(len(component_list)) component_list.sort() component_list_file = current_script_folder + "output_non_dup_component.txt" with open(component_list_file, "w") as f: for item in component_list: f.write("%s\n" % item) time_now = formatted_date_time = datetime.now().strftime("%Y%m%d%H%M%S") source_folder_x32 = r"C:\CodeRepos\GetOfficeKBs\Folder_Office2016_KBs\x86_msp" target_folder_x32 = ( "C:\CodeRepos\GetOfficeKBs\Folder_Latest_KB_Numbers\\" + time_now + "_x86_msp" ) source_folder_x64 = r"C:\CodeRepos\GetOfficeKBs\Folder_Office2016_KBs\x64_msp" target_folder_x64 = ( "C:\CodeRepos\GetOfficeKBs\Folder_Latest_KB_Numbers\\" + time_now + "_x64_msp" ) component_kb_list = [] for item in component_list: logger.debug(item) copy_component(component_kb_list, item, source_folder_x32, target_folder_x32) copy_component(component_kb_list, item, source_folder_x64, target_folder_x64) component_kb_list.sort() component_kb_list_file = current_script_folder + "output_latest_kb_for_component.txt" with open(component_kb_list_file, "w") as f: for item in component_kb_list: f.write("%s\n" % item) logger.info("Please check output file: " + component_kb_list_file) logger.info(f"Please check output folder: {target_folder_x32}") logger.info(f"Please check output folder: {target_folder_x64}") logger.info("The script ends.")
FullStackEngN/GetOfficeKBs
get_msp_file_for_specified_msp_list.py
get_msp_file_for_specified_msp_list.py
py
3,495
python
en
code
1
github-code
6
23196116357
import pyspark import networkx as nx import pandas as pd from pyspark.sql.types import ( LongType, StringType, FloatType, IntegerType, DoubleType, StructType, StructField, ) import pyspark.sql.functions as f from pyspark.sql.functions import pandas_udf, PandasUDFType from networkx.algorithms.centrality import ( eigenvector_centrality, harmonic_centrality, ) def eigencentrality( sparkdf, src="src", dst="dst", cluster_id_colname="cluster_id", ): """ Args: sparkdf: imput edgelist Spark DataFrame src: src column name dst: dst column name distance_colname: distance column name cluster_id_colname: Graphframes-created connected components created cluster_id Returns: node_id: eigen_centrality: eigenvector centrality of cluster cluster_id cluster_id: cluster_id corresponding to the node_id Eigenvector Centrality is an algorithm that measures the transitive influence or connectivity of nodes. Eigenvector Centrality was proposed by Phillip Bonacich, in his 1986 paper Power and Centrality: A Family of Measures. It was the first of the centrality measures that considered the transitive importance of a node in a graph, rather than only considering its direct importance. Relationships to high-scoring nodes contribute more to the score of a node than connections to low-scoring nodes. A high score means that a node is connected to other nodes that have high scores. example input spark dataframe |src|dst|weight|cluster_id|distance| |---|---|------|----------|--------| | f| d| 0.67| 0| 0.329| | f| g| 0.34| 0| 0.659| | b| c| 0.56|8589934592| 0.439| | g| h| 0.99| 0| 0.010| | a| b| 0.4|8589934592| 0.6| | h| i| 0.5| 0| 0.5| | h| j| 0.8| 0| 0.199| | d| e| 0.84| 0| 0.160| | e| f| 0.65| 0| 0.35| example output spark dataframe |node_id| eigen_centrality|cluster_id| |-------|-------------------|----------| | b | 0.707106690085642|8589934592| | c | 0.5000000644180599|8589934592| | a | 0.5000000644180599|8589934592| | f | 0.5746147732828122| 0| | d | 0.4584903903420785| 0| | g |0.37778352393858183| 0| | h |0.27663243805676946| 0| | i |0.12277029263709134| 0| | j |0.12277029263709134| 0| | e | 0.4584903903420785| 0| """ ecschema = StructType( [ StructField("node_id", StringType()), StructField("eigen_centrality", DoubleType()), StructField(cluster_id_colname, LongType()), ] ) psrc = src pdst = dst @pandas_udf(ecschema, PandasUDFType.GROUPED_MAP) def eigenc(pdf: pd.DataFrame) -> pd.DataFrame: nxGraph = nx.Graph() nxGraph = nx.from_pandas_edgelist(pdf, psrc, pdst) ec = eigenvector_centrality(nxGraph, tol=1e-03) out_df = ( pd.DataFrame.from_dict(ec, orient="index", columns=["eigen_centrality"]) .reset_index() .rename( columns={"index": "node_id", "eigen_centrality": "eigen_centrality"} ) ) cluster_id = pdf[cluster_id_colname][0] out_df[cluster_id_colname] = cluster_id return out_df out = sparkdf.groupby(cluster_id_colname).apply(eigenc) return out def harmoniccentrality(sparkdf, src="src", dst="dst", cluster_id_colname="cluster_id"): """ Args: sparkdf: imput edgelist Spark DataFrame src: src column name dst: dst column name distance_colname: distance column name cluster_id_colname: Graphframes-created connected components created cluster_id Returns: node_id: harmonic_centrality: Harmonic centrality of cluster cluster_id cluster_id: cluster_id corresponding to the node_id Harmonic centrality (also known as valued centrality) is a variant of closeness centrality, that was invented to solve the problem the original formula had when dealing with unconnected graphs. Harmonic centrality was proposed by Marchiori and Latora while trying to come up with a sensible notion of "average shortest path". They suggested a different way of calculating the average distance to that used in the Closeness Centrality algorithm. Rather than summing the distances of a node to all other nodes, the harmonic centrality algorithm sums the inverse of those distances. This enables it deal with infinite values. input spark dataframe: |src|dst|weight|cluster_id|distance| |---|---|------|----------|--------| | f| d| 0.67| 0| 0.329| | f| g| 0.34| 0| 0.659| | b| c| 0.56|8589934592| 0.439| | g| h| 0.99| 0| 0.010| | a| b| 0.4|8589934592| 0.6| | h| i| 0.5| 0| 0.5| | h| j| 0.8| 0| 0.199| | d| e| 0.84| 0| 0.160| | e| f| 0.65| 0| 0.35| output spark dataframe: |node_id|harmonic_centrality|cluster_id| |-------|-------------------|----------| | b | 2.0|8589934592| | c | 1.5|8589934592| | a | 1.5|8589934592| | f | 4.166666666666667| 0| | d | 3.3333333333333335| 0| | g | 4.0| 0| | h | 4.166666666666667| 0| | i | 2.8333333333333335| 0| | j | 2.8333333333333335| 0| | e | 3.3333333333333335| 0| """ hcschema = StructType( [ StructField("node_id", StringType()), StructField("harmonic_centrality", DoubleType()), StructField(cluster_id_colname, LongType()), ] ) psrc = src pdst = dst @pandas_udf(hcschema, PandasUDFType.GROUPED_MAP) def harmc(pdf: pd.DataFrame) -> pd.DataFrame: nxGraph = nx.Graph() nxGraph = nx.from_pandas_edgelist(pdf, psrc, pdst) hc = harmonic_centrality(nxGraph) out_df = ( pd.DataFrame.from_dict(hc, orient="index", columns=["harmonic_centrality"]) .reset_index() .rename( columns={ "index": "node_id", "harmonic_centrality": "harmonic_centrality", } ) ) cluster_id = pdf[cluster_id_colname][0] out_df[cluster_id_colname] = cluster_id return out_df out = sparkdf.groupby(cluster_id_colname).apply(harmc) return out
moj-analytical-services/splink_graph
splink_graph/node_metrics.py
node_metrics.py
py
6,877
python
en
code
6
github-code
6
13162464659
grammar = [ ("S", ["P"]), # S -> P ("P", ["(", "P", ")"]), # P -> ( P ) ("P", []), # P -> ] tokens = ["(", "(", ")", ")"] grammar2 = [ ("P", ["S"]), ("S", ["S", "+", "M"]), ("S", ["M"]), ("M", ["M", "*", "T"]), ("M", ["T"]), ("T", ["1"]), ("T", ["2"]), ("T", ["3"]), ("T", ["4"]), ] tokens2 = ["2", "+", "2", "*", "4"] def addtochart(theset, index, elt): if elt in theset[index]: return False else: theset[index] = theset[index] + [elt] return True def closure(grammar, i, x, ab, cd, j): next_states = [(cd[0], [], rule[1], i) for rule in grammar if cd != [] and rule[0] == cd[0]] return next_states # 当没有return 或return后面没有返回值时 函数将自动返回None def shift(tokens, i, x, ab, cd, j): if cd != [] and tokens[i] == cd[0]: return x, ab + [cd[0]], cd[1:], j def reductions(chart, i, x, ab, cd, j): return [(state[0], state[1] + [x], state[2][1:], state[3]) for state in chart[j] if cd == [] and state[2] != [] and state[2][0] == x] def parse(tokens, grammar): tokens = tokens + ["end_of_input_marker"] # because sometimes we need to look ahead, for example, for shifting # to see if the input token matches what's there, and we don't want to # walk off the end of a list. chart = {} start_rule = grammar[0] for i in range(len(tokens) + 1): chart[i] = [] # state encode : x -> ab . cd from j, ("x", ab, cd, j) start_state = (start_rule[0], [], start_rule[1], 0) chart[0] = [start_state] # consider tokens in the input, and keep using closure, shifting, reduction # until there aren't any more changes. for i in range(len(tokens)): while True: changes = False for state in chart[i]: # State === x -> a b . c d , j x = state[0] ab = state[1] cd = state[2] j = state[3] # Current State: x -> a b . c d, j # Option 1 : For each grammar rule c -> p q r # (where the c's match # make a next state c -> . p q r , i # We're about to start parsing a "c", but "c" may be something # like "exp" with its own production rules. We'll bring those # production rules in. next_states = closure(grammar, i, x, ab, cd, j) for next_state in next_states: changes = addtochart(chart, i, next_state) or changes # Current State : x -> a b . c d , j # Option 2: If tokens[i] == c, # make a next state x -> a b c . d , j # in chart[i+1] # We're looking for to parse token c next and the current # token is exactly c ! Aren't we lucky! So we can parse over # it and move to j + 1. next_state = shift(tokens, i, x, ab, cd, j) if next_state is not None: any_changes = addtochart(chart, i+1, next_state) or any_changes # Current State : x -> a b . c d , j # Option 3 : If cd is [], the state is just x -> a b . , j # for each p -> q . x r, l in chart[j] # make a next state p -> q x . r, l # in chart[i] # We just finished parsing an "x" with this token, # but that may have been a sub-step (like matching "exp -> 2" # in "2+3"). We should update the higher-level rules as well. next_states = reductions(chart, i, x, ab, cd, j) for next_state in next_states: changes = addtochart(chart, i, next_state) or changes # repeating those three procedures until no more changes if not changes: break for i in range(len(tokens)): # print out the chart print("== chart " + str(i)) for state in chart[i]: x = state[0] ab = state[1] cd = state[2] j = state[3] print(" " + x + " ->", end="") for sym in ab: print(" " + sym, end="") print(" .", end="") for sym in cd: print(" " + sym, end="") print(" from " + str(j)) accepting_state = (start_rule[0], start_rule[1], [], 0) return accepting_state in chart[len(tokens) - 1] result = parse(tokens, grammar) print(result) print(parse(tokens2, grammar2))
panmengguan/Udacity_CS262
Unit4/Parser_Earley.py
Parser_Earley.py
py
4,707
python
en
code
0
github-code
6
1065053262
'''Calculus Chapter of Hacking Math Class''' from turtle import * from algebra import setup, graph from geometry2 import line,perpendicularLine, intersection speed(0) def f(x): return -0.2*x**5 + 1.4*x**4+x**3-5*x**2-1.5*x + 3 def derivative(a): '''Returns the derivative of a function at point x = a''' dx = 0.00001 #the tiny "run" dy = f(a + dx) - f(a) return dy/dx #print("Derivative of f(x) at 3 is ",derivative(3)) def newton(guess): '''Approximates the roots of a function using the derivative''' for i in range(20): new_guess = guess - f(guess)/derivative(guess) guess = new_guess print(new_guess) #newton(1.5) def newtonTurtle(guess): setup() graph(f) pu() goto(guess,0) pd() for i in range(5): goto(guess,f(guess)) d=derivative(guess) line2 = line(d,(guess,f(guess))) goto(intersection(line2[0],line2[1],0,0)) new_guess = guess - f(guess)/derivative(guess) guess = new_guess #newtonTurtle(1.5) def nint(f,startingx, endingx, number_of_rectangles): '''returns the area under a function''' sum_of_areas = 0 #running sum of the areas #width of every rectangle: width = (endingx - startingx) / number_of_rectangles for i in range(number_of_rectangles): height = f(startingx + i*width) area_rect = width * height sum_of_areas += area_rect return sum_of_areas def trapezoid(startingx, endingx,numberofTrapezoids): '''Returns the area under a function using Trapezoidal Method''' width = (float(endingx) - float(startingx))/ numberofTrapezoids area = 0 for i in range(numberofTrapezoids): #backslash simply continues the code on the next line: area1 = 0.5*width*(f(startingx + i*width)+\ f((startingx + i*width)+width)) area += area1 print(area) def trap(f,startingx,width): '''draws one trapezoid''' pu() #pen up speed(0) #fastest speed setpos(startingx,0) #go to the starting x-coordinate setheading(90) #face straight up color("black","red") pd() #put your pen down begin_fill() #start filling in the trapezoid height = f(xcor()) #height of the trapezoid fd(height) #go to the top of the trapezoid setpos(xcor()+width,f(xcor()+width)) # down the "slant" sety(0) #straight down to the x-axis setheading(0) #face right end_fill() #stop filling the trapezoid def trapezoid2(f,startingx, endingx,numberofTrapezoids): '''Calculates area under function f between startingx and endingx using trapezoids and graphs it''' speed(0) setup() graph(f) pu() width = (float(endingx) - float(startingx))/ numberofTrapezoids setpos(startingx,0) pd() area = 0 for i in range(numberofTrapezoids): trap(f,xcor(),width) #draw a trapezoid area1 = 0.5*width*(f(startingx + i*width)+f((startingx + \ i*width)+width)) area += area1 #update the running sum of the area print(area) trapezoid2(f,-1,2,10) #Runge-Kutta Method for solving DEs def deriv(x,y): return x**2 + y**2 def rk4(x0,y0,h): #order 4 while x0 <= 1.0: print(x0,y0) # I changed the l's to m's m1 = h*deriv(x0,y0) m2 = h*deriv(x0 + h/2, y0 + m1/2) m3 = h*deriv(x0 + h/2, y0 + m2/2) m4 = h*deriv(x0 + h, y0 + m3) #These are the values that are fed back into the function: y0 = y0 + (1/6)*(m1 + 2*m2 + 2*m3 + m4) x0 = x0 + h exitonclick()
hackingmath/BayPIGgies-Talk
calculus.py
calculus.py
py
3,663
python
en
code
0
github-code
6
663159079
#! /usr/bin/env python import pandas as pd if __name__ == '__main__': dataset = 'D3' path = '/home/milan/workspace/strands_ws/src/battery_scheduler/data/csv_files/' eb_f = path+'taskbased_overall_'+dataset+'_models.csv' tb_f = path+'timebased_overall_'+dataset+'_models.csv' c_f = path+'combined_overall_'+dataset+'_models.csv' eb = pd.read_csv(eb_f) tb = pd.read_csv(tb_f) rew = [] u40 = [] time = [] for i in range(6): rew.append(tb['rewards'][i]) time.append(tb['active_time'][i]) u40.append(tb['under40'][i]) rew.append(eb['rewards'][i]) time.append(eb['active_time'][i]) u40.append(eb['under40'][i]) for i in range(6,9): rew.append(eb['rewards'][i]) time.append(eb['active_time'][i]) u40.append(eb['under40'][i]) df = pd.DataFrame(data=zip(rew, time, u40), columns =['rewards', 'active_time', 'under40']) df.to_csv(c_f, header=True, index=False)
milanmt/Battery-Scheduler
src/analysis/combined_statistics.py
combined_statistics.py
py
991
python
en
code
0
github-code
6
5479668707
import argparse import os, numpy as np import os.path as osp from multiprocessing import Process import h5py import json os.environ["D4RL_SUPPRESS_IMPORT_ERROR"] = "1" os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" from maniskill2_learn.env import make_gym_env, ReplayMemory, import_env from maniskill2_learn.utils.data import DictArray, GDict, f64_to_f32 from maniskill2_learn.utils.file import merge_h5_trajectory from maniskill2_learn.utils.meta import get_total_memory, flush_print from maniskill2_learn.utils.math import split_num # from maniskill2_learn.utils.data import compress_f64 def auto_fix_wrong_name(traj): if isinstance(traj, GDict): traj = traj.memory for key in traj: if key in ["action", "reward", "done", "env_level", "next_env_level", "next_env_state", "env_state"]: traj[key + "s"] = traj[key] del traj[key] return traj tmp_folder_in_docker = "/tmp" def render(env): viewer = env.render() def convert_state_representation(keys, args, worker_id, main_process_id): input_dict = { "env_name": args.env_name, "unwrapped": False, "obs_mode": args.obs_mode, "obs_frame": args.obs_frame, "reward_mode": args.reward_mode, "control_mode": args.control_mode, "n_points": args.n_points, "n_goal_points": args.n_goal_points, "camera_cfgs": {}, "render_mode": 'human', } if args.enable_seg: input_dict["camera_cfgs"]["add_segmentation"] = True with open(args.json_name, "r") as f: json_file = json.load(f) env_kwargs = json_file["env_info"]["env_kwargs"] for k in input_dict: env_kwargs.pop(k, None) # update the environment creation args with the extra info from the json file, e.g., cabinet id & target link in OpenCabinetDrawer / Door input_dict.update(env_kwargs) env = make_gym_env(**input_dict) assert hasattr(env, "get_obs"), f"env {env} does not contain get_obs" reset_kwargs = {} for d in json_file["episodes"]: episode_id = d["episode_id"] r_kwargs = d["reset_kwargs"] reset_kwargs[episode_id] = r_kwargs cnt = 0 output_file = osp.join(tmp_folder_in_docker, f"{worker_id}.h5") output_h5 = h5py.File(output_file, "w") input_h5 = h5py.File(args.traj_name, "r") for j, key in enumerate(keys): cur_episode_num = eval(key.split('_')[-1]) trajectory = GDict.from_hdf5(input_h5[key]) trajectory = auto_fix_wrong_name(trajectory) print("Reset kwargs for the current trajectory:", reset_kwargs[cur_episode_num]) env.reset(**reset_kwargs[cur_episode_num]) all_env_states_present = ('env_states' in trajectory.keys()) if all_env_states_present: length = trajectory['env_states'].shape[0] - 1 else: assert 'env_init_state' in trajectory.keys() length = trajectory['actions'].shape[0] assert length == trajectory['actions'].shape[0] == trajectory['success'].shape[0] replay = ReplayMemory(length) next_obs = None for i in range(length): if all_env_states_present: if next_obs is None: env_state = trajectory["env_states"][i] env.set_state(env_state) obs = env.get_obs() else: obs = next_obs _, reward, _, _, _ = env.step(trajectory["actions"][i]) # ^ We cannot directly get rewards when setting env_state. # Instead, reward is only accurate after env.step(); otherwise e.g. grasp criterion will be inaccurate due to zero impulse next_env_state = trajectory["env_states"][i + 1] env.set_state(next_env_state) next_obs = env.get_obs() else: if i == 0: env.set_state(trajectory["env_init_state"]) if next_obs is None: obs = env.get_obs() else: obs = next_obs next_obs, reward, _, _, _ = env.step(trajectory["actions"][i]) item_i = { "obs": obs, "actions": trajectory["actions"][i], "dones": trajectory["success"][i], "episode_dones": False if i < length - 1 else True, "rewards": reward, } if args.with_next: item_i["next_obs"] = next_obs item_i = GDict(item_i).f64_to_f32() replay.push(item_i) if args.render: if args.debug: print("reward", reward) render(env) if worker_id == 0: flush_print(f"Convert Trajectory: completed {cnt + 1} / {len(keys)}; this trajectory has length {length}") group = output_h5.create_group(f"traj_{cnt}") cnt += 1 replay.to_hdf5(group, with_traj_index=False) output_h5.close() input_h5.close() flush_print(f"Finish using {output_file}") def parse_args(): parser = argparse.ArgumentParser(description="Generate visual observations of trajectories given environment states.") # Configurations parser.add_argument("--num-procs", default=1, type=int, help="Number of parallel processes to run") parser.add_argument("--env-name", required=True, help="Environment name, e.g. PickCube-v0") parser.add_argument("--traj-name", required=True, help="Input trajectory path, e.g. pickcube_pd_joint_delta_pos.h5") parser.add_argument("--json-name", required=True, type=str, help=""" Input json path, e.g. pickcube_pd_joint_delta_pos.json | **Json file that contains reset_kwargs is required for properly rendering demonstrations. This is because for environments using more than one assets, asset is different upon each environment reset, and asset info is only contained in the json file, not in the trajectory file. For environments that use a single asset with randomized dimensions, the seed info controls the specific dimension used in a certain trajectory, and this info is only contained in the json file.** """) parser.add_argument("--output-name", required=True, help="Output trajectory path, e.g. pickcube_pd_joint_delta_pos_pcd.h5") parser.add_argument("--max-num-traj", default=-1, type=int, help="Maximum number of trajectories to convert from input file") parser.add_argument("--obs-mode", default="pointcloud", type=str, help="Observation mode") parser.add_argument("--control-mode", default="pd_joint_delta_pos", type=str, help="Environment control Mode") parser.add_argument("--reward-mode", default="dense", type=str, choices=["dense", "sparse"], help="Reward Mode (dense / sparse)") parser.add_argument("--with-next", default=False, action="store_true", help="Add next_obs into the output file (for e.g. SAC+GAIL training)") parser.add_argument("--render", default=False, action="store_true", help="Render the environment while generating demonstrations") parser.add_argument("--debug", default=False, action="store_true", help="Debug print") parser.add_argument("--force", default=False, action="store_true", help="Force-regenerate the output trajectory file") # Extra observation args parser.add_argument("--enable-seg", action='store_true', help="Enable ground truth segmentation") # Specific point cloud generation args parser.add_argument("--n-points", default=1200, type=int, help="If obs_mode == 'pointcloud', the number of points to downsample from the original point cloud") parser.add_argument("--n-goal-points", default=-1, type=int, help="If obs_mode == 'pointcloud' and 'goal_pos' is returned from environment observations (in obs['extra']), \ then randomly sample this number of points near the goal to the returned point cloud. These points serve as helpful visual cue. -1 = disable") parser.add_argument("--obs-frame", default="base", type=str, choices=["base", "world", "ee", "obj"], help="If obs_mode == 'pointcloud', the observation frame (base/world/ee/obj) to transform the point cloud.") args = parser.parse_args() args.traj_name = osp.abspath(args.traj_name) args.output_name = osp.abspath(args.output_name) print(f"Obs mode: {args.obs_mode}; Control mode: {args.control_mode}") if args.obs_mode == 'pointcloud': print(f"Obs frame: {args.obs_frame}; n_points: {args.n_points}; n_goal_points: {args.n_goal_points}") return args def main(): os.makedirs(osp.dirname(args.output_name), exist_ok=True) if osp.exists(args.output_name) and not args.force: print(f"Trajectory generation for {args.env_name} with output path {args.output_name} has been completed!!") return with h5py.File(args.traj_name, "r+") as h5_file: keys = sorted(h5_file.keys()) # remove empty "obs" key from the input h5 file for key in keys: _ = h5_file[key].pop('obs', None) if args.max_num_traj < 0: args.max_num_traj = len(keys) args.max_num_traj = min(len(keys), args.max_num_traj) args.num_procs = min(args.num_procs, args.max_num_traj) keys = keys[: args.max_num_traj] extra_args = () if args.num_procs > 1: running_steps = split_num(len(keys), args.num_procs)[1] flush_print(f"Num of trajs = {len(keys)}", f"Num of process = {args.num_procs}") processes = [] from copy import deepcopy for i, x in enumerate(running_steps): p = Process(target=convert_state_representation, args=( deepcopy(keys[:x]), args, i, os.getpid(), *extra_args)) keys = keys[x:] processes.append(p) p.start() for p in processes: p.join() else: running_steps = [len(keys)] convert_state_representation(keys, args, 0, os.getpid(), *extra_args) files = [] for worker_id in range(len(running_steps)): tmp_h5 = osp.join(tmp_folder_in_docker, f"{worker_id}.h5") files.append(tmp_h5) from shutil import rmtree rmtree(args.output_name, ignore_errors=True) merge_h5_trajectory(files, args.output_name) for file in files: rmtree(file, ignore_errors=True) print(f"Finish merging files to {args.output_name}") if __name__ == "__main__": args = parse_args() main()
haosulab/ManiSkill2-Learn
tools/convert_state.py
convert_state.py
py
10,700
python
en
code
53
github-code
6
70098626428
# Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution: def addTwoNumbers(self, l1, l2, c = 0): # base case checking res = ListNode(0) if not l1 and not l2: return res elif not l1: return l2 elif not l2: return l1 else: curr1, curr2, curr3, prev = l1, l2, res, res # loop through until one linked list out while curr1 and curr2: c, curr3.val = self.add(curr1.val, curr2.val, c) curr3.next = ListNode(0) prev = curr3 curr3 = curr3.next curr1 = curr1.next curr2 = curr2.next # after one linked list runs out continue on the remaining one # case1: both runs out if not curr1 and not curr2: prev.next = None if c==0 else ListNode(c) return res elif not curr1: while curr2: c, curr3.val = self.add(0, curr2.val, c) curr3.next = ListNode(0) prev = curr3 curr3 = curr3.next curr2 = curr2.next else: while curr1: c, curr3.val = self.add(curr1.val, 0, c) curr3.next = ListNode(0) prev = curr3 curr3 = curr3.next curr1 = curr1.next prev.next = None if c==0 else ListNode(c) return res def add(self, n1, n2, c): res = n1 + n2 + c return res // 10, res % 10 l1 = ListNode(2) l1.next = ListNode(4) l1.next.next = ListNode(3) l2 = ListNode(5) l2.next = ListNode(5) result = Solution().addTwoNumbers(l1, l2) while result: print(result.val) result = result.next # 7 0 8
alexmai123/AlgoTime
Leetcode_problem/LinkedList/LinkedListSum.py
LinkedListSum.py
py
1,626
python
en
code
1
github-code
6
23303525367
import pandas as pd from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import matplotlib.pyplot as plt def kmeans(): data = \ pd.read_csv( '2019-04-28xm_fish.csv', names=['房源名称', '租赁种类', '房源类型', '房源户型', '房源面积', '房源楼层', '房源朝向', '装修等级', '房源地址', '行政区划', '房源租金', '所在小区', '房源描述', '更新时间'], keep_default_na=False, index_col=False ) invalid_list = data.loc[data['房源面积'] == 0] data = data.drop(index=invalid_list.index) invalid_list2 = data.loc[data['房源租金'] > 20000] data = data.drop(index=invalid_list2.index) data1 = data.iloc[:, [4, 10]] km = KMeans(n_clusters=2, max_iter=500) cluster_result = km.fit(data1) # print(cluster_result.inertia_) y_pred = cluster_result.labels_ predict = km.predict(data1) color = ['red', 'green', 'blue', 'black', 'orange'] predict = [color[i] for i in predict] plt.scatter(data1['房源面积'], data1['房源租金'], c=predict) silhouette = silhouette_score(data1, y_pred) print(silhouette) plt.show() # # 尝试归纳户型与租金的关系 # data2 = data.iloc[:, [3, 10]] # km_ = KMeans(n_clusters=2, max_iter=500) # cluster_result_ = km_.fit(data2) # # print(cluster_result.inertia_) # y_pred_ = cluster_result.labels_ # predict_ = km.predict(data2) # # predict_ = [color[i] for i in predict_] # # plt.scatter(data2['房源面积'], data2['房源租金'], c=predict_) # silhouette = silhouette_score(data2, y_pred_) # print(silhouette) # plt.show() if __name__ == '__main__': kmeans() # kmeans对初始值的稳定性较差 # input_file = 'a.csv' # output_file = 'out.csv' # # k = 3 # iteration = 500 # data = pd.read_csv(input_file, index_col='Id') # data_zs = 1.0 * (data - data.mean()) / data.std() # # model = KMeans(n_clusters=k, n_jobs=2, max_iter=iteration) # model.fit(data_zs) # # r1 = pd.Series(model.labels_).value_counts() # r2 = pd.DataFrame(model.cluster_centers_) # r = pd.concat([r2, r1], axis=1) # r.columns = list(data.columns) + [u'类别数目'] # print(r) # # r = pd.concat([data, pd.Series(model.labels_, index=data.index)], axis=1) # r.columns = list(data.columns) + [u'聚类类别'] # r.to_csv(output_file)
Joy1897/Spider_58
kmeans.py
kmeans.py
py
2,423
python
en
code
0
github-code
6
72060297789
from flask import render_template, Flask, request, jsonify, url_for, redirect import requests from flask_pymongo import PyMongo import json from Model import * import time def after_request(response): response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'PUT,GET,POST,DELETE' response.headers['Access-Control-Allow-Headers'] = 'Content-Type,Authorization' return response global Username global token token = "" app = Flask(__name__) app.after_request(after_request) app.config['MONGO_URI'] = 'mongodb://comp9900:[email protected]:61529/comp9900_2019' mongo = PyMongo(app) @app.route('/',methods=['GET', 'POST']) def home_page(): return render_template("test.html"), 200 @app.route('/user',methods=['GET']) def personalpage(): return render_template("Personalinfo.html"), 200 @app.route('/signout', methods=['POST']) def signout(): global token global Username token = '' Username = '' return "ok" @app.route('/login', methods=['GET']) def login_check(): global token if token == '': return '0' else: return Username @app.route('/login', methods=['POST']) def login(): global token global Username global Password Username = request.form["sign_in_account"] Password = request.form["sign_in_password"] url = "http://127.0.0.1:5000/anhao0522/client/v1/login?username={Username}&password={Password}".format(Username=Username,Password=Password) response = requests.get(url, headers={"Accept": "application/json"}) data = response.json() print(data) print(Username) if data['reply'] == "NU": return "No_account" elif data['reply'] == "NM": return "Wrong_password" else: token = data['reply'] return "ok" @app.route('/signup',methods=['GET', 'POST']) def signup(): if request.method == 'POST': Username = request.form["account"] Password1 = request.form["password_1"] dict1 = {"customer_id": Username, "password": Password1, "first_name": "", "last_name": "", "address": "", "email": "", "birthday": "", "credit": 0, "contact_number": "", "gender": "", "account_type": False, "host_order": [], "trip_order": [], "properties": [], "new_message": [], "message_box": []} url = "http://127.0.0.1:5000/anhao0522/client/v1/signup" response = requests.post(url, headers={"Accept": "application/json"}, json=dict1) if response.status_code == 400: return "Account name exist" else: return "ok" else: pass @app.route('/event', methods=['POST']) def get_event(): location = request.form["location"] yelp = Yelp() result = yelp.search_events(location)["events"] #result = yelp.search_restaurant("gym","kingsford")["businesses"] return jsonify(result) @app.route('/order_delete', methods=['POST']) def order_delete(): global Username global token order_id = request.form["order_id"] request_type = request.form["request_type"] if request_type == '0': url = f"http://127.0.0.1:5000/anhao0522/client/v1/user/{Username}/order" url +=f"?order_id={order_id}" response = requests.delete(url, headers={"auth_token": token}) elif request_type == '1': url = f"http://127.0.0.1:5000/anhao0522/client/v1/landlord/{Username}/order" url += f"?order_id={order_id}&cancel_order=false" response = requests.delete(url, headers={"auth_token": token}) elif request_type == '2': url = f"http://127.0.0.1:5000/anhao0522/client/v1/landlord/{Username}/order" url += f"?order_id={order_id}&cancel_order=true" response = requests.delete(url, headers={"auth_token": token}) if response.status_code == 401: print("401") return "timeout" elif response.status_code == 200: return "ok" else: return "Something wrong" @app.route('/new_message_read', methods=['POST']) def new_message_read(): global Username global token delete_new = request.form["delete_new"] url = "http://127.0.0.1:5000/anhao0522/client/v1/messageBox" body = {"mid": f"{Username}", "time": "", "text": delete_new} response = requests.post(url, headers={"auth_token": token}, json=body) if response.status_code == 401: print("401") return "timeout" elif response.status_code == 200: return "ok" else: return "Something wrong" @app.route('/new_message', methods=['POST']) def new_message(): global Username global token url = "http://127.0.0.1:5000/anhao0522/client/v1/messageBox" send_to = request.form["send_to"] message = request.form["message"] message_time = request.form["message_time"] body = {"mid":f"{Username}---{send_to}","time":message_time,"text":message} response = requests.post(url, headers={"auth_token": token}, json=body) if response.status_code == 401: print("401") return "timeout" elif response.status_code == 200: return "ok" else: return "Something wrong" @app.route('/new_comment', methods=['POST']) def new_comment(): global Username global token comment_pid = request.form["comment_pid"] comment_text = request.form["comment_text"] rating_num = request.form["rating_num"] comment_oid = request.form["comment_oid"] time = request.form["time"] url = f"http://127.0.0.1:5000/anhao0522/client/v1/accommodation/room/{comment_pid}/comment?order_id={comment_oid}" body = { "commenter": Username, "avg_mark": rating_num, "cleanliness_mark": 0, "facility_mark": 0, "attitude_mark": 0, "text": comment_text, "reply": "", "photo": [], "date": time } response = requests.post(url, headers={"auth_token": token}, json=body) if response.status_code == 401: print("401") return "timeout" elif response.status_code == 201: return "ok" else: return "Something wrong" @app.route('/message_del', methods=['GET']) def message_del(): AB = request.args["AB"] print(AB) url = f"http://127.0.0.1:5000/anhao0522/client/v1/messageBox?AB={AB}" response = requests.delete(url, headers={"auth_token": token}) if response.status_code == 401: print("401") return "wrong" elif response.status_code == 200: return "ok" else: return "Something wrong" @app.route('/personalinfo', methods=['GET']) def personalinfo(): global Username global token url = "http://127.0.0.1:5000/anhao0522/client/v1/user/" sign_in_account = request.args["sign_in_account"] url = url + sign_in_account print(url) print(sign_in_account) response = requests.get(url, headers={"auth_token": token}) print(response.json()) return jsonify(response.json()) @app.route('/chatbot_msg', methods=['POST']) def chatbot_msg(): global Username global token message = request.form["message"] url = "http://127.0.0.1:5000/anhao0522/client/v1/chatbot?" url+=f"q={message}" response = requests.post(url, headers={"auth_token": token}) return jsonify(response.json()) @app.route('/s/<location>/all') def show_list(location): if request.method == 'POST': destination = location num_persons = request.args["numpeople"] arrive_date = request.args["checkin"] departure_date = request.args["checkout"] if destination != None and num_persons != None and arrive_date != None and departure_date != None: url = "http://127.0.0.1:5000/anhao0522/client/v1/accommodation/all?" \ "location={location}&checkin={checkin}&checkout={checkout}&numberofpeople={num}&searchtype={type}".format() pass @app.route('/<id>/property_post') def picture(id): global Username global token if id != Username: return redirect(url_for('home_page')) return render_template('NewProperty.html', id=id) @app.route('/<id>/post_done',methods=['GET','POST']) def post_property(id): global Username global token if id != Username: return redirect(url_for('home_page')) if request.method == 'POST': #print(request.form) #print(request.values.get('Pet')) tmp_dic = {} tmp_dic.setdefault('property_type',request.values['property_type']) tmp_dic.setdefault('property_bedroom', request.values['property_bedroom']) tmp_dic.setdefault('property_bathroom', request.values['property_bathroom']) tmp_dic.setdefault('property_parking', request.values['property_parking']) tmp_dic.setdefault('property_wifi', request.values['WIFI']) tmp_dic.setdefault('property_air', request.values['Air_condition']) tmp_dic.setdefault('property_cook', request.values['Cooking']) tmp_dic.setdefault('property_pet', request.values['Pet']) property_location = request.form['property_location'].lower() property_suburb = request.form['property_suburb'].lower() property_address = request.form['property_address'] property_size = request.form['property_size'] property_price = request.form['property_price'] property_max_people = request.form['property_max_people'] property_start = request.form['start_date'] property_end = request.form['end_date'] property_title = request.form['property_title'] property_description = request.form['property_description'] for key in tmp_dic: if tmp_dic[key] == "YES": tmp_dic[key] = True elif tmp_dic[key] == "NO": tmp_dic[key] = False else: continue #print(tmp_dic) photo_id = [] if 'upload' in request.files: for file in request.files.getlist("upload"): #print("file ", file, type(file), file.filename) mongo.save_file(file.filename, file) num_photo = str(int(time.time())) photo_id.append(num_photo) mongo.db.test.insert_one({'id': num_photo, 'photo_name': file.filename}) #for i in range(len(request.files.getlist('upload'))): # photo = request.files.getlist('upload') # print(photo.filename) #mongo.save_file(photo.filename, photo) #num_photo = str(int(time.time())) #mongo.db.test.insert_one({'id': num_photo, 'photo_name': photo.filename}) #id = 'Cindy' lis_db = list(mongo.db.property_collection.find()) t_id = lis_db[-1]['property_id'] #print(t_id) url = "https://maps.google.com/maps/api/geocode/json?key=AIzaSyAANyBQ6ikIoa53iMdahFL99Bjt0oBmWpc&address={address}&sensor=false".format( address=property_address) data = requests.request("GET", url) ddic_1 = data.json()['results'][0]['geometry']['location'] lng = ddic_1['lng'] lat = ddic_1['lat'] ava_time = get_date_list(property_start,property_end) ava_time_l = [] for i in ava_time: ava_time_dic = {} ava_time_dic.setdefault('time',i) ava_time_dic.setdefault('status',True) ava_time_l.append(ava_time_dic) post_data_dic = {} post_data_dic.setdefault('customer_id',id) post_data_dic.setdefault('property_id',t_id+1) post_data_dic.setdefault('address',property_address) post_data_dic.setdefault('longitude',float(lng)) post_data_dic.setdefault('latitude',float(lat)) post_data_dic.setdefault('price', float(property_price)) post_data_dic.setdefault('type',tmp_dic['property_type']) post_data_dic.setdefault('size',float(property_size)) post_data_dic.setdefault('wifi', tmp_dic['property_wifi']) post_data_dic.setdefault('air-condition',tmp_dic['property_air']) post_data_dic.setdefault('cooking', tmp_dic['property_cook']) post_data_dic.setdefault('pet',tmp_dic['property_pet']) post_data_dic.setdefault('bed_room',int(tmp_dic['property_bedroom'])) post_data_dic.setdefault('bath_room',int(tmp_dic['property_bathroom'])) post_data_dic.setdefault('parking',int(tmp_dic['property_parking'])) post_data_dic.setdefault('location',property_location) post_data_dic.setdefault('suburb',property_suburb) post_data_dic.setdefault('maxium_people',int(property_max_people)) post_data_dic.setdefault('about_the_place',property_description) post_data_dic.setdefault('title',property_title) post_data_dic.setdefault('rating',0.0) post_data_dic.setdefault('comments',[]) post_data_dic.setdefault('p_photo',photo_id) post_data_dic.setdefault('discount',0.0) post_data_dic.setdefault('available_time',ava_time_l) url1 = "http://127.0.0.1:5000/anhao0522/client/v1/landlord/{customer_id}/properties".format(customer_id=id) #print(token) response = requests.post(url1,json=post_data_dic,headers={"auth_token": token}) #print(response) return redirect(url_for('home_page')) @app.route('/location_center', methods=['POST']) def get_center(): if request.method == 'POST': location_str = request.form['location_list'] print(location_str) location_list = location_str.split(":") print(location_list) location_list_2 = [] for e in location_list: location_list_2.append([float(e.split("/")[0]), float(e.split("/")[1])]) print(location_list_2) reslut = center_geolocation(location_list_2) return jsonify({"result": reslut}) @app.route('/file/<file_id>') def file(file_id): data = mongo.db.test.find_one_or_404({'id': file_id}) filename = data['photo_name'] return mongo.send_file(filename) if __name__ == '__main__': app.run(port=5200, debug=True)
xiechzh/Accomodation-Web-Portal
COMP9900_Proj/COMP9900_Proj.py
COMP9900_Proj.py
py
13,953
python
en
code
1
github-code
6
71567683388
import streamlit as st import pandas as pd @st.cache def load_data(): data = pd.read_csv('data.csv', sep=';', encoding='latin1') return data data = load_data() selected_country = st.selectbox("Select a Country", data['Country']) col1, col2 = st.columns(2) with col1: coal_percent = st.slider("Coal %", 0.0, 100.0, 0.0, key="coal_slider") gas_percent = st.slider("Gas %", 0.0, 100.0, 0.0, key="gas_slider") oil_percent = st.slider("Oil %", 0.0, 100.0, 0.0, key="oil_slider") hydro_percent = st.slider("Hydro %", 0.0, 100.0, 0.0, key="hydro_slider") renewable_percent = st.slider("Renewable %", 0.0, 100.0, 0.0, key="renewable_slider") nuclear_percent = st.slider("Nuclear %", 0.0, 100.0, 0.0, key="nuclear_slider") with col2: coal_percent_manual = st.number_input("Coal % (Manual Input)", 0.0, 100.0, 0.0, format="%.2f", key="coal_manual") gas_percent_manual = st.number_input("Gas % (Manual Input)", 0.0, 100.0, 0.0, format="%.2f", key="gas_manual") oil_percent_manual = st.number_input("Oil % (Manual Input)", 0.0, 100.0, 0.0, format="%.2f", key="oil_manual") hydro_percent_manual = st.number_input("Hydro % (Manual Input)", 0.0, 100.0, 0.0, format="%.2f", key="hydro_manual") renewable_percent_manual = st.number_input("Renewable % (Manual Input)", 0.0, 100.0, 0.0, format="%.2f", key="renewable_manual") nuclear_percent_manual = st.number_input("Nuclear % (Manual Input)", 0.0, 100.0, 0.0, format="%.2f", key="nuclear_manual") coal_percent_total = coal_percent_manual if coal_percent_manual else coal_percent gas_percent_total = gas_percent_manual if gas_percent_manual else gas_percent oil_percent_total = oil_percent_manual if oil_percent_manual else oil_percent hydro_percent_total = hydro_percent_manual if hydro_percent_manual else hydro_percent renewable_percent_total = renewable_percent_manual if renewable_percent_manual else renewable_percent nuclear_percent_total = nuclear_percent_manual if nuclear_percent_manual else nuclear_percent Overall_Emission = (coal_percent_total + gas_percent_total + oil_percent_total + hydro_percent_total + renewable_percent_total + nuclear_percent_total) coal_CO2 = data[data['Country'] == selected_country]["Coal"].values[0] gas_CO2 = data[data['Country'] == selected_country]["Gas"].values[0] oil_CO2 = data[data['Country'] == selected_country]["Oil"].values[0] hydro_CO2 = data[data['Country'] == selected_country]["Hydro"].values[0] renewable_CO2 = data[data['Country'] == selected_country]["Renewable"].values[0] nuclear_CO2 = data[data['Country'] == selected_country]["Nuclear"].values[0] kgCO2_result = ((coal_percent_total * coal_CO2 + gas_percent_total * gas_CO2 + oil_percent_total * oil_CO2 + hydro_percent_total * hydro_CO2 + renewable_percent_total * renewable_CO2 + nuclear_percent_total * nuclear_CO2) / 100000) st.markdown("<div class='result-section'>", unsafe_allow_html=True) st.write("Overall Emission %:", Overall_Emission) st.write("CO2 Emissions (tons):", round(kgCO2_result, 2), "tons of CO2") st.markdown("</div>", unsafe_allow_html=True)
sneha-4-22/Energy-Calculator
app.py
app.py
py
3,135
python
en
code
0
github-code
6
32623837320
from base_factor import BaseFactor from data.data_module import DataModule class PEFactor(BaseFactor): def __init__(self): BaseFactor.__init__(self,'pe') def compute(self,begin_date,end_date): print(self.name,flush=True) dm =DataModule() df_daily = dm.get_k_data() print(df_daily) if __name__ == '__main__': pe = PEFactor() pe.compute(None,None)
bowenzz/Quant-Trading-System
factor/pe_factor.py
pe_factor.py
py
403
python
en
code
0
github-code
6
23268800112
# Here we will conduct a A/B test import math from hypo_testing import normal_probability_two_sided def estimated_parameter(n, N): p = n / N sigma = math.sqrt(p * N * (1- p)) return N * p, sigma def a_b_test_statistics(n_a, N_a, n_b, N_b): p_a, sigma_a = estimated_parameter(n_a, N_a) p_b, sigma_b =estimated_parameter(n_b, N_b) print(p_a, p_b, math.sqrt(sigma_a **2 + sigma_b ** 2)) return (p_a - p_b) / math.sqrt(sigma_a **2 + sigma_b ** 2) z = abs(a_b_test_statistics(200, 1000, 180, 1000)) print(z) probability = normal_probability_two_sided(-z, z) print(probability)
shm4771/Data-Science-From-Scratch
src/hypothesis_testing/A_B_test.py
A_B_test.py
py
585
python
en
code
0
github-code
6
21003174437
# This code is in the Public Domain # ----------------------------------------------------------------------------- # This source file is part of Python-Ogre # For the latest info, see http://python-ogre.org/ # # It is likely based on original code from OGRE and/or PyOgre # For the latest info, see http://www.ogre3d.org/ # # You may use this sample code for anything you like, it is not covered by the # LGPL. # ----------------------------------------------------------------------------- # # 29 July 2008: Ensured that resources.cfg and plugins.cfg can exist in the parent directory # import sys import os import os.path import ogre.renderer.OGRE as ogre import ogre.io.OIS as OIS ###import OgreRefApp def getPluginPath(): """ Return the absolute path to a valid plugins.cfg file. look in the current directory for plugins.cfg followed by plugins.cfg.nt|linux|mac If not found look one directory up """ paths = [os.path.join(os.getcwd(), 'plugins.cfg'), os.path.join(os.getcwd(), '..','plugins.cfg'), ] if os.sys.platform == 'darwin': paths.insert(1, os.path.join(os.getcwd(), 'plugins.cfg.mac')) paths.append(os.path.join(os.getcwd(), '..', 'plugins.cfg.mac')) else: paths.insert(1,os.path.join(os.getcwd(), 'plugins.cfg.'+os.name)) paths.append(os.path.join(os.getcwd(), '..', 'plugins.cfg.'+os.name)) for path in paths: if os.path.exists(path): return path sys.stderr.write("\n" "** Warning: Unable to locate a suitable plugins.cfg file.\n" "** Warning: Please check your ogre installation and copy a\n" "** Warning: working plugins.cfg file to the current directory.\n\n") raise ogre.Exception(0, "can't locate a suitable 'plugins' file", "") # def isUnitTest(): # """Looks for a magic file to determine if we want to do a unittest""" # paths = [os.path.join(os.getcwd(), 'unittest.now'), # os.path.join(os.getcwd(), '..','unittest.now')] # for path in paths: # if os.path.exists(path): # return True # return False def isUnitTest(): """ use an environment variable to define that we need to do unittesting""" env = os.environ if env.has_key ("PythonOgreUnitTestPath"): return True return False def UnitTest_Duration(): return 5 def UnitTest_Screenshot(): if isUnitTest(): env = os.environ path = env["PythonOgreUnitTestPath"] parentpath = os.getcwd().split(os.path.sep)[-1] # get the last part of the parent directory filename = parentpath+'.'+ sys.modules['__main__'].__file__.split('.')[0] # file name is parent.demo.xx path = os.path.join ( path, filename ) return path else: return "test" class Application(object): "This class is the base for an Ogre application." debugText="" def __init__(self): self.frameListener = None self.root = None self.camera = None self.renderWindow = None self.sceneManager = None self.world = None self.unittest = isUnitTest() def __del__(self): "Clear variables, this should not actually be needed." del self.camera del self.sceneManager del self.frameListener if self.world: del self.world del self.root del self.renderWindow def go(self): "Starts the rendering loop." if not self._setUp(): return self.root.startRendering() def goOneFrame(self): "Starts the rendering loop. Show how to use the renderOneFrame Method" if not self._setUp(): return self.root.getRenderSystem()._initRenderTargets() while True: ogre.WindowEventUtilities().messagePump() if not self.root.renderOneFrame(): break def _setUp(self): """This sets up the ogre application, and returns false if the user hits "cancel" in the dialog box.""" pluginFile = getPluginPath() ## option here to switch to manually loading file if it doesn't exist if self.unittest: if os.path.isfile('ogre.cfg'): self.root = ogre.Root( pluginFile ) else: self.root = ogre.Root( pluginFile, '../ogre.cfg') else: self.root = ogre.Root( pluginFile ) self.root.setFrameSmoothingPeriod (5.0) self._setUpResources() if not self._configure(): return False self._chooseSceneManager() self._createWorld() self._createCamera() self._createViewports() ogre.TextureManager.getSingleton().setDefaultNumMipmaps (5) self._createResourceListener() self._loadResources() self._createScene() self._createFrameListener() return True def _setUpResources(self): """This sets up Ogre's resources, which are required to be in resources.cfg.""" config = ogre.ConfigFile() try: config.load('resources.cfg') except ogre.OgreFileNotFoundException: try: config.load('../resources.cfg') except: raise except: raise seci = config.getSectionIterator() while seci.hasMoreElements(): SectionName = seci.peekNextKey() Section = seci.getNext() for item in Section: ogre.ResourceGroupManager.getSingleton().\ addResourceLocation(item.value, item.key, SectionName) def _createResourceListener(self): """This method is here if you want to add a resource listener to check the status of resources loading.""" pass def _createWorld ( self ): """ this should be overridden when supporting the OgreRefApp framework. Also note you will have to override __createCamera""" pass def _loadResources(self): """This loads all initial resources. Redefine this if you do not want to load all resources at startup.""" ogre.ResourceGroupManager.getSingleton().initialiseAllResourceGroups() def _configure(self): """This shows the config dialog and creates the renderWindow.""" if not self.unittest: # we show this if not doing a unittest carryOn = self.root.showConfigDialog() else: carryOn = self.root.restoreConfig() if carryOn: windowTitle = os.path.join( os.getcwd(), sys.argv[0]) if not windowTitle: windotTitle = "Ogre Render Window" self.renderWindow = self.root.initialise(True,windowTitle) return carryOn def _chooseSceneManager(self): """Chooses a default SceneManager.""" #typedef uint16 SceneTypeMask; #md=ogre.SceneManagerMetaData() #md.sceneTypeMask=ogre.ST_GENERIC #print dir(self.root) self.sceneManager = self.root.createSceneManager(ogre.ST_GENERIC,"ExampleSMInstance") def _createCamera(self): """Creates the camera.""" self.camera = self.sceneManager.createCamera('PlayerCam') self.camera.setPosition(ogre.Vector3(0, 0, 500)) self.camera.lookAt(ogre.Vector3(0, 0, -300)) self.camera.NearClipDistance = 5 def _createViewports(self): """Creates the Viewport.""" ## We want a single sampleframework so this work around is to support OgreRefApp Framework ## if using the RefApp camera is based upon World etc etc try: self.viewport = self.renderWindow.addViewport(self.camera.getRealCamera()) except AttributeError: self.viewport = self.renderWindow.addViewport(self.camera) self.viewport.BackgroundColour = ogre.ColourValue(0,0,0) def _createScene(self): """Creates the scene. Override this with initial scene contents.""" pass def _createFrameListener(self): """Creates the FrameListener.""" #,self.frameListener, self.frameListener.Mouse self.frameListener = FrameListener(self.renderWindow, self.camera) self.frameListener.unittest = self.unittest self.frameListener.showDebugOverlay(True) self.root.addFrameListener(self.frameListener) class FrameListener(ogre.FrameListener, ogre.WindowEventListener): """A default frame listener, which takes care of basic mouse and keyboard input.""" def __init__(self, renderWindow, camera, bufferedKeys = False, bufferedMouse = False, bufferedJoy = False): ogre.FrameListener.__init__(self) ogre.WindowEventListener.__init__(self) self.camera = camera self.renderWindow = renderWindow self.statisticsOn = True self.numScreenShots = 0 self.timeUntilNextToggle = 0 self.sceneDetailIndex = 0 self.moveScale = 0.0 self.rotationScale = 0.0 self.translateVector = ogre.Vector3(0.0,0.0,0.0) self.filtering = ogre.TFO_BILINEAR self.showDebugOverlay(True) self.rotateSpeed = ogre.Degree(36) self.moveSpeed = 100.0 self.rotationSpeed = 8.0 self.displayCameraDetails = False self.bufferedKeys = bufferedKeys self.bufferedMouse = bufferedMouse self.rotationX = ogre.Degree(0.0) self.rotationY = ogre.Degree(0.0) self.bufferedJoy = bufferedJoy self.shouldQuit = False # set to True to exit.. self.MenuMode = False # lets understand a simple menu function self.unittest = isUnitTest() self.unittest_duration = UnitTest_Duration() # seconds before screen shot a exit # self.unittest_screenshot = sys.modules['__main__'].__file__.split('.')[0] # file name for unittest screenshot self.unittest_screenshot = UnitTest_Screenshot() ## we can tell if we are using OgreRefapp based upon the camera class if self.camera.__class__ == ogre.Camera: self.RefAppEnable = False else: self.RefAppEnable = True self._setupInput() def __del__ (self ): ogre.WindowEventUtilities.removeWindowEventListener(self.renderWindow, self) self.windowClosed(self.renderWindow) def _inputSystemParameters (self ): """ ovreride to extend any OIS system parameters """ return [] def _setupInput(self): # ignore buffered input # FIXME: This should be fixed in C++ propbably import platform int64 = False for bit in platform.architecture(): if '64' in bit: int64 = True if int64: windowHnd = self.renderWindow.getCustomAttributeUnsignedLong("WINDOW") else: windowHnd = self.renderWindow.getCustomAttributeInt("WINDOW") # # Here is where we create the OIS input system using a helper function that takes python list of tuples # t= self._inputSystemParameters() params = [("WINDOW",str(windowHnd))] params.extend(t) self.InputManager = OIS.createPythonInputSystem( params ) # # an alternate way is to use a multimap which is exposed in ogre # # pl = ogre.SettingsMultiMap() # windowHndStr = str(windowHnd) # pl.insert("WINDOW", windowHndStr) # for v in self._inputSystemParameters(): # pl.insert(v[0],v[1]) # im = OIS.InputManager.createInputSystem( pl ) #Create all devices (We only catch joystick exceptions here, as, most people have Key/Mouse) self.Keyboard = self.InputManager.createInputObjectKeyboard( OIS.OISKeyboard, self.bufferedKeys ) self.Mouse = self.InputManager.createInputObjectMouse( OIS.OISMouse, self.bufferedMouse ) try: self.Joy = self.InputManager.createInputObjectJoyStick( OIS.OISJoyStick, self.bufferedJoy ) except: self.Joy = False # #Set initial mouse clipping size self.windowResized(self.renderWindow) self.showDebugOverlay(True) #Register as a Window listener ogre.WindowEventUtilities.addWindowEventListener(self.renderWindow, self); def setMenuMode(self, mode): self.MenuMode = mode def _UpdateSimulation( self, frameEvent ): # create a real version of this to update the simulation pass def windowResized (self, rw): dummyint = 0 width, height, depth, left, top= rw.getMetrics(dummyint,dummyint,dummyint, dummyint, dummyint) # Note the wrapped function as default needs unsigned int's ms = self.Mouse.getMouseState() ms.width = width ms.height = height def windowClosed(self, rw): #Only close for window that created OIS (mWindow) if( rw == self.renderWindow ): if( self.InputManager ): self.InputManager.destroyInputObjectMouse( self.Mouse ) self.InputManager.destroyInputObjectKeyboard( self.Keyboard ) if self.Joy: self.InputManager.destroyInputObjectJoyStick( self.Joy ) OIS.InputManager.destroyInputSystem(self.InputManager) self.InputManager=None ## NOTE the in Ogre 1.6 (1.7) this is changed to frameRenderingQueued !!! def frameRenderingQueued ( self, evt ): if(self.renderWindow.isClosed() or self.shouldQuit ): return False if self.unittest: self.unittest_duration -= evt.timeSinceLastFrame if self.unittest_duration < 0: self.renderWindow.writeContentsToFile(self.unittest_screenshot + '.jpg') return False ##Need to capture/update each device - this will also trigger any listeners self.Keyboard.capture() self.Mouse.capture() buffJ = True if( self.Joy ): self.Joy.capture() buffJ = self.Joy.buffered() ##Check if one of the devices is not buffered if not self.Mouse.buffered() or not self.Keyboard.buffered() or not buffJ : ## one of the input modes is immediate, so setup what is needed for immediate movement if self.timeUntilNextToggle >= 0: self.timeUntilNextToggle -= evt.timeSinceLastFrame ## Move about 100 units per second self.moveScale = self.moveSpeed * evt.timeSinceLastFrame ## Take about 10 seconds for full rotation self.rotScale = self.rotateSpeed * evt.timeSinceLastFrame self.rotationX = ogre.Degree(0.0) self.rotationY = ogre.Degree(0.0) self.translateVector = ogre.Vector3().ZERO ##Check to see which device is not buffered, and handle it if not self.Keyboard.buffered(): if not self._processUnbufferedKeyInput(evt): return False if not self.Mouse.buffered(): if not self._processUnbufferedMouseInput(evt): return False if not self.Mouse.buffered() or not self.Keyboard.buffered() or not buffJ: self._moveCamera() return True # def frameStarted(self, frameEvent): # return True # # if self.timeUntilNextToggle >= 0: # self.timeUntilNextToggle -= frameEvent.timeSinceLastFrame # # if frameEvent.timeSinceLastFrame == 0: # self.moveScale = 1 # self.rotationScale = 0.1 # else: # self.moveScale = self.moveSpeed * frameEvent.timeSinceLastFrame # self.rotationScale = self.rotationSpeed * frameEvent.timeSinceLastFrame # # self.rotationX = ogre.Degree(0.0) # self.rotationY = ogre.Degree(0.0) # self.translateVector = ogre.Vector3(0.0, 0.0, 0.0) # if not self._processUnbufferedKeyInput(frameEvent): # return False # # if not self.MenuMode: # if we are in Menu mode we don't move the camera.. # self._processUnbufferedMouseInput(frameEvent) # self._moveCamera() # # Perform simulation step only if using OgreRefApp. For simplicity create a function that simply does # ### "OgreRefApp.World.getSingleton().simulationStep(frameEvent.timeSinceLastFrame)" # # if self.RefAppEnable: # self._UpdateSimulation( frameEvent ) # return True def frameEnded(self, frameEvent): if self.statisticsOn: self._updateStatistics() return True def showDebugOverlay(self, show): """Turns the debug overlay (frame statistics) on or off.""" overlay = ogre.OverlayManager.getSingleton().getByName('POCore/DebugOverlay') if overlay is None: self.statisticsOn = False ogre.LogManager.getSingleton().logMessage( "ERROR in sf_OIS.py: Could not find overlay POCore/DebugOverlay" ) return if show: overlay.show() else: overlay.hide() def _processUnbufferedKeyInput(self, frameEvent): if self.Keyboard.isKeyDown(OIS.KC_A): self.translateVector.x = -self.moveScale if self.Keyboard.isKeyDown(OIS.KC_D): self.translateVector.x = self.moveScale if self.Keyboard.isKeyDown(OIS.KC_UP) or self.Keyboard.isKeyDown(OIS.KC_W): self.translateVector.z = -self.moveScale if self.Keyboard.isKeyDown(OIS.KC_DOWN) or self.Keyboard.isKeyDown(OIS.KC_S): self.translateVector.z = self.moveScale if self.Keyboard.isKeyDown(OIS.KC_PGUP): self.translateVector.y = self.moveScale if self.Keyboard.isKeyDown(OIS.KC_PGDOWN): self.translateVector.y = - self.moveScale if self.Keyboard.isKeyDown(OIS.KC_RIGHT): self.rotationX = - self.rotationScale if self.Keyboard.isKeyDown(OIS.KC_LEFT): self.rotationX = self.rotationScale if self.Keyboard.isKeyDown(OIS.KC_ESCAPE) or self.Keyboard.isKeyDown(OIS.KC_Q): return False if( self.Keyboard.isKeyDown(OIS.KC_F) and self.timeUntilNextToggle <= 0 ): self.statisticsOn = not self.statisticsOn self.showDebugOverlay(self.statisticsOn) self.timeUntilNextToggle = 1 if self.Keyboard.isKeyDown(OIS.KC_T) and self.timeUntilNextToggle <= 0: if self.filtering == ogre.TFO_BILINEAR: self.filtering = ogre.TFO_TRILINEAR self.Aniso = 1 elif self.filtering == ogre.TFO_TRILINEAR: self.filtering = ogre.TFO_ANISOTROPIC self.Aniso = 8 else: self.filtering = ogre.TFO_BILINEAR self.Aniso = 1 ogre.MaterialManager.getSingleton().setDefaultTextureFiltering(self.filtering) ogre.MaterialManager.getSingleton().setDefaultAnisotropy(self.Aniso) self.showDebugOverlay(self.statisticsOn) self.timeUntilNextToggle = 1 if self.Keyboard.isKeyDown(OIS.KC_SYSRQ) and self.timeUntilNextToggle <= 0: path = 'screenshot_%d.png' % self.numScreenShots self.numScreenShots += 1 self.renderWindow.writeContentsToFile(path) Application.debugText = 'screenshot taken: ' + path self.timeUntilNextToggle = 0.5 if self.Keyboard.isKeyDown(OIS.KC_R) and self.timeUntilNextToggle <= 0: detailsLevel = [ ogre.PM_SOLID, ogre.PM_WIREFRAME, ogre.PM_POINTS ] self.sceneDetailIndex = (self.sceneDetailIndex + 1) % len(detailsLevel) self.camera.polygonMode=detailsLevel[self.sceneDetailIndex] self.timeUntilNextToggle = 0.5 if self.Keyboard.isKeyDown(OIS.KC_F) and self.timeUntilNextToggle <= 0: self.statisticsOn = not self.statisticsOn self.showDebugOverlay(self.statisticsOn) self.timeUntilNextToggle = 1 if self.Keyboard.isKeyDown(OIS.KC_P) and self.timeUntilNextToggle <= 0: self.displayCameraDetails = not self.displayCameraDetails if not self.displayCameraDetails: Application.debugText = "" if self.displayCameraDetails: # Print camera details pos = self.camera.getDerivedPosition() o = self.camera.getDerivedOrientation() Application.debugText = "P: %.3f %.3f %.3f O: %.3f %.3f %.3f %.3f" \ % (pos.x,pos.y,pos.z, o.w,o.x,o.y,o.z) return True def _isToggleKeyDown(self, keyCode, toggleTime = 1.0): if self.Keyboard.isKeyDown(keyCode)and self.timeUntilNextToggle <=0: self.timeUntilNextToggle = toggleTime return True return False def _isToggleMouseDown(self, Button, toggleTime = 1.0): ms = self.Mouse.getMouseState() if ms.buttonDown( Button ) and self.timeUntilNextToggle <=0: self.timeUntilNextToggle = toggleTime return True return False def _processUnbufferedMouseInput(self, frameEvent): ms = self.Mouse.getMouseState() if ms.buttonDown( OIS.MB_Right ): self.translateVector.x += ms.X.rel * 0.13 self.translateVector.y -= ms.Y.rel * 0.13 else: self.rotationX = ogre.Degree(- ms.X.rel * 0.13) self.rotationY = ogre.Degree(- ms.Y.rel * 0.13) return True def _moveCamera(self): self.camera.yaw(self.rotationX) self.camera.pitch(self.rotationY) # try: # self.camera.translate(self.translateVector) # for using OgreRefApp # except AttributeError: self.camera.moveRelative(self.translateVector) def _updateStatistics(self): statistics = self.renderWindow self._setGuiCaption('POCore/AverageFps', 'Avg FPS: %u' % statistics.getAverageFPS()) self._setGuiCaption('POCore/CurrFps', 'FPS: %u' % statistics.getLastFPS()) # self._setGuiCaption('POCore/BestFps', # 'Best FPS: %f %d ms' % (statistics.getBestFPS(), statistics.getBestFrameTime())) # self._setGuiCaption('POCore/WorstFps', # 'Worst FPS: %f %d ms' % (statistics.getWorstFPS(), statistics.getWorstFrameTime())) self._setGuiCaption('POCore/NumTris', 'Trianges: %u' % statistics.getTriangleCount()) self._setGuiCaption('POCore/NumBatches', 'Batches: %u' % statistics.batchCount) self._setGuiCaption('POCore/DebugText', Application.debugText) def _setGuiCaption(self, elementName, text): element = ogre.OverlayManager.getSingleton().getOverlayElement(elementName, False) ##d=ogre.UTFString("hell0") ##element.setCaption(d) #element.caption="hello" #element.setCaption("help") element.setCaption(text) # ogre.UTFString(text))
only-a-ptr/ror-toolkit
windows/ogre/renderer/OGRE/sf_OIS.py
sf_OIS.py
py
23,588
python
en
code
4
github-code
6
24200680597
from collections import Counter class Solution: def func(self, strings, K): """ Args: strings: list[str] K: int """ counter = Counter(strings) counter_list = [(key, counter[key]) for key in counter] # 频数大, 字母序小 -> 频数小, 字母序大 counter_list.sort(key=lambda x: [-x[1], x]) for i in range(K): print(counter_list[i][0], counter_list[i][1]) counter_list.sort(key=lambda x: [x[1], x]) for i in range(K): print(counter_list[i][0], counter_list[i][1]) if __name__ == "__main__": N, K = list(map(int, input().split())) strings = [] for _ in range(N): strings.append(input()) Solution().func(strings, K)
AiZhanghan/Leetcode
秋招/腾讯/3.py
3.py
py
787
python
en
code
0
github-code
6
71353706429
# GMM implementation # good resource http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf import numpy as np from scipy import stats import seaborn as sns from random import shuffle, uniform sns.set_style("white") #Generate some data from 2 different distributions x1 = np.linspace(start=-10, stop=10, num=1000) x2 = np.linspace(start=5, stop=10, num=800) y1 = stats.norm.pdf(x1, loc=3, scale=1.5) y2 = stats.norm.pdf(x2, loc=0, scale=3) #Put data in dataframe for better handling x = list(x1) x.extend(list(x2)) shuffle(x) K = 2 #number of assumed distributions within the dataset epsilon = 0.001 #tolerance change for log-likelihood max_iter = 100 #gaussian pdf function def G(datum, mu, sigma): y = (1 / (np.sqrt((2 * np.pi) * sigma * sigma)) * np.exp(datum-mu)*(datum-mu)/(2*sigma*sigma)) return y #compute log-likelihood def L(X, N, mu, sigma, pi): L = 0 for i in range(N): Gk = 0 for k in range(K): Gk += pi[k] * G(X[i], mu[k], sigma[k]) L += Gk print(L) return np.log(L) def estimate_gmm(X, K, epsilon, max_iter): N = len(X) # assign random mean and variance to each distribution mu, sigma = [uniform(0, 10) for _ in range(K)], [uniform(0, 10) for _ in range(K)] # assign random probability to each distribution pi = [uniform(0, 10) for _ in range(K)] mu = [2, 0] sigma = [1, 1] current_loglike = np.inf for _ in range(max_iter): previous_loglike = current_loglike #E step mixture_affiliation_all_k = {} for i in range(N): parts = [pi[k] * G(X[i], mu[k], sigma[k]) for k in range(K)] total = sum(parts) for k in range(K): mixture_affiliation_all_k[(i, k)] = parts[k] / total #M step mixture_affiliation_for_k = [sum(mixture_affiliation_all_k[(i, k)] for i in range(N)) for k in range(K)] for k in range(K): pi[k] = mixture_affiliation_for_k[k] / N mu[k] = sum([mixture_affiliation_all_k[(i, k)] * X[i] for i in range(N)]) / mixture_affiliation_for_k[k] sigma[k] = sum([mixture_affiliation_all_k[(i, k)] * (X[i] - mu[k]) ** 2 for i in range(N)]) / mixture_affiliation_for_k[k] current_loglike = L(X, N, mu, sigma, pi) if abs(previous_loglike - current_loglike) < epsilon: print("break") break return mu, sigma, pi print(estimate_gmm(x, K, epsilon, max_iter))
cristian904/GMMs
GMM.py
GMM.py
py
2,456
python
en
code
0
github-code
6
14570677084
###=========================================================### ### ### ### Create Boundary Condition(BC) ### ### ### ###=========================================================### ##-- Import library import numpy as np ##-- F: Force ##-- U: Displacement ##-- Um: boolean index, i.e., 0-->x, 1-->y ##-- Kcal: [K] designed for solving matrix def set_BC(K, node_BC, node_F, num_node, load): ##-- Copy of K for post calculation Kcal = K.copy() ##-- node_BC: index of nodes, imposed of BC. U = np.zeros(2*num_node.data) Um = np.zeros(2*num_node.data, dtype="int64") + 1 Um[node_BC] = 0 Um = ( Um == 0 ) #print(Um) ##-- node_F: index of nodes, imposed of Load F = np.zeros(2*num_node.data) F[node_F] = load.data #print(F) ##-- Prepare Matrix(K), considering BC for i in node_BC: Kcal[i, :] = 0. Kcal[:, i] = 0. Kcal[i, i] = 1. return F, U, Um, Kcal
caron14/2D-FEM
mod_set_BC.py
mod_set_BC.py
py
1,077
python
en
code
0
github-code
6
17936071521
__author__ = 'gilles.drigout' from proposal import * from numpy import zeros, random from numbapro import cuda from numbapro.cudalib import curand import math import time @cuda.autojit def cu_one_block(x_start, y, omega, uniforms, result, size, chain_length): i = cuda.grid(1) if i < size: result[i,0] = x_start for t in range(1, chain_length): x_prev = result[i, t-1] acceptance_ratio = min(1, omega[t]*(1+x_prev**2)*math.exp(-0.5*x_prev**2)) if i*size + t*chain_length < N*N: u = uniforms[i*size + t*chain_length] if u < acceptance_ratio: result[i, t] = y[t] else: result[i, t] = x_prev class BlockIMH: def __init__(self, chain_start, block_size, num_blocks, proposals, omegas): self.chain_start = chain_start self.block_size = block_size self.num_blocks = num_blocks self.chain_length = block_size * num_blocks self.proposals = proposals self.omegas = omegas self.block_count = 0 self.block_start = chain_start def iterate_block(self): if self.block_count*self.block_size < self.chain_length: proposals_block = self.proposals[self.block_count*self.block_size:(self.block_count+1)*self.block_size] omegas_block = self.omegas[self.block_count*self.block_size:(self.block_count+1)*self.block_size] block = Block(size=self.block_size, proposals=proposals_block, omegas=omegas_block, start=self.block_start) block_values = block.compute_block() # drawing random integer for next block start rand_chain = random.random_integers(self.block_size-1) self.block_start = block_values[-1][rand_chain] self.block_count +=1 def iterate_all_chain(self): while self.block_count*self.block_size < self.chain_length: t0 = time.time() self.iterate_block() print(time.time()-t0) class Block: def __init__(self, size, proposals, omegas, start): self.size = size self.host_proposals = proposals self.host_omegas = omegas self.start = start self.threads_per_block = 512 self.grid_dim = (self.size // self.threads_per_block)+ 1 def compute_block(self): device_uniforms = curand.uniform(size=N*N, device=True) host_results = zeros((self.size, self.size)) stream = cuda.stream() device_proposals = cuda.to_device(self.host_proposals, stream=stream) device_omegas = cuda.to_device(self.host_omegas, stream=stream) device_results = cuda.device_array_like(host_results, stream=stream) cu_one_block[self.grid_dim, self.threads_per_block, stream](self.start, device_proposals, device_omegas, device_uniforms, device_results, self.size, self.size) device_results.copy_to_host(host_results, stream=stream) stream.synchronize() return host_results @staticmethod @cuda.autojit def cu_block(x_start, y, omega, uniforms, result, size, chain_length): i = cuda.grid(1) if i < size: result[i,0] = x_start for t in range(1, chain_length): x_prev = result[i, t-1] acceptance_ratio = min(1, omega[t]*(1+x_prev**2)*math.exp(-0.5*x_prev**2)) if i*size + t*chain_length < N*N: u = uniforms[i*size + t*chain_length] if u < acceptance_ratio: result[i, t] = y[t] else: result[i, t] = x_prev if __name__ == '__main__': N = 10000 t = ToyExample(N) host_y = t.host_values host_omega = t.host_omegas imh = BlockIMH(chain_start=0, block_size=100, num_blocks=10, proposals=host_y, omegas=host_omega) imh.iterate_all_chain()
Jingoo88/Projet-3A-2015
Kernel method/blockIMH.py
blockIMH.py
py
4,087
python
en
code
0
github-code
6
3547587015
import numpy as np import tensorflow as tf from structure_vgg import CNN from datetime import datetime import os from tfrecord_reader import tfrecord_read import config os.environ['CUDA_VISIBLE_DEVICES'] = '1' FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('dataset', 'dset1', 'Choose dset1 or dset2 for training, default dset1.') tf.flags.DEFINE_string('checkpoint', None, 'Whether use a pre-trained checkpoint to continue training, default None.') def main(): checkpoint_dir = 'checkpoints' if FLAGS.checkpoint is not None: checkpoint_path = os.path.join(checkpoint_dir, FLAGS.checkpoint.lstrip('checkpoints/')) else: current_time = datetime.now().strftime('%Y%m%d-%H%M') checkpoint_path = os.path.join(checkpoint_dir, '{}'.format(current_time)) try: os.makedirs(checkpoint_path) except os.error: print('Unable to make checkpoints direction: %s' % checkpoint_path) model_save_path = os.path.join(checkpoint_path, 'model.ckpt') cnn = CNN() read_for_train = tfrecord_read( FLAGS.dataset, config.batch_size, config.num_epochs, config.train_slice, training=True) read_for_val = tfrecord_read( FLAGS.dataset, config.batch_size, config.num_epochs, config.train_slice, training=False) saver = tf.train.Saver() print('Build session.') tfconfig = tf.ConfigProto() tfconfig.gpu_options.allow_growth = True sess = tf.Session(config=tfconfig) if FLAGS.checkpoint is not None: print('Restore from pre-trained model.') checkpoint = tf.train.get_checkpoint_state(checkpoint_path) meta_graph_path = checkpoint.model_checkpoint_path + '.meta' restore = tf.train.import_meta_graph(meta_graph_path) restore.restore(sess, tf.train.latest_checkpoint(checkpoint_path)) step = int(meta_graph_path.split('-')[2].split('.')[0]) else: print('Initialize.') sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) step = 0 epoch_pre = step * config.batch_size // config.file_num[FLAGS.dataset] loss_list = [] accuracy_list = [] val_epoch_accuracies = [] # train_writer = tf.summary.FileWriter('log', sess.graph) # summary_op = tf.summary.merge_all() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: print('Start training:') while not coord.should_stop(): X_train_batch, y_train_batch = sess.run([read_for_train.X_batch, read_for_train.y_batch]) loss, train_batch_accuracy, _, lr = sess.run([cnn.loss, cnn.batch_accuracy, cnn.optimizer, cnn.learning_rate], {cnn.X_inputs: X_train_batch, cnn.y_inputs: y_train_batch, cnn.keep_prob: config.keep_prob, cnn.training: True}) loss_list.append(loss) X_val_batch, y_val_batch = sess.run([read_for_val.X_batch, read_for_val.y_batch]) correct_pre_num, val_batch_accuracy = sess.run([cnn.correct_pre_num, cnn.batch_accuracy], {cnn.X_inputs: X_val_batch, cnn.y_inputs: y_val_batch, cnn.keep_prob: 1.0, cnn.training: False}) val_epoch_accuracies.append(val_batch_accuracy) # train_writer.add_summary(summary, step) # train_writer.flush( epoch_cur = step * config.batch_size // config.file_num[FLAGS.dataset] if epoch_cur > epoch_pre: # val_epoch_accuracy = np.sum(correct_pre_nums) / ((step + 1) * config.batch_size) val_epoch_accuracy = np.mean(val_epoch_accuracies) accuracy_list.append(val_epoch_accuracy) print('For epoch %i: val_epoch_accuracy = %.3f%%\n' % (epoch_pre, val_epoch_accuracy * 100)) epoch_pre = epoch_cur val_epoch_accuracies = [] if step % 10 == 0 and step > 0: print('>> At step %i: loss = %.3f, train_batch_accuracy = %.3f%%' % (step, loss, train_batch_accuracy * 100)) print(lr) if step % 1000 == 0 and step > 0: save_path = saver.save(sess, model_save_path, global_step=step) print('Model saved in file: %s' % save_path) step += 1 except KeyboardInterrupt: print('Interrupted') coord.request_stop() except Exception as e: coord.request_stop(e) finally: save_path = saver.save(sess, model_save_path, global_step=step) print('Model saved in file: %s' % save_path) coord.request_stop() coord.join(threads) sess.close() if __name__ == '__main__': main()
yikaiw/DL-hw2-CNN
main.py
main.py
py
4,806
python
en
code
0
github-code
6
38231691013
from django.shortcuts import render, get_object_or_404 from .models import Post, Group def index(request): posts = Post.objects.order_by('-pub_date')[:10] title = 'Это главная страница проекта Yatube' context = { 'posts': posts, 'title': title, } return render(request, 'posts/index.html', context) def group_posts(request, slug): group = get_object_or_404(Group, slug=slug) posts = Post.objects.filter(group=group).order_by('-pub_date')[:10] title = 'Лев Толстой – зеркало русской революции.' context = { 'group': group, 'posts': posts, 'title': title, } return render(request, 'posts/group_list.html', context)
NikitaKorovykovskiy/Yatube_project
yatube/posts/views.py
views.py
py
762
python
en
code
0
github-code
6
71781170429
import cv2 # read your picture and store into variable "img" img = cv2.imread('picture.jpg') # scale image down 3 times for i in range(3): img = cv2.pyrDown(img) # save scaled image cv2.imwrite(f'picture_scaled_{i}.jpg', img)
yptheangel/opencv-starter-pack
python/basic/image_pyramid.py
image_pyramid.py
py
240
python
en
code
8
github-code
6
21806123410
import sys def set_options(opt): opt.tool_options("compiler_cxx") def configure(conf): conf.check_tool("compiler_cxx") conf.check_tool("node_addon") if sys.platform == 'darwin': conf.env.append_value('LINKFLAGS', ['-framework','CoreMidi','-framework','CoreAudio','-framework','CoreFoundation']) else: conf.env.append_value('LINKFLAGS', ['-lasound', '-lpthread']) def build(bld): obj = bld.new_task_gen("cxx", "shlib", "node_addon") obj.cxxflags = ["-g", "-D_FILE_OFFSET_BITS=64", "-D_LARGEFILE_SOURCE", "-Wall"] if sys.platform == 'darwin': obj.cxxflags.append("-D__MACOSX_CORE__") else: obj.cxxflags.append("-D__LINUX_ALSASEQ__") obj.target = "midi" obj.source = "src/node-midi.cpp"
sksmatt/NodeJS-Ableton-Piano
node_modules/midi/wscript
wscript
725
python
en
code
104
github-code
6
7886651161
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 18 21:42:00 2021 @author: fyy """ import scipy.stats as stats import numpy as np import random import scipy.io as scio import matplotlib.pyplot as plt import math dataFile = './_dat/val_dataset.mat' ratio = 0.05 sample_num = 100 # 训练样本的大小 max_len = 250 min_len = 180 max_kn = 4 min_kn = 0 s_length = 200 def stable(maxLen,priValue): priSeq = np.ones(maxLen)*priValue return priSeq def jitter(maxLen,priValue,priDev): maxDevValue = priValue*priDev lowerBound = priValue-maxDevValue upperBound = priValue+maxDevValue priSeq = np.random.randint(lowerBound,upperBound+1,maxLen)#lower<=x<upper params = [priValue,priDev,maxDevValue] return priSeq #周期 def periodic(maxLen,priValue,ratio): amp=priValue*ratio; #正弦幅度 freq=50; #正弦频率 sample = random.randint(2*freq,8*freq) #正弦采样率 fsample=400#正弦采样率 priDSSeq = np.zeros(maxLen) for i in range(maxLen): priDSSeq[i] = amp*math.sin(freq*i/fsample)+priValue#正弦PRI序列 #priDSSeq = priDSSeq[:maxLen] #截断 para = [priValue,ratio,sample] return priDSSeq #滑变 def sliding(maxLen,priValue,ratio): priMax=priValue*ratio #pri最大值 pulseNum=random.randint(ratio,32) #pri点数 slidingStep=(priMax-priValue)/pulseNum; #滑变步长 slidingSeq = np.zeros(pulseNum+1) for i in range(pulseNum+1): #一个周期的滑变PRI序列 slidingSeq[i] = i*slidingStep + priValue seqLen=len(slidingSeq); cycleNum=math.ceil(maxLen/seqLen)#向上取整周期数 priDSSeq = np.tile(slidingSeq, cycleNum)#重复若干个周期 priDSSeq = priDSSeq[:maxLen] #截断 para = [priValue,ratio,priMax,pulseNum,slidingStep] return priDSSeq ''' import numpy as np a = np.array([[1, 2, 0, 3, 0],        [4, 5, 0, 6, 0],        [7, 8, 0, 9, 0]])   idx = np.argwhere(np.all(a[..., :] == 0, axis=0)) a2 = np.delete(a, idx, axis=1) ''' #参差 3-10 def stagger(maxLen,priValue,priNum): seqLen=priNum #一个周期的脉组中脉冲数目 cycleNum=math.ceil(maxLen/seqLen) #周期数 priSeq = priValue priSSeq=np.tile(priSeq,cycleNum)#重复若干周期 priSSeq=priSSeq[:maxLen]#截断 para = [priValue,priNum,cycleNum] return priSSeq def gen_func(m,maxLen): if m==1: return stable(maxLen) elif m==2: return jitter(maxLen) elif m==3: return periodic(maxLen) elif m==4: return sliding(maxLen) elif m==5: return stagger(maxLen) else: print("****error!****") def solve(nums, x, y) : if nums == []: return False if x>y: (x,y) = (y,x) for i in range(len(nums)): if x<= nums[i] <= y: return True else: continue return False def pri2toa(inputseq): #mask = np.logical_not(inputseq) mask = inputseq!=0 inputseq = inputseq[mask] toa = np.zeros(len(inputseq)+1) i = 0 while(i<len(inputseq)): toa[i+1] = toa[i]+inputseq[i] i = i+1 return toa max_len = 250 def lostPul(inputseq,proportion,label,pattern):#缺失脉冲 # inputseq: 输入TOA序列 # proportion: 缺失百分比 # seqTOA: 缺失的TOA序列 # seqPRI: 缺失的PRI序列 lostPulseSeq=pri2toa(inputseq) #每个proportion下面的缺失脉冲TOA序列 lengthWorkModeSample=len(lostPulseSeq) rand_num = math.floor(lengthWorkModeSample*proportion) randomIndex=np.random.randint(0,lengthWorkModeSample,rand_num)#lower<=x<upper randomIndex = sorted(randomIndex) j=0 mask = label!=0 label = label[mask] lostlabel = label*1 #单纯a = b 只是浅复制将a指向b p = pattern*1 for i in range(len(randomIndex)): while(j<len(label) and randomIndex[i]>=label[j]): j = j+1 lostlabel[j:] = lostlabel[j:] - 1 lostPulseSeq=[i for num,i in enumerate(lostPulseSeq) if num not in randomIndex] p =[i for num,i in enumerate(p) if num not in randomIndex] p = np.array(p) for i in range(len(randomIndex)): p[randomIndex[i]-1-i] = 6 lostPulseSeq = np.array(lostPulseSeq) seqPRI=lostPulseSeq[1:]-lostPulseSeq[:-1] seqTOA=lostPulseSeq z = np.zeros(max_len) seqPRI = np.append(seqPRI,z) p = np.append(p,z) z = np.zeros(5) lostlabel = np.append(lostlabel,z) return seqPRI[:max_len],lostlabel[:5],p[:max_len] def findpos(arr,x): for i in range(len(arr)): if arr[i]>x: return i return -1 def suprPul(inputseq,proportion,label,p):#虚警脉冲 # inputseq: 输入TOA序列 # proportion: 虚警百分比 # seqTOA: 虚警的TOA序列 # seqPRI: 虚警的PRI序列 # pw: 脉宽,脉冲串脉宽设置为5us supPulseSeq=pri2toa(inputseq) #每个proportion下面的缺失脉冲TOA序列 lengthWorkModeSample=len(supPulseSeq) tMax = math.floor(max(supPulseSeq)) randomNum = math.floor(lengthWorkModeSample*proportion) randomTime=np.random.randint(0,tMax,randomNum) randomTime = sorted(randomTime) mask = label!=0 label = label[mask] pattern = p*1 j = 0 for i in range(len(randomTime)): pos = findpos(supPulseSeq,randomTime[i]) while(j<len(label) and label[j] < pos): j = j+1 label[j:] = label[j:] + 1 supPulseSeq = np.insert(supPulseSeq, pos,randomTime[i]) pattern[pos-1] = 6 pattern = np.insert(pattern, pos,6) randomIndex=[i for i,val in enumerate(supPulseSeq) if val in randomTime] seqPRI=supPulseSeq[1:]-supPulseSeq[:-1] seqTOA=supPulseSeq z = np.zeros(max_len) seqPRI = np.append(seqPRI,z) z = np.zeros(5) label = np.append(label,z) return seqPRI[:max_len],label[:5],pattern[:max_len] def meaErr(inputseq,stdPRI): # inputseq: 输入TOA序列 # stdPRI: 测量误差的标准差 # seqTOA: 输出TOA序列 # seqPRI: 输出PRI序列 seqTOA=pri2toa(inputseq) lengthWorkModeSample=len(seqTOA) errGenarated = np.random.normal(0, stdPRI, lengthWorkModeSample) #errGenarated=normrnd(0,stdPRI,[1,lengthWorkModeSample]) seqTOA=seqTOA+errGenarated seqPRI=seqTOA[1:]-seqTOA[:-1] return seqPRI[:max_len] def indices(a,func): #实现find函数 return [i for (i,val) in enumerate(a) if func(val)] #a = [1 2 3 1 2 3] #find = indices(a,lambda x:x>2) --> [2,5] data = np.zeros((sample_num, max_len), dtype=np.float32) label = np.zeros((sample_num, max_kn+1), dtype=np.int) pattern = np.zeros((sample_num, max_kn+1), dtype=np.int) p = np.zeros((sample_num, max_len), dtype=np.float32) for i in range(sample_num): #seq_len = random.randint(min_len,max_len) seq_len = max_len knum = random.randint(min_kn,max_kn) k = [] for j in range(knum): a = random.randint(25,s_length-25) while solve(k,a-25,a+25): a = random.randint(25,s_length-25) k.append(a) k.append(seq_len) k = np.array(k) k = sorted(k) priValue = random.randint(10,20)*10 priDev = random.randint(10,20)/20 for j in range(knum+1): label[i,j] = k[j] module = 2 pattern[i,j] = module flag = random.randint(1,3) tempValue = priValue tempDev = priDev if flag == 1:#均值方差全变 while(tempValue==priValue): tempValue = random.randint(10,20)*10 while(tempDev==priDev): tempDev = random.randint(10,20)/20 elif flag == 2:#只变均值 while(tempValue==priValue): tempValue = random.randint(10,20)*10 else:#只变均值 while(tempDev==priDev): tempDev = random.randint(10,20)/20 priValue = tempValue priDev = tempDev if j==0: data[i,:k[j]] = jitter(k[j],priValue,priDev) p[i,:k[j]] = module else: data[i,k[j-1]:k[j]] = jitter(k[j]-k[j-1],priValue,priDev) p[i,k[j-1]:k[j]] = module d = data*1 l = label*1 result = np.zeros((sample_num, s_length), dtype=np.float32) L = np.zeros((sample_num, s_length), dtype=np.float32) ''' for i in range(sample_num): d[i] =meaErr(data[i],1) for i in range(sample_num): d[i],l[i],p[i] = lostPul(data[i],0.1,l[i],p[i])#247.5 for i in range(sample_num): d[i],l[i],p[i] = suprPul(data[i],0.05,l[i],p[i])#247.5 ''' d = d[:,:s_length] p = p[:,:s_length] for i in range(sample_num): for j in range(max_kn+1): if l[i,j]>=s_length: l[i,j:] = 0 l[i,j] = s_length break for i in range(sample_num): for j in range(max_kn+1): if l[i,j] != s_length and l[i,j] != 0: result[i,l[i,j]] = 1 L[i,l[i,j]] = 1 result[i,l[i,j]-1] = 0.8 result[i,l[i,j]+1] = 0.8 plt.plot(d[0]) # scio.savemat(dataFile, {'data':d,'label':result,'pattern':p,'L':L,'Y':d,'l_true':l})
Carty-Bao/BNPHMM
code/gen_new.py
gen_new.py
py
9,565
python
en
code
0
github-code
6
16104264799
import gatt import numpy as np import time import datetime class BLE(gatt.Device): def __init__(self, Age, Height, Gender, Write, manager,mac_address): super().__init__(manager = manager , mac_address = mac_address) self.Age = Age self.Height = Height self.Gender = Gender self.Write = Write self.values = [] self.ReadStatus = False self.Read = True self.count = 0 self.manager = manager def Write_Bytes(self, c): #Write bytes to initiate communication magicBytes = [0xac, 0x02, 0xf7, 0x00, 0x00, 0x00, 0xcc, 0xc3] c.write_value(magicBytes) #write 2nd bytes to server magicBytes = [0xac, 0x02, 0xfa, 0x00, 0x00, 0x00, 0xcc, 0xc6] c.write_value(magicBytes) #Calculate offset for error checking bits Offset = self.Age + self.Height - 56 #Sending Age and height with offset to server magicBytes = [0xac, 0x02, 0xfb, 0x01, self.Age, self.Height, 0xcc, Offset] c.write_value(magicBytes) #time.sleep(1) #Calculate offset for Present date now = datetime.datetime.now() #Write present date to server(scale) Offset = (now.year-1799) + now.month + now.day magicBytes = [0xac, 0x02, 0xfd, (now.year - 2000), now.month, now.day, 0xcc, Offset] c.write_value(magicBytes) #time.sleep(1) #Calculate offset for time now = datetime.datetime.now() Offset = now.hour + now.minute magicBytes = [0xac, 0x02, 0xfc, now.hour, now.minute, 56, 0xcc, Offset] c.write_value(magicBytes) #time.sleep(1) magicBytes = [0xac, 0x02, 0xfe, 0x06, 0x00, 0x00, 0xcc, 0xd0] c.write_value(magicBytes) #time.sleep(0.6) def body_composition(self): #Weight of person shifting higher bit by 8bit position to left and or with lower bit to get 16bit value weight = float(((self.values[0][12] << 8) | self.values[0][13]) / 10) #. kg Fat = float (((self.values[0][18] << 8 ) | self.values[0][19])/ 10) #.% Calorie = int((self.values[1][5] << 8) | self.values[1][6] ) #. kcal bone_mass = float(((self.values[1][7] << 8 ) | self.values[1][8]) / 10 ) #. kg water = float(((self.values[1][9] << 8) | self.values[1][10]) / 10) #.% body composition MetabolicAge = int(self.values[1][11]) #In years print ("Weight ===================>" + str(weight) +".Kg") print ("Fat ======================>" + str(Fat) + "%") print ("Calorie ==================>" + str(Calorie) + "Kcal") print ("Bone_mass ================>" + str(bone_mass) + "Kg") print ("Water ====================>" + str(water) + "%") print ("MetabolicAge =============>" + str(MetabolicAge) + "years") return {"Weight" : weight, "Fat" : Fat, "Calorie" : Calorie, "BoneMass": bone_mass, "Water" : water , "MAge" : MetabolicAge } def services_resolved(self): super().services_resolved() for s in self.services: if s.uuid == '0000ffb0-0000-1000-8000-00805f9b34fb': #services 0016 for c in s.characteristics: if (c.uuid == '0000ffb1-0000-1000-8000-00805f9b34fb') and (self.Write == True): #char 0017 self.Write_Bytes (c) self.Write = False print(c) #c.enable_notifications() if c.uuid == '0000ffb2-0000-1000-8000-00805f9b34fb' and self.Read == True: c.read_value() c.enable_notifications() print(c) self.Read = False def characteristic_value_updated(self, characteristic, value): print("Firmware version:", value) check = value[0] + value[1] if check == 0: self.ReadStatus = True if len(value) == 20 and self.ReadStatus == True : if self.count == 0: self.values.append(value) self.count = self.count + 1 else: if value != self.values[0]: self.values.append(value) self.manager.stop()
sanbuddhacharyas/MEDICAL_CARE
source_code/BLE.py
BLE.py
py
4,518
python
en
code
0
github-code
6
35800840346
import unittest import numpy as np from numpy import linalg from task import img_rescaled, img_array_transposed, U, s, Vt class TestCase(unittest.TestCase): def test_transpose(self): np.testing.assert_array_equal(img_array_transposed, np.transpose(img_rescaled, (2, 0, 1)), 'The transposed array does not look right.') def test_svd(self): transposed_test = np.transpose(img_rescaled, (2, 0, 1)) U_test, s_test, Vt_test = linalg.svd(transposed_test) np.testing.assert_array_equal(U, U_test, 'Your decomposition does not look right. Go back to "SVD on One Matrix" to refresh the topic.') np.testing.assert_array_equal(s, s_test, 'Your decomposition does not look right. Go back to "SVD on One Matrix" to refresh the topic.') np.testing.assert_array_equal(Vt, Vt_test, 'Your decomposition does not look right. Go back to "SVD on One Matrix" to refresh the topic.')
jetbrains-academy/Python-Libraries-NumPy
Projects/SVD/Applying to All Colors/tests/test_task.py
test_task.py
py
1,073
python
en
code
1
github-code
6
72473999867
from math import sqrt import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x1_list = [] x2_list = [] y_list = [] counter = 0 def show(x1_list, x2_list): N = int(x1_list.__len__()) if (N <= 0): return fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) x1_array = np.arange(min(x1_list) - 1, max(x1_list) + 1, 0.01) x2_array = np.arange(min(x2_list) - 1, max(x2_list) + 1, 0.01) #x1_array = np.arange(-6, 3, 0.1) #x2_array = np.arange(-6, 6, 0.1) x1_array, x2_array = np.meshgrid(x1_array, x2_array) R = f(x1_array, x2_array) ax = Axes3D(fig) ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('f(x1,x2)') ax.plot_surface(x1_array, x2_array, R, color='b', alpha=0.5) x1_list2 = [] x2_list2 = [] f_list = [] ax.scatter(x1_list[0], x2_list[0], f(x1_list[0], x2_list[0]), c='black') x1_list2.append(x1_list[0]) x2_list2.append(x2_list[0]) f_list.append(f(x1_list[0], x2_list[0])) #print(x1_list[0], x2_list[0], f(x1_list[0], x2_list[0])) for n in range(1, N): ax.scatter(x1_list[n], x2_list[n], f(x1_list[n], x2_list[n]), c='red') x1_list2.append(x1_list[n]) x2_list2.append(x2_list[n]) f_list.append(f(x1_list[n], x2_list[n])) #print(x1_list[n], x2_list[n], f(x1_list[n], x2_list[n])) ax.scatter(x1_list[N - 1], x2_list[N - 1], f(x1_list[N - 1], x2_list[N - 1]), c='green') #print(x1_list[N - 1], x2_list[N - 1], f(x1_list[N - 1], x2_list[N - 1])) ax.plot(x1_list2, x2_list2, f_list, color="black") plt.show() def f(x1, x2): return 3*x1**4 - x1*x2 + x2**4 - 7*x1 - 8*x2 + 2 def f_x1(x1, x2): return 12*x1**3 - x2 - 7 def f_x2(x1, x2): return 4*x2**3 - x1 - 8 def gradient(x1, x2): i = f_x1(x1, x2) j = f_x2(x1, x2) return [i, j] def module_of_gradient(grad): i = 0; j = 1 return sqrt(grad[i]**2 + grad[j]**2) def dichotomy_mehod(a, b, epsilon, x1, x2, d1, d2): x = (a + b) / 2 global counter counter += 2 if (f(x1 + (x - epsilon)*d1, x2 + (x - epsilon)*d2) < f(x1 + (x + epsilon)*d1, x2 + (x + epsilon)*d2)): b = x else: a = x if(abs(b - a) >= 2 * epsilon): return dichotomy_mehod(a, b, epsilon, x1, x2, d1, d2) return x def the_fletcher_reevse_method(x1, x2, e1, e2, M): global counter k = 0 d_prev = [0, 0] grad_prev = 0 while True: counter += 2 grad = gradient(x1, x2) module_grad = module_of_gradient(grad) if ((module_grad < e1) | (k >= M)): return [(round(x1, round_num), round(x2, round_num), round(f(x1, x2), round_num)), k] B = 0 if k % 2 == 1: B = module_of_gradient(grad)**2 / module_of_gradient(grad_prev)**2 d = [-grad[0] + B * d_prev[0], -grad[1] + B * d_prev[1]] t = dichotomy_mehod(0, 0.1, e1, x1, x2, d[0], d[1]) x1_next = x1 + t * d[0] x2_next = x2 + t * d[1] x1_list.append(x1); x2_list.append(x2) counter += 1 if ((sqrt(abs(x1_next - x1)**2 + abs(x2_next - x2)**2) <= e2) & (abs(f(x1_next, x2_next) - f(x1, x2)) <= e2)): return [(round(x1_next, round_num), round(x2_next, round_num), round(f(x1_next, x2_next), round_num)), k] x1 = x1_next; x2 = x2_next d_prev = d; grad_prev = grad k += 1 round_num = 3 x1 = -5 x2 = 3 e1 = 0.001 e2 = 0.001 M = 100 result = the_fletcher_reevse_method(x1, x2, e1, e2, M) print(f"The Fletcher Reevse method: {result[0]}; count of iteractions = {result[1]}") print('Count of compute function =', counter) #show(x1_list, x2_list)
AlexSmirno/Learning
6 Семестр/Оптимизация/Lab_4_1.py
Lab_4_1.py
py
3,768
python
en
code
0
github-code
6
37056080424
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Simple univariate BLUP implementation for starting values estimation.""" import numpy as np from scipy.optimize import minimize def grad(sigmas: np.ndarray, y: np.ndarray, k: np.ndarray): v = 1 / (sigmas[0] + sigmas[1] * k) if np.any(v < 1e-12): return [np.nan, np.nan] yt = y * v g = np.zeros(2) g[0] = np.sum(yt ** 2) - np.sum(np.log(v)) g[1] = np.sum(yt * k * y) - np.sum(np.log(v ** 2 * k)) return g def obj(sigmas: np.ndarray, y: np.ndarray, k: np.ndarray): v = 1 / (sigmas[0] + sigmas[1] * k) if np.any(v < 1e-8): return np.nan yt = y * v return np.sum(yt * y) - np.sum(np.log(v)) def blup(y: np.ndarray, k: np.ndarray, p=0.8, maxiter=50): """ Calculate BLUP estimate for U of a single variable. Parameters ---------- y : np.ndarray Observations of a given variable. k : np.ndarray K matrix. p : float, optional Expected ratio of variable variance to random effect variance. Used for starting values only. The default is 0.8. maxiter : int, optional Maximal number of iterations. Better not be too high or estimation process could take noticable time in some cases. The default is 50. Returns ------- U Random effects estimate (BLUP). """ v = np.var(y) x0 = np.array([p * v, (1 - p) * v]) s = minimize(lambda x: obj(x, y, k), x0, jac=lambda x: grad(x, y, k), method="SLSQP", options={'maxiter': maxiter}, bounds=([0, None], [0, None]) ).x v = 1 / (1 / s[0] + (1 / s[1]) * (1 / k)) return y * v / s[0], s
planplus/pysem
pysem/univariate_blup.py
univariate_blup.py
py
1,705
python
en
code
4
github-code
6
8257233523
# Use the environment variables DIANA_BROKER and DIANA_RESULT to attach the celery # app to a message queue. import os from celery import Celery app = Celery('diana') app.conf.update( result_expires = 3600, task_serializer = "pickle", accept_content = ["pickle"], result_serializer = "pickle", task_default_queue = 'default', task_routes={'*.gpu': {'queue': 'gpu'}, # Only GPU boxes '*.file': {'queue': 'file'} }, # Access to shared fs include=['diana.star.tasks'], broker_url=os.environ.get('DIANA_BROKER', "redis://localhost:6379/1"), result_backend=os.environ.get('DIANA_RESULT', "redis://localhost:6379/2"), timezone = 'America/New_York' ) print(os.environ.get('DIANA_BROKER', "redis://localhost:6379/1"))
derekmerck/DIANA
packages/diana/diana/star/app.py
app.py
py
776
python
en
code
11
github-code
6
3337645854
import time from pyspark import SparkContext,SparkConf #----------------------------------------------- #spark map reduce练习 def mymap(line): return len(line) #在spark中这样对数字进行叠加是不可行对 由于闭包机制,每一份机器上都单独有一份所引用都对象 应该使用saprk提供都累加器 nums_all=0 def test_foreach(nums): global nums_all nums_all+=nums print(nums_all) if __name__ == '__main__': conf = SparkConf().setAppName('test').setMaster('local') sc = SparkContext(conf=conf) text_rdd=sc.textFile('./data/*.txt') map_rdd=text_rdd.map(mymap) #count=map_rdd.foreach(test_foreach) # new_text_rdd=text_rdd.flatMap(lambda x:(x,'hahaha','xxxx')) new_rdd=text_rdd.map(lambda line:line.split('\t')) print(new_rdd.first()) time.sleep(10000) # for i in map_rdd.take(5): # print(i) #rdd2 = sc.textFile('./data/sequence_file', ) # 读取一个目录下的文件 已文件名、内容的形式返回 #print(rdd2.first().encode('utf-8').decode())
zml1996/learn_record
learn_spark/test_spark2.py
test_spark2.py
py
1,066
python
fa
code
2
github-code
6
38633501754
def get_input(): done = False while not done: try: points = int(input('How many points does the post have?: ')) if points > 0: ratio = int(input('What is the percentage of users who upvoted the post?: ')) if ratio <= 100 and ratio > 50: done = True else: print('{0}% is an invalid percentage.'.format(ratio)) else: print('Reddit does not currently display negative scores.') except ValueError: print('Your values must be integers.') return points, ratio def reddit_votes(points, ratio): votes = points / ((ratio / 50) - 1) upvotes = votes * (ratio / 100) downvotes = votes - upvotes return round(upvotes) + round(downvotes), round(upvotes), round(downvotes) def print_output(votes, upvotes, downvotes): if votes == 1: print(votes, 'vote.') else: print(votes, 'votes.') if upvotes == 1: print(upvotes, 'upvote.') else: print(upvotes, 'upvotes.') if downvotes == 1: print(downvotes, 'downvote.') else: print(downvotes, 'downvotes.') def main(): points, ratio = get_input() total_votes, upvotes, downvotes = reddit_votes(points, ratio) print_output(total_votes, upvotes, downvotes) main()
mthezeng/hello-world
redditvotes.py
redditvotes.py
py
1,372
python
en
code
0
github-code
6
12477690188
#!/ebio/abt1_share/toolkit_support1/sources/anaconda3/bin/python import glob import re import pandas as pd data_dir = '/tmp/global2/vikram/felix/master_thesis/data/alphafold/v2' data_dir = '/Users/felixgabler/PycharmProjects/master_thesis/data/alphafold/v2' def write_seq_to_file(accession: str, uniprot_id: str, seq_lines: str, existing_ids: set): if len(uniprot_id) == 0 or uniprot_id not in existing_ids: return with open(f'{data_dir}/sequences/{uniprot_id}.fasta', 'w') as handle: handle.write(accession + seq_lines) def split_out_sequence_files(): uniprot_ids = set() for proteome_file in glob.glob(f'{data_dir}/AA_scores/*.csv'): ids = pd.read_csv(proteome_file, usecols=['uniprot_id'])['uniprot_id'].array uniprot_ids = uniprot_ids.union(set(ids)) print(f'Creating sequence files for {len(uniprot_ids)} sequences') with open(f'{data_dir}/sequences.fasta') as handle: accession = '' uniprot_id = '' seq_lines = '' for line in handle: if line.startswith('>'): write_seq_to_file(accession, uniprot_id, seq_lines, uniprot_ids) accession = line uniprot_id = re.search(r'AF-([A-Z0-9]+)-', line).group(1) seq_lines = '' else: seq_lines += line write_seq_to_file(accession, uniprot_id, seq_lines, uniprot_ids) if __name__ == '__main__': split_out_sequence_files()
felixgabler/master_thesis
bin/utils/split_sequences.py
split_sequences.py
py
1,472
python
en
code
0
github-code
6
71666200828
from django.contrib import admin from .models import newdoc class DocAdmin(admin.ModelAdmin): fieldsets = [ (None, {"fields": ["title"]}), ("Date information", {"fields": ["created_time"]}), (None, {"fields": ["modified_time"]}), ("Author information", {"fields": ["author"]}), (None, {"fields": ["body"]}) ] list_filter = ["created_time"] list_display = ('title', 'created_time', 'author') search_fields = ["title"] #class uploaded(admin.ModelAdmin): # Register models here. admin.site.register(newdoc, DocAdmin)
JarvisDong/Project-CGD
mysite/documents/admin.py
admin.py
py
652
python
en
code
0
github-code
6
664923791
#Import's import random #Variáveis #Classes guerreiro = [ #Nome(0) Vida(1) 'Guerreiro', 50, #Ataque básico(2) dano(3) 'Corte de espada', 10, #Ataque especial(4) dano(5) 'Lamina ardente', 20 ] arqueiro = [ #Nome(0) Vida(1) 'Arqueiro', 50, #Ataque básico(2) dano(3) 'Flecha veloz', 10, #Ataque especial(4) dano(5) 'Three shot', 20 ] mago = [ #Nome(0) Vida(1) 'Mago', 50, #Ataque básico(2) Dano(3) 'Bola de fogo', 10, #Ataque especial(4) Dano(5) 'Maldição', 20 ] oponente = [ #Nome(0) Vida(1) 'Sr.Maldade', 100, #Ataque básico(2) Dano(3) 'Pedrada', 10, #Ataque especial(4) Dano(5) 'Lamina de sangue', 20 ] #Funções def escolher_classe(): try: print(""" 1. Guerreiro 2. Arqueiro 3. Mago """) classe = int(input('Escolha sua classe de acordo ao número.')) except ValueError: print("Somente números sao aceitos. Tente novamente.") if classe != int(): print("Positivo") if classe == 1 : print("Sua classe é guerreiro") elif classe == 2: print("Sua classe é arqueiro") elif classe == 3: print("Sua classe é mago") def batalha(): oponente = random.randint(1,20) player = random.randint(1,20) print(oponente) print(player) if oponente > player: print("Você tomou dano!") elif player > oponente: print("Causou dano!") else: print("Dados iguiais! Relancando dados...") batalha() #Executando o programa escolher_classe()
KancsSneed/Exercicios_python
Atividades/rpg.py
rpg.py
py
1,931
python
pt
code
0
github-code
6
26113491295
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "06/03/2018" from .. import qt class BoxLayoutDockWidget(qt.QDockWidget): """QDockWidget adjusting its child widget QBoxLayout direction. The child widget layout direction is set according to dock widget area. The child widget MUST use a QBoxLayout :param parent: See :class:`QDockWidget` :param flags: See :class:`QDockWidget` """ def __init__(self, parent=None, flags=qt.Qt.Widget): super(BoxLayoutDockWidget, self).__init__(parent, flags) self._currentArea = qt.Qt.NoDockWidgetArea self.dockLocationChanged.connect(self._dockLocationChanged) self.topLevelChanged.connect(self._topLevelChanged) def setWidget(self, widget): """Set the widget of this QDockWidget See :meth:`QDockWidget.setWidget` """ super(BoxLayoutDockWidget, self).setWidget(widget) # Update widget's layout direction self._dockLocationChanged(self._currentArea) def _dockLocationChanged(self, area): self._currentArea = area widget = self.widget() if widget is not None: layout = widget.layout() if isinstance(layout, qt.QBoxLayout): if area in (qt.Qt.LeftDockWidgetArea, qt.Qt.RightDockWidgetArea): direction = qt.QBoxLayout.TopToBottom else: direction = qt.QBoxLayout.LeftToRight layout.setDirection(direction) self.resize(widget.minimumSize()) self.adjustSize() def _topLevelChanged(self, topLevel): widget = self.widget() if widget is not None and topLevel: layout = widget.layout() if isinstance(layout, qt.QBoxLayout): layout.setDirection(qt.QBoxLayout.LeftToRight) self.resize(widget.minimumSize()) self.adjustSize() def showEvent(self, event): """Make sure this dock widget is raised when it is shown. This is useful for tabbed dock widgets. """ self.raise_()
silx-kit/silx
src/silx/gui/widgets/BoxLayoutDockWidget.py
BoxLayoutDockWidget.py
py
2,125
python
en
code
106
github-code
6