seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
33962354417
import numpy as np from sklearn.linear_model import LogisticRegression from random import randrange from math import ceil, floor # Загрузка данных из текстового файла data = np.genfromtxt('данные двумерная модель.txt', skip_header=1) # Пропустить первую строку с названиями столбцов # Разделение данных на факторы (x) и зависимую переменную (y) X = data[:, :-1] # Первые 6 столбцов y = data[:, -1] # Последний столбец # Создание и обучение модели множественной регрессии model = LogisticRegression() model.fit(X, y) # Вывод коэффициентов регрессии print("Коэффициенты регрессии:") print("a1, a2:", [round(x, 3) for x in model.coef_[0]]) print("b (пересечение):", round(model.intercept_[0], 3)) X_min = [float('inf'), float('inf')] X_max = [float('-inf'), float('-inf')] for x in X: for i in range(len(x)): if x[i] < X_min[i]: X_min[i] = x[i] if x[i] > X_max[i]: X_max[i] = x[i] R_X = [] for i in range(len(X_min)): R_X.append(randrange(ceil(X_min[i]), floor(X_max[i]))) print(R_X) # Спрогнозировать новое значение y на основе заданных факторов (замените значения x_new) x_new = np.array([R_X]) y_pred = model.predict(x_new) print(f"Прогнозное значение y для новых данных: {y_pred[0]:.2f}") print(f'{model.coef_[0][0]:.3f} {model.coef_[0][1]:.3f}, {model.intercept_[0]:.3f}')
IlnazMmm/RKA
3 lab/prog2.py
prog2.py
py
1,708
python
ru
code
0
github-code
6
72742546747
# -*- coding: utf-8 -*- # @Author : yxn # @Date : 2022/1/27 20:46 # @IDE : PyCharm(2021.3.1) Python3.98 def toStr(n, base): """递归实现""" converSting = "0123456789ABCDEF" if n < base: return converSting[n] else: return toStr(n // base, base) + converSting[n % base] if __name__ == '__main__': print(toStr(100, 16)) # 获取最大递归深度 import sys print(sys.getrecursionlimit()) # 1000
yxn4065/Data-structure-and-algorithm-Python-
13_递归-转换任意进制.py
13_递归-转换任意进制.py
py
468
python
en
code
0
github-code
6
6253113584
import torch import torch.nn as nn import torch.nn.functional as F from _polytope_ import Polytope, Face import utilities as utils from collections import OrderedDict import numpy as np import time import copy import convex_adversarial.convex_adversarial as ca import full_lp as flp class PLNN(nn.Module): #TODO: determine if building net addition was necessary # add some explanations for some methods """ Simple piecewise neural net. Fully connected layers and ReLus only """ def __init__(self, layer_sizes=None, bias=True, dtype=torch.FloatTensor): super(PLNN, self).__init__() if layer_sizes is None: layer_sizes = [32, 64, 128, 64, 32, 10] self.layer_sizes = layer_sizes self.dtype = dtype self.fcs = [] self.bias = bias self.net = self.build_network(layer_sizes) def build_network(self, layer_sizes): layers = OrderedDict() num = 1 for size_pair in zip(layer_sizes, layer_sizes[1:]): size, next_size = size_pair layer = nn.Linear(size, next_size, bias=self.bias).type(self.dtype) layers[str(num)] = layer self.fcs.append(layer) num = num + 1 layers[str(num)] = nn.ReLU() num = num + 1 del layers[str(num-1)] # No ReLU for the last layer net = nn.Sequential(layers).type(self.dtype) print(self.layer_sizes) return net def get_parameters(self): params = [] for fc in self.fcs: fc_params = [elem for elem in fc.parameters()] for param in fc_params: params.append(param) return params def config_str_to_config_list(self, config_str): """ Given str of configs, converts to list of torch tensors of right layer sizes """ assert isinstance(config_str, str) assert len(config_str) == sum(self.layer_sizes[1:-1]) splits = [] running_idx = 0 for el in self.layer_sizes[1:-1]: layer_config = config_str[running_idx:running_idx + el] layer_config = torch.Tensor([float(el) for el in layer_config]) # Do some cuda nonsense here? splits.append(layer_config) running_idx += el return splits def relu_config(self, x, return_pre_relus=True): pre_relus = self.forward_by_layer(x) configs = [(pre_relu.squeeze() > 0).type(torch.float32) for pre_relu in pre_relus] if return_pre_relus: return pre_relus, configs else: return configs def make_adversarial_constraints(self, polytope, true_label, domain): """ Given a config computes the linear map in terms of this config for all neurons INCLUDING the output neurons (logits) and generates the polytope constraints for the neuron config and constraints for each of the decision boundaries configs - as usual true_label - """ # Make all the adversarial_constraints: #if(x) = Ax + b (in R^#logits) # adversarial constraints are: # f_true(x) - f_j(x) = 0 (for all j != true) # ~ which is ~ # <a_true, x> + b_true - <a_j, x> - b_j = 0 # ~ which is ~ # <a_true - a_j, x> = b_j - b_true total_a = polytope.linear_map['A'] total_b = polytope.linear_map['b'] num_logits = total_a.shape[0] facets = [] true_a = total_a[true_label] true_b = total_b[true_label] for i in range(num_logits): if i == true_label: continue dec_bound = {'A': true_a - total_a[i], 'b': total_b[i] - true_b} new_facet = polytope.facet_constructor(None, facet_type='decision', extra_tightness=dec_bound) if new_facet.fast_domain_check(): facets.append(new_facet) return facets def compute_polytope_config(self, configs, comparison_form_flag=False, uncertain_constraints=None, as_tensor=False): lambdas = [torch.diag(config) for config in configs] js = [torch.diag(-2 * config + 1) for config in configs] # Compute Z_k = W_k * x + b_k for each layer wks = [self.fcs[0].weight] bks = [self.fcs[0].bias] for (i, fc) in enumerate(self.fcs[1:]): current_wk = wks[-1] current_bk = bks[-1] current_lambda = lambdas[i] precompute = fc.weight.matmul(current_lambda) wks.append(precompute.matmul(current_wk)) bks.append(precompute.matmul(current_bk) + fc.bias) a_stack = [] b_stack = [] for j, wk, bk in zip(js, wks, bks): a_stack.append(j.matmul(wk)) b_stack.append(-j.matmul(bk)) if as_tensor: return {'a_stack': a_stack, 'b_stack': b_stack, 'total_a': wks[-1], 'total_b': bks[-1]} polytope_A = utils.as_numpy(torch.cat(a_stack, dim=0)) polytope_b = utils.as_numpy(torch.cat(b_stack, dim=0)) if(comparison_form_flag): polytope_A, polytope_b = utils.comparison_form(polytope_A, polytope_b) return {'poly_a': polytope_A, 'poly_b': polytope_b, 'configs': configs, 'total_a': wks[-1], 'total_b': bks[-1] } def compute_polytope(self, x, comparison_form_flag=False, as_tensor=False): pre_relus, configs = self.relu_config(x, return_pre_relus=True) poly_out = self.compute_polytope_config(configs, comparison_form_flag, as_tensor=as_tensor) poly_out['pre_relus'] = pre_relus return poly_out def compute_matrix(self, configs): M = torch.eye(self.layer_sizes[0]) for config, fc, layer_size in zip(configs, self.fcs, self.layer_sizes): nullifier = torch.Tensor([config.numpy() for _ in range(0, layer_size)]) M_layer_prime = fc.weight * torch.transpose(nullifier, 0, 1) M = torch.matmul(M_layer_prime, M) M = torch.matmul(self.fcs[-1].weight, M) return M def forward_by_layer(self, x): pre_relus = [] x = x.view(-1, self.layer_sizes[0]) for fc in self.fcs[:-1]: x = fc(x) pre_relus.append(x.clone()) x = F.relu(x) return pre_relus def forward(self, x): x = x.view(-1, self.layer_sizes[0]) for fc in self.fcs[:-1]: x = F.relu(fc(x)) return self.fcs[-1](x) # No ReLu on the last one def compute_interval_bounds(self, domain_obj, compute_logit_bounds=False, as_tensor=False): """ For each neuron computes a bound for the range of values each pre-ReLU can take. ARGS: domain_obj : Domain - object used to hold bounding boxes on_off_format: boolean - if True, we return the more fine-grained list which displays if neurons are on or off, instead of stable RETURNS: returned_bounds : list of tensors giving pre-Relu bounds uncertain_set: list of tensors with 1 if uncertain about this neuron in the list list of length (# fully connected layers - 1), where each element is a tensor of shape (num_neurons, 2) for the bounds for the preReLU """ box = domain_obj.box_to_tensor() # setup + asserts assert all(box[:, 0] <= box[:, 1]) # Redoing this one more time # Redo this but doing it right : midpoint_matrix = torch.Tensor([[1.0], [1.0]]) / 2.0 ranges_matrix = torch.Tensor([[-1.0], [1.0]]) / 2.0 returned_bounds = [] dead_set = [] # list of tensors, 1 if always on or off working_bounds = box current_low, current_high = box[:, 0], box[:, 1] if compute_logit_bounds: layers_to_check = self.fcs else: layers_to_check = self.fcs[:-1] for fc in layers_to_check: weight, bias = fc.weight, fc.bias weight_pos, weight_neg = utils.split_tensor_pos(weight) new_high = (torch.matmul(weight_pos, current_high) + torch.matmul(weight_neg, current_low)) new_low = (torch.matmul(weight_pos, current_low) + torch.matmul(weight_neg, current_high)) if bias is not None: new_high += bias new_low += bias returned_bounds.append(torch.stack([new_low, new_high], dim=1)) current_low = F.relu(new_low) current_high = F.relu(new_high) if as_tensor: return returned_bounds else: return [utils.as_numpy(_) for _ in returned_bounds] def compute_improved_ia_bounds(self, domain_obj): """ Implements the improved interval bounds as presented here: https://arxiv.org/pdf/1809.03008.pdf (appendix C) [also done with gradients pushed through so we can build RS loss ] # CODE HEAVILY BORROWED FROM https://github.com/MadryLab/relu_stable/blob/master/models/MNIST_improved_ia.py # (but we're transposed from that code) """ box = domain_obj.box_to_tensor() init_lows = box[:, 0] init_highs = box[:, 1] assert all(init_lows <= init_highs) # assert lows less than highs layers_to_check = self.fcs[:-1] # set the intermed_lows, intermed_highs = [], [] # define the recursive call def recurs(layer_num, lows, highs, weights, biases): assert len(lows) == len(highs) == len(weights) == len(biases) == layer_num # current layer low = lows[0] high = highs[0] weight = weights[0] bias = biases[0] # Base case if layer_num == 1: weight_pos, weight_neg = utils.split_tensor_pos(weight) next_low = (torch.matmul(weight_pos, init_lows) + torch.matmul(weight_neg, init_highs) + bias) next_high = (toch.matmul(weight_pos, init_highs) + torch.matmul(weight_neg, init_lows) + bias) return next_low, next_high # Recursive case prev_weight = weights[1] prev_bias = biases[1] # Compute W_A, W_N (need to zero out COLUMNS here) w_a = torch.matmul(weight, (low > 0).diag_embed()) w_n = weight - w_a w_n_pos, w_n_neg = utils.split_tensor_pos(w_n) w_prod = torch.matmul(w_a, prev_weight) b_prod = torch.matmul(w_a, prev_bias) # Compute prev layer bounds prev_low = (torch.matmul(w_n_pos, low) + torch.matmul(w_n_neg, high) + bias) prev_high = (torch.matmul(w_n_pos, high) + torch.matmul(w_n_neg, low) + bias) # Recurse deeper_lows, deeper_highs = recurs(layer_num - 1, lows[1:], highs[1:], [w_prod] + weights[2:], [b_prod] + biases[2:]) return (prev_low + deeper_lows, prev_high + deeper_highs) # compute the lower and upper bounds for all neurons running_lows = [init_lows] running_highs = [init_highs] running_weights = [self.fcs[0].weight] running_biases = [self.fcs[0].bias] for layer_num, layer in enumerate(self.fcs[:-1]): new_lows, new_highs = recurs(layer_num + 1, running_lows, running_highs, running_weights, running_biases) running_lows = [new_lows] + running_lows running_highs = [new_highs] + running_highs running_weights = self.fcs[layer_num + 1].weight running_biases = self.fcs[layer_num + 1].bias return running_lows[::-1], running_highs[::-1] def compute_full_lp_bounds(self, domain_obj): """ Compute the full linear program values. Code here is in a different file """ return flp.compute_full_lp_bounds(self, domain_obj) def compute_dual_lp_bounds(self, domain_obj): """ Use KW to actually find the bounds. Uses L_inf bounds to help get better bounds """ low_bounds = torch.Tensor(domain_obj.box_low) high_bounds = torch.Tensor(domain_obj.box_high) midpoint = ((low_bounds + high_bounds) / 2.0).view(1, -1) box_bounds = (low_bounds, high_bounds) dual_net = ca.DualNetwork(self.net, midpoint, domain_obj.linf_radius,box_bounds=box_bounds).dual_net bounds, dead_set = [], [] for el in dual_net: if isinstance(el, ca.DualReLU): bounds.append(torch.cat((el.zl.view(-1, 1), el.zu.view(-1, 1)), dim=1)) dead_set.append(~el.I.squeeze()) return bounds def compute_dual_ia_bounds(self, domain_obj): """ Use both interval analysis and dual bounds to get best bounds """ ia = self.compute_interval_bounds(domain_obj) dd = self.compute_dual_lp_bounds(domain_obj) bounds = [] for i, d in zip(ia, dd): stacked = torch.stack((i, d)) new_lows = torch.max(stacked[:, :, 0], dim=0)[0] new_highs = torch.min(stacked[:, :, 1], dim=0)[0] new_bounds = torch.stack((new_lows, new_highs), dim=1) bounds.append(new_bounds) return bounds def fast_lip_all_vals(self, x, l_q, on_off_neurons): """ Does the fast_value for all possible c's """ num_logits = self.fcs[-1].out_features if not isinstance(x, torch.Tensor): true_label = self(torch.Tensor(x)).max(1)[1].item() else: true_label = self(x).max(1)[1].item() c_vecs, lip_values = [], [] for i in range(num_logits): if true_label == i: continue c_vec = torch.zeros(num_logits) c_vec[true_label] = 1.0 c_vec[i] = -1.0 lip_value = self.fast_lip(c_vec, l_q, on_off_neurons) c_vecs.append(c_vec) lip_values.append(lip_value) return c_vecs, lip_values def fast_lip(self, c_vector, l_q, on_off_neurons): """ Pytorch implementation of fast_lip. Might be buggy? Who knows? see : https://arxiv.org/pdf/1804.09699.pdf for details INPUTS: c_vector: tensor that multiplies the output vector: we compute gradient of c^Tf(x) l_q : int - q_norm of lipschitzness that we compute (is dual norm: e.g. if bounds come from an l_inf box, this should be 1) on_off_neurons : list of LongTensors (entries in -1, 0 or 1) corresponding to the set of (off, uncertain, on, respectively) neurons inside the domain RETURNS: upper bound on lipschitz constant """ ###################################################################### # First generate inputs needed by fast_lip algorithm # ###################################################################### # --- split off active and uncertain neurons # -1 means off (don't care) # 0 means UNCERTAIN # 1 means ACTIVE active_neuron_list, uncertain_neuron_list = [], [] for neuron_by_layer in on_off_neurons: active_neuron_list.append((neuron_by_layer == 1)) uncertain_neuron_list.append((neuron_by_layer == 0)) # --- get list of weights, initialize placeholders weights = [layer.weight for layer in self.fcs[:-1]] weights.append(c_vector.matmul(self.fcs[-1].weight).view(1, -1)) constant_term = weights[0] lowers = [torch.zeros_like(constant_term)] uppers = [torch.zeros_like(constant_term)] ###################################################################### # Loop through layers using the _bound_layer_grad subroutine # ###################################################################### for i in range(len(weights) - 1): subroutine_out = self._bound_layers_grad(constant_term, lowers[-1], uppers[-1], weights[i + 1], active_neuron_list[i], uncertain_neuron_list[i]) constant_term, upper, lower = subroutine_out lowers.append(lower) uppers.append(upper) ###################################################################### # Finalize and return the output # ###################################################################### low_bound = (constant_term + lowers[-1]).abs() upp_bound = (constant_term + uppers[-1]).abs() layerwise_max = torch.where(low_bound > upp_bound, low_bound, upp_bound) return torch.norm(layerwise_max, p=l_q).item() def _bound_layers_grad(self, constant_term, lower, upper, weight, active_neurons, uncertain_neurons): """ Subroutine for fast_lip. Assume weight has shape [m, n] ARGS: (let's make sure the types and shapes all mesh) constant_term: floatTensor shape (n, n_0) lower: floatTensor shape (n, n_0) upper: floatTensor shape (n, n_0) weight: floatTensor shape (m, n) active_neurons: torch.Tensor shape (n,) uncertain_neurons: torch.Tensor shape (n,) RETURNS: new constant term, lower, and upper, each with shape (m, n_0) """ # ASSERTS ON SHAPES FOR DEBUGGING n_0 = self.layer_sizes[0] n = weight.shape[1] assert constant_term.shape == (n, n_0) assert lower.shape == (n, n_0) assert upper.shape == (n, n_0) assert active_neurons.shape == (n,) assert uncertain_neurons.shape == (n,) # Make diagonals and split weights by +/- active_diag = torch.diag(active_neurons).float() uncertain_diag = torch.diag(uncertain_neurons).float() pos_weight, neg_weight = utils.split_tensor_pos(weight) # Compute the new constant_term new_constant_term = weight.matmul(active_diag).matmul(constant_term) # Make new upper bounds/lower bounds cons_low = constant_term + lower _, neg_cons_low = utils.split_tensor_pos(cons_low) cons_upp = constant_term + upper pos_cons_upp, _ = utils.split_tensor_pos(cons_upp) new_upper = (pos_weight.matmul(active_diag).matmul(upper) + neg_weight.matmul(active_diag).matmul(lower) + neg_weight.matmul(uncertain_diag).matmul(neg_cons_low) + pos_weight.matmul(uncertain_diag).matmul(pos_cons_upp)) new_lower = (pos_weight.matmul(active_diag).matmul(lower) + neg_weight.matmul(active_diag).matmul(upper) + pos_weight.matmul(uncertain_diag).matmul(neg_cons_low) + neg_weight.matmul(uncertain_diag).matmul(pos_cons_upp)) return new_constant_term, new_upper, new_lower class PLNN_seq(PLNN): """ Simple piecewise neural net. Fully connected layers and ReLus only built from nn.Sequential """ def __init__(self, sequential, layer_sizes, dtype=torch.FloatTensor): super(PLNN_seq, self).__init__(layer_sizes, dtype) self.fcs = [layer for layer in sequential if type(layer) == nn.Linear] self.net = sequential class LinearRegionCollection(object): """ Takes a ReturnObj and builds a lot of linear regions and stores them """ def __init__(self, plnn_obj, return_obj, objective_vec=None, do_setup=False): self.plnn_obj = plnn_obj self.return_obj = return_obj self.collection = {} for config in return_obj.seen_polytopes: self.collection[config] = LinearRegion(plnn_obj, config, return_obj=return_obj, objective_vec=objective_vec, do_setup=do_setup) def get_maximum_lipschitz_constant(self): return max(_.get_lipschitz_constant() for _ in self.collection.values()) def gradient_angle_list(self): """ Gets the gradient angles between neighboring linear regions """ angle_list = {} for (u, v) in self.return_obj.polytope_graph.keys(): u_grad = self.collection[u].get_gradient() v_grad = self.collection[v].get_gradient() angle_list[(u, v)] = utils.angle(u_grad, v_grad) return angle_list def gradient_magnitude_diff_list(self, grad_fxn=None): """ Gets the magnitude of gradient difference between neighboring linear regions """ if grad_fxn is None: grad_fxn = lambda u, v: torch.norm(u - v).item() output = {} for (u, v) in self.return_obj.polytope_graph.keys(): u_grad = self.collection[u].get_gradient() v_grad = self.collection[v].get_gradient() output[(u, v)] = grad_fxn(u_grad, v_grad) return output def get_greedy_lipschitz_components(self): """ Returns dict of str -> [str1, ..., ] mapping locally maximal linear regions to the set of regions that will greedily approach this local max """ # Let's just be really naive about this def get_ascent_neighbor(node): """ Gets the neighbor that has highest lipschitz constant Returns None if nothing has higher than this one """ current = node.get_lipschitz_constant() neighbors = [(_, _.get_lipschitz_constant()) for _ in node.get_neighbors()] max_neighbor = max(neighbors, key=lambda p: p[1]) if max_neighbor[1] > current: return max_neighbor[0] return None def greedy_search_single_node(start_config): """ Start with a single sign_config and do greedy search to find max_lipschitz constant. Return the sign_config of the greedy search output """ current_node = self.collection[start_config] while True: next_node = get_ascent_neighbor(current_node) if next_node is None: break else: current_node = next_node return current_node.sign_config greedy_output = {} for config in self.collection.keys(): greedy_parent = greedy_search_single_node(config) if greedy_parent not in greedy_output: greedy_output[greedy_parent] = [] greedy_output[greedy_parent].append(config) return greedy_output class LinearRegion(object): """ Holds info and shortcuts to work with linear regions """ @classmethod def process_return_obj(cls, plnn_obj, return_obj, objective_vec=None, do_setup=False): """ Given a GeoCertReturn object, will build a linear region for all of the 'seen polytopes' and return the outputs in a dict keyed on teh sign_configs """ output = {} for config in return_obj.seen_polytopes: output[config] = cls(plnn_obj, config, return_obj=return_obj, objective_vec=objective_vec, do_setup=do_setup) return output def __init__(self, plnn_obj, sign_config, return_obj=None, objective_vec=None, do_setup=False): """ Initializes a Linear Region object ARGS: plnn_obj - the network this region is linear for sign_config - the neuron configuration of the region return_obj : GeoCertReturn object - if not None is an output of GeoCert which contains info about the linear regions. """ super(LinearRegion, self).__init__() self.plnn_obj = plnn_obj self.sign_config = sign_config self.hex_config = hex(int(self.sign_config, 2)) self.return_obj = return_obj self.objective_vec = objective_vec # setting up attributes to be stored later self._polytope_config = None self.polytope = None self.linear_map = None self.jacobian = None self.largest_sv = None if do_setup: self.setup() def __repr__(self): return "LinearRegion: %s" % self.hex_config def get_neighbors(self): """ If the return obj is not None, will error. Otherwise will return a list of neighboring LinearRegion objects """ assert self.return_obj is not None neigbor_list = [] for edge in self.return_obj.polytope_graph: if self.sign_config == edge[0]: neigbor_idx = 1 elif self.sign_config == edge[1]: neigbor_idx = 0 else: continue neigbor_list.append(edge[neigbor_idx]) return [LinearRegion(self.plnn_obj, neigbor_config, return_obj=self.return_obj, objective_vec=self.objective_vec) for neigbor_config in neigbor_list] def _get_polytope_config(self): if self._polytope_config is not None: return self._polytope_config plnn_obj = self.plnn_obj config = plnn_obj.config_str_to_config_list(self.sign_config) self._polytope_config = plnn_obj.compute_polytope_config(config) return self._polytope_config def setup(self): self.get_polytope() self.get_linear_map() self.get_jacobian() self.get_largest_singular_value() def get_polytope(self): """ For this linear region will return the polytope for which the neural net satisfies the given neuron configuration """ if self.polytope is not None: return self.polytope _polytope_config = self._get_polytope_config() self.polytope = {'A': _polytope_config['poly_a'], 'b': _polytope_config['poly_b']} return self.polytope def get_linear_map(self): """ For this linear region will return a torch.nn.Linear object corresponding to the linear map at this neuron configuration """ if self.linear_map is not None: return self.linear_map _polytope_config = self._get_polytope_config() A = nn.Parameter(_polytope_config['total_a']) b = nn.Parameter(_polytope_config['total_b']) linear_map = nn.Linear(*A.shape) linear_map.weight = A linear_map.bias = b self.linear_map = linear_map return self.linear_map def get_jacobian(self): """ For this linear region will get the jacobian at this linear piece """ if self.jacobian is not None: return self.jacobian linear_map = self.get_linear_map() self.jacobian = linear_map.weight return self.jacobian def get_largest_singular_value(self): """ Will return the largest singular value of the jacobian of this linear region """ if self.largest_sv is not None: return self.largest_sv jacobian = self.get_jacobian() self.largest_sv = jacobian.svd().S[0].item() return self.largest_sv def get_gradient(self): assert self.objective_vec is not None return self.objective_vec.matmul(self.get_jacobian()) def get_lipschitz_constant(self): if self.objective_vec is not None: return self.objective_vec.matmul(self.get_jacobian()).norm().item() else: return self.get_largest_singular_value()
revbucket/geometric-certificates
plnn.py
plnn.py
py
29,208
python
en
code
40
github-code
6
71645960508
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('', views.index, name="index"), path('detalhes/<int:pk>/<slug:slug>', views.detail, name="details"), path('post/novo/', views.post, name="new_post"), path('editar/post/<int:pk>', views.edit, name="edit"), path('filter/<int:pk>/<str:username>', views.filter, name="filter"), path('search/', views.search, name="search"), path('delete/<int:pk>', views.delete, name="delete_post"), path('contato/', views.contato, name="contato"), ]
eduardoferreira97/Blog
blog/urls.py
urls.py
py
553
python
en
code
1
github-code
6
43371048993
import pygame from pygame.locals import KEYDOWN, K_ESCAPE, QUIT from os import path import parameters.enums as en from Objects.player import Player, Wall from Objects.map import Map from Objects.robot import Robot import numpy as np from Objects.machinery import Machinery, Destiny import sys import torch from Objects.utils import GameBuffer import pickle class Game(pygame.sprite.Sprite): SCORE = 0 def __init__(self): pygame.init() self.screen = pygame.display.set_mode((en.WIDTH, en.HEIGHT)) self.clock = pygame.time.Clock() self.load_data() self.checkpoint = "robotCheckpoint" if path.exists("robotCheckpoint") else None def load_data(self): game_folder = path.dirname(__file__) self.map = Map(game_folder + "/Static/map.txt") def new(self): """Initialize all variables.""" self.buffer = GameBuffer() self.allSprites = pygame.sprite.Group() self.machineryParts = pygame.sprite.Group() self.destination = pygame.sprite.Group() self.robots = pygame.sprite.Group() self.walls = pygame.sprite.Group() self.part = Machinery(self) for j, row in enumerate(self.map.data): for i, col in enumerate(row): if col == "1": Wall(self, i, j) elif col == "D": self.destiny = Destiny(self, i, j) elif col == "P": self.player = Player(self, self.buffer, i, j) elif col == "R": self.robot = Robot(self, self.buffer, i, j, self.checkpoint) def quit(self): pygame.quit() sys.exit() def events(self): for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_ESCAPE: self.robot.save() self.quit() if event.type == QUIT: self.robot.save() self.quit() def get_screen(self): screen = pygame.transform.scale(self.screen, (60, 60)) screen = np.array(pygame.surfarray.array3d(screen)) screen = screen.transpose((2, 1, 0)) return torch.from_numpy(screen) def run(self): self.playing = True prevScore = self.SCORE while self.playing: self.dt = self.clock.tick(en.FPS) / 1000 screenMatrix = self.get_screen() self.events() self.updates(windowPixel=screenMatrix) self.draw() if prevScore != self.SCORE: self.robot.train() prevScore = self.SCORE def updates(self, **args): for sprite in self.allSprites: if isinstance(sprite, Robot) or isinstance(sprite, Player): sprite.update(args["windowPixel"]) else: sprite.update() def draw_grid(self): for x in range(0, en.WIDTH, en.TILE_SIZE): pygame.draw.line(self.screen, en.LIGHTGREY, (x, 0), (x, en.HEIGHT)) for y in range(0, en.HEIGHT, en.TILE_SIZE): pygame.draw.line(self.screen, en.LIGHTGREY, (0, y), (en.WIDTH, y)) def draw(self): self.screen.fill(en.BGCOLOR) self.draw_grid() self.allSprites.draw(self.screen) pygame.display.flip() g = Game() while True: g.new() g.run()
anfego22/rele
main.py
main.py
py
3,394
python
en
code
0
github-code
6
74479990587
import json from random import uniform import matplotlib.pyplot as plt class Scanner: def __init__(self, data_filename, n_neighbours): self.data_filename = data_filename self.n_neighbours = n_neighbours def scanner(self, visualize_data=False): f = open(self.data_filename, encoding="utf-8") content = f.read() data = json.loads(content) data = sorted(data, key=lambda x: x["coordinates"]) avg_area_price = 0 result = [] differences = [] for apartment in range(len(data)): avg_neigh_price = 0 neighbours = self.find_neighbours(data[apartment], data) for n in neighbours: avg_neigh_price += n["price"] avg_neigh_price /= self.n_neighbours if data[apartment]["price"] < avg_neigh_price: # append apartment data and difference between # average prices of neighbours and apartment price result.append( [data[apartment], avg_neigh_price - data[apartment]["price"]] ) avg_area_price += data[apartment]["price"] differences.append([data[apartment], neighbours]) avg_area_price /= len(data) for el in result: # append difference between average price in search area # and apartment price (profitability) el.append(avg_area_price - el[0]["price"]) # sort data by apartment profitability result = sorted(result, key=lambda x: x[1], reverse=True) if visualize_data: self.visualize_n_neighbours(differences) return result def find_neighbours(self, apartment, data): data = sorted( data, key=lambda x: ( (apartment["coordinates"][0] - x["coordinates"][0]) ** 2 + (apartment["coordinates"][1] - x["coordinates"][1]) ** 2 ) ** 0.5, ) neighbours = data[: self.n_neighbours] return neighbours @staticmethod def visualize_n_neighbours(differences): colors = ["b", "g", "r", "c", "m", "y", "k"] colors_i = 0 for diff in differences: color = colors[colors_i % len(colors)] colors_i += 1 el_coord = diff[0]["coordinates"] for i in range(len(diff[1])): diff_coord = diff[1][i]["coordinates"] # add small number to coordinates so that lines on plot do not overlap d = uniform(0.003, 0.005) plt.plot( [el_coord[0] + d, diff_coord[0] + d], [el_coord[1] + d, diff_coord[1] + d], "-ro", color=color, ) plt.show()
SergeyBurik/profitable_apartments_parser
profitable_apartments_parser/scanner/scanner.py
scanner.py
py
2,832
python
en
code
0
github-code
6
44531751826
from __future__ import unicode_literals import frappe from frappe import _ def execute(filters=None): columns, data = [], [] columns=get_columns() data=get_data(filters,columns) return columns, data def get_columns(): return [ { "label": _("Loan"), "fieldname": "name", "fieldtype": "Link", "options": "Bank Loan", "width": 120 }, { "label": _("Provider Bank"), "fieldname": "loan_type", "fieldtype": "Link", "options": "Loan Type", "width": 120 }, { "label": _("Drawn Bank"), "fieldname": "bank_account", "fieldtype": "Link", "options": "Bank", "width": 100 }, { "label": _("Status"), "fieldname": "status", "fieldtype": "Data", "width": 120 }, { "label": _("Loan Amount"), "fieldname": "loan_amount", "fieldtype": "Currency", "width": 100 }, { "label": _("Posting Date"), "fieldname": "posting_date", "fieldtype": "Date", "width": 120 }, { "label": _("Start Date"), "fieldname": "repayment_start_date", "fieldtype": "Date", "width": 120 }, { "label": _("Payment Freq"), "fieldname": "payment_frequency", "fieldtype": "Data", "width": 120 }, { "label": _("Repayment Amount"), "fieldname": "repayment_amount", "fieldtype": "Currency", "width": 120 }, { "label": _("Rate Of Interest %"), "fieldname": "rate_of_interest", "fieldtype": "Float", "width": 100 }, { "label": _("Periods / Paid"), "fieldname": "periods_paid", "fieldtype": "Data", "width": 100 }, { "label": _("Administrative Expenses Amount"), "fieldname": "administrative_expenses_amount", "fieldtype": "Currency", "width": 120 }, { "label": _("Total Principal Payable"), "fieldname": "total_principal_payable", "fieldtype": "Currency", "width": 120 }, { "label": _("Total Principal Paid"), "fieldname": "total_principal_paid", "fieldtype": "Currency", "width": 120 }, { "label": _("Total Interest Payable"), "fieldname": "total_interest_payable", "fieldtype": "Currency", "width": 120 }, { "label": _("Total Interest Paid"), "fieldname": "total_interest_paid", "fieldtype": "Currency", "width": 120 }, { "label": _("Total Payable Amount"), "fieldname": "total_payment", "fieldtype": "Currency", "width": 120 }, { "label": _("Total Amount Paid"), "fieldname": "total_amount_paid", "fieldtype": "Currency", "width": 120 } ] def get_data(filters, columns): item_price_qty_data = [] item_price_qty_data = get_item_price_qty_data(filters) return item_price_qty_data def get_item_price_qty_data(filters): conditions = "" if filters.get("from_date"): conditions += " and a.posting_date>=%(from_date)s" if filters.get("to_date"): conditions += " and a.posting_date<=%(to_date)s" if filters.get("loan_type"): conditions += " and a.loan_type=%(loan_type)s" item_results = frappe.db.sql(""" select a.name as name, a.loan_type as loan_type, a.bank_account as bank_account, a.status as status, a.loan_amount as loan_amount, a.posting_date as posting_date, a.repayment_start_date as repayment_start_date, a.payment_frequency as payment_frequency, a.repayment_amount as repayment_amount, a.rate_of_interest as rate_of_interest, a.administrative_expenses_amount as administrative_expenses_amount, a.total_principal_payable as total_principal_payable, a.total_principal_paid as total_principal_paid, a.total_interest_payable as total_interest_payable, a.total_interest_paid as total_interest_paid, a.total_payment as total_payment, CONCAT_WS(" / ",a.no_of_repayments, (select count(name) from `tabBank Loan Repayment Schedule` b where b.parent = a.name and b.is_paid =1)) as periods_paid, a.total_amount_paid as total_amount_paid from `tabBank Loan` a where docstatus =1 {conditions} """ .format(conditions=conditions), filters, as_dict=1) #price_list_names = list(set([item.price_list_name for item in item_results])) #buying_price_map = get_price_map(price_list_names, buying=1) #selling_price_map = get_price_map(price_list_names, selling=1) result = [] if item_results: for item_dict in item_results: data = { 'name': item_dict.name, 'loan_type': item_dict.loan_type, 'bank_account': item_dict.bank_account, 'status': item_dict.status, 'loan_amount': item_dict.loan_amount, 'posting_date': item_dict.posting_date, 'repayment_start_date': item_dict.repayment_start_date, 'payment_frequency': item_dict.payment_frequency, 'repayment_amount': item_dict.repayment_amount, 'rate_of_interest': item_dict.rate_of_interest, 'administrative_expenses_amount': item_dict.administrative_expenses_amount, 'total_principal_payable': item_dict.total_principal_payable, 'total_principal_paid': item_dict.total_principal_paid, 'total_interest_payable': item_dict.total_interest_payable, 'total_interest_paid': item_dict.total_interest_paid, 'total_payment': item_dict.total_payment, 'periods_paid': item_dict.periods_paid, 'total_amount_paid': item_dict.total_amount_paid, } result.append(data) return result def get_price_map(price_list_names, buying=0, selling=0): price_map = {} if not price_list_names: return price_map rate_key = "Buying Rate" if buying else "Selling Rate" price_list_key = "Buying Price List" if buying else "Selling Price List" filters = {"name": ("in", price_list_names)} if buying: filters["buying"] = 1 else: filters["selling"] = 1 pricing_details = frappe.get_all("Item Price", fields = ["name", "price_list", "price_list_rate"], filters=filters) for d in pricing_details: name = d["name"] price_map[name] = { price_list_key :d["price_list"], rate_key :d["price_list_rate"] } return price_map
erpcloudsystems/ecs_bank_loans
ecs_bank_loans/ecs_bank_loans/report/bank_loan_report/bank_loan_report.py
bank_loan_report.py
py
5,926
python
en
code
0
github-code
6
36848412423
import hashlib import random import sqlite3 from typing import List, Optional import more_itertools import numpy as np import pandas as pd import scipy.spatial import skimage.transform from carla_real_traffic_scenarios import DT from carla_real_traffic_scenarios.ngsim import DatasetMode from carla_real_traffic_scenarios.opendd.dataset import OpenDDDataset, Place from carla_real_traffic_scenarios.utils.carla import RealTrafficVehicle, find_best_matching_model from carla_real_traffic_scenarios.utils.transforms import Transform, Vector3, Vector2 def extract_utm_trajectory_from_df(df) -> List[Transform]: trajectory = df[['UTM_X', 'UTM_Y', 'UTM_ANGLE']].values return [Transform(Vector3(x, y, 0), Vector2(np.cos(angle), np.sin(angle))) for x, y, angle in trajectory] class Utm2CarlaMapper: def __init__(self, place: Place): image_middle = np.array(place.image_size) // 2 pix2utm_transform = skimage.transform.AffineTransform(np.array( [[place.world_params[0], place.world_params[2], place.world_params[4]], [place.world_params[1], place.world_params[3], place.world_params[5]], [0, 0, 1]])) self.pix2utm_transformer = pix2utm_transform utm2pix_transform = skimage.transform.AffineTransform(pix2utm_transform._inv_matrix) self.utm2pix_transformer = utm2pix_transform map_center_utm = np.array(place.map_center_utm.as_numpy()[:2]) reflect_matrix = np.array([[1, 0, 0], [0, -1, 0], [0, 0, 1]], dtype='float32') # reflect over Y axis self.utm2carla_transformer = skimage.transform.AffineTransform(translation=-map_center_utm) + \ skimage.transform.AffineTransform(matrix=reflect_matrix) + \ place.correction_transform def utm2pix(self, transform: Transform): return self._transform_with_convert(transform, self.utm2pix_transformer) def pix2utm(self, transform: Transform): return self._transform_with_convert(transform, self.pix2utm_transformer) def utm2carla(self, transform: Transform): return self._transform_with_convert(transform, self.utm2carla_transformer) def _transform_with_convert(self, transform: Transform, transformer: skimage.transform.AffineTransform): position = transform.position.as_numpy()[:2] position = position.reshape(-1, 2) orientation = transform.orientation.as_numpy() orientation = orientation.reshape(-1, 2) position, orientation = self.transform(position, orientation, transformer) position = Vector2.from_numpy(position.squeeze()).to_vector3(0) orientation = Vector2.from_numpy(orientation.squeeze()) return Transform(position, orientation) def transform(self, positions: np.ndarray, orientations: np.ndarray, transformer: skimage.transform.AffineTransform): orientations = positions + orientations positions = transformer(positions) orientations = transformer(orientations) orientations = orientations - positions return positions, orientations class OpenDDVehicle: def __init__(self, df, transformer) -> None: self._df = df self.id = int(df.OBJID.iloc[0]) self.width_m = float(df.WIDTH.iloc[0]) self.length_m = float(df.LENGTH.iloc[0]) self._model = find_best_matching_model(self.width_m, self.length_m) self._frame = 0 self._transformer = transformer self._max_frame = len(df) self.trajectory_utm = extract_utm_trajectory_from_df(self._df) self.trajectory_carla = self._map_trajectory_to_carla(self.trajectory_utm) def set_end_of_trajectory_timestamp(self, timestamp_end_s): df = self._df df = df[df.TIMESTAMP < timestamp_end_s] self._max_frame = len(df) self.trajectory_utm = extract_utm_trajectory_from_df(df) self.trajectory_carla = self._map_trajectory_to_carla(self.trajectory_utm) self._df = df def step(self): self._frame += 1 @property def type_id(self): return self._model.type_id @property def speed_mps(self): return self._df.V.iloc[self._frame] @property def velocity(self): return (self.transform_carla.orientation * self.speed_mps).to_vector3(0) @property def transform_utm(self): return self.trajectory_utm[self._frame] @property def transform_carla(self): return self.trajectory_carla[self._frame] @property def has_finished(self) -> bool: return self._frame >= self._max_frame - 1 def as_real_traffic_car(self): timestamp = self._df.TIMESTAMP.iloc[self._frame] debug_string = f'id={self.id} fm={self._frame} ts={timestamp:0.2f}' return RealTrafficVehicle(self.id, self.type_id, timestamp, self.width_m, self.length_m, self.transform_carla, self.speed_mps, debug_string) def _map_trajectory_to_carla(self, trajectory_utm) -> List[Transform]: trajectory_carla = [] for transform_utm in trajectory_utm: transform_carla = self._transformer.utm2carla(transform_utm) transform_carla = \ Transform(transform_carla.position.with_z(self._model.z_offset), transform_carla.orientation) trajectory_carla.append(transform_carla) return trajectory_carla MIN_EPISODE_LENGTH_STEPS = 10 / DT def _resample_df(df, target_timedelta_s): # create timedelta index from TIMESTAMP column (pd.Grouper uses it) df = df.set_index(pd.TimedeltaIndex(df.TIMESTAMP, 's')) # group by OBJID and resample TimedeltaIndex to target fps freq_ms = int(target_timedelta_s * 1000) grouper = df.groupby([pd.Grouper(freq=f'{freq_ms}ms'), 'OBJID']) df = grouper.first() # take last observation from grouped bins df = df.reset_index(level=['OBJID']) # recover OBJID column df['TIMESTAMP'] = df.index.to_series().dt.total_seconds() return df def _find_ego_vehicle_with_time_frame(place, session_df, ego_id=None): all_objids = list(set(session_df.OBJID.to_list())) explicit_ego_id = ego_id is not None while True: ego_id = ego_id if explicit_ego_id else random.choice(all_objids) obj_df = session_df[session_df.OBJID == ego_id] start_idx, stop_idx = _trim_trajectory_utm_to_entry_end_exit(place, obj_df) if not explicit_ego_id and (start_idx is None or stop_idx is None or start_idx >= stop_idx): continue timestamp_start_s = obj_df.iloc[start_idx].TIMESTAMP if start_idx is not None else None timestamp_end_s = obj_df.iloc[stop_idx].TIMESTAMP if stop_idx is not None else None return ego_id, timestamp_start_s, timestamp_end_s def _trim_trajectory_utm_to_entry_end_exit(place, obj_df): exits_utm = np.array([exit.as_numpy() if exit else np.zeros(2) for entry, exit in place.roads_utm]) entries_utm = np.array([entry.as_numpy() if exit else np.zeros(2) for entry, exit in place.roads_utm]) trajectory_utm = obj_df[['UTM_X', 'UTM_Y']].values dm_entries = scipy.spatial.distance_matrix(entries_utm, trajectory_utm) entries_distances_m = np.min(dm_entries, axis=1) nearest_entry_idx = np.argmin(entries_distances_m) # idx of nearest entry # trajectory idx where vehicle pass nearest roundabout entry trajectory_start_idx = np.argmin(dm_entries[nearest_entry_idx]) min_distance_from_nearest_entry = dm_entries[nearest_entry_idx][trajectory_start_idx] MAX_DISTANCE_FROM_WP_M = 2 PRE_ENTRY_DISTANCE_M = 20 # ensure that it passes entry not more than MAX_DISTANCE_FROM_WP_M if min_distance_from_nearest_entry > MAX_DISTANCE_FROM_WP_M: trajectory_start_idx = None elif trajectory_start_idx > 0: # take 1st index from part of trajectory distanced not more than PRE_ENTRY_DISTANCE_M trajectory_start_idx = np.where( dm_entries[nearest_entry_idx][:trajectory_start_idx] < PRE_ENTRY_DISTANCE_M )[0][0] dm_exits = scipy.spatial.distance_matrix(exits_utm, trajectory_utm) exit_distances_m = np.min(dm_exits, axis=1) nearest_exit_idx = np.argmin(exit_distances_m) trajectory_end_idx = np.argmin(dm_exits[nearest_exit_idx]) min_distance_from_nearest_exit = dm_exits[nearest_exit_idx][trajectory_end_idx] # ensure that it passes exit not more than MAX_DISTANCE_FROM_WP_M if min_distance_from_nearest_exit > MAX_DISTANCE_FROM_WP_M: trajectory_end_idx = None else: trajectory_end_idx = trajectory_end_idx + np.where( dm_exits[nearest_exit_idx][trajectory_end_idx:] < PRE_ENTRY_DISTANCE_M )[0][-1] return trajectory_start_idx, trajectory_end_idx def _determine_split(session_name, ego_id, start, stop) -> DatasetMode: split_frac = 0.8 start, stop = int(round(start, 0)), int(round(stop, 0)) hash_num = int(hashlib.sha1(f'{session_name},{ego_id},{start},{stop}'.encode('utf-8')).hexdigest(), 16) if (hash_num % 100) / 100 < split_frac: return DatasetMode.TRAIN else: return DatasetMode.VALIDATION class OpenDDRecording(): def __init__(self, *, dataset: OpenDDDataset, timedelta_s: float = DT, dataset_mode: DatasetMode = DatasetMode.TRAIN) -> None: self._dataset = dataset self._dataset_mode = dataset_mode self._env_vehicles = {} self._df: Optional[pd.DataFrame] = None self._frame = 0 self._timedelta_s = timedelta_s self._timestamps = [] self._session_name: Optional[str] = None self._transformer: Optional[Utm2CarlaMapper] = None def reset(self, session_name, seed=None): if self._df is not None: del self._df self._session_name = session_name with sqlite3.connect(self._dataset.db_path) as conn: df = pd.read_sql(f'select * from {session_name}', conn) # for now do not extract pedestrians, bicycles and trailers df = df[~df.CLASS.str.contains('Pedestrian|Bicycle|Trailer')] df = _resample_df(df, self._timedelta_s) self._timestamps = np.arange(df.TIMESTAMP.min(), df.TIMESTAMP.max() + self._timedelta_s, self._timedelta_s) self._df = df # search for train/validation roundabout pass dataset_mode = None if seed is not None: random.seed(seed) while dataset_mode != self._dataset_mode: ego_id, timestamp_start_s, timestamp_end_s = _find_ego_vehicle_with_time_frame(self.place, self._df) dataset_mode = _determine_split(session_name, ego_id, timestamp_start_s, timestamp_end_s) self._frame = np.where(np.isclose(self._timestamps, timestamp_start_s, 0.0001))[0][0] + 1 self._env_vehicles = {} self._transformer = Utm2CarlaMapper(self.place) return ego_id, timestamp_start_s, timestamp_end_s def step(self) -> List[RealTrafficVehicle]: timestamp_s = self._timestamps[self._frame] vehicles_current_ids = self._df[ np.isclose(self._df.TIMESTAMP, timestamp_s) ].OBJID.to_list() for vehicle_id in vehicles_current_ids: if vehicle_id not in self._env_vehicles: # TODO: check if x/y smoothing is not required (in ngsim dataset there is smoothing in 15 frames wnd) new_vehicle_df = self._df[ (self._df.OBJID == vehicle_id) & ((self._df.TIMESTAMP >= timestamp_s) | np.isclose(self._df.TIMESTAMP, timestamp_s)) ] self._env_vehicles[vehicle_id] = OpenDDVehicle(new_vehicle_df, self._transformer) self._env_vehicles = {k: v for k, v in self._env_vehicles.items() if not v.has_finished} real_traffic_vehicles = [v.as_real_traffic_car() for v in self._env_vehicles.values()] if real_traffic_vehicles: if len(real_traffic_vehicles) > 1: assert all([ np.isclose(v1.timestamp_s, v2.timestamp_s) for v1, v2 in more_itertools.windowed(real_traffic_vehicles, 2) ]), ( self._session_name, [v.debug for v in real_traffic_vehicles], ) assert np.isclose(real_traffic_vehicles[0].timestamp_s, timestamp_s), \ (real_traffic_vehicles[0].timestamp_s, timestamp_s) self._frame += 1 for v in self._env_vehicles.values(): v.step() return real_traffic_vehicles def close(self): pass @property def place(self) -> Place: place_name = self._session_name.split('_')[0] return self._dataset.places[place_name] @property def session_name(self) -> str: return self._session_name @property def timestamp_s(self) -> float: return self._timestamps[self._frame] @property def transformer(self): return self._transformer def get_df_by_objid(self, ego_id): return self._df[self._df.OBJID == ego_id] @property def has_finished(self): return self._frame >= len(self._timestamps) - 1
deepsense-ai/carla-real-traffic-scenarios
carla_real_traffic_scenarios/opendd/recording.py
recording.py
py
13,416
python
en
code
67
github-code
6
35539138268
from django.http import JsonResponse from .models import Task def _get_all_tasks(): task_objects = Task.objects.all()[:30] tasks = [] for task_obj in task_objects: task = task_obj.get_as_dict() tasks.append(task) return tasks def index(request): if request.method == 'GET': return get_all(request) elif request.method == 'POST': code = 200 error = None task_for_response = None task_description = request.POST.get('task[description]') task_category = request.POST.get('task[category]') task_date_added = request.POST.get('task[dateAdded]') if (task_description is None) or (task_category is None)\ or (task_date_added is None): code = 400 error = 'No task data submitted' else: task = Task() task.description = task_description task.category = task_category task.date_added = task_date_added task.save() task_for_response = task.get_as_dict() response = { 'task': task_for_response, 'code': code, 'error': error } return JsonResponse(response) def get_all(request): tasks = _get_all_tasks() response = { "tasks": tasks, "code": 200 } return JsonResponse(response) def update_task(request, task_id): code = 200 error = None task_for_response = None task = Task.objects.get(id=task_id) if task is None: code = 404 error = f'No task found for id {task_id}' else: task_description = request.POST.get('task[description]') task_category = request.POST.get('task[category]') task_completed = request.POST.get('task[completed]') if (task_description is None) or (task_category is None)\ or (task_completed is None): code = 400 error = 'No task data submitted' else: task.description = task_description task.category = task_category task.completed = task_completed in ('true', 'True', '1') task.save() task_for_response = task.get_as_dict() response = { 'task': task_for_response, 'code': code, 'error': error } return JsonResponse(response) def delete_completed(request): Task.objects.filter(completed=True).delete() return get_all(request)
bluepostit/django-js-todo
todos/views.py
views.py
py
2,483
python
en
code
0
github-code
6
16373544563
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense , Dropout , Lambda, Flatten from keras.optimizers import Adam ,RMSprop from sklearn.model_selection import train_test_split from sklearn import cross_validation from keras import backend as K from keras.preprocessing.image import ImageDataGenerator from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers.core import Lambda , Dense, Flatten, Dropout from keras.callbacks import EarlyStopping from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import RMSprop from keras.preprocessing import image import tensorflow as tf ##Reading Data def contrast(x): if float(x)>205: return 1 elif float(x)<50: return 0 else: return float(x)/255 train = pd.read_csv('I:\\Centrale\\Machine Learning\\Kaggle-3-MNIST\\train.csv', converters = dict([(i+1, contrast) for i in range(28*28)])) #train = pd.read_csv('I:\\Centrale\\Machine Learning\\Kaggle-3-MNIST\\train.csv') print(train.shape) train.head() test= pd.read_csv('I:\\Centrale\\Machine Learning\\Kaggle-3-MNIST\\test.csv', converters = dict([(i, contrast) for i in range(28*28)])) #test= pd.read_csv('I:\\Centrale\\Machine Learning\\Kaggle-3-MNIST\\test.csv') print(test.shape) test.head() ##Data Preprocessing X_train = (train.iloc[:,1:].values).astype('float32') # all pixel values y_train = train.iloc[:,0].values.astype('int32') # only labels i.e targets digits X_test = test.values.astype('float32') ##Display data repartition """repartition =[0 for i in range(10)] for i in range(y_train.shape[0]): repartition[list(y_train[i,:]).index(max(y_train[i,:]))]+=1 sections=[i for i in range(10)] plt.bar(sections, repartition, align='center', alpha=0.7) plt.show()""" ##Data augmentation def convert_2d(x): """x: 2d numpy array. m*n data image. return a 3d image data. m * height * width * channel.""" if len(x.shape) == 1: m = 1 height = width = int(np.sqrt(x.shape[0])) else: m = x.shape[0] height = width = int(np.sqrt(x.shape[1])) x_2d = np.reshape(x, (m, height, width, 1)) return x_2d def crop_image(x, y, min_scale): """x: 2d(m*n) numpy array. 1-dimension image data; y: 1d numpy array. The ground truth label; min_scale: float. The minimum scale for cropping. return zoomed images. This function crops the image, enlarges the cropped part and uses it as augmented data.""" # convert the data to 2-d image. images should be a m*h*w*c numpy array. images = convert_2d(x) # m is the number of images. Since this is a gray-scale image scale from 0 to 255, it only has one channel. m, height, width, channel = images.shape # tf tensor for original images img_tensor = tf.placeholder(tf.int32, [1, height, width, channel]) # tf tensor for 4 coordinates for corners of the cropped image box_tensor = tf.placeholder(tf.float32, [1, 4]) box_idx = [0] crop_size = np.array([height, width]) # crop and resize the image tensor cropped_img_tensor = tf.image.crop_and_resize(img_tensor, box_tensor, box_idx, crop_size) # numpy array for the cropped image cropped_img = np.zeros((m, height, width, 1)) with tf.Session() as sess: for i in range(m): # randomly select a scale between [min_scale, min(min_scale + 0.05, 1)] rand_scale = np.random.randint(min_scale * 100, np.minimum(min_scale * 100 + 5, 100)) / 100 # calculate the 4 coordinates x1 = y1 = 0.5 - 0.5 * rand_scale x2 = y2 = 0.5 + 0.5 * rand_scale # lay down the cropping area box = np.reshape(np.array([y1, x1, y2, x2]), (1, 4)) # save the cropped image cropped_img[i:i + 1, :, :, :] = sess.run(cropped_img_tensor, feed_dict={img_tensor: images[i:i + 1], box_tensor: box}) # flat the 2d image cropped_img = np.reshape(cropped_img, (m, -1)) return cropped_img def translate(x, y, dist): """x: 2d(m*n) numpy array. 1-dimension image data; y: 1d numpy array. The ground truth label; dist: float. Percentage of height/width to shift. return translated images. This function shift the image to 4 different directions. Crop a part of the image, shift it and fill the left part with 0.""" # convert the 1d image data to a m*h*w*c array images = convert_2d(x) m, height, width, channel = images.shape # set 4 groups of anchors. The first 4 int in a certain group lay down the area we crop. # The last 4 sets the area to be moved to. E.g., # new_img[new_top:new_bottom, new_left:new_right] = img[top:bottom, left:right] anchors = [] anchors.append((0, height, int(dist * width), width, 0, height, 0, width - int(dist * width))) anchors.append((0, height, 0, width - int(dist * width), 0, height, int(dist * width), width)) anchors.append((int(dist * height), height, 0, width, 0, height - int(dist * height), 0, width)) anchors.append((0, height - int(dist * height), 0, width, int(dist * height), height, 0, width)) # new_images: d*m*h*w*c array. The first dimension is the 4 directions. new_images = np.zeros((4, m, height, width, channel)) for i in range(4): # shift the image top, bottom, left, right, new_top, new_bottom, new_left, new_right = anchors[i] new_images[i, :, new_top:new_bottom, new_left:new_right, :] = images[:, top:bottom, left:right, :] new_images = np.reshape(new_images, (4 * m, -1)) y = np.tile(y, (4, 1)).reshape((-1, 1)) return new_images def add_noise(x, y, noise_lvl): """x: 2d(m*n) numpy array. 1-dimension image data; y: 1d numpy array. The ground truth label; noise_lvl: float. Percentage of pixels to add noise in. return images with white noise. This function randomly picks some pixels and replace them with noise.""" m, n = x.shape # calculate the # of pixels to add noise in noise_num = int(noise_lvl * n) for i in range(m): # generate n random numbers, sort it and choose the first noise_num indices # which equals to generate random numbers w/o replacement noise_idx = np.random.randint(0, n, n).argsort()[:noise_num] # replace the chosen pixels with noise from 0 to 255 x[i, noise_idx] = np.random.randint(0, 255, noise_num) noisy_data = x.astype("int") return noisy_data def rotate_image(x, y, max_angle): """x: 2d(m*n) numpy array. 1-dimension image data; y: 1d numpy array. The ground truth label; max_angle: int. The maximum degree for rotation. return rotated images. This function rotates the image for some random degrees(0.5 to 1 * max_angle degree).""" images = convert_2d(x) m, height, width, channel = images.shape img_tensor = tf.placeholder(tf.float32, [m, height, width, channel]) # half of the images are rotated clockwise. The other half counter-clockwise # positive angle: [max/2, max] # negative angle: [360-max/2, 360-max] rand_angle_pos = np.random.randint(max_angle / 2, max_angle, int(m / 2)) rand_angle_neg = np.random.randint(-max_angle, -max_angle / 2, m - int(m / 2)) + 360 rand_angle = np.transpose(np.hstack((rand_angle_pos, rand_angle_neg))) np.random.shuffle(rand_angle) # convert the degree to radian rand_angle = rand_angle / 180 * np.pi # rotate the images rotated_img_tensor = tf.contrib.image.rotate(img_tensor, rand_angle) with tf.Session() as sess: rotated_imgs = sess.run(rotated_img_tensor, feed_dict={img_tensor: images}) rotated_imgs = np.reshape(rotated_imgs, (m, -1)) return rotated_imgs print("Augment the data...") cropped_imgs = crop_image(X_train, y_train, 0.9) translated_imgs = translate(X_train, y_train, 0.1) noisy_imgs = add_noise(X_train, y_train, 0.1) rotated_imgs = rotate_image(X_train, y_train, 10) augmented = np.vstack((X_train, cropped_imgs, translated_imgs, noisy_imgs, rotated_imgs)) #augmented is the new data composed with : the basic dataset, the cropped dataset, the shifted dataset (1 for each 4 directions), the noisy dataset and the rotated dataset print("Done!", X_train.shape) ##Save header = 'label' for i in range(784): header+=',pixel'+str(i) np.savetxt('C:\\Users\\Nicolas\\Desktop\\augmented_data.csv', np.array([[int(y_train[i%X_train.shape[0]])]+list(augmented[i,:]) for i in range(augmented.shape[0])]),fmt='%i', delimiter = ',',newline='\n', header = header, comments='') ##Save2 pd.DataFrame(augmented).to_csv('I:\\Centrale\\Machine Learning\\Kaggle-3-MNIST\\augmented_data.csv', index = False)
nicogab34/MNIST--Neural-Networks
augment_data.py
augment_data.py
py
9,196
python
en
code
0
github-code
6
10900131686
from flask import Flask from flask import Flask, request, render_template, send_file app = Flask(__name__) @app.route('/cookiestealer/', methods=['GET']) def cookieStealer(): filename = 'cookiemonster.jpg' print("This is the cookie: \n") print(request.cookies) print("") return send_file(filename, mimetype='image/jpeg') if __name__ == '__main__': app.run(port=3100, debug=True)
FelixDryselius/SecureDataSystemsGroup17
lab1/xss/3rd_party_cookie_stealer.py
3rd_party_cookie_stealer.py
py
420
python
en
code
0
github-code
6
22200579634
#!/usr/bin/env python from __future__ import absolute_import import apache_beam as beam import argparse import json import logging import sys import urllib from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions from google.cloud import bigquery from google.cloud import storage from raxxla_transforms import data_transforms from raxxla_transforms import table_schemas # Global vars logger = logging.getLogger('raxxla_loader') formatter = '%(asctime)s %(message)s' logging.basicConfig(level=logging.INFO, format=formatter) table_list = ['bodies', 'systems', 'powerplay', 'population', 'stations'] arg_list = table_list + ['all'] runner_list = ['DataflowRunner', 'DirectRunner'] # Configure flags flags = argparse.ArgumentParser(description='Initialize Raxxla BigQuery tables from EDSM data.') flags.add_argument('--project', help='ID of the Google Cloud project to use.') flags.add_argument('--dataset', help='Name of the BigQuery dataset to store EDSM data in.') flags.add_argument('--bucket', help='Name of the GCS bucket to store EDSM data in.') flags.add_argument('--runner', help='Name of the Beam runner type to use for the pipeline.', choices=runner_list) flags.add_argument('--upload_to_gcs', help='Upload EDSM files to GCS from local download.', choices=arg_list, nargs='+') flags.add_argument('--delete', help='Delete tables from BigQuery.', choices=arg_list, nargs='+') flags.add_argument('--download', help='Download files from EDSM into Google Cloud Storage.', choices=arg_list, nargs='+') flags.add_argument('--upload_to_bq', help='Write converted values to BigQuery. Requires files to be staged in GCS.', choices=arg_list, nargs='+') args = flags.parse_args() class remove_blank_rows(beam.DoFn): def process(self, element): if element is not None: yield element else: return def delete_bq_data(tables, project_id, dataset_id): client = bigquery.Client() dataset_ref = client.dataset(dataset_id) tables = set(tables) try: for table in tables: table_ref = dataset_ref.table(table) delete_string = 'Deleted ' + project_id + '.' + dataset_id + '.' + table client.delete_table(table_ref) logger.info(delete_string) except Exception as e: delete_error_string = 'Unable to delete EDSM BQ tables: ' + str(e) logger.error(delete_error_string) sys.exit() def download_edsm_files(files): edsm_urls = { 'bodies': 'https://www.edsm.net/dump/bodies.json', 'systems': 'https://www.edsm.net/dump/systemsWithCoordinates.json', 'powerplay': 'https://www.edsm.net/dump/powerPlay.json', 'population': 'https://www.edsm.net/dump/systemsPopulated.json', 'stations': 'https://www.edsm.net/dump/stations.json' } files = set(files) try: for file in files: dl_string = 'Downloading ' + file + ' file from EDSM...' logger.info(dl_string) download_url = edsm_urls[file] download_path = '/tmp/' + file urllib.urlretrieve(download_url, download_path) except Exception as e: download_error_string = 'Unable to download EDSM files: ' + str(e) logger.error(download_error_string) sys.exit() def upload_to_bigquery(files, project_id, dataset_id, bucket_id, runner, pipeline_options): files = set(files) try: for file in files: import_string = 'Importing ' + file + ' file into BigQuery...' logger.info(import_string) table_spec = project_id + ':' + dataset_id + '.' + str(file) if runner == 'DataflowRunner': file_path = 'gs://' + str(bucket_id) + '/' + str(file) elif runner == 'DirectRunner': file_path = '/tmp/' + str(file) with beam.Pipeline(options=pipeline_options) as p: json_lines = p | beam.io.ReadFromText(file_path) if file == 'bodies': schema = table_schemas.bodies rows = json_lines | beam.Map(data_transforms.transform_bodies) elif file == 'systems': schema = table_schemas.systems rows = json_lines | beam.Map(data_transforms.transform_systems) elif file == 'powerplay': schema = table_schemas.powerplay rows = json_lines | beam.Map(data_transforms.transform_powerplay) elif file == 'population': schema = table_schemas.population rows = json_lines | beam.Map(data_transforms.transform_population) elif file == 'stations': schema = table_schemas.stations rows = json_lines | beam.Map(data_transforms.transform_stations) if schema and rows: bq_loader = rows | beam.ParDo(remove_blank_rows()) | beam.io.WriteToBigQuery( table_spec, schema=schema, write_disposition=beam.io.BigQueryDisposition.WRITE_EMPTY, create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED, method='DEFAULT', batch_size=500) else: raise Exception('Unable to assemble rows for upload. Check upstream repo for schema updates.') except Exception as e: bq_upload_error_string = 'Unable to load EDSM files: ' + str(e) logger.error(bq_upload_error_string) sys.exit() def upload_to_gcs(files, project_id, bucket): try: for file in files: blob = bucket.blob(file) file_path = '/tmp/' + str(file) upload_log_string = 'Uploading ' + file + ' to GCS.' logger.info(upload_log_string) blob.upload_from_filename(file_path) except Exception as e: gcs_upload_error_string = 'Unable to upload EDSM files to GCS: ' + str(e) logger.error(gcs_upload_error_string) sys.exit() def main(argv=None): parser = argparse.ArgumentParser() known_args, pipeline_args = parser.parse_known_args(argv) project_id = args.project dataset_id = args.dataset bucket_id = args.bucket if args.delete: if 'all' in args.delete: delete_bq_data(table_list, project_id, dataset_id) else: delete_bq_data(args.delete, project_id, dataset_id) if args.download: if 'all' in args.download: download_edsm_files(table_list) else: download_edsm_files(args.download) if args.upload_to_gcs: storage_client = storage.Client() try: gcs_bucket = storage_client.get_bucket(bucket_id) except Exception as e: logger.warning('GCS bucket not found, creating...') gcs_bucket = storage_client.create_bucket(bucket_id) if 'all' in args.upload_to_gcs: upload_to_gcs(table_list, project_id, gcs_bucket) else: upload_to_gcs(args.upload_to_gcs, project_id, gcs_bucket) if args.upload_to_bq: staging_location = '--staging_location=gs://' + bucket_id + '/staging' temp_location = '--temp_location=gs://' + bucket_id + '/temp' pipeline_args.extend([ '--job_name=raxxla-loader', '--setup_file=./setup.py', staging_location, temp_location, ]) pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = True runner = args.runner if 'all' in args.upload_to_bq: upload_to_bigquery(table_list, project_id, dataset_id, bucket_id, runner, pipeline_options) else: upload_to_bigquery(args.upload_to_bq, project_id, dataset_id, bucket_id, runner, pipeline_options) if __name__ == '__main__': main()
mjcastner/edsm_bq
beam_parser.py
beam_parser.py
py
8,112
python
en
code
1
github-code
6
73739270268
from buildbot.worker import Worker from maxscale.config.workers import WORKER_CREDENTIALS def workerConfiguration(): """Create worker configuration for use in BuildBot configuration""" configuration = [] for credentials in WORKER_CREDENTIALS: configuration.append(Worker(credentials["name"], credentials["password"])) return configuration def workerNames(host=""): """Create a list of worker names that can be used in build configuration""" workers = [] for credentials in WORKER_CREDENTIALS: if host in credentials["host"]: workers.append(credentials["name"]) return workers def workersOnHosts(*hosts): """ Create a list of worker names that run on the specified hosts hosts (list): names of the host names to use """ workers = [] for credentials in WORKER_CREDENTIALS: if credentials["host"] in hosts: workers.append(credentials["name"]) return workers def workerToHostMap(): """Creates dictionary with worker name mapped to host""" workerToHost = {} for credentials in WORKER_CREDENTIALS: workerToHost[credentials["name"]] = credentials["host"] return workerToHost
dA505819/maxscale-buildbot
master/maxscale/workers.py
workers.py
py
1,208
python
en
code
0
github-code
6
13321588984
from airflow.models import Variable import datetime from .test_utils import create_test_database, db_connect from dags.rock.rock_content_items import ContentItem from dags.rock.rock_content_items_connections import ContentItemConnection import vcr create_test_database() def test_run_fetch_and_save_content_item_connections(monkeypatch): def mock_get(config, deserialize_json=True, default_var=None): if default_var: return default_var if "_rock_api" in config: return "https://rock.apollos.app/api" if "_rock_token" in config: return "ASZjZWdf3IqrbZX9sedtB4wb" if "_rock_config": return { "CONTENT_MAPPINGS": { "ContentSeriesContentItem": {"ContentChannelTypeId": [6]}, "DevotionalContentItem": {"ContentChannelId": [7]}, "WeekendContentItem": {"ContentChannelId": [5]}, }, "PERSONA_CATEGORY_ID": 186, "SERIES_CATEGORY_ORIGIN_IDS": [4, 33], } monkeypatch.setattr( Variable, "get", mock_get, ) content_item = ContentItem( { "client": "test", "execution_date": datetime.datetime( 2005, 7, 14, 12, 30, tzinfo=datetime.timezone.utc ), "do_backfill": True, } ) content_item_connection = ContentItemConnection( { "client": "test", "execution_date": datetime.datetime( 2005, 7, 14, 12, 30, tzinfo=datetime.timezone.utc ), "do_backfill": True, } ) monkeypatch.setattr( content_item.pg_hook, "get_conn", db_connect, ) monkeypatch.setattr( content_item_connection.pg_hook, "get_conn", db_connect, ) with vcr.use_cassette( "tests/cassettes/content_item_connections/content_items.yaml" ): content_item.run_fetch_and_save_content_items() with vcr.use_cassette( "tests/cassettes/content_item_connections/initial_content_item_connections.yaml" ): content_item_connection.run_fetch_and_save_content_items_connections() conn = db_connect() with conn: with conn.cursor() as curs: # Check for initial parent content item curs.execute("SELECT id FROM content_item") parent_item_id = curs.fetchone()[0] # Check that initial content item connections are correct curs.execute( """ SELECT parent_id, origin_id FROM content_item_connection; """ ) initial_content_item_connections = curs.fetchall() assert len(initial_content_item_connections) == 3 expected = [ (parent_item_id, "20"), (parent_item_id, "18"), (parent_item_id, "19"), ] i = 0 for connection in initial_content_item_connections: assert connection == expected[i] i += 1 # Delete content item connection with vcr.use_cassette( "tests/cassettes/content_item_connections/delete_content_item_connection.yaml" ): content_item_connection.run_delete_content_item_connections() curs.execute("SELECT parent_id, origin_id FROM content_item_connection;") content_item_connections_with_deletion = curs.fetchall() assert len(content_item_connections_with_deletion) == 2 expected = [ (parent_item_id, "20"), (parent_item_id, "18"), ] i = 0 for connection in content_item_connections_with_deletion: assert connection == expected[i] i += 1 conn.close()
CrossingsCommunityChurch/apollos-shovel
tests/test_rock_content_item_connections.py
test_rock_content_item_connections.py
py
3,945
python
en
code
0
github-code
6
74918976186
import networkx as nx import re def read_file(file): first = set() second = set() G = nx.DiGraph() prog = re.compile("Step ([A-Z]) must be finished before step ([A-Z]) can begin.") with open(file) as f: lines = f.readlines() for line in lines: r = prog.match(line.strip()) if not r.group(1) in G: G.add_node(r.group(1)) if not r.group(2) in G: G.add_node(r.group(2)) if not G.has_edge(r.group(1),r.group(2)): G.add_edge(r.group(1),r.group(2)) first.add(r.group(1)) second.add(r.group(2)) return (G,first- second) def duration(step): return 60+ord(step)-64 def day7(file): G,starter = read_file(file) path = list() to_visit = sorted(starter,reverse=True) while len(to_visit) > 0: node = to_visit.pop() path.append(node) neighbours = G[node] for n in neighbours: if not n in to_visit and not n in path: allCompleted = True for u,v in G.in_edges(nbunch=n): if not u in path: allCompleted = False if allCompleted: to_visit.append(n) to_visit = sorted(to_visit,reverse=True) #print("".join(path)) work_route = "".join(path) end_letter = path[-1] path = list() to_visit = sorted(starter,reverse=True) second = 0 workers = list() # Trabajo Actual, segundo que termina workers.append(['.',0]) workers.append(['.',0]) workers.append(['.',0]) workers.append(['.',0]) workers.append(['.',0]) def full_workers(workers): full = True for w in workers: if w[0] == ".": full = False return full end = False while not end: if len(to_visit) == 0 or full_workers(workers): second += 1 for i in range(0,len(workers)): if workers[i][1] <= second: if workers[i][0] != ".": path.append(workers[i][0]) neighbours = G[workers[i][0]] for n in neighbours: if not n in to_visit and not n in path: allCompleted = True for u,v in G.in_edges(nbunch=n): if not u in path: allCompleted = False if allCompleted: to_visit.append(n) to_visit = sorted(to_visit,reverse=True) if workers[i][0] == end_letter: #print("Finish point") #print("Seconds: %d" % second) end = True if len(to_visit) > 0: node = to_visit.pop() workers[i][1] = second+duration(node) workers[i][0] = node else: workers[i][0] = "." return work_route,second
aarroyoc/advent-of-code-2018
python/day7/day7.py
day7.py
py
3,076
python
en
code
1
github-code
6
33548088967
import os from django.core.management.base import BaseCommand, CommandError from main.settings import BASE_DIR, DEBUG from costcenter.models import Fund, Source, CostCenter, FundCenter, FinancialStructureManager from lineitems.models import LineForecast, LineItem class Command(BaseCommand): """ A class to be used only for development purposes. It serves to fill in some funds, sources, fund centers and cost centers. Values fed in the database should match what is expected from the data to be used when running uploadtocsv which also uses test encumbrance report data. """ def handle(self, *args, **options): if DEBUG: LineForecast.objects.all().delete() LineItem.objects.all().delete() CostCenter.objects.all().delete() Source.objects.all().delete() Fund.objects.all().delete() FundCenter.objects.all().delete() self.set_fund() self.set_source() self.set_fund_center() self.set_cost_center() else: print("This capability is only available when DEBUG is True") def set_fund(self): items = [ {"fund": "C113", "name": "National Procurement", "vote": "1"}, {"fund": "C116", "name": "Kitchen Procurement", "vote": "5"}, {"fund": "C523", "name": "Basement Procurement", "vote": "1"}, {"fund": "CXXX", "name": "Bedroom Procurement", "vote": "1"}, ] for item in items: try: found = Fund.objects.get(fund=item["fund"]) if found: print(f"Fund {found} exists") except Fund.DoesNotExist: new_item = Fund.objects.create(**item) print(f"Created fund {new_item}") def set_source(self): items = [{"source": "Kitchen"}] for item in items: try: found = Source.objects.get(source=item["source"]) if found: print(f"Source {found} exists") except Source.DoesNotExist: new_item = Source.objects.create(**item) print(f"Created Source {new_item}") def set_fund_center(self): # Create root FC fc = {"fundcenter": "1111AA", "shortname": "root", "parent": None} new_item = FundCenter.objects.create(**fc) root = FundCenter.objects.filter(fundcenter="1111AA").first() print(f"Created Fund Center {root}, sequence {root.sequence}") root_children = [ {"fundcenter": "1111AB", "shortname": "AB", "parent": root}, {"fundcenter": "1111AC", "shortname": "AC", "parent": root}, ] for item in root_children: try: found = FundCenter.objects.get(fundcenter=item["fundcenter"]) if found: print(f"Fund Center {found} exists") except FundCenter.DoesNotExist: item["sequence"] = FinancialStructureManager().set_parent(fundcenter_parent=root) new_item = FundCenter.objects.create(**item) print(f"Created Fund Center {new_item}, sequence {new_item.sequence}") ab = FundCenter.objects.filter(fundcenter="1111AB").first() ab_children = [ {"fundcenter": "2222BA", "shortname": "BA", "parent": ab}, {"fundcenter": "2222BB", "shortname": "BB", "parent": ab}, ] for item in ab_children: try: found = FundCenter.objects.get(fundcenter=item["fundcenter"]) if found: print(f"Fund Center {found} exists") except FundCenter.DoesNotExist: item["sequence"] = FinancialStructureManager().set_parent(fundcenter_parent=ab) new_item = FundCenter.objects.create(**item) print(f"Created Fund Center {new_item}") def set_cost_center(self): fund = Fund.objects.get(fund="C113") source = Source.objects.get(source="Kitchen") ab = FundCenter.objects.get(fundcenter="1111AB") ac = FundCenter.objects.get(fundcenter="1111AC") FSM = FinancialStructureManager() items = [ { "costcenter": "8486B1", "shortname": "Utensils", "fund": fund, "source": source, "isforecastable": True, "isupdatable": True, "note": "", "parent": ac, }, { "costcenter": "8486C1", "shortname": "Food and drink", "fund": fund, "source": source, "isforecastable": True, "isupdatable": True, "note": "A quick and short note for 1234FF", "parent": ab, }, { "costcenter": "8486C2", "shortname": "Basement Stuff", "fund": fund, "source": source, "isforecastable": True, "isupdatable": True, "note": "", "parent": ab, }, ] for item in items: try: found = CostCenter.objects.get(costcenter=item["costcenter"]) if found: print(f"Cost Center {found} exists") except CostCenter.DoesNotExist: item["sequence"] = FSM.set_parent(item["parent"], item) new_item = CostCenter.objects.create(**item) print(f"Created Cost Center {new_item}")
mariostg/bft
encumbrance/management/commands/populate.py
populate.py
py
5,663
python
en
code
0
github-code
6
13931896191
from odoo import models, fields, api from odoo.exceptions import ValidationError from odoo.http import request from odoo.addons.resident_management.enum import STATUS_TYPES, VEHICLE_TYPES, USER_GROUP_CODE, RELATIONSHIP_TYPES str_bql = USER_GROUP_CODE[2][0] str_bqt = USER_GROUP_CODE[3][0] class tb_vehicle(models.Model): _name = 'tb_vehicle' _description = 'Phương tiện' license_plates = fields.Char(string='Biển số xe', copy=False) vehicle_color = fields.Char(string='Màu xe', copy=False) vehicle_brand = fields.Char(string='Nhãn hiệu xe', copy=False) image = fields.Image(string='Ảnh phương tiện', copy=False) image_citizen_identification_font = fields.Image(string='CMND/CCCD mặt trước', copy=False) image_citizen_identification_back = fields.Image(string='CMND/CCCD mặt sau', copy=False) image_vehicle_registration_certificate_font = fields.Image(string='Đăng ký xe mặt trước', copy=False) image_vehicle_registration_certificate_back = fields.Image(string='Đăng ký xe mặt sau', copy=False) name = fields.Char(string='Tên chủ xe', required=True, copy=False) date_of_birth = fields.Char(string='Tên chủ xe', copy=False) phone = fields.Char(string='Điện thoại', copy=False) citizen_identification = fields.Char(string='CMND / CCCD') relationship_type = fields.Selection(string='Quan hệ với chủ hộ', selection=RELATIONSHIP_TYPES, default=RELATIONSHIP_TYPES[0][0]) vehicle_type = fields.Selection(string='Loại xe', selection=VEHICLE_TYPES, default=VEHICLE_TYPES[0][0]) note = fields.Text(string='Ghi chú', copy=False, help='') status = fields.Selection(string='Trạng thái', selection=STATUS_TYPES, default=STATUS_TYPES[0][0]) blockhouse_id = fields.Many2one(comodel_name='tb_blockhouse', string="Dự án", domain=lambda self: self._domain_blockhouse_id(), ondelete="cascade") building_id = fields.Many2one(comodel_name='tb_building', string="Toà nhà", domain="[('is_active', '=', True), ('blockhouse_id', '!=', None), ('blockhouse_id', '=', blockhouse_id)]", ondelete="cascade") building_house_id = fields.Many2one(comodel_name='tb_building_house', string="Căn hộ", domain="[('is_active', '=', True), ('building_id', '!=', None), ('building_id', '=', building_id)]", ondelete="cascade") user_id = fields.Many2one(comodel_name='res.users', string="Chủ hộ", domain=lambda self: self._domain_user_id(), ondelete="cascade") def set_status_active(self): for item in self: item.status = 'ACTIVE' def set_status_reject(self): for item in self: item.status = 'REJECT' @api.model def _domain_user_id(self): user = request.env.user if user and user.id != 1 and user.id != 2: user_ids = (self.env['tb_users_blockhouse_res_groups_rel'].sudo() .search([('building_id', 'in', self.building_house_id)])).user_id.ids return ["&", ("active", "=", True), ("id", "in", user_ids)] else: return [("active", "=", True)] @api.model def _domain_blockhouse_id(self): user = request.env.user bqt_bh_id = [] # ban quan tri - blockhouse - id bqt_bd_id = [] # ban quan tri - building - id bql_bh_id = [] # ban quan ly - blockhouse - id bql_bd_id = [] # ban quan ly - building - id if user and user.id != 1 and user.id != 2: for item in user.tb_users_blockhouse_res_groups_rel_ids: if item.group_id.name and str_bqt in item.user_group_code: bqt_bh_id.append(int(item.blockhouse_id.id)) bqt_bd_id.append(int(item.building_id.id)) if item.group_id.name and str_bql in item.user_group_code: bql_bh_id.append(int(item.blockhouse_id.id)) bql_bd_id.append(int(item.building_id.id)) return ["&", ("is_active", "=", True), ("id", "in", list(set(bqt_bh_id + bql_bh_id)))] else: return [("is_active", "=", True)] @api.model def read_group(self, domain, fields, groupby, offset=0, limit=None, orderby=False, lazy=True): user = request.env.user bqt_bh_id = [] # ban quan tri - blockhouse - id bqt_bd_id = [] # ban quan tri - building - id bql_bh_id = [] # ban quan ly - blockhouse - id bql_bd_id = [] # ban quan ly - building - id if user and user.id != 1 and user.id != 2: for item in user.tb_users_blockhouse_res_groups_rel_ids: if item.group_id.name and str_bqt in item.user_group_code: bqt_bh_id.append(int(item.blockhouse_id.id)) bqt_bd_id.append(int(item.building_id.id)) if item.group_id.name and str_bql in item.user_group_code: bql_bh_id.append(int(item.blockhouse_id.id)) bql_bd_id.append(int(item.building_id.id)) domain.append(('building_id', 'in', list(set(bqt_bd_id + bql_bd_id)))) domain.append(('blockhouse_id', 'in', list(set(bqt_bh_id + bql_bh_id)))) res = super(tb_vehicle, self).read_group(domain, fields, groupby, offset=offset, limit=limit, orderby=orderby, lazy=lazy) return res @api.model def search_read(self, domain=None, fields=None, offset=0, limit=10, order=None): user = request.env.user bqt_bh_id = [] # ban quan tri - blockhouse - id bqt_bd_id = [] # ban quan tri - building - id bql_bh_id = [] # ban quan ly - blockhouse - id bql_bd_id = [] # ban quan ly - building - id if user and user.id != 1 and user.id != 2: for item in user.tb_users_blockhouse_res_groups_rel_ids: if item.group_id.name and str_bqt in item.user_group_code: bqt_bh_id.append(int(item.blockhouse_id.id)) bqt_bd_id.append(int(item.building_id.id)) if item.group_id.name and str_bql in item.user_group_code: bql_bh_id.append(int(item.blockhouse_id.id)) bql_bd_id.append(int(item.building_id.id)) domain.append(('building_id', 'in', list(set(bqt_bd_id + bql_bd_id)))) domain.append(('blockhouse_id', 'in', list(set(bqt_bh_id + bql_bh_id)))) res = super(tb_vehicle, self).search_read(domain, fields, offset, limit, order) return res def open_edit_form(self): per_name = 'perm_write_vehicle' error_messenger = 'Bạn chưa được phân quyền này!' can_do = self.check_permission(per_name, raise_exception=False) if can_do: return { 'type': 'ir.actions.act_window', 'name': 'Sửa phương tiện', 'res_model': 'tb_vehicle', 'res_id': self.id, 'view_type': 'form', 'view_mode': 'form', 'view_id': self.env.ref('apartment_service_support.view_tb_vehicle_form').id, 'context': {'form_view_initial_mode': 'edit'}, 'target': 'current', } raise ValidationError(error_messenger) def open_edit_approve_form(self): per_name = 'perm_approve_vehicle' error_messenger = 'Bạn chưa được phân quyền này!' can_do = self.check_permission(per_name, raise_exception=False) if can_do: return { 'type': 'ir.actions.act_window', 'name': 'Sửa phương tiện', 'res_model': 'tb_vehicle', 'res_id': self.id, 'view_type': 'form', 'view_mode': 'form', 'view_id': self.env.ref('apartment_service_support.view_tb_vehicle_approve_form').id, 'context': {'form_view_initial_mode': 'edit'}, 'target': 'current', } raise ValidationError(error_messenger) def confirm_delete(self): per_name = 'perm_delete_vehicle' error_messenger = 'Bạn chưa được phân quyền này!' can_do = self.check_permission(per_name, raise_exception=False) if can_do: message = """Bạn có chắc muốn xóa bản ghi này?""" value = self.env['dialog.box.confirm'].sudo().create({'message': message}) return { 'type': 'ir.actions.act_window', 'name': 'Xóa bản ghi', 'res_model': 'dialog.box.confirm', 'view_type': 'form', 'view_mode': 'form', 'target': 'new', 'res_id': value.id } raise ValidationError(error_messenger) def del_record(self): for record in self: record.unlink() pass
cntt0901taizero/residential-adminapp
src/resident_management/models/tb_vehicle.py
tb_vehicle.py
py
9,234
python
en
code
0
github-code
6
12477031144
import argparse import os import importlib.util import matplotlib.pyplot as plt import matplotlib.ticker as mticker import json from collections import defaultdict import utils import transformers parser = argparse.ArgumentParser() parser.add_argument('--task') parser.add_argument('--model') parser.add_argument('--dataset') parser.add_argument('--k', default='0') parser.add_argument('--mode', default='all') parser.add_argument('--prompt', default='qa') parser.add_argument('--debug', action='store_true') parser.add_argument('--repeats', default=1, type=int) parser.add_argument('--output', default='plot.png') parser.add_argument('--device', default='cpu') args = parser.parse_args() os.environ["DEVICE"] = args.device # Check if submission module is present. If it is not, then main() will not be executed. use_submission = importlib.util.find_spec('submission') is not None if use_submission: import submission def plot(): dataset = 'xsum' data = defaultdict(lambda: defaultdict(list)) model = 'med' mode = 'lora16' x_vals = set() for k in [0,1,8,128]: fn = '_'.join([model, dataset, str(k), mode]) id_ = '_'.join([model, dataset, mode]) with open(f'submission/results/ft/{fn}.json', 'r') as f: score = json.load(f)['metric'] data[id_]['x'].append(k) x_vals.add(k) data[id_]['y'].append(score) prompt_mode = 'tldr' for k in [0,1,4]: fn = '_'.join([model, dataset, str(k), prompt_mode]) id_ = '_'.join([model, dataset, prompt_mode]) with open(f'submission/results/icl/{fn}.json', 'r') as f: score = json.load(f)['metric'] data[id_]['x'].append(k) x_vals.add(k) data[id_]['y'].append(score) for k, v in data.items(): plt.plot(v['x'], v['y'], label=k) if max(x_vals) > 4: plt.xscale('symlog') ax = plt.gca() ax.xaxis.set_major_formatter(mticker.ScalarFormatter()) ax.xaxis.set_ticks(sorted(x_vals)) plt.legend() plt.title(dataset) plt.ylabel(utils.metric_for_dataset(dataset)) plt.xlabel('Number of support examples') plt.savefig(args.output, bbox_inches='tight') # Download all models and datasets required by the grader def cache(): models = [ {'name': 'bert-tiny', 'type': transformers.AutoModelForSequenceClassification, 'num_labels': 5}, {'name': 'bert-tiny', 'type': transformers.AutoModelForCausalLM}, {'name': 'med', 'type': transformers.AutoModelForCausalLM} ] for model in models: if 'num_labels' in model: utils.get_model_and_tokenizer(model['name'], model['type'], num_labels = model['num_labels']) else: utils.get_model_and_tokenizer(model['name'], model['type']) datasets = [ {'name': 'amazon', 'n_train': 1, 'n_val': 125}, {'name': 'xsum', 'n_train': 8, 'n_val': 125} ] for dataset in datasets: utils.get_dataset(dataset=dataset['name'], n_train=dataset['n_train'], n_val=dataset['n_val']) def run(): ks = [int(k) for k in args.k.split(',')] if args.task == 'run_ft': submission.run_ft(args.model.split(','), args.dataset.split(','), ks, args.mode.split(','), args.debug, args.repeats) elif args.task == 'run_icl': submission.run_icl(args.model.split(','), args.dataset.split(','), ks, args.prompt.split(','), args.debug, args.repeats) elif args.task == 'plot_ft': submission.plot_ft(args.model.split(','), args.dataset.split(','), ks, args.mode.split(','), args.output) elif args.task == 'plot_icl': assert ',' not in args.dataset, "Only one dataset at a time for plotting" submission.plot_icl(args.model.split(','), args.dataset, ks, args.prompt.split(','), args.output) elif args.task == 'plot': plot() elif args.task == 'cache': cache() if __name__ == '__main__': run()
mariopenglee/llm-metalearning
src/main.py
main.py
py
3,965
python
en
code
0
github-code
6
89691500
import wordgenerator NUMBER_OF_WORDS = int(input("How many random words do you want? ")) NUMBER_OF_LETTERS = int(input("How many letters do you want the random words to have? ")) user_options = list() for i in range(0 , NUMBER_OF_LETTERS): user_choice = input("What letter " + str(i + 1) + " do you want? Enter 'v' for vowels, 'c' for consonants, 'l' for any letter: ") user_options.append(user_choice) for i in range(0, NUMBER_OF_WORDS): word = wordgenerator.assemble_word(user_options) print(word)
caiopg/random-text-generator
randomtextgenerator.py
randomtextgenerator.py
py
519
python
en
code
0
github-code
6
44343669715
import sys sys.stdin = open('input/19236-1.txt') # 33, 43, 76, 39 import copy def find_fish(x, info): for i in range(4): for j in range(4): if info[i][j][0] == x: return i, j return -1, -1 def bfs(x, y, info, total): global answer total += info[x][y][0] + 1 direction = info[x][y][1] info[x][y] = [-1, -1] for i in range(16): fx, fy = find_fish(i, info) if (fx, fy) == (-1, -1): continue for _ in range(8): dx, dy = fx + delta[info[fx][fy][1]][0], fy + delta[info[fx][fy][1]][1] if not (0 <= dx < 4 and 0 <= dy < 4) or (dx == x and dy == y): info[fx][fy][1] = (info[fx][fy][1] + 1) % 8 continue info[fx][fy], info[dx][dy] = info[dx][dy], info[fx][fy] break for j in range(1, 4): move = False ni, nj = x + delta[direction][0] * j, y + delta[direction][1] * j if 0 <= ni < 4 and 0 <= nj < 4 and info[ni][nj][0] != -1: bfs(ni, nj, copy.deepcopy(info), total) move = True if not move: answer = max(total, answer) info = [[0] * 4 for _ in range(4)] for i in range(4): temp = list(map(int, input().split())) for j in range(4): info[i][j] = [temp[2 * j] - 1, temp[2 * j + 1] - 1] delta = ((-1, 0), (-1, -1), (0, -1), (1, -1), (1, 0), (1, 1), (0, 1), (-1, 1)) answer = 0 bfs(0, 0, info, 0) print(answer)
nayeonkinn/algorithm
baekjoon/[G2] 19236. 청소년 상어.py
[G2] 19236. 청소년 상어.py
py
1,467
python
en
code
0
github-code
6
14391947993
import glob import json def LoadTweets(directory): directory = directory +"/*json" files = glob.glob(directory)[:100] twts = [a for fl in files for a in json.load(open(fl))] twts.sort(key=lambda x: x['id'] if 'id' in x else int(x['id_str']) if 'id_str' in x else 0) twts = [a for a in twts if 'id' in a or 'str_id' in a] twts = [a for a in twts if (('id' in a and a['id'] >= 656971539691257900) or ('id_str' in a and int(a['id_str']) >= 656971539691257900))] res = [] prev_id = 0 for tw in twts: if 'id' not in tw: tw['id'] = int(tw['id_str']) if 'id_str' not in tw: tw['id_str'] = str(tw['id']) if tw['id'] != prev_id: res.append(tw) prev_id = tw['id'] return res def LoadUsers(directory): directory = directory + "/*txt" usrfiles = glob.glob(directory) users = [(a.strip("@"),fl) # Removing the @ for fl in usrfiles for nms in open(fl) for a in nms.strip().split(",")] usrset = set([a[0] for a in users]) return usrset, users
datumkg/electweet
ElecTweet/TweetLoader.py
TweetLoader.py
py
1,092
python
en
code
0
github-code
6
1518966554
from argparse import ArgumentParser, RawTextHelpFormatter from glob import glob from subprocess import check_call import os from shutil import rmtree def compile_clm(): # Define and parse command line arguments # --------------------------------------- dsc = "Compile CLM on Piz Daint. A case will be created in a subfolder of your ${SCRATCH}.\n"\ " WARNING: tool has to be run from the default Prg-Env-cray environment" parser = ArgumentParser(description=dsc, formatter_class=RawTextHelpFormatter) parser.add_argument('cesm_trunk', help="path to the CESM directory") parser.add_argument('--clm_version', choices=['4.0', '4.5'], default='4.0', help="CLM version") parser.add_argument('-c', '--compiler', help="compiler to use (default: pgi)", default='pgi') parser.add_argument('-v', '--compiler_version', help="switch to this version of the compiler\n"\ "This is not recommended by CSCS") parser.add_argument('-d', '--debug', help="compile in debug mode (default: false)", action='store_true') parser.add_argument('--src_mod', action='append', help="path to additionnal/modified sources (e.g. oasis interface)\n"\ "has to be a folder containing src.xxx subfolders, can be specified several times") parser.add_argument('-o', '--output', help="output executable file path (default: ./cesm.exe)", default='./cesm.exe') parser.add_argument('--no_exe', help="do not execute build_cesm.bash, leave it to any suited modification before actual compilation.", action='store_false', dest='execute') opts = parser.parse_args() # Init some variables # ------------------- CESM_TRUNK = opts.cesm_trunk EXP = 'clm{:s}_bld'.format(opts.clm_version) CASEDIR = os.path.join(os.environ['SCRATCH'], EXP) if os.path.exists(CASEDIR): rmtree(CASEDIR) RES = '1.9x2.5_gx1v6' COMP = 'ITEST' MACH = 'daint' if opts.clm_version == '4.5': COMP += 'CLM45' out_exe = os.path.abspath(opts.output) sourcemods = [os.path.abspath(src_dir) for src_dir in opts.src_mod] create_case_fmt = '{:s}/scripts/create_newcase -res {:s} -compset {:s} -mach {:s} -compiler pgi_oas -case {:s}' create_case_cmd = create_case_fmt.format(CESM_TRUNK, RES, COMP, MACH, CASEDIR) # Build compiling script # ---------------------- with open('build_cesm.bash', mode='w') as script: script.write('#!/bin/bash\n') script.write('\n') script.write('# ----------------------------------------------\n') script.write('# Modules\n') script.write('# ----------------------------------------------\n') script.write('\n') if opts.compiler == 'pgi': script.write('module switch PrgEnv-cray PrgEnv-pgi\n') if opts.compiler_version is not None: script.write('module switch pgi pgi/{:s}\n'.format(opts.compiler_version)) elif opts.compiler == 'intel': script.write('module switch PrgEnv-cray PrgEnv-intel\n') if opts.compiler_version is not None: script.write('module switch intel intel/{:s}\n'.format(opts.compiler_version)) elif opts.compiler == 'cray' and opts.compiler_version is not None: script.write('module switch cce cce/{:s}\n'.format(opts.compiler_version)) script.write('\n') script.write('module load cray-netcdf\n') script.write('module load daint-gpu\n') script.write('\n') script.write('module list\n') script.write('\n') script.write('# ----------------------------------------------\n') script.write('# Create case\n') script.write('# ----------------------------------------------\n') script.write('\n') script.write('{:s}\n'.format(create_case_cmd)) script.write('\n') script.write('# ----------------------------------------------\n') script.write('# Setup case\n') script.write('# ----------------------------------------------\n') script.write('\n') script.write('cd {:s}\n'.format(CASEDIR)) script.write('\n') script.write('switch off river routing\n') script.write('./xmlchange RTM_MODE="NULL"\n') script.write('\n') script.write('set transient CO2\n') script.write('./xmlchange CCSM_BGC=CO2A,CLM_CO2_TYPE=diagnostic\n') if opts.debug: script.write('# activate debug mode\n') script.write('./xmlchange -file env_build.xml -id DEBUG -val "TRUE"\n') script.write('\n') script.write('./cesm_setup\n') script.write('\n') script.write('# ----------------------------------------------\n') script.write('# Add source additions/modifications\n') script.write('# ----------------------------------------------\n') script.write('\n') for src_dir in sourcemods: print(src_dir) for comp in glob('{:s}/src.*'.format(src_dir)): print(comp) script.write('rsync -avrL {:s} SourceMods\n'.format(comp)) script.write('\n') script.write('# ----------------------------------------------\n') script.write('# Build\n') script.write('# ----------------------------------------------\n') script.write('\n') script.write('{:s}.build\n'.format(EXP)) script.write('rsync -avr bld/cesm.exe {:s}\n'.format(out_exe)) os.chmod('build_cesm.bash', 0o755) # Execute compiling script # ------------------------ if opts.execute: check_call(['./build_cesm.bash'])
COSMO-RESM/COSMO_CLM2_tools
COSMO_CLM2_tools/compile_clm.py
compile_clm.py
py
5,769
python
en
code
1
github-code
6
34276132086
""" Initializes Pickly Files""" import pickle import json import requests import urllib.request def guiinit(sub): #Gets information from Reddit r = urllib.request.urlopen(r'http://www.reddit.com/r/' + sub + '/new/.json', timeout=60).read().decode("utf-8") data = json.loads(r) #Creates ists to hold data titlelist = [] urllist = [] permalinklist = [] #Creats Files title = open("title.obj", 'wb') url = open("url.obj", 'wb') permalink = open("perma.obj", 'wb') #Appends Data from Reddit API to lists for i in range(0,20): titlelist.append(data['data']['children'][i]['data']['title']) #Gets title urllist.append(data['data']['children'][i]['data']['url']) #Gets URL permalinklist.append("http://www.reddit.com" + data['data']['children'][i]['data']['permalink']) #Gets Comments #Dumps lists to files pickle.dump(titlelist, title) pickle.dump(urllist, url) pickle.dump(permalinklist, permalink) #Closes files title.close() url.close() permalink.close()
picklesforfingers/FeedMeReddit
pickleinit.py
pickleinit.py
py
1,069
python
en
code
0
github-code
6
7720740035
import sys #f= open(sys.argv[1], 'r') # for line in f: # print(line.strip()) # # #f2= open(sys.argv[2],'r') # for line in f2: # print(line.strip()) f=open(sys.argv[1]) #create an empty dictionary flydict= dict() for line in f: fields= line.strip().split('\t') #assign gene name and protein id to the dictionary flydict[fields[0]]= fields[1] f2=open(sys.argv[2],'r') for line in f2: fields=line.strip().split('\t') print(fields) gene_name=fields[8] if gene_name in flydict: protein_id= flydict[gene_name] fields[8]=protein_id print(gene_name, protein_id) print(fields) else: if len(sys.argv)==4: fields[8]=sys.argv[3] print(fields) else: continue
Hkhaira1/qbb2021-answers
day2-lunch/day2-lunch.py
day2-lunch.py
py
775
python
en
code
0
github-code
6
9078103274
import rospy from geometry_msgs.msg import Point import VariableManager class MasterRecorder: def __init__(self): self.recording = VariableManager.recording self.file = None self.data_to_write = VariableManager.master_data def main(self): if(not self.recording and VariableManager.recording): self.clear_recorded_data() self.recording = VariableManager.recording if(self.recording): self.record_data() def clear_recorded_data(self): self.file = open("recorded_data.txt", "w") self.file.write("") self.file.close() def record_data(self): try: self.file = open("recorded_data.txt", "a") except: self.file = open("recorded_data.txt", "w") self.data_to_write = VariableManager.master_data self.file.write(f"{self.data_to_write.x},{self.data_to_write.y},{self.data_to_write.z}\n") self.file.close()
adi232004/FDP-Project
MasterDataRecorder.py
MasterDataRecorder.py
py
1,021
python
en
code
0
github-code
6
25860754920
from typing import Any from random import randint, random import pygame as py from engine.game_engine import Pygame from engine.color import Color from engine.game_objects import IGameObject from engine.game_objects.modules import IAnimationModule, ICollisionModule from engine.image import SpriteSheet from engine.ui.text import TypeWriterText from engine.map import LoopingMap from src.player.player import Player class UI_NPC_Text(TypeWriterText): def __init__(self, game: Pygame = None): super().__init__("We need to push forward! We need to push forward!", (200, 200, 200), game.fonts["8bit"], (135, 590), 10, game=game) class UI_NPC_Text_Box(IGameObject): def __init__(self, game: Pygame = None): super().__init__("ui", game) self.pos = (120, 577) self.add_layer(f"{self.game.game_dir}\\data\\images\\ui\\ui_npc_text_box.png") self.rect = self.get_layer_image(0).get_rect(topleft=self.pos) class UI_NPC_Box(IGameObject): def __init__(self, game: Pygame = None): super().__init__("ui", game) self.pos = (10, 665) # self.add_layer(f"{self.game.game_dir}/data/images/npc_board.png") self.add_layer(py.Surface((100, 100), flags=py.SRCALPHA)) self.add_layer(py.Surface((100, 100), flags=py.SRCALPHA)) self.add_layer(py.Surface((100, 100), flags=py.SRCALPHA)) # self.add_layer(f"{self.game.game_dir}/data/images/npc_box.png") self.npc = "" self.npcs = { "red": py.image.load(f"{self.game.game_dir}/data/images/ui/npcs/red_npc.png") } self.anim_atlas = SpriteSheet(f"{self.game.game_dir}/data/images/ui/noise_atlas.png", 100, 100).get_image_array() self.rect = self.get_layer_image(1).get_rect(bottomleft=self.pos) self.set_module("animation", IAnimationModule(self, False)) self.get_module("animation").add_animation_by_dict( "noise", { "layer": 1, "frames": [self.anim_atlas[0], self.anim_atlas[1], self.anim_atlas[2], self.anim_atlas[3], self.anim_atlas[4], self.anim_atlas[5], self.anim_atlas[6], self.anim_atlas[7]], "frame_time": 40, "loop": False, "callback": self.noise_anim_ended } ) self.get_module("animation").add_animation_by_dict( "noise_reversed", { "layer": 1, "frames": [self.anim_atlas[7], self.anim_atlas[6], self.anim_atlas[5], self.anim_atlas[4], self.anim_atlas[3], self.anim_atlas[2], self.anim_atlas[1], self.anim_atlas[1]], "frame_time": 40, "loop": False, "callback": self.noise__reversed_anim_ended } ) self.text = UI_NPC_Text(self.game) self.border = UI_NPC_Text_Box(self.game) self.game.objects.add("ui_npc_text", self.text) self.game.objects.add("ui_npc_text_box", self.border) self.get_module("animation").should_animate = True self.get_module("animation").play("noise") def noise_anim_ended(self): self.npc = "red" if self.npc != "": self.set_layer(self.npcs[self.npc], layer_id=0) self.set_layer(self.anim_atlas[8], layer_id=1) def noise__reversed_anim_ended(self): self.npc = "" self.set_layer(py.Surface((100, 100), py.SRCALPHA), layer_id=0) self.set_layer(py.Surface((100, 100), py.SRCALPHA), layer_id=1) class UI_BG(IGameObject): def __init__(self, game=None): super().__init__("ui", game) self.pos = (0, 675) self.add_layer(f"{self.game.game_dir}/data/images/ui_bg.png") self.rect = self.get_layer_image(0).get_rect(bottomleft=self.pos) # Rock Object # class Rock(IGameObject): def __init__(self, game: Pygame): super(Rock, self).__init__('env', game) self.set_module("collision", ICollisionModule(self, False)) self.pos = (self.game.screen.get_width(), randint(0, self.game.screen.get_height())) self.vel = (randint(-2,-1), randint(-1, 1) * (random() * 0.5)) spr = py.image.load(f"{self.game.game_dir}/data/images/rock.png").convert_alpha() scale = max(25, random() * 48) spr = py.transform.scale(spr, (scale, scale)) spr = py.transform.rotate(spr, randint(-25, 25)) self.add_layer(spr) self.rect = self.get_layer_image(self.primary_layer).get_rect(center=self.pos) self.mask = py.mask.from_surface(self.get_layer_image(0)) def update(self, *args, **kwargs) -> None: self.pos = (self.pos[0] + self.vel[0], self.pos[1] + self.vel[1]) self.rect = self.get_layer_image(0).get_rect(center=self.pos) super(Rock, self).update() class RockSpawner(IGameObject): def __init__(self, group: str = "handler", game: Pygame = None): super().__init__(group, game) self.spawn_timing = 2000 self.last_spawn_time = self.game.time def update(self, *args: Any, **kwargs: Any) -> None: if self.last_spawn_time + self.spawn_timing <= self.game.time: self.game.objects.add(f"rock_{randint(0, 999999)}", Rock(self.game)) self.last_spawn_time = self.game.time return super().update(*args, **kwargs) # MINIMAL RUNNING EXAMPLE # # Main Game Engine Object # class Game(Pygame): def __init__(self): super(Game, self).__init__(1200, 675, "Space Game", fps_target=60) self.add_group("handler") self.add_group("map") self.add_group("player") self.add_group("player_projectile") self.add_group("env") self.add_group("enemy") self.add_group('ui') self.fonts["8bit"] = self.get_font("8-BIT WONDER.ttf", 17) # SETUP GAME AXIS CONTROLS (IControlModule().get_axis("move_left")) self.axis = {'move_left': {py.K_a: -1, py.K_d: 1}, 'move_up': {py.K_w: -1, py.K_s: 1}} py.event.set_grab(True) py.mouse.set_pos((100, self.screen.get_height() / 2)) py.mouse.set_visible(False) self.load_data() self.start_game_loop() def load_data(self): super(Game, self).load_data() # Required to set the base dir of the game for easy access in objects without recalculating where to split the path (self.game_dir) self.objects['map'] = LoopingMap(self, "data/images/background.png", [50, 0]) # Looping map uses the images size to calculate its looping. You may need to rescale your image to fit your game area (Window scaling will handle it after as long as it covers the initial screen). Supports vertical or horizontal but not both (Hopefully in future revisions) self.objects["player"] = Player((0, self.screen.get_height() / 2), self) # Adds a GameObject to the ObjectHandler so that update and draw calls are triggered correctly self.objects.add("rock_spawner", RockSpawner(game=self)) self.objects["ui_bg"] = UI_BG(self) self.objects['ui_npc_box'] = UI_NPC_Box(self) # self.objects['ui_npc_text'] = UI_NPC_Text(self) def draw(self): self.screen.fill(Color(1, 1, 1, 1).RGB) # self.screen.fill((255, 255, 255)). Color class is used mostly for storing colors to easily recall but may get more features later super(Game, self).draw() # Required to call the draw function for registered objects # UNCOMMENT FOR RECT DEBUGGING if self.debug: for group in self.groups.keys(): for sprite in self.groups[group]: self.debug.debug_collision(sprite) super(Game, self).render_display() # Required to call the render update of the display (py.display.flip()) def update(self): super(Game, self).update() for event in py.event.get(): # COMMENT TO REMOVE MANUAL WINDOW RESIZING SUPPORT if event.type == py.VIDEORESIZE: self.windowSize = (event.w, event.h) py.display._resize_event(event) if event.type == py.QUIT: self.quit() if event.type == py.KEYDOWN: # UNCOMMENT TO TOGGLE DEBUGGING if event.key == py.K_c: self.debug.set_debug(not self.debug._debug) if event.key == py.K_p: npc_ui = self.objects.get("ui_npc_box") if npc_ui.npc == "": npc_ui.get_module("animation").play("noise") else: self.objects["ui_npc_box"].get_module("animation").play("noise_reversed") if event.key == py.K_ESCAPE: self.quit() if __name__ == '__main__': g = Game()
XCPika/Pygame-Extension-Framework
main.py
main.py
py
8,838
python
en
code
0
github-code
6
29310445886
from tkinter import * window = Tk() #need a way of keeping the window on the screen window.title("First GUI Program") window.minsize(width = 500, height = 300) window.config(padx=20,pady=20) #adds more space for our widgets #Label my_label = Label(text="taco",font =("Papyrus",20)) my_label["text"] = "cat" my_label.config(text="tacocat") my_label.config(padx=50,pady=50) my_label.grid(column=0,row=0) #packs our label onto the screen #button def button_clicked(): my_label["text"] = input.get() button = Button(text="Click me",command=button_clicked) button.grid(column=1,row=1) #Entry input = Entry(width = 10) input.grid(column=3,row=2) print(input.get()) button = Button(text="No Click me",command=button_clicked) button.grid(column=2,row=0) #keeps our window on the screen window.mainloop()
RoccoPic/100-Days-of-Code
Day-27/main.py
main.py
py
818
python
en
code
0
github-code
6
6323470596
import typing from typing import ( Union, Optional, List, ) import asyncio import logging from datetime import datetime from hikari import ActionRowComponent, Embed, MessageCreateEvent, embeds from hikari import ButtonStyle from hikari.impl.special_endpoints import MessageActionRowBuilder, LinkButtonBuilder from hikari.events import InteractionCreateEvent import lightbulb import lightbulb.utils as lightbulb_utils from lightbulb import commands, context from lightbulb import OptionModifier as OM from lightbulb.context import Context import hikari from matplotlib.style import available from numpy import full, isin from fuzzywuzzy import fuzz from utils import Colors, Human, Paginator, crumble from core import getLogger, Inu log = getLogger(__name__) plugin = lightbulb.Plugin("Voice commands") @plugin.command @lightbulb.add_checks( lightbulb.has_role_permissions(hikari.Permissions.MOVE_MEMBERS), lightbulb.bot_has_role_permissions(hikari.Permissions.MOVE_MEMBERS), lightbulb.guild_only, ) # @lightbulb.option( # "member", # "a person who is in the current voice channel. normally you", # type=hikari.Member, # default=None, # ) @lightbulb.option( "from-voice-channel", "the voice channel where move peaple of", type=hikari.GuildChannel, default=None, ) @lightbulb.option( "voice-channel", "the voice channel where you want to move to", type=hikari.GuildChannel, ) @lightbulb.command( "move-all", "moves all members from a current voice channel into another", aliases=["move"] ) @lightbulb.implements(commands.SlashCommand, commands.PrefixCommand) async def move_all(ctx: Context): target_channel: hikari.InteractionChannel = ctx.options["voice-channel"] if not target_channel.type == hikari.ChannelType.GUILD_VOICE: await ctx.respond(f"{target_channel} is not a voice channel", flags=hikari.MessageFlag.EPHEMERAL) return None if not ctx.options["from-voice-channel"]: member = ctx.member states = ctx.bot.cache.get_voice_states_view_for_guild(ctx.guild_id) voice_state = [state for state in states.values() if state.user_id == member.id] if not voice_state: await ctx.respond(f"{member.display_name} needs to be in a voice channel") return None channel_id = voice_state[0].channel_id user_ids = [state.user_id for state in states.values() if state.channel_id == channel_id] else: user_ids = [ state.user_id for state in ctx.bot.cache.get_voice_states_view_for_guild(ctx.guild_id).values() if state.channel_id == ctx.options["from-voice-channel"].id ] tasks = [ asyncio.create_task( ctx.bot.rest.edit_member( guild=ctx.guild_id, user=user_id, voice_channel=target_channel.id ) ) for user_id in user_ids ] await asyncio.wait(tasks, return_when=asyncio.ALL_COMPLETED) await ctx.respond( f"Moved {Human.list_([f'<@{user_id}>' for user_id in user_ids], with_a_or_an=False)} to `{target_channel.name}`" ) @move_all.autocomplete("voice-channel") async def tag_name_auto_complete( option: hikari.AutocompleteInteractionOption, interaction: hikari.AutocompleteInteraction ) -> List[str]: vcs = [] guild = interaction.get_guild() if not guild: return [] for ch in guild.get_channels().values(): if not isinstance(ch, hikari.GuildVoiceChannel): continue if lightbulb_utils.permissions_in(ch, interaction.member) & hikari.Permissions.CONNECT: vcs.append(f"{ch.id} | {ch.name}") return vcs[:24] def load(bot: Inu): bot.add_plugin(plugin)
zp33dy/inu
inu/ext/commands/voice.py
voice.py
py
3,792
python
en
code
1
github-code
6
33245759934
import time from collections import OrderedDict from collections.abc import Callable, Sequence from typing import Any, NamedTuple DB = "timeseries" TABLE_RAW = "paii_raw" TIME_FIELD = "paii_time" class Field(NamedTuple): json_key: str store_flag: bool db_name: str data_type: str convert: Callable[[dict[str, Any], str], Any] | None = None # conversions def fahrenheit2celsius(data: dict[str, Any], key: str) -> float: f = data[key] return round((f - 32) * 5 / 9, 2) def get_response_date(data: dict[str, Any], key: str) -> int: return data.get(key, time.time()) def missing_int(data: dict[str, Any], key: str) -> int: return data.get(key, -1) fields = [ # inserted by the sceduler Field(TIME_FIELD, True, TIME_FIELD, "TIMESTAMPTZ NOT NULL"), # from the device Field("SensorId", False, "SensorId", "VARCHAR"), # eg "84:f3:eb:7b:c8:ee" Field("DateTime", False, "DateTime", "VARCHAR"), # eg "2020/08/23T10:44:39z" Field("Geo", True, "geo", "VARCHAR"), # eg "PurpleAir-c8ee" Field("Mem", False, "Mem", "VARCHAR"), # eg 18936 Field("memfrag", False, "memfrag", "VARCHAR"), # eg 8 Field("memfb", False, "memfb", "VARCHAR"), # eg 17568 Field("memcs", False, "memcs", "VARCHAR"), # eg 896 Field("Id", False, "Id", "VARCHAR"), # eg 4177 Field("lat", True, "lat", "DOUBLE PRECISION"), # eg -37.8484 Field("lon", True, "lon", "DOUBLE PRECISION"), # eg 145.177399 Field("Adc", True, "adc", "DOUBLE PRECISION"), # eg 0.05 Field("loggingrate", False, "loggingrate", "VARCHAR"), # eg 15 Field("place", True, "place", "VARCHAR"), # eg "outside" Field("version", False, "version", "VARCHAR"), # eg "6.01" Field("uptime", False, "uptime", "VARCHAR"), # eg 242296 Field("rssi", False, "rssi", "VARCHAR"), # eg -59 Field("period", True, "period", "INTEGER"), # eg 120 Field("httpsuccess", False, "httpsuccess", "VARCHAR"), # eg 12169 Field("httpsends", False, "httpsends", "VARCHAR"), # eg 12182 Field("hardwareversion", True, "hardwareversion", "VARCHAR"), # eg "2.0" Field( "hardwarediscovered", False, "hardwarediscovered", "VARCHAR", ), # eg "2.0+BME280+PMSX003-B+PMSX003-A" Field( "current_temp_f", True, "current_temp_c", "DOUBLE PRECISION", fahrenheit2celsius, ), # eg 52 Field("current_humidity", True, "current_humidity", "DOUBLE PRECISION"), # eg 55 Field( "current_dewpoint_f", True, "current_dewpoint_c", "DOUBLE PRECISION", fahrenheit2celsius, ), # eg 36 Field("pressure", True, "pressure", "DOUBLE PRECISION"), # eg 1005.28 Field("p25aqic_b", False, "p25aqic_b", "VARCHAR"), # eg "rgb(0,228,0)" Field("pm2.5_aqi_b", False, "pm2.5_aqi_b", "VARCHAR"), # eg_aqi_b": 5 Field("pm1_0_cf_1_b", True, "pm1_0_cf_1_b", "DOUBLE PRECISION"), # eg 0.39 Field("p_0_3_um_b", False, "p_0_3_um_b", "VARCHAR"), # eg 261.79 Field("pm2_5_cf_1_b", True, "pm2_5_cf_1_b", "DOUBLE PRECISION"), # eg 1.3 **** µg/m3 Field("p_0_5_um_b", False, "p_0_5_um_b", "VARCHAR"), # eg 72.35 Field("pm10_0_cf_1_b", True, "pm10_0_cf_1_b", "DOUBLE PRECISION"), # eg 1.72 Field("p_1_0_um_b", False, "p_1_0_um_b", "VARCHAR"), # eg 13.05 Field("pm1_0_atm_b", False, "pm1_0_atm_b", "VARCHAR"), # eg 0.39 Field("p_2_5_um_b", False, "p_2_5_um_b", "VARCHAR"), # eg 2.42 Field("pm2_5_atm_b", False, "pm2_5_atm_b", "VARCHAR"), # eg 1.3 Field("p_5_0_um_b", False, "p_5_0_um_b", "VARCHAR"), # eg 0.7 Field("pm10_0_atm_b", False, "pm10_0_atm_b", "VARCHAR"), # eg 1.72 Field("p_10_0_um_b", False, "p_10_0_um_b", "VARCHAR"), # eg 0.0 Field("p25aqic", False, "p25aqic", "VARCHAR"), # eg "rgb(0,228,0)" Field("pm2.5_aqi", False, "pm2.5_aqi", "VARCHAR"), # eg_aqi": 1 Field("pm1_0_cf_1", True, "pm1_0_cf_1", "DOUBLE PRECISION"), # eg 0.14 Field("p_0_3_um", False, "p_0_3_um", "VARCHAR"), # eg 163.63 Field("pm2_5_cf_1", True, "pm2_5_cf_1", "DOUBLE PRECISION"), # eg 0.33 **** µg/m3 Field("p_0_5_um", False, "p_0_5_um", "VARCHAR"), # eg 45.77 Field("pm10_0_cf_1", True, "pm10_0_cf_1", "DOUBLE PRECISION"), # eg 0.42 Field("p_1_0_um", False, "p_1_0_um", "VARCHAR"), # eg 7.79 Field("pm1_0_atm", False, "pm1_0_atm", "VARCHAR"), # eg 0.14 Field("p_2_5_um", False, "p_2_5_um", "VARCHAR"), # eg 0.56 Field("pm2_5_atm", False, "pm2_5_atm", "VARCHAR"), # eg 0.33 Field("p_5_0_um", False, "p_5_0_um", "VARCHAR"), # eg 0.18 Field("pm10_0_atm", False, "pm10_0_atm", "VARCHAR"), # eg 0.42 Field("p_10_0_um", False, "p_10_0_um", "VARCHAR"), # eg 0.0 Field("pa_latency", False, "pa_latency", "VARCHAR"), # eg 631 Field("response", False, "response", "VARCHAR"), # eg 201 Field( "response_date", True, "response_date", "INTEGER", get_response_date, ), # eg 1598179477 Field("latency", True, "latency", "INTEGER", missing_int), # eg 1459 Field("key1_response", False, "key1_response", "VARCHAR"), # eg 200 Field("key1_response_date", False, "key1_response_date", "VARCHAR"), # eg 1598179467 Field("key1_count", False, "key1_count", "VARCHAR"), # eg 79205 Field("ts_latency", False, "ts_latency", "VARCHAR"), # eg 1198 Field("key2_response", False, "key2_response", "VARCHAR"), # eg 200 Field("key2_response_date", False, "key2_response_date", "VARCHAR"), # eg 1598179470 Field("key2_count", False, "key2_count", "VARCHAR"), # eg 79212 Field("ts_s_latency", False, "ts_s_latency", "VARCHAR"), # eg 1141 Field("key1_response_b", False, "key1_response_b", "VARCHAR"), # eg 200 Field( "key1_response_date_b", False, "key1_response_date_b", "VARCHAR", ), # eg 1598179472 Field("key1_count_b", False, "key1_count_b", "VARCHAR"), # eg 79213 Field("ts_latency_b", False, "ts_latency_b", "VARCHAR"), # eg 1133 Field("key2_response_b", False, "key2_response_b", "VARCHAR"), # eg 200 Field( "key2_response_date_b", False, "key2_response_date_b", "VARCHAR", ), # eg 1598179474 Field("key2_count_b", False, "key2_count_b", "VARCHAR"), # eg 79217 Field("ts_s_latency_b", False, "ts_s_latency_b", "VARCHAR"), # eg 1136 Field("wlstate", False, "wlstate", "VARCHAR"), # eg "Connected" Field("status_0", True, "status_0", "INTEGER"), # eg 2 Field("status_1", True, "status_1", "INTEGER"), # eg 2 Field("status_2", True, "status_2", "INTEGER"), # eg 2 Field("status_3", True, "status_3", "INTEGER"), # eg 2 Field("status_4", True, "status_4", "INTEGER"), # eg 2 Field("status_5", True, "status_5", "INTEGER"), # eg 2 Field("status_6", True, "status_6", "INTEGER", missing_int), # eg 2 Field("status_7", True, "status_7", "INTEGER"), # eg 0 Field("status_8", True, "status_8", "INTEGER"), # eg 2 Field("status_9", True, "status_9", "INTEGER"), # eg 2 Field("ssid", False, "ssid", "VARCHAR"), # eg "apocalypse ] def gen_stored(fields: list[Field] = fields): yield from (f for f in fields if f.store_flag) def compose_create( table_name: str, time_field: str, fields: list[Field] = fields, ) -> str: fdesc = ",\n".join([f"{f.db_name} {f.data_type}" for f in gen_stored()]) sql = f"""CREATE TABLE IF NOT EXISTS {table_name} ( {fdesc}, PRIMARY KEY({time_field}) ); """ return sql def compose_insert(field_names: Sequence, table_name: str) -> str: """compose parameterized insert SQL Args: field_names (Sequence): database table field names table_name (str): database table name. Returns: str: insert SQL. """ fields = ", ".join(field_names) placeholders = ", ".join([f"${i+1}" for i in range(len(field_names))]) sql = f"INSERT INTO {table_name} ({fields}) values ({placeholders})" return sql def convert_data(data: dict[str, Any], fields: list[Field] = fields) -> OrderedDict: """return filtered and ordered device data Args: data (Dict[str, Any]): raw dictionary directly from device. fields (List[Field], optional): fields specification Returns: OrderedDict[str, Any]: {db_key: converted_value, ...} items() will return in the same order as SQL commands assuming they are all based on the same field list. """ missing = [] def convert(data: dict[str, Any], field: Field) -> Any: if field.convert: # custom converstion function, takes care of missing data return field.convert(data, field.json_key) if field.json_key in data: return data[field.json_key] else: missing.append(field.json_key) return None missing.clear() result = OrderedDict({f.db_name: convert(data, f) for f in gen_stored()}) # if missing: # print(f"fields were missing: {missing}") return result
PaulSorenson/purpleair_sensor
paii/purple_data.py
purple_data.py
py
9,065
python
en
code
1
github-code
6
28176871934
import os import time import subprocess import shlex import os from delete_big_files import deleteBigFilesFor1000experiment os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" train_dir = '/home/ubuntu/robust_transfer_learning/' sample_size_to_number_of_seeds_epochs_and_log_freq = { 400 : (3, 150, 5), 1600 : (2, 150, 5), 6400 : (1, 150, 5), 25600: (1, 150, 5), -1 : (1, 150, 5), } target_ds_list = ['food101'] eps_levels = [0, 0.05, 0.25, 1] num_unfrozen_blocks_list = [3] polling_delay_seconds = 1 concurrent_commands = 4 commands_to_run = [] def poll_process(process): time.sleep(polling_delay_seconds) return process.poll() for t in target_ds_list: for ub in num_unfrozen_blocks_list: for n, tup in sample_size_to_number_of_seeds_epochs_and_log_freq.items(): num_seeds, ne, li = tup seed_list = [20000000 + 100000*(i) for i in range(num_seeds)] for s in seed_list: for e in eps_levels: command = f'python train.py -e {e} -t {t} -ub {ub} -n {n} -s {s} -ne {ne} -li {li} -d True' commands_to_run.append(command) for start_idx in range(0, len(commands_to_run), concurrent_commands): os.chdir(train_dir) processes = [] rng = range(start_idx, min(len(commands_to_run), start_idx + concurrent_commands)) print(rng) for i in rng: os.environ["CUDA_VISIBLE_DEVICES"] = str(i%4) processes.append(subprocess.Popen(shlex.split(commands_to_run[i]))) print(f'Starting command: {commands_to_run[i]}') for process in processes: while poll_process(process) is None: pass deleteBigFilesFor1000experiment()
utrerf/robust_transfer_learning
tools/batch.py
batch.py
py
1,717
python
en
code
11
github-code
6
2559703297
import os from flask import Flask from flask_jwt_extended import JWTManager from flask_login import LoginManager from .auth import ldap_handler from .db import database from .db.models import * from .messages import messages from .mocks import fake_ldap_handler configuration_switch = { "default": "backend.config.DevConfig", # Development configuration (fake LDAP) "staging": "backend.config.StagingConfig", # Staging configuration (should be as close as possible to prod) "production": "backend.config.ProductionConfig", # Production configuration } ENV = os.environ.get("ENV", "default") # SET UP ===================================== LOGIN_MANAGER = LoginManager() LOGIN_MANAGER.login_view = "auth.login" LOGIN_MANAGER.login_message = messages.LOGIN_MANAGER_MESSAGE LDAP = fake_ldap_handler.FAKE_LDAP if ENV == "default" else ldap_handler.LDAP DB = database.DB JWT_MANAGER = JWTManager() # =================================================== def create_app(test_configuration=None, test_db=None): """Application factory method""" app = Flask(__name__, static_folder="../build/static", template_folder="../build") # Configure the application if test_configuration: app.config.update(test_configuration) else: app.config.from_object(configuration_switch[ENV]) # Register extensions ################################ # | | | | | | | | | | | | | | | | | # ###################################################### LDAP.init_app(app) LOGIN_MANAGER.init_app(app) JWT_MANAGER.init_app(app) if test_configuration: test_db.init_app(app) else: DB.init_app(app) ############################################################ from .views import auth, index, home, configuration, plugin app.register_blueprint(auth.bp) app.register_blueprint(index.bp) app.register_blueprint(home.bp) app.register_blueprint(configuration.bp) app.register_blueprint(plugin.bp) return app
elliecherrill/diligent
backend/__init__.py
__init__.py
py
2,021
python
en
code
1
github-code
6
9975379557
from django.conf.urls import url from .views import * urlpatterns = [ # 课程列表 url(r'^list/$', CourseListView.as_view(), name='list'), # 课程详情 url(r'^detail/(?P<course_id>\d+)/$', DetailView.as_view(), name='detail'), # 视频信息 url(r'^info/(?P<course_id>\d+)/$', InfoView.as_view(), name='info'), # 课程评论 url(r'^comment/(?P<course_id>\d+)/$', CommentView.as_view(), name='comment'), # 添加评论 url(r'^addcomment/$', AddComment.as_view(), name='addcomment'), #video url(r'^video/(?P<video_id>\d+)/$', VideoView.as_view(), name='video'), ]
Liyb5/web
EduOnline/BlueSky/apps/courses/urls.py
urls.py
py
635
python
en
code
0
github-code
6
5549915372
from django.shortcuts import render, redirect from django.utils import timezone from .forms import ActivateSertificateForm from programs.models import Category from .models import Sertificate # Create your views here. def activate_sertificate(request): if request.method == "POST": form = ActivateSertificateForm(request.POST) if form.is_valid(): sert = form.save(commit=False) try: sertificate = Sertificate.objects.get(number = sert.number) if not sertificate.is_active: sertificate.user = request.user sertificate.activation_date = timezone.now() sertificate.is_active = True sertificate.save() return redirect('success/') else: return redirect('outdated/') except Exception as e: return redirect('unsuccess/') else: form = ActivateSertificateForm() categories = Category.objects.all(); return render(request, 'activation/check_sertificate.html', {'form': form, 'categories': categories }) def return_success_message(request): categories = Category.objects.all(); return render(request, 'activation/success.html', { 'categories': categories }) def return_unsuccess_message(request): categories = Category.objects.all(); return render(request, 'activation/unsuccess.html', { 'categories': categories }) def return_outdated_message(request): categories = Category.objects.all(); return render(request, 'activation/outdated.html', { 'categories': categories })
vladisgrig/babeo
activation/views.py
views.py
py
1,655
python
en
code
0
github-code
6
14254128596
from __future__ import absolute_import, division, print_function, unicode_literals from _GTW import GTW from _MOM import MOM from _TFL import TFL import _GTW._OMP._PAP from _MOM._Graph.Spec import Attr, Child, ET, IS_A, Role, Skip import _MOM._Graph.Command import _MOM._Graph.Entity from _TFL._D2 import Cardinal_Direction as CD from _TFL.I18N import _, _T import _TFL._Meta.Once_Property def graph (app_type) : """Class/association graph displaying PAP partial object model""" ag_p = hasattr (GTW.OMP.PAP, "Adhoc_Group") ass_p = hasattr (GTW.OMP.PAP, "Association") le_p = hasattr (GTW.OMP.PAP, "Legal_Entity") shp_off = CD.S result = MOM.Graph.Spec.Graph \ ( app_type , ET.PAP.Subject_has_Property ( Role.left ( Child.PAP.Person ( offset = CD.N ) , offset = CD.W ) , Role.right ( Child.PAP.Address ( ET.PAP.Address_Position ( offset = CD.S if (ag_p or le_p) else CD.W ) , offset = shp_off + 3 * CD.W ) , Child.PAP.Email ( offset = shp_off + 2 * CD.W ) , Child.PAP.Phone ( offset = shp_off + 1 * CD.W ) , Child.PAP.Url ( offset = shp_off ) , offset = CD.E ) ) , desc = _T ("Class/association graph displaying PAP partial object model") , title = _T ("PAP graph") ) if hasattr (GTW.OMP.PAP, "Group") : g_args = () if hasattr (GTW.OMP.PAP, "Person_in_Group") : g_args = \ ( ET.PAP.Person_in_Group ( Role.left () , Role.right () , offset = CD.N ) , ) result ["PAP.Subject"]._add \ ( Child.PAP.Group ( * g_args , offset = CD.W ) ) if le_p : result ["PAP.Group"]._add \ ( Child.PAP.Legal_Entity ( offset = CD.W , source_side = "E" , target_side = "W" ) ) if ass_p : result ["PAP.Legal_Entity"]._add \ ( Child.PAP.Association ( offset = CD.N ) ) if hasattr (GTW.OMP.PAP, "Company") : result ["PAP.Legal_Entity"]._add \ ( Child.PAP.Company ( offset = CD.S ) ) if ag_p : result ["PAP.Group"]._add \ ( Child.PAP.Adhoc_Group ( offset = CD.W + CD.S * (-1 if not ass_p else (2 if le_p else 0)) , source_side = "E" , target_side = "W" ) ) if hasattr (GTW.OMP.PAP, "IM_Handle") : result ["PAP.Property"]._add \ ( Child.PAP.IM_Handle ( offset = shp_off + CD.E ) ) if hasattr (GTW.OMP.PAP, "Nickname") : result ["PAP.Property"]._add \ ( Child.PAP.Nickname ( offset = CD.E , source_side = "W" , target_side = "E" ) ) if hasattr (GTW.OMP.PAP, "Person_has_Account") : result ["PAP.Person"]._add \ ( ET.PAP.Person_has_Account ( Role.left (guide_offset = 1.0) , Role.right ( offset = CD.E ) , offset = CD.E ) ) return result # end def graph class Command (MOM.Graph.Command) : @TFL.Meta.Class_and_Instance_Once_Property def PNS (self) : return GTW.OMP.PAP # end def PNS def import_all (self) : import _GTW._OMP._Auth self.__super.import_all () GTW.OMP.Auth._Import_All () # end def import_all # end class Command if __name__ != "__main__" : GTW.OMP.PAP._Export_Module () else : Command () () ### __END__ GTW.OMP.PAP.graph
xiaochang91/tapyr
_GTW/_OMP/_PAP/graph.py
graph.py
py
4,661
python
en
code
0
github-code
6
31535390686
from functools import wraps def vowel_filter(function): vowels = ["a", "e", "i", "o", "u", "y"] found_vowels = [] @wraps(function) def wrapper(): for ch in function(): if ch.lower() in vowels: found_vowels.append(ch) return found_vowels return wrapper @vowel_filter def get_letters(): return ["a", "b", "c", "d", "e"] print(get_letters())
iliyan-pigeon/Soft-uni-Courses
pythonProjectOOP/decorators/vowels_filter.py
vowels_filter.py
py
416
python
en
code
0
github-code
6
7438577752
from pathlib import Path from vesper.tests.test_case import TestCase from vesper.util.preference_manager import PreferenceManager import vesper.tests.test_utils as test_utils _DATA_DIR_PATH = Path(test_utils.get_test_data_dir_path(__file__)) _PREFERENCE_FILE_PATH = _DATA_DIR_PATH / 'Preferences.yaml' _EMPTY_PREFERENCE_FILE_PATH = _DATA_DIR_PATH / 'Empty Preferences.yaml' _NON_MAPPING_PREFERENCE_FILE_PATH = \ _DATA_DIR_PATH / 'Non Mapping Preferences.yaml' _MALFORMED_PREFERENCE_FILE_PATH = _DATA_DIR_PATH / 'Malformed Preferences.yaml' class PreferenceManagerTests(TestCase): def test_get(self): preferences = _get_preferences(_PREFERENCE_FILE_PATH) cases = ( ('one', 1), ('category_a.two', 2), ('category_a.three', 'three'), ('category_a.category_b.forty_five', 45), ('category_a.category_b.fifty six', 56), ('category_a.category_b', {'forty_five': 45, 'fifty six': 56}) ) for p in preferences: for name, value in cases: self.assertTrue(name in p) self.assertEqual(p[name], value) self.assertEqual(p.get(name), value) def test_get_of_nonexistent_preferences(self): preferences = _get_preferences(_PREFERENCE_FILE_PATH) cases = ( 'bobo', 'category_a.bobo' ) for p in preferences: for name in cases: self.assertFalse(name in p) self.assertRaises(KeyError, p.__getitem__, name) self.assertIsNone(p.get(name)) self.assertEqual(p.get(name, 10), 10) def test_empty_preference_file(self): self._test_bad_preference_file(_EMPTY_PREFERENCE_FILE_PATH) def _test_bad_preference_file(self, file_path): preferences = _get_preferences(file_path) for p in preferences: self.assertEqual(len(p), 0) def test_malformed_preference_file(self): self._test_bad_preference_file(_MALFORMED_PREFERENCE_FILE_PATH) def test_non_mapping_preference_file(self): self._test_bad_preference_file(_NON_MAPPING_PREFERENCE_FILE_PATH) def test_nonexistent_preference_file(self): manager = PreferenceManager() manager.load_preferences_from_file('nonexistent') self.assertEqual(len(manager.preferences), 0) def _get_preferences(file_path): # Create preferences from file. manager = PreferenceManager.create_for_file(file_path) preferences_a = manager.preferences # Create preferences from YAML. with open(file_path) as file_: yaml = file_.read() manager = PreferenceManager.create_for_yaml(yaml) preferences_b = manager.preferences return (preferences_a, preferences_b)
HaroldMills/Vesper
vesper/util/tests/test_preference_manager.py
test_preference_manager.py
py
2,906
python
en
code
47
github-code
6
72935917627
import os from celery import Celery from celery.schedules import crontab os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'backend.settings') app = Celery('backend') app.config_from_object('django.conf:settings', namespace='CELERY') app.conf.beat_schedule = { 'check_mail_everyday': { 'task': 'emailService.task.check_dates_task', 'schedule': crontab(hour=1, minute=00), } } app.autodiscover_tasks()
anunayajoshi/futureme
backend/backend/celery.py
celery.py
py
426
python
en
code
0
github-code
6
33702704860
import openpyxl as xl import xlwings as xw from Worksheet import Worksheet,QPreviewItem from Workcell import * from PyQt4.QtGui import * from PyQt4.QtCore import * from copy import copy #import time import datetime ################################################## # class for PS sheet handling ################################################## UP = 0 DOWN = 1 nn = 0 class PSsheet(Worksheet): def __init__(self,sheet = None,sheet_wr = None): super(PSsheet,self).__init__(sheet,sheet_wr) self._preview_model_list = [] self._extended_preview_model_list = None self.init_ps_sheet() self.init_ps_model() def __del__(self): super(PSsheet,self).__del__() del self._preview_model del self._extended_preview_model_list def init_ps_sheet(self): if self._xmlname != None: self._status = self.search_header_by_value(u'Status(POR,INIT,PREV)') self._subject_matter = self.search_header_by_value(u'Subject Matter/\nFunctional Area') self._container_name = self.search_header_by_value(u'Container Name\nTechnical Specification') def init_ps_model(self): self._preview_model = QStandardItemModel() self._preview_model.setColumnCount(4) self._preview_model.setHeaderData(0,Qt.Horizontal,'status') self._preview_model.setHeaderData(1,Qt.Horizontal,'subject matter') self._preview_model.setHeaderData(2,Qt.Horizontal,'container name') self._preview_model.setHeaderData(3,Qt.Horizontal,'xmlname') self._extended_preview_model = None def update_model(self): super(PSsheet,self).update_model() self._preview_model_list = [] self.init_ps_model() self.init_ps_sheet() if self._xmlname != None: try: for xml_name in self.xml_names(): item_status = QPreviewItem(self._status.get_item_by_xmlname(xml_name)) item_subject_matter = QPreviewItem(self._subject_matter.get_item_by_xmlname(xml_name)) item_container_name = QPreviewItem(self._container_name.get_item_by_xmlname(xml_name)) item_xml_name = QPreviewItem(xml_name) self._preview_model.appendRow((item_status,item_subject_matter,item_container_name,item_xml_name)) self._preview_model_list.append((item_status.value,item_subject_matter.value,item_container_name.value,item_xml_name.value)) except: return 'error' def status(self): cells = list(self._worksheet.iter_cols(min_col=self._status.col,min_row=self._status.row+1,max_col=self._status.col,max_row=self.max_row).next()) while cells[-1].value == None: cells.pop() return map(lambda x:Status(x,self._worksheet_wr),cells) def cell(self,row,col): #return self._worksheet_wr.range(row,col) return self._worksheet.cell(row=row,column=col) def auto_fit(self,cols): for col in cols: for i in range(1): self._worksheet_wr.api.Columns(col).AutoFit() def add_row(self,start_pos,offset,orientation): loop = offset while loop > 0: self._worksheet_wr.api.Rows[start_pos].Insert(-4121) loop -= 1 def delete_row(self,start_pos,offset): self._worksheet_wr.range('%d:%d'%(start_pos,start_pos+offset-1)).api.Delete() def lock_row(self,row,status): self._worksheet_wr.api.Rows[row-1].Locked = True def lock_sheet(self): self._worksheet_wr.api.Protect() def lock_sheet_status(self): return self._worksheet_wr.api.ProtectContents def unlock_sheet(self): self._worksheet_wr.api.Unprotect() def unlock_all_cells(self): self._worksheet_wr.api.Cells.Locked = False def extended_preview_model(self): if self._extended_preview_model == None: self._extended_preview_model = QStandardItemModel() self._extended_preview_model.setColumnCount(self._worksheet.max_column) for row in self._worksheet.rows: item_row = [] for cell in row: try: if cell.value == None: item = QStandardItem('') else: item = QStandardItem(cell.value) except: item = QStandardItem('') item_row.append(item) self._extended_preview_model.appendRow(item_row) return self._extended_preview_model @property def extended_preview_model_list(self): if self._extended_preview_model_list == None: self._extended_preview_model_list = [] for row in self._worksheet.iter_rows(min_row=self.min_row,max_row=self.max_row,min_col=self.min_col,max_col=self.max_col): item_row = [] for cell in row: #item_row.append(cell.value if cell.value is not None else '') try: #item_row.append('' if cell.value is None else str(cell.value) if type(cell.value) == long else '%s-%s-%s'%((cell+datetime.delta(days=1)).timetuple().tm_year,(cell+datetime.delta(days=1)).timetuple().tm_mon,(cell+datetime.delta(days=1)).timetuple().tm_mday) if type(cell) is datetime.datetime else (cell.value)) item_row.append('' if cell.value is None else str('%s-%s-%s'%((cell.value+datetime.timedelta(days=1)).timetuple().tm_year,(cell.value+datetime.timedelta(days=1)).timetuple().tm_mon,(cell.value+datetime.timedelta(days=1)).timetuple().tm_mday)) if type(cell.value) is datetime.datetime else str(cell.value)) except: item_row.append('') self._extended_preview_model_list.append(item_row) return self._extended_preview_model_list @property def preview_model(self): return self._preview_model_list
DericGitHub/excel-operator
model/PSsheet.py
PSsheet.py
py
6,063
python
en
code
0
github-code
6
11004554798
class Solution: def splitListToParts(self, root: ListNode, k: int) -> List[ListNode]: totalLen = 0 cur = root while cur: totalLen += 1 cur = cur.next length = totalLen // k mod = totalLen % 3 res = [] cur = root for i in range(k): res.append(cur) size = length + (1 if m > 0 else 0) if cur: for j in range(size): cur = cur.next tmp = cur.next cur.next = None cur = tmp return res
xixihaha1995/CS61B_SP19_SP20
temp/toy/python/725. Split Linked List in Parts.py
725. Split Linked List in Parts.py
py
601
python
en
code
0
github-code
6
27831010517
import numpy as np import netCDF4 as nc4 import net_radiation import atmospheric_parameters import wind_shear_velocity import datetime # Using TerraClimate # 2.5 arcminute (1/24 degree) resolution: ~5 km N-S # Import step # ... load files here or with a CLI years = range(1958, 2019) months_zero_indexed = range(12) TerraClimateDir = '/media/andy/data1/TerraClimate/' def extract_data(varnc, varname, varmonth_zero_indexed=None): if varmonth_zero_indexed is None: var = varnc.variables[varname][:] else: var = varnc.variables[varname][varmonth_zero_indexed] fv = var.fill_value var = var.data var[var == fv] = np.nan return var # Get lats and lons from one file srad_nc = nc4.Dataset(TerraClimateDir+'TerraClimate_srad_1958.nc') lats = extract_data(srad_nc, 'lat') lons = extract_data(srad_nc, 'lon') #LONS, LATS = np.meshgrid (lons, lats) # Shear velocity of winds: tool to compute from velocity ustar_interp = wind_shear_velocity.create_lookup_table_one_step() # Elevation elevation_nc = nc4.Dataset(TerraClimateDir+'Gebco_2020_2_point_5_arcminute.nc') elevation = extract_data(elevation_nc, 'value') elevation = elevation[::-1] # Heat capacity of air specific_heat_capacity_of_air = 1.005 # approx. constant at 1 atm # Humidity minor impact below 40C or so # But this is an approximation! cp = specific_heat_capacity_of_air # Easier # Water density rho_w = 1000. # Latent heat of vaporization for water Lv = 2.5E6 DeltaH_vap = Lv # to make me happier # Ratio of molecular weight of water vapor to dry air epsilon = 0.622 # Days in month, for weighting days_in_month = [31, 28.25, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # Evaporation array E = np.zeros(elevation.shape) years = years[:13] # 1970 and before: before so much GW for year in years: print(year) # Incoming solar radiation (monthly average) srad_nc = nc4.Dataset(TerraClimateDir+'TerraClimate_srad_'+str(year)+'.nc') # Maximum daily temperature (monthly average) tmax_nc = nc4.Dataset(TerraClimateDir+'TerraClimate_tmax_'+str(year)+'.nc') # Minimum daily temperature (monthly average) tmin_nc = nc4.Dataset(TerraClimateDir+'TerraClimate_tmin_'+str(year)+'.nc') # Wind speed (monthly average) ws_nc = nc4.Dataset(TerraClimateDir+'TerraClimate_ws_'+str(year)+'.nc') # Vapor pressure (monthly average) vap_nc = nc4.Dataset(TerraClimateDir+'TerraClimate_vap_'+str(year)+'.nc') # Now compute for each month for month_zi in months_zero_indexed: print(month_zi+1) # Data srad = extract_data(srad_nc, 'srad', month_zi) tmax = extract_data(tmax_nc, 'tmax', month_zi) tmin = extract_data(tmin_nc, 'tmin', month_zi) ws = extract_data(ws_nc, 'ws', month_zi) vap = extract_data(vap_nc, 'vap', month_zi) * 1000. # kPa to Pa # Average radiation on the midday of the month; could be more precise date = datetime.date(year, month_zi+1, int(np.round(days_in_month[month_zi]/2.))) #elevation = 2000. # placeholder #julian_day = 205 # placeholder #vap = .03*101325 # placeholder albedo = 0.06 # Calculations: # Net Radiation Rn = net_radiation.computeNetRadiation(elevation, date, lats, len(lons), tmax, tmin, vap, srad, albedo) # Shear velocity of winds ustar = ustar_interp(ws) # Vapor-pressure deficit # We don't have max and min humidity VPD = atmospheric_parameters.compute_vpd( (tmax+tmin)/2., vap ) # Atmospheric pressure P = atmospheric_parameters.compute_atmospheric_pressure(elevation) # Atmospheric density (ignoring temperature + humidity effects) rho_a = atmospheric_parameters.compute_atmospheric_density(elevation, (tmax + tmin)/2.) # Clausius-Clayperon phase-change slope Delta = ( atmospheric_parameters.compute_Delta_e_sat( tmax ) + atmospheric_parameters.compute_Delta_e_sat( tmin ) ) / 2. _E = (Rn + cp*rho_a*ustar**2/(Delta*ws) * VPD) \ / ( rho_w*Lv + P*cp*rho_w/epsilon ) _E[_E<0] = 0 # ignore condensation; I think it's spurious (Antarctica?) E += _E*days_in_month[month_zi] E /= (365.25*len(years)) # Export from netCDF4 import Dataset import numpy import time #path to the file you want to open or create location_string="evaporation_002p5_arcmin.nc" # Create nc file rootgrp = Dataset(location_string,"w",format="NETCDF4") # Dimensions lat=rootgrp.createDimension("lat", len(lats)) lon=rootgrp.createDimension("lon", len(lons)) value = rootgrp.createDimension("evaporation", None) # Values latitudes = rootgrp.createVariable("lat", "f4", ("lat",)) longitudes = rootgrp.createVariable("lon", "f4", ("lon",)) values = rootgrp.createVariable("value", "f4" , ("lat", "lon",)) latitudes[:] = lats longitudes[:] = lons values[:] = E # Units latitudes.units = "degrees north" longitudes.units = "degrees east" values.units = "metres per second" # Metadata rootgrp.description = "Evaporation derived from TerraClimate data products (see https://github.com/umn-earth-surface/TerraClimate-potential-open-water-evaporation)." rootgrp.history = "created" + time.ctime(time.time()) values.Long_Name = "Open-water evaporation" # Save rootgrp.close()
MNiMORPH/TerraClimate-potential-open-water-evaporation
penman.py
penman.py
py
5,465
python
en
code
2
github-code
6
23380015513
from gensim.models.doc2vec import Doc2Vec import pickle def get_most_similar_docs(test_data, model_path): # Load the Doc2Vec model model = Doc2Vec.load(model_path) # Split the test_data string into a list of words test_data_words = test_data.split() # Infer the vector for the test document inferred_vector = model.infer_vector(test_data_words) with open('./homework_6/data/tagged_data.pkl', 'rb') as file: loaded_tagged_data = pickle.load(file) # Get the 5 most similar documents based on the inferred vector sims = model.dv.most_similar([inferred_vector], topn=5) idx = [sims[i][0] for i in range(5)] # Print the most similar documents print('Test Document: «{}»\n'.format(' '.join(test_data_words))) print(u'SIMILAR DOCS PER MODEL %s:\n' % model) for label, index in [('1', 0), ('2', 1), ('3', 2), ('4', 3), ('5', 4)]: print(u'%s %s: «%s»\n' % (label, sims[index], ' '.join(loaded_tagged_data[int(sims[index][0])].words))) return idx test_data = 'exotic yellow spice note meet lean lime pith light crisp nose old vine expression historic winery . meyer lemon rind juice show brightly palate grippy chalkiness complement rich lemon curd flavor' get_most_similar_docs(test_data, './homework_6/models/doc2vec.model')
Tokarevmm/homework5
homework_6/recommend.py
recommend.py
py
1,287
python
en
code
0
github-code
6
44502183300
from flask_wtf import FlaskForm from wtforms import StringField, IntegerField from wtforms.validators import DataRequired, Length, ValidationError from urllib.parse import urlparse from app.models import Business def business_name_exists(form, field): business_name = field.data business = Business.query.filter(Business.name == business_name).first() if business: raise ValidationError("Business with this name already exists.") def valid_zip_code(form, field): if not field.data.isdigit() or len(field.data) != 5: raise ValidationError("Invalid ZIP Code.") def valid_phone_number(form, field): if not field.data.isdigit() or len(field.data) != 10: raise ValidationError("Invalid phone number.") # def valid_url(form, field): # try: # result = urlparse(field.data) # if not all([result.scheme, result.netloc]): # raise ValueError() # except ValueError: # raise ValidationError("Invalid URL.") class BusinessForm(FlaskForm): # class Meta: # csrf = False name = StringField('Business Name', validators=[ Length(min=1, max=50), DataRequired(), # business_name_exists ]) address = StringField('Address', validators=[ Length(min=1, max=255), DataRequired() ]) city = StringField('City', validators=[ Length(min=1, max=50), DataRequired() ]) state = StringField('State', validators=[ Length(min=1, max=25), DataRequired() ]) zip_code = StringField('Zip Code', validators=[ Length(min=1, max=10), DataRequired(), # valid_zip_code ]) phone_number = StringField('Phone Number', validators=[ Length(min=1, max=30), DataRequired(), # valid_phone_number ]) category_id = IntegerField('Category ID', validators=[DataRequired()]) owner_id = IntegerField('Owner ID', validators=[DataRequired()]) website = StringField('Website', validators=[ Length(min=1, max=255), DataRequired(), # valid_url ]) about = StringField('About', validators=[ Length(min=1, max=500), DataRequired() ]) type = StringField('Type', validators=[ Length(min=1, max=255), DataRequired() ])
stroud91/ReactFlaskProject
app/forms/bussiness_form.py
bussiness_form.py
py
2,324
python
en
code
0
github-code
6
73535922429
import numpy as np import matplotlib.pyplot as plt from scipy import sparse def output_result(path, matrix): f = open(path, "w+") f.write(str(len(matrix)) + '\n') for row in matrix: f.write(str(row)[1:-1]) f.write('\n') f.close() def read_buildings(path_to_buildings): ''' :param path_to_buildings: a path to text file that consists coordinates of the buildings :return: list of (x1,y1,x2,y2) ''' file = open(path_to_buildings) buildings = [] for line in file: sp = line.split(" ") x1, y2, x2, y1 = float(sp[0]), 1 - float(sp[1]), float(sp[2]), 1 - float(sp[3]) buildings.append((x1, y1, x2, y2)) return buildings def isInsideBuildings(xx, yy, buildings): ''' :param coord: (x,y) - coords to check :param building: (x1,y1,x2,y2) - building :return: Boolean ''' answer = False for building in buildings: (x1, y1, x2, y2) = building if x1 <= xx <= x2 and y1 <= yy <= y2: answer = True return not answer def get_cond_check_func(buildings): ''' Given building construct function that verify whether point (x,y) is outside these buildings :param buildings: :return: lambda (x,y) -> ... ''' return lambda x, y: isInsideBuildings(x, y, buildings) class ConvectionDiffusion: def __init__(self, max_t, l1, l2, k, N, cond_func, eps): self.max_t = max_t self.l1 = l1 self.l2 = l2 self.k = k self.N = N self.h = 1.0 / N self.eps = eps self.cond_func = cond_func self.tau = 1 / (4 * k * N * N) self.U = np.zeros((N + 1, N + 1)) self.coeffs = [1 - 4 * self.tau * k / (self.h * self.h), self.tau * (k / (self.h * self.h) - l1 / (2 * self.h)), self.tau * (k / (self.h * self.h) + l1 / (2 * self.h)), self.tau * (k / (self.h * self.h) - l2 / (2 * self.h)), self.tau * (k / (self.h * self.h) + l2 / (2 * self.h))] def check_correctness(self, x, y): return 0 <= x < self.N and 0 < y < self.N def iteration(self): ''' One iteration of the simple iteration methods :return: error ''' dx = [0, 1, -1, 0, 0] dy = [0, 0, 0, 1, -1] new_U = np.zeros((N + 1, N + 1)) for i in range(self.N + 1): for j in range(self.N + 1): new_U[i, j] = self.U[i, j] if not self.cond_func(i / N, j / N): continue else: new_U[i, j] *= self.coeffs[0] for f in range(1, 5): x = i + dx[f] y = j + dy[f] if self.cond_func(x / N, y / N) and self.check_correctness(x, y): new_U[i, j] += self.U[x, y] * self.coeffs[f] else: new_U[i, j] += self.U[i, j] * self.coeffs[f] old_U = self.U self.U = new_U return np.max(np.abs((old_U / 100 - new_U / 100))) def init_matrix(self): self.U[:, 1] = 100 def solve(self): ''' :return: U and image ''' self.init_matrix() for f in range(0, self.max_t): error = self.iteration() print(error) if error < self.eps: break fig = plt.imshow(self.U / 100) plt.colorbar(fig) plt.show() return self.U / 100 def optimized_solve(self): vars = (self.N + 1) * (self.N + 1) dx = [0, 1, -1, 0, 0] dy = [0, 0, 0, 1, -1] A = sparse.lil_matrix((vars, vars)) b = np.zeros(vars) frames = [] for i in range(vars): y = i // (self.N + 1) x = i % (self.N + 1) A[i, i] = self.coeffs[0] if not self.cond_func(x / (self.N + 1), y / (self.N + 1)) or not self.check_correctness(x, y): continue if x == 0: A[i, i] = 1 continue for j in range(1, 5): xx = x + dx[j] yy = y + dy[j] if xx == 0: b[i] += self.coeffs[j] continue if not self.cond_func(xx / (self.N + 1), yy / (self.N + 1)) or not self.check_correctness(xx, yy): A[i, i] += self.coeffs[j] else: A[i, yy * (self.N + 1) + xx] = self.coeffs[j] A = sparse.csc_matrix(A) x = np.zeros(vars) for i in range(self.N + 1): x[i * (self.N + 1)] = 0 for f in range(self.max_t): x_new = A @ x + b error = np.max(np.abs((x_new - x) / np.maximum(1, x))) if f % 100 == 0: frames.append(x_new.reshape((self.N + 1, self.N + 1))) print(error) if error < self.eps: x = x_new break x = x_new answer = x.reshape((self.N + 1, self.N + 1)) fig = plt.imshow(answer) plt.colorbar(fig) plt.show() return answer, frames def animate(frames): fig = plt.figure() ims = [] from matplotlib import animation i = 0 for frame in frames: print(frame.shape) im = plt.imshow(frame, animated=True) ims.append([im]) i += 1 plt.colorbar(im) Writer = animation.writers['ffmpeg'] writer = Writer(fps=60, metadata=dict(artist='Me'), bitrate=260) ani = animation.ArtistAnimation(fig, ims, interval=17, blit=True, repeat_delay=1000) # ani.save('diffusion.html') ani.save('diffusion.mp4', writer=writer) plt.show() if __name__ == "__main__": max_t = 100000 l_1 = 1 l_2 = 0.0 k = 0.5 N = 300 eps = 1e-6 buildings = read_buildings("buildings.txt") cond_func = get_cond_check_func(buildings) solver = ConvectionDiffusion(max_t, l_1, l_2, k, N, cond_func, eps) u, frames = solver.optimized_solve() animate(frames) output_result("output.txt", u)
arsee2/numerical_modelling_diffusion_convection_process
nm_project.py
nm_project.py
py
6,194
python
en
code
0
github-code
6
23066216205
import wild_pokemon, wondertrade, pokemon def index_species(symbols, rom, proj, ps): """ Creates an index for all species Parameters: symbols : The symbol table rom : The rom proj : The pymap project ps : The Pstring parser Returns: A list of lists containing IndexEntry instances """ species_index = [[] for _ in proj.constants.values("species")] wild_pokemon.index_wild_pokemon(species_index, symbols, rom, proj, ps, wild_pokemon_table_symbol="wild_pokemon") wondertrade.index_wondertrade(species_index, symbols, rom) for i, species in enumerate(proj.constants.values("species")): for entry in species_index[i]: print("Species", pokemon.species_to_name(i, rom, proj, ps, symbols), entry.__dict__)
Fredd40/Violet_Sources
tools/indexer/core.py
core.py
py
766
python
en
code
0
github-code
6
18004211915
import os import numpy as np import torch import transforms3d def plane2pose(plane_parameters): r3 = plane_parameters[:3] r2 = np.zeros_like(r3) r2[0], r2[1], r2[2] = (-r3[1], r3[0], 0) if r3[2] * r3[2] <= 0.5 else (-r3[2], 0, r3[0]) r1 = np.cross(r2, r3) pose = np.zeros([4, 4], dtype=np.float32) pose[0, :3] = r1 pose[1, :3] = r2 pose[2, :3] = r3 pose[2, 3] = plane_parameters[3] pose[3, 3] = 1 return pose def plane2euler(plane_parameters, axes='sxyz'): pose = plane2pose(plane_parameters) T, R, Z, S = transforms3d.affines.decompose(pose) euler = transforms3d.euler.mat2euler(R, axes=axes) return T, euler
PKU-EPIC/UniDexGrasp
dexgrasp_policy/dexgrasp/utils/data_info.py
data_info.py
py
669
python
en
code
63
github-code
6
12697223783
from telegram import Update from telegram.ext import ( Updater, CallbackContext, run_async, CommandHandler, ) from utils import Config from pkgutil import walk_packages from types import ModuleType from typing import Dict from utils import get_filter submodules: Dict[str, ModuleType] = { module_name: loader.find_module(module_name).load_module(module_name) for loader, module_name, is_package in walk_packages(__path__) } def describe(): return "列出所有的指令, 需注意列出的指令在当前的环境内不一定可用" def run(update: Update, context: CallbackContext): update.effective_message.reply_text( text="所有指令如下:\n" + "\n".join( [f"/{command}: {description}" for command, description in commands_list] ), quote=True ) commands_list = tuple( (name, module.describe()) for name, module in submodules.items() ) + ( (__name__, describe()), ) def register(updater: Updater): for module in submodules.values(): module.register(updater) dp = updater.dispatcher dp.add_handler(CommandHandler( __name__, run, filters=get_filter(Config.watchers), run_async=True)) # dp.add_handler(CommandHandler(__name__, run, filters=Filters.all)) # DEBUG # * Unavailable until all commands are implemented (or at least their describe methods return a string with len > 3) updater.bot.set_my_commands(commands_list)
finall1008/telegram-pusher-bot
commands/__init__.py
__init__.py
py
1,483
python
en
code
5
github-code
6
30980411340
from matplotlib.pyplot import draw import pygame from pygame.locals import * pygame.init() pygame.mixer.init() # set screen resolution resolution = (725,725) # open a screen of above resolution screen = pygame.display.set_mode(resolution) # defining palette colours (global variables) as dictionary gameColours={ 'green': (101, 155, 94), 'dG': (73, 113, 69), 'red': (200, 70,48), 'dR' : (135, 47, 31) } # storing screen variable values width = screen.get_width() height = screen.get_height() # text_on_screen() not affected by mouse position variables # Game main menu, with start and exit buttons def main_menu(): # track position of mouse mx, my = pygame.mouse.get_pos() # Generate play/quit buttons playButton = pygame.Rect(width/7, (height/2), 200, 100) quitButton = pygame.Rect(((width/7)+200+width/7), (height/2), 200, 100) # Hover on buttons if playButton.collidepoint((mx, my)): # Rendering button darker green pygame.draw.rect(screen, gameColours['dG'], playButton) else: # Rendering button green pygame.draw.rect(screen, gameColours['green'], playButton) if quitButton.collidepoint((mx,my)): # Rendering button darker red pygame.draw.rect(screen, gameColours['dR'], quitButton) else: # Rendering button light red pygame.draw.rect(screen, gameColours['red'], quitButton) # tableGen() not affected by mouse position variables # getCatPath() not affected by mouse position variables # updateScore() not affected by mouse position variables # displayScore() not affected by mouse position variables # Begins the "lets roll" screen of game, with button to start def gameTime(score): # mouse position mx, my = pygame.mouse.get_pos() rollButton = pygame.Rect(width/3, (height-100), 225, 70) # Hover on roll button if rollButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dR'], rollButton) else: pygame.draw.rect(screen, gameColours['red'], rollButton) # checkWinner() not affected by mouse position variables # getDice() not affected by mouse position variables # showDice() not affected by mouse position variables # gameLogic() not affected by mouse position variables # user won def winScreen(die1, die2, num, score): # mouse coordinates mx, my = pygame.mouse.get_pos() againButton = pygame.Rect(width/7, (height-70), 225, 50) quitButton = pygame.Rect(width/7+300, (height-70), 225, 50) # hover effects (collision) if againButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dG'], againButton) else: pygame.draw.rect(screen, gameColours['green'], againButton) if quitButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dR'], quitButton) else: pygame.draw.rect(screen, gameColours['red'], quitButton) # screen for when user loses def loseScreen(die1, die2, num, score): againButton = pygame.Rect(width/7, (height-70), 225, 50) quitButton = pygame.Rect(width/7+300, (height-70), 225, 50) # mouse coordinates mx, my = pygame.mouse.get_pos() # hover collision if againButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dG'], againButton) else: pygame.draw.rect(screen, gameColours['green'], againButton) if quitButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dR'], quitButton) else: pygame.draw.rect(screen, gameColours['red'], quitButton) # screen for when computer and user dice are equal def drawScreen(die1, num, score): againButton = pygame.Rect(width/7, (height-70), 225, 50) quitButton = pygame.Rect(width/7+300, (height-70), 225, 50) mx, my = pygame.mouse.get_pos() if againButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dG'], againButton) else: pygame.draw.rect(screen, gameColours['green'], againButton) if quitButton.collidepoint((mx, my)): pygame.draw.rect(screen, gameColours['dR'], quitButton) else: pygame.draw.rect(screen, gameColours['red'], quitButton)
jessica-leishman/high-rollers
analysis_static/manual slices/hrStatic3.py
hrStatic3.py
py
4,288
python
en
code
0
github-code
6
21207331986
from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.mixins import PermissionRequiredMixin from django.urls import reverse_lazy from django.shortcuts import render from django.views.generic import ListView, DetailView, CreateView, UpdateView, DeleteView from .models import * from .filters import PostFilter from datetime import datetime from .forms import PostForm class PostList(ListView): model = Post ordering = 'title' template_name = 'news.html' context_object_name = 'news' paginate_by = 10 # def get_queryset(self): # queryset = super().get_queryset() # self.filterset = PostFilter(self.request.GET, queryset) # return self.filterset.qs # # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # # context['time_now'] = datetime.utcnow() # # context['next_sale'] = None # # context['sorted_posts'] = Post.objects.filter().order_by('-dateCreation') # context['filterset'] = self.filterset # return context class PostDetail(DetailView): model = Post template_name = 'post.html' context_object_name = 'post' class PostSearch(ListView): model = Post ordering = ['dateCreation'] template_name = 'search.html' context_object_name = 'news' paginate_by = 10 form_class = PostForm def get_queryset(self): queryset = super().get_queryset() self.filterset = PostFilter(self.request.GET, queryset) return self.filterset.qs def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['filterset'] = self.filterset # context[''] return context # class PostSearch(ListView): # model = Post # template_name = "search.html" # context_object_name = "news" # ordering = ["dateCreation"] # paginate_by = 10 # form_class = PostForm # # def get_filter(self): # return PostFilter(self.request.GET, queryset=super().get_queryset()) # # def get_queryset(self): # return self.get_filter().qs # # def get_context_data(self, *args, **kwargs): # return { # **super().get_context_data(*args, **kwargs), # "filterset": self.get_filter(), # } # def create_post(request): # if request.method == 'POST': # form = PostForm(request.POST) # form.save() # return HttpResponseRedirect('/news/') # form = PostForm() # return render(request, 'post_edit.html', {'form':form}) class PostCreate(PermissionRequiredMixin, CreateView): permission_required = ('news.add_post',) raise_exception = True form_class = PostForm model = Post template_name = 'post_edit.html' # def form_valid(self, form): # product = form.save(commit=False) # post.categoryType.choices = 'NW' # return super().form_valid(form) class PostUpdate(PermissionRequiredMixin, UpdateView): permission_required = ('news.change_post',) form_class = PostForm model = Post template_name = 'post_edit.html' class PostDelete(PermissionRequiredMixin, DeleteView): permission_required = ('news.delete_post',) model = Post template_name='post_delete.html' success_url= reverse_lazy('post_list')
AlexAlexG/SF_lessons
NewsPaper/news/views.py
views.py
py
3,331
python
en
code
0
github-code
6
31535896406
from exam_python_OOP_22_august_2020.project.rooms.room import Room class Everland: def __init__(self): self.rooms = [] def add_room(self, room: Room): if room not in self.rooms: self.rooms.append(room) def get_monthly_consumptions(self): monthly_consumptions = 0 for room in self.rooms: room_consumptions = 0 room_consumptions += room.room_cost room_consumptions += room.expenses monthly_consumptions += room_consumptions return f"Monthly consumption: {monthly_consumptions:.2f}$." def pay(self): result = [] for room in self.rooms: if room.expenses <= room.budget: new_budget = room.budget - (room.expenses + room.room_cost) room.budget = new_budget result.append(f"{room.family_name} paid {room.expenses + room.room_cost}$ and have {new_budget}$ left.") else: self.rooms.remove(room) result.append(f"{room.family_name} does not have enough budget and must leave the hotel.") return '\n'.join(result) def status(self): result = [] all_people_in_hotel = sum([r.members_count for r in self.rooms]) result.append(f"Total population: {all_people_in_hotel:.2f}") for room in self.rooms: result.append(f"{room.name} with {room.members_count} members. Budget:" f" {room.budget:.2f}$, Expenses: {room.expenses:.2f}$") if room.__class__.__name__ == "YoungCoupleWithChildren": child_number = 1 for ch in room.children: monthly_cost = ch.cost * 30 result.append(f"--- Child {child_number} monthly cost: {monthly_cost:.2f}$") child_number += 1 if room.appliances: all_appliances_cost = sum([ap.get_monthly_expense for ap in room.appliances]) result.append(f"--- Appliances monthly cost: {all_appliances_cost}$") return result
iliyan-pigeon/Soft-uni-Courses
pythonProjectOOP/exam_python_OOP_22_august_2020/project/everland.py
everland.py
py
2,108
python
en
code
0
github-code
6
28427023060
# import os # import time # import random # # 练习1:在屏幕上显示跑马灯文字。 # def main(): # content = "北京欢迎你为你开天辟地…………" # while True: # # 清理屏幕上的输出 # # os.system('cls') # # os.system('clear') # print(content) # # 休眠200毫秒 # time.sleep(0.1) # content = content[1:] + content[0] # # # if __name__ == '__main__': # main() # 练习2:设计一个函数产生指定长度的验证码,验证码由大小写字母和数字构成。 # def generate_code(code_len=4): # """ # 生成指定长度的验证码 # :param code_len: 验证码的长度(默认4个字符) # :return: 由大小写英文字母和数字构成的随机验证码 # """ # all_chars = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' # last_pos = len(all_chars) - 1 # print(last_pos) # code = '' # for _ in range(code_len): # index = random.randint(0, last_pos) # random.randint() 选取随机数 # print(all_chars[index]) # code += all_chars[index] # print(code) # return code # # # print(generate_code()) # 练习3:设计一个函数返回给定文件名的后缀名 def get_suffix(filename, has_dot=False): """ 获取文件名的后缀名 :param filename: 文件名 :param has_dot: 返回的后缀名是否需要带点 :return: 文件的后缀名 """ pos = filename.rfind('.') # Python rfind() 返回字符串最后一次出现的位置(从右向左查询), # 如果没有匹配项则返回-1。 print(pos) if 0 < pos < len(filename) - 1: # . 不在第一个也不在最后一个 #index = pos if has_dot else pos + 1 index = pos + 1 print(index) return filename[index:] else: return '' print(get_suffix("012txtdd"))
sunhuimoon/Python100Days
day07/day0710.py
day0710.py
py
1,929
python
zh
code
0
github-code
6
30056116646
def find2NumbersThatAddTo(arr, expectedSum, lo, hi): while lo < hi: sum = arr[lo] + arr[hi] if sum == expectedSum: return lo, hi elif sum < expectedSum: lo = lo + 1 else: hi = hi - 1 def find3NumbersThatAddTo(arr, expectedSum): lo = 0 hi = len(arr) - 1 found = None while arr[hi] > expectedSum: hi = hi - 1 while found is None: found = find2NumbersThatAddTo(arr, expectedSum - arr[hi], lo, hi - 1) if found is not None: act_lo, mid = found return act_lo, mid, hi hi = hi - 1 def main(): f = open("input1.txt", "r") inp = f.read().split('\n') inp = [int(numeric_string) for numeric_string in inp] inp.sort() lo, mid, hi = find3NumbersThatAddTo(inp, 2020) print(inp[lo]) print(inp[mid]) print(inp[hi]) print(inp[lo] * inp[mid] * inp[hi]) if __name__ == '__main__': main() # def find3NumbersThatAddTo(arr, expectedSum): # lo = 0 # mid = int(len(arr) / 2) # hi = len(arr) - 1 # while lo < hi: # sum = arr[lo] + arr[mid] + arr[hi] # if sum == expectedSum: # return lo, mid, hi # elif sum < expectedSum: # diff1 = arr[lo + 1] - arr[lo] # diff2 = arr[mid + 1] - arr[mid] # if diff1 > diff2: # mid = mid + 1 # if mid == hi: hi = hi + 1 # else: # lo = lo + 1 # if mid == lo: mid = mid + 1 # if mid == hi: hi = hi + 1 # # else: # diff1 = arr[hi] - arr[hi - 1] # diff2 = arr[mid] - arr[mid - 1] # # if diff1 > diff2: # mid = mid - 1 # if mid == lo: lo = lo - 1 # else: # hi = hi - 1 # if mid == hi: mid = mid - 1 # if mid == lo: lo = lo - 1
nithish-thomas/adventOfCode2020
aoc20/day1/day1_2.py
day1_2.py
py
1,943
python
en
code
0
github-code
6
39349977880
# Definition for double singly-linked list. class DbListNode(object): """构建一个双向链表""" def __init__(self, x, y): self.key = x self.val = y self.next = None self.prev = None class LRUCache(object): ''' leet code: 146 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。 它应该支持以下操作: 获取数据 get 和 写入数据 put 。 获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。 写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。 缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间 实现方式: 哈希表+双向链表 哈希表: 查询 O(1) 双向链表: 有序, 增删操作 O(1) Author: Ben ''' def __init__(self, capacity: int): self.cap = capacity self.hkeys = {} # self.top和self.tail作为哨兵节点, 避免越界 self.top = DbListNode(None, -1) self.tail = DbListNode(None, -1) self.top.next = self.tail self.tail.prev = self.top def get(self, key: int) -> int: """获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。""" if key in self.hkeys.keys(): # 获取节点的数据 cur = self.hkeys[key] # 从双向链表中将cur取出来 cur.next.prev = cur.prev cur.prev.next = cur.next # 获取最近的最新节点 top_node = self.top.next # 将cur节点放到节点的第一位 self.top.next = cur cur.prev = self.top cur.next = top_node top_node.prev = cur return self.hkeys[key].val return -1 def put(self, key: int, value: int) -> None: """ 写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。 当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间 """ if key in self.hkeys.keys(): # 获取节点的数据 cur = self.hkeys[key] # 从双向链表中将cur取出来 cur.next.prev = cur.prev cur.prev.next = cur.next # 获取最近的最新节点 top_node = self.top.next # 将cur节点放到节点的第一位 self.top.next = cur cur.prev = self.top cur.next = top_node top_node.prev = cur else: cur = DbListNode(key, value) # 先判断现在的长度是否和容量相等,如果相等就先去除尾端节点 if len(self.hkeys.keys()) == self.cap: self.hkeys.pop(self.tail.prev.key) self.tail.prev.prev.next = self.tail self.tail.prev = self.tail.prev.prev self.hkeys[key] = cur # 获取最新用过的链表首部 top_node = self.top.next self.top.next = cur cur.prev = self.top cur.next = top_node top_node.prev = cur def __repr__(self): vals = [] p = self.top.next while p.next: vals.append(str(p.val)) p = p.next return '->'.join(vals) if __name__ == '__main__': cache = LRUCache(2) cache.put(1, 1) cache.put(2, 2) print(cache) cache.get(1) # 返回 1 print(cache) cache.put(3, 3) # 该操作会使得密钥 2 作废 print(cache) cache.get(2) # 返回 -1 (未找到) cache.put(4, 4) # 该操作会使得密钥 1 作废 print(cache) cache.get(1) # 返回 -1 (未找到) cache.get(3) # 返回 3 print(cache) cache.get(4) # 返回 4 print(cache)
smdzz/Geek_Point
data_structure_and_algorithm/python/linked_list/LRUCache.py
LRUCache.py
py
4,050
python
zh
code
0
github-code
6
10137589364
''' File name: /ciphers/block_ciphers/anu/cipher.py Author: Cesar Cruz Project: cryptofeather Python Version: 2.7 ''' import numpy from constants import BLOCK_LENGTH, KEY_LENGTH, NUMBER_OF_ROUNDS, SBOX, PBOX, SBOX_INV from utils.logic_operations import xor from utils.crypto import sbox_operation, permutation_layer, generate_pboxinv from utils.others import pretty_print from utils.latex.table_generator import generate_table def _cipher(plaintext, keys): pl = plaintext[:(BLOCK_LENGTH / 2)] pr = plaintext[(BLOCK_LENGTH / 2):] for i in range(NUMBER_OF_ROUNDS): f1, f2 = f_function(pl) pt = xor(f1, pr) pt = xor(pt, xor(f2, keys[i])) pr = permutation_layer(PBOX, pl) pl = permutation_layer(PBOX, pt) return pl + pr def _cipher_latex(plaintext, keys): pl = plaintext[:(BLOCK_LENGTH / 2)] pr = plaintext[(BLOCK_LENGTH / 2):] rows = [] for i in range(NUMBER_OF_ROUNDS): RK = pretty_print(keys[i], len(keys[i])) f1, f2 = f_function(pl) f1_lat = pretty_print(f1, len(f1)) f2_lat = pretty_print(f2, len(f2)) pt = xor(f1, pr) A = pretty_print(pt, len(pt)) pt = xor(pt, xor(f2, keys[i])) B = pretty_print(pt, len(pt)) pr = permutation_layer(PBOX, pl) C = pretty_print(pr, len(pr)) pl = permutation_layer(PBOX, pt) D = pretty_print(pl, len(pl)) row = [i, RK, f1_lat, f2_lat, A, B, C, D] rows.append(row) header_row1 = ["Ronda", "RK", "F1", "F2", "A", "B", "C", "D"] generate_table("ANU Cifrado", header_row1, rows, "anuCifrado") return pl + pr def _decipher(ciphertext, keys): pl = ciphertext[:(BLOCK_LENGTH / 2)] pr = ciphertext[(BLOCK_LENGTH / 2):] pbox_inv = generate_pboxinv(PBOX) for i in range(NUMBER_OF_ROUNDS - 1, -1, -1): # Swap tmp_pl = pl pl = pr pr = tmp_pl # Capa de permutacion pl = permutation_layer(pbox_inv, pl) pr = permutation_layer(pbox_inv, pr) # Funcion f f1, f2 = f_function(pl) # Operaciones X-OR pr = xor(pr, xor(f2, keys[i])) pr = xor(pr, f1) return pl + pr def _decipher_latex(ciphertext, keys): pl = ciphertext[:(BLOCK_LENGTH / 2)] pr = ciphertext[(BLOCK_LENGTH / 2):] pbox_inv = generate_pboxinv(PBOX) rows = [] for i in range(NUMBER_OF_ROUNDS - 1, -1, -1): RK = pretty_print(keys[i], len(keys[i])) # Swap tmp_pl = pl pl = pr pr = tmp_pl A = pretty_print(pl, len(pl)) B = pretty_print(pr, len(pr)) # Capa de permutacion pl = permutation_layer(pbox_inv, pl) pr = permutation_layer(pbox_inv, pr) C = pretty_print(pl, len(pl)) D = pretty_print(pr, len(pr)) # Funcion f f1, f2 = f_function(pl) F1 = pretty_print(f1, len(f1)) F2 = pretty_print(f2, len(f2)) # Operaciones X-OR pr = xor(pr, xor(f2, keys[i])) E = pretty_print(pr, len(pr)) pr = xor(pr, f1) F = pretty_print(pr, len(pr)) row = [i, RK, A, B, C, D, F1, F2, E, F] rows.append(row) header_row1 = ["Ronda", "RK", "A", "B", "C", "D","F1", "F2", "E", "F"] generate_table("ANU Decifrado", header_row1, rows, "anuDecifrado") return pl + pr def f_function(pl): f1 = list(numpy.roll(pl, -3)) f2 = list(numpy.roll(pl, 8)) f1 = sbox_operation(SBOX, f1) f2 = sbox_operation(SBOX, f2) return f1, f2
ccruz182/Lightweight-Cryptography
cryptofeather/ciphers/block_ciphers/anu/cipher.py
cipher.py
py
3,372
python
en
code
1
github-code
6
70943725628
import json import os class FolderWalker: """ Check folder with results. Walk through the folders and define paths to various files. If any values are not counted in one of the frameworks, they will be excluded in competitors. Thus, the class ensures consistency of results in the analysis. """ def __init__(self, working_dir: str): self.working_dir = os.path.abspath(working_dir) path_to_config_json = os.path.join(self.working_dir, 'configuration.json') with open(path_to_config_json) as file: config_info = json.load(file) self.datasets = config_info['Datasets'] self.launches = config_info['Launches'] self.libraries = config_info['Libraries to compare'] self.clip_border = config_info['Clip border'] self.forecast_files = {} self.timeout_files = {} self.additional_files = {} for dataset in self.datasets: for launch in range(self.launches): for library in self.libraries: launch_number = f'launch_{launch}' case_id = f'{dataset}|{launch}|{library}' validation_case_path = os.path.join(self.working_dir, dataset, launch_number, library) all_forecasted_paths = self.find_files(validation_case_path, search_pattern='forecast_vs_actual.csv') self.forecast_files.update({case_id: all_forecasted_paths}) all_timeouts_paths = self.find_files(validation_case_path, search_pattern='timeouts.json') self.timeout_files.update({case_id: all_timeouts_paths}) all_additional_paths = self.find_additional_files(validation_case_path) if all_additional_paths is not None: self.additional_files.update({case_id: all_additional_paths}) self.exclude_mismatched_results() def exclude_mismatched_results(self): """ In some cases it is not possible to get results for some cases (dataset - launch number - library - time series - forecast horizon). So there is a need to exclude cases without calculations """ for dataset in self.datasets: # First cycle - collect information dataset_execution_time = [] dataset_forecast = [] for launch in range(self.launches): for library in self.libraries: case_id = f'{dataset}|{launch}|{library}' ex_time_files = set(map(lambda x: os.path.basename(x), self.timeout_files[case_id])) forecast_files = set(map(lambda x: os.path.basename(x), self.forecast_files[case_id])) dataset_execution_time.append(ex_time_files) dataset_forecast.append(forecast_files) # Find intersection for all cases dataset_execution_time = set.intersection(*dataset_execution_time) dataset_forecast = set.intersection(*dataset_forecast) # Second cycle - update info for launch in range(self.launches): for library in self.libraries: case_id = f'{dataset}|{launch}|{library}' ex_time_file = self.timeout_files[case_id][0] current_path = os.path.dirname(ex_time_file) upd_time_paths = add_path_to_files(current_path, dataset_execution_time) upd_forecasts = add_path_to_files(current_path, dataset_forecast) self.timeout_files.update({case_id: upd_time_paths}) self.forecast_files.update({case_id: upd_forecasts}) @staticmethod def find_files(folder_with_files: str, search_pattern: str): """ Find all files in the folder and return full paths """ files = os.listdir(folder_with_files) files.sort() all_paths = [] for file in files: if search_pattern in file: all_paths.append(os.path.join(folder_with_files, file)) return all_paths @staticmethod def find_additional_files(folder_with_files: str): """ Search for unusual files in saved folder - additional info """ files = os.listdir(folder_with_files) files.sort() extra_paths = [] for file in files: if 'timeouts.json' not in file and 'forecast_vs_actual.csv' not in file: extra_paths.append(os.path.join(folder_with_files, file)) if len(extra_paths) == 0: return None return extra_paths def add_path_to_files(current_path: str, files: set): """ In set with file names for each file add folder path """ updated_data = [] for file in files: updated_data.append(os.path.join(current_path, file)) updated_data.sort() return updated_data
ITMO-NSS-team/pytsbe
pytsbe/report/walk.py
walk.py
py
5,028
python
en
code
30
github-code
6
25018507922
import base64 import os from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import padding current_dir = os.path.dirname(os.path.abspath(__file__)) def encrypt_data(data, key_path='public.pem'): public_key_path = os.path.join(current_dir, key_path) # Load the public key from file with open(public_key_path, 'rb') as public_key_file: public_key = serialization.load_pem_public_key( public_key_file.read(), backend=default_backend() ) # Encrypt the message using the public key encrypted_data = public_key.encrypt( data.encode('utf-8'), padding.OAEP( mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) # Base64 encode the encrypted data encoded_encrypted_data = base64.b64encode(encrypted_data).decode('utf-8') return encoded_encrypted_data def decrypt_data(encoded_encrypted_data, key_path='private.pem'): private_key_path = os.path.join(current_dir, key_path) # Load the private key from file with open(private_key_path, 'rb') as private_key_file: private_key = serialization.load_pem_private_key( private_key_file.read(), password=None, backend=default_backend() ) # Base64 decode the encrypted data encrypted_data = base64.b64decode(encoded_encrypted_data) # Decrypt the encrypted data using the private key decrypted_data = private_key.decrypt( encrypted_data, padding.OAEP( mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) # Return the decrypted data as a string return decrypted_data.decode('utf-8')
ivana-dodik/Blockchain
EP --zadatak 02/crypto.py
crypto.py
py
1,898
python
en
code
0
github-code
6
36273987017
from random import randint from ..engine.enemy import Enemy class Barrel(Enemy): def __init__(self, level): super(Barrel,self).__init__(level) self.health = self.max_health = 100 self.speed = 0.35 self.set_die_sound('assets/sound/barrelguy/die.ogg') self.set_sprite('barrel') self.drop = 6 + randint(-2, 2) self.name = 'barrelguy'
Timtam/ggj17
wavomizer/enemies/barrel.py
barrel.py
py
406
python
en
code
0
github-code
6
15298986512
#!/usr/bin/python3.6 import requests, json, datetime from time import sleep try: while True: req = requests.get('https://www.mercadobitcoin.net/api/BTC/ticker/') cot = json.loads(req.text) d = datetime.datetime.now() print(d.strftime('%c')) print('BTC:', cot['ticker']['buy'][:8]) sleep(10) print('') except: print("Failed to establish a connection.")
andreMarqu3s/bit_value
cotacao.py
cotacao.py
py
387
python
en
code
0
github-code
6
72810210107
def create_piechart(): # Importamos las dependencias import pandas as pd import matplotlib.pyplot as plt from config import engine from sqlalchemy.orm import sessionmaker engine = engine # Intentamos leer desde la base de datos, la tabla "tabla_1" try: with engine.connect() as connection: df = pd.read_sql_table('tabla_1', connection) except Exception as e: print('Ocurrió un error al intentar conectar o leer la base de datos:') print(str(e)) return # Va recorrer la columna "sentiment" de nuestro dataframe y sumará la cantidad de veces que se repite cada valor disponible(negative, positive y neutral) sentiment_counts = df['sentiment'].value_counts() # Le indicamos a matplotlib las características con las que debe crear nuestro piechart plt.figure(figsize=(10, 5)) plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%') plt.title('Sentiment Analysis Pie Chart') # Guardamos en la carpeta raíz del proyecto el piechart generado en formato png plt.savefig("piechart.png") # Esto sirve para mostrar en pantalla el piechart generado, por defecto está deshabilitado # plt.show()
NebyX1/data-science-engineering-end-to-end-project-bootcamp-milei-twitter-scraping
piechart_script.py
piechart_script.py
py
1,239
python
es
code
0
github-code
6
43755877766
''' Measures the square area of colonies in an image file. Written by George Walters-Marrah Last updated: 6/26/2019 ''' # import needed packages import imageio import matplotlib.pyplot as plt import scipy.ndimage as ndi import numpy as np from skimage import morphology as morph import os.path from os import path def remove_large_objects(ar, max_size=64, connectivity=1, in_place=False): """Remove objects larger than the specified size. Expects ar to be an array with labeled objects, and removes objects larger than max_size. If `ar` is bool, the image is first labeled. This leads to potentially different behavior for bool and 0-and-1 arrays. Parameters ---------- ar : ndarray (arbitrary shape, int or bool type) The array containing the objects of interest. If the array type is int, the ints must be non-negative. max_size : int, optional (default: 64) The largest allowable object size. connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1) The connectivity defining the neighborhood of a pixel. Used during labelling if `ar` is bool. in_place : bool, optional (default: False) If ``True``, remove the objects in the input array itself. Otherwise, make a copy. Raises ------ TypeError If the input array is of an invalid type, such as float or string. ValueError If the input array contains negative values. Returns ------- out : ndarray, same shape and type as input `ar` The input array with small connected components removed. Examples -------- >>> from skimage import morphology >>> a = np.array([[0, 0, 0, 1, 0], ... [1, 1, 1, 0, 0], ... [1, 1, 1, 0, 1]], bool) >>> b = morphology.remove_small_objects(a, 6) >>> b array([[False, False, False, False, False], [ True, True, True, False, False], [ True, True, True, False, False]], dtype=bool) >>> c = morphology.remove_small_objects(a, 7, connectivity=2) >>> c array([[False, False, False, True, False], [ True, True, True, False, False], [ True, True, True, False, False]], dtype=bool) >>> d = morphology.remove_small_objects(a, 6, in_place=True) >>> d is a True """ if in_place: out = ar else: out = ar.copy() if max_size == 0: # shortcut for efficiency return out if out.dtype == bool: selem = ndi.generate_binary_structure(ar.ndim, connectivity) ccs = np.zeros_like(ar, dtype=np.int32) ndi.label(ar, selem, output=ccs) else: ccs = out try: component_sizes = np.bincount(ccs.ravel()) except ValueError: raise ValueError("Negative value labels are not supported. Try " "relabeling the input with `scipy.ndimage.label` or " "`skimage.morphology.label`.") too_big = component_sizes > max_size too_big_mask = too_big[ccs] out[too_big_mask] = 0 return out def measure(imFolder, imVector, imStrain, imPlate, imRepNum, imType , firstMask, secondMaskLow, secondMaskHigh, smallSize, largeSize, stdThreshold, results = True, manual = False, stdManual = 1): # make an object with the filepath to the image you want to analysis imName = imVector + '_' + imStrain + '_' + imPlate + '_' + imRepNum imGenericName = imVector + '_' + imStrain + '_' + imPlate imPath = imFolder + '/' + imName + imType # check if the path exists if path.exists(imPath): pass else: raise ValueError('The PATH specified does not exist. Change PATH and try again.') # read in plate picture as an uint8 *only works with uint8 dtypes* im = imageio.imread(imPath) # prints the dtype and min/max. Values should be: dtype = uint8, min = ~0, max = ~255 dtype = im.dtype if results: print('Data type:', dtype) print('Min. value:', im.min()) print('Max value:', im.max()) print('') # raises error of image type isn't uint8 if dtype != 'uint8': raise ValueError(imPath + ' must be uint8. Change image file to uint8 then try again.') # Gets rid pure white regions of the image mask = im < firstMask im_mask = np.where(mask, im, 0) # show images if results: fig, axes = plt.subplots(1,2) axes[0].imshow(im, cmap = 'gray') plt.axis('off') axes[1].imshow(im_mask, cmap = 'gray') plt.axis('off') plt.show() # Uniforms the photo to make the edges clearer and easier to detect im_filt = ndi.uniform_filter(im_mask, size=3) # searches for the gray areas (where colonies are). col_mask1 = im_filt > secondMaskLow col_mask2 = im_filt < secondMaskHigh col_mask = col_mask1 & col_mask2 im_colonies = np.where(col_mask, im, 0) # Creates label objects labels, nlabels = ndi.label(col_mask) # Get initial amount of objects found by mask bboxinitial = ndi.find_objects(labels) if results: print('Objects found in initial mask for ' + imPath + ': ', len(bboxinitial)) print('') # show images if results: fig, axes = plt.subplots(1,2) axes[0].imshow(im_filt, cmap = 'gray') plt.axis('off') axes[1].imshow(im_colonies, cmap = 'gray') plt.axis('off') plt.show() # Removes abnormally small or large objects cols_cleaned1 = morph.remove_small_objects(labels, smallSize) cols_cleaned2 = remove_large_objects(cols_cleaned1, largeSize) bboxes = ndi.find_objects(cols_cleaned2) # shows images if results: fig, axes = plt.subplots(1,2) axes[0].imshow(im_colonies, cmap = 'gray') plt.axis('off') axes[1].imshow(cols_cleaned2, cmap = 'rainbow') plt.axis('off') plt.show() # Calculates the colony size col_size_init = [] for index in range(len(bboxes)): # excludes colonies with abnormal morphology npixel = 0 dpixel = 6.45*6.45 colony = cols_cleaned2[bboxes[index]] std = np.std(colony.shape[:2]) if (std <= stdThreshold): for image in colony: for pixel in image: if pixel > 0: npixel += 1 meas = npixel*dpixel measFin = np.around(meas, 2) col_size_init.append(measFin) else: pass # allows you to manually discard bad data points. if manual: np_col_size_init = np.array(col_size_init) col_size = [] for index in range(len(bboxes)): # excludes colonies with abnormal morphology and perfect squares size_std = np.std(np_col_size_init) size_median = np.median(np_col_size_init) npixel = 0 dpixel = 6.45*6.45 colony = cols_cleaned2[bboxes[index]] std = np.std(colony.shape[:2]) if (std <= stdThreshold): for image in colony: for pixel in image: if pixel > 0: npixel += 1 meas = npixel*dpixel measFin = np.around(meas, 2) else: measFin = False # allows to manually sift through outliers if measFin == False: pass elif measFin < size_median - stdManual * size_std or measFin > size_median + stdManual * size_std: plt.imshow(im_colonies[bboxes[index]], cmap = 'gray') plt.axis('off') plt.show() ques = input('Do you want to analyze that colony from ' + imName + '(' + imFolder + ')' + '? If yes, type Y. If no, type N:') if ques == 'Y' or ques == 'y': col_size.append(measFin) print('Colony analyzed.') elif ques == 'N' or ques == 'n': print('Colony skipped.') else: doubleCheck = input('Did you mean to put N?:') if doubleCheck == 'N' or doubleCheck == 'n': col_size.append(measFin) print('Colony analyzed.') else: print('Colony skipped.') else: col_size.append(measFin) np_col_size = np.array(col_size) else: np_col_size = np.array(col_size_init) # contains all the calculated diameter values and summarized data colMean = np.around(np.mean(np_col_size),2) colMedian = np.around(np.median(np_col_size),2) colStd = np.around(np.std(np_col_size),2) data = [imGenericName, colMean, colMedian, colStd, imFolder, imVector, imStrain, imPlate, imRepNum, np_col_size] # prints out a summary of the results if results: print('Data for', imName, '(' + imFolder + ')') print('Final amount of colonies measured:', len(np_col_size)) print('Mean of data: ', colMean) print('Median of data: ', colMedian) print('Standard deviation of data: ', colStd) print('') print(imName, 'area calculated.') print('') return data def main(): measure('', '', '', '', '', '', firstMask = 190, secondMaskLow = 50, secondMaskHigh = 185, smallSize = 2, largeSize = 235, stdThreshold = 1) if __name__ == '__main__': main()
gwmarrah/colony-measurer
colSizeMeasurer.py
colSizeMeasurer.py
py
9,835
python
en
code
1
github-code
6
23039179017
import cv2 import numpy as np from hand import HandRecognizer from args import OLD_FONT_THRESHOLD class OldRecognizer(HandRecognizer): def __init__(self, imname, already_read=False): super(OldRecognizer, self).__init__(imname, already_read) self.cal_result() def loop_process(self, func): pad = 0.05 for x, y, w, h in self.recs: x0, y0, x1, y1 = map(int, (x + pad * w, y + pad * h, x + w - pad * w, y + h - pad * h)) single = cv2.cvtColor(self.raw_sudoku_im[y0:y1, x0:x1], cv2.COLOR_BGR2GRAY) self.result.append(func(single)) def single_recognize(self, im): ret, im = cv2.threshold(im, OLD_FONT_THRESHOLD, 255, cv2.THRESH_BINARY) # self._debug(im) r, c = im.shape edges = cv2.Canny(im, 20, 50) black, mid_area = 0, 0 for i in range(r): for j in range(c): if edges[i, j] == 255: black += 1 if 1 / 3 * c < j < 2 / 3 * c: mid_area += 1 return mid_area / black # 图像中央部分黑色像素的比例 def cal_result(self): # print(*zip(self.result, range(9)), sep='\n') self.result = sorted(zip(self.result, range(9)), reverse=True)[0][1] if __name__ == '__main__': print(OldRecognizer('test_im/raw_old.jpg').result)
sjdeak/RoboMasters2017-RuneDetector
old.py
old.py
py
1,379
python
en
code
0
github-code
6
10719487359
import time import xml.etree.ElementTree as Et import random import pathlib import shutil from zipfile import ZipFile def name_for_ik(): """ :return: выдает имена формата ###-###-###-###-### в шестнадцатиричной системе для интеграционных конвертов """ first_part = str(hex(random.randint(1000000000, 9999999999))) second_part = str(hex(random.randint(10000, 99999))) third_part = str(hex(random.randint(10000, 99999))) fourth_part = str(hex(random.randint(10000, 99999))) fifth_part = str(hex(random.randint(100000000000000, 999999999999999))) return f'{first_part[2:10]}-{second_part[2:6]}-{third_part[2:6]}-{fourth_part[2:6]}-{fifth_part[2:14]}' def atribute_generator(char_value): # 17 символов для имени файла ED, 9 символов для номера договора """ :param char_value: количество знаков в срезе :return: случайное число, которое зависит от системной даты и времени """ a = str(int(time.time() * 10000000)) rv = random.randint(1, char_value - 1) return a[len(a) + rv - char_value::] # рандомное число от 1 символа return a[len(a) - char_value::] def envelope_change_attrib(namespaceprefix, namespaceuri, xml_source_file_path, tags, paramreplace, path_to_save_xml): """ Изменение аттрибутов в файле Envelope :param namespaceprefix: префикс пространства имен в файле envelope (igr) :param namespaceuri: ссылка пространства имен в envelope :param xml_source_file_path: путь к файлу envelope :param tags: теги, по которым идет поиск :param paramreplace: словарь из параметров тегов и их новых значений :param path_to_save_xml: путь и имя для готового файла :return: запись в файл в том же каталоге """ Et.register_namespace(namespaceprefix, namespaceuri) # для записи в файле необходимо передать prefix и uri tree = Et.parse(xml_source_file_path) # открываем xml файл и парсим root = tree.getroot() for tag in tags: for element in root.findall('.//*[@{' + namespaceuri + '}' + tag + ']'): # for key, value in paramreplace.items(): if element.attrib['{' + namespaceuri + '}' + tag] in 'Document': element.attrib['{' + namespaceuri + '}fileName'] = value if element.attrib['{' + namespaceuri + '}' + tag] in key: if len(str(element.text).strip()) > 0: if element.text is None: element.attrib['{' + namespaceuri + '}fileIdentity'] = value else: element.text = value else: element.attrib['{' + namespaceuri + '}fileIdentity'] = value tree.write(path_to_save_xml) def ed421_change_attrib(namespaceprefix, namespaceuri, xml_source_file_path, path_to_save_xml, **kwargs): """ Изменение аттрибутов в файле ED421 :param namespaceprefix: префикс пространства имен в файле ED421 (пусто) :param namespaceuri: ссылка пространства имен в файле ED421 :param xml_source_file_path: путь к файлу ED421 :param path_to_save_xml: путь и имя для готового файла :param kwargs: аттрибуты тега и их новые значения :return: """ Et.register_namespace(namespaceprefix, namespaceuri) tree = Et.parse(xml_source_file_path) root = tree.getroot() for key, value in kwargs.items(): if root.findall(f'.[@{key}]'): # поиск атрибута в корневом элементе root.attrib[key] = value elif root.findall(f'.//*[@{key}]'): # поиск атрибута в дочерних элементах root.find(f'.//*[@{key}]').set(key, value) tree.write(path_to_save_xml, encoding='UTF-8', xml_declaration=True) # сохранение xml файла def routeinfo_change_attrib(namespaceprefix, namespaceuri, xml_source_file_path, path_to_save_xml, new_text): """ Редактирование RouteInfo :param namespaceprefix: префикс пространства имен в файле ED421 (igr) :param namespaceuri: ссылка пространства имен в файле ED421 :param xml_source_file_path: путь к файлу :param path_to_save_xml: путь и имя для готового файла :param new_text: текст, который будет записан между тегами :return: запись в xml-файл """ Et.register_namespace(namespaceprefix, namespaceuri) tree = Et.parse(xml_source_file_path) root = tree.getroot() root.find('{' + namespaceuri + '}DocumentPackID').text = new_text tree.write(path_to_save_xml) # сохранение xml файла def create_new_directory(path_to_new_directory, directory_name): """ :param path_to_new_directory: путь, где будет создан каталог path :param directory_name: имя для нового каталога :return: создает каталог temp по указанному пути, если каталог существут, то перезаписывает его """ pathlib.Path(path_to_new_directory).joinpath(directory_name).mkdir(exist_ok=True) return pathlib.Path(path_to_new_directory).joinpath(directory_name) def get_arhive(path, *files): """ :param path: путь, где будет создан архив :param files: файлы, которые будут помещаться в архив :return: """ with ZipFile(path, 'w') as new_zip: # добавить после path функцию вызова нового имени for arg in files: filename = arg.name new_zip.write(arg, arcname=filename) pathlib.Path(arg).unlink() def move_files(copy_from, copy_to): """ :param copy_from: полный путь к файлу, который будет перемещен :param copy_to: каталог, в который будет перемещен файл :return: перемещает файл, переданный из copy_from в каталог copy_to """ shutil.move(copy_from, copy_to) # ----------------------------------------------------------- start_path = pathlib.Path.cwd() envelope_path = start_path.joinpath('sample/envelope.xml') routeinfo_path = start_path.joinpath('sample/RouteInfo.xml') ed421_path = start_path.joinpath('sample/ED421.xml') # ----------------------------------------------------------- # создать каталоги temp, converts внутри каталога temp_path = create_new_directory(start_path, 'temp') convert_path = create_new_directory(start_path, 'converts') # ----------------------------------------------------------- # переменные prefix_for_routeinfo_envelope = 'igr' prefix_ed421 = '' uri_for_routeinfo_envelope = 'http://www.cbr.ru/igr/' uri_for_ed421 = 'urn:cbr-ru:elk:v2021.1.0' text_for_sign_file = 'test signature file' tags_attrib = ['name', 'fileType'] # теги для функции generate_xml_envelope # ----------------------------------------------------------- # сгенерировать имена для файлов def create_ik(iteration_count): """ :param iteration_count: :return: """ for i in range(1, iteration_count + 1): arhive_name = name_for_ik() # имя для архива, в который будут упакованы все файлы ed421_name_for_arh = name_for_ik() # имя для архива, в котором лежит ed421 routeinfo_name = name_for_ik() # имя для routeinfo sign_name = name_for_ik() # имя для файла с ЭП # ----------------------------------------------------------- file_name_ed421 = pathlib.Path('ED421' + atribute_generator(17) + '.xml') new_name_ed421 = temp_path.joinpath(file_name_ed421) new_name_routeinfo = temp_path.joinpath(routeinfo_name) new_name_envelope = temp_path.joinpath('envelope.xml') # ----------------------------------------------------------- # создать файл с подписью with open(temp_path.joinpath(sign_name), 'w') as sign_file: sign_file.write(text_for_sign_file) # заполнение словаря значениями tags_dictionary = dict(RouteInfo=routeinfo_name, Document=ed421_name_for_arh, Sign=sign_name, AssociatedFileIdentity=ed421_name_for_arh, fileName='ED421' + atribute_generator(17) + '.xml') attributes_and_values = dict(EDNo=atribute_generator(8), EDDate='testEDDate', ReqNum=atribute_generator(10), ReqDateTime='testReqDateTime', GrantDate='testGrantDate', ApplicationSum=atribute_generator(17)) # изменение значений в ED421 и сохранение в другом каталоге ed421_change_attrib(prefix_ed421, uri_for_ed421, ed421_path, new_name_ed421, **attributes_and_values) # изменение значений в RouteInfo и сохранение в другом каталоге routeinfo_change_attrib(prefix_for_routeinfo_envelope, uri_for_routeinfo_envelope, routeinfo_path, new_name_routeinfo, arhive_name) # изменение значений в RouteInfo и сохранение в другом каталоге envelope_change_attrib(prefix_for_routeinfo_envelope, uri_for_routeinfo_envelope, envelope_path, tags_attrib, tags_dictionary, new_name_envelope) # добавление ED421 в архив get_arhive(temp_path.joinpath(ed421_name_for_arh), new_name_ed421) # формирование целого конверта get_arhive(temp_path.joinpath(pathlib.Path(arhive_name + '.zip')), temp_path.joinpath(ed421_name_for_arh), new_name_routeinfo, new_name_envelope, temp_path.joinpath(sign_name)) # переместить конверт move_files(temp_path.joinpath(pathlib.Path(arhive_name + '.zip')), convert_path) # после того как все операции выполнены удалить каталог temp без проверки содержимого (наличия подкаталогов) shutil.rmtree(temp_path, ignore_errors=True) if __name__ == '__main__': create_ik(2) # TODO добавить изменение даты в трех местах в ED421
Steelglowhawk/updateTool
generator_func.py
generator_func.py
py
11,827
python
ru
code
1
github-code
6
8267514816
from __future__ import annotations from kombu.pools import producers from .queues import task_exchange priority_to_routing_key = { 'high': 'hipri', 'mid': 'midpri', 'low': 'lopri', } def send_as_task(connection, fun, args=(), kwargs={}, priority='mid'): payload = {'fun': fun, 'args': args, 'kwargs': kwargs} routing_key = priority_to_routing_key[priority] with producers[connection].acquire(block=True) as producer: producer.publish(payload, serializer='pickle', compression='bzip2', exchange=task_exchange, declare=[task_exchange], routing_key=routing_key) if __name__ == '__main__': from kombu import Connection from .tasks import hello_task connection = Connection('amqp://guest:guest@localhost:5672//') send_as_task(connection, fun=hello_task, args=('Kombu',), kwargs={}, priority='high')
celery/kombu
examples/simple_task_queue/client.py
client.py
py
994
python
en
code
2,643
github-code
6
41172517370
# -*- coding: utf-8 -*- import numpy as np def abs_error(X, y): """ Calculates absolute error of a px2 matrix with its px1 predicted output """ y_hat = np.matrix(y).transpose() y = X[:, 1] m=len(y) error = (1/m)*sum(abs(y-y_hat)) return float(error) def mean_error(X, y): """ Calculates mean error of a px2 matrix with its px1 predicted output """ y_hat = np.matrix(y).transpose() y = X[:, 1] m=len(y) error = (1/m)*sum(np.square(y-y_hat)) return float(error) # Import X matrix X = "(2, -2), (5, 6), (-4, -4), (-7, 1), (8, 14)" # Wrangle data to correct form X = X.replace("(", "") X = X.replace("),", ";") X = X.replace(")", "") # Convert to np.matrix X = np.matrix(X) # Parameters for hypothesis theta = [2, 1.2] # Predict y values y = [] for i in X[:, 0]: y.append(theta[1]*int(i)+theta[0]) # Calculate Absolute error e_1 = abs_error(X, y) print(e_1) # Calculate Mean error e_2 = mean_error(X, y) print(e_2)
SThornewillvE/Udacity-DataScience-Nanodegree
01_supervised-models_learning-materials/linreg/01_calculate_cost.py
01_calculate_cost.py
py
1,014
python
en
code
29
github-code
6
22113638832
import numpy as np from grabscreen import grab_screen import cv2 import time from directkeys import PressKey, ReleaseKey, W, A, S, D from grabkeys import key_check import os from keras.models import load_model from scanner import process_img #loading model model = load_model('model.h5') #W key press-time bounds PRESS = 0.23 RELEASE = 0.30 def auto_pilot(direction): if direction == 1: #Left ReleaseKey(D) PressKey(A) elif direction == 2: #Right ReleaseKey(A) PressKey(D) else: #Straight ReleaseKey(A) ReleaseKey(D) def drive(times): elapsed_time = times[0] #Period of time from last W-key full release press_start = times[1] #Last time W-key was pressed loop = times[2] #Period of while loop press_time = time.time() - press_start #Period of time W-key was pressed if elapsed_time < PRESS: if not press_start: press_start = time.time() PressKey(W) return [elapsed_time,press_start] elif elapsed_time < RELEASE: ReleaseKey(W) if press_start and (press_time > 0.25 or press_time) < 0.15: print('Warning: Press_time ' + str(press_time) + ' is out of bounds. Consider tuning PRESS/RELEASE parameters if the error occurs frequently.') return [elapsed_time,0.0] else: ReleaseKey(W) if press_start and (press_time > 0.25 or press_time) < 0.15: print('Warning: Press_time ' + str(press_time) + ' is out of bounds. Consider tuning PRESS/RELEASE parameters if the error occurs frequently.') return [0.0,0.0] def main(): for i in list(range(3))[::-1]: print(str(i+1)) time.sleep(1) last_time = time.time() elapser = 0.0 start = 0.0 pause = False while True: keys = key_check() if 'Q' in keys: break if 'P' in keys: if pause: pause = False time.sleep(1) print('UNPAUSED') else: pause = True time.sleep(1) print('PAUSED') if not pause: loop = time.time() - last_time elapser = elapser + loop elapser, start = drive([elapser,start,loop]) last_time = time.time() screen = grab_screen(region=(0,40,640,480)) proc_img = process_img(screen) sample = proc_img.reshape(-1,100,100,1) sample = sample.astype('float32') sample /= 255 pred = model.predict(sample) auto_pilot(np.argmax(pred)) main()
pashok3d/GTA_AutoPilot
predictor.py
predictor.py
py
2,723
python
en
code
0
github-code
6
15805513471
from tkinter import N import pygame from pygame.locals import * from Car import Car import sys import neat import time def on_init(): pygame.init() on_init() screen_width = 1920 screen_height = 1080 _running = True screen = pygame.display.set_mode((screen_width, screen_height), pygame.HWSURFACE | pygame.DOUBLEBUF) screen.fill("WHITE") # Number of ms in 1 time unit # Needed for acceleration time_unit = 15 pygame.key.set_repeat(time_unit) FPS = 60 fpsClock = pygame.time.Clock() # Load game assests # map as background image background_image = pygame.image.load("images/map.png").convert_alpha() # Car image used from : https://github.com/NeuralNine/ai-car-simulation/blob/master/car.png car_image = pygame.image.load("images/car.png").convert_alpha() car_image = pygame.transform.scale(car_image, (100, 50)) car_1 = Car(car_image, 881, 800, 0) #car_1 = Car(car_image, 500, 500, 0) def on_event(event): if event.type == QUIT: on_cleanup() # if pygame.key.get_pressed()[K_UP]: # car_1.move_forward() # if pygame.key.get_pressed()[K_DOWN]: # car_1.move_backward() # if pygame.key.get_pressed()[K_LEFT]: # car_1.move_left() # if pygame.key.get_pressed()[K_RIGHT]: # car_1.move_right() def on_loop(): pass def on_render(): screen.blit(background_image, (0, 0)) car_1.get_data() car_1.draw(screen) pygame.display.flip() def on_cleanup(): pygame.display.quit() pygame.quit() sys.exit() def run_simulation(genomes, config): # Empty Collections For Nets and Cars nets = [] cars = [] # For All Genomes Passed Create A New Neural Network for i, g in genomes: net = neat.nn.FeedForwardNetwork.create(g, config) nets.append(net) g.fitness = 0 cars.append(Car(car_image, 881, 800, 0)) # timeout = time.time() + 60*5 # 5 minutes from now #timeout = time.time() + 15 # 10 seconds from now timeout = time.time() + 15 # 15 seconds after current time while(_running): # End the game when the X is pressed for event in pygame.event.get(): on_event(event) # For Each Car see if its alive # Get the action it should take # Draw the car screen.blit(background_image, (0, 0)) cars_alive = 0 for i, car in enumerate(cars): if car.is_alive: cars_alive += 1 genomes[i][1].fitness = car.get_fitness() output = nets[i].activate(car.get_data()) #### This needs to be tested choice = output.index(max(output)) if choice == 0: car.move_forward() elif choice == 1: car.move_backward() elif choice == 2: car.move_left() else: car.move_right() car.draw(screen) pygame.display.flip() if cars_alive==0: break if time.time()>timeout: break # if time.time()>timeout: # break #on_loop() #on_render() fpsClock.tick(FPS) # Load Config config_path = "config.txt" config = neat.config.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path) # Create Population And Add Reporters population = neat.Population(config) population.add_reporter(neat.StdOutReporter(True)) stats = neat.StatisticsReporter() population.add_reporter(stats) # Run Simulation For A Maximum of 1000 Generations population.run(run_simulation, 10000) on_cleanup() # Use this to save genomes # https://github.com/CodeReclaimers/neat-python/blob/master/neat/checkpoint.py # Use this to visualize the network # https://ai.stackexchange.com/questions/13948/library-for-rendering-neural-network-neat
styyxofficial/NEAT-AI-Racecar
Moving_Car.py
Moving_Car.py
py
4,216
python
en
code
0
github-code
6
11615238643
import random as r i=1;c=0;p=0;d=0 while(i<=10): rand=r.randint(1,10) if rand<3: comp='s' elif rand>=3 and rand<6: comp='w' elif rand>=6 and rand<=10: comp='g' inp=input('Enter "S" for snake "W" for water and "G" for gun\n') if comp=='s' and inp=='w': print('You Lost! Snake drank all the Water\nYour score is ',i) c=c+1 elif comp=='s' and inp=='w': print('You Lost! Snake drank all the Water\nYour score is ',i) c=c+1 elif comp=='w' and inp=='g': print('You lost! Your Gun fell down into the water\nYour score is ',i) c=c+1 elif comp=='s' and inp=='g': print('You won! You killed the Snake with the gun') p=p+1 elif comp=='w' and inp=='s': print('You won! Snake drank all the Water') p=p+1 elif comp=='s' and inp=='g': print('You won! You killed the Snake with the gun') p=p+1 elif comp==inp: print('Try again! You both Choosed the Same') d=d+1 i=i+1 print(f'You won {p} Times Lost {c} Times and Draw {d} Times')
Coder-X27/Python-CWH
playlist exercise/exercise-6.py
exercise-6.py
py
1,109
python
en
code
1
github-code
6
12700893052
n = int(input()) numbers = sorted(map(int, input().split())) def isGood(numbersWithoutTheNum, theNum): lastIdx = len(numbersWithoutTheNum) - 1 p1, p2 = 0, lastIdx while p1 < p2: result = numbersWithoutTheNum[p1] + numbersWithoutTheNum[p2] if result == theNum: return True if result < theNum: p1 += 1 else: p2 -= 1 return False count = 0 for i in range(len(numbers)): if isGood(numbers[:i] + numbers[i+1:], numbers[i]): count += 1 print(count)
MinChoi0129/Algorithm_Problems
BOJ_Problems/1253.py
1253.py
py
555
python
en
code
2
github-code
6
39525459958
import pyttsx3 from gtts import gTTS import os #MALE engine = pyttsx3.init() engine.say("Hello there") engine.runAndWait() #FEMALE mytext = 'You are welcome to Roles Academy Madam.' language = 'en' myobj = gTTS(text=mytext, lang=language, slow=False) myobj.save("welcome.mp3") os.system("mpg321 welcome.mp3")
adesolasamuel/EqualityMachine
texttospeech.py
texttospeech.py
py
312
python
en
code
1
github-code
6
17040080901
import requests import time from bs4 import BeautifulSoup def ProfessorLunkedInScrapper( ProfessorName,CollegeName ): #ProfessorName = "Roel Verstappen" #CollegeName = "University of Groningen" query = 'https://google.com/search?q=site:linkedin.com/in AND "'+ProfessorName+'" AND "'+CollegeName+'"' response = requests.get(query) soup = BeautifulSoup(response.text,'html.parser') print(soup) for anchor in soup.find_all('a'): url = anchor["href"] if 'https://www.linkedin.com/' in url: url = url[7:url.find('&')] #print(url) time.sleep(1) return url print(ProfessorLunkedInScrapper("Steven Pinker","Harvard"))
brucema94/Expertfinder
LinkedinUrl_From_Name.py
LinkedinUrl_From_Name.py
py
664
python
en
code
0
github-code
6
10424840901
#-*- coding: utf-8 -*- """ @author: Martí Congost @contact: [email protected] @organization: Whads/Accent SL @since: September 2009 """ from cocktail.events import when from cocktail.translations import ( translations, set_language ) from cocktail import schema from cocktail.persistence import datastore from woost.models import Extension, Configuration, Controller translations.define("ShopExtension", ca = u"Botiga", es = u"Tienda", en = u"Shop" ) translations.define("ShopExtension-plural", ca = u"Botigues", es = u"Tiendas", en = u"Shops" ) class ShopExtension(Extension): def __init__(self, **values): Extension.__init__(self, **values) self.extension_author = u"Whads/Accent SL" self.set("description", u"""Proporciona els elements necessaris per implementar una botiga electrònica.""", "ca" ) self.set("description", u"""Proporciona los elementos necesarios para implementar una tienda electrónica.""", "es" ) self.set("description", u"""Supplies the building blocks required to implement an online shop.""", "en" ) def _load(self): from woost.extensions import shop from woost.extensions.shop import ( strings, product, productcategory, shoporder, shoporderentry, pricing, basket, userfilter ) for module, keys in ( (product, ("Product",)), (productcategory, ("ProductCategory",)), (shoporder, ("ShopOrder",)), (shoporderentry, ("ShopOrderEntry",)), (pricing, ( "PricingPolicy", "Discount", "PriceOverride", "RelativeDiscount", "PercentageDiscount", "FreeUnitsDiscount", "ShippingCost", "ShippingCostOverride", "CumulativeShippingCost", "Tax", "CumulativeTax", "PercentageTax" )), (basket, ("Basket",)) ): for key in keys: setattr(shop, key, getattr(module, key)) ShopExtension.add_member( schema.Collection("discounts", items = schema.Reference(type = pricing.Discount), related_end = schema.Reference() ) ) ShopExtension.add_member( schema.Collection("shipping_costs", items = schema.Reference(type = pricing.ShippingCost), related_end = schema.Reference() ) ) ShopExtension.add_member( schema.Collection("taxes", items = schema.Reference(type = pricing.Tax), related_end = schema.Reference() ) ) from tpv import ( Currency, Payment, PaymentItem, PaymentNotFoundError ) from woost.extensions.payments import PaymentsExtension from woost.extensions.payments.paymentgateway import PaymentGateway from woost.extensions.payments.transactionnotifiedtrigger \ import launch_transaction_notification_triggers payments_ext = PaymentsExtension.instance def get_payment(self, payment_id): order = shoporder.ShopOrder.get_instance(int(payment_id)) if order is None: raise PaymentNotFoundError(payment_id) payment = Payment() payment.id = order.id payment.amount = order.cost payment.shop_order = order payment.currency = Currency(payments_ext.payment_gateway.currency) for entry in order.entries: payment.add(PaymentItem( reference = str(entry.product.id), description = translations(entry.product), units = entry.quantity, price = entry.cost )) return payment PaymentGateway.get_payment = get_payment def receive_order_payment(event): payment = event.payment shop_order = payment.shop_order set_language(shop_order.language) shop_order.status = payment.status shop_order.gateway_parameters = payment.gateway_parameters def commit_order_payment(event): datastore.commit() events = PaymentGateway.transaction_notified pos = events.index(launch_transaction_notification_triggers) events.insert(pos, receive_order_payment) events.insert(pos + 2, commit_order_payment) self.install() def _install(self): # Create the product controller controller = Controller() controller.qname = "woost.product_controller" for language in Configuration.instance.languages: value = translations( "woost.extensions.shop Product controller title", language ) if value: controller.set("title", value, language) controller.python_name = \ "woost.extensions.shop.productcontroller.ProductController" controller.insert()
marticongost/woost
woost/extensions/shop/__init__.py
__init__.py
py
5,539
python
en
code
0
github-code
6
35423067505
def isValid(puzzle: list, index: tuple, guess: int) -> bool: # returning a True if the guess is in a correct place and False otherwise # we compare 'guess' with it's row, column and 3x3 square # first: check if the guess is already exist in its row row = index[0] col = index[1] for value in puzzle[row]: if guess == value: return False # second: check if the guess is already exist in its column # we neet to get the values of that column first to compare with thisColumnValues = [puzzle[i][col] for i in range(9)] for value in thisColumnValues: if guess == value: return False # third: check if the guess exists in the 3x3 square # 1- find what square we try search in by using the floor division operator # which will give us the standard division results # but floored to the nearest positive real number # example: 9/6 = 1.5 -> floor(1.5) = 1 r = (row // 3) * 3 c = (col // 3) * 3 # 2- we muliply the result by 3 to get the index of top left cell in that square # and we search in that square if the guess is already exists for i in range(r, r+3): for j in range(c, c+3): if puzzle[i][j] == guess: return False # if the guess doesn't exist in the row, column or the 3x3 square, then return True return True def solve(puzzle: list) -> bool: # Solve function that uses backtracking to find a solution to the sudoku puzzle # we need to save every index of every empty cell in a list # we save every index (x, y) in the list as a tuple # so 'indexesOfEmptyCells' is a list of tuples indexesOfEmptyCells = [] for i in range(9): for j in range(9): if puzzle[i][j] == 0: indexesOfEmptyCells.append((i, j)) # we will start from the first empty cell which will be in the index 0 in our list currentIndex = 0 # main algorithm while True: # we first get the the row and the column of the empty cell r = indexesOfEmptyCells[currentIndex][0] c = indexesOfEmptyCells[currentIndex][1] # let 'value' be equal to 0 value = puzzle[r][c] while True: # if 'value' is equal to 0, set it to 1 if value == 0: value = 1 # if 'value' is less that 9, increase it by 1 elif value < 9: value += 1 # if 'value' is bigger than 9 then backtrack # reset 'value' and the cell to 0 to decrease 'currentIndex' by 1 # to make it points to the empty cell before this one # and break from the loop to go the previous cell else: value = 0 puzzle[r][c] = value currentIndex -= 1 break # if 'value' which is the guessed number is valid in that cell # set the cell to the guessed number and increase the 'currentIndex' by 1 # to make it points to the next empty cell # and break from the loop to go the next cell if isValid(puzzle, indexesOfEmptyCells[currentIndex], value): puzzle[r][c] = value currentIndex += 1 break # notice that we check the the row, column and the 3x3 square # before we set the cell with our guessed number # if we are in the last empty cell and we guessed it correclty (We solved it) # then 'currentIndex' will be bigger than the length of the list # we return True in this case if currentIndex >= len(indexesOfEmptyCells): return True # if 'currentIndex' is equal to -1 then the puzzle doesn't have a solution # we return False in this case elif currentIndex <= -1: return False # the 'currentIndex' variable will be less than 0 if we backtracked # all the empty cell and none of guessed number is correct. # when we try every possible number from 1 to 9 and none of them # is valid for the first empty cell then 'currentIndex' will be equal to -1 def main(): # main function to start executing puzzle = [] # the puzzle will be list of lists # each list inside the puzzle will have 9 integers # 0s are empty cells and we have to fill them with 1 -> 9 # Comment the next few lines if you already defined the puzzle------# puzzleFile = open("puzzle.txt", "r") lines = puzzleFile.readlines() for line in lines: integers = line[:-1].split(', ') readList = [] for i in integers: readList.append(int(i)) puzzle.append(readList) puzzleFile.close() #-------------------------------------------------------------------# if solve(puzzle): # save the solution in text file answerFile = open("answer.txt", "w") for row in puzzle: for i in row: answerFile.write(str(i) + ", ") answerFile.write("\n") answerFile.close() # print the puzzle after we solve it for i in range(9): for value in puzzle[i]: print(value, end=", ") print(end='\n') else: print("Unsolvable puzzle") main()
MartinaNaeem/SudokuSolver
Solve.py
Solve.py
py
5,616
python
en
code
0
github-code
6
8317691335
# A script for checking triangular arbitrage opportunities (Forward + Reverse) # Using a general formula. (Pairs NEED to match the formula) # ETH/USDT, BTC/USDT, BTC/ETH # a/b, c/b, c/a import ccxt # Insert exchange testexchange = ccxt.kucoin({ 'enableRateLimit': True, }) # Choose whatever 3 pairs match the general formula. # If changing pairs, Change the fetch_order_book input parameter and the print statement def get_a_b_bid_ask(): order_book = testexchange.fetch_order_book("BTC/USDT") a_b_bid = order_book['bids'][0][0] if len (order_book['bids']) > 0 else None a_b_ask = order_book['asks'][0][0] if len (order_book['asks']) > 0 else None print(f'(Kucoin test ETH/USDT) The best bid is {a_b_bid}, the best ask is {a_b_ask}') return a_b_bid, a_b_ask def get_c_b_ask_bid(): order_book = testexchange.fetch_order_book("ETH/USDT") c_b_ask = order_book['asks'][0][0] if len (order_book['asks']) > 0 else None c_b_bid = order_book['bids'][0][0] if len (order_book['bids']) > 0 else None print(f'(Kucoin test BTC/USDT) The best ask is {c_b_ask}, the best bid is {c_b_bid}') return c_b_ask, c_b_bid def get_c_a_bid_ask(): order_book = testexchange.fetch_order_book("ETH/BTC") c_a_bid = (order_book['bids'][0][0]) if len (order_book['bids']) > 0 else None c_a_ask = (order_book['asks'][0][0]) if len (order_book['asks']) > 0 else None print(f'(Kucoin test BTC/ETH) The best bid is {c_a_bid}, the best ask is {c_a_ask}') return c_a_bid, c_a_ask # General formula for the forward arb rate: # a: the coin to be targeted for arbitrage def calculate_forward_arb_rate(a_b_bid, c_b_ask, c_a_bid): forward_rate = a_b_bid * (1/c_b_ask) * c_a_bid print(f"The forward arbitrage percent is {(forward_rate-1) *100}%") # General formula for the reverse arb rate: # a: the coin to be targeted for arbitrage def calculate_reverse_arb_rate(c_a_ask, c_b_bid, a_b_ask): reverse_rate = (1/c_a_ask)*(c_b_bid)*(1/a_b_ask) print(f"The reverse arbitrage percent is {(reverse_rate-1) *100}%") #ETH/USDT a_b_bid, a_b_ask = get_a_b_bid_ask() #BTC/USDT c_b_ask, c_b_bid = get_c_b_ask_bid() #BTC/ETH c_a_bid, c_a_ask = get_c_a_bid_ask() calculate_forward_arb_rate(a_b_bid, c_b_ask, c_a_bid) calculate_reverse_arb_rate(c_a_ask, c_b_bid, a_b_ask) #print(ccxt.exchanges)
AgenP/AgenP-triangular-arb-cex-scanner-v1
arb_ku_test.py
arb_ku_test.py
py
2,318
python
en
code
0
github-code
6
7795403561
from data_loader import SimpleDataset import string import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence from torch.nn.utils.rnn import pad_packed_sequence import numpy as np # from run_experiment import save_top_ranks, graph_top_ranks, save_model # Outputs image features from words class GRU_REG(nn.Module): def __init__(self, vocab_size, loss_fn=None, hidden_layer_dim=256, embedding_space=150, use_cuda=False, n_layers=1): super().__init__() self.hidden_layer_dim = hidden_layer_dim self.n_layers = n_layers self.embedding_space = embedding_space self.embeddings = nn.Embedding(vocab_size, embedding_space) self.gru = nn.GRU(embedding_space, hidden_layer_dim, n_layers, batch_first=True) self.output_layer = nn.Linear(hidden_layer_dim, 2048) self.use_cuda = use_cuda self.float_type = torch.FloatTensor self.long_type = torch.LongTensor if use_cuda: print("Using cuda") self.float_type = torch.cuda.FloatTensor self.long_type = torch.cuda.LongTensor self.cuda() if loss_fn is None: # self.loss_fn = torch.nn.SmoothL1Loss(size_average=True) self.loss_fn = torch.nn.MSELoss(size_average=True) else: self.loss_fn = loss_fn def forward(self, sentences, sentences_mask): batch_size = sentences.data.shape[0] sequence_size = sentences.data.shape[1] embeds = self.embeddings(sentences) packed_embedding = pack_padded_sequence(embeds.view(batch_size, -1, self.embedding_space), sentences_mask, batch_first=True) outputs, h_gru = self.gru(packed_embedding) ## unpacking: notice that: last_out == h_gru[0,:,:] # outputs_pad, output_lengths = pad_packed_sequence(outputs, batch_first=True) # output_lengths = Variable(torch.LongTensor(output_lengths)) # last_out = torch.gather(outputs_pad, 1, output_lengths.view(-1, 1, 1).expand(batch_size, 1, self.hidden_layer_dim)-1).view(batch_size, self.hidden_layer_dim) predicted_image_features = self.output_layer(F.selu(h_gru[0,:,:])) return predicted_image_features def format_sample_into_tensors(self, sample_batch, sample_batch_length, w2i): # Forward and backward pass per image, text is fixed b_index = 0 #Padding sentence_max_length = 0 sentences_mask = [] for sample in sample_batch: temp_sentence_length = len(sample["processed_word_inputs"]) sentences_mask.append(temp_sentence_length) if temp_sentence_length > sentence_max_length: sentence_max_length = temp_sentence_length word_inputs = np.zeros((sample_batch_length, sentence_max_length)) #Padding zeros outputs = np.zeros((sample_batch_length, 2048)) for sample in sample_batch: for index, x in enumerate(sample["processed_word_inputs"]): word_inputs[b_index][index] = w2i[x] outputs[b_index] = sample["target_img_features"] #torch.from_numpy().type(self.float_type) b_index +=1 #Sort sorted_index = len_value_argsort(sentences_mask) word_inputs = [word_inputs[i] for i in sorted_index] word_inputs = torch.from_numpy(np.array(word_inputs, dtype=np.int64)) inputs = Variable(word_inputs.type(self.long_type)) outputs = [outputs[i] for i in sorted_index] outputs = torch.from_numpy(np.array(outputs)) outputs = Variable(outputs.type(self.float_type)) sentences_mask = [sentences_mask[i] for i in sorted_index] return inputs, sentences_mask, outputs, sorted_index def top_rank_accuracy(self, predictions, dataset, sorted_index, top_param=3, val=False, print_failed=False): # if self.use_cuda: # predictions = predictions.cpu() total_size = len(predictions) correct = 0 correct_cos = 0 dataset = [dataset[i] for i in sorted_index] for index, prediction in enumerate(predictions): sample = dataset[index] actual_slice = np.zeros(10) prediction_slice = np.zeros(10) #loss from each image similarity_slice = np.zeros(10) b_index = 0 for image_id in sample['img_list']: image_features = sample['img_features'][image_id] image_features_tensor = Variable( torch.from_numpy( image_features).type(self.float_type)) image_loss_from_prediction = self.loss_fn(prediction, image_features_tensor) image_similarity_from_prediction = F.cosine_similarity(prediction, image_features_tensor, dim=0) prediction_slice[b_index] = 1.0 - image_loss_from_prediction.data[0] similarity_slice[b_index] = image_similarity_from_prediction.data[0] if image_id == sample['target_img_id']: actual_slice[b_index] = 1.0 b_index += 1 #do argmax on n (top_param) indexes prediction_indexes = prediction_slice.flatten().argsort()[-top_param:][::-1] similarity_indexes = similarity_slice.flatten().argsort()[-top_param:][::-1] if actual_slice[prediction_indexes].any(): correct += 1 if actual_slice[similarity_indexes].any(): correct_cos += 1 else: if print_failed: print("INCORRECT") print(sample) if val == True: print(f"{correct} correct out of {total_size} using loss") print(f"{correct_cos} correct out of {total_size} using cosine similarity") return float(correct_cos) / total_size def train_gru_reg_network(dataset, validation_dataset, loss_fn=None, embedding_space=150, num_epochs=15, batch_size=32, save_model=False, learning_rate = 0.0001, hidden_layer_dim=256, use_cuda=False): if loss_fn is None: # loss_fn = torch.nn.SmoothL1Loss(size_average=True) loss_fn = torch.nn.MSELoss(size_average=True) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, collate_fn=lambda x: x, # shuffle=False) shuffle=True) # Actually make the model model = GRU_REG(dataset.vocab_size, loss_fn=loss_fn, embedding_space=embedding_space, hidden_layer_dim=hidden_layer_dim, use_cuda=use_cuda) optimizer = optim.Adam(model.parameters(), lr=learning_rate) train_loss = 0.0 top_rank_1_arr = np.zeros(num_epochs) top_rank_3_arr = np.zeros(num_epochs) top_rank_5_arr = np.zeros(num_epochs) for ITER in range(num_epochs): print(f"Training Loss for {ITER} : {train_loss}") train_loss = 0.0 count = 0 t_rank_1 = 0 for sample_batch in dataloader: # Forward and backward pass per image, text is fixed inputs, sentences_mask, outputs, sorted_index = model.format_sample_into_tensors(sample_batch, batch_size, dataset.w2i) count += batch_size prediction = model(inputs, sentences_mask) loss = model.loss_fn(prediction, outputs) if use_cuda: loss = loss.cuda() train_loss += loss.data[0] print(f"Loss : {loss.data[0]} \t Count: {count}", end="\r") # backward pass model.zero_grad() # loss.backward(retain_graph=True) loss.backward() # update weights optimizer.step() print("\n") validation_loss, top_rank_1, top_rank_3, top_rank_5 = validate_gru_reg_model( dataset.vocab_size, dataset.w2i, validation_dataset, model=model) top_rank_1_arr[ITER] = top_rank_1 top_rank_3_arr[ITER] = top_rank_3 top_rank_5_arr[ITER] = top_rank_5 print(f"Top 1: {top_rank_1}") print(f"Top 3: {top_rank_3}") print(f"Top 5: {top_rank_5}") if save_model: torch.save(model.state_dict(), "data/gru_reg.pt") return model, top_rank_1_arr, top_rank_3_arr, top_rank_5_arr def validate_gru_reg_model(vocab_size, w2i, validation_dataset, model_filename="gru_reg.pt", model=None, embedding_space = 150, print_failed=False): print("Evaluating model on validation set") if model is None: print("Loading Saved Model: " + model_filename) model = GRU_REG(vocab_size, 2048, hidden_layer_dim=256) if not use_cuda: #loading a model compiled with gpu on a machine that does not have a gpu model.load_state_dict(torch.load("data/"+model_filename, map_location=lambda storage, loc: storage)) else: model.load_state_dict(torch.load("data/"+model_filename)) model = model.cuda() val_dl = torch.utils.data.DataLoader(validation_dataset, batch_size=64, collate_fn=lambda x: x) predictions = None outputs = None sorted_index = [] word_inputs, sentences_mask, outputs, sorted_index = model.format_sample_into_tensors(validation_dataset, len(validation_dataset), w2i) for i in range(0, len(validation_dataset), 64): words = word_inputs[i:i+64] mask = sentences_mask[i:i+64] pred = model(words, mask) if predictions is None: predictions = pred else: predictions = torch.cat((predictions, pred), dim=0) loss = model.loss_fn(predictions, outputs) print(f"Validation Loss : {loss.data[0]}") top_rank_1 = model.top_rank_accuracy(predictions, validation_dataset, sorted_index, top_param=1, val=True) top_rank_3 = model.top_rank_accuracy(predictions, validation_dataset, sorted_index, top_param=3, val=True) top_rank_5 = model.top_rank_accuracy(predictions, validation_dataset, sorted_index, top_param=5, val=True, print_failed=print_failed) return loss.data[0], top_rank_1, top_rank_3, top_rank_5 def len_value_argsort(seq): return sorted(range(len(seq)), key=lambda x: seq[x], reverse=True) if __name__ == "__main__": use_cuda = torch.cuda.is_available() dataset = SimpleDataset( training_file="IR_train_easy.json", preprocessing=True, preprocessed_data_filename="easy_training_processed_with_questions" ) validation_dataset = SimpleDataset( training_file="IR_val_easy.json", preprocessing=True, preprocessed_data_filename="easy_val_processed_with_questions" ) model, top_rank_1_arr, \ top_rank_3_arr, top_rank_5_arr = train_gru_reg_network( dataset, validation_dataset, num_epochs=50, batch_size=256, embedding_space=300, hidden_layer_dim=256, learning_rate=0.001, use_cuda=use_cuda) save_model("GRU_REG_EASY", hidden_layer_dim=256, embedding_space=300, learning_rate=0.001, loss_fn_name="mse", model=model) save_top_ranks(top_rank_1_arr, top_rank_3_arr, top_rank_5_arr, "./results_gru_reg_easy_with_questions.p") # graph_top_ranks(top_rank_1_arr, top_rank_3_arr, top_rank_5_arr)
geenen124/nlp_project
gru_regression.py
gru_regression.py
py
12,316
python
en
code
0
github-code
6
40677441703
"""empty message Revision ID: 37bd12af762a Revises: fa12c537244a Create Date: 2022-09-06 21:29:41.287889 """ import sqlalchemy as sa from alembic import op from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '37bd12af762a' down_revision = 'fa12c537244a' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('cbsds', 'antenna_beamwidth_deg') op.drop_column('cbsds', 'cpi_digital_signature') op.drop_column('cbsds', 'horizontal_accuracy_m') op.drop_column('cbsds', 'antenna_model') op.drop_column('cbsds', 'eirp_capability_dbm_mhz') op.drop_column('cbsds', 'antenna_azimuth_deg') op.drop_column('cbsds', 'antenna_downtilt_deg') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('cbsds', sa.Column('antenna_downtilt_deg', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('cbsds', sa.Column('antenna_azimuth_deg', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('cbsds', sa.Column('eirp_capability_dbm_mhz', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('cbsds', sa.Column('antenna_model', sa.VARCHAR(), autoincrement=False, nullable=True)) op.add_column('cbsds', sa.Column('horizontal_accuracy_m', postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True)) op.add_column('cbsds', sa.Column('cpi_digital_signature', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('cbsds', sa.Column('antenna_beamwidth_deg', sa.INTEGER(), autoincrement=False, nullable=True)) # ### end Alembic commands ###
magma/magma
dp/cloud/python/magma/db_service/migrations/versions/020_remove_cpi_related_fields.py
020_remove_cpi_related_fields.py
py
1,747
python
en
code
1,605
github-code
6
11245689019
import torch from torch.utils.data import DataLoader from transformers import AdamW from core.qa.utils import ( read_squad, add_end_idx, add_token_positions, tokenizer, model, ) train_contexts, train_questions, train_answers = read_squad( "squad-style-answers.json" ) train_encodings = tokenizer( train_contexts, train_questions, truncation=True, padding=True ) add_end_idx(train_answers, train_contexts) add_token_positions(train_encodings, train_answers) class SquadDataset(torch.utils.data.Dataset): def __init__(self, encodings): self.encodings = encodings def __getitem__(self, idx): return { key: torch.tensor(val[idx]) for key, val in self.encodings.items() } def __len__(self): return len(self.encodings.input_ids) train_dataset = SquadDataset(train_encodings) device = ( torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ) model.to(device) model.train() train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) optim = AdamW(model.parameters(), lr=5e-5) for epoch in range(3): for batch in train_loader: optim.zero_grad() input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) start_positions = batch["start_positions"].to(device) end_positions = batch["end_positions"].to(device) outputs = model( input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions, ) loss = outputs[0] loss.backward() optim.step() model.eval() torch.save(model.state_dict(), "core/qa/saved_models/model_weights.pth")
expectopatronm/FAQ-Generation-and-SQuaD-Style-QA-Answering-System
core/qa/trainer.py
trainer.py
py
1,760
python
en
code
1
github-code
6
1528634365
from random import randint import cProfile ARRAY_LENGTH = 10000 def insertion_sort(array): for i in range(1, len(array)): key_item = array[i] j = i - 1 while j>=0 and array[j] > key_item: array[j+1] = array[j] j -= 1 array[j+1] = key_item return array if __name__=="__main__": array = [randint(0, ARRAY_LENGTH) for i in range(ARRAY_LENGTH)] cProfile.run('insertion_sort(array)')
Harsh188/SSP-KVS
week1/a1_hc/insertionSort.py
insertionSort.py
py
456
python
en
code
0
github-code
6
30165255260
# Name: Milou Bisseling # Studentnumber: 10427538 ''' This program converts CSV to JSON ''' import csv import json import sys inputfile = 'totalbirths.csv' outputfile = 'totalbirths.json' fieldnames = ("Perioden", "Enkelvoudige geboorten", "Tweelinggeboorten", "Drie- of meervoudige geboorten") # Open and read CSV file csvfile = open(inputfile, 'r') reader = csv.DictReader(csvfile, fieldnames) # Open and write JSON file jsonfile = open(outputfile, 'w') data = json.dumps([row for row in reader]) jsonfile.write(data) csvfile.close() jsonfile.close()
miloubis/DataProcessing
Homework/week-6/convertCSV2JSON.py
convertCSV2JSON.py
py
559
python
en
code
0
github-code
6
11594315825
import TypeImg from TypeImg import * class WrapImg(TypeImage): def __init__(self,img,imgThreshold=None,contours=None,biggest=None,max_area=None): super().__init__(img,imgThreshold,contours,biggest,max_area) self.imgWarpColored=self.imgWarpGray =None def Repair_Biggest_Contour(self): myPoints = self.biggest.reshape((4, 2)) myPointsNew = np.zeros((4, 1, 2), dtype=np.int32) add = myPoints.sum(1) #Tính toán cộng diff = np.diff(myPoints, axis=1) #Tính hiệu rời rạc temp=[np.argmin(add),np.argmin(diff),np.argmax(diff),np.argmax(add)] for i in range(len(temp)): myPointsNew[i] = myPoints[temp[i]] self.biggest=myPointsNew def Create_WarpColor(self): self.Repair_Biggest_Contour() pts1 = np.float32(self.biggest) # PREPARE POINTS FOR WARP pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP matrix = cv2.getPerspectiveTransform(pts1, pts2) #trả về phép biến đổi phối cảnh 3x3 cho 4 cặp điểm tương ứng. Từ 4 điểm ảnh gốc tạo 4 điểm cho ảnh đích imgWarpColored = cv2.warpPerspective(self.img, matrix, (widthImg, heightImg)) #Áp dụng một phép chuyển đổi phối cảnh cho một hình ảnh #Remove 20 pixels imgWarpColored=imgWarpColored[20:imgWarpColored.shape[0] - 20, 20:imgWarpColored.shape[1] - 20] imgWarpColored = cv2.resize(imgWarpColored,(widthImg,heightImg)) self.imgWarpColored= imgWarpColored return self.imgWarpColored def Create_WarpGray(self): imgWarpGray = cv2.cvtColor(self.imgWarpColored,cv2.COLOR_BGR2GRAY) imgAdaptiveThre= cv2.adaptiveThreshold(imgWarpGray, 255, 1, 1, 7, 2) imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre) imgAdaptiveThre=cv2.medianBlur(imgAdaptiveThre,3) self.imgWarpGray=imgWarpGray return self.imgWarpGray
tvanh239/Document-Scanner
ImgWarp.py
ImgWarp.py
py
2,041
python
vi
code
0
github-code
6
74370505788
from .api_doc import ApiDoc from .media_type import MediaType class Request(ApiDoc): def __init__( self, content: MediaType, description: str = "", required: bool = False ): self.content = content self.description = description self.required = required def to_doc(self) -> dict: doc = {"content": self.content.to_doc(), "required": self.required} if self.description: doc["description"] = self.description return doc __all__ = ["Request"]
dkraczkowski/opyapi
opyapi/api/request.py
request.py
py
525
python
en
code
6
github-code
6
41859484302
# Open the input file for reading with open("1601456737847_Plants_Release42_triticum_dicoccoides.txt", "r") as input_file: # Open the output file for writing with open("output.fa", "w") as output_file: # Read the contents of the input file content = input_file.readlines() # Loop over the lines in the input file for i, line in enumerate(content): # If the line starts with ">", it is a sequence identifier if line.startswith(">"): # Write the sequence identifier to the output file output_file.write(line) # Otherwise, it is a genomic sequence else: # Write the genomic sequence to the output file in FASTA format output_file.write(">sequence_" + str(i) + "\n") output_file.write(line + "\n")
sejyoti/Questions-of-python-for-bioinformatics
Problem_1_solution/convert_to_fasta.py
convert_to_fasta.py
py
863
python
en
code
0
github-code
6
75051539388
from stratego.location import Location from stratego.piece import Color, Piece, Rank from stratego.printer import Printer from testing_utils import build_test_board # pylint: disable=protected-access # noinspection PyProtectedMember def test_printer_piece_movement(): r""" Verify piece movement as part of the \p Printer """ brd = build_test_board(5, 5) p = Printer(brd, {Piece(Color.RED, Rank(1), Location(2, 1))}, {Piece(Color.BLUE, Rank(2), Location(3, 2))}, Printer.Visibility.RED) assert p._is_loc_empty(Location(0, 0)) assert not p._is_loc_empty(Location(3, 2)) # p.move_piece(Location(3, 2), Location(2, 4)) # assert not p._is_loc_empty(Location(2, 4)) # assert p._is_loc_empty(Location(3, 2)) # # p.delete_piece(Location(2, 4)) # assert p._is_loc_empty(Location(2, 4)) p.delete_piece(Location(3, 2)) assert p._is_loc_empty(Location(3, 2)) # noinspection PyProtectedMember def test_printer_visibility(): r""" Verify the visibility settings of the \p Printer class """ brd = build_test_board(4, 4) p = Printer(brd, set(), set(), Printer.Visibility.NONE) assert not p._is_visible(Color.RED) assert not p._is_visible(Color.BLUE) p = Printer(brd, set(), set(), Printer.Visibility.RED) assert p._is_visible(Color.RED) assert not p._is_visible(Color.BLUE) p = Printer(brd, set(), set(), Printer.Visibility.ALL) assert p._is_visible(Color.RED) assert p._is_visible(Color.BLUE)
ZaydH/stratego
src/tests/test_printer.py
test_printer.py
py
1,498
python
en
code
0
github-code
6
73979398907
#!/usr/bin/env python3 import telebot from telebot import types import sqlite3 sqll = [0] bot = telebot.TeleBot("TOKEN", parse_mode=None) conn = sqlite3.connect('SQLdb.db', check_same_thread=False) cursor = conn.cursor() def updateUserBalance (id: int, balans: int): cursor.execute('UPDATE users SET balans=? WHERE id=?', (balans, id)) conn.commit() def createUser (id: int, user_name: str, user_login: str, balans: int): cursor.execute('INSERT INTO users (id, user_name, user_login, balans) VALUES (?, ?, ?, ?)', (id, user_name, user_login, balans)) conn.commit() def getUserBalans (id: int): balans = cursor.execute('SELECT balans FROM users WHERE id = ?', (id,)) conn.commit() return balans.fetchone()[0] def getUserName (id: int): userData = cursor.execute('SELECT user_name FROM users WHERE id = ?', (id,)) conn.commit() return userData.fetchone()[0] def selectAll_id (): all_id = cursor.execute('SELECT id FROM users') conn.commit() return all_id.fetchall() def idINFOMRER (ID): # вытаскиваем список ID-шников из картежа sqlite allin = selectAll_id() print(allin) num = 0 # usId = call.from_user.id print(ID, '- user') new_base = [] for el in allin: print(num) print(ID, allin[num][0]) new_base.insert(num, allin[num][0]) #такой способ вытащить ID из кортежа num = num+1 print(new_base) print('==========================================') return new_base def select_all_base (): all_base = cursor.execute('SELECT * FROM users') conn.commit() return all_base.fetchall() @bot.message_handler(commands=['start', 'help']) def send_welcome(message): bot.reply_to(message, "Этот бот призван читать круче Кендрика Ламара.") stick = open('sticker.webp', 'rb') bot.send_sticker(message.chat.id, stick) markup = types.ReplyKeyboardRemove(selective=False) markup = types.InlineKeyboardMarkup(row_width=1) itembtm1 = types.InlineKeyboardButton('Правила', callback_data='inc_1') itembtm2 = types.InlineKeyboardButton('Пользовательское соглашение', callback_data='inc_2') itembtm3 = types.InlineKeyboardButton('Пополнение баланса', callback_data='inc_3') itembtm4 = types.InlineKeyboardButton('Личный кабинет', callback_data='inc_4') markup.add(itembtm1, itembtm2, itembtm3, itembtm4) bot.send_message(message.chat.id, "Меню:", reply_markup=markup) """--------------------------- Обработчик кнопок -----------------------------------------------------------""" @bot.callback_query_handler(func=lambda call: True) def test_callback(call): if call.message: if call.data == "inc_0": markup = types.InlineKeyboardMarkup(row_width=1) itembtm1 = types.InlineKeyboardButton('Правила', callback_data='inc_1') itembtm2 = types.InlineKeyboardButton('Пользовательское соглашение', callback_data='inc_2') itembtm3 = types.InlineKeyboardButton('Пополнение баланса', callback_data='inc_3') itembtm4 = types.InlineKeyboardButton('Личный кабинет', callback_data='inc_4') markup.add(itembtm1, itembtm2, itembtm3, itembtm4) bot.edit_message_text("Меню:", call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == "inc_1": user_ID = call.from_user.id if user_ID in idINFOMRER(user_ID): print('Hello, friend') else: us_id = call.from_user.id us_name = call.from_user.first_name us_sname = call.from_user.username createUser(id=us_id, user_name=us_name, user_login=us_sname, balans=0) print('new user') # bot.send_message(call.from_user.id, 'Привет! Ваше имя добавленно в базу данных!') markup = types.InlineKeyboardMarkup(row_width=1) item1 = types.InlineKeyboardButton('Отправить отзыв', callback_data='la_2') item2 = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(item1, item2) bot.edit_message_text("Мы тут не в игры играем, никаких правил", call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == "inc_2": user_ID = call.from_user.id if user_ID in idINFOMRER(user_ID): print('Hello, friend') else: us_id = call.from_user.id us_name = call.from_user.first_name us_sname = call.from_user.username createUser(id=us_id, user_name=us_name, user_login=us_sname, balans=0) print('new user') # bot.send_message(call.from_user.id, 'Привет! Ваше имя добавленно в базу данных!') markup = types.InlineKeyboardMarkup(row_width=1) item_for_block_1 = types.InlineKeyboardButton('Инверсировать игру', callback_data='item_block_2') item_for_block_2 = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(item_for_block_1, item_for_block_2) bot.edit_message_text("Можем просто заблокировать, если ты нам не понравишься", call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == "inc_3": user_ID = call.from_user.id if user_ID in idINFOMRER(user_ID): print('Hello, friend') else: us_id = call.from_user.id us_name = call.from_user.first_name us_sname = call.from_user.username createUser(id=us_id, user_name=us_name, user_login=us_sname, balans=0) # bot.send_message(call.from_user.id, 'Привет! Ваше имя добавленно в базу данных!') print('new user') us_id = call.from_user.id us_name = call.from_user.first_name us_sname = call.from_user.username currentUserBalance = getUserBalans(us_id) # print(currentUserBalance.fetchone()[0]) currentUserBalance = currentUserBalance+100 updateUserBalance(id=us_id, balans=currentUserBalance) markup = types.InlineKeyboardMarkup(row_width=1) balansbtn = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(balansbtn) bot.edit_message_text("Баланс пополнен!", call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == "inc_4": user_ID = call.from_user.id if user_ID in idINFOMRER(user_ID): print('Hello, friend') else: us_id = call.from_user.id us_name = call.from_user.first_name us_sname = call.from_user.username createUser(id=us_id, user_name=us_name, user_login=us_sname, balans=0) print('new user') # bot.send_message(call.from_user.id, 'Привет! Ваше имя добавленно в базу данных!') if user_ID == 795675764 or user_ID == 5510951877: markup = types.InlineKeyboardMarkup(row_width=1) lkbtn1 = types.InlineKeyboardButton('Назад', callback_data='inc_0') lkbtn2 = types.InlineKeyboardButton('База данных', callback_data='admin_base') markup.add(lkbtn1, lkbtn2) us_id = call.from_user.id bot.edit_message_text('Привет, создатель!\n'+'Игрок: '+str(getUserName(us_id))+'\nБаланс: '+str(getUserBalans(us_id)), call.message.chat.id, call.message.message_id, reply_markup=markup) else: markup = types.InlineKeyboardMarkup(row_width=1) lkbtn1 = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(lkbtn1) us_id = call.from_user.id bot.edit_message_text('Игрок: '+str(getUserName(us_id))+'\nБаланс: '+str(getUserBalans(us_id)), call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == "la_2": markup = types.InlineKeyboardMarkup(row_width=1) otzyv = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(otzyv) bot.edit_message_text("[email protected]", call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == 'item_block_2': markup = types.InlineKeyboardMarkup(row_width=1) inv_1 = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(inv_1) bot.edit_message_text("Инверсированно", call.message.chat.id, call.message.message_id, reply_markup=markup) elif call.data == 'admin_base': my_list = [] for x in select_all_base(): my_list.append(''.join(str(x))) #https://ru.stackoverflow.com/questions/1178388 my_str = '\n'.join(my_list) # print(select_all_base()) # for item in select_all_base(): # print(item) markup = types.InlineKeyboardMarkup(row_width=1) button_back = types.InlineKeyboardButton('Назад', callback_data='inc_0') markup.add(button_back) bot.edit_message_text('База данных\n'+my_str, call.message.chat.id, call.message.message_id, reply_markup=markup) """------------------------- Обработчики текста и стикеров --------------------------------------------------""" @bot.message_handler(content_types=['text']) def text_up(message): bot.reply_to(message, message.text) bot.send_message(message.chat.id, "Давай без самодеятельности. Мы для кого кнопки сделали?") @bot.message_handler(content_types=['sticker']) def text_down(message): bot.send_message(message.chat.id, "Козырный стикер!") """--------------------------------- Start ------------------------------------------------------------------""" bot.infinity_polling()
thebilderberg/telegram_bot_github
star_bot.py
star_bot.py
py
10,747
python
ru
code
0
github-code
6
71916477308
# coding:utf-8 from PyQt5.QtWidgets import QWidget, QGridLayout, QVBoxLayout, QSizePolicy, QListWidgetItem, QAbstractItemView from PyQt5.QtCore import pyqtSignal from qfluentwidgets import ListWidget, PrimaryPushButton, PillPushButton, FluentIcon, InfoBar from common.style_sheet import StyleSheet from common.config import cfg from globalvar.vars import set_value, get_value from threads.pkthread import PKThread from utils.logger import Logger from view.frame import Frame from view.widget.operate_toolbar import OperateToolBar class OperateInterface(QWidget): """ View interface """ calculate_started_signal = pyqtSignal(str) calculate_finished_signal = pyqtSignal(str) def __init__(self, parent=None): super().__init__(parent=parent) self.setObjectName("operate_interface") self.widget = QWidget(self) self.gridLayout = QGridLayout(self) self.verticalLayout = QVBoxLayout() self.toolBar = OperateToolBar(self.tr("Variables"), self.tr("Calculate and compare the PK values of the variables."), self) self.listWidget_all = ListWidget(self) self.listWidget_y = ListWidget(self) self.listWidget_x = ListWidget(self) self.frame_all = Frame(self) self.frame_x = Frame(self) self.frame_y = Frame(self) self.pushButton_y = PrimaryPushButton(self.tr("Add"), self) self.pushButton_all = PrimaryPushButton(self.tr("Add all"), self) self.pushButton_x = PrimaryPushButton(self.tr("Add"), self) self.variables_all = PillPushButton(self.tr("Available variables"), self, FluentIcon.TAG) self.variables_x = PillPushButton(self.tr("Test variables"), self, FluentIcon.TAG) self.variables_y = PillPushButton(self.tr("Independent variables"), self, FluentIcon.TAG) self.list_all = [] self.add_to_x = True self.add_to_y = True self.pkThread = PKThread() self.logger = Logger().get_logger() self.__initWidget() self.__initListWidgets() self.__initConnects() def __initWidget(self): sizePolicy = QSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.listWidget_y.sizePolicy().hasHeightForWidth()) self.listWidget_y.setSizePolicy(sizePolicy) self.frame_all.addWidget(self.listWidget_all) self.frame_x.addWidget(self.listWidget_x) self.frame_y.addWidget(self.listWidget_y) self.gridLayout.addWidget(self.toolBar, 0, 0, 1, 3) self.gridLayout.addWidget(self.frame_all, 2, 0, 4, 1) self.gridLayout.addWidget(self.pushButton_y, 3, 1, 1, 1) self.gridLayout.addWidget(self.frame_y, 3, 2, 1, 1) self.gridLayout.addWidget(self.variables_all, 1, 0, 1, 1) self.gridLayout.addWidget(self.variables_y, 1, 2, 1, 1) self.gridLayout.addWidget(self.variables_x, 4, 2, 1, 1) self.verticalLayout.addWidget(self.pushButton_all) self.verticalLayout.addWidget(self.pushButton_x) self.gridLayout.addLayout(self.verticalLayout, 5, 1, 1, 1) self.gridLayout.addWidget(self.frame_x, 5, 2, 1, 1) self.variables_all.setCheckable(False) self.variables_y.setCheckable(False) self.variables_x.setCheckable(False) self.listWidget_all.setSelectionMode(QAbstractItemView.ExtendedSelection) self.listWidget_x.setSelectionMode(QAbstractItemView.ExtendedSelection) StyleSheet.GALLERY_INTERFACE.apply(self) def __initListWidgets(self): self.pushButton_x.setEnabled(False) self.pushButton_y.setEnabled(False) self.pushButton_all.setEnabled(False) self.resetLists() def __initButtons(self): self.pushButton_x.setEnabled(True) self.pushButton_y.setEnabled(True) self.pushButton_all.setEnabled(True) self.pushButton_x.setText(self.tr("Add")) self.pushButton_y.setText(self.tr("Add")) self.pushButton_all.setText(self.tr("Add all")) self.add_to_x = True self.add_to_y = True def enbaleAllButtons(self, enabled): self.pushButton_all.setEnabled(enabled) self.pushButton_x.setEnabled(enabled) self.pushButton_y.setEnabled(enabled) self.toolBar.compareButton.setEnabled(enabled) self.toolBar.calcaulateButton.setEnabled(enabled) self.toolBar.resetButton.setEnabled(enabled) def __initConnects(self): self.toolBar.resetButton.clicked.connect(self.resetLists) self.listWidget_all.clicked.connect(self.__initButtons) self.listWidget_x.clicked.connect(self.remove_from_x) self.listWidget_y.clicked.connect(self.remove_from_y) self.pushButton_x.clicked.connect(self.clicked_button_x) self.pushButton_y.clicked.connect(self.clicked_button_y) self.pushButton_all.clicked.connect(self.clicked_button_all) self.toolBar.calcaulateButton.clicked.connect(self.calculate) self.toolBar.compareButton.clicked.connect(self.compare) self.pkThread.finished_signal.connect(self.calculate_compare_finished) self.pkThread.error_signal.connect(self.error_occurred) self.pkThread.warn_signal.connect(self.warn_occurred) self.pkThread.success_signal.connect(self.success_occurred) self.pkThread.task_percentage_changed_signal.connect(self.toolBar.progressbar.setValue) self.pkThread.task_percentage_changed_signal.connect(self.toolBar.update_percentage) def resetLists(self): self.setList(self.listWidget_x, []) self.setList(self.listWidget_y, []) self.setList(self.listWidget_all, self.list_all) def setList(self, list_widget, list_content): while list_widget.count() > 0: list_widget.takeItem(0) for content in list_content: if not isinstance(content, str): content = str(content) list_widget.addItem(QListWidgetItem(content)) list_widget.clearSelection() def updateList(self): df = get_value("current_workbook") self.list_all = df.columns self.resetLists() self.__initButtons() set_value("pk", None) set_value("pk_dict", {}) set_value("pk_name_dict", {}) set_value("pk_n", 0) set_value("pks", None) set_value("pks_dict", {}) set_value("pks_name_dict", {}) set_value("pks_n", 0) self.logger.info(self.tr("Update the available variables in the data. All the storage cache has been reset.")) self.logger.info(self.tr("The available variables list as {0}").format(self.list_all)) def remove_from_x(self): self.pushButton_x.setText(self.tr("Remove")) self.pushButton_all.setText(self.tr("Remove all")) self.add_to_x = False def remove_from_y(self): self.pushButton_y.setText(self.tr("Remove")) self.add_to_y = False def exchange_selected(self, source, destination): selected = source.selectedIndexes() idx = [x.row() for x in selected] idx.sort(reverse=True) for num in idx: it = source.takeItem(num) destination.addItem(it) source.clearSelection() destination.clearSelection() def remove_all(self, source, destination): while source.count() > 0 : it = source.takeItem(0) destination.addItem(it) def clicked_button_x(self): if self.add_to_x: self.exchange_selected(self.listWidget_all, self.listWidget_x) else: self.exchange_selected(self.listWidget_x, self.listWidget_all) def clicked_button_y(self): if self.add_to_y: if self.listWidget_y.count() == 0 and len(self.listWidget_all.selectedItems()) == 1: self.exchange_selected(self.listWidget_all, self.listWidget_y) else: pass else: self.exchange_selected(self.listWidget_y, self.listWidget_all) def clicked_button_all(self): if self.add_to_x: self.remove_all(self.listWidget_all, self.listWidget_x) else: self.remove_all(self.listWidget_x, self.listWidget_all) def collect_xy(self): x = [] y = [] n = self.listWidget_x.count() for i in range(n): x.append(self.listWidget_x.item(i).text()) n = self.listWidget_y.count() for i in range(n): y.append(self.listWidget_y.item(i).text()) set_value("x_names", x) set_value("y_names", y) set_value("output_dir", cfg.get(cfg.outputFolder)) self.logger.info(self.tr("The test variables include the following:")) self.logger.info(x) self.logger.info(self.tr("The independent variable includes the following:")) self.logger.info(y) def calculate(self): self.logger.info(self.tr("Start calculating PKs.")) self.toolBar.textButton.setText(self.tr("Calculating")) self.enbaleAllButtons(False) self.collect_xy() self.pkThread.set_work_type("PK") self.pkThread.start() self.calculate_started_signal.emit(self.tr("Calculating PKs")) def compare(self): self.logger.info(self.tr("Start comparing PKs.")) self.toolBar.textButton.setText(self.tr("Comparing")) self.enbaleAllButtons(False) self.collect_xy() self.pkThread.set_work_type("PKC") self.pkThread.start() self.calculate_started_signal.emit(self.tr("Comparing PKs")) def calculate_compare_finished(self): self.enbaleAllButtons(True) self.toolBar.createTopLeftInfoBar(self.tr("Success!"), self.tr("The operation success and write the results to files finished!! Please refer the output for details."), InfoBar.success, 2000) self.calculate_finished_signal.emit(self.tr("Open the file {0}").format(get_value("last_work_file"))) def success_occurred(self, str): self.toolBar.createTopLeftInfoBar(self.tr("Success!"), str, InfoBar.success) def error_occurred(self, str): self.enbaleAllButtons(True) self.toolBar.createTopRightInfoBar(self.tr("Error!"), str,InfoBar.error) def warn_occurred(self, str): self.toolBar.createTopRightInfoBar(self.tr("Warn!"), str,InfoBar.warning)
xfz329/pk4adi_calculator
view/operate_interface.py
operate_interface.py
py
10,462
python
en
code
0
github-code
6
18128239741
from django.conf.urls import url, include from . import views #app_name = 'dmlpolls' urlpatterns = [ url(r'^$', views.index, name='poll_index'), url(r'^(?P<question_id>[0-9]+)/$', views.detail, name='poll_detail'), url(r'^(?P<question_id>[0-9]+)/results/$', views.results, name='poll_results'), url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='poll_vote'), url(r'^polls/', include('dmlpolls.urls')), # url(r'^admin/', admin.site.urls), ]
Yobmod/dmlsite
dmlpolls/urls_old.py
urls_old.py
py
457
python
en
code
1
github-code
6
26529448636
#신입사원* import sys input = sys.stdin.readline t = int(input()) for _ in range(t): grade = [] n = int(input()) cnt = n for _ in range(n): paper, interview = map(int, input().split()) grade.append([paper, interview]) grade = sorted(grade, key= lambda a: a[0]) temp = grade[0][1] for i in range(1, n): if grade[i][1] > temp: cnt -= 1 else: temp = grade[i][1] print(cnt)
Jaeheon-So/baekjoon-algorithm
그리디/1946.py
1946.py
py
468
python
en
code
0
github-code
6
26327096081
import money from exceptions import * from tkinter import * from datetime import * from decimal import Decimal import math import re from tkinter import messagebox from dateutil.rrule import * from parkomat_interface import ParkomatInterface class ParkomatFunctions: """ Klasa realizująca funkcjonalności programu """ __global_date = datetime.now() # zmienna przechowująca aktualnie ustawioną datę w parkomacie __departure_time = __global_date # zmienna przechowująca czas wyjazdu __previous_time = 0 # zmienna przechowująca poprzednio zwrócony czas w sekundach dla wrzuconych pieniędzy dla metody seconds_for_money __inserted_money_by_user = Decimal("0.00") # zmienna przechowująca liczbę wrzuconych pieniędzy przez aktualnego użytkownika def __init__(self): self.__window = Tk() # Toplevel widget reprezentujący główne okno programu self.__interface = ParkomatInterface(self.window) # interfejs programu self.__moneyHolder = self.interface.moneyHolder # instancja przechowywacza pieniędzy self.buttons_onclick() # metoda dodające wydarzenia do przycisków self.actual_date() # metoda aktualizująca datę parkomatu oraz wyjazdu @property def window(self): """ Getter zwracający Toplevel widget reprezentujący główne okno programu """ return self.__window @window.setter def window(self, window): """ Setter ustawiający Toplevel widget reprezentujący główne okno programu """ self.__window = window @property def interface(self): """ Getter zwracający odwołanie do interfejsu programu """ return self.__interface @interface.setter def interface(self, interface): """ Setter ustawiające odwołanie do interfejsu programu """ self.__interface = interface @property def moneyHolder(self): """ Getter zwracający przechowywacz pieniędzy """ return self.__moneyHolder @moneyHolder.setter def moneyHolder(self, moneyHolder): """ Setter ustawiający przechowywacz pieniędzy """ self.__moneyHolder = moneyHolder @property def global_date(self): """ Getter zwracający aktualnie ustawioną datę w parkomacie """ return self.__global_date @property def departure_time(self): """ Getter zwracający datę wyjazdu """ return self.__departure_time @global_date.setter def global_date(self, global_date): """ Setter ustawiający aktualną datę w parkomacie """ self.__global_date = global_date @departure_time.setter def departure_time(self, departure_time): """ Setter ustawiający datę wyjazdu """ self.__departure_time = departure_time @property def previous_time(self): """ Getter zwracający poprzednio dodany czas """ return self.__previous_time @previous_time.setter def previous_time(self, previous_time): """ SSetter ustawiający poprzednio dodany czas """ self.__previous_time = previous_time @property def inserted_money_by_user(self): """ Getter zwracający poprzednio dodany czas """ return self.__inserted_money_by_user @inserted_money_by_user.setter def inserted_money_by_user(self, inserted_money_by_user): """ SSetter ustawiający poprzednio dodany czas """ self.__inserted_money_by_user = inserted_money_by_user def main_loop(self): """ Nieskończona pętla służąca do uruchomienia aplikacji trwająca, dopóki okno nie zostanie zamknięte """ self.window.mainloop() def buttons_onclick(self): """ Metoda obsługująca wydarzenia, gdy przycisk zostanie wciśnięty """ self.interface.window.button1.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[0])) self.interface.window.button2.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[1])) self.interface.window.button3.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[2])) self.interface.window.button4.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[3])) self.interface.window.button5.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[4])) self.interface.window.button6.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[5])) self.interface.window.button7.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[6])) self.interface.window.button8.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[7])) self.interface.window.button9.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[8])) self.interface.window.button10.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[9])) self.interface.window.button11.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[10])) self.interface.window.button12.bind("<ButtonRelease-1>", lambda event: self.add_number_of_money(self.moneyHolder.available_values[11])) self.bind_button_confirm(lambda event: self.button_confirm(event)) self.bind_change_actual_time(lambda event: self.button_change_actual_time(event)) def actual_date(self): """ Metoda aktualizująca aktualną datę parkomatu oraz datę wyjazdu""" self.global_date = self.global_date + timedelta(seconds=1) # dodanie sekundy do aktualnej daty parkomatu self.departure_time = self.departure_time + timedelta(seconds=1) # dodanie sekundy do daty wyjazdu # wyświetlenie aktualnej daty parkomatu self.interface.window.actual_date_label.config(text=self.global_date.strftime("%Y-%m-%d %H:%M")) # wyświetlenie daty wyjazdu self.interface.window.date_of_departure_label.config(text=self.departure_time.strftime("%Y-%m-%d %H:%M")) # powtarzanie funkcji actual_date() co sekundę self.interface.window.actual_date_label.after(1000, self.actual_date) def button_confirm(self, event): """ Funkcja odpowiadająca na naciśnięcie przycisku 'Zatwierdź' """ try: self.confirm() except Exception as err: messagebox.showerror("Błąd", str(err)) def button_change_actual_time(self, event): """ Funkcja odpowiadająca na naciśnięcie przycisku zmieniającego godzinę """ try: self.change_actual_time() except Exception as err: messagebox.showerror("Błąd", str(err)) def bind_button_confirm(self, f): """ Funkcja bindująca przycisk 'Zatwierdź' """ self.interface.window.confirm_button.bind("<ButtonRelease-1>", f) def bind_change_actual_time(self, f): """ Funkcja bindująca przycisk 'Przestaw' """ self.interface.window.change_actual_date_button.bind("<ButtonRelease-1>", f) def change_actual_time(self): """ Metoda ustawiająca godzinę wprowadzoną przez użytkownika """ # sprawdzenie, czy wpisano poprawnie czas if self.inserted_money_by_user != Decimal("0.00"): messagebox.showerror("Error", "Nie można zmienić czasu, gdy wrzucono już pieniądze.") else: if self.interface.window.hour_entry.get().isdigit() is False or self.interface.window.minute_entry.get().isdigit() is False or int( self.interface.window.hour_entry.get()) < 0 or int( self.interface.window.hour_entry.get()) > 23 or int( self.interface.window.minute_entry.get()) < 0 or int( self.interface.window.minute_entry.get()) > 59: raise IncorrectTime("Wpisano niepoprawny czas.") else: h1 = int(self.interface.window.hour_entry.get()) # pobranie godziny z entry i przekonwertowanie na int m1 = int(self.interface.window.minute_entry.get()) # pobranie minuty z entry i przekonwertowanie na int self.global_date = self.global_date.replace(hour=h1, minute=m1) # ustawienie nowego czasy dla parkomatu self.departure_time = self.global_date # przypisanie aktualnej daty parkomatu do daty wyjazdu self.previous_time = 0 # reset wcześniejszego czasu, gdy zmieniamy czas def add_number_of_money(self, value: Decimal): """ Metoda dodająca wybraną liczbę monet """ number_of_money = self.interface.window.number_of_money_entry.get() # pobranie wprowadzonej liczby monet try: if self.interface.window.number_of_money_entry == "" or number_of_money.isdigit() is False: # jeśli nie wpisano wartości lub nie jest liczbą raise IncorrectValueError else: # w przeciwnym wypadku number_of_money = int(number_of_money) if value < 10: # jeśli wartość pieniądza wynosi poniżej 10 to tworzymy monetę for x in range(number_of_money): self.moneyHolder.add_money(money.Coin(value)) # dodanie monety do przechowywacza self.inserted_money_by_user += value # dodanie wartości monety do aktualnie wrzuconych przez użytkownika else: # w przeciwnym wypadku tworzymy banknoty for x in range(number_of_money): self.moneyHolder.add_money(money.Bill(value)) # dodanie banknotu do przechowywacza self.inserted_money_by_user += value # dodanie wartości banknotu do aktualnie wrzuconych przez użytkownika except IncorrectValueError: # przechwycenie wyjątku dla niepoprawnie wpisanej wartości messagebox.showerror("Error", "Wpisz poprawną liczbę pieniędzy którą chcesz wrzucić.") except TooMuchCoinsError as err: # przechwycenie wyjątku, jeśli przekroczono limit nominałów messagebox.showerror("Error", str(err)) finally: # aktualizacja wrzuconej kwoty oraz daty wyjazdu self.interface.window.sum_of_money_label.config(text=self.inserted_money_by_user) # wrzucona kwota self.departure_date() # aktualizacja daty wyjazdu def input_validator(self): """ Metoda walidująca numer rejestracyjny """ # porównanie numeru do wyrażenia regularnego pattern = re.match("^[A-Z0-9]+$", self.interface.window.registration_number_entry.get()) if self.interface.window.registration_number_entry.get() == "": # błąd jeśli nie wpisano numeru rejestracyjnego raise RegistrationNumberError("Wpisz numer rejestracyjny.") elif bool(pattern) is False: # błąd, jeśli numer nie pasuje do wyrażenia regularnego raise RegistrationNumberError("Numer rejestracyjny może składać się tylko z wielkich liter od A do Z i cyfr") def confirmation_of_payment(self): """ Metoda wyświetlająca okno z potwierdzeniem opłacenia parkingu """ messagebox.showinfo("Potwierdzenie opłacenia parkingu", "Numer rejestracyjny: {} \n\nCzas zakupu: {} \n\nTermin wyjazdu: {}" .format(self.interface.window.registration_number_entry.get(), self.interface.window.actual_date_label.cget("text"), self.interface.window.date_of_departure_label.cget("text"))) def rules(self, departure_date, seconds): """ Zasady strefy płatnego parkowania obowiązuje w godzinach od 8 do 20 od poniedziałku do piątku """ rr = rrule(SECONDLY, byweekday=(MO, TU, WE, TH, FR), byhour=(8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), dtstart=departure_date, interval=seconds) return rr.after(departure_date) def seconds_for_money(self, amount: Decimal): """ Metoda zwracająca liczbę sekund dla wrzuconych pieniędzy """ total_seconds = 0 # zmienna przechowująca sumę dodanych sekund grosz_1h = 60 * 60 / 200 # sekunda za jednego grosza pierwszej godziny grosz_2h = 60 * 60 / 400 # sekunda za jednego grosza drugiej godziny grosz_xh = 60 * 60 / 500 # sekunda za jednego grosza lub większej godziny if total_seconds < 3600: # jeśli suma sekund jest mniejsza od godziny zapisanej w sekundach if amount >= 2: # jeśli suma jest większa lub równa 2 total_seconds += 3600 # dodaj godzinę amount -= 2 # odejmij od sumy koszt jednej godziny else: seconds = amount * 100 * Decimal(grosz_1h) # obliczona liczba sekund total_seconds += seconds # dodanie obliczonych sekund do całościowej liczby sekund amount = 0 # zerowanie sumy if total_seconds < 7200: # jeśli suma sekund jest mniejsza od dwóch godzin zapisanej w sekundach if amount >= 4: # jeśli suma jest większa lub równa 4 total_seconds += 3600 # dodaj godzinę amount -= 4 # odejmij od sumy koszt jednej godziny else: seconds = amount * 100 * Decimal(grosz_2h) # obliczona liczba sekund total_seconds += seconds # dodanie obliczonych sekund do całościowej liczby sekund amount = 0 # zerowanie sumy while amount > 0: # wykonuj, dopóki suma wrzuconych pieniędzy jest większa od zera if total_seconds >= 7200: # jeśli suma sekund jest większa lub równa dwóch godzin zapisanej w sekundach if amount >= 5: # jeśli suma jest większa lub równa 5 total_seconds += math.floor((amount / 5)) * 60 * 60 # dodanie całkowitej liczby godzin amount -= 5 * math.floor((amount / 5)) # odjęcia całkowitej liczby godzin od sumy else: seconds = amount * 100 * Decimal(grosz_xh) # obliczona liczba sekund total_seconds += seconds # dodanie obliczonych sekund do całościowej liczby sekund amount = 0 # zerowanie sumy temp_seconds = total_seconds total_seconds -= self.previous_time # od całkowitego czasu odjęcie wcześniejszego self.previous_time = temp_seconds # ustawienie nowego wcześniejszego czasu return int(total_seconds) def departure_date(self): """ Metoda ustawiająca datę wyjazdu """ free_hours = [x for x in range(0, 24) if x not in range(8, 20)] # lista z darmowymi godzinami amount = self.inserted_money_by_user # suma przechowywanych pieniędzy seconds_paid = self.seconds_for_money(amount) # liczba zapłaconych sekund if seconds_paid > 0: # jeśli liczba zapłaconych sekund jest większa od zera if self.departure_time.weekday() == 5: # jeśli jest sobota self.departure_time = self.departure_time.replace(hour=8, minute=00) + timedelta(days=2) elif self.departure_time.weekday() == 6: # jeśli jest niedziela self.departure_time = self.departure_time.replace(hour=8, minute=00) + timedelta(days=1) elif self.departure_time.hour in free_hours: # jeśli są dni robocze i aktualna godzina jest darmowa if self.departure_time.hour > 19: # jeśli jest po godzinie 19:00 self.departure_time = self.departure_time.replace(hour=8, minute=00) + timedelta(days=1) else: # jeśli jest godzina między 0 a 8 self.departure_time = self.departure_time.replace(hour=8, minute=00) # wyświetlenie w label zaktualizowanej daty wyjazdu self.departure_time = self.rules(self.departure_time, seconds_paid) self.interface.window.date_of_departure_label.config(text=self.departure_time.strftime("%Y-%m-%d %H:%M")) def confirm(self): """ Funkcja włączająca się przy kliknięciu przycisku 'Zatwierdź' """ self.input_validator() # sprawdzenie walidacji numeru rejestracyjnego if self.inserted_money_by_user > 0: # wykonanie, jeśli suma monet jest większa od 0 self.confirmation_of_payment() # wykonanie funkcji potwierdzającej płatność self.reset() # po potwierdzeniu rezerwacji reset parkomatu do stanu początkowego else: # w przeciwnym wypadku wyświetl błąd raise NotInsertedMoney("Nie wrzucono pieniędzy.") def reset(self): """ Funkcja resetująca parkomat do stanu początkowego """ self.interface.window.registration_number_entry.delete(0, "end") # reset pola z numerem rejestracyjnym self.interface.window.sum_of_money_label.config(text="0.00") # reset pola z wrzuconymi pieniędzmi self.interface.window.date_of_departure_label.config(text="") # reset pola z datą wyjazdu self.global_date = datetime.now() # reset czasu parkomatu do stanu początkowego self.departure_time = self.global_date # ustawienie z powrotem czasu wyjazdy do stanu początkowego self.interface.window.number_of_money_entry.delete(0, "end") # reset pola z liczbą monet self.interface.window.number_of_money_entry.insert(0, "1") # wpisanie domyślnej wartości self.interface.window.hour_entry.delete(0, "end") # reset entry z godziną self.interface.window.hour_entry.insert(0, "0") # wpisanie domyślnej wartości self.interface.window.minute_entry.delete(0, "end") # reset entry z minutą self.interface.window.minute_entry.insert(0, "0") # wpisanie domyślnej wartości self.previous_time = 0 # reset poprzednio dodanego czasu self.inserted_money_by_user = Decimal("0.00") # reset wrzuconych pieniędzy dla użytkownika
DZietara/parkomat
main/parkomat_functions.py
parkomat_functions.py
py
18,188
python
pl
code
0
github-code
6
37446576919
from subprocess import call from metux.util.specobject import SpecError def rsync_ssh(username, hostname, source, path): return (call([ 'rsync', '--progress', '--rsh=ssh', '-r', source+"/", username+"@"+hostname+":/"+path ]) == 0) def run_upload(param): if param['protocol'] == 'rsync+ssh': return rsync_ssh(param['username'], param['hostname'], param['source'], param['path']); raise SpecError("unknown upload protocol: %s" % param['protocol'])
LibreZimbra/librezimbra
deb_autopkg/util/upload.py
upload.py
py
517
python
en
code
4
github-code
6
38463867669
from django.urls import path, re_path from app import views urlpatterns = [ # Matches any html file - to be used for gentella # Avoid using your .html in your resources. # Or create a separate django app. re_path(r'^.*\.html', views.gentella_html, name='index'), # The home page path('', views.index, name='index'), path('outliers', views.outliers, name='outliers'), path('data_fresh', views.data_fresh, name="data_fresh"), path('data_fresh\\', views.data_fresh, name="data_fresh"), path('data_fresh/', views.data_fresh, name="data_fresh"), path('data_fresh_tem_table', views.data_table_tem_fresh_with_pred, name='data_table_tem_fresh'), path('data_live_tem', views.live_tem, name='data_live_tem'), ]
pennng/Django-gentella
app/urls.py
urls.py
py
752
python
en
code
0
github-code
6
72532296829
# pylint:disable=unused-argument # pylint:disable=redefined-outer-name from contextlib import contextmanager from typing import Any, AsyncIterable, Callable, Iterator from unittest.mock import AsyncMock import pytest from faker import Faker from fastapi import FastAPI, status from httpx import HTTPError, Response from models_library.sidecar_volumes import VolumeCategory, VolumeStatus from pydantic import AnyHttpUrl, parse_obj_as from pytest import LogCaptureFixture, MonkeyPatch from pytest_mock import MockerFixture from pytest_simcore.helpers.typing_env import EnvVarsDict from simcore_service_director_v2.core.settings import AppSettings from simcore_service_director_v2.modules.dynamic_sidecar.api_client._errors import ( ClientHttpError, UnexpectedStatusError, ) from simcore_service_director_v2.modules.dynamic_sidecar.api_client._public import ( SidecarsClient, get_sidecars_client, ) from simcore_service_director_v2.modules.dynamic_sidecar.api_client._public import ( setup as api_client_setup, ) from simcore_service_director_v2.modules.dynamic_sidecar.api_client._public import ( shutdown, ) from simcore_service_director_v2.modules.dynamic_sidecar.errors import ( EntrypointContainerNotFoundError, ) @pytest.fixture def dynamic_sidecar_endpoint() -> AnyHttpUrl: return parse_obj_as(AnyHttpUrl, "http://missing-host:1111") @pytest.fixture def mock_env(monkeypatch: MonkeyPatch, mock_env: EnvVarsDict) -> None: monkeypatch.setenv("S3_ACCESS_KEY", "") monkeypatch.setenv("S3_SECRET_KEY", "") monkeypatch.setenv("S3_BUCKET_NAME", "") monkeypatch.setenv("R_CLONE_PROVIDER", "MINIO") monkeypatch.setenv("POSTGRES_HOST", "") monkeypatch.setenv("POSTGRES_USER", "") monkeypatch.setenv("POSTGRES_PASSWORD", "") monkeypatch.setenv("POSTGRES_DB", "") # reduce number of retries to make more reliable monkeypatch.setenv("DYNAMIC_SIDECAR_CLIENT_REQUEST_TIMEOUT_S", "3") monkeypatch.setenv("S3_ENDPOINT", "") @pytest.fixture async def sidecars_client( mock_env: EnvVarsDict, faker: Faker ) -> AsyncIterable[SidecarsClient]: app = FastAPI() app.state.settings = AppSettings.create_from_envs() # WARNING: pytest gets confused with 'setup', use instead alias 'api_client_setup' await api_client_setup(app) yield get_sidecars_client(app, faker.uuid4()) await shutdown(app) @pytest.fixture def request_timeout() -> int: # below refer to exponential wait step duration return 1 + 2 @pytest.fixture def raise_request_timeout( monkeypatch: MonkeyPatch, request_timeout: int, mock_env: EnvVarsDict ) -> None: monkeypatch.setenv("DYNAMIC_SIDECAR_CLIENT_REQUEST_TIMEOUT_S", f"{request_timeout}") @pytest.fixture def get_patched_client( sidecars_client: SidecarsClient, mocker: MockerFixture ) -> Callable: @contextmanager def wrapper( method: str, return_value: Any | None = None, side_effect: Callable | None = None, ) -> Iterator[SidecarsClient]: mocker.patch( f"simcore_service_director_v2.modules.dynamic_sidecar.api_client._thin.ThinSidecarsClient.{method}", return_value=return_value, side_effect=side_effect, ) yield sidecars_client return wrapper @pytest.mark.parametrize("is_healthy", [True, False]) @pytest.mark.parametrize("with_retry", [True, False]) async def test_is_healthy( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, is_healthy: bool, with_retry: bool, ) -> None: mock_json = {"is_healthy": is_healthy} with get_patched_client( "get_health" if with_retry else "get_health_no_retry", return_value=Response(status_code=status.HTTP_200_OK, json=mock_json), ) as client: assert ( await client.is_healthy(dynamic_sidecar_endpoint, with_retry=with_retry) == is_healthy ) async def test_is_healthy_times_out( raise_request_timeout: None, sidecars_client: SidecarsClient, dynamic_sidecar_endpoint: AnyHttpUrl, caplog_info_level: LogCaptureFixture, ) -> None: assert await sidecars_client.is_healthy(dynamic_sidecar_endpoint) is False # check if the right amount of messages was captured by the logs unexpected_counter = 1 for log_message in caplog_info_level.messages: if log_message.startswith("Retrying"): assert "as it raised" in log_message continue assert log_message.startswith(f"Request timed-out after {unexpected_counter}") unexpected_counter += 1 @pytest.mark.parametrize( "side_effect", [ pytest.param( UnexpectedStatusError( Response( status_code=status.HTTP_400_BAD_REQUEST, content="some mocked error", request=AsyncMock(), ), status.HTTP_200_OK, ), id="UnexpectedStatusError", ), pytest.param( ClientHttpError(HTTPError("another mocked error")), id="HTTPError" ), ], ) async def test_is_healthy_api_error( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, side_effect: Exception, ) -> None: with get_patched_client( "get_health", side_effect=side_effect, ) as client: assert await client.is_healthy(dynamic_sidecar_endpoint) == False async def test_containers_inspect( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl ) -> None: mock_json = {"ok": "data"} with get_patched_client( "get_containers", return_value=Response(status_code=status.HTTP_200_OK, json=mock_json), ) as client: assert await client.containers_inspect(dynamic_sidecar_endpoint) == mock_json async def test_containers_docker_status_api_ok( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl ) -> None: mock_json = {"container_id": {"ok": "data"}} with get_patched_client( "get_containers", return_value=Response(status_code=status.HTTP_200_OK, json=mock_json), ) as client: assert ( await client.containers_docker_status(dynamic_sidecar_endpoint) == mock_json ) async def test_containers_docker_status_api_error( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl ) -> None: with get_patched_client( "get_containers", side_effect=UnexpectedStatusError( Response( status_code=status.HTTP_400_BAD_REQUEST, content="some mocked error", request=AsyncMock(), ), status.HTTP_200_OK, ), ) as client: assert await client.containers_docker_status(dynamic_sidecar_endpoint) == {} async def test_disable_service_ports_io( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl ) -> None: with get_patched_client( "patch_containers_ports_io", return_value=Response(status_code=status.HTTP_204_NO_CONTENT), ) as client: assert await client.disable_service_ports_io(dynamic_sidecar_endpoint) is None async def test_enable_service_ports_io( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl ) -> None: with get_patched_client( "patch_containers_ports_io", return_value=Response(status_code=status.HTTP_204_NO_CONTENT), ) as client: assert await client.enable_service_ports_io(dynamic_sidecar_endpoint) is None @pytest.mark.parametrize("outputs_labels", [{}, {"ok": "data"}]) async def test_service_outputs_create_dirs( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, outputs_labels: dict[str, Any], ) -> None: with get_patched_client( "post_containers_ports_outputs_dirs", return_value=Response(status_code=status.HTTP_204_NO_CONTENT), ) as client: assert ( await client.service_outputs_create_dirs( dynamic_sidecar_endpoint, outputs_labels ) is None ) @pytest.mark.parametrize("dynamic_sidecar_network_name", ["a_test_network"]) async def test_get_entrypoint_container_name_ok( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, dynamic_sidecar_network_name: str, ) -> None: with get_patched_client( "get_containers_name", return_value=Response(status_code=status.HTTP_200_OK, json="a_test_container"), ) as client: assert ( await client.get_entrypoint_container_name( dynamic_sidecar_endpoint, dynamic_sidecar_network_name ) == "a_test_container" ) @pytest.mark.parametrize("dynamic_sidecar_network_name", ["a_test_network"]) async def test_get_entrypoint_container_name_api_not_found( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, dynamic_sidecar_network_name: str, ) -> None: with get_patched_client( "get_containers_name", side_effect=UnexpectedStatusError( Response(status_code=status.HTTP_404_NOT_FOUND, request=AsyncMock()), status.HTTP_204_NO_CONTENT, ), ) as client: with pytest.raises(EntrypointContainerNotFoundError): await client.get_entrypoint_container_name( dynamic_sidecar_endpoint, dynamic_sidecar_network_name ) @pytest.mark.parametrize("network_aliases", [[], ["an-alias"], ["alias-1", "alias-2"]]) async def test_attach_container_to_network( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, network_aliases: list[str], ) -> None: with get_patched_client( "post_containers_networks_attach", return_value=Response(status_code=status.HTTP_204_NO_CONTENT), ) as client: assert ( # pylint:disable=protected-access await client._attach_container_to_network( dynamic_sidecar_endpoint, container_id="container_id", network_id="network_id", network_aliases=network_aliases, ) is None ) async def test_detach_container_from_network( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, ) -> None: with get_patched_client( "post_containers_networks_detach", return_value=Response(status_code=status.HTTP_204_NO_CONTENT), ) as client: assert ( # pylint:disable=protected-access await client._detach_container_from_network( dynamic_sidecar_endpoint, container_id="container_id", network_id="network_id", ) is None ) @pytest.mark.parametrize("volume_category", VolumeCategory) @pytest.mark.parametrize("volume_status", VolumeStatus) async def test_update_volume_state( get_patched_client: Callable, dynamic_sidecar_endpoint: AnyHttpUrl, volume_category: VolumeCategory, volume_status: VolumeStatus, ) -> None: with get_patched_client( "put_volumes", return_value=Response(status_code=status.HTTP_204_NO_CONTENT), ) as client: assert ( await client.update_volume_state( dynamic_sidecar_endpoint, volume_category=volume_category, volume_status=volume_status, ) is None )
ITISFoundation/osparc-simcore
services/director-v2/tests/unit/test_modules_dynamic_sidecar_client_api_public.py
test_modules_dynamic_sidecar_client_api_public.py
py
11,510
python
en
code
35
github-code
6
41163745392
import os.path from compiler import compile_file from interpreter import VirtualMachine import sys if __name__ == '__main__': if len(sys.argv) < 2: raise RuntimeError("Not enough argument to start the compiler") else: if sys.argv[1] == "--version": print("0.2.0-dev") else: compiled = compile_file(sys.argv[1]) vm = VirtualMachine() vm.load_bytecode(compiled, path=os.path.abspath(sys.argv[1])) vm.init_eval_loop()
blitpxl/soil
soil/soil.py
soil.py
py
509
python
en
code
1
github-code
6
73500508668
import argparse import copy import csv import os import warnings import numpy import torch import tqdm import yaml from torch.utils import data from nets import nn from utils import util from utils.dataset import Dataset warnings.filterwarnings("ignore") def learning_rate(args, params): def fn(x): return (1 - x / args.epochs) * (1.0 - params['lrf']) + params['lrf'] return fn def train(args, params): # Model model = nn.yolo_v5_n(len(params['names'].values())).cuda() # Model attributes params['box'] *= 3 / model.head.nl params['obj'] *= (args.input_size / 640) ** 2 * 3 / model.head.nl params['cls'] *= len(params['names'].values()) / 80 * 3 / model.head.nl # Optimizer accumulate = max(round(64 / (args.batch_size * args.world_size)), 1) params['weight_decay'] *= args.batch_size * args.world_size * accumulate / 64 p = [], [], [] for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, torch.nn.Parameter): p[2].append(v.bias) if isinstance(v, torch.nn.BatchNorm2d): p[1].append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, torch.nn.Parameter): p[0].append(v.weight) optimizer = torch.optim.SGD(p[2], params['lr0'], params['momentum'], nesterov=True) optimizer.add_param_group({'params': p[0], 'weight_decay': params['weight_decay']}) optimizer.add_param_group({'params': p[1]}) del p # Scheduler lr = learning_rate(args, params) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr, last_epoch=-1) # EMA ema = util.EMA(model) if args.local_rank == 0 else None filenames = [] with open('../Dataset/COCO/train2017.txt') as reader: for filename in reader.readlines(): filename = filename.rstrip().split('/')[-1] filenames.append('../Dataset/COCO/images/train2017/' + filename) dataset = Dataset(filenames, args.input_size, params, True) if args.world_size <= 1: sampler = None else: sampler = data.distributed.DistributedSampler(dataset) loader = data.DataLoader(dataset, args.batch_size, sampler is None, sampler, num_workers=8, pin_memory=True, collate_fn=Dataset.collate_fn) util.check_anchors(dataset, model, args, params) model.half().float() # pre-reduce anchor precision if args.world_size > 1: # DDP mode model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model = torch.nn.parallel.DistributedDataParallel(module=model, device_ids=[args.local_rank], output_device=args.local_rank) # Start training best = 0 num_batch = len(loader) amp_scale = torch.cuda.amp.GradScaler() criterion = util.ComputeLoss(model, params) num_warmup = max(round(params['warmup_epochs'] * num_batch), 100) with open('weights/step.csv', 'w') as f: if args.local_rank == 0: writer = csv.DictWriter(f, fieldnames=['epoch', 'mAP@50', 'mAP']) writer.writeheader() for epoch in range(args.epochs): model.train() m_loss = util.AverageMeter() if args.world_size > 1: sampler.set_epoch(epoch) p_bar = enumerate(loader) if args.local_rank == 0: print(('\n' + '%10s' * 3) % ('epoch', 'memory', 'loss')) if args.local_rank == 0: p_bar = tqdm.tqdm(p_bar, total=num_batch) # progress bar optimizer.zero_grad() for i, (samples, targets, _) in p_bar: x = i + num_batch * epoch # number of iterations samples = samples.cuda().float() / 255 targets = targets.cuda() # Warmup if x <= num_warmup: xp = [0, num_warmup] fp = [1, 64 / (args.batch_size * args.world_size)] accumulate = max(1, numpy.interp(x, xp, fp).round()) for j, y in enumerate(optimizer.param_groups): if j == 0: fp = [params['warmup_bias_lr'], y['initial_lr'] * lr(epoch)] else: fp = [0.0, y['initial_lr'] * lr(epoch)] y['lr'] = numpy.interp(x, xp, fp) if 'momentum' in y: fp = [params['warmup_momentum'], params['momentum']] y['momentum'] = numpy.interp(x, xp, fp) # Forward with torch.cuda.amp.autocast(): outputs = model(samples) # forward loss = criterion(outputs, targets) m_loss.update(loss.item(), samples.size(0)) loss *= args.batch_size # loss scaled by batch_size loss *= args.world_size # gradient averaged between devices in DDP mode # Backward amp_scale.scale(loss).backward() # Optimize if x % accumulate == 0: amp_scale.step(optimizer) # optimizer.step amp_scale.update() optimizer.zero_grad() if ema: ema.update(model) # Log if args.local_rank == 0: memory = f'{torch.cuda.memory_reserved() / 1E9:.3g}G' # (GB) s = ('%10s' * 2 + '%10.4g') % (f'{epoch + 1}/{args.epochs}', memory, m_loss.avg) p_bar.set_description(s) # Scheduler scheduler.step() if args.local_rank == 0: # mAP last = test(args, params, ema.ema) writer.writerow({'mAP': str(f'{last[1]:.3f}'), 'epoch': str(epoch + 1).zfill(3), 'mAP@50': str(f'{last[0]:.3f}')}) f.flush() # Update best mAP if last[1] > best: best = last[1] # Save model ckpt = {'model': copy.deepcopy(ema.ema).half()} # Save last, best and delete torch.save(ckpt, './weights/last.pt') if best == last[1]: torch.save(ckpt, './weights/best.pt') del ckpt if args.local_rank == 0: util.strip_optimizer('./weights/best.pt') # strip optimizers util.strip_optimizer('./weights/last.pt') # strip optimizers torch.cuda.empty_cache() @torch.no_grad() def test(args, params, model=None): filenames = [] with open('../Dataset/COCO/val2017.txt') as reader: for filename in reader.readlines(): filename = filename.rstrip().split('/')[-1] filenames.append('../Dataset/COCO/images/val2017/' + filename) dataset = Dataset(filenames, args.input_size, params, False) loader = data.DataLoader(dataset, 4, False, num_workers=4, pin_memory=True, collate_fn=Dataset.collate_fn) if model is None: model = torch.load('./weights/best.pt', map_location='cuda')['model'] model.half() # Configure model.eval() iou_v = torch.linspace(0.5, 0.95, 10).cuda() # iou vector for [email protected]:0.95 n_iou = iou_v.numel() m_pre = 0. m_rec = 0. map50 = 0. mean_ap = 0. metrics = [] p_bar = tqdm.tqdm(loader, desc=('%10s' * 3) % ('precision', 'recall', 'mAP')) for samples, targets, shapes in p_bar: samples = samples.cuda() targets = targets.cuda() samples = samples.half() # uint8 to fp16/32 samples = samples / 255.0 # 0 - 255 to 0.0 - 1.0 _, _, h, w = samples.shape # batch size, channels, height, width # Inference outputs = model(samples) # NMS targets[:, 2:] *= torch.tensor((w, h, w, h)).cuda() # to pixels outputs = util.non_max_suppression(outputs, 0.001, 0.6) # Metrics for i, output in enumerate(outputs): labels = targets[targets[:, 0] == i, 1:] correct = torch.zeros(output.shape[0], n_iou, dtype=torch.bool).cuda() if output.shape[0] == 0: if labels.shape[0]: metrics.append((correct, *torch.zeros((3, 0)).cuda())) continue detections = output.clone() util.scale(detections[:, :4], samples[i].shape[1:], shapes[i][0], shapes[i][1]) # Evaluate if labels.shape[0]: tbox = labels[:, 1:5].clone() # target boxes tbox[:, 0] = labels[:, 1] - labels[:, 3] / 2 # top left x tbox[:, 1] = labels[:, 2] - labels[:, 4] / 2 # top left y tbox[:, 2] = labels[:, 1] + labels[:, 3] / 2 # bottom right x tbox[:, 3] = labels[:, 2] + labels[:, 4] / 2 # bottom right y util.scale(tbox, samples[i].shape[1:], shapes[i][0], shapes[i][1]) correct = numpy.zeros((detections.shape[0], iou_v.shape[0])) correct = correct.astype(bool) t_tensor = torch.cat((labels[:, 0:1], tbox), 1) iou = util.box_iou(t_tensor[:, 1:], detections[:, :4]) correct_class = t_tensor[:, 0:1] == detections[:, 5] for j in range(len(iou_v)): x = torch.where((iou >= iou_v[j]) & correct_class) if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1) matches = matches.cpu().numpy() if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[numpy.unique(matches[:, 1], return_index=True)[1]] matches = matches[numpy.unique(matches[:, 0], return_index=True)[1]] correct[matches[:, 1].astype(int), j] = True correct = torch.tensor(correct, dtype=torch.bool, device=iou_v.device) metrics.append((correct, output[:, 4], output[:, 5], labels[:, 0])) # Compute metrics metrics = [torch.cat(x, 0).cpu().numpy() for x in zip(*metrics)] # to numpy if len(metrics) and metrics[0].any(): tp, fp, m_pre, m_rec, map50, mean_ap = util.compute_ap(*metrics) # Print results print('%10.3g' * 3 % (m_pre, m_rec, mean_ap)) # Return results model.float() # for training return map50, mean_ap @torch.no_grad() def demo(args): import cv2 # Load model model = torch.load('./weights/best.pt', map_location='cuda')['model'].float() model.half() model.eval() camera = cv2.VideoCapture(0) # Check if camera opened successfully if not camera.isOpened(): print("Error opening video stream or file") # Read until video is completed while camera.isOpened(): # Capture frame-by-frame success, frame = camera.read() if success: image = frame.copy() shape = image.shape[:2] r = args.input_size / max(shape[0], shape[1]) if r != 1: resample = cv2.INTER_LINEAR if r > 1 else cv2.INTER_AREA image = cv2.resize(image, dsize=(int(shape[1] * r), int(shape[0] * r)), interpolation=resample) height, width = image.shape[:2] # Scale ratio (new / old) r = min(1.0, args.input_size / height, args.input_size / width) # Compute padding pad = int(round(width * r)), int(round(height * r)) w = (args.input_size - pad[0]) / 2 h = (args.input_size - pad[1]) / 2 if (width, height) != pad: # resize image = cv2.resize(image, pad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(h - 0.1)), int(round(h + 0.1)) left, right = int(round(w - 0.1)), int(round(w + 0.1)) image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT) # add border # Convert HWC to CHW, BGR to RGB x = image.transpose((2, 0, 1))[::-1] x = numpy.ascontiguousarray(x) x = torch.from_numpy(x) x = x.unsqueeze(dim=0) x = x.cuda() x = x.half() x = x / 255 # Inference outputs = model(x) # NMS outputs = util.non_max_suppression(outputs, 0.25, 0.7) for output in outputs: output[:, [0, 2]] -= w # x padding output[:, [1, 3]] -= h # y padding output[:, :4] /= min(height / shape[0], width / shape[1]) output[:, 0].clamp_(0, shape[1]) # x1 output[:, 1].clamp_(0, shape[0]) # y1 output[:, 2].clamp_(0, shape[1]) # x2 output[:, 3].clamp_(0, shape[0]) # y2 for box in output: box = box.cpu().numpy() x1, y1, x2, y2, score, index = box cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) cv2.imshow('Frame', frame) # Press Q on keyboard to exit if cv2.waitKey(25) & 0xFF == ord('q'): break # Break the loop else: break # When everything done, release the video capture object camera.release() # Closes all the frames cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser() parser.add_argument('--input-size', default=640, type=int) parser.add_argument('--batch-size', default=32, type=int) parser.add_argument('--local_rank', default=0, type=int) parser.add_argument('--epochs', default=600, type=int) parser.add_argument('--train', action='store_true') parser.add_argument('--test', action='store_true') parser.add_argument('--demo', action='store_true') args = parser.parse_args() args.local_rank = int(os.getenv('LOCAL_RANK', 0)) args.world_size = int(os.getenv('WORLD_SIZE', 1)) if args.world_size > 1: torch.cuda.set_device(device=args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') if args.local_rank == 0: if not os.path.exists('weights'): os.makedirs('weights') util.setup_seed() util.setup_multi_processes() with open(os.path.join('utils', 'args.yaml'), errors='ignore') as f: params = yaml.safe_load(f) if args.train: train(args, params) if args.test: test(args, params) if args.demo: demo(args) if __name__ == "__main__": main()
jahongir7174/YOLOv5-pt
main.py
main.py
py
14,941
python
en
code
4
github-code
6
36464449846
#!/usr/bin/env python """ Usage: python detectface.py -i image.jpg """ from argparse import ArgumentParser import boto3 from pprint import pprint import sys def get_client(endpoint): client = boto3.client('rekognition') return client def get_args(): parser = ArgumentParser(description='Detect faces') parser.add_argument('-e', '--endpoint') parser.add_argument('-i', '--image') return parser.parse_args() if __name__ == '__main__': args = get_args() if (args.image is None): print(''' Usage: python detectface.py --help ''') sys.exit(-1) client = get_client(args.endpoint) with open(args.image, 'rb') as image: response = client.detect_faces(Image={'Bytes': image.read()},Attributes=['ALL']) pprint(response)
wwwins/aws-utils
detectface.py
detectface.py
py
830
python
en
code
0
github-code
6
6849069742
#三方库 xlrd /xlwt / xlutils import xlrd import xlwt import xlutils wb = xlrd.open_workbook('table/阿里巴巴2020年股票数据.xls') #获取所有工作表的名字 # print(wb.sheet_names()) # sheet1 = wb.sheet_names('表格1') #通过工作表名获取 sheet = wb.sheet_by_index(0) #通过工作表的下标ID获取工作表 #获取工作表的行数,列数 # print(sheet.nrows,sheet.ncols) #获取单元格数据 第一行的第一列 for i in range(sheet.nrows): for j in range(sheet.ncols): value1 = sheet.cell(i,j).value if i >0 : print(f"{value1:.2f}", end='\t') else: print(value1, end=' \t') print() # print(sheet.row(i)[j].value , end=' ')
twlaladelala/pytest
办公自动化.py
办公自动化.py
py
732
python
zh
code
0
github-code
6
20289463636
import math def isLeapYear(x): if (x % 4 != 0): return False elif (x % 100 != 0): return True elif (x % 400 != 0): return False else: return True try: y = int(input("Enter number to test: ")) if (y < 0): raise ValueError() except ValueError: print("Input is not an positive integer.") else: if (isLeapYear(y)): print("{} is a leap year.".format(y)) else: print("{} is not a leap year.".format(y)) finally: input("Press ENTER to exit")
steffebr/cs362HW3
leapyearV2.py
leapyearV2.py
py
461
python
en
code
0
github-code
6
72592324348
import configparser import os from core.constants import CONFIG_FILE_PATH __all__ = [ 'BotConfigurator' ] class BotConfigurator(object): """ Объект-конфигуратор приложения. """ def __new__(cls, *args, **kwargs): if not hasattr(cls, 'instance'): cls.instance = super(BotConfigurator, cls).__new__(cls) return cls.instance def __init__(self): config_path = os.path.join(CONFIG_FILE_PATH) if os.path.isfile(config_path): self._app_config = configparser.ConfigParser() self._app_config.read(config_path) else: self._app_config = { 'telegram': { 'token': os.environ['TELEGRAM_TOKEN'], 'proxy_url': os.environ.get('PROXY_URL', None) }, 'dialog_flow': { 'token': os.environ['DIALOG_FLOW_TOKEN'], 'lang': os.environ['DIALOG_FLOW_LANG'], 'session_id': os.environ['DIALOG_FLOW_SESSION_ID'] } } @property def app_config(self): return self._app_config
balandin-nick/smart-telegram-bot
core/configurator.py
configurator.py
py
1,174
python
en
code
0
github-code
6
31622032831
import os from flask import Flask, flash, request, redirect, url_for, send_from_directory, jsonify from werkzeug.utils import secure_filename from excel import Excel from translator import Translator UPLOAD_FOLDER = './text_files' DOWNLOAD_FOLDER = './excel_files' ALLOWED_EXTENSIONS = {'txt'} app = Flask(__name__, static_folder='./client/build', static_url_path='/') app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['DOWNLOAD_FOLDER'] = DOWNLOAD_FOLDER app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY') def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/api/', methods=["POST"]) def create_terminology(): if 'file' not in request.files: code = 400 msg = "file not in request" return code, msg file = request.files['file'] if file.filename == '': code = 400 msg = "file name empty" return code, msg if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) text = open(os.path.join( app.config['UPLOAD_FOLDER'], filename), 'r').read() if len(text) == 0: code = 400 msg = "File is empty, please provide a valid '.txt' file." return code, msg else: translator = Translator(text) translator.detect_source_language(" ".join(text.split(" ")[:5])) translator.set_stop_words() tokenized_text = translator.tokenize_text() words = translator.parse_words_alpha(tokenized_text) terms = translator.translate(words) source_language, target_language = translator.get_source_and_target() terminology_excel = Excel(os.path.splitext(filename)[0]) terminology_excel.write_worksheet( terms, source_language, target_language) terminology_excel.close_workbook() response = send_from_directory( app.config['DOWNLOAD_FOLDER'], f'{os.path.splitext(filename)[0]}.xlsx', as_attachment=True) os.remove(os.path.join(app.config['UPLOAD_FOLDER'], filename)) os.remove(os.path.join( app.config['DOWNLOAD_FOLDER'], f'{os.path.splitext(filename)[0]}.xlsx')) return response if __name__ == "__main__": app.run(host="0.0.0.0", port=int(os.environ.get('PORT', 5000)))
atakanzen/terminolator.web
app.py
app.py
py
2,579
python
en
code
2
github-code
6
19880677789
# cython:language_level=3 import numpy as np from scipy import optimize import matplotlib.pyplot as plt deltas = 2000 a = 215 r = 290 def fx(n): global deltas, a, r x1 = a+n x2 = a-n return deltas - (area(x2, r) - area(x1, r)) def fx1(n): a = 215 r = 290 x1 = a+n x2 = a-n return (area(x2, r) - area(x1, r)) def area(x,r): S = (r**2)*np.arccos(x/r) - x*np.sqrt(r**2 - x**2) return S # x = [x * 2.77 for x in range(11)] # x1 = [x * 0.02 for x in range(0, 11)] # y = [] # for i in range(11): # a = x[i] # y.append(fx1(a)+4909) # # print(y) # # plt.plot(x1,y) # plt.xlabel('offset_pixel') # plt.ylabel('pixel_different') # x_ticks = np.arange(0,0.23,0.02) # plt.xticks(x_ticks) # plt.show() # plt.savefig('plot_fig.jpg') # print(fx1(2.56)) # print(area(0, 290)) # print(fx(0)) def main(x1, x2, x3): global deltas, a, r deltas = x1 a = x2 r = x3 root = optimize.bisect(fx, 0, 30) print(root) root = root * 0.0024 # # print(root)
rzyfrank/Internship
cal_deltaArea.py
cal_deltaArea.py
py
1,006
python
en
code
0
github-code
6
23515104620
T = int(input()) RS_list = [] for _ in range(T): R, S = input().split() temp = [i*int(R) for i in list(S)] RS_list.append(''.join(temp)) for i in RS_list: print(i)
Soohee410/Algorithm-in-Python
BOJ/Bronze/2675.py
2675.py
py
182
python
en
code
6
github-code
6
7796423185
# ############################################################################ # # This is part of the PPLT project. # # # # Copyright (C) 2003-2006 Hannes Matuschek <[email protected]> # # # # This library is free software; you can redistribute it and/or # # modify it under the terms of the GNU Lesser General Public # # License as published by the Free Software Foundation; either # # version 2.1 of the License, or (at your option) any later version. # # # # This library is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # # Lesser General Public License for more details. # # # # You should have received a copy of the GNU Lesser General Public # # License along with this library; if not, write to the Free Software # # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # ############################################################################ # import S7Register; import S7Message; import pyDCPU; import struct; class Object(pyDCPU.MasterObject): def setup(self): self.Logger.info("Setup Simatic-S7"); return(True); def connect(self,AddrStr): RegAddr = S7Register.S7Register(AddrStr); self.Logger.debug("MkConnect for %s(%s)"%(AddrStr, str(RegAddr))); if not RegAddr: raise pyDCPU.ModuleError("Can't split Address \"%s\", my wrong format or not supported address range."%AddrStr); #map s7-types to pplt-type-names: if RegAddr.GetType() in (S7Register.S7Bit,): Type = pyDCPU.TBool; elif RegAddr.GetType() in (S7Register.S7Byte, S7Register.S7Word, S7Register.S7DWord): Type = pyDCPU.TInteger; Connection = pyDCPU.ValueConnection(self, Type, RegAddr); return(Connection); def write(self, Connection, Value): if Value == None: raise pyDCPU.ModuleError("No value given to write!"); Data = Value2Raw(Value, Connection.Address.GetType()); # convert Value to raw byte-data DataSet = S7Message.S7DataSet(Data, Connection.Address); # assamble dataset CommSet = S7Message.S7CommandSet(S7Message.S7FunctionWrite, Connection.Address); # assamble command set Message = S7Message.S7Message(CommSet, DataSet); # assamble message self.Logger.debug("Will send a %i byte message."%len(Message.GetString())); self.Connection.flush() # write cmd-message: self.Connection.write(Message.GetString()); # read response: MsgString = self.Connection.read_seq(); Message = S7Message.S7Message(MsgString = MsgString); CommSet = Message.GetCommandSet(); DataSet = Message.GetDataSet(); if DataSet.GetErrCode() == 0xff: return(True); # 0xff means: all ok. self.Logger.error("S7 returned error code: %x"%ord(DataSet.GetErrCode())); raise pyDCPU.ModuleError("S7 returned error code: %x"%ord(DataSet.GetErrCode())); def read(self, Connection, Len=None): self.Logger.debug("Read... Function %s, Addr: %s"%(str(S7Message.S7FunctionRead),str(Connection.Address))); CommSet = S7Message.S7CommandSet(S7Message.S7FunctionRead, Connection.Address); Message = S7Message.S7Message(CommSet); self.Connection.flush(); ret = self.Connection.write(Message.GetString()); MsgString = self.Connection.read_seq(); Message = S7Message.S7Message(MsgString = MsgString); CommSet = Message.GetCommandSet(); DataSet = Message.GetDataSet(); if DataSet.GetErrCode() == 0xff: return Raw2Value(DataSet.GetDataString(), Connection.Address.GetType()); self.Logger.error("S7 returned error-code: %x"%ord(DataSetGetErrorCode())); raise pyDCPU.ModuleError("S7 returned error-code: %x"%ord(DataSetGetErrorCode())); def Raw2Value(Data, Type): if Type == S7Register.S7Bit: (value,) = struct.unpack("B",Data); elif Type == S7Register.S7Byte: (value,) = struct.unpack("B",Data); elif Type == S7Register.S7Word: (value,) = struct.unpack("H",Data); elif Type == S7Register.S7DWord: (value,) = struct.unpack("I",Data); return value; def Value2Raw(Value, Type): if Type == S7Register.S7Bit: return struct.pack("B", int(Value)); elif Type == S7Register.S7Byte: return struct.pack("B", int(Value)); elif Type == S7Register.S7Word: return struct.pack("H", int(Value)); elif Type == S7Register.S7DWord: return struct.pack("I", int(Value));
BackupTheBerlios/pplt-svn
PPLT/Modules/Core/Master/Device/S7/SimaticS7.py
SimaticS7.py
py
5,265
python
en
code
0
github-code
6
13864700033
#!/usr/bin/python3.5 # -*-coding:Utf-8 -* import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_moons from sklearn.decomposition import PCA from matplotlib.ticker import FormatStrFormatter from RBFKernelPCA import RBF_Kernel_PCA # We create a dataset of two half moons and project them on 1 dimensional space values, classes = make_moons(n_samples = 100, random_state = 123) kernel_pca_values, lambdas = RBF_Kernel_PCA(values, gamma = 15, n_components = 1) # We consider that the 26th point is a new point to project new_value = values[25] print('New value: {}'.format(new_value)) original_projected_value = kernel_pca_values[25] print('Original projection: {}'.format(original_projected_value)) # We define a projection function for new values def project_value(new_value, values, gamma, kernel_pca_values, lambdas): pairwise_distances = np.array([np.sum((new_value - row)**2) for row in values]) kernel = np.exp(-gamma * pairwise_distances) return kernel.dot(kernel_pca_values / lambdas) # We use the projection to recalculate the projection of the 26th point new_projected_value = project_value(new_value, values, 15, kernel_pca_values, lambdas) print('New projection: {}'.format(new_projected_value)) # Now we visualize the projection on the first principal components plt.scatter(kernel_pca_values[classes == 0, 0], np.zeros((50)), color = 'red', marker = '^',alpha = 0.5) plt.scatter(kernel_pca_values[classes == 1, 0], np.zeros((50)), color = 'blue', marker = 'o', alpha = 0.5) plt.scatter(original_projected_value, 0, color = 'black', label = 'original projection of point X[25]', marker = '^', s = 100) plt.scatter(new_projected_value, 0, color = 'green', label = 'remapped point X[25]', marker = 'x', s = 500) plt.legend(scatterpoints = 1) plt.show()
PiggyGenius/MachineLearning
NoLibraries/RBFKernelPCA/ProjectNewDataPoints.py
ProjectNewDataPoints.py
py
1,809
python
en
code
0
github-code
6