seq_id
stringlengths 7
11
| text
stringlengths 156
1.7M
| repo_name
stringlengths 7
125
| sub_path
stringlengths 4
132
| file_name
stringlengths 4
77
| file_ext
stringclasses 6
values | file_size_in_byte
int64 156
1.7M
| program_lang
stringclasses 1
value | lang
stringclasses 38
values | doc_type
stringclasses 1
value | stars
int64 0
24.2k
⌀ | dataset
stringclasses 1
value | pt
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7161765994
|
from typing import List
class Solution:
def calculate(self, nums, k, max_len, s, nums_len):
if nums[s:] == []:
print("max_len=",max_len)
return max_len
else:
i = 0
temp = k
ans = []
temp_nums = nums[s:]
print("nums=", temp_nums)
while i != len(temp_nums):
if temp == 0 and temp_nums[i] == 0:
break
else:
print("*=", temp_nums[i])
if temp_nums[i] == 1:
ans.append(temp_nums[i])
elif temp_nums[i] == 0:
temp = temp - 1
ans.append(1)
i += 1
print("###########################")
max_len = max(max_len, len(ans))
print("max=",max_len)
s = s + 1
print("s=",s)
self.calculate(nums, k, max_len, s, nums_len)
def longestOnes(self, nums: List[int], k: int) -> int:
max_len = 0
max_len = self.calculate(nums, k, max_len, 0, len(nums))
# print(max_len)
obj = Solution()
obj.longestOnes([1,1,1,0,0,0,1,1,1,1,0],2)
obj.longestOnes([0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1],3)
|
CompetitiveCodingLeetcode/LeetcodeEasy
|
JuneLeetcodeChallenge/MaxConsecutiveOnesIII.py
|
MaxConsecutiveOnesIII.py
|
py
| 1,280 |
python
|
en
|
code
| 0 |
github-code
|
6
|
22095502736
|
from django.urls import path
from user import views
urlpatterns = [
path('fun',views.fun),
path('fun1',views.fun1),
path('u',views.us, name='uuu'),
path('user',views.user, name='aaaa'),
]
|
anshifmhd/demo
|
user/urls.py
|
urls.py
|
py
| 205 |
python
|
en
|
code
| 0 |
github-code
|
6
|
37895365689
|
# Python Number Guessing Game
import random
game_over = False # To check if out of guesses.
guesses = 0 # Set value for guesses
def play_again():
"""Function to reset game"""
global game_over
if again == 'y':
game_over = False
def check_num():
"""Function to check if guess is correct, if not tell high or low."""
global guesses
global game_over
if current_guess > 100 or current_guess < 1:
print("You number is not in range.")
elif current_guess == secret_number:
print("You are correct!")
game_over = True
elif current_guess < secret_number:
print("That is too low.")
elif current_guess > secret_number:
print("That is too high.")
while not game_over:
# Pick random number between 1 - 100 for player to guess.
secret_number = random.randint(1, 100)
# Ask if easy or hard mode, set guesses hard = 5, easy = 10.
mode = input("Do you wish to play on Easy 'e' or Hard 'h' mode?: ")
if mode == "e":
guesses = 10
elif mode == "h":
guesses = 5
# Ask player to guess a number
current_guess = int(input("What number do you guess?: "))
while guesses > 0:
check_num()
guesses -= 1
if game_over:
again = input("Do you wish to play again?: ")
play_again()
break
# Tell number of remaining guesses and ask for new guess.
current_guess = int(input(f"You have {guesses} guesses remaining. Pick another number.: "))
|
agentc13/number-guessing-project
|
main.py
|
main.py
|
py
| 1,530 |
python
|
en
|
code
| 0 |
github-code
|
6
|
14565939884
|
# Input: s and t : strings
# Output: bool
# Input: s = "anagram", t = "nagaram"
# Output: true
# QED
def is_anagram(s: str, t: str) -> bool:
return sorted(s) == sorted(t)
# Input: s and t: str
# Output: true or false: bool
# We'll frequency count
# Loop through strings s and t, then store the chars
# and freqs for s in s_dict. do the same for t in the same loop
# Loop through one of the maps and check if the value at that key
# corresponds with the value at that key in the other map
# If there's a mismatch, return false early
# Once loop ends return true
def is_anagram_2(s: str, t: str) -> bool:
if len(s) != len(t):
return False
s_map = {}
t_map = {}
for idx in range(len(s)):
s_char = s[idx]
t_char = t[idx]
s_map[s_char] = s_map.get(s_char, 0) + 1
t_map[t_char] = t_map.get(t_char, 0) + 1
for k, v in s_map:
if v != t_map.get(k):
return False
return True
# Longest substring without repeating characters
# Given a string s, find the length of the longest substring without repeating characters.
# Sample input: "abcabcbb"
# Expected output: 3
# We need a count and a map to store characters
# Double loop through the string
# if we have not seen a character in our current iteration (if map value is 0)
# - increase the freq of the char in the map
# - update max
# - update max_count if it is longer
# else
# - add item to map
# - break inner loop
def length_of_longest_substring_naive(s: str) -> int:
max_count = 0
for start_idx in range(len(s)):
char_map = {}
curr_count = 0
for end_idx in range(start_idx, len(s)):
curr_char = s[end_idx]
curr_char_count = char_map.get(curr_char, 0)
if curr_char_count != 0:
break
else:
char_map[curr_char] = 1
curr_count = curr_count + 1
max_count = max(max_count, curr_count)
return max_count
# Loop through string with a dynamic sliding window
# If char exists in map
# - Move window start forward until no duplicates exist in the window
# - reduce the curr window count
# Else
# - Add the char to map
# - update the window count
# - update the max count
# Sample input: "abcabcbb"
# Expected output:3
def length_of_longest_substring_optimised(s: str) -> int:
window_start = 0
curr_count = 0
max_count = 0
s_map = {}
for window_end in range(len(s)):
curr_count = curr_count + 1
curr_char = s[window_end]
char_frequency = s_map.get(curr_char, 0) + 1
s_map[curr_char] = char_frequency
while char_frequency > 1:
char_frequency = char_frequency - 1
s_map[curr_char] = char_frequency
window_start = window_start + 1
curr_count = curr_count - 1
max_count = max(max_count, curr_count)
return max_count
|
HemlockBane/ds_and_algo
|
strings/study_questions.py
|
study_questions.py
|
py
| 2,921 |
python
|
en
|
code
| 0 |
github-code
|
6
|
29214262320
|
import os.path
import unittest
from pathlib import Path
from sflkit.analysis.analysis_type import AnalysisType
from sflkit.analysis.spectra import Spectrum
from sflkit.analysis.suggestion import Location
from tests4py import framework
from tests4py.constants import DEFAULT_WORK_DIR
from utils import BaseTest
class TestSFL(BaseTest):
@unittest.skip
def test_middle(self):
project_name = "middle"
bug_id = 2
report = framework.default.tests4py_checkout(project_name, bug_id)
if report.raised:
raise report.raised
src = Path(report.location)
dst = DEFAULT_WORK_DIR / "sfl"
report = framework.sfl.tests4py_sfl_instrument(src, dst)
if report.raised:
raise report.raised
dst_src = dst / "src"
dst_src_middle = dst_src / "middle"
dst_src_middle___init___py = dst_src_middle / "__init__.py"
dst_tests = dst / "tests"
dst_tests_test_middle_py = dst_tests / "test_middle.py"
dst_gitignore = dst / ".gitignore"
dst_license = dst / "LICENSE"
dst_readme_md = dst / "README.md"
dst_setup_cfg = dst / "setup.cfg"
dst_setup_py = dst / "setup.py"
src_src = src / "src"
src_src_middle = src_src / "middle"
src_src_middle___init___py = src_src_middle / "__init__.py"
src_tests = src / "tests"
src_tests_test_middle_py = src_tests / "test_middle.py"
src_gitignore = src / ".gitignore"
src_license = src / "LICENSE"
src_readme_md = src / "README.md"
src_setup_cfg = src / "setup.cfg"
src_setup_py = src / "setup.py"
exist_files = [
dst_src_middle___init___py,
dst_tests_test_middle_py,
dst_gitignore,
dst_license,
dst_readme_md,
dst_setup_cfg,
dst_setup_py,
]
exist_dirs = [dst_src, dst_src_middle, dst_tests]
for d in exist_dirs:
self.assertTrue(d.exists())
self.assertTrue(d.is_dir())
for f in exist_files:
self.assertTrue(f.exists())
self.assertTrue(f.is_file())
for d, s in [
(dst_tests_test_middle_py, src_tests_test_middle_py),
(dst_gitignore, src_gitignore),
(dst_license, src_license),
(dst_readme_md, src_readme_md),
(dst_setup_cfg, src_setup_cfg),
(dst_setup_py, src_setup_py),
]:
with open(d, "r") as fp:
d_content = fp.read()
with open(s, "r") as fp:
s_content = fp.read()
self.assertEqual(s_content, d_content, f"{d} has other content then {s}")
for d, s in [
(dst_src_middle___init___py, src_src_middle___init___py),
]:
with open(d, "r") as fp:
d_content = fp.read()
with open(s, "r") as fp:
s_content = fp.read()
self.assertNotEqual(
s_content, d_content, f"{d} has the same content then {s}"
)
report = framework.sfl.tests4py_sfl_events(dst)
if report.raised:
raise report.raised
report = framework.sfl.tests4py_sfl_analyze(dst, src, predicates="line")
if report.raised:
raise report.raised
suggestions = report.analyzer.get_sorted_suggestions(
base_dir=src,
type_=AnalysisType.LINE,
metric=Spectrum.Ochiai,
)
self.assertAlmostEqual(
0.7071067811865475, suggestions[0].suspiciousness, delta=0.0000001
)
self.assertEqual(1, len(suggestions[0].lines))
self.assertIn(
Location(os.path.join("src", "middle", "__init__.py"), 6),
suggestions[0].lines,
)
|
smythi93/Tests4Py
|
tests/test_sfl.py
|
test_sfl.py
|
py
| 3,851 |
python
|
en
|
code
| 8 |
github-code
|
6
|
22175885434
|
# Author:Zhang Yuan
from MyPackage import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import seaborn as sns
import statsmodels.api as sm
from scipy import stats
# ------------------------------------------------------------
__mypath__ = MyPath.MyClass_Path("") # 路径类
mylogging = MyDefault.MyClass_Default_Logging(activate=False) # 日志记录类,需要放在上面才行
myfile = MyFile.MyClass_File() # 文件操作类
myword = MyFile.MyClass_Word() # word生成类
myexcel = MyFile.MyClass_Excel() # excel生成类
myini = MyFile.MyClass_INI() # ini文件操作类
mytime = MyTime.MyClass_Time() # 时间类
myparallel = MyTools.MyClass_ParallelCal() # 并行运算类
myplt = MyPlot.MyClass_Plot() # 直接绘图类(单个图窗)
mypltpro = MyPlot.MyClass_PlotPro() # Plot高级图系列
myfig = MyPlot.MyClass_Figure(AddFigure=False) # 对象式绘图类(可多个图窗)
myfigpro = MyPlot.MyClass_FigurePro(AddFigure=False) # Figure高级图系列
myplthtml = MyPlot.MyClass_PlotHTML() # 画可以交互的html格式的图
mypltly = MyPlot.MyClass_Plotly() # plotly画图相关
mynp = MyArray.MyClass_NumPy() # 多维数组类(整合Numpy)
mypd = MyArray.MyClass_Pandas() # 矩阵数组类(整合Pandas)
mypdpro = MyArray.MyClass_PandasPro() # 高级矩阵数组类
myDA = MyDataAnalysis.MyClass_DataAnalysis() # 数据分析类
myDefault = MyDefault.MyClass_Default_Matplotlib() # 画图恢复默认设置类
# myMql = MyMql.MyClass_MqlBackups() # Mql备份类
# myBaidu = MyWebCrawler.MyClass_BaiduPan() # Baidu网盘交互类
# myImage = MyImage.MyClass_ImageProcess() # 图片处理类
myBT = MyBackTest.MyClass_BackTestEvent() # 事件驱动型回测类
myBTV = MyBackTest.MyClass_BackTestVector() # 向量型回测类
myML = MyMachineLearning.MyClass_MachineLearning() # 机器学习综合类
mySQL = MyDataBase.MyClass_MySQL(connect=False) # MySQL类
mySQLAPP = MyDataBase.MyClass_SQL_APPIntegration() # 数据库应用整合
myWebQD = MyWebCrawler.MyClass_QuotesDownload(tushare=False) # 金融行情下载类
myWebR = MyWebCrawler.MyClass_Requests() # Requests爬虫类
myWebS = MyWebCrawler.MyClass_Selenium(openChrome=False) # Selenium模拟浏览器类
myWebAPP = MyWebCrawler.MyClass_Web_APPIntegration() # 爬虫整合应用类
myEmail = MyWebCrawler.MyClass_Email() # 邮箱交互类
myReportA = MyQuant.MyClass_ReportAnalysis() # 研报分析类
myFactorD = MyQuant.MyClass_Factor_Detection() # 因子检测类
myKeras = MyDeepLearning.MyClass_tfKeras() # tfKeras综合类
myTensor = MyDeepLearning.MyClass_TensorFlow() # Tensorflow综合类
myMT5 = MyMql.MyClass_ConnectMT5(connect=False) # Python链接MetaTrader5客户端类
myMT5Pro = MyMql.MyClass_ConnectMT5Pro(connect=False) # Python链接MT5高级类
myMT5Indi = MyMql.MyClass_MT5Indicator() # MT5指标Python版
myMT5Report = MyMT5Report.MyClass_StratTestReport(AddFigure=False) # MT5策略报告类
myMT5Analy = MyMT5Analysis.MyClass_ForwardAnalysis() # MT5分析类
myMT5Lots_Fix = MyMql.MyClass_Lots_FixedLever(connect=False) # 固定杠杆仓位类
myMT5Lots_Dy = MyMql.MyClass_Lots_DyLever(connect=False) # 浮动杠杆仓位类
myMT5run = MyMql.MyClass_RunningMT5() # Python运行MT5
myMT5code = MyMql.MyClass_CodeMql5() # Python生成MT5代码
myMoneyM = MyTrade.MyClass_MoneyManage() # 资金管理类
myDefault.set_backend_default("Pycharm") # Pycharm下需要plt.show()才显示图
# ------------------------------------------------------------
# Jupyter Notebook 控制台显示必须加上:%matplotlib inline ,弹出窗显示必须加上:%matplotlib auto
# %matplotlib inline
# import warnings
# warnings.filterwarnings('ignore')
# %%
# 简介
# A CNN-LSTM-Based Model to Forecast Stock Prices (Wenjie Lu, Jiazheng Li, Yifan Li, Aijun Sun, Jingyang Wang, Complexity magazine, vol. 2020, Article ID 6622927, 10 pages, 2020) 一文的作者比较了各种股票价格预测模型:
# 股票价格数据具有时间序列的特点。
# 同时,基于机器学习长短期记忆(LSTM)具有通过记忆功能分析时间序列数据之间关系的优势,我们提出了一种基于CNN-LSTM的股票价格预测方法。
# 同时,我们使用MLP、CNN、RNN、LSTM、CNN-RNN等预测模型逐一对股票价格进行了预测。此外,还对这些模型的预测结果进行了分析和比较。
# 本研究利用的数据涉及1991年7月1日至2020年8月31日的每日股票价格,包括7127个交易日。
# 在历史数据方面,我们选择了八个特征,包括开盘价、最高价、最低价、收盘价、成交量、成交额、涨跌幅和变化。
# 首先,我们采用CNN从数据中有效提取特征,即前10天的项目。然后,我们采用LSTM,用提取的特征数据来预测股票价格。
# 根据实验结果,CNN-LSTM可以提供可靠的股票价格预测,并且预测精度最高。
# 这种预测方法不仅为股票价格预测提供了一种新的研究思路,也为学者们研究金融时间序列数据提供了实践经验。
# 在所有考虑的模型中,CNN-LSTM模型在实验中产生了最好的结果。在这篇文章中,我们将考虑如何创建这样一个模型来预测金融时间序列,以及如何在MQL5专家顾问中使用创建的ONNX模型。
#%%
#Python libraries
import matplotlib.pyplot as plt
import MetaTrader5 as mt5
import tensorflow as tf
import numpy as np
import pandas as pd
import tf2onnx
from sklearn.model_selection import train_test_split
from sys import argv
#check tensorflow version
print(tf.__version__)
#check GPU support
print(len(tf.config.list_physical_devices('GPU'))>0)
#initialize MetaTrader5 for history data
if not mt5.initialize():
print("initialize() failed, error code =",mt5.last_error())
quit()
#show terminal info
terminal_info=mt5.terminal_info()
print(terminal_info)
#show file path
file_path=terminal_info.data_path+"\\MQL5\\Files\\"
print(file_path)
#data path to save the model
# data_path=argv[0]
# last_index=data_path.rfind("\\")+1
# data_path=data_path[0:last_index]
data_path = __mypath__.get_desktop_path() + "\\"
print("data path to save onnx model",data_path)
#set start and end dates for history data
from datetime import timedelta,datetime
end_date = datetime.now()
start_date = end_date - timedelta(days=120)
#print start and end dates
print("data start date=",start_date)
print("data end date=",end_date)
#get EURUSD rates (H1) from start_date to end_date
eurusd_rates = mt5.copy_rates_range("EURUSD", mt5.TIMEFRAME_H1, start_date, end_date)
#create dataframe
df = pd.DataFrame(eurusd_rates)
df.head()
df.shape
#prepare close prices only
data = df.filter(['close']).values
#show close prices
plt.figure(figsize = (18,10))
plt.plot(data,'b',label = 'Original')
plt.xlabel("Hours")
plt.ylabel("Price")
plt.title("EURUSD_H1")
plt.legend()
plt.show()
#%%
#scale data using MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(data)
#training size is 80% of the data
training_size = int(len(scaled_data)*0.80)
print("training size:",training_size)
#create train data and check size
train_data_initial = scaled_data[0:training_size,:]
print(len(train_data_initial))
#create test data and check size
test_data_initial= scaled_data[training_size:,:1]
print(len(test_data_initial))
#split a univariate sequence into samples
def split_sequence(sequence, n_steps):
X, y = list(), list()
for i in range(len(sequence)):
#find the end of this pattern
end_ix = i + n_steps
#check if we are beyond the sequence
if end_ix > len(sequence)-1:
break
#gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
return np.array(X), np.array(y)
#split into samples
time_step = 120
x_train, y_train = split_sequence(train_data_initial, time_step)
x_test, y_test = split_sequence(test_data_initial, time_step)
#reshape input to be [samples, time steps, features] which is required for LSTM
x_train =x_train.reshape(x_train.shape[0],x_train.shape[1],1)
x_test = x_test.reshape(x_test.shape[0],x_test.shape[1],1)
#%%
#import keras libraries for the model
import math
from keras.models import Sequential
from keras.layers import Dense,Activation,Conv1D,MaxPooling1D,Dropout
from keras.layers import LSTM
from keras.utils.vis_utils import plot_model
from keras.metrics import RootMeanSquaredError as rmse
from keras import optimizers
#define the model
model = Sequential()
model.add(Conv1D(filters=256, kernel_size=2,activation='relu',padding = 'same',input_shape=(120,1)))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100, return_sequences = True))
model.add(Dropout(0.3))
model.add(LSTM(100, return_sequences = False))
model.add(Dropout(0.3))
model.add(Dense(units=1, activation = 'sigmoid'))
model.compile(optimizer='adam', loss= 'mse' , metrics = [rmse()])
#show model
model.summary()
#measure time
import time
time_calc_start = time.time()
#fit model with 300 epochs
history=model.fit(x_train,y_train,epochs=300,validation_data=(x_test,y_test),batch_size=32,verbose=1)
#calculate time
fit_time_seconds = time.time() - time_calc_start
print("fit time =",fit_time_seconds," seconds.")
#show training history keys
history.history.keys()
#show iteration-loss graph for training and validation
plt.figure(figsize = (18,10))
plt.plot(history.history['loss'],label='Training Loss',color='b')
plt.plot(history.history['val_loss'],label='Validation-loss',color='g')
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("LOSS")
plt.legend()
plt.show()
#show iteration-rmse graph for training and validation
plt.figure(figsize = (18,10))
plt.plot(history.history['root_mean_squared_error'],label='Training RMSE',color='b')
plt.plot(history.history['val_root_mean_squared_error'],label='Validation-RMSE',color='g')
plt.xlabel("Iteration")
plt.ylabel("RMSE")
plt.title("RMSE")
plt.legend()
plt.show()
#evaluate training data
model.evaluate(x_train, y_train, batch_size = 32)
#evaluate testing data
model.evaluate(x_test, y_test, batch_size = 32)
#prediction using training data
train_predict = model.predict(x_train)
plot_y_train = y_train.reshape(-1,1)
#show actual vs predicted (training) graph
plt.figure(figsize=(18,10))
plt.plot(scaler.inverse_transform(plot_y_train),color = 'b', label = 'Original')
plt.plot(scaler.inverse_transform(train_predict),color='red', label = 'Predicted')
plt.title("Prediction Graph Using Training Data")
plt.xlabel("Hours")
plt.ylabel("Price")
plt.legend()
plt.show()
#prediction using testing data
test_predict = model.predict(x_test)
plot_y_test = y_test.reshape(-1,1)
#%%
# 为了计算度量,我们需要将数据从区间[0,1]转换过来。同样,我们使用MinMaxScaler。
#calculate metrics
from sklearn import metrics
from sklearn.metrics import r2_score
#transform data to real values
value1=scaler.inverse_transform(plot_y_test)
value2=scaler.inverse_transform(test_predict)
#calc score
score = np.sqrt(metrics.mean_squared_error(value1,value2))
print("RMSE : {}".format(score))
print("MSE :", metrics.mean_squared_error(value1,value2))
print("R2 score :",metrics.r2_score(value1,value2))
#show actual vs predicted (testing) graph
plt.figure(figsize=(18,10))
plt.plot(scaler.inverse_transform(plot_y_test),color = 'b', label = 'Original')
plt.plot(scaler.inverse_transform(test_predict),color='g', label = 'Predicted')
plt.title("Prediction Graph Using Testing Data")
plt.xlabel("Hours")
plt.ylabel("Price")
plt.legend()
plt.show()
# save model to ONNX
output_path = data_path+"model.eurusd.H1.120.onnx"
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"model saved to {output_path}")
# 保存到MQL5的Files中
output_path = file_path+"model.eurusd.H1.120.onnx"
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"saved model to {output_path}")
# finish
mt5.shutdown()
# Python脚本的完整代码附在文章的Jupyter笔记本中。
# 在《基于CNN-LSTM的模型预测股票价格》一文中,采用CNN-LSTM架构的模型获得了R^2=0.9646的最佳结果。在我们的例子中,CNN-LSTM网络产生的最佳结果是R^2=0.9684。根据这些结果,这种类型的模型在解决预测问题时可以很有效率。
# 我们考虑了一个Python脚本的例子,它建立和训练CNN-LSTM模型来预测金融时间序列。
#%% Using the Model in MetaTrader 5
# 2.1. 在你开始之前要知道的好事
# 有两种方法来创建一个模型: 你可以使用OnnxCreate从onnx文件创建模型,或者使用OnnxCreateFromBuffer从数据阵列创建模型。
# 如果ONNX模型被用作EA中的资源,你需要在每次改变模型时重新编译EA。
# 并非所有模型都有完全定义的尺寸输入和/或输出张量。这通常是负责包尺寸的第一个维度。在运行一个模型之前,你必须使用OnnxSetInputShape和OnnxSetOutputShape函数明确指定尺寸。模型的输入数据应该以训练模型时的相同方式准备。
# 对于输入和输出数据,我们建议使用模型中使用的相同类型的数组、矩阵和/或向量。在这种情况下,你将不必在运行模型时转换数据。如果数据不能以所需类型表示,数据将被自动转换。
# 使用OnnxRun来推理(运行)你的模型。请注意,一个模型可以被多次运行。使用模型后,使用 OnnxRelease 函数释放它。
# 2.2. 读取onnx文件并获得输入和输出的信息
# 为了使用我们的模型,我们需要知道模型的位置、输入数据类型和形状,以及输出数据类型和形状。根据之前创建的脚本,model.eurusd.H1.120.onnx与生成onnx文件的Python脚本位于同一个文件夹中。输入是float32,120个归一化的收盘价(用于在批量大小等于1的情况下工作);输出是float32,这是一个由模型预测的归一化价格。
# 我们还在MQL5\Files文件夹中创建了onnx文件,以便使用MQL5脚本获得模型输入和输出数据。
# 参见MT5
|
MuSaCN/PythonProjects2023-02-14
|
Project_Papers文章调试/4.如何在MQL5中使用ONNX模型.py
|
4.如何在MQL5中使用ONNX模型.py
|
py
| 14,235 |
python
|
zh
|
code
| 1 |
github-code
|
6
|
5384270592
|
from Chem_Equation_Balancer import *
from EmpiricalFormulas import *
from Number_Validation import *
def Chapter4_Menu(): #Submenu for Chaper 4
print ("\nChapter 4 Menu:\n")
while True:
print ("Enter 0 to find total mass of a compound")
print ("Enter 1 to test whether an equation is balanced")
print ("Enter 2 to get the percent of a compund by mass")
print ("Enter 3 to get the Emperical formula by mass % of each element")
print ("Enter 4 to return to the main Menu")
inp = input('\n')
while inp not in ["1", "2", "3", "0", "4"]:
inp = input("Enter either 0, 1, 2, 3, or 4 please! ")
if inp == '0':
Total_Mass_Menu()
if inp == '1':
Balanced_Check_Menu()
if inp == '2':
Perc_Mass_Menu()
if inp == '3':
GetEP_Menu()
if inp == '4':
return ()
print ("\n")
def Total_Mass_Menu(): # Finds the total mass per mol of a substance
equation = input("Please input a chemical compund (Letters that are not chemicals will be equal to 0) ")
try:
print ("One mol of", equation,'is',get_total_mass(equation), "g")
except:
print ("This is not a valid compound")
Total_Mass_Menu()
def Balanced_Check_Menu(): # Checks to see if a chemical equation is balanced
#Example of balanced equation- NO2 + H2O -> HNO3
equation = input("Please input a chemical equation ")
try: # Equations without 2 sides will result in a failure
if is_balanced_equ(equation):
print ("The equation is balanced")
else:
print ("The equation is not balanced")
except ValueError: # Catches this Error
print ("You must have exactly 1 recactant and exactly 1 product")
def Perc_Mass_Menu(): # Gets each elements mass percentage in the compound
equation = input("Please input a chemical compund to calculate the percent of each element by mass ")
try: # Any non-elements put into the equation will result in failure
GetPercByMass(equation)
except:
print ("This is not a valid compound")
Perc_Mass_Menu()
def GetEP_Menu(): # Inverse of the previous function
rem_perc = 100
total_input = []
while rem_perc >1: # Needs sum of percents to total 99 - 101
ele = input("Input an element ")
perc = input("What percent "+ele+" by mass is the compund? ").replace("%", "")
if perc == "a" or perc == "all":
perc = str(rem_perc)
while valid_num(perc, domain = "(0, "+str(rem_perc)+"]") == False:
print ("You must input a number greater than 0 and less than or equal to "+ str(rem_perc) + " because you cannot have more than 100% total")
if perc == "a" or perc == "all":
perc = rem_perc
perc = input("What percent "+ele+" by mass is the compund? ").replace("%", "")
total_input.append([ele, float(perc)])
rem_perc -= float(perc)
try:
print ("The emperical formula of this compound is "+GetEP(total_input))
except:
print ("One or more of the inputted elements were not actual elements")
|
NightHydra/HonChemCalc
|
Chapter_1_4_Menu.py
|
Chapter_1_4_Menu.py
|
py
| 3,255 |
python
|
en
|
code
| 0 |
github-code
|
6
|
43213705575
|
#!/usr/bin/env python3
"""
Program to decode the first sprite of a CTHG 2 file.
Mainly intended as a test for the checking the encoder, but also a
demonstration of how to decode.
"""
_license = """
Copyright (c) 2013 Alberth "Alberth" Hofkamp
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from PIL import Image
class Infile:
def __init__(self, fname):
self.fname = fname
self.handle = open(self.fname, "rb")
# Read header
for h in [ord('C'), ord('T'), ord('H'), ord('G'), 2, 0]:
v = self.getByte()
assert v == h
def getByte(self):
v = self.handle.read(1)[0]
return v
def getWord(self):
b = self.getByte()
return b | (self.getByte() << 8)
def getLong(self):
w = self.getWord()
return w | (self.getWord() << 16)
def getData(self, size):
data = []
for i in range(size):
data.append(self.getByte())
return data
def decode_xy(pix_idx, w, h):
y = pix_idx // w
x = pix_idx - w * y
assert x >= 0 and x < w
assert y >= 0 and y < h
return x, y
def get_colour(table, idx):
if table == 0:
return (0, 0, 0, 255)
if table == 1:
return (idx, 0, 0, 255)
if table == 2:
return (0, idx, 0, 255)
if table == 3:
return (0, 0, idx, 255)
if table == 4:
return (0, idx, idx, 255)
if table == 5:
return (idx, 0, idx, 255)
assert False
class Sprite:
def __init__(self, infile):
size = infile.getLong() - 2 - 2 - 2
self.number = infile.getWord()
self.width = infile.getWord()
self.height = infile.getWord()
self.data = infile.getData(size)
print("Sprite number {}".format(self.number))
print("Width {}".format(self.width))
print("Height {}".format(self.height))
print("Size {}".format(size))
print("Data size {}".format(len(self.data)))
def get_data(self, idx):
return self.data[idx], idx + 1
def save(self):
im = Image.new("RGBA", (self.width, self.height), (0, 0, 0, 0))
pix = im.load()
idx = 0
pix_idx = 0
while idx < len(self.data):
length, idx = self.get_data(idx)
if length <= 63: # Fixed non-transparent 32bpp pixels (RGB)
length = length & 63
x, y = decode_xy(pix_idx, self.width, self.height)
for i in range(length):
d = (self.data[idx], self.data[idx+1], self.data[idx+2], 255)
pix[x, y] = d
idx = idx + 3
pix_idx = pix_idx + 1
x = x + 1
if x == self.width:
x = 0
y = y + 1
continue
elif length <= 64+63: # Partially transparent 32bpp pixels (RGB)
length = length & 63
opacity, idx = self.get_data(idx)
x, y = decode_xy(pix_idx, self.width, self.height)
for i in range(length):
d = (self.data[idx], self.data[idx+1], self.data[idx+2], opacity)
pix[x, y] = d
idx = idx + 3
pix_idx = pix_idx + 1
x = x + 1
if x == self.width:
x = 0
y = y + 1
continue
elif length <= 128+63: # Fixed fully transparent pixels
length = length & 63
pix_idx = pix_idx + length
continue
else: # Recolour layer.
length = length & 63
table, idx = self.get_data(idx)
opacity, idx = self.get_data(idx)
x, y = decode_xy(pix_idx, self.width, self.height)
for i in range(length):
col, idx = self.get_data(idx)
pix[x, y] = get_colour(table, col)
pix_idx = pix_idx + 1
x = x + 1
if x == self.width:
x = 0
y = y + 1
continue
im.save("sprite_{}.png".format(self.number))
inf = Infile("x.out")
spr = Sprite(inf)
spr.save()
|
CorsixTH/CorsixTH
|
SpriteEncoder/decode.py
|
decode.py
|
py
| 5,314 |
python
|
en
|
code
| 2,834 |
github-code
|
6
|
5216056710
|
"""Pure Python implementation of EM algorithm."""
from array import array
import random
class Cluster:
"""Implementation of EM clustering."""
def __init__(self, filename, dim, num_entry, num_cluster=10):
self.float_size = 4
self.dim = dim
self.num_entry = num_entry
self.data = self.import_data(filename)
self.num_cluster = num_cluster
self.centroids = random.sample(self.data, self.num_cluster)
self.labels = {cluster_idx: [] for cluster_idx in range(self.num_cluster)}
def import_data(self, filename):
"""Read and process the binary data."""
raw_data = array('f')
with open(filename, 'rb') as file_desc:
raw_data.frombytes(file_desc.read())
data = [[] for _ in range(self.num_entry)]
for i in range(self.num_entry):
for j in range(self.dim):
idx = i * self.dim + j
data[i].append(raw_data[idx])
return data
def distance(self, lhs, rhs):
"""Euclidean distance between two vectors 'lhs' and 'rhs'."""
return sum([(lhs[idx] - rhs[idx]) ** 2 for idx in range(self.dim)]) ** 0.5
def vectors_mean(self, vectors):
"""Calculate the mean of a set of vectors."""
total = [0 for _ in range(self.dim)]
for vector in vectors:
total = [lhs + rhs for lhs, rhs in zip(total, vector)]
return [elem / len(vectors) for elem in total]
def e_step(self):
"""E-step in EM algorithm: Expectation."""
self.labels = {cluster_idx: [] for cluster_idx in range(self.num_cluster)}
for vector_idx, vector in enumerate(self.data):
distances_to_clusters = []
for cluster in self.centroids:
distances_to_clusters.append(self.distance(vector, cluster))
min_cluster = distances_to_clusters.index(min(distances_to_clusters))
self.labels[min_cluster].append(vector_idx)
def m_step(self):
"""M-step in EM algorithm: Maximization."""
new_centroids = []
for _, member_indices in self.labels.items():
member_vectors = [self.data[idx] for idx in member_indices]
new_centroids.append(self.vectors_mean(member_vectors))
loss = sum([self.distance(new, old)
for new, old
in zip(new_centroids, self.centroids)]) / self.num_cluster
self.centroids = new_centroids
return loss
def fit(self, epsilon=0.001, max_iter=200):
"""Fitting to data."""
for idx in range(max_iter):
self.e_step()
loss = self.m_step()
print('step {}: loss {}.'.format(idx, loss))
if loss < epsilon:
for member_indices in self.labels.items():
print(member_indices)
for cluster_idx, centroid in enumerate(self.centroids):
print('cluster {}: {}'.format(cluster_idx, centroid))
break
def cluster_vectors(self, cluster):
"""Return vectors of a cluster."""
return [self.data[idx] for idx in self.labels[cluster]]
|
uniglot/pure-python-em
|
clustering.py
|
clustering.py
|
py
| 3,163 |
python
|
en
|
code
| 0 |
github-code
|
6
|
23950521358
|
#!/usr/bin/python3
import argparse
from iCEburn.libiceblink import ICE40Board
def rtype(x):
return ('R', int(x, 16))
def wtype(x):
return ('W', [int(i,16) for i in x.split(':')])
def main():
ap = argparse.ArgumentParser()
ap.add_argument("-r", "--read", dest='actions', type=rtype, action='append')
ap.add_argument("-w", "--write", dest='actions', type=wtype, action='append')
args = ap.parse_args()
board = ICE40Board()
with board.get_board_comm() as comm:
for atype, arg in args.actions:
if atype == 'R':
addr = arg
print("READ %02x: %02x" % (addr, comm.readReg(addr)))
elif atype == 'W':
addr, value = arg
print("WRITE %02x: %02x" % (addr, value))
comm.writeReg(addr, value)
if __name__ == "__main__":
main()
|
davidcarne/iceBurn
|
iCEburn/regtool.py
|
regtool.py
|
py
| 868 |
python
|
en
|
code
| 32 |
github-code
|
6
|
21812044102
|
import pytest
from src.error import InputError
from src.auth import auth_register_v2
from src.user import user_profile_v2
from src.other import clear_v1
@pytest.fixture
def register_user():
clear_v1()
user = auth_register_v2("[email protected]", "123456", "john", "smith")
token = user['token']
id = user['auth_user_id']
return token, id
def test_valid_input(register_user):
token, id = register_user
res = user_profile_v2(token, id)
assert res['user']['u_id'] == id
assert res['user']['email'] == '[email protected]'
assert res['user']['name_first'] == 'john'
assert res['user']['name_last'] == 'smith'
assert res['user']['handle_str'] == 'johnsmith'
def test_invalid_uid(register_user):
token, id = register_user
id += 1
with pytest.raises(InputError):
user_profile_v2(token, id)
|
TanitPan/comp1531_UNSW_Dreams
|
tests/user_profile_test.py
|
user_profile_test.py
|
py
| 857 |
python
|
en
|
code
| 0 |
github-code
|
6
|
39252790870
|
import time
import logging
from django.contrib import admin
from django.contrib import messages
from django.contrib.admin import helpers
from django.urls import reverse
from django.db import transaction
from django.db.models import Count
from django.template.response import TemplateResponse
from django.utils.html import format_html, format_html_join
from mangaki.models import (
Work, TaggedWork, WorkTitle, Genre, Track, Tag, Artist, Studio, Editor, Rating, Page,
Suggestion, Evidence, Announcement, Recommendation, Pairing, Reference, Top, Ranking,
Role, Staff, FAQTheme,
FAQEntry, Trope, Language,
ExtLanguage, WorkCluster,
UserBackgroundTask,
ActionType,
get_field_changeset
)
from mangaki.utils.anidb import AniDBTag, client, diff_between_anidb_and_local_tags
from mangaki.utils.db import get_potential_posters
from collections import defaultdict
from enum import Enum
from mangaki.utils.work_merge import WorkClusterMergeHandler
ActionTypeColors = {
ActionType.DO_NOTHING: 'black', # INFO_ONLY
ActionType.JUST_CONFIRM: 'green',
ActionType.CHOICE_REQUIRED: 'red'
}
class MergeErrors(Enum):
NO_ID = 'no ID'
FIELDS_MISSING = 'missing fields'
NOT_ENOUGH_WORKS = 'not enough works'
def handle_merge_errors(response, request, final_work, nb_merged,
message_user):
if response == MergeErrors.NO_ID:
message_user(request,
"Aucun ID n'a été fourni pour la fusion.",
level=messages.ERROR)
if response == MergeErrors.FIELDS_MISSING:
message_user(request,
"""Un ou plusieurs des champs requis n'ont pas été remplis.
(Détails: {})""".format(", ".join(final_work)),
level=messages.ERROR)
if response == MergeErrors.NOT_ENOUGH_WORKS:
message_user(request,
"Veuillez sélectionner au moins 2 œuvres à fusionner.",
level=messages.WARNING)
if response is None: # Confirmed
message_user(request,
format_html('La fusion de {:d} œuvres vers <a href="{:s}">{:s}</a> a bien été effectuée.'
.format(nb_merged, final_work.get_absolute_url(), final_work.title)))
def create_merge_form(works_to_merge_qs):
work_dicts_to_merge = list(works_to_merge_qs.values())
field_changeset = get_field_changeset(work_dicts_to_merge)
fields_to_choose = []
fields_required = []
template_rows = []
suggestions = {}
for field, choices, action, suggested, _ in field_changeset:
suggestions[field] = suggested
template_rows.append({
'field': field,
'choices': choices,
'action_type': action,
'suggested': suggested,
'color': ActionTypeColors[action],
})
if field != 'id' and action != ActionType.DO_NOTHING:
fields_to_choose.append(field)
if action == ActionType.CHOICE_REQUIRED:
fields_required.append(field)
template_rows.sort(key=lambda row: int(row['action_type']), reverse=True)
rating_samples = [(Rating.objects.filter(work_id=work_dict['id']).count(),
Rating.objects.filter(work_id=work_dict['id'])[:10]) for work_dict in work_dicts_to_merge] # FIXME: too many queries
return fields_to_choose, fields_required, template_rows, rating_samples, suggestions
@transaction.atomic # In case trouble happens
def merge_works(request, selected_queryset, force=False, extra=None):
user = request.user if request else None
if selected_queryset.model == WorkCluster: # Author is reviewing an existing WorkCluster
from_cluster = True
cluster = selected_queryset.first()
works_to_merge_qs = cluster.works.order_by('id').prefetch_related('rating_set', 'genre')
else: # Author is merging those works from a Work queryset
from_cluster = False
works_to_merge_qs = selected_queryset.order_by('id').prefetch_related('rating_set', 'genre')
nb_works_to_merge = works_to_merge_qs.count()
if request and request.POST.get('confirm'): # Merge has been confirmed
rich_context = request.POST
else:
fields_to_choose, fields_required, template_rows, rating_samples, suggestions = create_merge_form(works_to_merge_qs)
context = {
'fields_to_choose': ','.join(fields_to_choose),
'fields_required': ','.join(fields_required),
'template_rows': template_rows,
'rating_samples': rating_samples,
'queryset': selected_queryset,
'opts': Work._meta if not from_cluster else WorkCluster._meta,
'action': 'merge' if not from_cluster else 'trigger_merge',
'action_checkbox_name': helpers.ACTION_CHECKBOX_NAME
}
if all(field in suggestions for field in fields_required):
rich_context = dict(context)
for field in suggestions:
rich_context[field] = suggestions[field]
if extra is not None:
for field in extra:
rich_context[field] = extra[field]
if force:
rich_context['confirm'] = True
if rich_context.get('confirm'): # Merge has been confirmed
works_to_merge = list(works_to_merge_qs)
if not from_cluster:
cluster = WorkCluster(user=user, checker=user)
cluster.save() # Otherwise we cannot add works
cluster.works.add(*works_to_merge)
# Happens when no ID was provided
if not rich_context.get('id'):
return None, None, MergeErrors.NO_ID
final_id = int(rich_context.get('id'))
final_work = Work.objects.get(id=final_id)
# Notice how `cluster` always exist in this scope.
# noinspection PyUnboundLocalVariable
merge_handler = WorkClusterMergeHandler(cluster,
works_to_merge,
final_work)
missing_required_fields = merge_handler.overwrite_fields(
set(filter(None, rich_context.get('fields_to_choose').split(','))),
set(filter(None, rich_context.get('fields_required').split(','))),
rich_context)
# Happens when a required field was left empty
if missing_required_fields:
return None, missing_required_fields, MergeErrors.FIELDS_MISSING
merge_handler.perform_redirections()
merge_handler.accept_cluster(user)
return len(works_to_merge), merge_handler.target_work, None
# Just show a warning if only one work was checked
if nb_works_to_merge < 2:
return None, None, MergeErrors.NOT_ENOUGH_WORKS
return nb_works_to_merge, None, TemplateResponse(request, 'admin/merge_selected_confirmation.html', context)
logger = logging.getLogger(__name__)
class TaggedWorkInline(admin.TabularInline):
model = TaggedWork
fields = ('work', 'tag', 'weight')
def get_queryset(self, request):
qs = super().get_queryset(request)
return qs.select_related('work', 'tag')
class StaffInline(admin.TabularInline):
model = Staff
fields = ('role', 'artist')
raw_id_fields = ('artist',)
class WorkTitleInline(admin.TabularInline):
model = WorkTitle
fields = ('title', 'language', 'type')
class ReferenceInline(admin.TabularInline):
model = Reference
fields = ('source', 'identifier')
class AniDBaidListFilter(admin.SimpleListFilter):
title = 'AniDB aid'
parameter_name = 'AniDB aid'
def lookups(self, request, model_admin):
return ('Vrai', 'Oui'), ('Faux', 'Non')
def queryset(self, request, queryset):
if self.value() == 'Faux':
return queryset.filter(anidb_aid=0)
elif self.value() == 'Vrai':
return queryset.exclude(anidb_aid=0)
else:
return queryset
@admin.register(FAQTheme)
class FAQAdmin(admin.ModelAdmin):
ordering = ('order',)
search_fields = ('theme',)
list_display = ('theme', 'order')
@admin.register(Work)
class WorkAdmin(admin.ModelAdmin):
search_fields = ('id', 'title', 'worktitle__title')
list_display = ('id', 'category', 'title', 'nsfw')
list_filter = ('category', 'nsfw', AniDBaidListFilter)
raw_id_fields = ('redirect',)
actions = ['make_nsfw', 'make_sfw', 'refresh_work_from_anidb', 'merge',
'refresh_work', 'update_tags_via_anidb', 'change_title']
inlines = [StaffInline, WorkTitleInline, ReferenceInline, TaggedWorkInline]
readonly_fields = (
'sum_ratings',
'nb_ratings',
'nb_likes',
'nb_dislikes',
'controversy',
)
def make_nsfw(self, request, queryset):
rows_updated = queryset.update(nsfw=True)
if rows_updated == 1:
message_bit = "1 œuvre est"
else:
message_bit = "%s œuvres sont" % rows_updated
self.message_user(request, "%s désormais NSFW." % message_bit)
make_nsfw.short_description = "Rendre NSFW les œuvres sélectionnées"
def update_tags_via_anidb(self, request, queryset):
works = queryset.all()
if request.POST.get('confirm'): # Updating tags has been confirmed
to_update_work_ids = set(map(int, request.POST.getlist('to_update_work_ids')))
nb_updates = len(to_update_work_ids)
work_ids = list(map(int, request.POST.getlist('work_ids')))
tag_titles = request.POST.getlist('tag_titles')
tag_weights = list(map(int, request.POST.getlist('weights')))
tag_anidb_tag_ids = list(map(int, request.POST.getlist('anidb_tag_ids')))
tags = list(map(AniDBTag, tag_titles, tag_weights, tag_anidb_tag_ids))
# Checkboxes to know which tags have to be kept regardless of their pending status
tag_checkboxes = request.POST.getlist('tag_checkboxes')
tags_to_process = set(tuple(map(int, tag_checkbox.split(':'))) for tag_checkbox in tag_checkboxes)
# Make a dict with work_id -> tags to keep
tags_final = {}
for index, work_id in enumerate(work_ids):
if work_id not in to_update_work_ids:
continue
if work_id not in tags_final:
tags_final[work_id] = []
if (work_id, tags[index].anidb_tag_id) in tags_to_process:
tags_final[work_id].append(tags[index])
# Process selected tags for works that have been selected
for work in works:
if work.id in to_update_work_ids:
client.update_tags(work, tags_final[work.id])
if nb_updates == 0:
self.message_user(request,
"Aucune oeuvre n'a été marquée comme devant être mise à jour.",
level=messages.WARNING)
elif nb_updates == 1:
self.message_user(request,
"Mise à jour des tags effectuée pour une œuvre.")
else:
self.message_user(request,
"Mise à jour des tags effectuée pour {} œuvres.".format(nb_updates))
return None
# Check for works with missing AniDB AID
if not all(work.anidb_aid for work in works):
self.message_user(request,
"""Certains de vos choix ne possèdent pas d'identifiant AniDB.
Le rafraichissement de leurs tags a été omis. (Détails: {})"""
.format(", ".join(map(lambda w: w.title,
filter(lambda w: not w.anidb_aid, works)))),
level=messages.WARNING)
# Retrieve and send tags information to the appropriate form
all_information = {}
for index, work in enumerate(works, start=1):
if work.anidb_aid:
if index % 25 == 0:
logger.info('(AniDB refresh): Sleeping...')
time.sleep(1) # Don't spam AniDB.
anidb_tags = client.get_tags(anidb_aid=work.anidb_aid)
tags_diff = diff_between_anidb_and_local_tags(work, anidb_tags)
tags_count = 0
for tags_info in tags_diff.values():
tags_count += len(tags_info)
if tags_count > 0:
all_information[work.id] = {
'title': work.title,
'deleted_tags': tags_diff["deleted_tags"],
'added_tags': tags_diff["added_tags"],
'updated_tags': tags_diff["updated_tags"],
'kept_tags': tags_diff["kept_tags"]
}
if all_information:
context = {
'all_information': all_information.items(),
'queryset': queryset,
'opts': TaggedWork._meta,
'action': 'update_tags_via_anidb',
'action_checkbox_name': helpers.ACTION_CHECKBOX_NAME
}
return TemplateResponse(request, "admin/update_tags_via_anidb.html", context)
else:
self.message_user(request,
"Aucune des œuvres sélectionnées n'a subit de mise à jour des tags chez AniDB.",
level=messages.WARNING)
return None
update_tags_via_anidb.short_description = "Mettre à jour les tags des œuvres depuis AniDB"
def make_sfw(self, request, queryset):
rows_updated = queryset.update(nsfw=False)
if rows_updated == 1:
message_bit = "1 œuvre n'est"
else:
message_bit = "%s œuvres ne sont" % rows_updated
self.message_user(request, "%s désormais plus NSFW." % message_bit)
make_sfw.short_description = "Rendre SFW les œuvres sélectionnées"
@transaction.atomic
def refresh_work_from_anidb(self, request, queryset):
works = queryset.all()
# Check for works with missing AniDB AID
offending_works = []
if not all(work.anidb_aid for work in works):
offending_works = [work for work in works if not work.anidb_aid]
self.message_user(request,
"Certains de vos choix ne possèdent pas d'identifiant AniDB. "
"Leur rafraichissement a été omis. (Détails: {})"
.format(", ".join(map(lambda w: w.title, offending_works))),
level=messages.WARNING)
# Check for works that have a duplicate AniDB AID
aids_with_works = defaultdict(list)
for work in works:
if work.anidb_aid:
aids_with_works[work.anidb_aid].append(work)
aids_with_potdupe_works = defaultdict(list)
for work in Work.objects.filter(anidb_aid__in=aids_with_works.keys()):
aids_with_potdupe_works[work.anidb_aid].append(work)
works_with_conflicting_anidb_aid = []
for anidb_aid, potdupe_works in aids_with_potdupe_works.items():
if len(potdupe_works) > 1:
works_with_conflicting_anidb_aid.extend(aids_with_works[anidb_aid])
# Alert the user for each work he selected that has a duplicate AniDB ID
self.message_user(
request,
"""Le rafraichissement de {} a été omis car d'autres œuvres possèdent
le même identifiant AniDB #{}. (Œuvres en conflit : {})"""
.format(
", ".join(map(lambda w: w.title, aids_with_works[anidb_aid])),
anidb_aid,
", ".join(map(lambda w: w.title, aids_with_potdupe_works[anidb_aid]))
),
level=messages.WARNING
)
# Refresh works from AniDB
refreshed = 0
for index, work in enumerate(works, start=1):
if work.anidb_aid and work not in works_with_conflicting_anidb_aid:
logger.info('Refreshing {} from AniDB.'.format(work))
if client.get_or_update_work(work.anidb_aid) is not None:
refreshed += 1
if index % 25 == 0:
logger.info('(AniDB refresh): Sleeping...')
time.sleep(1) # Don't spam AniDB.
if refreshed > 0:
self.message_user(request,
"Le rafraichissement de {} œuvre(s) a été effectué avec succès."
.format(refreshed))
refresh_work_from_anidb.short_description = "Rafraîchir les œuvres depuis AniDB"
def merge(self, request, queryset):
nb_merged, final_work, response = merge_works(request, queryset)
handle_merge_errors(response, request, final_work, nb_merged,
self.message_user)
return response
merge.short_description = "Fusionner les œuvres sélectionnées"
def refresh_work(self, request, queryset):
if request.POST.get('confirm'): # Confirmed
downloaded_titles = []
for obj in queryset:
chosen_poster = request.POST.get('chosen_poster_{:d}'.format(obj.id))
if not chosen_poster:
continue
if obj.retrieve_poster(chosen_poster):
downloaded_titles.append(obj.title)
if downloaded_titles:
self.message_user(
request,
"Des posters ont été trouvés pour les anime suivants : %s." % ', '.join(downloaded_titles))
else:
self.message_user(request, "Aucun poster n'a été trouvé, essayez de changer le titre.")
return None
bundle = []
for work in queryset:
bundle.append((work.id, work.title, get_potential_posters(work)))
context = {
'queryset': queryset,
'bundle': bundle,
'opts': self.model._meta,
'action_checkbox_name': helpers.ACTION_CHECKBOX_NAME
}
return TemplateResponse(request, 'admin/refresh_poster_confirmation.html', context)
refresh_work.short_description = "Mettre à jour la fiche de l'anime (poster)"
@transaction.atomic
def change_title(self, request, queryset):
if request.POST.get('confirm'): # Changing default title has been confirmed
work_ids = request.POST.getlist('work_ids')
titles_ids = request.POST.getlist('title_ids')
titles = WorkTitle.objects.filter(
pk__in=titles_ids, work__id__in=work_ids
).values_list('title', 'work__title', 'work__id')
for new_title, current_title, work_id in titles:
if new_title != current_title:
Work.objects.filter(pk=work_id).update(title=new_title)
self.message_user(request, 'Les titres ont bien été changés pour les œuvres sélectionnées.')
return None
work_titles = WorkTitle.objects.filter(work__in=queryset.values_list('pk', flat=True))
full_infos = work_titles.values(
'pk', 'title', 'language__code', 'type', 'work_id', 'work__title'
).order_by('title').distinct('title')
titles = {}
for infos in full_infos:
if infos['work_id'] not in titles:
titles[infos['work_id']] = {}
titles[infos['work_id']].update({
infos['pk']: {
'title': infos['title'],
'language': infos['language__code'] if infos['language__code'] else 'inconnu',
'type': infos['type'] if infos['title'] != infos['work__title'] else 'current'
}
})
if titles:
context = {
'work_titles': titles,
'queryset': queryset,
'opts': Work._meta,
'action': 'change_title',
'action_checkbox_name': helpers.ACTION_CHECKBOX_NAME
}
return TemplateResponse(request, 'admin/change_default_work_title.html', context)
else:
self.message_user(request,
'Aucune des œuvres sélectionnées ne possèdent de titre alternatif.',
level=messages.WARNING)
return None
change_title.short_description = "Changer le titre par défaut"
@admin.register(Artist)
class ArtistAdmin(admin.ModelAdmin):
search_fields = ('id', 'name')
@admin.register(Tag)
class TagAdmin(admin.ModelAdmin):
list_display = ("title",)
readonly_fields = ("nb_works_linked",)
def get_queryset(self, request):
qs = super().get_queryset(request)
return qs.annotate(works_linked=Count('work'))
def nb_works_linked(self, obj):
return obj.works_linked
nb_works_linked.short_description = 'Nombre d\'œuvres liées au tag'
@admin.register(TaggedWork)
class TaggedWorkAdmin(admin.ModelAdmin):
search_fields = ('work__title', 'tag__title')
@admin.register(WorkCluster)
class WorkClusterAdmin(admin.ModelAdmin):
list_display = ('user', 'get_work_titles', 'resulting_work', 'reported_on', 'merged_on', 'checker', 'status', 'difficulty')
list_filter = ('status',)
list_select_related = ('user', 'resulting_work', 'checker')
raw_id_fields = ('user', 'works', 'checker', 'resulting_work', 'origin')
search_fields = ('id',)
actions = ('trigger_merge', 'reject')
def get_queryset(self, request):
qs = super().get_queryset(request)
return qs.prefetch_related('works')
def trigger_merge(self, request, queryset):
nb_merged, final_work, response = merge_works(request, queryset)
handle_merge_errors(response, request, final_work, nb_merged,
self.message_user)
return response
trigger_merge.short_description = "Fusionner les œuvres de ce cluster"
def reject(self, request, queryset):
rows_updated = queryset.update(status='rejected')
if rows_updated == 1:
message_bit = "1 cluster"
else:
message_bit = "%s clusters" % rows_updated
self.message_user(request, "Le rejet de %s a été réalisé avec succès." % message_bit)
reject.short_description = "Rejeter les clusters sélectionnés"
def get_work_titles(self, obj):
cluster_works = obj.works.all() # Does not include redirected works
if cluster_works:
def get_admin_url(work):
if work.redirect is None:
return reverse('admin:mangaki_work_change', args=(work.id,))
else:
return '#'
return (
'<ul>' +
format_html_join('', '<li>{} ({}<a href="{}">{}</a>)</li>',
((work.title, 'was ' if work.redirect is not None else '',
get_admin_url(work), work.id) for work in cluster_works)) +
'</ul>'
)
else:
return '(all deleted)'
get_work_titles.allow_tags = True
@admin.register(Suggestion)
class SuggestionAdmin(admin.ModelAdmin):
list_display = ('work', 'problem', 'date', 'user', 'is_checked')
list_filter = ('problem',)
actions = ['check_suggestions', 'uncheck_suggestions']
raw_id_fields = ('work',)
search_fields = ('work__title', 'user__username')
def view_on_site(self, obj):
return obj.work.get_absolute_url()
def check_suggestions(self, request, queryset):
rows_updated = queryset.update(is_checked=True)
for suggestion in queryset:
if suggestion.problem == 'ref': # Reference suggestion
reference, created = Reference.objects.get_or_create(work=suggestion.work, url=suggestion.message)
reference.suggestions.add(suggestion)
if rows_updated == 1:
message_bit = "1 suggestion"
else:
message_bit = "%s suggestions" % rows_updated
self.message_user(request, "La validation de %s a été réalisé avec succès." % message_bit)
check_suggestions.short_description = "Valider les suggestions sélectionnées"
def uncheck_suggestions(self, request, queryset):
rows_updated = queryset.update(is_checked=False)
if rows_updated == 1:
message_bit = "1 suggestion"
else:
message_bit = "%s suggestions" % rows_updated
self.message_user(request, "L'invalidation de %s a été réalisé avec succès." % message_bit)
uncheck_suggestions.short_description = "Invalider les suggestions sélectionnées"
@admin.register(Announcement)
class AnnouncementAdmin(admin.ModelAdmin):
exclude = ('title',)
@admin.register(Pairing)
class PairingAdmin(admin.ModelAdmin):
list_display = ('artist', 'work', 'date', 'user', 'is_checked')
actions = ['make_director', 'make_composer', 'make_author']
def make_director(self, request, queryset):
rows_updated = 0
director = Role.objects.get(slug='director')
for pairing in queryset:
_, created = Staff.objects.get_or_create(work_id=pairing.work_id, artist_id=pairing.artist_id,
role=director)
if created:
pairing.is_checked = True
pairing.save()
rows_updated += 1
if rows_updated == 1:
message_bit = "1 réalisateur a"
else:
message_bit = "%s réalisateurs ont" % rows_updated
self.message_user(request, "%s été mis à jour." % message_bit)
make_director.short_description = "Valider les appariements sélectionnés pour réalisation"
def make_composer(self, request, queryset):
rows_updated = 0
composer = Role.objects.get(slug='composer')
for pairing in queryset:
_, created = Staff.objects.get_or_create(work_id=pairing.work_id, artist_id=pairing.artist_id,
role=composer)
if created:
pairing.is_checked = True
pairing.save()
rows_updated += 1
if rows_updated == 1:
message_bit = "1 compositeur a"
else:
message_bit = "%s compositeurs ont" % rows_updated
self.message_user(request, "%s été mis à jour." % message_bit)
make_composer.short_description = "Valider les appariements sélectionnés pour composition"
def make_author(self, request, queryset):
rows_updated = 0
author = Role.objects.get(slug='author')
for pairing in queryset:
_, created = Staff.objects.get_or_create(work_id=pairing.work_id, artist_id=pairing.artist_id, role=author)
if created:
pairing.is_checked = True
pairing.save()
rows_updated += 1
if rows_updated == 1:
message_bit = "1 auteur a"
else:
message_bit = "%s auteurs ont" % rows_updated
self.message_user(request, "%s été mis à jour." % message_bit)
make_author.short_description = "Valider les appariements sélectionnés pour écriture"
@admin.register(Rating)
class RatingAdmin(admin.ModelAdmin):
raw_id_fields = ('user', 'work')
@admin.register(Reference)
class ReferenceAdmin(admin.ModelAdmin):
list_display = ['work', 'url']
raw_id_fields = ('work', 'suggestions')
class RankingInline(admin.TabularInline):
model = Ranking
fields = ('content_type', 'object_id', 'name', 'score', 'nb_ratings', 'nb_stars',)
readonly_fields = ('name',)
def name(self, instance):
return str(instance.content_object)
@admin.register(Top)
class TopAdmin(admin.ModelAdmin):
inlines = [
RankingInline,
]
readonly_fields = ('category', 'date',)
def has_add_permission(self, request):
return False
@admin.register(Role)
class RoleAdmin(admin.ModelAdmin):
model = Role
prepopulated_fields = {'slug': ('name',)}
@admin.register(Evidence)
class EvidenceAdmin(admin.ModelAdmin):
list_display = ['user', 'suggestion', 'agrees', 'needs_help']
admin.site.register(Genre)
admin.site.register(Track)
admin.site.register(Studio)
admin.site.register(Editor)
admin.site.register(Page)
admin.site.register(FAQEntry)
admin.site.register(Recommendation)
admin.site.register(Trope)
admin.site.register(Language)
admin.site.register(ExtLanguage)
admin.site.register(UserBackgroundTask)
admin.site.site_header = "Administration Mangaki"
|
mangaki/mangaki
|
mangaki/mangaki/admin.py
|
admin.py
|
py
| 28,860 |
python
|
en
|
code
| 137 |
github-code
|
6
|
70063460029
|
MAX_QSIZE = 10
class CircularQueue :
def __init__( self ) :
self.front = 0
self.rear = 0
self.items = [None] * MAX_QSIZE
def isEmpty( self ) : return self.front == self.rear
def isFull( self ) : return self.front == (self.rear+1)%MAX_QSIZE
def clear( self ) : self.front = self.rear
def enqueue( self, item ):
if not self.isFull():
self.rear = (self.rear+1)% MAX_QSIZE
self.items[self.rear] = item
def dequeue( self ):
if not self.isEmpty():
self.front = (self.front+1)% MAX_QSIZE
return self.items[self.front]
def peek( self ):
if not self.isEmpty():
return self.items[(self.front + 1) % MAX_QSIZE]
def size( self ) :
return (self.rear - self.front + MAX_QSIZE) % MAX_QSIZE
def display( self ):
out = []
if self.front < self.rear :
out = self.items[self.front+1:self.rear+1]
else:
out = self.items[self.front+1:MAX_QSIZE] \
+ self.items[0:self.rear+1]
print("[f=%s,r=%d] ==> "%(self.front, self.rear), out)
class TNode:
def __init__ (self, data, left, right):
self.data = data
self.left = left
self.right = right
def preorder(n) :
if n is not None :
print(n.data, end=' ')
preorder(n.left)
preorder(n.right)
def inorder(n) :
if n is not None :
inorder(n.left)
print(n.data, end=' ')
inorder(n.right)
def postorder(n) :
if n is not None :
postorder(n.left)
postorder(n.right)
print(n.data, end=' ')
def levelorder(root) :
queue = CircularQueue()
queue.enqueue(root)
while not queue.isEmpty() :
n = queue.dequeue()
if n is not None :
print(n.data, end=' ')
queue.enqueue(n.left)
queue.enqueue(n.right)
def count_node(n) :
if n is None :
return 0
else :
return 1 + count_node(n.left) + count_node(n.right)
def count_leaf(n) :
if n is None :
return 0
elif n.left is None and n.right is None :
return 1
else :
return count_leaf(n.left) + count_leaf(n.right)
def calc_height(n) :
if n is None :
return 0
hLeft = calc_height(n.left)
hRight = calc_height(n.right)
if (hLeft > hRight) :
return hLeft + 1
else:
return hRight + 1
def full_tree(root):
if root.left != None and root.right != None:
return True
else:
return False
def is_complete_binary_tree(root):
queue = CircularQueue()
queue.enqueue(root)
while not queue.size != 0 :
n = queue.dequeue()
if not full_tree(root):
if n.left == None and n.right == None:
return False
else:
if n.left != None:
queue.enqueue(n.left)
queue.dequeue()
break
else:
queue.enqueue(n.left)
queue.enqueue(n.right)
queue.dequeue();
while queue.size != 0:
n = queue.dequeue()
if root.left != None and root.right != None:
return False
else:
return True
def is_balanced(root):
if root == None:
return True
leftheigh = calc_height(root.left)
rightheigh = calc_height(root.right)
if (leftheigh - rightheigh <2) and (leftheigh - rightheigh > -1):
return True
return False
d = TNode('D', None, None)
b = TNode('B', d, None)
g = TNode('G', None, None)
h = TNode('H',None, None)
e = TNode('E', g,h)
f = TNode('F', None, None)
c = TNode('C', f,e)
root = TNode('A', b, c)
a2 = TNode('A', None, None)
b2 = TNode('B', None, None)
sla = TNode('/', a2, b2)
c2 = TNode('C', None, None)
star = TNode('*', sla, c2)
d2 = TNode('D', None, None)
star2 = TNode('*', star, d2)
e2 = TNode('E', None, None)
root2 = TNode('+', star2, e2)
c3 = TNode('C', None, None)
d3 = TNode('D', None, None)
b3 = TNode('B', c3,d3)
f2 = TNode('F',None, None)
e3 = TNode('E', f2, None)
root3 = TNode('A', b3,e3)
print('\n In-Order : ', end='')
inorder(root)
print('\n Pre-Order : ', end='')
preorder(root)
print('\n Post-Order : ', end='')
postorder(root)
print('\nLevel-Order : ', end='')
levelorder(root)
print()
print('\n In-Order : ', end='')
inorder(root2)
print('\n Pre-Order : ', end='')
preorder(root2)
print('\n Post-Order : ', end='')
postorder(root2)
print('\nLevel-Order : ', end='')
levelorder(root2)
print()
print('\n In-Order : ', end='')
inorder(root3)
print('\n Pre-Order : ', end='')
preorder(root3)
print('\n Post-Order : ', end='')
postorder(root3)
print('\nLevel-Order : ', end='')
levelorder(root3)
print()
print(" 노드의 개수 = %d개" % count_node(root))
print(" 단말의 개수 = %d개" % count_leaf(root))
print(" 트리의 높이 = %d" % calc_height(root))
print()
print(" 노드의 개수 = %d개" % count_node(root2))
print(" 단말의 개수 = %d개" % count_leaf(root2))
print(" 트리의 높이 = %d" % calc_height(root2))
print()
print(" 노드의 개수 = %d개" % count_node(root3))
print(" 단말의 개수 = %d개" % count_leaf(root3))
print(" 트리의 높이 = %d" % calc_height(root3))
print()
if is_complete_binary_tree(root3) == True:
print('완전 이진 트리입니다.')
else:
print('완전 이진 트리가 아닙니다.')
print()
if is_balanced(root3) == True:
print('균형잡힌 트리입니다.')
else:
print('균형이 안 잡힌 트리입니다.')
|
kimmoonwoong/Data-Structures-using-python
|
실습과제7.py
|
실습과제7.py
|
py
| 5,896 |
python
|
en
|
code
| 0 |
github-code
|
6
|
38591123500
|
class Item:
owners = []
def __init__(self, name, quantity, price, owners):
self.name = name
self.quantity = quantity
self.price = price
self.owners = owners
# Define the parts of a basic restaurant check
class Check:
def __init__(self, items):
self.title = ""
self.items = items # creates a new list of items in the check
def addItem(self, item):
self.items.append(item)
def print(self):
for i in self.items:
print(i.name, i.price, i.quantity, i.owners)
itemsList = [Item('steak tacos', 3, 42, []), Item('chicken taco', 1, 12, [])]
itemsList[0].owners = ['Johnny', 'Billy', 'Samantha']
print(itemsList[0].owners)
checkTest = Check(itemsList)
checkTest.print()
checkTest.addItem(Item('carnitas', 17, 1, []))
checkTest.print()
|
curtis-marten/check-split
|
src/check.py
|
check.py
|
py
| 838 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72005748348
|
lista = []
try:
#assert False
# lista[0]
a = 1 / 0
#except: <-- łap wszystkie błędy - zła praktyka
#except Exception: --//--
except ZeroDivisionError:
print("Dzielono przez zero, ale idziemy dalej")
a = 0
except IndexError as e:
print("Pojwił się błąd indeksowania:", e)
a = None
else: # kiedy nie ma żadnego wyjątu
print("Wszystko ok, nie ma co się zatrzymywać, idziemy dalej")
finally:
print("Zamykamy pliki itp.")
print(a)
print("Reszta programu")
# ----- rzucanie błędów
class DistanceTooLarge(ValueError):
pass
class ContentCensored(Exception):
pass
def _czas_przejazdu(odleglosc):
if odleglosc < 0:
raise ValueError("Odległość nie może być mniejsza od zera")
if odleglosc > 400000:
raise DistanceTooLarge("Odległość zbyt duża")
if odleglosc == 666:
raise ContentCensored(f"Nieetyczna treść: {odleglosc}")
czas = 1 / (24.5 / odleglosc)
return czas
def czas_przejazdu(odleglosc):
try:
_czas_przejazdu(odleglosc)
except ValueError as e:
print("Nie można policzyć czasu przejazdu ponieważ:", e)
except ZeroDivisionError:
print("O, dzielenie przez zero! tego nie oczekiwaliśmy")
raise # <-- ponowne rzucenie wyjątku który złapaliśmy
except ContentCensored:
print("Zablokowano nieetyczne użycie programu")
finally:
print("Zdziałało finally")
czas_przejazdu(-1)
czas_przejazdu(1000000)
czas_przejazdu(666)
czas_przejazdu(0)
|
jakubnowicki/python-prog
|
wyjatki.py
|
wyjatki.py
|
py
| 1,528 |
python
|
pl
|
code
| 0 |
github-code
|
6
|
40458088335
|
# general imports for EMISSOR and the BRAIN
from cltl import brain
from emissor.representation.scenario import ImageSignal
# specific imports
from datetime import datetime
import time
import cv2
import pathlib
import emissor_api
#### The next utils are needed for the interaction and creating triples and capsules
import chatbots.util.driver_util as d_util
import chatbots.util.capsule_util as c_util
import chatbots.util.face_util as f_util
def get_next_image(camera, imagefolder):
what_is_seen = None
success, frame = camera.read()
if success:
current_time = int(time.time() * 1e3)
imagepath = f"{imagefolder}/{current_time}.png"
image_bbox = (0, 0, frame.shape[1], frame.shape[0])
cv2.imwrite(imagepath, frame)
print(imagepath)
what_is_seen = f_util.detect_objects(imagepath)
return what_is_seen, current_time, image_bbox
def create_imageSignal_and_annotations_in_emissor (results, image_time, image_bbox, scenario_ctrl):
#### We create an imageSignal
imageSignal = d_util.create_image_signal(scenario_ctrl, f"{image_time}.png", image_bbox, image_time)
scenario_ctrl.append_signal(imageSignal)
what_is_seen = []
## The next for loop creates a capsule for each object detected in the image and posts a perceivedIn property for the object in the signal
## The "front_camera" is the source of the signal
for result in results:
current_time = int(time.time() * 1e3)
bbox = [int(num) for num in result['yolo_bbox']]
object_type = result['label_string']
object_prob = result['det_score']
what_is_seen.append(object_type)
mention = f_util.create_object_mention(imageSignal, "front_camera", current_time, bbox, object_type,
object_prob)
imageSignal.mentions.append(mention)
return what_is_seen, imageSignal
def add_perception_to_episodic_memory (imageSignal: ImageSignal, object_list, my_brain, scenario_ctrl, location, place_id):
response_list = []
for object in object_list:
### We created a perceivedBy triple for this experience,
### @TODO we need to include the bouding box somehow in the object
#print(object)
capsule = c_util.scenario_image_triple_to_capsule(scenario_ctrl,
imageSignal,
location,
place_id,
"front_camera",
object,
"perceivedIn",
imageSignal.id)
#print(capsule)
# Create the response from the system and store this as a new signal
# We use the throughts to respond
response = my_brain.update(capsule, reason_types=True, create_label=True)
response_list.append(response)
return response_list
def watch_and_remember(scenario_ctrl,
camera,
imagefolder,
my_brain,
location,
place_id):
t1 = datetime.now()
while (datetime.now()-t1).seconds <= 60:
###### Getting the next input signals
what_did_i_see, current_time, image_bbox = get_next_image(camera, imagefolder)
object_list, imageSignal = create_imageSignal_and_annotations_in_emissor(what_did_i_see, current_time, image_bbox, scenario_ctrl)
response = add_perception_to_episodic_memory(imageSignal, object_list, my_brain, scenario_ctrl, location, place_id)
print(response)
reply = "\nI saw: "
if len(object_list) > 1:
for index, object in enumerate(object_list):
if index == len(object_list) - 1:
reply += " and"
reply += " a " + object
elif len(object_list) == 1:
reply += " a " + object_list[0]
else:
reply = "\nI cannot see! Something wrong with my camera."
print(reply + "\n")
def main():
### Link your camera
camera = cv2.VideoCapture(0)
# Initialise the brain in GraphDB
##### Setting the agents
AGENT = "Leolani2"
HUMAN_NAME = "Stranger"
HUMAN_ID = "stranger"
scenarioStorage, scenario_ctrl, imagefolder, rdffolder, location, place_id = emissor_api.start_a_scenario(AGENT, HUMAN_ID, HUMAN_NAME)
log_path = pathlib.Path(rdffolder)
my_brain = brain.LongTermMemory(address="http://localhost:7200/repositories/sandbox",
log_dir=log_path,
clear_all=True)
watch_and_remember(scenario_ctrl, camera, imagefolder, my_brain, location, place_id)
scenario_ctrl.scenario.ruler.end = int(time.time() * 1e3)
scenarioStorage.save_scenario(scenario_ctrl)
camera.release()
if __name__ == '__main__':
main()
|
leolani/cltl-chatbots
|
src/chatbots/bots/episodic_image_memory.py
|
episodic_image_memory.py
|
py
| 5,114 |
python
|
en
|
code
| 0 |
github-code
|
6
|
8926064474
|
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import time
import requests
import shutil
import os.path
import docx2txt
from webdriver_manager.chrome import ChromeDriverManager
from datetime import datetime
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
driver = webdriver.Chrome(ChromeDriverManager().install())
action = ActionChains(driver)
url_path = pd.read_csv("urls_data.csv")
url_list = list(url_path['0'])
base_dir = './ctcfp.org'
for i in url_list:
title1 = ''
title = ''
transcript = ''
audio_path = ''
audio = ''
post_date = ''
file_name = ''
try:
print(i)
driver.get(i)
time.sleep(5)
CHECK=driver.find_element_by_xpath('//li[@class="jupiterx-post-meta-categories list-inline-item"]/a')
CHECK=CHECK.text
if CHECK=="Podcasts":
title1 = driver.find_element_by_xpath('//div[@class="container-fluid"]/h1')
title = title1.text
print(title)
# transcript = driver.find_element_by_xpath('//div[@class="jet-button__container"]/a')
# transcript = transcript.get_attribute('href')
date_ = driver.find_element_by_xpath('//li[@class="jupiterx-post-meta-date list-inline-item"]/time')
date_ = date_.text
from dateutil.parser import parse
date_ = parse(date_, fuzzy=True)
print(date_, 'parse')
post_date = datetime.strptime(str(date_), '%Y-%m-%d %H:%M:%S').strftime('%m/%d/%Y')
print(post_date, "post_date")
file_name = title.replace(" ", "_")
if os.path.exists('./ctcfp.org/' + file_name):
pass
else:
time.sleep(10)
try:
try:
try:
audio_path = driver.find_element_by_xpath('//div[@class="jet-button__container"]/a')
except:
audio_path = driver.find_element_by_xpath('//div[@class ="jupiterx-content"]/article/div/div[1]/ul/li[1]/a')
except:
audio_path = driver.find_element_by_xpath('//div[@class="jupiterx-post-content clearfix"]/div/div[1]/a')
link = audio_path.get_attribute('href')
print(link, "audio_link")
text = "audio_file"
params = {
"ie": "UTF-8",
"client": "tw-ob",
"q": text,
"tl": "en",
"total": "1",
"idx": "0",
"textlen": str(len(text))
}
response = requests.get(link, params=params)
response.raise_for_status()
assert response.headers["Content-Type"] == "audio/mpeg"
with open("output.mp3", "wb") as file:
file.write(response.content)
print("Done.")
os.rename("output.mp3", file_name + ".mp3")
path = os.path.join(base_dir, file_name)
os.mkdir(path)
try:
try:
driver.find_element_by_xpath('//div[@class="elementor-container elementor-column-gap-default"]/div[2]/div/div/div/div/div/a/div[4]/span').click()
except:
driver.find_element_by_xpath('//div[@class ="jupiterx-content"]/article/div/div[1]/ul/li[2]/a').click()
except:
try:
driver.find_element_by_xpath('//div[@class="jupiterx-post-content clearfix"]/ul/li[1]/a').click()
except:
driver.find_element_by_xpath('//div[@class="jupiterx-post-content clearfix"]/div/div[2]/a').click()
time.sleep(20)
filepath = '/home/webtunixi5/Downloads'
filename = max([filepath + "/" + f for f in os.listdir(filepath)], key=os.path.getctime)
print(filename)
time.sleep(10)
shutil.move(os.path.join('.', filename), file_name + '_orig.docx')
text = docx2txt.process(file_name + '_orig.docx')
time.sleep(5)
with open(file_name + '_orig.txt', 'w') as f:
for line in text:
f.write(line)
with open(file_name + '.txt', 'w') as f:
for line in title:
f.write(line)
with open(file_name + '_info.txt', 'w') as f:
f.write(i + '\n')
f.write(post_date)
print("Scraped transcript data")
shutil.move(file_name + ".mp3", path + "/" + file_name + ".mp3")
print('audio moved successful')
shutil.move(file_name + '_orig.txt', path + '/' + file_name + '_orig.txt')
shutil.move(file_name + '.txt', path + '/' + file_name + '.txt')
shutil.move(file_name + '_info.txt', path + '/' + file_name + '_info.txt')
print("Done.")
if os.path.exists('./'+file_name + '_orig.docx'):
os.remove('./'+file_name + '_orig.docx')
except Exception as e:
print(e)
pass
else:
print("Not a podcast.")
pass
except Exception as e:
print("++++++++++++++++++")
pass
|
priyankathakur6321/WebScraping-Automation
|
ctcfp/main.py
|
main.py
|
py
| 5,904 |
python
|
en
|
code
| 0 |
github-code
|
6
|
32058216442
|
import sys
input = sys.stdin.readline
n = int(input())
sell = {}
for i in range(n):
name = input()
if name not in sell:
sell[name] = 1
else:
sell[name] += 1
max_value = max(sell.values())
best = []
for key, value in sell.items():
if value == max_value:
best.append(key)
best = sorted(best)
print(best[0])
|
doll2gom/Algorithm
|
백준/Silver/1302. 베스트셀러/베스트셀러.py
|
베스트셀러.py
|
py
| 378 |
python
|
en
|
code
| 0 |
github-code
|
6
|
27592910479
|
import numpy as np
from collaborativefiltering import top_users, b2
from cfub import cfub
from cfib import recommend_similar_books
from new import new_user
# Initialisation de l'utilisateur
def run():
print("(paramètre de requête API) : ID utilisateur, ou 'NEW' pour un nouvel utilisateur.")
print("Liste d'ID utilisateur ayant servi à entraîner l'IA.",top_users, "\n")
ID = input()
print ('(paramètre de requête API) : au moins un genre de livre renseigné par l\'utilisateur parmis la liste \n')
reco_u1 = new_user()
print('(paramètre de requête API) : id du livre actuellement ou récemment consulté\n', b2)
iid = int(input())
if ID.isnumeric():
if int(ID) in top_users:
cfub(int(ID))
else :
print('l\'id renseigné n\'est pas dans la liste proposée')
print("(réponse de requête API) recommandation basée sur les genres favoris :\n", list(reco_u1['original_title']))
recommend_similar_books(iid)
run()
|
Thuy9906/bookreco
|
test.py
|
test.py
|
py
| 1,028 |
python
|
fr
|
code
| 0 |
github-code
|
6
|
37600184033
|
import torch
from safetensors.torch import save_file
import argparse
from pathlib import Path
def main(args):
input_path = Path(args.input_path).resolve()
output_path = args.output_path
overwrite = args.overwrite
if input_path.suffix == ".safetensors":
raise ValueError(
f"{input_path} is already a safetensors file. / {input_path} は既に safetensors ファイルです。"
)
if output_path is None:
output_path = input_path.parent / f"{input_path.stem}.safetensors"
else:
output_path = Path(output_path).resolve()
if output_path.exists() and not overwrite:
raise FileExistsError(
f"{output_path.name} already exists. Use '--overwrite' or '-w' to overwite. / {output_path.name} は既に存在します。'--overwrite' か '-w' を指定すると上書きします。"
)
print(f"Loading...")
model = torch.load(input_path, map_location="cpu")
save_file(model, output_path)
print("Done!")
print(f"Saved to {output_path} /\n {output_path} に保存しました。")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"input_path",
type=str,
help="input path",
)
parser.add_argument(
"--output_path",
"-o",
type=str,
help="output path",
)
parser.add_argument(
"--overwrite",
"-w",
action="store_true",
help="overwrite output file",
)
args = parser.parse_args()
main(args)
|
p1atdev/sd_ti_merge
|
to_safetensors.py
|
to_safetensors.py
|
py
| 1,560 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10233643835
|
from typing import List, Optional
from twitchio import PartialUser, Client, Channel, CustomReward, parse_timestamp
__all__ = (
"PoolError",
"PoolFull",
"PubSubMessage",
"PubSubBitsMessage",
"PubSubBitsBadgeMessage",
"PubSubChatMessage",
"PubSubBadgeEntitlement",
"PubSubChannelPointsMessage",
"PubSubModerationAction",
"PubSubModerationActionModeratorAdd",
"PubSubModerationActionBanRequest",
"PubSubModerationActionChannelTerms",
"PubSubChannelSubscribe",
)
class PubSubError(Exception):
pass
class ConnectionFailure(PubSubError):
pass
class PoolError(PubSubError):
pass
class PoolFull(PoolError):
pass
class PubSubChatMessage:
"""
A message received from twitch.
Attributes
-----------
content: :class:`str`
The content received
id: :class:`str`
The id of the payload
type: :class:`str`
The payload type
"""
__slots__ = "content", "id", "type"
def __init__(self, content: str, id: str, type: str):
self.content = content
self.id = id
self.type = type
class PubSubBadgeEntitlement:
"""
A badge entitlement
Attributes
-----------
new: :class:`int`
The new badge
old: :class:`int`
The old badge
"""
__slots__ = "new", "old"
def __init__(self, new: int, old: int):
self.new = new
self.old = old
class PubSubMessage:
"""
A message from the pubsub websocket
Attributes
-----------
topic: :class:`str`
The topic subscribed to
"""
__slots__ = "topic", "_data"
def __init__(self, client: Client, topic: Optional[str], data: dict):
self.topic = topic
self._data = data
class PubSubBitsMessage(PubSubMessage):
"""
A Bits message
Attributes
-----------
message: :class:`PubSubChatMessage`
The message sent along with the bits.
badge_entitlement: Optional[:class:`PubSubBadgeEntitlement`]
The badges received, if any.
bits_used: :class:`int`
The amount of bits used.
channel_id: :class:`int`
The channel the bits were given to.
user: Optional[:class:`twitchio.PartialUser`]
The user giving the bits. Can be None if anonymous.
version: :class:`str`
The event version.
"""
__slots__ = "badge_entitlement", "bits_used", "channel_id", "context", "anonymous", "message", "user", "version"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
data = data["message"]
self.message = PubSubChatMessage(data["data"]["chat_message"], data["message_id"], data["message_type"])
self.badge_entitlement = (
PubSubBadgeEntitlement(
data["data"]["badge_entitlement"]["new_version"], data["data"]["badge_entitlement"]["old_version"]
)
if data["data"]["badge_entitlement"]
else None
)
self.bits_used: int = data["data"]["bits_used"]
self.channel_id: int = int(data["data"]["channel_id"])
self.user = (
PartialUser(client._http, data["data"]["user_id"], data["data"]["user_name"])
if data["data"]["user_id"]
else None
)
self.version: str = data["version"]
class PubSubBitsBadgeMessage(PubSubMessage):
"""
A Badge message
Attributes
-----------
user: :class:`twitchio.PartialUser`
The user receiving the badge.
channel: :class:`twitchio.Channel`
The channel the user received the badge on.
badge_tier: :class:`int`
The tier of the badge
message: :class:`str`
The message sent in chat.
timestamp: :class:`datetime.datetime`
The time the event happened
"""
__slots__ = "user", "channel", "badge_tier", "message", "timestamp"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
data = data["message"]
self.user = PartialUser(client._http, data["user_id"], data["user_name"])
self.channel: Channel = client.get_channel(data["channel_name"]) or Channel(
name=data["channel_name"], websocket=client._connection
)
self.badge_tier: int = data["badge_tier"]
self.message: str = data["chat_message"]
self.timestamp = parse_timestamp(data["time"])
class PubSubChannelPointsMessage(PubSubMessage):
"""
A Channel points redemption
Attributes
-----------
timestamp: :class:`datetime.datetime`
The timestamp the event happened.
channel_id: :class:`int`
The channel the reward was redeemed on.
id: :class:`str`
The id of the reward redemption.
user: :class:`twitchio.PartialUser`
The user redeeming the reward.
reward: :class:`twitchio.CustomReward`
The reward being redeemed.
input: Optional[:class:`str`]
The input the user gave, if any.
status: :class:`str`
The status of the reward.
"""
__slots__ = "timestamp", "channel_id", "user", "id", "reward", "input", "status"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
redemption = data["message"]["data"]["redemption"]
self.timestamp = parse_timestamp(redemption["redeemed_at"])
self.channel_id: int = int(redemption["channel_id"])
self.id: str = redemption["id"]
self.user = PartialUser(client._http, redemption["user"]["id"], redemption["user"]["display_name"])
self.reward = CustomReward(client._http, redemption["reward"], PartialUser(client._http, self.channel_id, None))
self.input: Optional[str] = redemption.get("user_input")
self.status: str = redemption["status"]
class PubSubModerationAction(PubSubMessage):
"""
A basic moderation action.
Attributes
-----------
action: :class:`str`
The action taken.
args: List[:class:`str`]
The arguments given to the command.
created_by: :class:`twitchio.PartialUser`
The user that created the action.
message_id: Optional[:class:`str`]
The id of the message that created this action.
target: :class:`twitchio.PartialUser`
The target of this action.
from_automod: :class:`bool`
Whether this action was done automatically or not.
"""
__slots__ = "action", "args", "created_by", "message_id", "target", "from_automod"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
self.action: str = data["message"]["data"]["moderation_action"]
self.args: List[str] = data["message"]["data"]["args"]
self.created_by = PartialUser(
client._http, data["message"]["data"]["created_by_user_id"], data["message"]["data"]["created_by"]
)
self.message_id: Optional[str] = data["message"]["data"].get("msg_id")
self.target = (
PartialUser(
client._http, data["message"]["data"]["target_user_id"], data["message"]["data"]["target_user_login"]
)
if data["message"]["data"]["target_user_id"]
else None
)
self.from_automod: bool = data["message"]["data"].get("from_automod", False)
class PubSubModerationActionBanRequest(PubSubMessage):
"""
A Ban/Unban event
Attributes
-----------
action: :class:`str`
The action taken.
args: List[:class:`str`]
The arguments given to the command.
created_by: :class:`twitchio.PartialUser`
The user that created the action.
target: :class:`twitchio.PartialUser`
The target of this action.
"""
__slots__ = "action", "args", "created_by", "message_id", "target"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
self.action: str = data["message"]["data"]["moderation_action"]
self.args: List[str] = data["message"]["data"]["moderator_message"]
self.created_by = PartialUser(
client._http, data["message"]["data"]["created_by_id"], data["message"]["data"]["created_by_login"]
)
self.target = (
PartialUser(
client._http, data["message"]["data"]["target_user_id"], data["message"]["data"]["target_user_login"]
)
if data["message"]["data"]["target_user_id"]
else None
)
class PubSubModerationActionChannelTerms(PubSubMessage):
"""
A channel Terms update.
Attributes
-----------
type: :class:`str`
The type of action taken.
channel_id: :class:`int`
The channel id the action occurred on.
id: :class:`str`
The id of the Term.
text: :class:`str`
The text of the modified Term.
requester: :class:`twitchio.PartialUser`
The requester of this Term.
"""
__slots__ = "type", "channel_id", "id", "text", "requester", "expires_at", "updated_at"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
self.type: str = data["message"]["data"]["type"]
self.channel_id = int(data["message"]["data"]["channel_id"])
self.id: str = data["message"]["data"]["id"]
self.text: str = data["message"]["data"]["text"]
self.requester = PartialUser(
client._http, data["message"]["data"]["requester_id"], data["message"]["data"]["requester_login"]
)
self.expires_at = (
parse_timestamp(data["message"]["data"]["expires_at"]) if data["message"]["data"]["expires_at"] else None
)
self.updated_at = (
parse_timestamp(data["message"]["data"]["updated_at"]) if data["message"]["data"]["updated_at"] else None
)
class PubSubChannelSubscribe(PubSubMessage):
"""
Channel subscription
Attributes
-----------
channel: :class:`twitchio.Channel`
Channel that has been subscribed or subgifted.
context: :class:`str`
Event type associated with the subscription product.
user: Optional[:class:`twitchio.PartialUser`]
The person who subscribed or sent a gift subscription. Can be None if anonymous.
message: :class:`str`
Message sent with the sub/resub.
emotes: Optional[List[:class:`dict`]]
Emotes sent with the sub/resub.
is_gift: :class:`bool`
If this sub message was caused by a gift subscription.
recipient: Optional[:class:`twitchio.PartialUser`]
The person the who received the gift subscription.
sub_plan: :class:`str`
Subscription Plan ID.
sub_plan_name: :class:`str`
Channel Specific Subscription Plan Name.
time: :class:`datetime.datetime`
Time when the subscription or gift was completed. RFC 3339 format.
cumulative_months: :class:`int`
Cumulative number of tenure months of the subscription.
streak_months: Optional[:class:`int`]
Denotes the user's most recent (and contiguous) subscription tenure streak in the channel.
multi_month_duration: Optional[:class:`int`]
Number of months gifted as part of a single, multi-month gift OR number of months purchased as part of a multi-month subscription.
"""
__slots__ = (
"channel",
"context",
"user",
"message",
"emotes",
"is_gift",
"recipient",
"sub_plan",
"sub_plan_name",
"time",
"cumulative_months",
"streak_months",
"multi_month_duration",
)
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
subscription = data["message"]
self.channel: Channel = client.get_channel(subscription["channel_name"]) or Channel(
name=subscription["channel_name"], websocket=client._connection
)
self.context: str = subscription["context"]
try:
self.user = PartialUser(client._http, int(subscription["user_id"]), subscription["user_name"])
except KeyError:
self.user = None
self.message: str = subscription["sub_message"]["message"]
try:
self.emotes = subscription["sub_message"]["emotes"]
except KeyError:
self.emotes = None
self.is_gift: bool = subscription["is_gift"]
try:
self.recipient = PartialUser(
client._http, int(subscription["recipient_id"]), subscription["recipient_user_name"]
)
except KeyError:
self.recipient = None
self.sub_plan: str = subscription["sub_plan"]
self.sub_plan_name: str = subscription["sub_plan_name"]
self.time = parse_timestamp(subscription["time"])
try:
self.cumulative_months = int(subscription["cumulative_months"])
except KeyError:
self.cumulative_months = None
try:
self.streak_months = int(subscription["streak_months"])
except KeyError:
self.streak_months = None
try:
self.multi_month_duration = int(subscription["multi_month_duration"])
except KeyError:
self.multi_month_duration = None
class PubSubModerationActionModeratorAdd(PubSubMessage):
"""
A moderator add event.
Attributes
-----------
channel_id: :class:`int`
The channel id the moderator was added to.
moderation_action: :class:`str`
Redundant.
target: :class:`twitchio.PartialUser`
The person who was added as a mod.
created_by: :class:`twitchio.PartialUser`
The person who added the mod.
"""
__slots__ = "channel_id", "target", "moderation_action", "created_by"
def __init__(self, client: Client, topic: str, data: dict):
super().__init__(client, topic, data)
self.channel_id = int(data["message"]["data"]["channel_id"])
self.moderation_action: str = data["message"]["data"]["moderation_action"]
self.target = PartialUser(
client._http, data["message"]["data"]["target_user_id"], data["message"]["data"]["target_user_login"]
)
self.created_by = PartialUser(
client._http, data["message"]["data"]["created_by_user_id"], data["message"]["data"]["created_by"]
)
_mod_actions = {
"approve_unban_request": PubSubModerationActionBanRequest,
"deny_unban_request": PubSubModerationActionBanRequest,
"channel_terms_action": PubSubModerationActionChannelTerms,
"moderator_added": PubSubModerationActionModeratorAdd,
"moderation_action": PubSubModerationAction,
}
def _find_mod_action(client: Client, topic: str, data: dict):
typ = data["message"]["type"]
if typ in _mod_actions:
return _mod_actions[typ](client, topic, data)
else:
raise ValueError(f"unknown pubsub moderation action '{typ}'")
_mapping = {
"channel-bits-events-v2": ("pubsub_bits", PubSubBitsMessage),
"channel-bits-badge-unlocks": ("pubsub_bits_badge", PubSubBitsBadgeMessage),
"channel-subscribe-events-v1": ("pubsub_subscription", PubSubChannelSubscribe),
"chat_moderator_actions": ("pubsub_moderation", _find_mod_action),
"channel-points-channel-v1": ("pubsub_channel_points", PubSubChannelPointsMessage),
"whispers": ("pubsub_whisper", None),
}
def create_message(client, msg: dict):
topic = msg["data"]["topic"].split(".")[0]
r = _mapping[topic]
return r[0], r[1](client, topic, msg["data"])
|
PythonistaGuild/TwitchIO
|
twitchio/ext/pubsub/models.py
|
models.py
|
py
| 15,690 |
python
|
en
|
code
| 714 |
github-code
|
6
|
20538355959
|
# https://leetcode.com/problems/trim-a-binary-search-tree/
"""
Time complexity:- O(N)
Space Complexity:- O(H) H = height of BST (call stack )
"""
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def trimBST(self, root, low, high):
# Base case: If the root is None, return None (no tree).
if not root:
return None
# If the current node's value is greater than 'high', trim the right subtree.
if root.val > high:
return self.trimBST(root.left, low, high)
# If the current node's value is less than 'low', trim the left subtree.
if root.val < low:
return self.trimBST(root.right, low, high)
# If the current node's value is within the [low, high] range, recursively trim both left and right subtrees.
else:
root.left = self.trimBST(root.left, low, high)
root.right = self.trimBST(root.right, low, high)
return root # Return the trimmed tree rooted at the current node.
|
Amit258012/100daysofcode
|
Day49/trim_a_bst.py
|
trim_a_bst.py
|
py
| 1,165 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25503087204
|
from django.shortcuts import render, redirect
from django.urls import reverse
from django.contrib.auth.decorators import login_required
from .models import ListingComment, Listing, Bid, Category
from .forms import CreateListingForm
import os
import boto3
def home(request):
listings = Listing.objects.filter(is_active=True)
categories = Category.objects.all()
return render(request, "auction/home.html", {
'listings': listings,
'categories': categories
})
@login_required
def createListing(request):
if request.method == 'POST':
form = CreateListingForm(request.POST , request.FILES)
if form.is_valid():
listing = form.save(commit=False)
listing.owner = request.user
price = form.cleaned_data['price'] or 1
bid = Bid(bid=price, bid_owner=request.user)
bid.save()
listing.bid_price = bid
if request.FILES['image']:
image_file = request.FILES['image']
# Connect to S3
s3 = boto3.client('s3')
# Upload the image file to S3
s3.upload_fileobj(image_file, os.getenv('AWS_STORAGE_BUCKET_NAME'), 'static/auction_images/' + image_file.name)
# Get the URL of the uploaded image
url = f"https://s3.amazonaws.com/{os.getenv('AWS_STORAGE_BUCKET_NAME')}/{'static/auction_images/' + image_file.name}"
listing.image_url = url
listing.save()
return redirect(reverse('auction:home'))
else:
print(form.errors)
form = CreateListingForm()
return render(request, 'auction/createListing.html', {
'form': form
})
def category(request):
if request.method == 'POST':
category = request.POST['category']
category_object = Category.objects.get(category_name=category)
categories = Category.objects.exclude(category_name=category)
listings = Listing.objects.filter(is_active=True, category=category_object)
return render(request, 'auction/category.html', {
'listings': listings,
'categories': categories,
'category': category
})
@login_required
def listing(request, listing_id):
listing = Listing.objects.get(id=listing_id)
comments = ListingComment.objects.filter(listing=listing)
if listing in request.user.user_watchlists.all():
watchlist = True
else:
watchlist = False
return render(request, 'auction/listing.html', {
'listing': listing,
'watchlist': watchlist,
'comments': comments
})
@login_required
def addWatchlist(request):
if request.method == 'POST':
listing = Listing.objects.get(id=request.POST['listing_id'])
listing.watchlist.add(request.user)
listing.save()
return redirect(reverse('auction:listing', args = (listing.id,)))
@login_required
def removeWatchlist(request):
if request.method == 'POST':
listing = Listing.objects.get(id=request.POST['listing_id'])
listing.watchlist.remove(request.user)
listing.save()
return redirect(reverse('auction:listing', args = (listing.id,)))
@login_required
def watchlist(request):
watchlists = request.user.user_watchlists.all()
return render(request, 'auction/watchlist.html', {
'watchlists': watchlists
})
@login_required
def addComment(request):
if request.method == 'POST':
id = request.POST['listing_id']
listing = Listing.objects.get(id=id)
content = request.POST['comment']
comment = ListingComment(content=content, listing=listing, author=request.user)
comment.save()
return redirect(reverse('auction:listing', args = (listing.id,)))
@login_required
def addBid(request):
if request.method == 'POST':
id = request.POST['listing_id']
listing = Listing.objects.get(id=id)
bid = float(request.POST['bid'])
current_bid = listing.bid_price.bid
comments = ListingComment.objects.filter(listing=listing)
if listing in request.user.user_watchlists.all():
watchlist = True
else:
watchlist = False
if bid > current_bid:
newBid = Bid(bid=bid, bid_owner=request.user)
newBid.save()
listing.bid_price = newBid
listing.save()
return render(request, 'auction/listing.html', {
'listing': listing,
'comments': comments,
'update': True,
'watchlist': watchlist
})
else:
return render(request, 'auction/listing.html', {
'listing': listing,
'comments': comments,
'update': False,
'watchlist': watchlist
})
@login_required
def removeListing(request, listing_id):
if request.method == 'POST':
listing = Listing.objects.get(id=listing_id)
listing.delete()
return redirect(reverse('auction:home'))
@login_required
def sellListing(request, listing_id):
if request.method == 'POST':
listing = Listing.objects.get(id=listing_id)
listing.is_active = False
listing.save()
buyer = listing.bid_price.bid_owner
comments = ListingComment.objects.filter(listing=listing)
return render(request, 'auction/listing.html', {
'listing': listing,
'comments': comments,
'message': f'Sold to {buyer} for ${listing.bid_price.bid}'
})
|
samyarsworld/social-network
|
auction/views.py
|
views.py
|
py
| 5,652 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35416294037
|
import rdflib
from rdflib import Graph
from scipy.special import comb, perm
from itertools import combinations
g = Graph()
g.parse(r'/Users/shenghua/Desktop/ontology/ontology.owl')
deleted_str=r"http://www.semanticweb.org/zhou/ontologies/2020/3/untitled-ontology-19#"
len_deleted_st=len(deleted_str)
query = """
SELECT * WHERE {
?s rdfs:range ?o .
}
"""
query_class = """
SELECT ?o WHERE {
?s rdfs:subClassOf ?o .
}
"""
query1 = """SELECT ?downp ?downq ?action WHERE {
?action rdfs:domain ?dp.
?action rdfs:range ?rq.
?dcp rdfs:subClassOf ?dp.
?rcq rdfs:subClassOf ?rq.
?downp rdfs:subClassOf ?dcp.
?downq rdfs:subClassOf ?rcq.
}
"""
query2 = """SELECT ?dp ?rq ?action WHERE {
?action rdfs:domain ?dcp.
?action rdfs:range ?rcq.
?dp rdfs:subClassOf ?dcp.
?rq rdfs:subClassOf ?rcq.
}
"""
query3 = """SELECT ?dcp ?downq ?action WHERE {
?action rdfs:domain ?dp.
?action rdfs:range ?rq.
?dcp rdfs:subClassOf ?dp.
?rcq rdfs:subClassOf ?rq.
?downq rdfs:subClassOf ?rcq.
}
"""
query4 = """SELECT ?downp ?rcq ?action WHERE {
?action rdfs:domain ?dp.
?action rdfs:range ?rq.
?dcp rdfs:subClassOf ?dp.
?rcq rdfs:subClassOf ?rq.
?downp rdfs:subClassOf ?dcp.
}
"""
#print (g.subject_objects(predicate=None))
a=[]
for row in g.query(query):
for i in range(0,len(row)):
if (str(row[0])[len_deleted_st:])=='detect':
#print(str(row[1])[len_deleted_st:])
a.append(str(row[1])[len_deleted_st:])
#print (set(a))
detected_elements=set(a)
print ("detected_elements:")
print (detected_elements)
allclass=[]
for row in g.query(query_class):
allclass.append(str(row[0])[len_deleted_st:])
all_high_level_class=set(allclass)
print (all_high_level_class)
track=[]
for row in g.query(query):
for i in range(0,len(row)):
if (str(row[0])[len_deleted_st:])=='track':
#print(str(row[1])[len_deleted_st:])
track.append(str(row[1])[len_deleted_st:])
#print (set(a))
tracked_elements=set(track)
print ("tracked_elements:")
print (tracked_elements)
detected_or_tracked_elements=tracked_elements.union(detected_elements)
d=[]
for row in g.query(query1): #3-3
for i in range(0,len(row)):
if ((str(row[2])[len_deleted_st:len_deleted_st+6])=='affect')and ((str(row[0])[len_deleted_st:]) !=(str(row[1])[len_deleted_st:]) )and ((str(row[0])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[1])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[0])[len_deleted_st:]) not in all_high_level_class) and ((str(row[1])[len_deleted_st:]) not in all_high_level_class):
#print(str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:])
d.append((str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:]))
#print(len(d))
affected_elements_3_3=set(d)
print("affected_elements_3_3")
print(affected_elements_3_3)
d=[]
for row in g.query(query2): #2-2
print (row)
for i in range(0,len(row)):
if ((str(row[2])[len_deleted_st:len_deleted_st+6])=='affect')and ((str(row[0])[len_deleted_st:]) !=(str(row[1])[len_deleted_st:]) )and ((str(row[0])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[1])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[0])[len_deleted_st:]) not in all_high_level_class) and ((str(row[1])[len_deleted_st:]) not in all_high_level_class):
#print(str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:])
d.append((str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:]))
print(d)
#print(len(d))
affected_elements_2_2=set(d)
print("affected_elements_2_2")
print(affected_elements_2_2)
d=[]
for row in g.query(query3): #2-3
for i in range(0,len(row)):
if ((str(row[2])[len_deleted_st:len_deleted_st+6])=='affect')and ((str(row[0])[len_deleted_st:]) !=(str(row[1])[len_deleted_st:]) )and ((str(row[0])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[1])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[0])[len_deleted_st:]) not in all_high_level_class) and ((str(row[1])[len_deleted_st:]) not in all_high_level_class):
#print(str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:])
d.append((str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:]))
#print(len(d))
affected_elements_2_3=set(d)
print("affected_elements_2_3")
print(affected_elements_2_3)
d=[]
for row in g.query(query4): #3-2
for i in range(0,len(row)):
if ((str(row[2])[len_deleted_st:len_deleted_st+6])=='affect')and ((str(row[0])[len_deleted_st:]) !=(str(row[1])[len_deleted_st:]) )and ((str(row[0])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[1])[len_deleted_st:]) in (detected_or_tracked_elements)) and ((str(row[0])[len_deleted_st:]) not in all_high_level_class) and ((str(row[1])[len_deleted_st:]) not in all_high_level_class):
#print(str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:])
d.append((str(row[0])[len_deleted_st:],str(row[1])[len_deleted_st:]))
#print(len(d))
affected_elements_3_2=set(d)
print("affected_elements_3_2")
print(affected_elements_3_2)
affected_elements=((affected_elements_3_3.union(affected_elements_2_2)).union(affected_elements_3_2)).union(affected_elements_2_3)
set(affected_elements)
print ("affected_elements")
for i in affected_elements:
print(i)
print (affected_elements)
print (len(affected_elements))
potential_applications=[]
number_of_potential_applications=0
for j in range(1, len(affected_elements)+1):
number_of_potential_applications=number_of_potential_applications+comb(len(affected_elements), i)
print (number_of_potential_applications)
for p in list(combinations(affected_elements, 3)):
potential_applications.append(p)
|
0AnonymousSite0/Data-and-Codes-for-Integrating-Computer-Vision-and-Traffic-Modelling
|
3. Shared codes/Codes for SPARQL query in the CV-TM ontology/Query of CV-TM Ontology.py
|
Query of CV-TM Ontology.py
|
py
| 5,900 |
python
|
en
|
code
| 4 |
github-code
|
6
|
36025283136
|
from ..Model import BootQModel
from Agent import Agent
import random
from chainer import cuda
try:
import cupy
except:
pass
import numpy as np
import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
class BootQAgent(Agent):
"""
Deep Exploration via Bootstrapped DQN
Args:
_shard (class): necessary, shared part of q func
_head (class): necessary, head part of q func
_env (Env): necessary, env to learn, should be rewritten from Env
_is_train (bool): default True
_optimizer (chainer.optimizers): not necessary, if not then func won't be updated
_replay (Replay): necessary for training
_K (int): how many heads to use
_mask_p (float): p to be passed when train for each head
_gpu (bool): whether to use gpu
_gamma (float): reward decay
_batch_size (int): how much tuples to pull from replay
_epsilon (float): init epsilon, p for choosing randomly
_epsilon_decay (float): epsilon *= epsilon_decay
_epsilon_underline (float): epsilon = max(epsilon_underline, epsilon)
_grad_clip (float): clip grad, 0 is no clip
"""
def __init__(self, _shared, _head, _env, _is_train=True,
_optimizer=None, _replay=None,
_K=10, _mask_p=0.5,
_gpu=False, _gamma=0.99, _batch_size=32,
_epsilon=0.5, _epsilon_decay=0.995, _epsilon_underline=0.01,
_grad_clip=1.):
super(BootQAgent, self).__init__()
self.is_train = _is_train
self.q_func = BootQModel(_shared, _head, _K)
if _gpu:
self.q_func.to_gpu()
self.env = _env
if self.is_train:
self.target_q_func = BootQModel(_shared, _head, _K)
if _gpu:
self.target_q_func.to_gpu()
self.target_q_func.copyparams(self.q_func)
if _optimizer:
self.q_opt = _optimizer
self.q_opt.setup(self.q_func)
self.replay = _replay
self.config.K = _K
self.config.mask_p = _mask_p
self.config.gpu = _gpu
self.config.gamma = _gamma
self.config.batch_size = _batch_size
self.config.epsilon = _epsilon
self.config.epsilon_decay = _epsilon_decay
self.config.epsilon_underline = _epsilon_underline
self.config.grad_clip = _grad_clip
def startNewGame(self):
super(BootQAgent, self).startNewGame()
# randomly choose head
self.use_head = random.randint(0, self.config.K - 1)
logger.info('Use head: ' + str(self.use_head))
def step(self):
if not self.env.in_game:
return False
# get current state
cur_state = self.env.getState()
# choose action in step
action = self.chooseAction(self.q_func, cur_state)
# do action and get reward
reward = self.env.doAction(action)
logger.info('Action: ' + str(action) + '; Reward: %.3f' % (reward))
if self.is_train:
# get new state
next_state = self.env.getState()
# store replay_tuple into memory pool
self.replay.push(
cur_state, action, reward, next_state,
np.random.binomial(1, self.config.mask_p,
(self.config.K)).tolist()
)
return self.env.in_game
def forward(self, _cur_x, _next_x, _state_list):
# get cur outputs
cur_output = self.func(self.q_func, _cur_x, True)
# get next outputs, NOT target
next_output = self.func(self.q_func, _next_x, False)
# choose next action for each output
next_action = [
self.env.getBestAction(
o.data,
_state_list
) for o in next_output # for each head in Model
]
# get next outputs, target
next_output = self.func(self.target_q_func, _next_x, False)
return cur_output, next_output, next_action
def grad(self, _cur_output, _next_output, _next_action,
_batch_tuples, _err_list, _err_count, _k):
# alloc
if self.config.gpu:
_cur_output.grad = cupy.zeros_like(_cur_output.data)
else:
_cur_output.grad = np.zeros_like(_cur_output.data)
# compute grad from each tuples
for i in range(len(_batch_tuples)):
# if use bootstrap and masked
if not _batch_tuples[i].mask[_k]:
continue
cur_action_value = \
_cur_output.data[i][_batch_tuples[i].action].tolist()
reward = _batch_tuples[i].reward
target_value = reward
# if not empty position, not terminal state
if _batch_tuples[i].next_state.in_game:
next_action_value = \
_next_output.data[i][_next_action[i]].tolist()
target_value += self.config.gamma * next_action_value
loss = cur_action_value - target_value
_cur_output.grad[i][_batch_tuples[i].action] = 2 * loss
_err_list[i] += abs(loss)
_err_count[i] += 1
def doTrain(self, _batch_tuples, _weights):
cur_x = self.getCurInputs(_batch_tuples)
next_x = self.getNextInputs(_batch_tuples)
# if bootstrap, they are all list for heads
cur_output, next_output, next_action = self.forward(
cur_x, next_x, [t.next_state for t in _batch_tuples])
# compute grad for each head
err_list = [0.] * len(_batch_tuples)
err_count = [0.] * len(_batch_tuples)
for k in range(self.config.K):
self.grad(cur_output[k], next_output[k], next_action[k],
_batch_tuples, err_list, err_count, k)
if _weights is not None:
if self.config.gpu:
_weights = cuda.to_gpu(_weights)
self.gradWeight(cur_output[k], _weights)
if self.config.grad_clip:
self.gradClip(cur_output[k], self.config.grad_clip)
# backward
cur_output[k].backward()
# adjust grads of shared
for param in self.q_func.shared.params():
param.grad /= self.config.K
# avg err
for i in range(len(err_list)):
if err_count[i] > 0:
err_list[i] /= err_count[i]
else:
err_list[i] = None
return err_list
def chooseAction(self, _model, _state):
if self.is_train:
# update epsilon
self.updateEpsilon()
random_value = random.random()
if random_value < self.config.epsilon:
# randomly choose
return self.env.getRandomAction(_state)
else:
# use model to choose
x_data = self.env.getX(_state)
output = self.func(_model, x_data, False)
output = output[self.use_head]
logger.info(str(output.data))
return self.env.getBestAction(output.data, [_state])[0]
else:
x_data = self.env.getX(_state)
output = self.func(_model, x_data, False)
action_dict = {}
for o in output:
action = self.env.getBestAction(o.data, [_state])[0]
if action not in action_dict.keys():
action_dict[action] = 1
else:
action_dict[action] += 1
logger.info(str(action_dict))
max_k = -1
max_v = 0
for k, v in zip(action_dict.keys(), action_dict.values()):
if v > max_v:
max_k = k
max_v = v
return max_k
|
ppaanngggg/DeepRL
|
DeepRL/Agent/BootQAgent.py
|
BootQAgent.py
|
py
| 7,856 |
python
|
en
|
code
| 29 |
github-code
|
6
|
8649575468
|
# 2839 : 설탕 배달 *** 해결 x
while True :
n = int(input("킬로그램 수 : "))
k5 = int(n / 5)
k3 = int((n - 5*k5) / 3)
if n % 5 == 0 :
print(n / 5)
elif (3*k3 + 5*k5) == n :
print(k3 + k5)
elif (3*k3 + 5*k5) != n :
if k5 <= 2 :
if (n-5*(k5-1)) % 3 == 0 :
print( (n-5*(k5-1)) / 3 + k5-1)
# else : 3으로도 안나눠떨어질 때
#수행문장
for i in range(1, k5) :
if (n-5*(k5-i)) % 3 == 0 :
print( (n-5*(k5-i)) / 3 + k5-i)
else :
print("-1")
# 1) 5로 다 나눠지는지 확인
# 2) 5로 최대한 나눠보고 3의 배수를 늘려감
# 3) 3으로만 다 나눠지는지 확인
# 4) 그래도 안되면 -1 출력
|
kimhn0605/BOJ
|
fail/2839.py
|
2839.py
|
py
| 729 |
python
|
ko
|
code
| 0 |
github-code
|
6
|
10711040761
|
import tensorflow as tf
from tensorflow import keras
import numpy as np
import os
import sys
sys.path.append(os.getcwd())
from utils.prepareReviewDataset import intToWord, return_processed_data_and_labels
def decode_review(text):
return " ".join([intToWord.get(i, "?") for i in text])
train_data, train_labels, test_data, test_labels = return_processed_data_and_labels(250)
model = keras.Sequential()
model.add(keras.layers.Embedding(88000, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation="relu"))
model.add(keras.layers.Dense(1, activation="sigmoid"))
model.summary() # prints a summary of the model
model.compile(optimizer="adam", loss="binary_crossentropy", metrics = ["accuracy"])
x_val = train_data[:10000]
x_train = train_data[10000:]
y_val = train_labels[:10000]
y_train = train_labels[10000:]
fitModel = model.fit(x_train, y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1)
def saveTheModel():
model.save("model.h5")
def printModelEvaluation():
results = model.evaluate(test_data, test_labels)
print(results)
def testModelOnTestData():
test_review = test_data[0]
predict = model.predict([test_review])
print("Review: ")
print(decode_review(test_review))
print("Prediction: " + str(predict[0]))
print("Actual: " + str(test_labels[0]))
|
tung2389/Deep-Learning-projects
|
Text Classification/trainModel.py
|
trainModel.py
|
py
| 1,347 |
python
|
en
|
code
| 0 |
github-code
|
6
|
40080606131
|
import os
import connexion
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_marshmallow import Marshmallow
from flask_bcrypt import Bcrypt
basedir = os.path.abspath(os.path.dirname(__file__))
# Create the Connexion application instance
connex_app = connexion.App(__name__, specification_dir=basedir)
# Get the underlying Flask app instance
app = connex_app.app
bcrypt = Bcrypt(app)
# Configure the SQLAlchemy part of the app instance
app.config['SQLALCHEMY_ECHO'] = True
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////' + os.path.join(basedir, 'database.db')
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config["DEBUG"] = True
# Create the SQLAlchemy db instance
db = SQLAlchemy(app)
# Initialize Marshmallow
ma = Marshmallow(app)
SECRET_KEY="\xb3\x88e\x0e\xab\xa93\x01x\x82\xd1\xe0\x1b\xb6f;\x1a\x91d\x91\xc1-I\x00"
TIME_FOR_TOKEN_DAYS = 0
TIME_FOR_TOKEN_SECONDS = 600
BCRYPT_LOG_ROUNDS = 13
|
tuvetula/ApiRestFlask_videos
|
config.py
|
config.py
|
py
| 950 |
python
|
en
|
code
| 0 |
github-code
|
6
|
41543430774
|
import re
import sys
from .ply import lex
from .ply.lex import TOKEN
class CLexer(object):
""" A lexer for the C- language. After building it, set the
input text with input(), and call token() to get new
tokens.
The public attribute filename can be set to an initial
filaneme, but the lexer will update it upon #line
directives.
"""
def __init__(self, error_func, on_lbrace_func, on_rbrace_func,
type_lookup_func):
""" Create a new Lexer.
error_func:
An error function. Will be called with an error
message, line and column as arguments, in case of
an error during lexing.
on_lbrace_func, on_rbrace_func:
Called when an LBRACE or RBRACE is encountered
(likely to push/pop type_lookup_func's scope)
type_lookup_func:
A type lookup function. Given a string, it must
return True IFF this string is a name of a type
that was defined with a typedef earlier.
"""
self.error_func = error_func
self.on_lbrace_func = on_lbrace_func
self.on_rbrace_func = on_rbrace_func
self.type_lookup_func = type_lookup_func
self.filename = ''
# Keeps track of the last token returned from self.token()
self.last_token = None
# Allow either "# line" or "# <num>" to support GCC's
# cpp output
#
self.line_pattern = re.compile(r'([ \t]*line\W)|([ \t]*\d+)')
self.pragma_pattern = re.compile(r'[ \t]*pragma\W')
def build(self, **kwargs):
""" Builds the lexer from the specification. Must be
called after the lexer object is created.
This method exists separately, because the PLY
manual warns against calling lex.lex inside
__init__
"""
self.lexer = lex.lex(object=self, **kwargs)
def reset_lineno(self):
""" Resets the internal line number counter of the lexer.
"""
self.lexer.lineno = 1
def input(self, text):
self.lexer.input(text)
def token(self):
self.last_token = self.lexer.token()
return self.last_token
def find_tok_column(self, token):
""" Find the column of the token in its line.
"""
last_cr = self.lexer.lexdata.rfind('\n', 0, token.lexpos)
return token.lexpos - last_cr
def _error(self, msg, token):
location = self._make_tok_location(token)
self.error_func(msg, location[0], location[1])
self.lexer.skip(1)
def _make_tok_location(self, token):
return (token.lineno, self.find_tok_column(token))
##
## Reserved keywords
##
keywords = (
'BOOL', 'BREAK', 'ELSE', 'FALSE', 'FOR', 'IF', 'INT',
'READ', 'RETURN', 'STRING', 'TRUE', 'VOID', 'WHILE', 'WRITE'
)
keyword_map = {}
for keyword in keywords:
if keyword == '_BOOL':
keyword_map['_Bool'] = keyword
elif keyword == '_COMPLEX':
keyword_map['_Complex'] = keyword
else:
keyword_map[keyword.lower()] = keyword
##
## All the tokens recognized by the lexer
##
tokens = keywords + (
# Identifiers
'ID',
# Type identifiers (identifiers previously defined as
# types with typedef)
'TYPEID',
# String literals
'STRING_LITERAL',
'WSTRING_LITERAL',
# Operators
'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'MOD',
'AND', 'OR', 'NOT', 'LSHIFT', 'RSHIFT',
# Relations
'EQ', 'NE', 'LT', 'LE', 'GT', 'GE',
# Assignment
'EQUALS', 'TIMESEQUAL', 'DIVEQUAL', 'MODEQUAL',
'PLUSEQUAL', 'MINUSEQUAL',
'LSHIFTEQUAL','RSHIFTEQUAL',
'ANDEQUAL', 'XOREQUAL', 'OREQUAL',
# Increment/decrement
'PLUSPLUS', 'MINUSMINUS',
# Conditional operator (?)
'CONDOP',
# Delimeters
'LPAREN', 'RPAREN', # ( )
'LBRACKET', 'RBRACKET', # [ ]
'LBRACE', 'RBRACE', # { }
'COMMA', 'PERIOD', # . ,
'SEMI', 'COLON', # ; :
# Ellipsis (...)
'ELLIPSIS',
# pre-processor
'PPHASH', # '#'
'PPPRAGMA', # 'pragma'
'PPPRAGMASTR',
)
|
ricoms/mips
|
compiladorCminus/pycminus/c_lexer.py
|
c_lexer.py
|
py
| 4,426 |
python
|
en
|
code
| 0 |
github-code
|
6
|
24370177566
|
import unittest
class TestImageGen(unittest.TestCase):
def test_image_gen(self):
from src.dataio import GridIO, FlowIO
from src.create_particles import Particle, LaserSheet, CreateParticles
from src.ccd_projection import CCDProjection
from src.intensity import Intensity
from src.image_gen import ImageGen
# Read-in the grid and flow file
grid = GridIO('../data/shocks/interpolated_data/mgrd_to_p3d.x')
grid.read_grid()
grid.compute_metrics()
flow = FlowIO('../data/shocks/interpolated_data/mgrd_to_p3d_particle.q')
flow.read_flow()
# Set particle data
p = Particle()
p.min_dia = 144e-9 # m
p.max_dia = 573e-9 # m
p.mean_dia = 281e-9 # m
p.std_dia = 97e-9 # m
p.density = 810 # kg/m3
p.n_concentration = 25
p.compute_distribution()
# Read-in the laser sheet
laser = LaserSheet(grid)
# z-location
laser.position = 0.00025 # in m
laser.thickness = 0.0001 # in m (Data obtained from LaVision)
laser.pulse_time = 1e-9
laser.compute_bounds()
# path to save files
path = '../data/shocks/interpolated_data/particle_snaps/'
for i in range(1):
# Create particle locations array
ia_bounds = [None, None, None, None]
loc = CreateParticles(grid, flow, p, laser, ia_bounds)
# x_min, x_max, y_min, y_max --> ia_bounds
loc.ia_bounds = [0.0016, 0.0025, 0.0002, 0.0004] # in m
loc.in_plane = 70
loc.compute_locations()
loc.compute_locations2()
# Create particle projections (Simulating data from EUROPIV)
proj = CCDProjection(loc)
proj.dpi = 72
proj.xres = 1024
proj.yres = 1024
# Set distance based on similar triangles relationship
proj.d_ccd = proj.xres * 25.4e-3 / proj.dpi # in m
proj.d_ia = 0.0009 # in m; ia_bounds (max - min)
proj.compute()
cache = (proj.projections[:, 2], proj.projections[:, 2],
proj.projections[:, 0], proj.projections[:, 1],
2.0, 2.0, 1.0, 1.0)
intensity = Intensity(cache, proj)
intensity.setup()
intensity.compute()
snap = ImageGen(intensity)
snap.snap(snap_num=1)
# snap.save_snap(fname=path + str(i) + '_1.tif')
snap.check_data(snap_num=1)
print('Done with image 1 for pair number ' + str(i) + '\n')
cache2 = (proj.projections2[:, 2], proj.projections2[:, 2],
proj.projections2[:, 0], proj.projections2[:, 1],
2.0, 2.0, 1.0, 1.0)
intensity2 = Intensity(cache2, proj)
intensity2.setup()
intensity2.compute()
#
snap2 = ImageGen(intensity2)
snap2.snap(snap_num=2)
# snap2.save_snap(fname=path + str(i) + '_2.tif')
snap2.check_data(snap_num=2)
print('Done with image 2 for pair number ' + str(i) + '\n')
if __name__ == '__main__':
unittest.main()
|
kalagotla/syPIV
|
test/test_image_gen.py
|
test_image_gen.py
|
py
| 3,247 |
python
|
en
|
code
| 0 |
github-code
|
6
|
40029073689
|
from_path = "D:/PasaOpasen.github.io/images/Миша Светлов/вторая съемка/отбор2"
to_path = "D:/PasaOpasen.github.io/images/Миша Светлов/вторая съемка/отбор2ориги"
where = "C:/Users/qtckp/YandexDisk/Загрузки/ДИМА"
import glob
import os
import shutil
files = [ os.path.splitext(os.path.basename(file))[0] + '.cr2' for file in glob.glob(os.path.join(from_path,'*'))]
print(files)
for file in files:
shutil.copyfile(os.path.join(where, file), os.path.join(to_path, file))
|
PasaOpasen/PasaOpasen.github.io
|
images/Миша Светлов/вторая съемка/migrate.py
|
migrate.py
|
py
| 551 |
python
|
en
|
code
| 2 |
github-code
|
6
|
24046293426
|
# Autor: João PauLo Falcão
# Github: https://github.com/jplfalcao
# Data de criação: 09/10/2023
# Data de modificação:
# Versão: 1.0
# Importando a biblioteca
import yt_dlp
# Endereço do vídeo a ser baixado
url = input("Digite a url do vídeo: ")
# Especificando o formato '.mp4' para o vídeo
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4'
}
# Usando a classe YoutubeDL para baixar o vídeo
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
print("Vídeo baixado com sucesso!")
|
jplfalcao/python
|
youtube_video_download/ytvd.py
|
ytvd.py
|
py
| 532 |
python
|
pt
|
code
| 0 |
github-code
|
6
|
21763755802
|
# Approach 1: Coloring by Depth-First Search
# Time: O(N + E), N = no. of node_idxs, E = no. of edges
# Space: O(N)
class Solution:
def isBipartite(self, graph: List[List[int]]) -> bool:
color = {}
for node_idx in range(len(graph)):
if node_idx not in color:
stack = [node_idx]
color[node_idx] = 0
while stack:
node_idx = stack.pop()
for neighbor in graph[node_idx]:
if neighbor not in color:
stack.append(neighbor)
color[neighbor] = color[node_idx] ^ 1
elif color[neighbor] == color[node_idx]:
return False
return True
|
jimit105/leetcode-submissions
|
problems/is_graph_bipartite?/solution.py
|
solution.py
|
py
| 785 |
python
|
en
|
code
| 0 |
github-code
|
6
|
22340672031
|
#!/usr/bin/env python
def read_input():
with open('./inputs/day04') as f:
return [l.strip() for l in f.readlines()]
def _to_range(pair):
return range(int(pair[0]), int(pair[1]) + 1)
def get_pairs():
for line in read_input():
yield (
set(_to_range(p.split('-')))
for p in line.split(',')
)
def part1():
total = 0
for p1, p2 in get_pairs():
if p1 >= p2 or p1 <= p2:
total += 1
print(f'part 1: {total}')
def part2():
total = 0
for p1, p2 in get_pairs():
if p1 & p2:
total += 1
print(f'part 2: {total}')
if __name__ == '__main__':
part1()
part2()
|
denkl/advent-of-code
|
day04.py
|
day04.py
|
py
| 685 |
python
|
en
|
code
| 1 |
github-code
|
6
|
30311558976
|
# -*- coding: utf-8 -*-
from __future__ import print_function
from os import sep
from os.path import dirname, normpath
from pickle import HIGHEST_PROTOCOL
#-------------------------------------------------------------------------
# Paths
#-------------------------------------------------------------------------
PROGRAM_DIR = dirname(__file__) # location of const.py !
PROTO_DIR = PROGRAM_DIR + sep + 'proto' + sep
DATA_DIR = normpath(PROGRAM_DIR + sep + '..' + sep + 'data')
print('Program and data directory set to:', PROGRAM_DIR, DATA_DIR)
CSV_DIR = DATA_DIR + sep + 'csv'
INI_DIR = DATA_DIR + sep + 'datafiles'
FIGS_DIR = DATA_DIR + sep + 'datafiles'
#-------------------------------------------------------------------------
# Default file and directory names
#-------------------------------------------------------------------------
DEFAULTS_ININAME = 'defaults.ini'
CONSTANTS_ININAME = 'constants.ini'
MEASUREMENTS_ININAME = 'measurements.ini'
PLOTSTYLE_ININAME = 'plotstyles.ini'
MASKS_DIRNAME = 'masks'
DUMP_DATA_FILENAME = 'data.dat'
#-------------------------------------------------------------------------
# Plotting
#-------------------------------------------------------------------------
# Dumping data format: This specifies the format used for data dumping.
# For compatibility with python 2.x the value of '2' is used. In general,
# if compatibility is not needed, the HIGHEST_PROTOCOL value could be used
DUMP_DATA_VERSION=2
DIFFPROG = "diff"
|
bmcage/centrifuge-1d
|
centrifuge1d/const.py
|
const.py
|
py
| 1,505 |
python
|
en
|
code
| 0 |
github-code
|
6
|
45517639514
|
company_motto = "Copeland's Corporate Company helps you capably cope with the constant cacophony of daily life"
# Find the second to last character in company_motto.
second_to_last = company_motto[-2:-1]
print(second_to_last) # f
# create a slice of the last 4 characters in company_motto.
final_word = company_motto[-4:]
print(final_word) # life
# get_length() that takes a string as an input and returns the number of characters in that string.
# Do this by iterating through the string, don’t cheat and use len()
def get_length(input):
char_num = 0
for letter in input:
#print(letter)
char_num += 1
return char_num
print(get_length("Albus")) # 5
# Find / count characters within a string
favorite_fruit = "blueberry"
counter = 0
for character in favorite_fruit:
if character == "b":
counter = counter + 1
print(counter) # 2
def letter_check(word, letter):
for character in word:
if character == letter:
return True
return False
# This function should return True if the word contains the letter and False if it does not.
def letter_check(word, letter):
for char in word:
if char == letter:
return True
return False
print(letter_check("Albus", "u")) # True
# "letter in word" is a boolean expression that is True if the string letter is in the string word. Here are some examples. It not only works with letters, but with entire strings as well.
print("melon" in "watermelon") # True
print("melon" in "butterfly") # False
# Write a function called contains that takes two arguments, big_string and little_string and returns True if big_string contains little_string. For example contains("watermelon", "melon") should return True and contains("watermelon", "berry") should return False.
def contains_long(big_string, little_string):
if little_string in big_string:
return True
return False
# Better solution:
def contains(big_string, little_string):
return little_string in big_string
# Write a function called common_letters that takes two arguments, string_one and string_two and then returns a list with all of the letters they have in common.
def common_letters(string_one, string_two):
common = []
for letter in string_one:
if (letter in string_two) and not (letter in common):
common.append(letter)
return common
print(common_letters("butterfly", "fly")) # ['f', 'l', 'y']
print(common_letters("mississippi", "pizza")) # ['i', 'p']
print(common_letters("mississippi", "bear")) # []
|
candytale55/working-with-strings
|
working_with_strings_all.py
|
working_with_strings_all.py
|
py
| 2,505 |
python
|
en
|
code
| 0 |
github-code
|
6
|
10699368918
|
# -*- coding:utf-8 -*-
import cv2
import os
from glob import glob
import numpy as np
import shutil
'''处理原图片得到人物脸部图片并按比例分配train和test用于训练模型'''
SRC = "Raw" # 待处理的文件路径
DST = "data2" # 处理后的文件路径
TRAIN_PER = 5 # train的图片比例
TEST_PER = 1 # test的图片比例
def rename_file(path, new_name="", start_num=0, file_type=""):
if not os.path.exists(path):
return
count = start_num
files = os.listdir(path)
for file in files:
old_path = os.path.join(path, file)
if os.path.isfile(old_path):
if file_type == "":
file_type = os.path.splitext(old_path)[1]
new_path = os.path.join(path, new_name + str(count) + file_type)
if not os.path.exists(new_path):
os.rename(old_path, new_path)
count = count + 1
# print("Renamed %d file(s)" % (count - start_num))
def get_faces(src, dst, cascade_file="lbpcascade_animeface.xml"):
if not os.path.isfile(cascade_file):
raise RuntimeError("%s: not found" % cascade_file)
# Create classifier
cascade = cv2.CascadeClassifier(cascade_file)
files = [y for x in os.walk(src) for y in glob(os.path.join(x[0], '*.*'))] # 妙啊,一句话得到一个文件夹中所有文件
for image_file in files:
image_file = image_file.replace('\\', '/') # 解决Windows下的文件路径问题
target_path = "/".join(image_file.strip("/").split('/')[1:-1])
target_path = os.path.join(dst, target_path) + "/"
if not os.path.exists(target_path):
os.makedirs(target_path)
count = len(os.listdir(target_path)) + 1
image = cv2.imdecode(np.fromfile(image_file, dtype=np.uint8), -1) # 解决中文路径读入图片问题
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.equalizeHist(gray)
faces = cascade.detectMultiScale(gray,
# detector options
scaleFactor=1.05, # 指定每个图像缩放比例缩小图像大小的参数
minNeighbors=4, # 此参数将影响检测到的面孔。值越高,检测结果越少,但质量越高
minSize=(24, 24) # 最小对象大小。小于此值的对象将被忽略
)
for (x, y, w, h) in faces:
crop_img = image[y:y + h, x:x + w]
crop_img = cv2.resize(crop_img, (96, 96)) # 重置为96*96
# filename = os.path.basename(image_file).split('.')[0]
cv2.imencode('.jpg', crop_img)[1].tofile(os.path.join(target_path, str(count) + ".jpg"))
print("All images are cropped")
def divide_train_test(src, train_percentage=5, test_percentage=1):
if not os.path.exists(src):
print("folder %s is not exist" % src)
return
dirs = os.listdir(src)
test_dir = os.path.join(src, "test")
train_dir = os.path.join(src, "train")
if not os.path.exists(test_dir):
os.mkdir(test_dir)
if not os.path.exists(train_dir):
os.mkdir(train_dir)
for dir_name in dirs:
if dir_name != "test" and dir_name != "train":
current_dir = os.path.join(src, dir_name)
test_dir = os.path.join(src, "test", dir_name)
train_dir = os.path.join(src, "train", dir_name)
if not os.path.exists(test_dir):
os.mkdir(test_dir)
if not os.path.exists(train_dir):
os.mkdir(train_dir)
if os.path.isdir(current_dir):
images = os.listdir(current_dir)
image_num = len(images)
for image in images:
filename = os.path.basename(image).split('.')[0]
if filename.isdigit():
percentage = train_percentage + test_percentage
test_num = (image_num / percentage) * test_percentage + 1
if int(filename) <= test_num:
if not os.path.exists(os.path.join(test_dir, image)):
shutil.move(os.path.join(current_dir, image), os.path.join(test_dir))
else:
os.remove(os.path.join(current_dir, image))
else:
if not os.path.exists(os.path.join(train_dir, image)):
shutil.move(os.path.join(current_dir, image), os.path.join(train_dir))
else:
os.remove(os.path.join(current_dir, image))
shutil.rmtree(current_dir)
for dirs in os.listdir(src):
for name in os.listdir(os.path.join(src, dirs)):
if os.path.isdir(os.path.join(src, dirs, name)):
rename_file(os.path.join(src, dirs, name))
print("Set all cropped images to train and test")
def main():
get_faces(SRC, DST)
divide_train_test(src=DST, train_percentage=TRAIN_PER, test_percentage=TEST_PER)
if __name__ == '__main__':
main()
|
mikufanliu/AnimeCharacterRecognition
|
get_faces.py
|
get_faces.py
|
py
| 5,231 |
python
|
en
|
code
| 4 |
github-code
|
6
|
6814941665
|
from urllib.request import urlopen
from pdfminer.high_level import extract_text
def pdf_to_text(data):
with urlopen(data) as wFile:
text = extract_text(wFile)
return text
docUrl = 'https://diavgeia.gov.gr/doc/ΩΕΚ64653ΠΓ-2ΞΡ'
print(pdf_to_text(docUrl))
|
IsVeneti/greek-gov-nlp
|
Preprocessing/ConvertPdf.py
|
ConvertPdf.py
|
py
| 280 |
python
|
en
|
code
| 1 |
github-code
|
6
|
70159895227
|
__all__ = [
'points_to_morton',
'morton_to_points',
'points_to_corners',
'coords_to_trilinear',
'unbatched_points_to_octree',
'quantize_points'
]
import torch
from kaolin import _C
def quantize_points(x, level):
r"""Quantize :math:`[-1, 1]` float coordinates in to
:math:`[0, (2^{level})-1]` integer coords.
If a point is out of the range :math:`[-1, 1]` it will be clipped to it.
Args:
x (torch.FloatTensor): Floating point coordinates,
must be of last dimension 3.
level (int): Level of the grid
Returns
(torch.ShortTensor): Quantized 3D points, of same shape than x.
"""
res = 2 ** level
qpts = torch.floor(torch.clamp(res * (x + 1.0) / 2.0, 0, res - 1.)).short()
return qpts
def unbatched_points_to_octree(points, level, sorted=False):
r"""Convert (quantized) 3D points to an octree.
This function assumes that the points are all in the same frame of reference
of :math:`[0, 2^level]`. Note that SPC.points does not satisfy this constraint.
Args:
points (torch.ShortTensor):
The Quantized 3d points. This is not exactly like SPC points hierarchies
as this is only the data for a specific level.
level (int): Max level of octree, and the level of the points.
sorted (bool): True if the points are unique and sorted in morton order.
Returns:
(torch.ByteTensor):
the generated octree,
of shape :math:`(2^\text{level}, 2^\text{level}, 2^\text{level})`.
"""
if not sorted:
unique = torch.unique(points.contiguous(), dim=0).contiguous()
morton = torch.sort(points_to_morton(unique).contiguous())[0]
points = morton_to_points(morton.contiguous())
return _C.ops.spc.points_to_octree(points.contiguous(), level)
def points_to_morton(points):
r"""Convert (quantized) 3D points to morton codes.
Args:
points (torch.ShortTensor):
Quantized 3D points. This is not exactly like SPC points hierarchies
as this is only the data for a specific level,
of shape :math:`(\text{num_points}, 3)`.
Returns:
(torch.LongTensor):
The morton code of the points,
of shape :math:`(\text{num_points})`
Examples:
>>> inputs = torch.tensor([
... [0, 0, 0],
... [0, 0, 1],
... [0, 0, 2],
... [0, 0, 3],
... [0, 1, 0]], device='cuda', dtype=torch.int16)
>>> points_to_morton(inputs)
tensor([0, 1, 8, 9, 2], device='cuda:0')
"""
shape = list(points.shape)[:-1]
points = points.reshape(-1, 3)
return _C.ops.spc.points_to_morton_cuda(points.contiguous()).reshape(*shape)
def morton_to_points(morton):
r"""Convert morton codes to points.
Args:
morton (torch.LongTensor): The morton codes of quantized 3D points,
of shape :math:`(\text{num_points})`.
Returns:
(torch.ShortInt):
The points quantized coordinates,
of shape :math:`(\text{num_points}, 3)`.
Examples:
>>> inputs = torch.tensor([0, 1, 8, 9, 2], device='cuda')
>>> morton_to_points(inputs)
tensor([[0, 0, 0],
[0, 0, 1],
[0, 0, 2],
[0, 0, 3],
[0, 1, 0]], device='cuda:0', dtype=torch.int16)
"""
shape = list(morton.shape)
shape.append(3)
morton = morton.reshape(-1)
return _C.ops.spc.morton_to_points_cuda(morton.contiguous()).reshape(*shape)
def points_to_corners(points):
r"""Calculates the corners of the points assuming each point is the 0th bit corner.
Args:
points (torch.ShortTensor): Quantized 3D points,
of shape :math:`(\text{num_points}, 3)`.
Returns:
(torch.ShortTensor):
Quantized 3D new points,
of shape :math:`(\text{num_points}, 8, 3)`.
Examples:
>>> inputs = torch.tensor([
... [0, 0, 0],
... [0, 2, 0]], device='cuda', dtype=torch.int16)
>>> points_to_corners(inputs)
tensor([[[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]],
<BLANKLINE>
[[0, 2, 0],
[0, 2, 1],
[0, 3, 0],
[0, 3, 1],
[1, 2, 0],
[1, 2, 1],
[1, 3, 0],
[1, 3, 1]]], device='cuda:0', dtype=torch.int16)
"""
shape = list(points.shape)
shape.insert(-1, 8)
return _C.ops.spc.points_to_corners_cuda(points.contiguous()).reshape(*shape)
def coords_to_trilinear(coords, points):
r"""Calculates the coefficients for trilinear interpolation.
To interpolate with the coefficients, do:
``torch.sum(features * coeffs, dim=-1)``
with ``features`` of shape :math:`(\text{num_points}, 8)`
Args:
coords (torch.FloatTensor): Floating point 3D points,
of shape :math:`(\text{num_points}, 3)`.
points (torch.ShortTensor): Quantized 3D points (the 0th bit of the voxel x is in),
of shape :math:`(\text{num_points}, 3)`.
Returns:
(torch.FloatTensor):
The trilinear interpolation coefficients,
of shape :math:`(\text{num_points}, 8)`.
"""
shape = list(points.shape)
shape[-1] = 8
points = points.reshape(-1, 3)
coords = coords.reshape(-1, 3)
return _C.ops.spc.coords_to_trilinear_cuda(coords.contiguous(), points.contiguous()).reshape(*shape)
|
silence394/GraphicsSamples
|
Nvida Samples/kaolin/kaolin/ops/spc/points.py
|
points.py
|
py
| 5,820 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30099457858
|
from unittest.mock import Mock
from .imapclient_test import IMAPClientTest
class TestFolderStatus(IMAPClientTest):
def test_basic(self):
self.client._imap.status.return_value = (
"OK",
[b"foo (MESSAGES 3 RECENT 0 UIDNEXT 4 UIDVALIDITY 1435636895 UNSEEN 0)"],
)
out = self.client.folder_status("foo")
self.client._imap.status.assert_called_once_with(
b'"foo"', "(MESSAGES RECENT UIDNEXT UIDVALIDITY UNSEEN)"
)
self.assertDictEqual(
out,
{
b"MESSAGES": 3,
b"RECENT": 0,
b"UIDNEXT": 4,
b"UIDVALIDITY": 1435636895,
b"UNSEEN": 0,
},
)
def test_literal(self):
self.client._imap.status.return_value = (
"OK",
[(b"{3}", b"foo"), b" (UIDNEXT 4)"],
)
out = self.client.folder_status("foo", ["UIDNEXT"])
self.client._imap.status.assert_called_once_with(b'"foo"', "(UIDNEXT)")
self.assertDictEqual(out, {b"UIDNEXT": 4})
def test_extra_response(self):
# In production, we've seen folder names containing spaces come back
# like this and be broken into two components in the tuple.
server_response = [b"My files (UIDNEXT 24369)"]
mock = Mock(return_value=server_response)
self.client._command_and_check = mock
resp = self.client.folder_status("My files", ["UIDNEXT"])
self.assertEqual(resp, {b"UIDNEXT": 24369})
# We've also seen the response contain mailboxes we didn't
# ask for. In all known cases, the desired mailbox is last.
server_response = [b"sent (UIDNEXT 123)\nINBOX (UIDNEXT 24369)"]
mock = Mock(return_value=server_response)
self.client._command_and_check = mock
resp = self.client.folder_status("INBOX", ["UIDNEXT"])
self.assertEqual(resp, {b"UIDNEXT": 24369})
|
mjs/imapclient
|
tests/test_folder_status.py
|
test_folder_status.py
|
py
| 1,969 |
python
|
en
|
code
| 466 |
github-code
|
6
|
18020255074
|
import random,argparse,sys
parser = argparse.ArgumentParser()
import numpy as np
class PlannerEncoder:
def __init__(self, opponent, p,q) -> None:
self.p = p; self.q = q
self.idx_to_states = {}
self.opp_action_probs = {}
with open(opponent,'r') as file:
i = 0
for line in file:
parts = line.split()
if parts[0] == 'state':
continue
if len(parts[0]) == 7:
self.idx_to_states[i] = parts[0]
self.opp_action_probs[parts[0]] = [float(parts[1]), float(parts[2]), float(parts[3]), float(parts[4])]
i+=1
self.idx_to_states[i] = 'lost' # both of these are terminal states
self.idx_to_states[i+1] = 'goal'
self.states_to_idx = {}
for i in self.idx_to_states:
self.states_to_idx[self.idx_to_states[i]] = i
self.S = len(self.idx_to_states)
self.A = 10
# Next step is to calculate probs based on different situations
def player_pos(self, player, action):
new = None
if action ==0:
new = player -1
if (new-1)//4 == (player-1)//4 and new > 0 and new < 17:
player = new
elif action == 1:
new = player +1
if (new-1)//4 == (player-1)//4 and new > 0 and new < 17:
player = new
elif action ==2:
new = player - 4
if new > 0 and new < 17:
player = new
elif action ==3:
new = player + 4
if new > 0 and new < 17:
player = new
return player
def state_after_action(self, curr_state, a):
b1_int = int(curr_state[:2])
b2_int = int(curr_state[2:4])
r_int = int(curr_state[4:6])
ball_int = int(curr_state[-1])
if a <4:
b1_int = self.player_pos(b1_int, a)
elif a < 8:
b2_int = self.player_pos(b2_int, a - 4)
elif a == 8:
if ball_int ==1:
ball_int = 2
elif ball_int ==2:
ball_int = 1
elif a == 9:
return 'goal'
b1_str = str(b1_int) ; b2_str = str(b2_int)
r_str = str(r_int)
ball_str = str(ball_int)
if len(b1_str)==1:
b1_str = '0' + b1_str
if len(b2_str)==1:
b2_str = '0' + b2_str
if len(r_str)==1:
r_str = '0' + r_str
new_state = b1_str + b2_str + r_str + ball_str
return new_state
def cordinates(self, state):
b1 = int(state[:2]); b2 = int(state[2:4]); r = int(state[-3:-1])
b1_cor = ( (b1 -1)//4 , (b1-1)%4 )
b2_cor = ( (b2 -1)//4 , (b2-1)%4 )
r_cor = ( (r -1)//4 , (r-1)%4 )
return [b1_cor, b2_cor, r_cor]
def transition_function(self, current_s, next_s, action):
ball_pos = int(current_s[-1])
if action <4:
if ball_pos == 1:
b1_old = current_s[:2] ; r_old = current_s[-3:-1]
b1_new = next_s[:2] ; r_new = next_s[-3:-1]
if b1_new == r_new:
return (0.5 - self.p, 0.5 + self.p)
elif b1_old == r_new and b1_new == r_old:
return (0.5 - self.p, 0.5 + self.p)
else:
return (1- self.p, self.p)
elif ball_pos == 2:
return (1- self.p, self.p)
elif action <8:
if ball_pos == 1:
return (1-self.p, self.p)
elif ball_pos == 2:
b2_old = current_s[2:4] ; r_old = current_s[-3:-1]
b2_new = next_s[2:4] ; r_new = next_s[-3:-1]
if b2_new == r_new:
return (0.5 - self.p, 0.5 + self.p)
elif b2_old == r_new and b2_new == r_old:
return (0.5 - self.p, 0.5 + self.p)
else:
return (1- self.p, self.p)
if action ==8:
b1_cor, b2_cor, r_cor = self.cordinates(next_s)
val = self.q - 0.1*max( abs(b1_cor[0] - b2_cor[0]), abs(b1_cor[1] - b2_cor[1]))
if b1_cor[0] == r_cor[0] and b2_cor[0] == r_cor[0]:
return (0.5*val, 1 - 0.5*val)
elif b1_cor == r_cor or b2_cor == r_cor:
return (0.5*val, 1 - 0.5*val)
elif ((b1_cor[1]- r_cor[1])/(b1_cor[0] - r_cor[0] + 1e-3)) == ((r_cor[1] - b2_cor[1])/(r_cor[0]- b2_cor[0] + 1e-3)):
return (0.5*val, 1 - 0.5*val)
else:
return (val, 1- val)
if action ==9:
b1_cor, b2_cor, r_cor = self.cordinates(next_s)
ball_pos = int(current_s[-1])
if ball_pos ==1:
val = self.q - 0.2*(3 - b1_cor[1]) # NOTE my x,y are reverse to the one used in the assgn description
# I use like the matrix 0,1 axis
if r_cor[0]>0 and r_cor[0]<3 and r_cor[1]>1:
return (0.5*val, 1- 0.5*val)
else:
return( val, 1-val)
elif ball_pos ==2:
val = self.q - 0.2*(3 - b2_cor[1]) # NOTE
if r_cor[0]>0 and r_cor[0]<3 and r_cor[1]>1:
return (0.5*val, 1- 0.5*val)
else:
return( val, 1-val)
def calculate_trans_probs(self):
self.trans_probs = np.zeros((self.S, self.A, self.S))
for s in range(self.S - 2): # we don't start from lost and goal state
current_s = self.idx_to_states[s]
for a in range(self.A):
if a <9:
new_state = self.state_after_action(current_s, a)
if new_state != current_s:
r_int = int(current_s[-3:-1])
for i, prob_opp in enumerate(self.opp_action_probs[current_s]):
# now for the current_s you will get a reaction from the opponent
if prob_opp !=0:
r_str = str(self.player_pos(r_int, i)) # 'i' would give the action for R
if len(r_str)==1:
r_str = '0' + r_str # NOTE: I hope the prob's are zero when the R is at the edge
next_s = new_state[:4] + r_str + new_state[-1]
# Now let's call a helper function to give prob. # It looks if there is tackling or intergecting etc...
# it's inputs would be current_s and next_s and the action taking place.
prob_s, prob_f = self.transition_function(current_s, next_s, a)
self.trans_probs[self.states_to_idx[current_s], a, self.states_to_idx[next_s]] = prob_opp*prob_s
self.trans_probs[self.states_to_idx[current_s], a, self.states_to_idx['lost']] = prob_opp*prob_f
else:
self.trans_probs[self.states_to_idx[current_s], a, self.states_to_idx['lost']] = 1 # regardless of what R does if you take a non feasible action then lossing is 1
elif a ==9: # this has to be separate because state_after_action function gives 'goal' for this so u can't slice like before.
new_state = current_s[:]
for i, prob_opp in enumerate(self.opp_action_probs[current_s]):
if prob_opp != 0:
r_int = int(current_s[-3:-1])
r_str = str(self.player_pos(r_int, i)) # 'i' would give the action for R
if len(r_str)==1:
r_str = '0' + r_str # NOTE: I hope the prob's are zero when the R is at the edge
next_s = new_state[:4] + r_str + new_state[-1]
prob_s, prob_f = self.transition_function(current_s, next_s, a)
self.trans_probs[self.states_to_idx[current_s], a, self.states_to_idx['goal']] = prob_opp*prob_s
self.trans_probs[self.states_to_idx[current_s], a, self.states_to_idx['lost']] = prob_opp*prob_f
self.rewards = np.zeros((self.S, self.A, self.S))
self.rewards[:,:,8192] = -1
self.rewards[:,:,8193] = 1
def save_transition_probabilities_and_rewards(self, filename):
self.calculate_trans_probs()
trans_probs = self.trans_probs
rewards = self.rewards
num_states, num_actions, _ = trans_probs.shape
with open(filename, 'w') as file:
file.write(f"numStates {num_states}\n")
file.write(f"numActions {num_actions}\n")
file.write("end 8192 8193\n")
for s in range(num_states - 2): # Exclude terminal states 'lost' and 'goal'
for a in range(num_actions):
for s_prime in range(num_states):
prob = trans_probs[s, a, s_prime]
reward = rewards[s, a, s_prime]
if prob != 0 or reward != 0:
file.write(f"transition {s} {a} {s_prime} {prob} {reward}\n")
file.write("mdptype episodic\n")
file.write("discount 0.9\n")
# Example usage:
if __name__ == "__main__":
parser.add_argument("--opponent",type=str,default='./data/football/test-1.txt')
parser.add_argument("--p", type=float)
parser.add_argument("--q", type=float)
args = parser.parse_args()
if not (args.p <=1.0 and args.p >=0.0):
print("p is a probability, should be btw 0,1")
sys.exit(0)
if not (args.q<=1.0 and args.q >=0.0):
print("q is a probability, should be btw 0,1")
sys.exit(0)
enco = PlannerEncoder(args.opponent, args.p, args.q)
enco.save_transition_probabilities_and_rewards('t-2.txt')
|
kiluazen/ReinforcementLearning
|
Policy Iteration/encoder.py
|
encoder.py
|
py
| 10,197 |
python
|
en
|
code
| 0 |
github-code
|
6
|
37686992982
|
import socket
import random
server_address = ('127.0.0.1', 5001)
server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server_socket.bind(server_address)
while True:
data, client_address = server_socket.recvfrom(1024)
if random.randint(0, 1):
server_socket.sendto(data, client_address)
print('data:', data, 'client address', client_address)
print('sock name', server_socket.getsockname())
else:
print('server is down')
|
studiawan/network-programming
|
bab07/server-udp2.py
|
server-udp2.py
|
py
| 549 |
python
|
en
|
code
| 10 |
github-code
|
6
|
25145650810
|
import pytest
import datetime
import pytz
from mixer.backend.django import mixer
from telegram_message_api.helpers import (
ParsedData, ParseText, CategoryData,
)
@pytest.mark.parametrize(
'text', [
'150 test',
'150 test 150',
'150',
]
)
def test_parsetext_dataclass(text):
"""Testing a ParseText parse text method"""
result = ParseText(text)()
if result:
assert result.amount == '150'
assert result.expense == 'test'
else:
assert result == None
def test_categorydata_dataclass(db):
"""Testing a CategoryData"""
category = mixer.blend('core.category')
result = CategoryData(
expense_text='150 test',
category=category
)()
tz = pytz.timezone("Europe/Moscow")
now = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
assert result == {
'amount': '150',
'created': now,
'category': category,
'expense_text': '150 test',
}
|
enamsaraev/telegram_bot_api
|
telegram_message_api/tests/test_helpers.py
|
test_helpers.py
|
py
| 1,071 |
python
|
en
|
code
| 0 |
github-code
|
6
|
30455799471
|
import pandas as pd
import tensorflow as tf
import argparse
from . import data
TRAIN_URL = data.TRAIN_URL
TEST_URL = data.TEST_URL
CSV_COLUMN_NAMES = data.CSV_COLUMN_NAMES
LABELS = data.LABELS
def maybe_download():
train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
return train_path, test_path
def load_data(y_name='Labels'):
"""Returns the dataset as (train_x, train_y), (test_x, test_y)."""
train_path, test_path = maybe_download()
train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
train_x, train_y = train, train.pop(y_name)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
test_x, test_y = test, test.pop(y_name)
return (train_x, train_y), (test_x, test_y)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle(1000).repeat().batch(batch_size)
# Return the dataset.
return dataset
def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation"""
features = dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels)
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs)
# Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size)
# Return the dataset.
return dataset
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000,
type=int, help='number of training steps')
globalClassifier = None
globalArgs = None
def main(argv):
args = parser.parse_args(argv[1:])
# Fetch the data
(train_x, train_y), (test_x, test_y) = load_data()
# Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
# Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns, hidden_units=[10, 10], n_classes=25)
# Train the Model.
classifier.train(input_fn=lambda: train_input_fn(
train_x, train_y, args.batch_size), steps=args.train_steps)
# Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda: eval_input_fn(test_x, test_y, args.batch_size))
# Set global variables
global globalClassifier
global globalArgs
globalClassifier = classifier
globalArgs = args
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
def getModelData():
return globalClassifier, globalArgs
|
RajithaKumara/Best-Fit-Job-ML
|
classifier/estimator/model.py
|
model.py
|
py
| 3,077 |
python
|
en
|
code
| 1 |
github-code
|
6
|
858848514
|
from __future__ import division
from HTMLParser import HTMLParser
import os
import re
from .https_if_available import build_opener
re_url = re.compile(r'^(([a-zA-Z_-]+)://([^/]+))(/.*)?$')
def resolve_link(link, url):
m = re_url.match(link)
if m is not None:
if not m.group(4):
# http://domain -> http://domain/
return link + '/'
else:
return link
elif link[0] == '/':
# /some/path
murl = re_url.match(url)
return murl.group(1) + link
else:
# relative/path
if url[-1] == '/':
return url + link
else:
return url + '/' + link
class ListingParser(HTMLParser):
"""Parses an HTML file and build a list of links.
Links are stored into the 'links' set. They are resolved into absolute
links.
"""
def __init__(self, url):
HTMLParser.__init__(self)
if url[-1] != '/':
url += '/'
self.__url = url
self.links = set()
def handle_starttag(self, tag, attrs):
if tag == 'a':
for key, value in attrs:
if key == 'href':
if not value:
continue
value = resolve_link(value, self.__url)
self.links.add(value)
break
def download_directory(url, target, insecure=False):
def mkdir():
if not mkdir.done:
try:
os.mkdir(target)
except OSError:
pass
mkdir.done = True
mkdir.done = False
opener = build_opener(insecure=insecure)
response = opener.open(url)
if response.info().type == 'text/html':
contents = response.read()
parser = ListingParser(url)
parser.feed(contents)
for link in parser.links:
link = resolve_link(link, url)
if link[-1] == '/':
link = link[:-1]
if not link.startswith(url):
continue
name = link.rsplit('/', 1)[1]
if '?' in name:
continue
mkdir()
download_directory(link, os.path.join(target, name), insecure)
if not mkdir.done:
# We didn't find anything to write inside this directory
# Maybe it's a HTML file?
if url[-1] != '/':
end = target[-5:].lower()
if not (end.endswith('.htm') or end.endswith('.html')):
target = target + '.html'
with open(target, 'wb') as fp:
fp.write(contents)
else:
buffer_size = 4096
with open(target, 'wb') as fp:
chunk = response.read(buffer_size)
while chunk:
fp.write(chunk)
chunk = response.read(buffer_size)
###############################################################################
import unittest
class TestLinkResolution(unittest.TestCase):
def test_absolute_link(self):
self.assertEqual(
resolve_link('http://website.org/p/test.txt',
'http://some/other/url'),
'http://website.org/p/test.txt')
self.assertEqual(
resolve_link('http://website.org',
'http://some/other/url'),
'http://website.org/')
def test_absolute_path(self):
self.assertEqual(
resolve_link('/p/test.txt', 'http://some/url'),
'http://some/p/test.txt')
self.assertEqual(
resolve_link('/p/test.txt', 'http://some/url/'),
'http://some/p/test.txt')
self.assertEqual(
resolve_link('/p/test.txt', 'http://site'),
'http://site/p/test.txt')
self.assertEqual(
resolve_link('/p/test.txt', 'http://site/'),
'http://site/p/test.txt')
def test_relative_path(self):
self.assertEqual(
resolve_link('some/file', 'http://site/folder'),
'http://site/folder/some/file')
self.assertEqual(
resolve_link('some/file', 'http://site/folder/'),
'http://site/folder/some/file')
self.assertEqual(
resolve_link('some/dir/', 'http://site/folder'),
'http://site/folder/some/dir/')
class TestParser(unittest.TestCase):
def test_parse(self):
parser = ListingParser('http://a.remram.fr/test')
parser.feed("""
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html><head><title>
Index of /test</title></head><body><h1>Index of /test</h1><table><tr><th>
<img src="/icons/blank.gif" alt="[ICO]"></th><th><a href="?C=N;O=D">Name</a>
</th><th><a href="?C=M;O=A">Last modified</a></th><th><a href="?C=S;O=A">Size
</a></th><th><a href="?C=D;O=A">Description</a></th></tr><tr><th colspan="5">
<hr></th></tr><tr><td valign="top"><img src="/icons/back.gif" alt="[DIR]"></td>
<td><a href="/">Parent Directory</a></td><td> </td><td align="right"> -
</td><td> </td></tr><tr><td valign="top">
<img src="/icons/unknown.gif" alt="[ ]"></td><td><a href="a">a</a></td>
<td align="right">11-Sep-2013 15:46 </td><td align="right"> 3 </td><td>
</td></tr><tr><td valign="top"><img src="/icons/unknown.gif" alt="[ ]"></td>
<td><a href="/bb">bb</a></td><td align="right">11-Sep-2013 15:46 </td>
<td align="right"> 3 </td><td> </td></tr><tr><td valign="top">
<img src="/icons/folder.gif" alt="[DIR]"></td><td><a href="/cc/">cc/</a></td>
<td align="right">11-Sep-2013 15:46 </td><td align="right"> - </td><td>
</td></tr><tr><td valign="top"><img src="/icons/folder.gif" alt="[DIR]"></td>
<td><a href="http://a.remram.fr/dd">dd/</a></td><td align="right">
11-Sep-2013 15:46 </td><td align="right"> - </td><td> </td></tr><tr>
<th colspan="5"><hr></th></tr></table></body></html>
""")
links = set(l for l in parser.links if '?' not in l)
self.assertEqual(links, set([
'http://a.remram.fr/',
'http://a.remram.fr/test/a',
'http://a.remram.fr/bb',
'http://a.remram.fr/cc/',
'http://a.remram.fr/dd',
]))
|
VisTrails/VisTrails
|
vistrails/packages/URL/http_directory.py
|
http_directory.py
|
py
| 6,294 |
python
|
en
|
code
| 100 |
github-code
|
6
|
5432720139
|
from sklearn.metrics import pairwise_distances
import numpy as np
import pandas as pd
from scipy.sparse import spmatrix
from anndata import AnnData
from scipy.stats import rankdata
from typing import Optional
from . import logger
from .symbols import NOVEL, REMAIN, UNASSIGN
class Distance():
"""
Class that deals with the cross-dataset cell-by-cell-type distance matrix.
Parameters
----------
dist_mat
Cell-by-cell-type distance matrix.
cell
Cell meta-information including at least `'dataset'`, `'ID'` and `'cell_type'`.
cell_type
Cell type meta-information including at least `'dataset'` and `'cell_type'`.
Attributes
----------
dist_mat
A cell-by-cell-type distance matrix.
cell
Cell meta-information including `'dataset'`, `'ID'` and `'cell_type'`.
cell_type
Cell type meta-information including `'dataset'` and `'cell_type'`.
n_cell
Number of cells involved.
n_cell_type
Number of cell types involved.
shape
Tuple of number of cells and cell types.
assignment
Assignment of each cell to the most similar cell type in each dataset (obtained through the `assign` method).
"""
def __init__(self, dist_mat: np.ndarray, cell: pd.DataFrame, cell_type: pd.DataFrame):
self.dist_mat = dist_mat
if cell.shape[0] != self.dist_mat.shape[0]:
raise ValueError(
f"🛑 Number of cells in `cell` does not match the cell number in `dist_mat`")
if cell_type.shape[0] != self.dist_mat.shape[1]:
raise ValueError(
f"🛑 Number of cell types in `cell_type` does not match the cell type number in `dist_mat`")
if not {'dataset', 'ID', 'cell_type'}.issubset(set(cell.columns)):
raise KeyError(
f"🛑 Please include `'dataset'`, `'ID'` and `'cell_type'` as the cell meta-information")
if not {'dataset', 'cell_type'}.issubset(set(cell_type.columns)):
raise KeyError(
f"🛑 Please include `'dataset'` and `'cell_type'` as the cell type meta-information")
self.cell = cell
self.cell_type = cell_type
@property
def n_cell(self) -> int:
"""Number of cells."""
return self.dist_mat.shape[0]
@property
def n_cell_type(self) -> int:
"""Number of cell types."""
return self.dist_mat.shape[1]
@property
def shape(self) -> tuple:
"""Numbers of cells and cell types."""
return self.dist_mat.shape
def __repr__(self):
lend = len(np.unique(self.cell_type.dataset))
if lend > 1:
base = f"Cross-dataset distance matrix between {self.n_cell} cells and {self.n_cell_type} cell types from {lend} datasets"
else:
base = f"Distance matrix between {self.n_cell} cells and {self.n_cell_type} cell types"
base += f"\n dist_mat: distance matrix between {self.n_cell} cells and {self.n_cell_type} cell types"
base += f"\n cell: cell meta-information ({str(list(self.cell.columns))[1:-1]})"
base += f"\n cell_type: cell type meta-information ({str(list(self.cell_type.columns))[1:-1]})"
if hasattr(self, 'assignment'):
base += f"\n assignment: data frame of cross-dataset cell type assignment"
return base
@staticmethod
def from_adata(adata: AnnData, dataset: str, cell_type: str, use_rep: Optional[str] = None, metric: Optional[str] = None, n_jobs: Optional[int] = None, check_params: bool = True, **kwargs):
"""
Generate a :class:`~cellhint.distance.Distance` object from the :class:`~anndata.AnnData` given.
Parameters
----------
adata
An :class:`~anndata.AnnData` object containing different datasets/batches and cell types.
In most scenarios, the format of the expression `.X` in the AnnData is flexible (normalized, log-normalized, z-scaled, etc.).
However, when `use_rep` is specified as `'X'` (or `X_pca` is not detected in `.obsm` and no other latent representations are provided), `.X` should be log-normalized (to a constant total count per cell).
dataset
Column name (key) of cell metadata specifying dataset information.
cell_type
Column name (key) of cell metadata specifying cell type information.
use_rep
Representation used to calculate distances. This can be `'X'` or any representations stored in `.obsm`.
Default to the PCA coordinates if present (if not, use the expression matrix `X`).
metric
Metric to calculate the distance between each cell and each cell type. Can be `'euclidean'`, `'cosine'`, `'manhattan'` or any metrics applicable to :func:`sklearn.metrics.pairwise_distances`.
Default to `'euclidean'` if latent representations are used for calculating distances, and to `'correlation'` if the expression matrix is used.
n_jobs
Number of CPUs used. Default to one CPU. `-1` means all CPUs are used.
check_params
Whether to check (or set the default) for `dataset`, `cell_type`, `use_rep` and `metric`.
(Default: `True`)
**kwargs
Other keyword arguments passed to :func:`sklearn.metrics.pairwise_distances`.
Returns
----------
:class:`~cellhint.distance.Distance`
A :class:`~cellhint.distance.Distance` object representing the cross-dataset cell-by-cell-type distance matrix.
"""
#Use `check_params = False` if `dataset`, `cell_type`, `use_rep` and `metric` are already provided correctly.
if check_params:
if dataset not in adata.obs:
raise KeyError(
f"🛑 '{dataset}' is not found in the provided AnnData")
if cell_type not in adata.obs:
raise KeyError(
f"🛑 '{cell_type}' is not found in the provided AnnData")
if use_rep is None:
if 'X_pca' in adata.obsm.keys():
logger.info(f"👀 Detected PCA coordinates in the object, will use these to calculate distances")
use_rep = 'X_pca'
else:
logger.info(f"🧙 Using the expression matrix to calculate distances")
use_rep = 'X'
elif (use_rep not in adata.obsm.keys()) and (use_rep != 'X'):
raise KeyError(
f"🛑 '{use_rep}' is not found in `.obsm`")
if use_rep == 'X' and adata.n_vars > 15000:
logger.warn(f"⚠️ Warning: {adata.n_vars} features are used for calculating distances. Subsetting the AnnData into HVGs is recommended")
if metric is None:
metric = 'correlation' if use_rep == 'X' else 'euclidean'
Cell_X = adata.X if use_rep == 'X' else adata.obsm[use_rep]
IDs = adata.obs_names
datasets = adata.obs[dataset].astype(str).values
celltypes = adata.obs[cell_type].astype(str).values
use_Cell_X = Cell_X if use_rep != 'X' else np.expm1(Cell_X)
Celltype_X = []
col_ds = []
col_cs =[]
for d in np.unique(datasets):
for c in np.unique(celltypes[datasets == d]):
col_cs.append(c)
col_ds.append(d)
m = use_Cell_X[(datasets == d) & (celltypes == c), :].mean(axis = 0)
Celltype_X.append(m.A1 if isinstance(m, np.matrix) else m)
Celltype_X = np.log1p(np.array(Celltype_X)) if use_rep == 'X' else np.array(Celltype_X)
if metric not in ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']:
if isinstance(Cell_X, spmatrix):
Cell_X = Cell_X.toarray()
if isinstance(Celltype_X, spmatrix):
Celltype_X = Celltype_X.toarray()
dist_mat = pairwise_distances(Cell_X, Celltype_X, metric = metric, n_jobs = n_jobs, **kwargs)
cell = pd.DataFrame(dict(dataset=datasets, ID=IDs, cell_type=celltypes))
cell_type = pd.DataFrame(dict(dataset=col_ds, cell_type=col_cs))
return Distance(dist_mat, cell, cell_type)
def normalize(self, Gaussian_kernel: bool = False, rank: bool = True, normalize: bool = True) -> None:
"""
Normalize the distance matrix with a Gaussian kernel.
Parameters
----------
Gaussian_kernel
Whether to apply the Gaussian kernel to the distance matrix.
(Default: `False`)
rank
Whether to turn the matrix into a rank matrx.
(Default: `True`)
normalize
Whether to maximum-normalize the distance matrix.
(Default: `True`)
Returns
----------
None
The :class:`~cellhint.distance.Distance` object modified with a normalized distance matrix.
"""
if Gaussian_kernel:
sds = np.sqrt((self.dist_mat ** 2).sum(axis = 1) / self.n_cell_type)[:, np.newaxis]
self.dist_mat = np.exp(- self.dist_mat / (2 / sds)**2)
self.dist_mat = 1 - self.dist_mat / self.dist_mat.sum(axis = 1)[:, np.newaxis]
if rank:
self.dist_mat = rankdata(self.dist_mat).reshape(self.dist_mat.shape)
if normalize:
self.dist_mat = self.dist_mat / self.dist_mat.max()
def concatenate(self, *distances, by: str = 'cell', check: bool = False):
"""
Concatenate by either cells (rows) or cell types (columns).
Parameters
----------
distances
A :class:`~cellhint.distance.Distance` object or a list of such objects.
by
The direction of concatenation, joining either cells (`'cell'`, rows) or cell types (`'cell_type'`, columns).
(Default: `'cell'`)
check
Check whether the concatenation is feasible.
(Default: `False`)
Returns
----------
:class:`~cellhint.distance.Distance`
A :class:`~cellhint.distance.Distance` object concatenated along cells (`by = 'cell'`) or cell types (`by = 'cell_type'`).
"""
distances = distances[0] if isinstance(distances[0], (list, tuple, set)) else distances
distances = tuple(distances)
all_distances = (self,) + distances
if by not in ['cell', 'cell_type']:
raise ValueError(
f"🛑 Unrecognized `by` value, should be one of `'cell'` or `'cell_type'`")
if check:
series_compare = [(x.cell_type.dataset+x.cell_type.cell_type).sort_values() for x in all_distances] if by == 'cell' else [(x.cell.dataset+x.cell.ID).sort_values() for x in all_distances]
if pd.concat(series_compare, axis = 1).T.drop_duplicates().shape[0] > 1:
raise Exception(
f"🛑 Concatenation is not feasible. Please ensure the meta-information is matched")
if by == 'cell':
dist_mat = np.concatenate([x.dist_mat for x in all_distances], axis = 0)
cell = pd.concat([x.cell for x in all_distances], axis = 0, ignore_index = True)
return Distance(dist_mat, cell, self.cell_type)
else:
match_base = (self.cell.dataset+self.cell.ID).reset_index().set_index(0)
indices = [np.argsort(match_base.loc[x.cell.dataset+x.cell.ID, 'index'].values) for x in distances]
dist_mat = np.concatenate([self.dist_mat] + [x.dist_mat[y, :] for x,y in zip(distances, indices)], axis = 1)
cell_type = pd.concat([x.cell_type for x in all_distances], axis = 0, ignore_index = True)
return Distance(dist_mat, self.cell, cell_type)
def symmetric(self) -> bool:
"""
Check whether the distance matrix is symmetric in terms of datasets and cell types.
Returns
----------
bool
`True` or `False` indicating whether all datasets and cell types are included in the object (thus symmetric).
"""
return np.array_equal(np.unique(self.cell.dataset + self.cell.cell_type), np.unique(self.cell_type.dataset + self.cell_type.cell_type))
def filter_cells(self, check_symmetry: bool = True) -> None:
"""
Filter out cells whose gene expression profiles do not correlate most with the eigen cell they belong to (i.e., correlate most with other cell types).
Parameters
----------
check_symmetry
Whether to check the symmetry of the distance matrix in terms of datasets and cell types.
(Default: `True`)
Returns
----------
None
A :class:`~cellhint.distance.Distance` object with undesirable cells filtered out.
"""
if check_symmetry and not self.symmetric():
raise ValueError(
f"🛑 Cell filtering is not possible. Please provide the matrix with symmetric datasets and cell types")
bool_cell = np.ones(self.n_cell, dtype=bool)
for i, s in self.cell.iterrows():
flag_dataset = self.cell_type.dataset == s['dataset']
if self.cell_type.cell_type.values[flag_dataset][self.dist_mat[i][flag_dataset].argmin()] != s['cell_type']:
bool_cell[i] = False
if (~bool_cell).sum() == 0:
logger.info(f"✂️ No cells are filtered out")
else:
ds_unique, ds_table = np.unique(self.cell.dataset.values[~bool_cell], return_counts = True)
if len(ds_unique) == 1:
logger.info(f"✂️ {(~bool_cell).sum()} cells are filtered out from {ds_unique[0]}")
else:
logger.info(f"✂️ {(~bool_cell).sum()} cells are filtered out, including:")
for m, n in zip(ds_unique, ds_table):
logger.info(f" {n} cells from {m}")
self.dist_mat = self.dist_mat[bool_cell]
self.cell = self.cell[bool_cell]
all_combine = (self.cell_type.dataset + ': ' + self.cell_type.cell_type).values
left_combine = np.unique(self.cell.dataset + ': ' + self.cell.cell_type)
if len(left_combine) < len(all_combine):
column_keep = np.isin(all_combine, left_combine)
self.dist_mat = self.dist_mat[:, column_keep]
self.cell_type = self.cell_type[column_keep]
logger.info(f"✂️ The following cell types are discarded due to low confidence in annotation:")
for rec in all_combine[~column_keep]:
logger.info(f" {rec}")
def to_meta(self, check_symmetry: bool = True, turn_binary: bool = False, return_symmetry: bool = True) -> pd.DataFrame:
"""
Meta-analysis of cross-dataset cell type dissimilarity or membership.
Parameters
----------
check_symmetry
Whether to check the symmetry of the distance matrix in terms of datasets and cell types.
(Default: `True`)
turn_binary
Whether to turn the distance matrix into a cell type membership matrix before meta analysis.
(Default: `False`)
return_symmetry
Whether to return a symmetric dissimilarity matrix by averaging with its transposed form.
(Default: `True`)
Returns
----------
:class:`~pandas.DataFrame`
A :class:`~pandas.DataFrame` object representing the cell-type-level dissimilarity matrix (`turn_binary = False`) or membership matrix (`turn_binary = True`).
"""
if check_symmetry and not self.symmetric():
raise ValueError(
f"🛑 Meta cell analysis is not possible. Concatenate all datasets and cell types beforehand using `concatenate`")
use_mat = self.to_binary(False if check_symmetry else True).dist_mat if turn_binary else self.dist_mat
meta_cell = []
for _, s in self.cell_type.iterrows():
meta_cell.append(use_mat[(self.cell.dataset == s['dataset']) & (self.cell.cell_type == s['cell_type']), :].mean(axis = 0))
meta_cell = pd.DataFrame(np.array(meta_cell))
meta_cell.index = (self.cell_type.dataset + ': ' + self.cell_type.cell_type).values
meta_cell.columns = meta_cell.index
return (meta_cell + meta_cell.T)/2 if return_symmetry else meta_cell
def to_binary(self, check_symmetry: bool = True):
"""
Turn the distance matrix into a binary matrix representing the estimated cell type membership across datasets.
Parameters
----------
check_symmetry
Whether to check the symmetry of the distance matrix in terms of datasets and cell types.
(Default: `True`)
Returns
----------
:class:`~cellhint.distance.Distance`
A :class:`~cellhint.distance.Distance` object representing the estimated cell type membership across datasets.
"""
if check_symmetry and not self.symmetric():
raise ValueError(
f"🛑 Cannot convert to a binary matrix. Please provide the matrix with symmetric datasets and cell types")
member_mat = np.zeros(self.shape, dtype = int)
datasets = self.cell_type.dataset.values
for dataset in np.unique(datasets):
indices = np.where(datasets == dataset)[0]
member_mat[range(member_mat.shape[0]), indices[self.dist_mat[:, indices].argmin(axis = 1)]] = 1
return Distance(member_mat, self.cell, self.cell_type)
def assign(self) -> None:
"""
Assign each cell to its most similar cell type in each dataset.
Returns
----------
None
Modified object with the result of cell assignment added as `.assignment`.
"""
assignment = {}
for dataset in np.unique(self.cell_type.dataset):
flag = self.cell_type.dataset == dataset
assignment[dataset] = self.cell_type.cell_type.values[flag][self.dist_mat[:, flag].argmin(axis = 1)]
assignment = pd.DataFrame(assignment, index = self.cell.index)
#no need to assign cells for the dataset they belong to
for dataset in assignment.columns:
flag = self.cell.dataset == dataset
assignment.loc[flag, dataset] = self.cell.cell_type.values[flag]
self.assignment = assignment
def to_confusion(self, D1: str, D2: str, check: bool = True) -> tuple:
"""
This function is deprecated. Use `to_pairwise_confusion` and `to_multi_confusion` instead.
Extract the dataset1-by-dataset2 and dataset2-by-dataset1 confusion matrices. Note this function is expected to be applied to a binary membership matrix.
Parameters
----------
D1
Name of the first dataset.
D2
Name of the second dataset.
check
Whether to check names of the two datasets are contained.
(Default: `True`)
Returns
----------
tuple
The dataset1-by-dataset2 and dataset2-by-dataset1 confusion matrices.
"""
if check and not {D1, D2}.issubset(np.unique(self.cell_type.dataset)):
raise ValueError(
f"🛑 Please provide correct dataset names")
D1_col_flag = self.cell_type.dataset == D1
D2_col_flag = self.cell_type.dataset == D2
D1_celltypes = self.cell_type.cell_type.values[D1_col_flag]
D2_celltypes = self.cell_type.cell_type.values[D2_col_flag]
D1_row_flag = self.cell.dataset == D1
D2_row_flag = self.cell.dataset == D2
D1byD2 = pd.DataFrame(np.array([self.dist_mat[D1_row_flag & (self.cell.cell_type == x)][:, D2_col_flag].sum(axis=0) for x in D1_celltypes]), columns = D2_celltypes, index = D1_celltypes)
D2byD1 = pd.DataFrame(np.array([self.dist_mat[D2_row_flag & (self.cell.cell_type == x)][:, D1_col_flag].sum(axis=0) for x in D2_celltypes]), columns = D1_celltypes, index = D2_celltypes)
return D1byD2, D2byD1
def to_pairwise_confusion(self, D1: str, D2: str, check: bool = True) -> tuple:
"""
Extract the dataset1-by-dataset2 and dataset2-by-dataset1 confusion matrices.
Parameters
----------
D1
Name of the first dataset.
D2
Name of the second dataset.
check
Whether to check names of the two datasets are contained.
(Default: `True`)
Returns
----------
tuple
The dataset1-by-dataset2 and dataset2-by-dataset1 confusion matrices.
"""
if check and not {D1, D2}.issubset(np.unique(self.cell_type.dataset)):
raise ValueError(
f"🛑 Please provide correct dataset names")
if not hasattr(self, 'assignment'):
raise AttributeError(
f"🛑 No `.assignment` attribute in the object. Use the `.assign` method first")
D1_flag = (self.cell.dataset == D1)
D2_flag = (self.cell.dataset == D2)
D1byD2 = pd.crosstab(self.cell.cell_type[D1_flag], self.assignment.loc[D1_flag, D2])
D2byD1 = pd.crosstab(self.cell.cell_type[D2_flag], self.assignment.loc[D2_flag, D1])
D1byD2_lack_columns = D2byD1.index.difference(D1byD2.columns)
if len(D1byD2_lack_columns) > 0:
D1byD2 = D1byD2.join(pd.DataFrame(np.zeros((len(D1byD2.index), len(D1byD2_lack_columns)), dtype=int), index = D1byD2.index, columns = D1byD2_lack_columns))
D2byD1_lack_columns = D1byD2.index.difference(D2byD1.columns)
if len(D2byD1_lack_columns) > 0:
D2byD1 = D2byD1.join(pd.DataFrame(np.zeros((len(D2byD1.index), len(D2byD1_lack_columns)), dtype=int), index = D2byD1.index, columns = D2byD1_lack_columns))
return D1byD2, D2byD1.loc[D1byD2.columns, D1byD2.index]
def to_multi_confusion(self, relation: pd.DataFrame, D: str, check: bool = True) -> tuple:
"""
Extract the confusion matrices between meta-cell-types defined prior and cell types from a new dataset.
Parameters
----------
relation
A :class:`~pandas.DataFrame` object representing the cell type harmonization result across multiple datasets.
D
Name of the new dataset to be aligned.
check
Whether to check names of the datasets are contained.
(Default: `True`)
Returns
----------
tuple
The confusion matrices between meta-cell-types defined prior and cell types from a new dataset.
"""
datasets = relation.columns[0::2]
if check:
if not set(datasets).issubset(np.unique(self.cell_type.dataset)):
raise ValueError(
f"🛑 `relation` contains unexpected dataset names")
if D not in np.unique(self.cell_type.dataset) or D in datasets:
raise ValueError(
f"🛑 Please provide a valid dataset name `D`")
if not hasattr(self, 'assignment'):
raise AttributeError(
f"🛑 No `.assignment` attribute in the object. Use the `.assign` method first")
#D1byD2
D1_flag = self.cell.dataset.isin(datasets)
D1_assign = self.assignment[D1_flag]
D1_truth = np.full(D1_assign.shape[0], UNASSIGN, dtype = object)
for _, s in relation.iterrows():
celltypes = s.values[0::2]
non_blank_flag = ~np.isin(celltypes, [NOVEL, REMAIN])
existing_datasets = datasets[non_blank_flag]
existing_celltypes = celltypes[non_blank_flag]
flag = np.all(D1_assign[existing_datasets] == existing_celltypes, axis = 1).values & self.cell[D1_flag].dataset.isin(existing_datasets).values
D1_truth[flag] = ' '.join(s.values)
D1_used = D1_truth != UNASSIGN
D1byD2 = pd.crosstab(D1_truth[D1_used], D1_assign.loc[D1_used, D])
#D2byD1
D2_flag = self.cell.dataset == D
D2_assign = self.assignment[D2_flag]
D2_predict = np.full(D2_assign.shape[0], UNASSIGN, dtype = object)
for _, s in relation.iterrows():
celltypes = s.values[0::2]
flags = (D2_assign[datasets] == celltypes) | np.isin(celltypes, [NOVEL, REMAIN])
D2_predict[np.all(flags, axis = 1).values] = ' '.join(s.values)
D2_used = D2_predict != UNASSIGN
D2byD1 = pd.crosstab(self.cell.cell_type[D2_flag][D2_used], D2_predict[D2_used])
#warning
if relation.shape[0] > D1byD2.shape[0]:
lost_celltypes = np.setdiff1d(relation.apply(lambda row: ' '.join(row.values), axis = 1).values, D1byD2.index)
logger.warn(f"⚠️ Warning: no cells are found to match these patterns: {set(lost_celltypes)}. Double check the harmonized relationships before integrating '{D}'")
D1byD2 = pd.concat([D1byD2, pd.DataFrame(np.zeros((len(lost_celltypes), len(D1byD2.columns)), dtype=int), index = lost_celltypes, columns = D1byD2.columns)], axis = 0)
#a unique cell type in D2 may be annotated to nothing and filtered
lost_celltypes = np.setdiff1d(np.unique(self.cell.cell_type[D2_flag]), D2byD1.index)
if len(lost_celltypes) > 0:
D2byD1 = pd.concat([D2byD1, pd.DataFrame(np.zeros((len(lost_celltypes), len(D2byD1.columns)), dtype=int), index = lost_celltypes, columns = D2byD1.columns)], axis = 0)
#return
D1byD2_lack_columns = D2byD1.index.difference(D1byD2.columns)
if len(D1byD2_lack_columns) > 0:
D1byD2 = D1byD2.join(pd.DataFrame(np.zeros((len(D1byD2.index), len(D1byD2_lack_columns)), dtype=int), index = D1byD2.index, columns = D1byD2_lack_columns))
D2byD1_lack_columns = D1byD2.index.difference(D2byD1.columns)
if len(D2byD1_lack_columns) > 0:
D2byD1 = D2byD1.join(pd.DataFrame(np.zeros((len(D2byD1.index), len(D2byD1_lack_columns)), dtype=int), index = D2byD1.index, columns = D2byD1_lack_columns))
return D1byD2, D2byD1.loc[D1byD2.columns, D1byD2.index]
|
Teichlab/cellhint
|
cellhint/distance.py
|
distance.py
|
py
| 26,272 |
python
|
en
|
code
| 4 |
github-code
|
6
|
709779467
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import string
import pandas as pd
from gensim.models import KeyedVectors
import time
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
#x=find_department('Mortage requirements specified are incorrect', False)
def find_department(single_query,only_department):
#Load model----------------------------------------------------------------------
st = time.time()
wordmodelfile = '~/Documents/STUDY/Hackathon/NLP/GoogleNews-vectors-negative300.bin'
wordmodel = KeyedVectors.load_word2vec_format(wordmodelfile, binary = True, limit=200000)
et = time.time()
s = 'Word embedding loaded in %f secs.' % (et-st)
print(s)
#Preprocessing----------------------------------------------------------------------
single_query_cleaned = clean_set([single_query])[0]
if(len(single_query_cleaned)==0):
return False
data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/dataset/resolved.csv")
if(only_department == False):
queries = data['query']
_list = queries.values.tolist()
#Cleaned data
newDataset = clean_set(_list)
x=return_key(3,single_query_cleaned,newDataset,wordmodel)
if(x!=0):
x=_list[newDataset.index(x)]
return fetch_query_details(x,0,'resolved')
#print('here 2')
#departments = pd.unique(data['Product']) Sample departments
keys = ['security', 'loans', 'accounts', 'insurance', 'investments',
'fundstransfer', 'cards']
#For each element in newDataset (Query) we find the most similar key (Department) mode=0
department=return_key(5,single_query_cleaned,keys,wordmodel)
#Returning depart
q_id = log_query(max(data['query_id'])+1,single_query,department)
return department,q_id
def change_department(q_id, new_department):
data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/dataset/unresolved.csv")
i=data[data['query_id']==q_id].index.values[0]
#print(i)
data.set_value(i,"department", new_department)
data.to_csv('~/Documents/STUDY/Hackathon/NLP/dataset/unresolved.csv', encoding='utf-8', index=False)
def clean_set(_list):
newDataset=[]
for response in _list:
#Lower, remove punctuations and strip white-spaces and split by spaces
response_words=response.lower().translate(str.maketrans('', '', string.punctuation)).strip().split()
response=''
for word in response_words:
if word not in ENGLISH_STOP_WORDS:
response+=word+' '
newDataset.append(response[:-1])
return newDataset
#resolve_query(62,521,'What to do eh?')
def resolve_query(query_id,employee_id,solution):
from datetime import date
today = date.today().strftime("%d/%m/%Y")
d = fetch_query_details('',query_id,'unresolved')
query_date = d[0][3]
d[0][3] = solution
d[0] = d[0] + [query_date,today,employee_id]
unresolved_data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/dataset/unresolved.csv")
unresolved_data = unresolved_data[unresolved_data.query_id != query_id]
unresolved_data.to_csv('~/Documents/STUDY/Hackathon/NLP/dataset/unresolved.csv', encoding='utf-8', index=False)
new_data = pd.DataFrame(d, columns = ['query_id','query','department','solution','query_date','date_solved','employee_id'])
data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/dataset/resolved.csv")
data = pd.concat([data, new_data])
data.to_csv('~/Documents/STUDY/Hackathon/NLP/dataset/resolved.csv', encoding='utf-8', index=False)
#new_data = pd.DataFrame([d], columns = ['query_id','query','department','query_date'])
def log_query(query_id, query, department):
from datetime import date
today = date.today().strftime("%d/%m/%Y")
d=[query_id,query,department,today]
new_data = pd.DataFrame([d], columns = ['query_id','query','department','query_date'])
try:
data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/dataset/unresolved.csv")
if(len(data)>0):
test = True
else:
test = False
except:
test = False
if(test):
new_data.at[0, 'query_id'] = max(max(data['query_id'])+1,query_id)
data = pd.concat([data, new_data])
else:
data = new_data
data.to_csv('~/Documents/STUDY/Hackathon/NLP/dataset/unresolved.csv', encoding='utf-8', index=False)
return data.loc[data['query'] == query].values.tolist()[0]
#----------------------------------------------------------------------
def fetch_query_details(text,query_id,file_name):
data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/dataset/"+file_name+".csv")
if(text == 'all'):
return data.values.tolist()
elif(query_id==0):
return data.loc[data['query'] == text].values.tolist()
else:
return data.loc[data['query_id'] == query_id].values.tolist()
def return_key(threshold,sentence_a,keys,wordmodel):
sentence_a = sentence_a.lower().split()
distance_list = []
for key in keys:
sentence_b = key.lower().split()
distance_list.append(wordmodel.wmdistance(sentence_a, sentence_b))
#print(min(distance_list))
if(min(distance_list)>threshold):
return 0
return(keys[distance_list.index(min(distance_list))])
'''
data = pd.read_csv("~/Documents/STUDY/Hackathon/NLP/Consumer_Complaints.csv",nrows=500)
#218 queries
xtrain = data.loc[data['Consumer complaint narrative'].notnull(), ['Consumer complaint narrative','Product','Company public response']]
xtrain = xtrain.loc[xtrain['Company public response'].notnull(), ['Consumer complaint narrative','Product','Company public response']]
xtrain.to_csv('./dataset/resolved.csv', encoding='utf-8', index=False)
'''
#print(find_department('credit repair services'))
#SAVING----------------------------------------------------------------------
|
ankitd3/Assist-ANS
|
NLP/distance.py
|
distance.py
|
py
| 6,026 |
python
|
en
|
code
| 1 |
github-code
|
6
|
74059033149
|
#coding:utf-8
class Fiab(object):
def __init__(self, num):
self.num = num
self.a = 0
self.b = 1
self.n = 0
def __iter__(self):
return self
def __next__(self):
self.a, self.b = self.b, self.a + self.b
self.n += 1
if self.n > self.num:
raise StopIteration
return self.a
if __name__ == "__main__":
f = Fiab(int(input("Please input a num:")))
for i in f:
print(i, end=" ")
print()
|
HarveyWang81/PythonScript
|
Study-01/fibs/by_iter.py
|
by_iter.py
|
py
| 497 |
python
|
en
|
code
| 0 |
github-code
|
6
|
18718175573
|
from django.shortcuts import render, HttpResponse, redirect
from .models import Note
from django.urls import reverse
# Create your views here.
def index(request):
context = {
"notes": Note.objects.all(),
}
return render(request, 'notes/index.html', context)
def create(request):
if request.method == 'POST':
title = request.POST['title']
description = request.POST['description']
Note.objects.create(title=title, description=description)
context = {
'notes': Note.objects.all(),
}
return render(request, 'notes/notes_index.html', context)
def destroy(request, note_id):
if request.method == 'POST':
Note.objects.get(id=int(note_id)).delete()
context = {
'notes': Note.objects.all()
}
return render(request, 'notes/notes_index.html', context)
|
mtjhartley/codingdojo
|
dojoassignments/python/django/full_stack_django/ajax_notes/apps/notes/views.py
|
views.py
|
py
| 846 |
python
|
en
|
code
| 1 |
github-code
|
6
|
42924345016
|
import sys
import os
import time
import re
import csv
import cv2
import tensorflow as tf
import numpy as np
#import pandas as pd
from PIL import Image
from matplotlib import pyplot as plt
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# if len(sys.argv) < 0:
# print('Usage: python {} test_image_path checkpoint_path'.format(sys.argv[0]))
# exit()
def name_path_files(file_dir):
# 文件名及文件路径列表
path_files = []
name_files = []
for roots, dirs, files in os.walk(file_dir):
for f in files:
tmp = os.path.join(roots, f)
if ('.jpg' in tmp):
path_files.append(tmp)
name_files.append(f)
try:
# user enters in the filename of the csv file to convert
# in_filename = argv[1:]
print("files received list :" + str(path_files))
except (IndexError, IOError) as e:
print("invalid file detected...")
exit(1)
# print(path_filename)
# print(only_filename)
path_files_name = np.ravel(path_files)
only_file_name = np.ravel(name_files)
# print(path_files)
# print('#####' * 10)
# print(name_files)
return path_files, name_files
PATH_TO_CKPT = sys.argv[1]
PATH_TO_LABELS = 'annotations/label_map.pbtxt'
NUM_CLASSES = 4
IMAGE_SIZE = (48, 32)
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with detection_graph.as_default():
with tf.Session(graph=detection_graph, config=config) as sess:
path_files, name_files = name_path_files('./images/verification/')
writer_lists = []
for path_f in path_files:
start_time = time.time()
print(time.ctime())
image = Image.open(path_f)
image_np = np.array(image).astype(np.uint8)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# print(classes)
# print(num_detections)
eval_dicts = {'boxes':boxes, 'scores':scores, 'classes':classes, 'num_detections':num_detections}
use_time = time.time() - start_time
vis_util.visualize_boxes_and_labels_on_image_array(
image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores),
category_index, use_normalized_coordinates=True, min_score_thresh=0.5, line_thickness=2)
#vis_util.VisualizeSingleFrameDetections.images_from_evaluation_dict(image_np,eval_dict=eval_dicts)
#categories_glob = []
print(category_index)
f_name = re.split('/',path_f)
#print(category_index.get(value))
for index, value in enumerate(classes[0]):
if scores[0, index] > 0.5:
score = scores[0, index]
categories_glob = category_index.get(value)
writer_list = [f_name[-1], categories_glob['id'], categories_glob['name'], score, use_time]
writer_lists.append(writer_list)
# print(writer_list)
# print(index, '---', categories_glob,'---', score )
print(boxes)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
#plt.savefig('./test_result/predicted_' + f_name[-1])
cv2.imwrite('./test_result/predicted_' + f_name[-1] + ".jpg", image_np)
#writer_lists.append(writer_list)
#print('Image:{} Num: {} classes:{} scores:{} Time: {:.3f}s'.format(f_name[-1], num_detections, 'np.squeeze(classes[:2])', np.max(np.squeeze(scores)), use_time))
with open('./test_result/test_result.csv', 'w') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(['test file', 'id', 'classes', 'scores', 'time/s'])
writer.writerows(writer_lists)
|
ppalantir/axjingWorks
|
AcademicAN/TwoStage/test_batch.py
|
test_batch.py
|
py
| 5,072 |
python
|
en
|
code
| 1 |
github-code
|
6
|
31525994513
|
# _*_ coding: utf-8 _*_
__author__ = 'Steven'
__date__ = '2017/8/21 21:47'
import xadmin
from .models import BugetItem
class BugetItemAdmin(object):
list_display = ["custom_id", "buget_type", "name", "desc", "standard",
"edit_dept", "approve_dept", "account_item", "add_user", "add_time"]
search_fields = ["custom_id", "buget_type", "name", "desc", "standard",
"edit_dept", "approve_dept", "account_item", "add_user"]
list_filter = ["custom_id", "buget_type", "name", "desc", "standard",
"edit_dept", "approve_dept", "account_item", "add_user", "add_time"]
xadmin.site.register(BugetItem, BugetItemAdmin)
|
stevenlu77/HOMS
|
apps/buget/adminx.py
|
adminx.py
|
py
| 682 |
python
|
en
|
code
| 0 |
github-code
|
6
|
8768680597
|
dict1 = {
'a': 1,
'b': 2,
'c': 3,
'd': 4,
'e': 5
}
dict2 = {
'a': 1,
'b': 2,
'g': 33,
'h': 44,
'e': 55
}
output = ""
for key1 in dict1.keys():
for key2 in dict2.keys():
if key2 == key1:
output += key1 + " "
print(output.rstrip())
|
barelyturner/hometask5
|
hometask5.1/main.py
|
main.py
|
py
| 298 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25178584436
|
from summarize import *
from rbm_dae.deepAE import *
import rouge
def summarize_sentence_vectors(df, vector_set):
"""
Function applying the summarization function to get the ranked sentences.
Parameters:
df: dataframe containing the data to summarize
vector_set: the column name of the vector set to rank on
Returns the ranked sentences
"""
print('summarizing sentence vectors..')
sentence_vectors = df[vector_set].tolist()
sentence_vectors = np.array(sentence_vectors)
#Create a list of ranked sentences.
ranked_sentences = summarize_emails(df, sentence_vectors[0])
# display_summary(df, ranked_sentences)
return ranked_sentences
def summarize_autoencoder_vectors(df, net, vector_set):
"""
Function applying the autoencoder to the df vectors and the applying the summarization function to get the ranked sentences.
Parameters:
df: dataframe containing the data to summarize
net: trained autoencoder
vector_set: the column name of the vector set to rank on
Returns the ranked sentences
"""
print('summarizing autoencoder sentence vectors..')
sentence_vectors = df[vector_set].tolist()
torch_vectors = torch.tensor(sentence_vectors[0], dtype=torch.float32)
output_vectors = net(torch_vectors)
#Create a list of ranked sentences.
ranked_sentences = summarize_emails(df, output_vectors, True)
# display_summary(df, ranked_sentences)
return ranked_sentences
def evaluate_rankings(df_train, df_test, target, sum_lens, corpus_ae=True, vector_set='sentence_vectors'):
"""
Funtion to evaluate the returned summaries. the summaries are created baased on the raw sentence vectors and the autoencoder vectors
Parameters:
df_train: dataframe with the training data
df_test: dataframe with the test data
target: string containing the column that should be used as the summary reference
sum_len: An array holding the number of sentences to include in the summary
corpus_as: Boolean deciding wether to train the autoencoder on the entire corpus or on each document
vector_set: column name of the column with the sentence vectors (can be glove vectors or tf vectors)
Returns: the scores for the rouge parameters (3D matrix)
"""
evaluator = rouge.Rouge()
#create and train the autoencoder (see autoencoder module)
net = None
if corpus_ae:
net = train_autoencoder(df_train, vector_set)
# loop through all docs in the corpus
print('evaluating summaries..')
df_len = int(df_test.shape[0])
sum_scores = np.zeros((len(sum_lens), 3, 3, df_len))
ae_sum_scores = np.zeros((len(sum_lens), 3, 3, df_len))
curr_row = 0
for index, row in df_test.iterrows():
print('iteration: ', index)
df_c = pd.DataFrame([row])
df_c['body'].iloc[0]
# Only proceed if the vectors of the current row are of correct dimensions (not [])
if len(df_c[vector_set].tolist()[0]) > 0:
# train AE on the current document only
if not corpus_ae :
net = train_autoencoder(df_c, vector_set)
reference = df_c[target].iloc[0] # reference that we score against (could be summary or subject)!
print('reference: ', reference)
# get the ranked sentences for the original and the ae modified sentence vectors
ranked_sentences = summarize_sentence_vectors(df_c, vector_set)
ranked_ae_sentences = summarize_autoencoder_vectors(df_c, net, vector_set)
# collecting the scores for the specified summary lengths
for s_len in sum_lens:
print('s_len: ', s_len)
if len(ranked_sentences) >= s_len:
# get the top ranked sentences
sum = []
sum_ae = []
for i in range(s_len):
sum.append(ranked_sentences[i][2])
sum_ae.append(ranked_ae_sentences[i][2])
sum_str = ' '.join(sum)
sum_ae_str = ' '.join(sum_ae)
print('summary: ', sum_str)
print('ae summary: ', sum_ae_str)
# get the ROUGE scores for the ranked sentences and add to plot data
sum_score = evaluator.get_scores(sum_str, reference)
sum_ae_score = evaluator.get_scores(sum_ae_str, reference)
sum_scores[s_len-1, 0, 0, curr_row] = sum_score[0]['rouge-1']['f']
sum_scores[s_len-1, 0, 1, curr_row] = sum_score[0]['rouge-1']['p']
sum_scores[s_len-1, 0, 2, curr_row] = sum_score[0]['rouge-1']['r']
sum_scores[s_len-1, 1, 0, curr_row] = sum_score[0]['rouge-2']['f']
sum_scores[s_len-1, 1, 1, curr_row] = sum_score[0]['rouge-2']['p']
sum_scores[s_len-1, 1, 2, curr_row] = sum_score[0]['rouge-2']['r']
sum_scores[s_len-1, 2, 0, curr_row] = sum_score[0]['rouge-l']['f']
sum_scores[s_len-1, 2, 1, curr_row] = sum_score[0]['rouge-l']['p']
sum_scores[s_len-1, 2, 2, curr_row] = sum_score[0]['rouge-l']['r']
ae_sum_scores[s_len-1, 0, 0, curr_row] = sum_ae_score[0]['rouge-1']['f']
ae_sum_scores[s_len-1, 0, 1, curr_row] = sum_ae_score[0]['rouge-1']['p']
ae_sum_scores[s_len-1, 0, 2, curr_row] = sum_ae_score[0]['rouge-1']['r']
ae_sum_scores[s_len-1, 1, 0, curr_row] = sum_ae_score[0]['rouge-2']['f']
ae_sum_scores[s_len-1, 1, 1, curr_row] = sum_ae_score[0]['rouge-2']['p']
ae_sum_scores[s_len-1, 1, 2, curr_row] = sum_ae_score[0]['rouge-2']['r']
ae_sum_scores[s_len-1, 2, 0, curr_row] = sum_ae_score[0]['rouge-l']['f']
ae_sum_scores[s_len-1, 2, 1, curr_row] = sum_ae_score[0]['rouge-l']['p']
ae_sum_scores[s_len-1, 2, 2, curr_row] = sum_ae_score[0]['rouge-l']['r']
curr_row += 1
sum_scores = sum_scores[:, :, :, 0:curr_row]
ae_sum_scores = ae_sum_scores[:, :, :, 0:curr_row]
return sum_scores, ae_sum_scores
# calculating averages
def analyze_and_plot_rouge_scores(sum_scores, ae_sum_scores, metric, dataset_name, summary_len):
avg_scores = np.mean(sum_scores)
avg_scores_ae = np.mean(ae_sum_scores)
print(dataset_name)
print('Summary length: ', summary_len)
raw_mean = 'Mean ' + metric + ' for raw vectors: ' + str(round(avg_scores, 3))
dae_mean = 'Mean ' + metric + ' for DAE vectors: ' + str(round(avg_scores_ae, 3))
print(raw_mean)
print(dae_mean)
# Add to plot graphs for the extracted sentences
"""
x = np.arange(len(sum_scores)).tolist()
label_1 = "Raw " + metric
label_2 = "AE vector " + metric
plt.plot(x, sum_scores.tolist(), label = label_1)
plt.plot(x, ae_sum_scores.tolist(), label = label_2)
plt.xlabel('Sentence')
plt.ylabel('ROUGE score')
title = "ROUGE " +metric + " for raw (mean: " + str(round(avg_scores, 3)) +") and AE (mean: "+str(round(avg_scores_ae, 3)) +") for " + dataset_name
plt.title(title)
plt.legend()
plt.show()
"""
def evaluate_bc3():
"""
Base function to run and plot the ROUGE scores for the bc3 dataset
"""
BC3_PICKLE_LOC = "./final_data/BC3_127.pkl"
BC3_df = pd.read_pickle(BC3_PICKLE_LOC)
# df contains 127 rows that all have df_vectors representation!
# Split into training and test set
BC3_df_train = BC3_df.iloc[:117]
BC3_df_test = BC3_df.iloc[117:]
# evaluate on 'summary' or 'subject'
target = 'summary'
summary_len = [1]
# can set to use the df vectors ('df_vectors') or the glove vectors ('sentence_vectors')
corpus_ae = True
vector_set = 'sentence_vectors' #df_vectors
sum_scores, ae_sum_scores = evaluate_rankings(BC3_df_train, BC3_df_test, target, summary_len, corpus_ae, vector_set)
plot_all_scores(sum_scores, ae_sum_scores, 'bc3 dataset', summary_len[0])
def evaluate_spotify():
"""
Base function to run and plot the ROUGE scores for the spotify dataset
"""
SPOTIFY_PICKLE_TRAIN_LOC = "./final_data/spotify_train_422.pkl"
SPOTIFY_PICKLE_TEST_LOC = "./final_data/spotify_test_45.pkl"
df_train = pd.read_pickle(SPOTIFY_PICKLE_TRAIN_LOC)
df_test = pd.read_pickle(SPOTIFY_PICKLE_TEST_LOC)
# section to get the summary for a specidic episode
# df_sent = df_train.loc[df_train['episode_id'] == '7DoDuJE4sCBu2jJlOgCrwA']
# df_test = df_sent
target = 'episode_desc'
summary_len = [1]
corpus_ae = True # if false, the autoencoder is only trained on the sentences in the current document
# can set to use the df vectors (t-idf) ('df_vectors') or the glove vectors ('sentence_vectors')
vector_set = 'sentence_vectors'
sum_scores, ae_sum_scores = evaluate_rankings(df_train, df_test, target, summary_len, corpus_ae, vector_set)
plot_all_scores(sum_scores, ae_sum_scores, 'spotify dataset', summary_len[0])
def plot_all_scores(sum_scores, ae_sum_scores, dataset, summary_len):
"""
Base function to plot ROUGE scores.
Parameters:
- sum_scores: Matirx of scores for the raw vectors.
- as_sum_scores: Matrix of scores for the vectors produced by autoencoder
"""
analyze_and_plot_rouge_scores(sum_scores[0][0][0], ae_sum_scores[0][0][0], 'rouge-1 f-score', dataset, summary_len)
analyze_and_plot_rouge_scores(sum_scores[0][0][1], ae_sum_scores[0][0][1], 'rouge-1 precision', dataset, summary_len)
analyze_and_plot_rouge_scores(sum_scores[0][0][2], ae_sum_scores[0][0][2], 'rouge-1 recall', dataset, summary_len)
# plot rouge-2 scores:
analyze_and_plot_rouge_scores(sum_scores[0][1][0], ae_sum_scores[0][1][0], 'rouge-2 f-score', dataset, summary_len)
analyze_and_plot_rouge_scores(sum_scores[0][1][1], ae_sum_scores[0][1][1], 'rouge-2 precision', dataset, summary_len)
analyze_and_plot_rouge_scores(sum_scores[0][1][2], ae_sum_scores[0][1][2], 'rouge-2 recall', dataset, summary_len)
# plot rouge-l scores:
analyze_and_plot_rouge_scores(sum_scores[0][2][0], ae_sum_scores[0][2][0], 'rouge-l f-score', dataset, summary_len)
analyze_and_plot_rouge_scores(sum_scores[0][2][1], ae_sum_scores[0][2][1], 'rouge-l precision', dataset, summary_len)
analyze_and_plot_rouge_scores(sum_scores[0][2][2], ae_sum_scores[0][2][2], 'rouge-l recall', dataset, summary_len)
def get_mean(sum_scores, ae_sum_scores):
"""
Function to get the mean of a vector of scores.
"""
avg_scores = np.mean(sum_scores)
avg_scores_ae = np.mean(ae_sum_scores)
return avg_scores, avg_scores_ae
def evaluate_sentence_length_performance(df_train, df_test, target, summary_len, corpus_ae, vector_set, dataset):
"""
Function to cumpute the rouge scores for a range of summary lengths.
"""
averages_p = np.zeros((summary_len, 2))
averages_ae_p = np.zeros((summary_len, 2))
averages_r = np.zeros((summary_len, 2))
averages_ae_r = np.zeros((summary_len, 2))
summary_lengths = [1, 2, 3, 4, 5, 6]
sum_scores, ae_sum_scores = evaluate_rankings(df_train, df_test, target, summary_lengths, corpus_ae, vector_set)
for i in range(1, summary_len):
print('evaluating rankings for # sentences: ', i)
for j in range(2): # for rouge-1 and rouge-2
avg_score_p, avg_score_ae_p = get_mean(sum_scores[i-1][j][1], ae_sum_scores[i-1][j][1])
avg_score_r, avg_score_ae_r = get_mean(sum_scores[i-1][j][2], ae_sum_scores[i-1][j][2])
averages_p[i, j] = avg_score_p
averages_ae_p[i, j] = avg_score_ae_p
averages_r[i, j] = avg_score_r
averages_ae_r[i, j] = avg_score_ae_r
print('averages: ', averages_p)
print('averages ae: ', averages_ae_p)
averages_p = averages_p[1:].transpose()
averages_ae_p = averages_ae_p[1:].transpose()
averages_r = averages_r[1:].transpose()
averages_ae_r = averages_ae_r[1:].transpose()
return averages_p, averages_ae_p, averages_r, averages_ae_r
def plot_sentences(glove_averages, glove_averages_ae, df_averages, df_averages_ae, title, dataset):
"""
Function to plot the mean scores vs sentence lengths for the different sentence encodings
"""
x = np.arange(1,7).tolist()
plt.plot(x, glove_averages.tolist(), label = "Glove vector")
plt.plot(x, glove_averages_ae.tolist(), label = "Glove DAE vector")
plt.plot(x, df_averages.tolist(), label = 'tf-idf vector')
plt.plot(x, df_averages_ae.tolist(), label = 'tf-idf DAE vector')
plt.xlabel('Number of sentences')
plt.ylabel(title)
t = title + ' for ' + dataset
plt.title(t)
plt.legend()
plt.show()
def run_sentence_length_evaluation():
"""
Main function to compute the mean scores for each summary length for the two datasets.
"""
BC3_PICKLE_LOC = "./final_data/BC3_127.pkl"
BC3_df = pd.read_pickle(BC3_PICKLE_LOC)
# df contains 127 rows that all have df_vectors representation!
# Split into training and test set
bc3_df_train = BC3_df.iloc[:117]
bc3_df_test = BC3_df.iloc[117:]
bc3_target = 'summary'
SPOTIFY_PICKLE_TRAIN_LOC = "./final_data/spotify_train_422.pkl"
SPOTIFY_PICKLE_TEST_LOC = "./final_data/spotify_test_45.pkl"
s_df_train = pd.read_pickle(SPOTIFY_PICKLE_TRAIN_LOC)
s_df_test = pd.read_pickle(SPOTIFY_PICKLE_TEST_LOC)
s_target = 'episode_desc'
summary_len = 7
corpus_ae = True
vector_set = 'sentence_vectors'
df_vector_set = 'df_vectors'
# metric = 0 # 0 = f-score, 1 = precision, 2 = recall
bc3_glove_p, bc3_glove_ae_p, bc3_glove_r, bc3_glove_ae_r = evaluate_sentence_length_performance(bc3_df_train, bc3_df_test, bc3_target, summary_len, corpus_ae, vector_set, 'bc3 dataset')
bc3_df_p, bc3_df_ae_p, bc3_df_r, bc3_df_ae_r = evaluate_sentence_length_performance(bc3_df_train, bc3_df_test, bc3_target, summary_len, corpus_ae, df_vector_set, 'bc3 dataset')
plot_sentences(bc3_glove_p[0], bc3_glove_ae_p[0], bc3_df_p[0], bc3_df_ae_p[0], 'ROUGE-1 scores precision', 'BC3 dataset')
plot_sentences(bc3_glove_p[1], bc3_glove_ae_p[1], bc3_df_p[1], bc3_df_ae_p[1], 'ROUGE-2 scores precision', 'BC3 dataset')
plot_sentences(bc3_glove_r[0], bc3_glove_ae_r[0], bc3_df_r[0], bc3_df_ae_r[0], 'ROUGE-1 scores recall', 'BC3 dataset')
plot_sentences(bc3_glove_r[1], bc3_glove_ae_r[1], bc3_df_r[1], bc3_df_ae_r[1], 'ROUGE-2 scores recall', 'BC3 dataset')
s_glove_p, s_glove_ae_p, s_glove_r, s_glove_ae_r = evaluate_sentence_length_performance(s_df_train, s_df_test, s_target, summary_len, corpus_ae, vector_set, 'Spotify dataset')
s_df_p, s_df_ae_p, s_df_r, s_df_ae_r = evaluate_sentence_length_performance(s_df_train, s_df_test, s_target, summary_len, corpus_ae, df_vector_set, 'Spotify dataset')
plot_sentences(s_glove_p[0], s_glove_ae_p[0], s_df_p[0], s_df_ae_p[0], 'ROUGE-1 scores precision', 'Spotify dataset')
plot_sentences(s_glove_p[1], s_glove_ae_p[1], s_df_p[1], s_df_ae_p[1], 'ROUGE-2 scores precision', 'Spotify dataset')
plot_sentences(s_glove_r[0], s_glove_ae_r[0], s_df_r[0], s_df_ae_r[0], 'ROUGE-1 scores recall', 'Spotify dataset')
plot_sentences(s_glove_r[1], s_glove_ae_r[1], s_df_r[1], s_df_ae_r[1], 'ROUGE-2 scores recall', 'Spotify dataset')
# evaluate_bc3()
evaluate_spotify()
# run_sentence_length_evaluation()
|
MikaelTornwall/dd2424_project
|
evaluate.py
|
evaluate.py
|
py
| 15,618 |
python
|
en
|
code
| 1 |
github-code
|
6
|
9093463058
|
def load_data(file):
with open(file) as f:
data = f.readlines()
data = [line.strip() for line in data] # убираем переносы строк
data = [x.rsplit() for x in data] # разбиваем линию на команду и шаг
data = [(x[0], int(x[1])) for x in data] # приводим элементы к кортежам
return data
def calculate_position(data):
x, y = 0, 0
for i in data:
if i[0] == 'forward':
x = x + i[1]
elif i[0] == 'down':
y = y + i[1]
elif i[0] == 'up':
y = y - i[1]
else:
print('error data!')
print('position is ', x, y)
return x * y
def calculate_with_aim(data):
x, depth = 0, 0
aim = 0
for i in data:
if i[0] == 'forward':
x = x + i[1]
depth = depth + (i[1] * aim)
elif i[0] == 'down':
aim = aim + i[1]
elif i[0] == 'up':
aim = aim - i[1]
else:
print('error data!')
print('position with aim is ', x, depth)
return x * depth
test_file = 'test_input.txt'
filename = 'input.txt'
print(load_data(test_file))
print('\n', 'Task #1')
print('new coordinates multiply:', calculate_position(load_data(test_file)))
print()
print('new coordinates multiply:', calculate_position(load_data(filename)))
print('\n', 'Task #2')
print('coordinates with aim test:', calculate_with_aim(load_data(test_file)))
print('coordinates with aim:', calculate_with_aim(load_data(filename)))
|
lapssh/advent_of_code
|
2021/day02/02-position.py
|
02-position.py
|
py
| 1,569 |
python
|
en
|
code
| 0 |
github-code
|
6
|
73968831228
|
"""Analyzes the MCTS explanations output by run_mcts.py in terms of stress and context entropy."""
import pickle
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import wilcoxon
def analyze_mcts_explanations(explanations_path: Path,
save_dir: Path) -> None:
"""Analyzes the MCTS explanations output by run_mcts.py in terms of stress and context entropy.
:param explanations_path: Path to a pickle file containing the explanations from run_mcts.py.
:param save_dir: Path to a directory where analysis plots will be saved.
"""
# Load MCTS results
with open(explanations_path, 'rb') as f:
results = pickle.load(f)
# Create save_dir
save_dir.mkdir(parents=True, exist_ok=True)
# Extract MCTS results
original_stress = results['original_stress']
masked_stress_dependent = results['masked_stress_dependent']
masked_stress_independent = results['masked_stress_independent']
original_entropy = results['original_entropy']
masked_entropy_dependent = results['masked_entropy_dependent']
masked_entropy_independent = results['masked_entropy_independent']
# Plot stress
stress_bins = np.linspace(0, 1, 20)
plt.clf()
plt.figure(figsize=(12, 8))
plt.hist(original_stress, stress_bins, alpha=0.5, label='Original')
plt.hist(masked_stress_dependent, stress_bins, alpha=0.5, label='Context-Dependent')
plt.hist(masked_stress_independent, stress_bins, alpha=0.5, label='Context-Independent')
plt.legend(fontsize=20)
plt.ylabel('Count', fontsize=20)
plt.yticks(fontsize=16)
plt.xlabel('Stress Score', fontsize=20)
plt.xticks(fontsize=16)
plt.title(rf'Stress Score for Original Text and Explanations', fontsize=24)
plt.savefig(save_dir / f'stress.pdf', bbox_inches='tight')
# Plot entropy
max_entropy = -np.log2(1 / 3)
entropy_bins = np.linspace(0, max_entropy, 20)
plt.clf()
plt.figure(figsize=(12, 8))
plt.hist(original_entropy, entropy_bins, alpha=0.5, label='Original')
plt.hist(masked_entropy_dependent, entropy_bins, alpha=0.5, label='Context-Dependent')
plt.hist(masked_entropy_independent, entropy_bins, alpha=0.5, label='Context-Independent')
plt.legend(fontsize=20)
plt.ylabel('Count', fontsize=20)
plt.yticks(fontsize=16)
plt.xlabel('Context Entropy', fontsize=20)
plt.xticks(fontsize=16)
plt.title(rf'Context Entropy for Original Text and Explanations', fontsize=24)
plt.savefig(save_dir / f'entropy.pdf', bbox_inches='tight')
# Print stress and entropy results
print(f'Average stress (original) = '
f'{np.mean(original_stress):.3f} +/- {np.std(original_stress):.3f}')
print(f'Average stress (dependent) = '
f'{np.mean(masked_stress_dependent):.3f} +/- {np.std(masked_stress_dependent):.3f}')
print(f'Average stress (independent) = '
f'{np.mean(masked_stress_independent):.3f} +/- {np.std(masked_stress_independent):.3f}')
print()
print(f'Average entropy (original) = '
f'{np.mean(original_entropy):.3f} +/- {np.std(original_entropy):.3f}')
print(f'Average entropy (dependent) = '
f'{np.mean(masked_entropy_dependent):.3f} +/- {np.std(masked_entropy_dependent):.3f}')
print(f'Average entropy (independent) = '
f'{np.mean(masked_entropy_independent):.3f} +/- {np.std(masked_entropy_independent):.3f}')
# Compute stress and entropy diffs
diff_stress_dependent_original = masked_stress_dependent - original_stress
diff_stress_independent_original = masked_stress_independent - original_stress
diff_stress_dependent_independent = masked_stress_dependent - masked_stress_independent
diff_entropy_dependent_original = masked_entropy_dependent - original_entropy
diff_entropy_independent_original = masked_entropy_independent - original_entropy
diff_entropy_dependent_independent = masked_entropy_dependent - masked_entropy_independent
# Print stress and entropy diffs
print(f'Average difference in stress (dependent - original) = '
f'{np.mean(diff_stress_dependent_original):.3f} +/- {np.std(diff_stress_dependent_original):.3f} '
f'(p = {wilcoxon(masked_stress_dependent, original_stress).pvalue:.4e})')
print(f'Average difference in stress (independent - original) = '
f'{np.mean(diff_stress_independent_original):.3f} +/- {np.std(diff_stress_independent_original):.3f} '
f'(p = {wilcoxon(masked_stress_independent, original_stress).pvalue:.4e})')
print(f'Average difference in stress (dependent - independent) = '
f'{np.mean(diff_stress_dependent_independent):.3f} +/- {np.std(diff_stress_dependent_independent):.3f} '
f'(p = {wilcoxon(masked_stress_dependent, masked_stress_independent).pvalue:.4e})')
print()
print(f'Average difference in entropy (dependent - original) = '
f'{np.mean(diff_entropy_dependent_original):.3f} +/- {np.std(diff_entropy_dependent_original):.3f} '
f'(p = {wilcoxon(masked_entropy_dependent, original_entropy).pvalue:.4e})')
print(f'Average difference in entropy (independent - original) = '
f'{np.mean(diff_entropy_independent_original):.3f} +/- {np.std(diff_entropy_independent_original):.3f} '
f'(p = {wilcoxon(masked_entropy_independent, original_entropy).pvalue:.4e})')
print(f'Average difference in entropy (dependent - independent) = '
f'{np.mean(diff_entropy_dependent_independent):.3f} +/- {np.std(diff_entropy_dependent_independent):.3f} '
f'(p = {wilcoxon(masked_entropy_dependent, masked_entropy_independent).pvalue:.4e})')
if __name__ == '__main__':
from tap import Tap
class Args(Tap):
explanations_path: Path
"""Path to a pickle file containing the explanations from run_mcts.py."""
save_dir: Path
"""Path to a directory where analysis plots will be saved."""
analyze_mcts_explanations(**Args().parse_args().as_dict())
|
swansonk14/MCTS_Interpretability
|
analyze_mcts_explanations.py
|
analyze_mcts_explanations.py
|
py
| 6,053 |
python
|
en
|
code
| 3 |
github-code
|
6
|
40876617434
|
"""All formatters from this pacakge should be easily mixed whith default ones using this pattern:
>>> from code_formatter.base import formatters
>>> from code_formatter import extras
>>> custom_formatters = formatters.copy()
>>> custom_formatters.register(extras.UnbreakableTupleFormatter,
extras.ListOfExpressionsWithSingleLineContinuationsFormatter)
"""
import ast
from .. import base
from ..code import CodeBlock, CodeLine
from ..exceptions import NotEnoughSpace
__all__ = ['UnbreakableListOfExpressionFormatter', 'LinebreakingListOfExpressionFormatter',
'UnbreakableTupleFormatter', 'LinebreakingAttributeFormatter']
class ListOfExpressionsWithSingleLineContinuationsFormatter(base.ListOfExpressionsFormatter):
multiline_continuation = False
class UnbreakableListOfExpressionFormatter(base.ListOfExpressionsFormatter):
def _format_code(self, width, continuation, suffix, line_width=None):
line_width = line_width or width
return self._format_line_continuation(width, continuation, suffix, line_width)
class LinebreakingListOfExpressionFormatter(base.ListOfExpressionsFormatter):
def _format_code(self, width, continuation, suffix, line_width=None):
return self._format_line_break(width, continuation, suffix, line_width or width)
class UnbreakableTupleFormatter(base.TupleFormatter):
"""Keep tuples in one line - for example:
[('Alternative', 'Alternative'),
('Blues', 'Blues'),
('Classical', 'Classical')]
"""
ListOfExpressionsFormatter = UnbreakableListOfExpressionFormatter
# FIXME: we should refactor this so "fallback" behaviour will be provided
# by generic Formatter aggregator
class CallFormatterWithLinebreakingFallback(base.CallFormatter):
def _format_code(self, width, continuation, suffix):
try:
return super(CallFormatterWithLinebreakingFallback, self)._format_code(width, continuation, suffix)
except NotEnoughSpace:
if not self._arguments_formatters:
raise
suffix = self._append_to_suffix(suffix, ')')
for i in range(width+1):
curr_width = width - i
block = self._func_formatter.format_code(curr_width)
block.append_tokens('(')
try:
subblock = self._arguments_formatter.format_code(width -
len(CodeLine.INDENT),
suffix=suffix)
except NotEnoughSpace:
continue
else:
# FIXME: this is really ugly way to detect last method access subexpression
indent = max(unicode(block.last_line).rfind('.'), 0) + len(CodeLine.INDENT)
if indent + 1 >= block.last_line.width:
continue
block.extend(subblock, indent=indent)
break
return block
class LinebreakingAttributeFormatter(base.AttributeFormatter):
"""This is really expermiental (as it API requires cleanup and it hacks
`ast` structure in many places) formatter.
It handles line breaking on attributes references, and alignes indentation to
first attribute reference in expression. For example this piece:
instance.method().attribute
can be formatted into:
(instance.method()
.attribute)
During registration this formatter replaces `AttributeFormatter` (which is quite obvious) but also
`CallFormatter` and `SubscriptionFormatter` by derived formatters from current formatters - so simple
`formatters.register(LinebreakingAttributeFormatter)` follows below logic:
>>> from ast import Attribute, Call, Subscript
>>> from code_formatter import base, format_code
>>> from code_formatter.extra import LinebreakingAttributeFormatter
>>> formatters = dict(base.formatters,
... **{Call: LinebreakingAttributeFormatter.call_formatter_factory(base.formatters[ast.Call]),
... Attribute: LinebreakingAttributeFormatter,
... Subscript: LinebreakingAttributeFormatter.subscription_formatter_factory(base.formatters[ast.Subscript])})
>>> print format_code('instance.identifier.identifier()',
... formatters_register=formatters, width=3, force=True)
(instance.identifier
.identifier())
"""
class AttrsRefsListFormatter(base.ListOfExpressionsFormatter):
separator = '.'
class _IdentifierFormatter(base.CodeFormatter):
def __init__(self, identifier, formatters_register, parent):
self.identifier = identifier
self.parent = parent
super(LinebreakingAttributeFormatter._IdentifierFormatter,
self).__init__(formatters_register)
def _format_code(self, width, continuation, suffix):
block = CodeBlock.from_tokens(self.identifier)
if suffix is not None:
block.merge(suffix)
return block
@classmethod
def call_formatter_factory(cls, CallFormatter):
class RedirectingCallFormatter(CallFormatter):
def __new__(cls, expr, formatters_register, parent=None, func_formatter=None):
# if func_formatter is not provided check whether we are not part of method call
if func_formatter is None and isinstance(expr.func, ast.Attribute):
return LinebreakingAttributeFormatter(expr, formatters_register, parent)
return super(RedirectingCallFormatter, cls).__new__(cls, expr=expr,
formatters_register=formatters_register,
parent=parent, func_formatter=func_formatter)
def __init__(self, expr, formatters_register, parent=None, func_formatter=None):
super(RedirectingCallFormatter, self).__init__(expr, formatters_register, parent)
if func_formatter:
self._func_formatter = func_formatter
return RedirectingCallFormatter
@classmethod
def subscription_formatter_factory(cls, SubscriptionFormatter):
class RedirectingSubsriptionFormatter(SubscriptionFormatter):
def __new__(cls, expr, formatters_register, parent=None, value_formatter=None):
# if value_formatter is not provided check wether we are not part of attribute ref
if value_formatter is None and isinstance(expr.value, ast.Attribute):
return LinebreakingAttributeFormatter(expr, formatters_register, parent)
return super(RedirectingSubsriptionFormatter, cls).__new__(cls,
expr=expr,
formatters_register=formatters_register,
parent=parent, value_formatter=value_formatter)
def __init__(self, expr, formatters_register, parent=None, value_formatter=None):
super(RedirectingSubsriptionFormatter, self).__init__(expr, formatters_register, parent)
if value_formatter:
self._value_formatter = value_formatter
return RedirectingSubsriptionFormatter
@classmethod
def register(cls, formatters_register):
formatters_register[ast.Attribute] = cls
formatters_register[ast.Subscript] = cls.subscription_formatter_factory(formatters_register[ast.Subscript])
formatters_register[ast.Call] = cls.call_formatter_factory(formatters_register[ast.Call])
return formatters_register
def __init__(self, *args, **kwargs):
super(base.AttributeFormatter, self).__init__(*args, **kwargs)
self._attrs_formatters = []
expr = self.expr
while (isinstance(expr, ast.Attribute) or
isinstance(expr, ast.Call) and
isinstance(expr.func, ast.Attribute) or
isinstance(expr, ast.Subscript) and
isinstance(expr.value, ast.Attribute)):
if isinstance(expr, ast.Attribute):
self._attrs_formatters.insert(0,
LinebreakingAttributeFormatter._IdentifierFormatter(expr.attr,
self.formatters_register,
parent=self))
expr = expr.value
elif isinstance(expr, ast.Call):
# FIXME: how to fix parent?? should we change type of parent to ast type?
func_formatter = LinebreakingAttributeFormatter._IdentifierFormatter(
(expr.func
.attr),
self.formatters_register,
parent=self)
CallFormatter = self.get_formatter_class(expr)
call_formater = CallFormatter(func_formatter=func_formatter, expr=expr,
formatters_register=self.formatters_register, parent=self)
self._attrs_formatters.insert(0, call_formater)
expr = expr.func.value
elif isinstance(expr, ast.Subscript):
# FIXME: how to fix parent?? should we change type of parent to ast type?
value_formatter = LinebreakingAttributeFormatter._IdentifierFormatter(
(expr.value.attr),
self.formatters_register,
parent=self)
SubscriptionFormatter = self.get_formatter_class(expr)
subscription_formatter = SubscriptionFormatter(value_formatter=value_formatter, expr=expr,
formatters_register=self.formatters_register,
parent=self)
self._attrs_formatters.insert(0, subscription_formatter)
expr = expr.value.value
self.value_formatter = self.get_formatter(expr)
def _format_code(self, width, continuation, suffix):
def _format(continuation, prefix=None):
block = CodeBlock.from_tokens(prefix) if prefix else CodeBlock()
for i in range(0, width - block.width + 1):
block.merge(self.value_formatter.format_code(width - block.width - i))
separator = CodeBlock.from_tokens('.')
attr_ref_indent = block.width
block.merge(separator.copy())
try:
block.merge(self._attrs_formatters[0]
.format_code(width - block.last_line.width, False,
suffix=(suffix if len(self._attrs_formatters) == 1
else None)))
for attr_formatter in self._attrs_formatters[1:]:
s = suffix if self._attrs_formatters[-1] == attr_formatter else None
try:
attr_block = attr_formatter.format_code(width - block.last_line.width -
separator.width,
False, suffix=s)
except NotEnoughSpace:
if not continuation:
raise
block.extend(separator, indent=attr_ref_indent)
block.merge(attr_formatter.format_code(width - attr_ref_indent, continuation, suffix=s))
else:
block.merge(separator)
block.merge(attr_block)
except NotEnoughSpace:
block = CodeBlock.from_tokens(prefix) if prefix else CodeBlock()
continue
return block
try:
return _format(continuation)
except NotEnoughSpace:
if continuation:
raise
suffix = self._append_to_suffix(suffix, ')')
return _format(True, '(')
|
paluh/code-formatter
|
code_formatter/extras/__init__.py
|
__init__.py
|
py
| 12,919 |
python
|
en
|
code
| 8 |
github-code
|
6
|
17519855782
|
"""
Example of custom metric script.
The custom metric script must contain the definition of custom_metric_function and a main function
that reads the two csv files with pandas and evaluate the custom metric.
"""
import numpy as np
def CAPE_CNR_function(dataframe_y_true, dataframe_y_pred):
"""
CAPE (Cumulated Absolute Percentage Error) function used by CNR for the evaluation of predictions
Args
dataframe_y_true: Pandas Dataframe
Dataframe containing the true values of y.
This dataframe was obtained by reading a csv file with following instruction:
dataframe_y_true = pd.read_csv(CSV_1_FILE_PATH, index_col=0, sep=',')
dataframe_y_pred: Pandas Dataframe
This dataframe was obtained by reading a csv file with following instruction:
dataframe_y_pred = pd.read_csv(CSV_2_FILE_PATH, index_col=0, sep=',')
Returns
score: Float
The metric evaluated with the two dataframes. This must not be NaN.
"""
# CAPE function
cape_cnr = 100 * np.sum(np.abs(dataframe_y_pred - dataframe_y_true)) / np.sum(dataframe_y_true)
return cape_cnr
if __name__ == '__main__':
import pandas as pd
CSV_FILE_Y_TRUE = 'Y_test.csv'
CSV_FILE_Y_PRED = 'Y_test_benchmark.csv'
df_y_true = pd.read_csv(CSV_FILE_Y_TRUE, index_col=0, sep=',')
df_y_pred = pd.read_csv(CSV_FILE_Y_PRED, index_col=0, sep=',')
print(CAPE_CNR_function(df_y_true, df_y_pred))
|
gaspardbb/astreos
|
CAPE_CNR_metric.py
|
CAPE_CNR_metric.py
|
py
| 1,479 |
python
|
en
|
code
| 2 |
github-code
|
6
|
30546132474
|
# %%
import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
import seaborn as sns
from src import consts as const
from src.processing import attribute_builder as ab
from src.processing import plotting, refactor
sns.set(palette="Set2")
# Output Configurations
pd.set_option('display.max_rows', 60)
pd.set_option('display.max_columns', 60)
plt.style.use('classic')
# Read Dataset
date_cols = ['flight_date', 'scheduled_departure_date', 'off_block_date', 'take_off_date',
'landing_date', 'on_block_date', 'scheduled_arrival_date', 'registered_delay_date']
df = pd.read_csv(const.PROCESSED_DATA_DIR / 'full_info.csv',
sep='\t', parse_dates=date_cols)
# %% [markdown]
# ## Overview
df.head(5)
# %%
### PRELIMINARY SETUP ###
df.drop(',', axis=1, inplace=True)
df.rename(columns={'size_code': 'fleet'}, inplace=True)
print("The dataset size is: {}".format(df.shape))
# %%
types = df.dtypes
counts = df.apply(lambda x: x.count())
uniques = df.apply(lambda x: [x.unique()])
distincts = df.apply(lambda x: x.unique().shape[0])
missing_ratio = (df.isnull().sum() / df.shape[0]) * 100
cols = ['types', 'counts', 'uniques', 'distincts', 'missing_ratio']
desc = pd.concat([types, counts, uniques, distincts,
missing_ratio], axis=1, sort=False)
desc.columns = cols
# %%
### DELETE BASED ON FILLING FACTOR ###
df = refactor.remove_cols_nan_based(df, .7) # remove cols with > 70% nan
# %%
delayed = df[df['delay_code'].notna()].shape[0]
not_delayed = df.shape[0] - delayed
plt.subplots()
sns.barplot(x=['delayed', 'not delayed'], y=[delayed, not_delayed])
plt.savefig('num_delayed.png', bbox_inches='tight')
# %%
# using only delayed flights
df.drop(df.loc[df['delay_code'].isna()].index, axis=0, inplace=True)
# %%
edges = df[['origin_airport', 'destination_airport']].values
g = nx.from_edgelist(edges)
print('There are {} different airports and {} connections'.format(
len(g.nodes()), len(g.edges())))
# %%
plotting.connections_map(df)
# %%
plotting.freq_connections(edges, save=True)
# %%
plotting.absolute_flt_pie(df, save=True)
# %%
plotting.time_distribution(df, save=True)
# %%
plotting.simple_bar(df, 'fleet', save=True)
# %%
### ADJUST FLEET ###
df = refactor.adjust_fleets(df)
# %%
plotting.airc_model_fleet(df, save=True)
# %%
plotting.fleet_time_flt(df, save=True)
# %%
plotting.tail_fleet(df, save=True)
# %%
plotting.delay_daily_pie(df, save=True)
# %%
plotting.delay_sample(df, save=True)
# %%
### REMOVING BADLY FORMED RECORDS ###
same_ori_dest = df.loc[df['origin_airport'] ==
df['destination_airport']]
print(
f"# of records with same origin and destination airports: {same_ori_dest.shape[0]}")
df.drop(same_ori_dest.index, axis=0, inplace=True)
not_take_off = df.loc[df['take_off_date'].isna()]
print(
f"# of planes that did not take off after same ori-dest instances removed: {not_take_off.shape[0]}")
df.drop(not_take_off.index, axis=0, inplace=True)
not_landing = df.loc[df['landing_date'].isna()]
print(
f"# of planes that did not land after same ori-dest instances removed: {not_landing.shape[0]}")
df.drop(not_landing.index, axis=0, inplace=True)
training_flt = df.loc[df['service_type'] == 'K']
print(f"# of training flights: {training_flt.shape[0]}")
df.drop(training_flt.index, axis=0, inplace=True)
nan_takeoff = len(df.loc[df['take_off_date'].isna()])
nan_landing = len(df.loc[df['landing_date'].isna()])
nan_offblock = len(df.loc[df['off_block_date'].isna()])
nan_onblock = len(df.loc[df['on_block_date'].isna()])
print(f"Null take-off: {nan_takeoff}")
print(f"Null landing: {nan_landing}")
print(f"Null off-block: {nan_offblock}")
print(f"Null on-block: {nan_onblock}")
offblock_takeoff = df.loc[df['off_block_date'] > df['take_off_date']]
print(f"off-block > take-off: {len(offblock_takeoff)}")
df.drop(offblock_takeoff.index, axis=0, inplace=True)
takeoff_landing = df.loc[df['take_off_date'] >= df['landing_date']]
print(f"take-off >= landing: {len(takeoff_landing)}")
df.drop(takeoff_landing.index, axis=0, inplace=True)
landing_onblock = df.loc[df['landing_date'] > df['on_block_date']]
print(f"landing > on-block: {len(landing_onblock)}")
df.drop(landing_onblock.index, axis=0, inplace=True)
print("\nThe dataset size is: {}".format(df.shape))
# %%
# plotting.delay_month_weekday(df)
# %%
plotting.proportion_delay_type(df, save=True)
# %%
# Build delay codes
df = refactor.build_delay_codes(df)
# %%
plotting.cloud_coverage_dist(df, save=True)
# %%
df = refactor.fix_cloud_data(df)
df = refactor.remove_cols_nan_based(df, .7) # remove cols with > 70% nan
# %%
df.rename(
columns={'origin_cloud_coverage_lvl_1': 'origin_cloud_coverage',
'origin_cloud_height_lvl_1': 'origin_cloud_height',
'destination_cloud_coverage_lvl_1': 'destination_cloud_coverage',
'destination_cloud_height_lvl_1': 'destination_cloud_height'}, inplace=True)
# %%
plotting.weather_distributions(df, save=True)
# %%
plotting.cloud_distribution(df, save=True)
# %%
# Save data
df.to_csv(const.PROCESSED_DATA_DIR / 'basic_eda.csv',
sep='\t', encoding='utf-8', index=False)
# %%
|
ajmcastro/flight-time-prediction
|
src/processing/eda.py
|
eda.py
|
py
| 5,177 |
python
|
en
|
code
| 1 |
github-code
|
6
|
43200145217
|
"""empty message
Revision ID: 5b1f1d56cb45
Revises: 934b5daacc67
Create Date: 2019-06-03 19:02:22.711720
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '5b1f1d56cb45'
down_revision = '934b5daacc67'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.alter_column('post', 'date_posted',
existing_type=postgresql.TIMESTAMP(),
nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.alter_column('post', 'date_posted',
existing_type=postgresql.TIMESTAMP(),
nullable=False)
# ### end Alembic commands ###
|
tgalvinjr/blog-ip
|
migrations/versions/5b1f1d56cb45_.py
|
5b1f1d56cb45_.py
|
py
| 830 |
python
|
en
|
code
| 0 |
github-code
|
6
|
3642648813
|
class CommentStringParser():
def __init__(self,verbose=True):
self.verbose = verbose
self.special_cases = [['"', '"', 'strings'],
["'", "'", 'strings'],
["//", "\n", 'comments'],
["/*", "*/", 'comments']]
def _find_next(self,codigo, i, c):
n = len(c)
while i < len(codigo) and codigo[i:i + n] != c:
i += 1
return i + n
def _clean_string(self,s):
return s.replace('function','').replace('contract','').replace('{','').replace('}','')
def _clean_code(self,codigo):
n = len(codigo)
i = 0
codigo_final = ""
while i < n - 1:
addone = True
for cin, cout, tp in self.special_cases:
if codigo[i:i + len(cin)] == cin:
addone = False
desde = i
i += len(cin)
hasta = self._find_next(codigo, i, cout)
i = hasta
codigo_final += self._clean_string(codigo[desde:hasta])
if addone:
codigo_final += codigo[i]
i += 1
if self.verbose and len(codigo_final) != codigo:
print("Las palabras, function y contract, y los caracteres {} estan reservados. Se borraran de comentarios y strings")
return codigo_final
def extract_keywords(self,codigo):
return self._clean_code(codigo)
|
matisyo/vulnerability_detection
|
Notebooks/utils/code_helpers.py
|
code_helpers.py
|
py
| 1,500 |
python
|
en
|
code
| 0 |
github-code
|
6
|
33628818675
|
# -*- coding: utf-8 -*-
""" Created by Safa Arıman on 12.12.2018 """
import base64
import json
import urllib.request, urllib.parse, urllib.error
import urllib.request, urllib.error, urllib.parse
import urllib.parse
from ulauncher.api.client.EventListener import EventListener
from ulauncher.api.shared.action.DoNothingAction import DoNothingAction
from ulauncher.api.shared.action.OpenUrlAction import OpenUrlAction
from ulauncher.api.shared.action.CopyToClipboardAction import CopyToClipboardAction
from ulauncher.api.shared.action.RenderResultListAction import RenderResultListAction
from ulauncher.api.shared.item.ExtensionResultItem import ExtensionResultItem
__author__ = 'safaariman'
class ExtensionKeywordListener(EventListener):
def __init__(self, icon_file):
self.icon_file = icon_file
def on_event(self, event, extension):
query = event.get_argument()
results = []
workspace_url = extension.preferences.get('url')
user = extension.preferences.get('username')
password = extension.preferences.get('password')
token = base64.b64encode(str('%s:%s' % (user, password)).encode()).decode()
url = urllib.parse.urljoin(workspace_url, 'rest/internal/2/productsearch/search')
get_url = "%s?%s" % (url, urllib.parse.urlencode({'q': query}))
req = urllib.request.Request(get_url, headers={'Authorization': 'Basic %s' % token})
result_types = []
try:
response = urllib.request.urlopen(req)
result_types = json.loads(response.read())
except urllib.error.HTTPError as e:
if e.code == 401:
results.append(
ExtensionResultItem(
name='Authentication failed.',
description='Please check your username/e-mail and password.',
icon=self.icon_file,
on_enter=DoNothingAction()
)
)
return RenderResultListAction(results)
except urllib.error.URLError as e:
results.append(
ExtensionResultItem(
name='Could not connect to Jira.',
description='Please check your workspace url and make sure you are connected to the internet.',
icon=self.icon_file,
on_enter=DoNothingAction()
)
)
return RenderResultListAction(results)
for rtype in result_types:
for item in rtype.get('items', []):
key = item.get('subtitle')
title = item.get('title')
url = item.get('url')
results.append(
ExtensionResultItem(
name=title if not key else '%s - %s' % (key, title),
description=key,
icon=self.icon_file,
on_enter=OpenUrlAction(url=url),
on_alt_enter=CopyToClipboardAction(url),
)
)
if not results:
results.append(
ExtensionResultItem(
name="Search '%s'" % query,
description='No results. Try searching something else :)',
icon=self.icon_file,
on_enter=DoNothingAction()
)
)
return RenderResultListAction(results)
|
safaariman/ulauncher-jira
|
jira/listeners/extension_keyword.py
|
extension_keyword.py
|
py
| 3,484 |
python
|
en
|
code
| 10 |
github-code
|
6
|
72536666107
|
from dataclasses import asdict, dataclass
from functools import cached_property
from time import sleep
from typing import Any, Dict, List, Optional, Union
from airflow import AirflowException
from airflow.models.taskinstance import Context
from airflow.providers.http.hooks.http import HttpHook
from constants import CRYPTO_COMPARE_HTTP_CONN_ID
from hooks.wrappers.http_stream import HttpStreamHook
from kafka import KafkaProducer
from operators.cryptocurrency.price.base import CryptocurrencyBaseOperator
from utils.exception import raise_airflow_exception
from utils.kafka import kafka_producer_context
from utils.request import get_request_json
@dataclass
class CryptocurrencyMultiPriceApiData:
fsyms: str
tsyms: str
class CryptocurrencyPriceSourcingStreamOperator(CryptocurrencyBaseOperator):
cryptocurrency_http_conn_id: str = CRYPTO_COMPARE_HTTP_CONN_ID
def __init__(
self,
symbol_list: List[str],
**kwargs,
) -> None:
super().__init__(**kwargs)
self.symbol_list = symbol_list
def read(
self,
endpoint: str,
data: Optional[Dict[str, Any]] = None,
):
return self.try_to_get_request_json(
http_hook=self.http_hook,
endpoint=endpoint,
data=data,
)
@cached_property
def kafka_topic_name(self) -> str:
return "cryptocurrency"
@cached_property
def standard_currency(self) -> str:
return "USD"
@cached_property
def sleep_second(self) -> float:
return 1 / len(self.symbol_list)
@property
def api_endpoint(self):
return "pricemulti"
def try_to_get_request_json(
self,
http_hook: Union[HttpHook, HttpStreamHook],
endpoint: str,
data: Optional[Dict[str, Any]] = None,
retry_count: int = 5,
err_msg: str = "",
) -> Dict[str, Any]:
if retry_count <= 0:
raise_airflow_exception(
error_msg=err_msg,
logger=self.log,
)
try:
response_json = get_request_json(
http_hook=http_hook,
endpoint=endpoint,
data=data,
headers=self.api_header,
back_off_cap=self.back_off_cap,
back_off_base=self.back_off_base,
proxies=self.proxies,
)
except AirflowException as e:
self.log.info(f"raise AirflowException err_msg: {e}")
sleep(10)
return self.try_to_get_request_json(
http_hook=http_hook,
endpoint=endpoint,
data=data,
retry_count=retry_count - 1,
err_msg=f"{err_msg} retry_count : {retry_count}\nerr_msg : {e} \n\n",
)
response_status = response_json.get("Response")
if response_status == "Error":
response_message = response_json.get("Message")
if (
response_message
== "You are over your rate limit please upgrade your account!"
):
self.PROXY_IP_IDX += 1
self.log.info(
f"{response_message}, raise PROXY_IP_IDX to {self.PROXY_IP_IDX}"
)
return self.try_to_get_request_json(
http_hook=http_hook,
endpoint=endpoint,
data=data,
retry_count=retry_count - 1,
err_msg=f"{err_msg} retry_count : {retry_count}\nerr_msg : {response_message} \n\n",
)
return response_json
def write(
self,
json_data: List[Dict[str, Any]],
kafka_producer: KafkaProducer,
) -> None:
for data in json_data:
kafka_producer.send(self.kafka_topic_name, value=data)
kafka_producer.flush()
@cached_property
def api_data(
self,
) -> CryptocurrencyMultiPriceApiData:
return CryptocurrencyMultiPriceApiData(
fsyms=",".join(self.symbol_list),
tsyms=self.standard_currency,
)
@staticmethod
def transform(data: Dict[str, Any]) -> List[Dict[str, Any]]:
return [
{"symbol": symbol, "close": usd.get("USD")} for symbol, usd in data.items()
]
def execute(self, context: Context) -> None:
# pass
with kafka_producer_context() as kafka_producer:
while 1:
json_data = self.read(
endpoint=self.api_endpoint,
data=asdict(self.api_data),
)
transformed_data = self.transform(data=json_data)
self.write(
json_data=transformed_data,
kafka_producer=kafka_producer,
)
sleep(10)
|
ksh24865/cryptocurrency-data-pipeline
|
Airflow/dags/operators/cryptocurrency/price/sourcing_stream.py
|
sourcing_stream.py
|
py
| 4,859 |
python
|
en
|
code
| 0 |
github-code
|
6
|
34958665792
|
# -*- coding: utf-8 -*-
import numpy as np
import os
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as trn
import torchvision.datasets as dset
import torch.nn.functional as F
import json
from attack_methods import pgd
from models.wrn import WideResNet
from option import BaseOptions
class PrivateOptions(BaseOptions):
def initialize(self):
BaseOptions.initialize(self)
# WRN Architecture
self.parser.add_argument('--layers', default=28, type=int, help='total number of layers')
self.parser.add_argument('--widen-factor', default=10, type=int, help='widen factor')
self.parser.add_argument('--droprate', default=0.0, type=float, help='dropout probability')
# /////////////// Training ///////////////
def train():
net.train() # enter train mode
loss_avg = 0.0
for bx, by in train_loader:
bx, by = bx.cuda(), by.cuda()
adv_bx = adversary_train(net, bx, by)
# forward
logits = net(adv_bx)
# backward
# scheduler.step()
optimizer.zero_grad()
loss = F.cross_entropy(logits, by)
loss.backward()
optimizer.step()
# exponential moving average
loss_avg = loss_avg * 0.8 + float(loss) * 0.2
state['train_loss'] = loss_avg
# test function
def test():
net.eval()
loss_avg = 0.0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
adv_data = adversary_test(net, data, target)
# forward
output = net(adv_data)
loss = F.cross_entropy(output, target)
# accuracy
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
# test loss average
loss_avg += float(loss.data)
state['test_loss'] = loss_avg / len(test_loader)
state['test_accuracy'] = correct / len(test_loader.dataset)
# overall_test function
def test_in_testset():
net.eval()
loss_avg = 0.0
correct = 0
adv_loss_avg = 0.0
adv_correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
adv_data = adversary_test(net, data, target)
# forward
output = net(data)
loss = F.cross_entropy(output, target)
# accuracy
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
# test loss average
loss_avg += float(loss.data)
# forward
adv_output = net(adv_data)
adv_loss = F.cross_entropy(adv_output, target)
# accuracy
adv_pred = adv_output.data.max(1)[1]
adv_correct += adv_pred.eq(target.data).sum().item()
# test loss average
adv_loss_avg += float(adv_loss.data)
state['test_loss'] = loss_avg / len(test_loader)
state['test_accuracy'] = correct / len(test_loader.dataset)
state['adv_test_loss'] = adv_loss_avg / len(test_loader)
state['adv_test_accuracy'] = adv_correct / len(test_loader.dataset)
def test_in_trainset():
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=opt.test_bs, shuffle=False,
num_workers=opt.prefetch, pin_memory=torch.cuda.is_available())
net.eval()
loss_avg = 0.0
correct = 0
adv_loss_avg = 0.0
adv_correct = 0
with torch.no_grad():
for data, target in train_loader:
data, target = data.cuda(), target.cuda()
adv_data = adversary_test(net, data, target)
# forward
output = net(data)
loss = F.cross_entropy(output, target)
# accuracy
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
# test loss average
loss_avg += float(loss.data)
# forward
adv_output = net(adv_data)
adv_loss = F.cross_entropy(adv_output, target)
# accuracy
adv_pred = adv_output.data.max(1)[1]
adv_correct += adv_pred.eq(target.data).sum().item()
# test loss average
adv_loss_avg += float(adv_loss.data)
state['train_loss'] = loss_avg / len(train_loader)
state['train_accuracy'] = correct / len(train_loader.dataset)
state['adv_train_loss'] = adv_loss_avg / len(train_loader)
state['adv_train_accuracy'] = adv_correct / len(train_loader.dataset)
opt = PrivateOptions().parse()
state = {k: v for k, v in opt._get_kwargs()}
torch.manual_seed(opt.random_seed)
np.random.seed(opt.random_seed)
cudnn.benchmark = True
# # mean and standard deviation of channels of CIFAR-10 images
# mean = [x / 255 for x in [125.3, 123.0, 113.9]]
# std = [x / 255 for x in [63.0, 62.1, 66.7]]
train_transform = trn.Compose([trn.RandomHorizontalFlip(), trn.RandomCrop(32, padding=4),
trn.ToTensor(), trn.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
test_transform = trn.Compose([trn.ToTensor(), trn.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
if opt.dataset == 'cifar10':
train_data = dset.CIFAR10(opt.dataroot, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR10(opt.dataroot, train=False, transform=test_transform)
num_classes = 10
else:
train_data = dset.CIFAR100(opt.dataroot, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR100(opt.dataroot, train=False, transform=test_transform)
num_classes = 100
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.prefetch, pin_memory=torch.cuda.is_available())
test_loader = torch.utils.data.DataLoader(
test_data, batch_size=opt.test_bs, shuffle=False,
num_workers=opt.prefetch, pin_memory=torch.cuda.is_available())
# Create model
if opt.model == 'wrn':
net = WideResNet(opt.layers, num_classes, opt.widen_factor, dropRate=opt.droprate)
else:
assert False, opt.model + ' is not supported.'
start_epoch = opt.start_epoch
if opt.ngpu > 0:
net = torch.nn.DataParallel(net, device_ids=list(range(opt.ngpu)))
net.cuda()
torch.cuda.manual_seed(opt.random_seed)
# Restore model if desired
if opt.load != '':
if opt.test and os.path.isfile(opt.load):
net.load_state_dict(torch.load(opt.load))
print('Appointed Model Restored!')
else:
model_name = os.path.join(opt.load, opt.dataset + opt.model +
'_epoch_' + str(start_epoch) + '.pt')
if os.path.isfile(model_name):
net.load_state_dict(torch.load(model_name))
print('Model restored! Epoch:', start_epoch)
else:
raise Exception("Could not resume")
epoch_step = json.loads(opt.epoch_step)
lr = state['learning_rate']
optimizer = torch.optim.SGD(
net.parameters(), lr, momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
# def cosine_annealing(step, total_steps, lr_max, lr_min):
# return lr_min + (lr_max - lr_min) * 0.5 * (
# 1 + np.cos(step / total_steps * np.pi))
#
#
# scheduler = torch.optim.lr_scheduler.LambdaLR(
# optimizer,
# lr_lambda=lambda step: cosine_annealing(
# step,
# opt.epochs * len(train_loader),
# 1, # since lr_lambda computes multiplicative factor
# 1e-6 / opt.learning_rate)) # originally 1e-6
adversary_train = pgd.PGD(epsilon=opt.epsilon * 2, num_steps=opt.num_steps, step_size=opt.step_size * 2).cuda()
adversary_test = pgd.PGD(epsilon=opt.epsilon * 2, num_steps=opt.test_num_steps, step_size=opt.test_step_size * 2).cuda()
if opt.test:
test_in_testset()
# test_in_trainset()
print(state)
exit()
# Make save directory
if not os.path.exists(opt.save):
os.makedirs(opt.save)
if not os.path.isdir(opt.save):
raise Exception('%s is not a dir' % opt.save)
with open(os.path.join(opt.save, "log_" + opt.dataset + opt.model +
'_training_results.csv'), 'w') as f:
f.write('epoch,time(s),train_loss,test_loss,test_accuracy(%)\n')
print('Beginning Training\n')
# Main loop
best_test_accuracy = 0
for epoch in range(start_epoch, opt.epochs + 1):
state['epoch'] = epoch
begin_epoch = time.time()
train()
test()
# Save model
if epoch > 10 and epoch % 10 == 0:
torch.save(net.state_dict(),
os.path.join(opt.save, opt.dataset + opt.model +
'_epoch_' + str(epoch) + '.pt'))
if state['test_accuracy'] > best_test_accuracy:
best_test_accuracy = state['test_accuracy']
torch.save(net.state_dict(),
os.path.join(opt.save, opt.dataset + opt.model +
'_epoch_best.pt'))
# Show results
with open(os.path.join(opt.save, "log_" + opt.dataset + opt.model +
'_training_results.csv'), 'a') as f:
f.write('%03d,%0.6f,%05d,%0.3f,%0.3f,%0.2f\n' % (
(epoch),
lr,
time.time() - begin_epoch,
state['train_loss'],
state['test_loss'],
100. * state['test_accuracy'],
))
print('Epoch {0:3d} | LR {1:.6f} | Time {2:5d} | Train Loss {3:.3f} | Test Loss {4:.3f} | Test Acc {5:.2f}'.format(
(epoch),
lr,
int(time.time() - begin_epoch),
state['train_loss'],
state['test_loss'],
100. * state['test_accuracy'])
)
# Adjust learning rate
if epoch in epoch_step:
lr = optimizer.param_groups[0]['lr'] * opt.lr_decay_ratio
optimizer = torch.optim.SGD(
net.parameters(), lr, momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
print("new lr:", lr)
|
arthur-qiu/adv_vis
|
cifar10_wrn_at.py
|
cifar10_wrn_at.py
|
py
| 10,072 |
python
|
en
|
code
| 0 |
github-code
|
6
|
8929962174
|
nums = [1,2,3,4,5,6,7,8,9,10]
#Print the even numbers
even_numbers = list(filter(lambda x: x % 2 == 0, nums))
print(even_numbers)
#Print the odd numbers
odd_numbers = list(filter(lambda x: x % 2 != 0, nums))
print(odd_numbers)
names = ['Adam', 'Ana', 'Kevin', 'Daniel', 'Michael']
#Filter the names that have more than 5 characters od length
filtered_names = list(filter(lambda name: len(name) > 5, names))
print(filtered_names)
|
moreirafelipegbt/udemy-python
|
s17/s17-138.py
|
s17-138.py
|
py
| 434 |
python
|
en
|
code
| 0 |
github-code
|
6
|
39760240581
|
# -*- coding: utf-8 -*-
from django.conf.urls import patterns, include, url
urlpatterns = patterns('CiscoDxUketsukeApp.views',
# url(r'^$', 'CiscoDxUketsuke.views.home', name='home'),
# url(r'^getData/' 'CiscoDxUketsuke.views.getData'),
url(r'^member_tsv/$','member_tsv'),
url(r'^member_json/$','member_json'),
url(r'^room_tsv/$','room_tsv'),
url(r'^room_json/$','room_json'),
url(r'^folder_tsv/$','folder_tsv'),
url(r'^folder_json/$','folder_json'),
url(r'^favorite_tsv/$','favorite_tsv'),
url(r'^favorite_json/$','favorite_json'),
url(r'^test/$','test'),
url(r'^test2/$','test2'),
url(r'^pad1/$','pad1'),
url(r'^pad2/$','pad2'),
url(r'^top/$','top'),
url(r'^member/$','member'),
url(r'^room/$','room'),
url(r'^folder/$','folder'),
url(r'^folder/(?P<dxId>\d+)/$','folder'),
url(r'^folder/(?P<dxId>\d+)/(?P<folderId>\d+)/$','folder'),
url(r'^home/$','home'),
url(r'^fav/$','fav'),
url(r'^index/$','index'),
url(r'^list/$','list'),
url(r'^add_dx/$','add_dx'),
url(r'^edit_dx/$','edit_dx'),
url(r'^add_member/$','add_member'),
url(r'^add_room/$','add_room'),
url(r'^add_folder/$','add_folder'),
url(r'^add1/$','add_member_room_db'),
)
|
fjunya/dxApp
|
src/CiscoDxUketsukeApp/urls.py
|
urls.py
|
py
| 1,254 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21738440212
|
import cv2
# Problem 4.
# Rescale the video vid1.jpg by 0.5 and display the original video and the rescaled one in separate windows.
def rescaleFrame(frame, scale):
width = int(frame.shape[1] * scale)
height = int(frame.shape[0] * scale)
dimensions = (width, height)
return cv2.resize(frame, dimensions, interpolation=cv2.INTER_AREA)
capture = cv2.VideoCapture('vid1.mp4')
while True:
frame_loaded, frame = capture.read()
if frame is not None: # or if isTrue
frame_rescaled = rescaleFrame(frame, 0.5)
cv2.imshow('Video', frame)
cv2.imshow('Video_rescaled', frame_rescaled)
else:
print('empty frame')
exit(1)
if cv2.waitKey(20) & 0xFF == ord('d'):
break
capture.release()
cv2.destroyAllWindows()
cv2.waitKey(0)
|
markhamazaspyan/Python_2_ASDS
|
opencvHW1/problem4.py
|
problem4.py
|
py
| 799 |
python
|
en
|
code
| 0 |
github-code
|
6
|
28965388899
|
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.remote.webelement import WebElement
from selenium.common.exceptions import NoSuchElementException
from selenium.common.exceptions import TimeoutException
import time
import json
import os
from course import Course
# Web Driver configuration
PATH = "C:\Program Files (x86)\chromedriver.exe"
driver = webdriver.Chrome(PATH)
coursesList = []
# getting pages URLs
f = open("URL.txt", "r")
URLs = []
for x in f:
URLs.append(x)
f.close()
# searching through each page from file and through each subpage (< 1 2 3 ... 7 >)
for URL in URLs:
emptyPage = False # means that the page number is out of range and there is no more content on this page
subpageCounter = 1
while not emptyPage:
print(URL+'&p='+str(subpageCounter))
driver.get(URL+'&p='+str(subpageCounter))
subpageCounter += 1
try: # element with this class name is a big container for all smaller divs. If it is not present then there is no content on the page
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.CLASS_NAME, 'course-list--container--3zXPS')))
container = driver.find_element_by_class_name('course-list--container--3zXPS')
coursesBiggerDivs = container.find_elements_by_class_name('browse-course-card--link--3KIkQ')
courses = container.find_elements_by_class_name('course-card--container--3w8Zm')
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
counter = 0
for course in courses: # each course we convert into an object of 'Course' class (data extraction)
title = course.find_element_by_class_name('udlite-heading-md').text
desc = course.find_element_by_class_name('udlite-text-sm').text
author = course.find_element_by_class_name('udlite-text-xs').text
try:
spanElement = course.find_element_by_css_selector('span.star-rating--rating-number--3lVe8')
except NoSuchElementException:
ratings = 'Brak ocen'
else:
ratings = spanElement.text
try:
details = course.find_elements_by_css_selector('span.course-card--row--1OMjg')
courseLength = details[0].text
courseLevel = details[len(details)-1].text
except NoSuchElementException:
print("Brak dodatkowych informacji")
courseLength = 'Brak informacji'
courseLevel = 'Brak informacji'
try:
image = course.find_element_by_class_name('course-card--course-image--2sjYP')
ActionChains(driver).move_to_element(image).perform()
imageSourceURL = image.get_attribute('src')
except NoSuchElementException:
print("Brak zdjęcia")
imageSourceURL = 'https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.smarthome.com.au%2Faeotec-z-wave-plug-in-smart-switch-6.html&psig=AOvVaw33Vx1wP6a3B3QAn_6WPe4A&ust=1602514347326000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNitsanlrOwCFQAAAAAdAAAAABAE'
try:
priceDiv = course.find_element_by_css_selector('div.price-text--price-part--Tu6MH')
ActionChains(driver).move_to_element(priceDiv).perform()
spans = priceDiv.find_elements_by_tag_name('span')
price = spans[len(spans) - 1].text
except NoSuchElementException:
price = 'Brak ceny'
try:
courseLink = coursesBiggerDivs[counter].get_attribute('href')
except NoSuchElementException:
courseLink = None
counter += 1
c = Course(title, desc, author, ratings, price, imageSourceURL, courseLength, courseLevel, courseLink)
coursesList.append(c)
except TimeoutException:
print('[INFO] Ostatnia podstrona adresu URL')
emptyPage = True
os.remove('objectsInJSON.txt')
for course in coursesList: #search through each course page and get some more specific information
driver.get(course.URL)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.CLASS_NAME, 'topic-menu')))
topicDiv = driver.find_element_by_class_name('topic-menu')
elements = topicDiv.find_elements_by_class_name('udlite-heading-sm')
course.setCategory(elements[0].text)
course.setSubcategory(elements[1].text)
courseDescription = driver.find_element_by_class_name('styles--description--3y4KY')
course.setExtendedDescription(courseDescription.get_attribute('innerHTML'))
# write converted course object into output file
string = course.makeJSON()
with open('objectsInJSON.txt','a',encoding='utf-8') as file:
json.dump(string, file, ensure_ascii=False)
file.write("\n")
driver.quit()
file.close()
|
krzysztofzajaczkowski/newdemy
|
utils/WebCrawler/main.py
|
main.py
|
py
| 5,352 |
python
|
en
|
code
| 0 |
github-code
|
6
|
73813844989
|
import io
import numpy as np
import sys
from gym.envs.toy_test import discrete
from copy import deepcopy as dc
UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3
class GridworldEnv(discrete.DiscreteEnv):
metadata = {'render.modes': ['human', 'ansi']}
def __init__(self, shape = [4, 4]):
if not isinstance(shape, (list, tuple)) or not len(shape) == 2:
raise ValueError('shape argument must be a list/tuple of length 2')
self.shape = shape
nS = np.prod(shape) #np.prod : array 내부 element들의 곱
nA = 4
MAX_Y = shape[0]
MAX_X = shape[1]
P = {}
grid = np.arange(nS).reshape(shape) # np.arange(x) 0부터 x까지 [0, 1, ..., x]
it = np.nditer(grid, flags=['multi_index']) # iterator
while not it.finished:
s = it.iterindex
y, x = it.multi_index # 왜 y,x 순서? => (row, column)가 (y, x) 에 대응
P[s] = {a: [] for a in range(nA)} # a = 0, ..,3 돌면서 [] 생성 (s = iterindex 이고 state)
# P[s][a] = (prob, next_state, reward, is_done)
def is_done(s): # terminal or not
return s == 0 or s == (nS - 1)
reward = 0.0 if is_done(s) else -1.0 # reward는 현재 state와 action 기준 (여기서는 action 종류 관계없이 동일)
if is_done(s):
P[s][UP] = [(1.0, s, reward, True)] # 왜 [ ]?
P[s][RIGHT] = [(1.0, s, reward, True)]
P[s][DOWN] = [(1.0, s, reward, True)]
P[s][LEFT] = [(1.0, s, reward, True)]
else:
ns_up = s if y == 0 else s - MAX_X # 맨 윗줄이면 그대로, 아니면 MAX_X 만큼 빼기 (s는 1차원 배열이니까)
ns_right = s if x == (MAX_X - 1) else s + 1
ns_down = s if y == (MAX_Y -1) else s + MAX_X
ns_left = s if x == 0 else s - 1
P[s][UP] = [(1.0, ns_up, reward, is_done(ns_up))]
P[s][RIGHT] = [(1.0, ns_right, reward, is_done(ns_right))]
P[s][DOWN] = [(1.0, ns_down, reward, is_done(ns_down))]
P[s][LEFT] = [(1.0, ns_left, reward, is_done(ns_left))]
it.iternext()
|
hyeonahkimm/RLfrombasic
|
src/common/gridworld.py
|
gridworld.py
|
py
| 2,222 |
python
|
en
|
code
| 0 |
github-code
|
6
|
4206104345
|
# pylint: disable=no-member, no-name-in-module, import-error
from __future__ import absolute_import
import glob
import distutils.command.sdist
import distutils.log
import subprocess
from setuptools import Command, setup
import setuptools.command.sdist
# Patch setuptools' sdist behaviour with distutils' sdist behaviour
setuptools.command.sdist.sdist.run = distutils.command.sdist.sdist.run
class LintCommand(Command):
"""
Custom setuptools command for running lint
"""
description = 'run lint against project source files'
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
self.announce("Running pylint", level=distutils.log.INFO)
subprocess.check_call(["pylint"] + glob.glob("*.py"))
setup(
# Package name:
name="dxlmisc",
# Version number:
version="0.0.1",
# Requirements
install_requires=[
"pylint"
],
description="Misc OpenDXL Tools",
python_requires='>=2.7.9,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*',
classifiers=[
"Development Status :: 4 - Beta",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python",
"Programming Language :: Python :: 2",
"Programming Language :: Python :: 2.7",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.4",
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6"
],
cmdclass={
"lint": LintCommand
}
)
|
jbarlow-mcafee/opendxl-misc
|
setup.py
|
setup.py
|
py
| 1,654 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21998859226
|
from typing import List
class Solution:
def deleteAndEarn(self, nums: List[int]) -> int:
max_val = max(nums)
total = [0] * (max_val + 1)
for val in nums:
total[val] += val
def rob(nums):
first = nums[0]
second = max(nums[0], nums[1])
for i in range(2, len(nums)):
first, second = second, max(second, first + nums[i])
return second
return rob(total)
|
hangwudy/leetcode
|
700-799/740. 删除并获得点数.py
|
740. 删除并获得点数.py
|
py
| 475 |
python
|
en
|
code
| 0 |
github-code
|
6
|
17654474137
|
import string
import os
import csv
from datetime import datetime
from datetime import date
import re
#debugging
debug = False
print()
def extract(inputFile: string, outputFile: string):
specialTitle = False
fileIndex = 1
with open(outputFile,'w',newline='', encoding="utf8") as writefile,open(inputFile,newline='', encoding="utf8") as readfile:
writer = csv.writer(writefile)
state = 0
processNum = 0
starti = 0
for line in readfile:
#PRELIMINARY----------------------------------------------------------
states = ['', #0 just read line
'[MARS]', #1
'[CONFIG LIST]', #2
'Process usage summary', #3
'[Batterystats Collector]', #4
'Daily Summary', #5
'[PowerAnomaly Battery Dump]', #6
'Anomaly List For DeviceCare', #7
'[TCPU dump]', #8
'[UCPU dump]', #9
'------ NETWORK DEV INFO (/proc/net/dev) ------', #10
'------ MEMORY INFO (/proc/meminfo) ------', #11
'------ VIRTUAL MEMORY STATS (/proc/vmstat) ------',#12
'** MEMINFO in pid[com.x3AM.Innovations.Flare.Mobile.App] **'#13
]
data = ['']
#/////////////////////////////////////////////////////////////////////
#SET STATE------------------------------------------------------------
#enter state 1 ([MARS])
if (line.strip() == states[1]):
state = 1
starti = fileIndex
print(f"--Changed State to: {state} becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 2 ([CONFIG LIST])
elif (line.strip() == states[2]):
state = 2
starti = fileIndex
#handle special title
specialTitle = True
writer.writerows([[states[state]], ['Boot Number', 'Date/Time']])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 3 (Process usage summary)
elif (line.strip()[:21] == states[3]): #[:21] take the first 21 characters
state = 3
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 4 ([Batterystats Collector])
elif (line.strip() == states[4]):
state = 4
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 5 (Daily Summary)
elif (line.strip() == states[5]):
state = 5
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([])
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 6 ([PowerAnomaly Battery Dump])
elif (line.strip() == states[6]):
state = 6
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 7 (Anomaly List For DeviceCare)
elif (line.strip() == states[7]):
state = 7
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([])
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 8 ([TCPU dump])
elif (line.strip() == states[8]):
state = 8
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([])
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 9 ([UCPU dump])
elif (line.strip() == states[9]):
state = 9
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([])
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 10 (------ NETWORK DEV INFO (/proc/net/dev) ------ )
elif (line.strip() == states[10]):
state = 10
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 11 (------ MEMORY INFO (/proc/meminfo) ------ )
elif(line.strip() == states[11]):
state = 11
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
#enter state 12 (------ VIRTUAL MEMORY STATS (/proc/vmstat) ------)
elif(line.strip() == states[12]):
state = 12
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
'''
#enter state 13 (** MEMINFO in pid[com.x3AM.Innovations.Flare.Mobile.App] **)
elif(line.strip()[:17] == states[13][:17] and re.search('[com.x3AM.Innovations.Flare.Mobile.App]', line)==True):
state = 13
processNum = 0
starti = fileIndex
#handle special title
specialTitle = True
writer.writerow([line])
print(f"--Changed State to: {state} w/ special title becasuse of {states[state]}\nExtracting from line {starti}...")
'''
#debug info
#print(f"fileIndex: {fileIndex} | i: {i} | state: {state}")
#/////////////////////////////////////////////////////////////////////
#PERFORM STATE ACTIONS----------------------------------------------------
#extract MARS (state 1)
if(state == 1):
#when done, set state to inactive
if(line.strip() == ''):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
data = line.split()
#extract CONFIG LIST (state 2)
if(state == 2):
#when done, set state to inactive
if(line.strip() == ''):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([''])
#close special title
if(fileIndex!=starti and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
if(not specialTitle and state!=0):
raw = line.split()
data[0] = (raw[0])
data.append(f"{raw[1]} {raw[2]} ")
#extract power usage summary (state 3)
if(state == 3):
#finish at end flag
if(line.strip() == 'SSRM MEMORY DUMP **********'):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex!=starti and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#take usage title
if(processNum!=1 and line[0] == '[' and state!=0):
processNum = 1
#collect data for usage title
if(processNum == 1 and state!=0):
data = line.split('|')
for elem in data:
elem = elem.strip()
#mark new usage title
if(line.strip() == '' and state!=0):
processNum = 0
#extract Batterystats (state 4)
if(state == 4):
trimmed = line.strip()
#finish will finish when state is changed at 'set state' level
#close special title
if(fileIndex!=starti and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#mark new usage title
if(line.strip() == '' and state==4):
processNum = 0
#set process
if(trimmed != '' and line[0] == 'S' and state==4):
processNum = 3
if(trimmed != '' and line[2] == 'U' and state==4):
processNum = 2
if(trimmed != '' and processNum == 2 and line[2] == ' '):
processNum = 2
if(trimmed != '' and processNum != 2 and line[0] == ' ' and state==4):
processNum = 1
#collect prelim data for usage (process 1)
if(processNum == 1 and state==4):
data = line.split(":")
for elem in data:
elem = elem.strip()
#collect data for usage title (process 2)
if(processNum == 2 and state==4):
data = line.split('|')
for elem in data:
elem = elem.strip()
#collect title
if(processNum == 3 and state==4):
raw = line.split()
data[0] = f"{raw[2]} {raw[3]}"
data.append(f"{raw[5]} {raw[6]}")
#extract Daily Summary (state 5)
if(state == 5):
#finish at end flag
if(line.strip() == ''):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti+1 and specialTitle and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#parse data
data = line.split('|')
for elem in data:
elem = elem.strip()
#extract PowerAnomaly Battery Dump (state 6)
if(state == 6):
#close special title
if(fileIndex>starti and specialTitle and state == 6):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#finish at next title
if(line[:3] == '[Ba'):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
if(state == 6):
data = line.strip()
#extract Anomaly List For DeviceCare (state 7)
if(state == 7):
#finish parsing after second null line
if(line.strip() == '' and processNum == 2):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#next process after null line
if(line.strip() == '' and state == 7):
processNum = 1
print(f"Process Number has been changed to {processNum} at line {fileIndex}")
#close special title
if(fileIndex>starti and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#parse data by default
if(processNum == 0 and state == 7):
data = line.split('|')
newData = []
for elem in data:
elem = elem.strip()
newData.append(elem)
data = newData
#collect stats
elif(processNum == 2 and state == 7):
data = line.split(':')
#print(f"{data[0]} : {data[1]}")
#collect stats timestamp
elif(line.strip() != '' and processNum == 1):
raw = line.split()
data[0] = f"{raw[2]} {raw[3]}"
data.append(f"{raw[5]} {raw[6]}")
processNum = 2
print(f"Process Number has been changed to {processNum} at line {fileIndex}")
#extract [TCPU dump] (state 8)
if(state == 8):
#finish at end flag
if(line.strip() == ''):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti+1 and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#parse data
data = line.split('|')
for elem in data:
elem = elem.strip()
#extract [UCPU dump] (state 9)
if(state == 9):
#finish at end flag
if(line.strip() == ''):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti+1 and specialTitle and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#parse data
data = line.split('|')
for elem in data:
elem = elem.strip()
#extract NETWORK DEV INFO (state 10)
if(state == 10):
#when done, set state to inactive
if(line.strip()!='' and line.split()[0] == '------' and not specialTitle):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti+1 and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#collect data
if(state == 10 and not specialTitle):
line = line.strip()
data = line.split()
keep = False
for elem in data:
if(elem.isnumeric() and int(elem)>10000):
keep = True
if(not keep):
data = []
#extract MEMORY INFO (state 11)
if(state == 11):
#when done, set state to inactive
if(line.strip()!='' and line.split()[0] == '------' and not specialTitle):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti+1 and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
if(line.strip()!='' and not specialTitle and state==11):
raw = line.split(':')
data[0] = raw[0].strip()
data.append(raw[1].strip())
#extract VIRTUAL MEMORY STATS (state 12)
if(state == 12):
#when done, set state to inactive
if(line.strip()!='' and line.split()[0] == '------' and not specialTitle):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
if(line.strip()!='' and not specialTitle and state==11):
raw = line.split()
data[0] = raw[0].strip()
data.append(raw[1].strip())
'''
#extract MEMINFO in pid (state 13)
if(state == 13):
#when done, set state to inactive
if(line.strip()!='' and line.split()[0] == '*' and not specialTitle):
state = 0
print(f"--Reverted State to {state} at {fileIndex}--\n")
writer.writerow([])
#close special title
if(fileIndex>starti and specialTitle):
specialTitle = False
if(debug):
print(f"Ended specialTitle at line {fileIndex}")
#collect data
if(processNum == 2 and line.strip()!='' and not specialTitle and state==13):
data = line.split()
for elem in data:
elem = elem.strip()
#collect title
if(processNum == 1):
data[0] = line
processNum = 2
if(line.strip()=='' and not specialTitle and state==13):
processNum = 1
'''
#/////////////////////////////////////////////////////////////////////
#output if the state is active (not 0)
if(state!=0 and (not specialTitle)):
#print(f"writing {data}")
isEmpty = True
for elem in data:
if(elem.strip() != ''):
isEmpty = False
break
if(not isEmpty):
writer.writerow(data)
elif(debug):
print(f"Did not write line {fileIndex} to CSV because data was empty")
if(specialTitle and debug):
print(f"Did not write line {fileIndex} to CSV because of Special Title")
fileIndex += 1
# main
inputFiles = os.listdir('INPUT')
fileCount = 1
for file in inputFiles:
outfile = f"{file.split('.')[0]}-output_{fileCount}.csv"
print(f'RUNNING EXTRACT ON [{file}] AND WRITING TO [{outfile}]...')
print()
extract(f'INPUT\{file}', outfile)
print("Exited properly\n")
fileCount+=1
|
ABbuff/DumpstateDataExtraction
|
Extract.py
|
Extract.py
|
py
| 22,516 |
python
|
en
|
code
| 0 |
github-code
|
6
|
26257812486
|
# Imports
import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base
import users
from datetime import datetime
"""
Модуль для поиска атлетов по парамтрам пользователя
"""
# Variables
Base = declarative_base()
# Class definitions
class Athlette(Base):
__tablename__ = "Athelete"
id = sa.Column(sa.INTEGER, primary_key=True)
age = sa.Column(sa.INTEGER)
birthdate = sa.Column(sa.TEXT)
gender = sa.Column(sa.TEXT)
height = sa.Column(sa.REAL)
name = sa.Column(sa.TEXT)
weight = sa.Column(sa.INTEGER)
gold_medals = sa.Column(sa.INTEGER)
silver_medals = sa.Column(sa.INTEGER)
bronze_medals = sa.Column(sa.INTEGER)
total_medals = sa.Column(sa.INTEGER)
sport = sa.Column(sa.TEXT)
country = sa.Column(sa.TEXT)
# Function definitions
def search_id(id, session):
query_str = session.query(Athlette).filter(Athlette.id == id).first()
usr = f"{query_str}"
return usr
def height_compare(id, session, bcolors):
"""
Сравнение роста атлетов с пользовательским
"""
# берем из базы рост пользователя
usr_query = session.query(users.User).filter(users.User.id == id).first()
usr_height = usr_query.height
# ищем атлетов по росту пользователя
ath_query = session.query(Athlette).filter(
Athlette.height == usr_height)
ath_count = ath_query.count()
ath_found = ath_query.all()
# выводим содержимое объектов Athlete, если найдены
res = ""
if ath_found:
for ath in ath_found:
res += f" {ath.name}, {ath.sport} \n"
res = f"{res}\n Всего атлетов с ростом {ath.height} метра: {ath_count}"
else:
print(bcolors.FAIL +
f"\nERROR: Атлет с ростом {usr_height}m не найден" + bcolors.ENDC)
return res
def bday_compare(id, session):
"""
Ищем атлета, наиболее близкого по дате рождения к пользователю
"""
dt_format = '%Y-%m-%d'
usr_query = session.query(users.User).filter(users.User.id == id).first()
user_bday_str = usr_query.birthdate
user_bday_dt_obj = datetime.strptime(user_bday_str, dt_format)
ath_query_all_obj = session.query(Athlette).all()
ath_bday_all_dt_list = list()
for ath in ath_query_all_obj:
ath_bday_all_dt_list.append(
datetime.strptime(ath.birthdate, dt_format))
closest_bday_dt_obj = ath_bday_all_dt_list[min(range(len(ath_bday_all_dt_list)),
key=lambda i: abs(ath_bday_all_dt_list[i]-user_bday_dt_obj))]
# выбираем всех атлетов по самой ближней дате рождения
closest_bday_str = closest_bday_dt_obj.strftime(dt_format)
ath_query_bday_query = session.query(Athlette).filter(
Athlette.birthdate == closest_bday_str)
# берем из базы данные и считаем
ath_bday_obj = ath_query_bday_query.all()
ath_bday_count = ath_query_bday_query.count()
# формируем возврат
res = ""
for ath in ath_bday_obj:
res = f"{res}\n {ath.name}, д.р.: {ath.birthdate}, {ath.sport}"
return res
if __name__ == "__main__":
print("ERROR: Запуск скрипта через выполнение модуля start.py \n")
# DEBUG
# print('Info: Module find_athlete.py - imported')
|
vsixtynine/sf-sql-task
|
find_athlete.py
|
find_athlete.py
|
py
| 3,609 |
python
|
ru
|
code
| 0 |
github-code
|
6
|
9324466807
|
from flask import Blueprint, render_template, url_for
lonely = Blueprint('lonely',
__name__,
template_folder='./',
static_folder='./',
static_url_path='/')
lonely.display_name = 'Lonely'
lonely.published = True
lonely.description = "An interactive visualization of original music."
@lonely.route('/')
def _lonely():
return render_template('lonely.html')
|
connerxyz/exhibits
|
cxyz/exhibits/lonely/lonely.py
|
lonely.py
|
py
| 437 |
python
|
en
|
code
| 0 |
github-code
|
6
|
21881174301
|
from selenium import webdriver
from selenium.webdriver.common.by import By
import time
import os
try:
link = "http://suninjuly.github.io/file_input.html"
browser = webdriver.Chrome()
browser.get(link)
elements = browser.find_elements(By.CSS_SELECTOR, ".form-control")
for element in elements:
if element.get_attribute('required') != None:
element.send_keys("Мой ответ")
print(os.getcwd())
current_dir = os.path.realpath(os.path.dirname(__file__))
file_path = os.path.join(current_dir, 'file.txt')
print(file_path)
element = browser.find_element(By.CSS_SELECTOR, "#file")
element.send_keys(file_path)
button = browser.find_element(By.CSS_SELECTOR, "button.btn")
button.click()
finally:
# ожидание чтобы визуально оценить результаты прохождения скрипта
time.sleep(10)
# закрываем браузер после всех манипуляций
browser.quit()
|
Mayurityan/stepik_auto_tests_course
|
lesson 2.2 send file form.py
|
lesson 2.2 send file form.py
|
py
| 1,034 |
python
|
ru
|
code
| 0 |
github-code
|
6
|
11951082453
|
def convert_ascii(letter):
result = ord(letter)
return result
def convert_binary(num):
result = bin(num)
return result
def menu():
print("=============\nMenu\n=============\n 1. Character\n 2. Word")
option = int(input("Please select an option to convert into binary: "))
if option == 1:
chosenLetter = input("Write the letter: ")
ascii_num = convert_ascii(chosenLetter)
print("=============\nResults\n=============\n")
print(
"ASCII character value of", chosenLetter, "is", ascii_num ,
"and representation of", chosenLetter, "in a byte is", convert_binary(ascii_num)
)
elif option == 2:
chosenWord = input("Write the word: ")
binaryWord = []
print("=============\nResults\n=============\n")
for i in chosenWord:
ascii_num = convert_ascii(i)
convertion = convert_binary(ascii_num)
print(
"ASCII character value of", i, "is", ascii_num ,
"and representation of", i, "in a byte is", convertion
)
binaryWord.append(convertion)
print(" ".join(binaryWord))
else:
exit()
menu()
|
Juanjo2354/EvaluacionFinal
|
convertBinary.py
|
convertBinary.py
|
py
| 1,250 |
python
|
en
|
code
| 0 |
github-code
|
6
|
70713803708
|
import re
import os
import sys
import nltk
import json
import wandb
import joblib
import datasets
import numpy as np
import pandas as pd
from time import process_time
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from sklearn.svm import LinearSVC
from sklearn.pipeline import make_pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
np.random.seed(42)
class LemmaTokenizer:
ignore_tokens = [',', '.', ';', ':', '"', '``', "''", '`']
def __init__(self):
self.wnl = WordNetLemmatizer()
def __call__(self, doc):
return [self.wnl.lemmatize(t) for t in word_tokenize(doc) if t not in self.ignore_tokens]
def prepare_dataset(data_folder, label2id, data_types, max_length):
def combine_data(example):
temp_text = ""
for data_type in data_types:
temp_text += example[data_type] + " "
example["text"] = temp_text[:max_length]
return example
dataset = datasets.load_from_disk(data_folder + "dataset/")
dataset = dataset["train"]
dataset_encoded = dataset.class_encode_column("category")
dataset_aligned = dataset_encoded.align_labels_with_mapping(label2id, "category")
dataset_cleaned = dataset_aligned.map(combine_data)
dataset = dataset_cleaned.remove_columns(["title", "body"])
dataset = dataset.rename_column("category", "label")
return dataset
def main():
hps = {
"data_types": ["title", "body"],
"loss_function": "squared_hinge",
"ngram_range": 3,
"max_length": 512,
}
wandb_id = wandb.util.generate_id()
run = wandb.init(
project="DMOZ-classification",
config=hps,
job_type="training",
name="SVM_DMOZ_" + str(wandb_id),
tags=["SVM", "DMOZ"],
)
data_folder = "/ceph/csedu-scratch/other/jbrons/thesis-web-classification/"
id2label = {0: "Arts", 1: "Business", 2: "Computers", 3: "Health", 4: "Home", 5: "News", 6: "Recreation", 7: "Reference", 8: "Science", 9: "Shopping", 10: "Society", 11: "Sports", 12: "Games"}
label2id = {v: k for k, v in id2label.items()}
labels = label2id.keys()
dataset = prepare_dataset(data_folder, label2id, hps["data_types"], hps["max_length"])
X_train, y_train = dataset["text"], dataset["label"]
tokenizer=LemmaTokenizer()
pipeline = make_pipeline(
TfidfVectorizer(
ngram_range=(1, hps["ngram_range"]),
tokenizer=tokenizer,
token_pattern=None
),
LinearSVC(loss=hps["loss_function"])
)
t0 = process_time()
pipeline.fit(X_train, y_train)
training_time = process_time() - t0
print("Training time {:5.2f}s for {:0d} samples.".format(training_time, len(y_train)))
run.summary["training_time"] = training_time
filename = data_folder + "models/SVM/model.pkl"
joblib.dump(pipeline, filename, compress=3)
model_artifact = wandb.Artifact(
name="model_SVM_DMOZ",
type="model"
)
model_artifact.add_file(thesis_folder + "models/SVM/model.pkl")
run.log_artifact(model_artifact)
if __name__ == "__main__":
main()
|
JesseBrons/Webpageclassification
|
training/train_model_SVM.py
|
train_model_SVM.py
|
py
| 3,173 |
python
|
en
|
code
| 1 |
github-code
|
6
|
27483903677
|
from django.shortcuts import render, redirect
from django.contrib import messages
from .models import User
from .forms import RegisterForm, LoginForm
from .utils import require_login
def login_page(request):
context = {"reg_form": RegisterForm(), "login_form": LoginForm()}
return render(request, "users/login.html", context)
def login(request):
curr_user = User.user_manager.login(request.POST["email_address"], request.POST["password"])
if not curr_user:
messages.error(request, "E-mail or password incorrect")
return redirect("login_page")
else:
request.session["curr_user"] = curr_user.id
return redirect("dashboard")
def register(request):
registered, guy_or_errors = User.user_manager.register(request.POST)
if not registered:
for error in guy_or_errors: messages.error(request, error)
return redirect("login_page")
else:
request.session["curr_user"] = guy_or_errors.id
return redirect("dashboard")
def log_off(request):
request.session.clear()
return redirect("login_page")
@require_login
def dashboard(request, curr_user):
context = {
"curr_user": curr_user,
"users": User.user_manager.all(),
}
return render(request, "users/dashboard.html", context)
@require_login
def show(request, curr_user, id):
print("show page")
context = {
"curr_user": curr_user,
"user": User.user_manager.get(id=id),
}
return render(request, "users/show.html", context)
@require_login
def edit(request, curr_user, id):
context = {
"curr_user": curr_user,
"user": User.user_manager.get(id=id),
}
return render(request, "users/edit.html", context)
@require_login
def update(request, curr_user, id):
# Logic to check if curr_user is admin or user being updated
if not (curr_user.admin or curr_user.id == int(id)):
print(curr_user.id, id, curr_user.id == id)
return redirect("/dashboard")
# Logic to actually update
errors = User.user_manager.update(id, request.POST)
if errors:
for error in errors:
messages.error(request, error)
return redirect("edit", id=id)
else:
return redirect("show", id=id)
|
madjaqk/django_user_dashboard
|
apps/users/views.py
|
views.py
|
py
| 2,061 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35164165716
|
#!/usr/bin/python3
import subprocess
import json
import requests
import time
import logging
import os
#bin Paths
ipfspath = '/usr/local/bin/ipfs'
wgetpath = '/usr/bin/wget'
wcpath = '/usr/bin/wc'
#Basic logging to ipfspodcastnode.log
logging.basicConfig(format="%(asctime)s : %(message)s", datefmt="%Y-%m-%d %H:%M:%S", filename="ipfspodcastnode.log", filemode="w", level=logging.INFO)
#Create an empty email.cfg (if it doesn't exist)
if not os.path.exists('cfg/email.cfg'):
with open('cfg/email.cfg', 'w') as ecf:
ecf.write('')
#Init IPFS (if necessary)
if not os.path.exists('ipfs/config'):
logging.info('Initializing IPFS')
ipfs_init = subprocess.run(ipfspath + ' init', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
#Start WebUI
import webui
logging.info('Starting Web UI')
#Automatically discover relays and advertise relay addresses when behind NAT.
swarmnat = subprocess.run(ipfspath + ' config --json Swarm.RelayClient.Enabled true', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
#Start IPFS
daemon = subprocess.run(ipfspath + ' daemon >/dev/null 2>&1 &', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
logging.info('Starting IPFS Daemon')
time.sleep(10)
#Get IPFS ID
with open('ipfs/config', 'r') as ipcfg:
ipconfig = ipcfg.read()
jtxt = json.loads(ipconfig)
logging.info('IPFS ID : ' + jtxt['Identity']['PeerID'])
#Main loop
while True:
#Request payload
payload = { 'version': 0.6, 'ipfs_id': jtxt['Identity']['PeerID'] }
#Read E-mail Config
with open('cfg/email.cfg', 'r') as ecf:
email = ecf.read()
if email == '':
email = '[email protected]'
payload['email'] = email
#Check if IPFS is running, restart if necessary.
payload['online'] = False
diag = subprocess.run(ipfspath + ' diag sys', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if diag.returncode == 0:
ipfs = json.loads(diag.stdout)
payload['ipfs_ver'] = ipfs['ipfs_version']
payload['online'] = ipfs['net']['online']
if payload['online'] == False:
#Start the IPFS daemon
daemon = subprocess.run(ipfspath + ' daemon >/dev/null 2>&1 &', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
logging.info('@@@ IPFS NOT RUNNING !!! Restarting Daemon @@@')
#Get Peer Count
peercnt = 0
speers = subprocess.run(ipfspath + ' swarm peers|wc -l', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if speers.returncode == 0:
peercnt = speers.stdout.decode().strip()
payload['peers'] = peercnt
#Request work
logging.info('Requesting Work...')
try:
response = requests.post("https://IPFSPodcasting.net/Request", timeout=120, data=payload)
work = json.loads(response.text)
logging.info('Response : ' + str(work))
except requests.RequestException as e:
logging.info('Error during request : ' + str(e))
work = { 'message': 'Request Error' }
if work['message'] == 'Request Error':
logging.info('Error requesting work from IPFSPodcasting.net (check internet / firewall / router).')
elif work['message'][0:7] != 'No Work':
if work['download'] != '' and work['filename'] != '':
logging.info('Downloading ' + str(work['download']))
#Download any "downloads" and Add to IPFS (1hr48min timeout)
try:
hash = subprocess.run(wgetpath + ' -q --no-check-certificate "' + work['download'] + '" -O - | ' + ipfspath + ' add -q -w --stdin-name "' + work['filename'] + '"', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=6500)
hashcode = hash.returncode
except subprocess.SubprocessError as e:
logging.info('Error downloading/pinning episode : ' + str(e))
hashcode = 99
if hashcode == 0:
#Get file size (for validation)
downhash=hash.stdout.decode().strip().split('\n')
size = subprocess.run(ipfspath + ' cat ' + downhash[0] + ' | ' + wcpath + ' -c', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
downsize=size.stdout.decode().strip()
logging.info('Added to IPFS ( hash : ' + str(downhash[0]) + ' length : ' + str(downsize) + ')')
payload['downloaded'] = downhash[0] + '/' + downhash[1]
payload['length'] = downsize
else:
payload['error'] = hashcode
if work['pin'] != '':
#Directly pin if already in IPFS
logging.info('Pinning hash (' + str(work['pin']) + ')')
try:
pin = subprocess.run(ipfspath + ' pin add ' + work['pin'], shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=6500)
pincode = pin.returncode
except subprocess.SubprocessError as e:
logging.info('Error direct pinning : ' + str(e))
#Clean up any other pin commands that may have spawned
cleanup = subprocess.run('kill `ps aux|grep "ipfs pin ad[d]"|awk \'{ print $2 }\'`', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
pincode = 98
if pincode == 0:
#Verify Success and return full CID & Length
pinchk = subprocess.run(ipfspath + ' ls ' + work['pin'], shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if pinchk.returncode == 0:
hashlen=pinchk.stdout.decode().strip().split(' ')
payload['pinned'] = hashlen[0] + '/' + work['pin']
payload['length'] = hashlen[1]
else:
payload['error'] = pinchk.returncode
else:
payload['error'] = pincode
if work['delete'] != '':
#Delete/unpin any expired episodes
logging.info('Unpinned old/expired hash (' + str(work['delete']) + ')')
delete = subprocess.run(ipfspath + ' pin rm ' + work['delete'], shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
payload['deleted'] = work['delete']
#Report Results
logging.info('Reporting results...')
#Get Usage/Available
repostat = subprocess.run(ipfspath + ' repo stat -s|grep RepoSize', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if repostat.returncode == 0:
repolen = repostat.stdout.decode().strip().split(':')
used = int(repolen[1].strip())
else:
used = 0
payload['used'] = used
df = os.statvfs('/')
payload['avail'] = df.f_bavail * df.f_frsize
try:
response = requests.post("https://IPFSPodcasting.net/Response", timeout=120, data=payload)
except requests.RequestException as e:
logging.info('Error sending response : ' + str(e))
else:
logging.info('No work.')
#wait 10 minutes then start again
logging.info('Sleeping 10 minutes...')
time.sleep(600)
|
Cameron-IPFSPodcasting/podcastnode-Umbrel
|
ipfspodcastnode.py
|
ipfspodcastnode.py
|
py
| 6,566 |
python
|
en
|
code
| 4 |
github-code
|
6
|
33729704432
|
from flask_app import app, db, render_template, request, redirect, bcrypt, session, flash, url_for, EMAIL_REGEX, verify_logged_in, datetime, timedelta
from models import User, Movie, Post, Comment, favorites, post_likes, comment_likes, faved
@app.route('/')
def index():
upms = db.session.query(User, Post, Movie).select_from(User).join(
Post).join(Movie).where(Post.user_id == User.id and Post.movie_id == Movie.id).order_by(Post.created_at.desc()).all()
# Set post timestamp
for upm in upms:
delta = (datetime.now() - upm[1].created_at)
seconds = delta.seconds
minutes = f"{seconds//60} min. ago"
hours = f"{seconds//3600} hr. ago"
days = f"{delta.days} d. ago"
weeks = f"{delta.days//7} wk. ago"
for unit in [weeks, days, hours, minutes]:
if int(unit[:1]) > 0:
upm[1].time_since = unit
break
return render_template('feed.html', upms=upms, truncate=True, title='Main Feed | ReDirector')
@app.route('/registration', methods=['POST', 'GET'])
def register():
if request.method == 'POST':
if not User.validate_user(request.form):
return redirect('/registration')
user = User(
request.form['username'],
bcrypt.generate_password_hash(request.form['password']),
request.form['email'],
request.form['first_name'],
request.form['last_name']
)
db.session.add(user)
db.session.commit()
user = User.query.filter_by(
email=request.form['email']).first()
session['firt_name'] = user.first_name
session['user_id'] = user.id
session['username'] = user.username
print(
f"Logged in {session['first_name']} with ID {session['user_id']}")
return redirect('/')
else:
return render_template('registration.html')
@app.route('/login', methods=['POST', 'GET'])
def login():
if request.method == 'POST':
# check if user used email to login
if EMAIL_REGEX.match(request.form['username_email']):
# check if email is in database
user_in_db = User.query.filter_by(
email=request.form['username_email']).first()
else:
# check if username is in database
user_in_db = User.query.filter_by(
username=request.form['username_email']).first()
if not user_in_db:
flash('Invalid Username/Email', 'username_email')
return redirect('/login')
# check password against stored hash
if not bcrypt.check_password_hash(user_in_db.password, request.form['log_password']):
flash('Invalid Password', 'log_password')
return redirect('/login')
# email and password are valid
session['first_name'] = user_in_db.first_name
session['user_id'] = user_in_db.id
session['username'] = user_in_db.username
print(
f"Logged in {session['username']} ({session['first_name']})")
return redirect(request.form['last_route'])
else:
return render_template('login.html', last_route=request.referrer)
@app.route('/logout')
def logout():
print(f"Logged out {session['username']} ({session['first_name']})")
session.pop('user_id', None)
session.pop('first_name', None)
session.pop('username', None)
return redirect(request.referrer)
|
cmderobertis/ReDirector
|
flask_app/controllers/users.py
|
users.py
|
py
| 3,467 |
python
|
en
|
code
| 0 |
github-code
|
6
|
3508455471
|
#!/usr/bin/env python3
import numpy as np
import operator
if __name__ == "__main__":
log = None
for l in open('3-input'):
*l, = map(int, l.strip())
if log is None:
log = np.ndarray((1, len(l)), dtype=int)
log[0] = l
else:
log = np.vstack([log, l])
gamma = np.mean(log, axis=0) >= 0.5
epsilon = np.mean(log, axis=0) <= 0.5
part1 = int(''.join(np.char.mod('%d', gamma)), 2) * \
int(''.join(np.char.mod('%d', epsilon)), 2)
print('part1', part1)
def filter(log: np.array, most: bool):
c = 0
while len(log) != 1 and c < len(log[0]):
thres = np.mean(log[:, c], axis=0) >= 0.5
if most:
log = log[log[:, c] == thres]
else:
log = log[log[:, c] != thres]
c += 1
assert len(log) == 1
return int(''.join(np.char.mod('%d', log[0])), 2)
CO2 = filter(np.copy(log), True)
O = filter(np.copy(log), False)
part2 = O * CO2
print('part2', part2)
|
pboettch/advent-of-code
|
2021/3.py
|
3.py
|
py
| 1,069 |
python
|
en
|
code
| 1 |
github-code
|
6
|
30367917171
|
"""Tutorial 8. Putting two plots on the screen
This tutorial sets up for showing how Chaco allows easily opening multiple
views into a single dataspace, which is demonstrated in later tutorials.
"""
from scipy import arange
from scipy.special import jn
from enable.api import ComponentEditor
from traits.api import HasTraits, Instance
from traitsui.api import Item, View
from chaco.api import create_line_plot, HPlotContainer
from chaco.tools.api import PanTool
class PlotExample(HasTraits):
container = Instance(HPlotContainer)
traits_view = View(
Item(
"container",
editor=ComponentEditor(),
show_label=False,
width=800,
height=600,
),
title="Chaco Tutorial",
)
def _container_default(self):
x = arange(-5.0, 15.0, 20.0 / 100)
y = jn(0, x)
left_plot = create_line_plot(
(x, y), bgcolor="white", add_grid=True, add_axis=True
)
left_plot.tools.append(PanTool(left_plot))
self.left_plot = left_plot
y = jn(1, x)
right_plot = create_line_plot(
(x, y), bgcolor="white", add_grid=True, add_axis=True
)
right_plot.tools.append(PanTool(right_plot))
right_plot.y_axis.orientation = "right"
self.right_plot = right_plot
# Tone down the colors on the grids
right_plot.hgrid.line_color = (0.3, 0.3, 0.3, 0.5)
right_plot.vgrid.line_color = (0.3, 0.3, 0.3, 0.5)
left_plot.hgrid.line_color = (0.3, 0.3, 0.3, 0.5)
left_plot.vgrid.line_color = (0.3, 0.3, 0.3, 0.5)
container = HPlotContainer(spacing=20, padding=50, bgcolor="lightgray")
container.add(left_plot)
container.add(right_plot)
return container
demo = PlotExample()
if __name__ == "__main__":
demo.configure_traits()
|
enthought/chaco
|
examples/tutorials/tutorial8.py
|
tutorial8.py
|
py
| 1,873 |
python
|
en
|
code
| 286 |
github-code
|
6
|
42937022866
|
import datetime
import sqlite3
import os
import sys
from PyQt6.QtWidgets import *
from PyQt6.QtCore import Qt
from docxtpl import DocxTemplate
class mailbackGenWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Test Mailback Letter Generator")
self.setFixedSize(722, 479)
main_layout = QVBoxLayout()
self.db = sqlite3.connect("test_mailback.db")
self.cur = self.db.cursor()
client_label = QLabel("Select Client: ")
self.client_select = QComboBox()
self.populateClientSelect()
def setAndGet():
self.getDefaultAddress()
self.setDefaultAddress()
self.client_select.currentIndexChanged.connect(setAndGet)
reason_label = QLabel("Select All Reasons for Return ")
self.reason_select = QFrame()
self.reason_layout = QGridLayout()
self.reasonCheckBoxList = []
self.address1 = QLineEdit()
self.address1.setFixedWidth(200)
self.address2 = QLineEdit()
self.address2.setFixedWidth(200)
self.address3 = QLineEdit()
self.address3.setFixedWidth(200)
self.clear_address_button = QPushButton("Clear Address")
self.clear_address_button.clicked.connect(self.clearAddress)
self.default_address_button = QPushButton("Default")
self.default_address_button.clicked.connect(self.setDefaultAddress)
self.populateReasonLayout()
self.reason_select.setLayout(self.reason_layout)
self.reason_error = QLabel("Please select at least one reason.")
self.reason_error.setStyleSheet("color: red")
self.reason_error.hide()
self.envelope_button = QPushButton("Generate Envelope")
self.envelope_button.clicked.connect(self.printEnvelope)
self.large_envelope_button = QPushButton("Large Envelope Sheet")
self.large_envelope_button.clicked.connect(self.printLargeEnvelope)
self.submit_button = QPushButton("Generate Letter")
self.submit_button.clicked.connect(self.generateLetter)
widgets = [client_label, self.client_select, reason_label, self.reason_select, self.reason_error,
self.submit_button, self.envelope_button, self.large_envelope_button]
for w in widgets:
main_layout.addWidget(w)
widget = QWidget()
widget.setLayout(main_layout)
# Set the central widget of the Window. Widget will expand
# to take up all the space in the window by default.
self.setCentralWidget(widget)
self.template = DocxTemplate("test_mailback_template.docx")
self.envelope = DocxTemplate("mailout.docx")
self.big_envelope = DocxTemplate("large envelope template.docx")
self.current_date = datetime.date.today().strftime('%m/%d/%Y')
self.currentClient = ""
self.currentAddr1 = ""
self.currentAddr2 = ""
self.currentPhoneNumber = ""
self.getDefaultAddress()
self.setDefaultAddress()
def populateClientSelect(self):
tups = self.cur.execute("""SELECT query_name FROM client
ORDER BY query_name ASC;""")
clients = [name for t in tups for name in t]
self.client_select.addItems(clients)
def getDefaultAddress(self):
client_name = self.client_select.currentText()
client_row = self.cur.execute("""SELECT full_name, address, phone_number
FROM client
WHERE query_name = ?""", (client_name,))
self.currentClient, full_addr, self.currentPhoneNumber = [c for t in client_row for c in t]
self.currentAddr1, self.currentAddr2 = full_addr.split('*')
def setDefaultAddress(self):
self.address1.setText(self.currentClient)
self.address2.setText(self.currentAddr1)
self.address3.setText(self.currentAddr2)
def clearAddress(self):
self.address1.clear()
self.address2.clear()
self.address3.clear()
def populateReasonLayout(self):
reasonTypes = self.cur.execute("""SELECT DISTINCT type FROM mailback_reason;""")
reasonTypes = [t for rt in reasonTypes for t in rt]
print(reasonTypes)
column = 0
row = 0
for t in reasonTypes:
if column == 2:
column = 0
row += 1
frame = QFrame()
layout = QVBoxLayout()
layout.addWidget(QLabel(t + ':'))
reasons = self.cur.execute("""SELECT reason FROM mailback_reason
WHERE type = ?;""", (t,))
reasons = [r for rt in reasons for r in rt]
for r in reasons:
box = QCheckBox(r)
self.reasonCheckBoxList.append(box)
layout.addWidget(box)
frame.setLayout(layout)
self.reason_layout.addWidget(frame, column, row, Qt.AlignmentFlag.AlignTop)
column += 1
if column == 2:
column = 0
row += 1
frame = QFrame()
layout = QGridLayout()
layout.addWidget(QLabel('Name:'), 0, 0, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(self.address1, 0, 1, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(QLabel('Address:'), 1, 0, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(self.address2, 1, 1, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(QLabel('City/State/Zip:'), 2, 0, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(self.address3, 2, 1, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(self.clear_address_button, 3, 0, Qt.AlignmentFlag.AlignLeft)
layout.addWidget(self.default_address_button, 3, 1, Qt.AlignmentFlag.AlignLeft)
frame.setLayout(layout)
self.reason_layout.addWidget(frame, column, row, Qt.AlignmentFlag.AlignLeft)
def generateLetter(self):
#FOR SETTING FIXED WIDTH/HEIGHT
#print(self.width())
#print(self.height())
# avoids Microsoft Word opening dialog box saying that letter.docx caused error
if os.path.exists("letter.docx"):
os.remove("letter.docx")
reasons = []
for box in self.reasonCheckBoxList:
if box.isChecked():
reasons.append(box.text())
box.setChecked(False)
reason = ""
rlength = len(reasons)
if rlength == 1:
reason = reasons[0]
elif rlength == 2:
reason = reasons[0] + ' and ' + reasons[1]
elif rlength > 2:
for i in range(0, rlength):
if i != rlength - 1:
reason += reasons[i] + ', '
else:
reason += 'and ' + reasons[i]
else: # reasons is empty
self.reason_error.show()
return 1
self.reason_error.hide()
self.submit_button.setEnabled(False)
fill_in = {"date": self.current_date,
"client": self.currentClient,
"reason": reason,
"address_1": self.currentAddr1,
"address_2": self.currentAddr2,
"phone_number": self.currentPhoneNumber
}
self.template.render(fill_in)
self.template.save('letter.docx')
os.startfile("letter.docx", "print")
self.submit_button.setEnabled(True)
def printEnvelope(self):
self.envelope_button.setEnabled(False)
fill_in = {"client": self.address1.text(),
"addr_1": self.address2.text(),
"addr_2": self.address3.text()}
self.envelope.render(fill_in)
self.envelope.save('envelope.docx')
os.startfile("envelope.docx", "print")
self.envelope_button.setEnabled(True)
def printLargeEnvelope(self):
self.large_envelope_button.setEnabled(False)
fill_in = {"client": self.address1.text(),
"addr_1": self.address2.text(),
"addr_2": self.address3.text()}
self.big_envelope.render(fill_in)
self.big_envelope.save('big_envelope.docx')
os.startfile("big_envelope.docx", "print")
self.large_envelope_button.setEnabled(True)
def main():
app = QApplication(sys.argv)
window = mailbackGenWindow()
window.show()
app.exec()
if __name__ == "__main__":
main()
|
Centari2013/PublicMailbackGeneratorTest
|
main.py
|
main.py
|
py
| 8,527 |
python
|
en
|
code
| 0 |
github-code
|
6
|
41958018958
|
from waterworld.waterworld import env as custom_waterworld
from potential_field.potential_field_policy import PotentialFieldPolicy
from utils import get_frames
from pettingzoo.utils import average_total_reward
from multiprocessing import Pool, cpu_count
import tqdm
import numpy as np
from matplotlib import pyplot as plt
import json
n_coop_options = [1, 2]
n_sensor_options = [1, 2, 5, 20, 30]
angle_options = [("randomize_angle",False),("randomize_angle",True),
("spin_angle",0),("spin_angle",0.1),("spin_angle",0.5),("spin_angle",1)]
obs_weighting_options=[1, 0.5]
poison_weighting_options=[1, 0.5]
barrier_weighting_options=[1, 0.5]
food_weighting_options=[1, 0.5]
def test_policy(config, rounds=100):
env = custom_waterworld(**config["env_config"])
policy = PotentialFieldPolicy(**config["potential_field_config"]).get_movement_vector
for i in tqdm.tqdm(range(rounds)):
reward_sum, frame_list = get_frames(env, policy)
config["rewards"].append(reward_sum)
env.close()
with open(f"potential_field/test_main/{config['config_index']}.json", "x") as f:
json.dump(config, f, indent=4)
def get_configs():
configs = []
i=0
for n_coop in n_coop_options:
for n_sensor in n_sensor_options:
for angle_config in angle_options:
configs.append({"env_config":
{"n_coop": n_coop,"n_sensors": n_sensor,},
"potential_field_config":{
"n_sensors": n_sensor,
angle_config[0]: angle_config[1],
},
"rewards": [],
"config_index": i
})
i += 1
for obs_weight in obs_weighting_options:
for poison_weight in poison_weighting_options:
for barrier_weight in barrier_weighting_options:
for food_weight in food_weighting_options:
configs.append({"env_config":
{"n_coop": n_coop,"n_sensors": 30,},
"potential_field_config":{
"n_sensors": 30,
"obs_weight": obs_weight,
"poison_weight": poison_weight,
"barrier_weight": barrier_weight,
"food_weight": food_weight
},
"rewards": [],
"config_index": i
})
i += 1
return configs
def get_main_configs():
configs = []
i=0
for n_coop in n_coop_options:
for n_sensor in n_sensor_options:
for angle_config in angle_options:
configs.append({"env_config":
{"n_coop": n_coop,"n_sensors": n_sensor,},
"potential_field_config":{
"n_sensors": n_sensor,
angle_config[0]: angle_config[1],
},
"rewards": [],
"config_index": i
})
i += 1
return configs
def get_env_configs():
configs = []
i=0
for n_coop in n_coop_options:
for n_sensor in n_sensor_options:
configs.append({"env_config":
{"n_coop": n_coop,"n_sensors": n_sensor,},
"rewards": [],
"config_index": i
})
i += 1
return configs
def test_random_env(config, rounds=100):
env = custom_waterworld(**config["env_config"])
action_space = env.action_space("pursuer_0")
def policy(obs):
return action_space.sample()
for i in tqdm.tqdm(range(rounds)):
reward_sum, frame_list = get_frames(env, policy)
config["rewards"].append(reward_sum)
env.close()
with open(f"potential_field/test_random/{config['config_index']}.json", "x") as f:
json.dump(config, f, indent=4)
if __name__ == "__main__":
configs = get_env_configs()
with Pool(processes=int(cpu_count() - 2)) as pool:
for _ in tqdm.tqdm(pool.imap_unordered(test_random_env, configs), total=len(configs)):
pass
|
ezxzeng/syde750_waterworld
|
test_policy.py
|
test_policy.py
|
py
| 4,604 |
python
|
en
|
code
| 0 |
github-code
|
6
|
32840040688
|
from scipy.sparse import csr_matrix
from .text import WordPieceParser
from collections.abc import Mapping, Iterable
class RecordVectorMap(Mapping):
def __init__(self, records, wp_model_path, vec_format='bag-of-words'):
text_parser = WordPieceParser(wp_model_path)
self.rec_seq_map, self.record_vecs = self.rec2vecs(records, text_parser, vec_format)
def rec2vecs(self, records, text_parser, vec_format):
rec_seq_map = {}
cols, rows, data = [], [], []
col_dim = 0 if vec_format=='sequence' else text_parser.vocab_size
for rec_seq, (rec_id, rec_text) in enumerate(records):
rec_seq_map[rec_id] = rec_seq
parsed = text_parser.parse(rec_text, parse_format=vec_format)
if vec_format=='sequence':
if len(parsed)!=0:
rows.extend([rec_seq]*len(parsed))
cols.extend(list(range(len(parsed))))
data.extend(parsed)
if len(parsed)>col_dim:
col_dim = len(parsed)
else:
for wp_id, tf in parsed.items():
rows.append(rec_seq)
cols.append(wp_id)
data.append(tf)
record_vecs = csr_matrix((data, (rows, cols)), shape=(len(records), col_dim))
return rec_seq_map, record_vecs
def __getitem__(self, key):
if isinstance(key, str):
return self.get_by_seqs(self.rec_seq_map[key])
elif isinstance(key, Iterable):
return self.get_by_seqs([self.rec_seq_map[a_key] for a_key in key])
else:
raise TypeError('Key must be string (key of record) or iterable (list of key of record).')
def get_by_seqs(self, key):
if isinstance(key, int):
return self.record_vecs[key]
elif isinstance(key, Iterable):
return self.record_vecs[key]
else:
raise TypeError('Seqs must be int (seq of record) or iterable (list of seq of record).')
def __iter__(self):
return iter(self.record_vecs)
def __len__(self):
return len(self.rec_seq_map)
|
rmhsiao/CAGNIR
|
utils/data/record.py
|
record.py
|
py
| 2,182 |
python
|
en
|
code
| 1 |
github-code
|
6
|
24200508437
|
# #!/bin/python
# # -*- coding: utf8 -*-
# import sys
# import os
# import re
#请完成下面这个函数,实现题目要求的功能
#当然,你也可以不按照下面这个模板来作答,完全按照自己的想法来 ^-^
#******************************开始写代码******************************
def pathInZigZagTree(label):
"""
Args:
label: int
Return:
list[int]
"""
level = 0
count = 0
while label > count:
level += 1
count += 2 ** (level - 1)
res = []
while level > 0:
res.append(label)
index = label2index(level, label)
parent_index = (index + 1) // 2
level -= 1
label = index2label(level, parent_index)
return res[::-1]
def label2index(level, label):
"""
index 在该层的索引 从1开始
Args:
level: int
label: int
Return:
int
"""
if level % 2 == 0:
return 2 ** level - label
else:
return label - 2 ** (level - 1) + 1
def index2label(level, index):
"""
index 在该层的索引 从1开始
Args:
level: int
index: int
Return:
int
"""
if level % 2 == 0:
return 2 ** level - index
else:
return 2 ** (level - 1) + index - 1
#******************************结束写代码******************************
if __name__ == "__main__":
_label = int(input())
# _label = 14
res = pathInZigZagTree(_label)
for res_cur in res:
print(str(res_cur))
|
AiZhanghan/Leetcode
|
秋招/小米/1/1.py
|
1.py
|
py
| 1,565 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72531840829
|
"""Adds column to use scicrunch alternative
Revision ID: b60363fe438f
Revises: 39fa67f45cc0
Create Date: 2020-12-15 18:26:25.552123+00:00
"""
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision = "b60363fe438f"
down_revision = "39fa67f45cc0"
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column(
"group_classifiers",
sa.Column("uses_scicrunch", sa.Boolean(), nullable=True, server_default="0"),
)
# ### end Alembic commands ###
# Applies the default to all
query = 'UPDATE "group_classifiers" SET uses_scicrunch=false;'
op.execute(query)
# makes non nullable
# 'ALTER TABLE "group_classifiers" ALTER "uses_scicrunch" SET NOT NULL;'
op.alter_column("group_classifiers", "uses_scicrunch", nullable=False)
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_column("group_classifiers", "uses_scicrunch")
# ### end Alembic commands ###
|
ITISFoundation/osparc-simcore
|
packages/postgres-database/src/simcore_postgres_database/migration/versions/b60363fe438f_adds_column_to_use_scicrunch_alternative.py
|
b60363fe438f_adds_column_to_use_scicrunch_alternative.py
|
py
| 1,066 |
python
|
en
|
code
| 35 |
github-code
|
6
|
21247913444
|
import unittest
from unittest.mock import patch
import os
from typing import Optional
from dataclasses import dataclass
from io import StringIO
from ml_project.train_pipeline import run_train_pipeline
from ml_project.predict_pipeline import run_predict_pipeline
from sklearn.preprocessing import StandardScaler
from ml_project.entities import (
TrainingPipelineParams,
SplitParams,
FeatureParams,
TrainingParams
)
numerical_features = [
"age",
"sex",
"cp",
"trestbps",
"chol",
"fbs",
"restecg",
"thalach",
"exang",
"oldpeak",
"slope",
"ca",
"thal",
]
@dataclass
class TestTrainingPipelineParams:
input_data_path: str = "data/raw/heart_cleveland_upload.csv"
output_model_path: str = "tests/tmp/test_model.pkl"
metric_path: str = "tests/tmp/test_metrics.json"
split_params: SplitParams = SplitParams(
test_size=0.25,
random_state=5
)
feature_params: FeatureParams = FeatureParams(
numerical_features=numerical_features,
target_col="condition"
)
train_params: TrainingParams = TrainingParams(
model_type="RandomForestClassifier",
)
train_dataframe_path: Optional[str] = "data/raw/predict_dataset.csv"
scaler: Optional[str] = None
@dataclass
class TestPredictPipelineParams:
input_data_path: str = "data/raw/predict_dataset.csv"
input_model_path: str = "models/model.pkl"
output_data_path: str = "tests/tmp/test_model_predicts.csv"
class TestEnd2End(unittest.TestCase):
test_train_piplein_params = TestTrainingPipelineParams()
test_test_piplein_params = TestPredictPipelineParams()
@unittest.mock.patch("ml_project.train_pipeline.logger")
def test_train_end2end(self, mock_log):
with patch("sys.stdout", new=StringIO()):
path_to_model, metrics = run_train_pipeline(self.test_train_piplein_params)
self.assertTrue(os.path.exists(path_to_model))
self.assertTrue(metrics["0"]["f1-score"] > 0.6)
self.assertTrue(metrics["1"]["f1-score"] > 0.6)
@unittest.mock.patch("ml_project.train_pipeline.logger")
def test_predict_end2end(self, mock_log):
with patch("sys.stdout", new=StringIO()):
run_predict_pipeline(self.test_test_piplein_params)
self.assertTrue(os.path.exists(self.test_test_piplein_params.output_data_path))
|
made-mlops-2022/alexey_sklyannyy
|
tests/test_end2end_training.py
|
test_end2end_training.py
|
py
| 2,397 |
python
|
en
|
code
| 0 |
github-code
|
6
|
33124682966
|
import json
import os
import docx
with open(f'disciplinas.json') as f:
data = json.load(f)
# print(df.columns.values)
for index, discpln in data.items():
print(f'{discpln["sigla"]} - {discpln["nome"]}')
doc = docx.Document()
doc.add_heading(f'{discpln["sigla"]} - {discpln["nome"]}')
doc.add_heading(f'{discpln["nome_en"]}', level=3)
doc.add_paragraph()
# Dados gerais
p = doc.add_paragraph(style = 'List Bullet')
p.add_run(f'Créditos-aula: {discpln["CA"]}\n')
p.add_run(f'Créditos-trabalho: {discpln["CT"]}\n')
p.add_run(f'Carga horária: {discpln["CH"]}\n')
p.add_run(f'Ativação: {discpln["ativacao"]}\n')
p.add_run(f'Departamento: {discpln["departamento"]}\n')
# Cursos e semestres ideais
cs = f'Curso (semestre ideal):'
for curso, semestre in discpln["semestre"].items():
cs += f' {curso} ({semestre}),'
p.add_run(cs[:-1])
# Objetivos
doc.add_heading(f'Objetivos', level=2)
doc.add_paragraph(f'{discpln["objetivos"]}')
if discpln["abstract"]:
p = doc.add_paragraph()
p.add_run(f'{discpln["objectives"]}').italic = True
# Docentes
doc.add_heading(f'Docente(s) Responsável(eis) ', level=2)
profs = discpln["docentes"]
nprofs = discpln["ndoc"]
if nprofs:
p = doc.add_paragraph(style='List Bullet')
for i in range(nprofs-1):
p.add_run(f'{profs[i]}\n')
p.add_run(f'{profs[-1]}')
# programa resumido
doc.add_heading(f'Programa resumido', level=2)
doc.add_paragraph(f'{discpln["resumo"]}')
if discpln["abstract"]:
p = doc.add_paragraph()
p.add_run(f'{discpln["abstract"]}').italic = True
# programa
doc.add_heading(f'Programa', level=2)
doc.add_paragraph(f'{discpln["programa"]}')
if discpln["program"]:
p = doc.add_paragraph()
p.add_run(f'{discpln["program"]}').italic = True
# avaliação
doc.add_heading('Avaliação', level=2)
p = doc.add_paragraph( style='List Bullet')
p.add_run('Método: ').bold = True
p.add_run(f'{discpln["metodo"]}\n')
p.add_run('Critério: ').bold = True
p.add_run(f'{discpln["criterio"]}\n')
p.add_run('Norma de recuperação: ').bold = True
p.add_run(f'{discpln["exame"]}')
# bibliografia
doc.add_heading('Bibliografia', level=2)
doc.add_paragraph(f'{discpln["bibliografia"]}')
# Requisitos
nr = discpln['requisitos']
if nr:
doc.add_heading('Requisitos', level=2)
p = doc.add_paragraph(style='List Bullet')
for k, req in nr.items():
p.add_run(f"{req['sigla']} - {req['nome']} ({req['tipo']})\n")
# salvando
try:
os.mkdir(f'../assets/disciplinas/')
except FileExistsError:
pass
docname = f'../assets/disciplinas/{discpln["sigla"]}.docx'
doc.save(docname)
# exportando pdf
os.system(f'abiword --to=pdf {docname}')
# break
|
luizeleno/pyjupiter
|
_python/gera-doc-pdf-unificado.py
|
gera-doc-pdf-unificado.py
|
py
| 2,978 |
python
|
es
|
code
| 2 |
github-code
|
6
|
22167366155
|
import time
from functools import wraps
from MatrixDecomposition import MatrixDecomposition
from MatrixGeneration import MatrixGeneration
def fn_timer(function):
@wraps(function)
def function_timer(*args, **kwargs):
t0 = time.time()
result = function(*args, **kwargs)
t1 = time.time()
print("Total time running '%s': %s seconds" % (function.__name__, str(t1 - t0)))
return result
return function_timer
class Analyzer:
@staticmethod
def analyze_tridiagonal():
Analyzer.analyze_gauss(10, MatrixGeneration.tridiagonal)
Analyzer.analyze_seidel(10, MatrixGeneration.tridiagonal)
Analyzer.analyze_gauss(50, MatrixGeneration.tridiagonal)
Analyzer.analyze_seidel(50, MatrixGeneration.tridiagonal)
Analyzer.analyze_gauss(100, MatrixGeneration.tridiagonal)
Analyzer.analyze_seidel(100, MatrixGeneration.tridiagonal)
@staticmethod
def analyze_hilbert():
Analyzer.analyze_gauss(10, MatrixGeneration.hilbert)
Analyzer.analyze_seidel(10, MatrixGeneration.hilbert)
Analyzer.analyze_gauss(50, MatrixGeneration.hilbert)
Analyzer.analyze_seidel(50, MatrixGeneration.hilbert)
Analyzer.analyze_gauss(100, MatrixGeneration.hilbert)
Analyzer.analyze_seidel(100, MatrixGeneration.hilbert)
@staticmethod
@fn_timer
def analyze_gauss(n, method):
print(f'\'{method.__name__}\' {n}')
matrix = method(n)
right = MatrixGeneration.right(matrix)
matrix_decomposition = MatrixDecomposition(matrix)
gauss = matrix_decomposition.solve_by_gauss(right)
@staticmethod
@fn_timer
def analyze_seidel(n, method):
print(f'\'{method.__name__}\' {n}')
matrix = method(n)
right = MatrixGeneration.right(matrix)
matrix_decomposition = MatrixDecomposition(matrix)
seidel = matrix_decomposition.solve_by_seidel(right, 1e-3)
|
g3tawayfrom/appmath_lab4
|
Analyzer.py
|
Analyzer.py
|
py
| 1,953 |
python
|
en
|
code
| 0 |
github-code
|
6
|
35792097840
|
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
from selenium import webdriver
from selenium.webdriver.common.by import By
import time
from selenium.webdriver.support.ui import WebDriverWait
import random
def get_sore_and_Price(store_id,internet_id):
driver = webdriver.Chrome('C:/Users/cunzh/Desktop/chromedriver.exe') ## you should change the path before you run
start_page = driver.get("https://www.homedepot.com/l/")
driver.find_element_by_id("storeSearchBox").send_keys(store_id)
driver.find_element_by_class_name("sfSearchbox__button").click()
time.sleep(random.randint(3,5))
Message=''
try:
store = driver.find_element_by_class_name('sfstores')
store_name = store.find_element_by_class_name('sfstorename').text
#print(store.get_attribute("outerHTML"))
except:
price="NA"
Message="store cannot be found"
else:
a = store.find_element_by_class_name('sfstorelinks').find_element_by_tag_name('a')
time.sleep(random.randint(3,5)) #time.sleep are pretening human behavior; human spend different time on different web. So this website will not recognize this as a bot.
a.click() #Randint gives us random integer 3 to 5
time.sleep(random.randint(3,5))
driver.find_element_by_id("headerSearch").send_keys(internet_id)
time.sleep(random.randint(3,5))
driver.find_element_by_id("headerSearchButton").click()
time.sleep(random.randint(3,5))
try:
content = driver.find_element_by_class_name("price-detailed__wrapper")
# print(content.get_attribute('innerHTML'))
spans = content.find_elements_by_tag_name('span')
if len(spans) != 3:
price='NA'
Message='price cannot be found'
else:
a = spans[1]
b = spans[2]
price = a.text + '.' + b.text
except:
price='NA'
Message='price cannot be found'
return store_id,price,Message
# In[ ]:
# We can test the code by using follwing example:
store_list = ['954', '907', '6917']
test_list = ['302895490', '302895488', '100561401', '206809290']
list1=[]
for store in store_list:
for item in test_list:
list1.append(get_sore_and_Price(store,item))
# In[ ]:
list1
|
JiyuanZhanglalala/Web-Scraping-
|
Home Depot Web Scraping Function.py
|
Home Depot Web Scraping Function.py
|
py
| 2,398 |
python
|
en
|
code
| 0 |
github-code
|
6
|
9634583525
|
# Builds some spectra and self-energies using the aux.Aux functionality
import numpy as np
from auxgf import mol, hf, aux, agf2, grids
from auxgf.util import Timer
timer = Timer()
# Build the Molecule object:
m = mol.Molecule(atoms='H 0 0 0; Li 0 0 1.64', basis='cc-pvdz')
# Build the RHF object:
rhf = hf.RHF(m)
rhf.run()
# Build the grid:
refq = grids.ReFqGrid(2**8, minpt=-5, maxpt=5, eta=0.1)
# Build the Hartree-Fock Green's function:
g_hf = aux.Aux(np.zeros(0), np.zeros((rhf.nao, 0)), chempot=rhf.chempot)
# Build the MP2 self-energy:
s_mp2 = aux.build_rmp2_iter(g_hf, rhf.fock_mo, rhf.eri_mo)
# Build the second-iteration Green's function, which corresponds to the QP spectrum at MP2 level or G^(2):
e, c = s_mp2.eig(rhf.fock_mo)
g_2 = g_hf.new(e, c[:rhf.nao]) # inherits g_hf.chempot
# Run an RAGF2 calcuation and get the converged Green's function and self-energy (we also use the RAGF2 density):
gf2 = agf2.RAGF2(rhf, nmom=(2,3), verbose=False)
gf2.run()
s_gf2 = gf2.se
e, c = s_gf2.eig(rhf.get_fock(gf2.rdm1, basis='mo'))
g_gf2 = s_gf2.new(e, c[:rhf.nao])
# For each Green's function, get the spectrum (Aux.as_spectrum only represents the function on a grid, we must
# also provide ordering='retarded' and then refactor):
def aux_to_spectrum(g):
a = g.as_spectrum(refq, ordering='retarded')
a = a.imag / np.pi
a = a.trace(axis1=1, axis2=2)
return a
a_hf = aux_to_spectrum(g_hf)
a_2 = aux_to_spectrum(g_2)
a_gf2 = aux_to_spectrum(g_gf2)
# Compare the spectra quantitatively:
print('| A(hf) - A(2) | = %.12f' % (np.linalg.norm(a_hf - a_2) / refq.npts))
print('| A(gf2) - A(2) | = %.12f' % (np.linalg.norm(a_gf2 - a_2) / refq.npts))
print('| A(gf2) - A(hf) | = %.12f' % (np.linalg.norm(a_gf2 - a_hf) / refq.npts))
print('time elapsed: %d min %.4f s' % (timer.total() // 60, timer.total() % 60))
|
obackhouse/auxgf
|
examples/06-spectra.py
|
06-spectra.py
|
py
| 1,839 |
python
|
en
|
code
| 3 |
github-code
|
6
|
32941642034
|
import numpy as np
import matplotlib
from matplotlib.colors import ListedColormap
SLACred = '#8C1515'
SLACgrey = '#53565A'
SLACblue = '#007C92'
SLACteal = '#279989'
SLACgreen = '#8BC751'
SLACyellow = '#FEDD5C'
SLACorange = '#E04F39'
SLACpurple = '#53284F'
SLAClavender = '#765E99'
SLACbrown = '#5F574F'
SLACcolors = [SLACred,
SLACblue,
SLACteal,
SLACgreen,
SLACyellow,
SLACgrey,
SLACorange,
SLACpurple,
SLAClavender,
SLACbrown,
]
# SLACsage = [199./256, 209./256, 197./256]
white = [256./256, 256./256, 256./256]
SLACpaloverde = [39./256, 153./256, 137./256]
matplotlib.cm.register_cmap('SLACverde',
ListedColormap(np.array([np.interp(np.linspace(0, 1, 256),
[0, 1],
[whiteV, pvV])
for whiteV, pvV in zip(white, SLACpaloverde)]).T,
name = 'SLACverde'))
LaTeXflavor = {"numu": r'$\nu_\mu$',
"numubar": r'$\bar{\nu}_\mu$',
"nue": r'$\nu_e$',
"nuebar": r'$\bar{\nu}_e$',
"nutau": r'$\nu_\tau$',
"nutaubar": r'$\bar{\nu}_\tau$'}
matplotlib.rc('axes', **{"prop_cycle": matplotlib.cycler(color = SLACcolors)})
matplotlib.rc('image', **{"cmap": 'SLACverde'})
matplotlib.rc('font', **{"family": 'sans-serif',
"sans-serif": 'Arial',
"size": 16,
"weight": 'bold'})
matplotlib.rc('text', **{"usetex": True})
|
DanielMDouglas/SLACplots
|
SLACplots/colors.py
|
colors.py
|
py
| 1,729 |
python
|
en
|
code
| 0 |
github-code
|
6
|
72946559547
|
import socket
import struct
import os
import time
import hashlib
HOST = '192.168.1.76'
PORT = 8000
BUFFER_SIZE = 1024
FILE_NAME = 'usertrj.txt' # Change to your file
FILE_SIZE = os.path.getsize(FILE_NAME)
HEAD_STRUCT = '128sIq32s' # Structure of file head
def send_file():
# Create a TCP/IP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Connect the socket to the server
server_address = (HOST, PORT)
#Calculate MD5
print("Calculating MD5...")
fr = open(FILE_NAME, 'rb')
md5_code = hashlib.md5()
md5_code.update(fr.read())
fr.close()
print("Calculating success")
# Need open again
fr = open(FILE_NAME, 'rb')
# Pack file info(file name and file size)
file_head = struct.pack('128sIq32s', b'usertrj.txt', len(FILE_NAME), FILE_SIZE, md5_code.hexdigest())
try:
# Connect
sock.connect(server_address)
print("Connecting to %s port %s" % server_address)
# Send file info
sock.send(file_head)
send_size = 0
print("Sending data...")
time_start = time.time()
while send_size < FILE_SIZE:
if FILE_SIZE - send_size < BUFFER_SIZE:
file_data = fr.read(FILE_SIZE - send_size)
send_size = FILE_SIZE
else:
file_data = fr.read(BUFFER_SIZE)
send_size += BUFFER_SIZE
sock.send(file_data)
time_end = time.time()
print("Send success!")
print("MD5 : %s" % md5_code.hexdigest())
print("Cost %f seconds" % (time_end - time_start))
fr.close()
sock.close()
except socket.errno as e:
print("Socket error: %s" % str(e))
except Exception as e:
print("Other exception : %s" % str(e))
finally:
print("Closing connect")
if __name__ == '__main__':
send_file()
|
cash2one/brush-1
|
slave/scripts/test/connect.py
|
connect.py
|
py
| 1,878 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25847181178
|
import tkinter as tk
import sqlite3
def guardar_palabras():
palabras = [entrada1.get(), entrada2.get(), entrada3.get(), entrada4.get(), entrada5.get()]
# Conexión a la base de datos
conexion = sqlite3.connect('basedatos.db')
cursor = conexion.cursor()
# Crear la tabla "palabras" si no existe
cursor.execute('''CREATE TABLE IF NOT EXISTS palabras
(id INTEGER PRIMARY KEY AUTOINCREMENT,
palabra TEXT)''')
# Eliminar las palabras anteriores en la tabla
cursor.execute("DELETE FROM palabras")
# Insertar las últimas 5 palabras en la tabla "palabras"
for palabra in palabras:
cursor.execute("INSERT INTO palabras (palabra) VALUES (?)", (palabra,))
# Guardar cambios y cerrar conexión
conexion.commit()
conexion.close()
ventana.destroy()
ventana = tk.Tk()
ventana.title("5 Palabras")
frase_inicio = "Si fueras 5 palabras, cuáles serías?:"
etiqueta_frase = tk.Label(ventana, text=frase_inicio)
etiqueta_frase.pack()
entrada1 = tk.Entry(ventana)
entrada1.pack()
entrada2 = tk.Entry(ventana)
entrada2.pack()
entrada3 = tk.Entry(ventana)
entrada3.pack()
entrada4 = tk.Entry(ventana)
entrada4.pack()
entrada5 = tk.Entry(ventana)
entrada5.pack()
boton = tk.Button(ventana, text="Aceptar", command=guardar_palabras)
boton.pack()
ventana.mainloop()
def mostrar_ventana1():
ventana1 = tk.Toplevel()
ventana1.title("Tus palabras")
etiqueta1 = tk.Label(ventana1, text="Estas son tus palabras:")
etiqueta1.pack()
# Conexión a la base de datos
conexion = sqlite3.connect('basedatos.db')
cursor = conexion.cursor()
# Consulta para recuperar las palabras
cursor.execute("SELECT palabra FROM palabras")
palabras = cursor.fetchall()
for palabra in palabras:
etiqueta = tk.Label(ventana1, text=palabra[0])
etiqueta.pack()
# Cerrar conexión
conexion.close()
def mostrar_ventana2():
ventana2 = tk.Toplevel()
ventana2.title("Palabras nuevas")
frase_inicio = "Si fueras 5 palabras, cuáles serías?:"
etiqueta_frase = tk.Label(ventana2, text=frase_inicio)
etiqueta_frase.pack()
entrada1 = tk.Entry(ventana2)
entrada1.pack()
entrada2 = tk.Entry(ventana2)
entrada2.pack()
entrada3 = tk.Entry(ventana2)
entrada3.pack()
entrada4 = tk.Entry(ventana2)
entrada4.pack()
entrada5 = tk.Entry(ventana2)
entrada5.pack()
def guardar_palabras_nuevas():
palabras = [entrada1.get(), entrada2.get(), entrada3.get(), entrada4.get(), entrada5.get()]
# Conexión a la base de datos
conexion = sqlite3.connect('basedatos.db')
cursor = conexion.cursor()
# Crear la tabla "palabras" si no existe
cursor.execute('''CREATE TABLE IF NOT EXISTS palabras
(id INTEGER PRIMARY KEY AUTOINCREMENT,
palabra TEXT)''')
# Eliminar las palabras anteriores en la tabla
cursor.execute("DELETE FROM palabras")
# Insertar las últimas 5 palabras en la tabla "palabras"
for palabra in palabras:
cursor.execute("INSERT INTO palabras (palabra) VALUES (?)", (palabra,))
# Guardar cambios y cerrar conexión
conexion.commit()
conexion.close()
boton = tk.Button(ventana2, text="Aceptar", command=guardar_palabras_nuevas)
boton.pack()
ventana_principal = tk.Tk()
ventana_principal.title("Ventana Principal")
boton_ventana1 = tk.Button(ventana_principal, text="Tus palabras", command=mostrar_ventana1)
boton_ventana1.pack()
boton_ventana2 = tk.Button(ventana_principal, text="Palabras nuevas", command=mostrar_ventana2)
boton_ventana2.pack()
ventana_principal.mainloop()
|
AlejandroAntonPineda/ArtPersonality
|
base_datos.py
|
base_datos.py
|
py
| 3,754 |
python
|
es
|
code
| 0 |
github-code
|
6
|
27385560013
|
from road import Road
from copy import deepcopy
from collections import deque
from vehicleGenerator import VehicleGenerators
import numpy as np
from scipy.spatial import distance
import random
class Simulator:
def __init__(self, config = {}) -> None:
self.setDefaultConfig()
#update vals
for attr, val in config.items():
setattr(self, attr, val)
def setDefaultConfig(self):
#time
self.t = 520.0
#time step
self.dt = 1/60
#frames count
self.frameCount = 0
#roads
self.roads = {}
self.vehicleGens = deque()
self.trafficSignals = deque()
def createTrafficSignals(self, trafficSignal):
self.trafficSignals.append(trafficSignal)
def createRoad(self, start, end, startCross, endCross):
road = Road(start, end, startCross, endCross)
self.roads[(startCross, endCross)] = road
# return road
def createRoads(self, roadsList):
for roadCoords in roadsList:
self.createRoad(*roadCoords)
def createRoadsFromGraph(self, graph):
self.graph = graph
for idx in range(len(graph)):
start = graph[idx][0]
if len(graph[idx][1]) > 0:
for vertexIdx in graph[idx][1]:
end = (graph[vertexIdx][0][0], graph[vertexIdx][0][1])
length = distance.euclidean(start, end)
sin = (end[1] - start[1]) / length
cos = (end[0] - start[0]) / length
self.createRoad((start[0] - 0.3 * sin, start[1] + 0.3 * cos), (end[0] - 0.3 * sin, end[1] + 0.3 * cos), idx, vertexIdx)
def createGen(self, genConfig):
self.vehicleGens.append(VehicleGenerators(self, genConfig))
def update(self):
# Updating every road
for roadKey in self.roads:
road = self.roads[roadKey]
if len(road.vehicles) > 0 and road.vehicles[0].currentRoadIndex + 1 < len(road.vehicles[0].path):
vehicle = road.vehicles[0]
nextRoad = self.roads[vehicle.path[vehicle.currentRoadIndex + 1]]
else:
road.update(self.dt, self.t)
nextRoad = None
road.update(self.dt, self.t, nextRoad)
# Checking the roads for out of bounds vehicle
for roadKey in self.roads:
road = self.roads[roadKey]
# If road does not have vehicles, then continue
if len(road.vehicles) == 0: continue
# If not
vehicle = road.vehicles[0]
# If the first vehicle is out of road bounds
if vehicle.x >= road.length:
#if vehicle just wanders:
if len(vehicle.path) == 1:
vehicle.currentRoadIndex = 1
newVehicle = deepcopy(vehicle)
newVehicle.x = 0
crossRoad = self.graph[road.endCross]
if len(crossRoad[1]) > 0:
if newVehicle.decideToRide():
carNums = [len(self.roads[(road.endCross, k)].vehicles) for k in crossRoad[1]]
minNum = np.min(carNums)
minIdx = [i for i, x in enumerate(carNums) if x == minNum]
nextCross = crossRoad[1][random.choice(minIdx)]
self.roads[(road.endCross, nextCross)].vehicles.append(newVehicle)
else:
pass
# If vehicle has a next road
if vehicle.currentRoadIndex + 1 < len(vehicle.path):
# Updating the current road to next road
vehicle.currentRoadIndex += 1
# Creating a copy and reseting some vehicle properties
newVehicle = deepcopy(vehicle)
newVehicle.x = 0
# Adding it to the next road
nextRoadIndex = vehicle.path[vehicle.currentRoadIndex]
self.roads[nextRoadIndex].vehicles.append(newVehicle)
# In all cases, removing it from its road
road.vehicles.popleft()
for signal in self.trafficSignals:
signal.update(self)
for gen in self.vehicleGens:
gen.update()
if (self.t >= 540 and self.t <= 660) or (self.t >= 1020 and self.t <= 1080):
gen.vehicleRate = 190
else:
gen.vehicleRate = 40
self.t += self.dt
if self.t >= 1440:
self.t = 0
|
EHAT32/alg_labs_sem_7
|
lab3/simulator.py
|
simulator.py
|
py
| 4,713 |
python
|
en
|
code
| 0 |
github-code
|
6
|
25971386553
|
"""
.. testsetup:: *
from zasim.cagen.utils import *
"""
# This file is part of zasim. zasim is licensed under the BSD 3-clause license.
# See LICENSE.txt for details.
from ..features import HAVE_TUPLE_ARRAY_INDEX
from itertools import product
import numpy as np
if HAVE_TUPLE_ARRAY_INDEX:
def offset_pos(pos, offset):
"""Offset a position by an offset. Any amount of dimensions should work.
>>> offset_pos((1, ), (5, ))
(6,)
>>> offset_pos((1, 2, 3), (9, 8, 7))
(10, 10, 10)"""
if len(pos) == 1:
return (pos[0] + offset[0],)
else:
return tuple([a + b for a, b in zip(pos, offset)])
else:
def offset_pos(pos, offset):
"""Offset a position by an offset. Only works for 1d."""
if isinstance(pos, tuple):
pos = pos[0]
if isinstance(offset, tuple):
offset = offset[0]
return pos + offset
def gen_offset_pos(pos, offset):
"""Generate code to offset a position by an offset.
>>> gen_offset_pos(["i", "j"], ["foo", "bar"])
['i + foo', 'j + bar']"""
return ["%s + %s" % (a, b) for a, b in zip(pos, offset)]
def dedent_python_code(code):
'''
Dedent a bit of python code, like this:
>>> print dedent_python_code("""# update the histogram
... if result != center:
... self.target.histogram[result] += 1""")
# update the histogram
if result != center:
self.target.histogram[result] += 1
'''
lines = code.split("\n")
resultlines = [lines[0]] # the first line shall never have any whitespace.
if len(lines) > 1:
common_whitespace = len(lines[1]) - len(lines[1].lstrip())
if common_whitespace > 0:
for line in lines[1:]:
white, text = line[:common_whitespace], line[common_whitespace:]
assert line == "" or white.isspace()
resultlines.append(text)
else:
resultlines.extend(lines[1:])
return "\n".join(resultlines)
def rule_nr_to_multidim_rule_arr(number, digits, base=2):
"""Given the rule `number`, the number of cells the neighbourhood has
(as `digits`) and the `base` of the cells, this function calculates the
multidimensional rule table for computing that rule."""
if base < 256: dtype = "int8"
else: dtype = "int16" # good luck with that.
res = np.zeros((base,) * digits, dtype=dtype)
entries = base ** digits
blubb = base ** entries
for position in product(*([xrange(base-1, -1, -1)] * digits)):
blubb /= base
d = int(number // (blubb))
number -= d * (blubb)
res[position] = d
return res
def rule_nr_to_rule_arr(number, digits, base=2):
"""Given a rule `number`, the number of cells the neighbourhood has
(as `digits`) and the `base` of the cells, this function calculates the
lookup array for computing that rule.
>>> rule_nr_to_rule_arr(110, 3)
[0, 1, 1, 1, 0, 1, 1, 0]
>>> rule_nr_to_rule_arr(26, 3, 3)
[2, 2, 2, ...]
"""
entries = base ** digits
result = [0 for index in range(entries)]
blubb = base ** entries
for e in range(entries - 1, -1, -1):
blubb /= base
d = int(number // (blubb))
number -= d * (blubb)
result[e] = d
return result
def elementary_digits_and_values(neighbourhood, base=2, rule_arr=None):
"""From a neighbourhood, the base of the values used and the array that
holds the results for each combination of neighbourhood values, create a
list of dictionaries with the neighbourhood values paired with their
result_value ordered by the position like in the rule array.
If the rule_arr is None, no result_value field will be generated."""
digits_and_values = []
offsets = neighbourhood.offsets
names = neighbourhood.names
digits = len(offsets)
for i in range(base ** digits):
values = rule_nr_to_rule_arr(i, digits, base)
asdict = dict(zip(names, values))
digits_and_values.append(asdict)
if rule_arr is not None:
if not isinstance(rule_arr, np.ndarray) or len(rule_arr.shape) == 1:
indices = enumerate(xrange(base ** digits))
else:
indices = enumerate(reversed(list(product(*([xrange(base-1,-1,-1)] * digits)))))
for index, rule_idx in indices:
digits_and_values[index].update(result_value = rule_arr[rule_idx])
return digits_and_values
|
timo/zasim
|
zasim/cagen/utils.py
|
utils.py
|
py
| 4,490 |
python
|
en
|
code
| 4 |
github-code
|
6
|
20043759155
|
# Given the names and grades for each student in a class of students, store them in a
# nested list and print the name(s) of any student(s) having the second lowest grade.
# Note: If there are multiple students with the second lowest grade, order their names alphabetically and print each name on a new line.
# Print the name(s) of any student(s) having the second lowest grade in.
# If there are multiple students, order their names alphabetically and print each one on a new line.
std_data = []
n = int(input())
# accept name and grade
for i in range(n):
name = input()
grade = float(input())
std_data.append([name,grade])
std_set = set()
for i in range(n):
std_set.add(std_data[i][1])
stdList = list(std_set)
stdList.sort()
grade_list = []
# Fetching data of student whoes marks are same as 2nd lowest student
for i in range(n):
if stdList[1] == std_data[i][1]:
grade_list.append(std_data[i])
grade_list.sort()
for i in range(len(grade_list)):
print(grade_list[i][0])
|
Elevenv/HackerRank-Python-challenges
|
nested_list.py
|
nested_list.py
|
py
| 1,025 |
python
|
en
|
code
| 2 |
github-code
|
6
|
32787034238
|
"""
URL configuration for backend project.
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/4.2/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.conf import settings
from django.conf.urls.static import static
from django.contrib import admin
from django.urls import include, path
from drf_yasg import openapi
from drf_yasg.views import get_schema_view
from rest_framework import permissions
schema_view = get_schema_view(
openapi.Info(
title="SoC Portal API",
default_version="v1",
description="Test description",
terms_of_service="https://www.google.com/policies/terms/",
contact=openapi.Contact(email="[email protected]"),
license=openapi.License(name="BSD License"),
),
permission_classes=[],
public=True,
)
urlpatterns = [
path("admin/", admin.site.urls),
path("api/accounts/", include("accounts.urls")),
path("api/dashboard/", include("dashboard.urls")),
path("api/projects/", include("projects.urls")),
]
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
urlpatterns += [
path(
"swagger<format>/", schema_view.without_ui(cache_timeout=0), name="schema-json"
),
path(
"swagger/",
schema_view.with_ui("swagger", cache_timeout=0),
name="schema-swagger-ui",
),
path("redoc/", schema_view.with_ui("redoc", cache_timeout=0), name="schema-redoc"),
]
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
|
wncc/SoC-Portal
|
backend/backend/urls.py
|
urls.py
|
py
| 2,001 |
python
|
en
|
code
| 12 |
github-code
|
6
|
12866597010
|
import sys
from collections import defaultdict
def tpsortutil(u, visited, stack, cur):
visited[u] = True
for i in graph[u]:
if not visited[i]:
tpsortutil(i, visited, stack, cur)
elif i in cur:
return
stack.append(u)
def topologicalsort(graph, vertices):
visited = [False] * vertices
stack = []
for i in range(vertices):
cur = set()
if not visited[i] and graph[i]:
tpsortutil(i, visited, stack, cur)
del cur
stack = stack[::-1]
print(stack)
if __name__ == "__main__":
vertices = int(input())
graph = defaultdict(list)
edges = int(input())
for _ in range(edges):
edge = [int(x) for x in input().split()]
graph[edge[0]].append(edge[1])
print(graph)
topologicalsort(graph, vertices)
|
tyao117/AlgorithmPractice
|
TopologicalSort/TopologicalSort.py
|
TopologicalSort.py
|
py
| 825 |
python
|
en
|
code
| 0 |
github-code
|
6
|
225835019
|
import streamlit as st
import calculator_logic
st.title("Calculator App")
num1 = st.number_input("Enter the first number:")
num2 = st.number_input("Enter the second number:")
operation = st.selectbox("Select an operation", calculator_logic.OPERATIONS)
if st.button("Calculate"):
result = calculator_logic.calculate(num1, num2, operation)
st.success(f"The result is {result}")
# Define a function to display the signature
def display_signature():
st.markdown(
"""
<style>
.signature {
font-size: 1rem;
font-style: italic;
text-align: center;
padding: 1rem 0;
color: #333;
transition: color 0.5s ease-in-out;
}
.signature:hover {
color: #007bff;
}
</style>
"""
, unsafe_allow_html=True
)
st.markdown(
"""
<div class="signature">
Made with ❤️ by Shib Kumar Saraf
</div>
"""
, unsafe_allow_html=True
)
# Add the signature to your Streamlit app
display_signature()
|
shib1111111/basic_calculator
|
app.py
|
app.py
|
py
| 1,113 |
python
|
en
|
code
| 0 |
github-code
|
6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.