seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
5292164947
#right now, I am using this script to play around w/ differnt definitions of signal and control regions import ROOT from TIMBER.Analyzer import HistGroup, CutGroup from TIMBER.Tools.Common import CompileCpp from argparse import ArgumentParser from XHYbbWW_class import XHYbbWW from collections import OrderedDict def KinematicLepton(self): #bringing this function in here so I can select lepton w/o quality/isolation cuts self.a.Define('kinEleIdx','kinElectron(Electron_pt,Electron_eta,Electron_phi,Higgs_phi,Wqq_phi)') self.a.Define('kinMuIdx','kinMuon(Muon_pt,Muon_eta,Muon_phi,Higgs_phi,Wqq_phi)') self.a.Cut('kinLepton_cut','kinEleIdx != -1 || kinMuIdx != -1') #at least one good lepton self.a.Define('LeptonType','LeptonIdx(kinEleIdx,kinMuIdx,Electron_pt,Muon_pt)') #picks higher pt signal lepton - output = 0 (lepton is electron) or 1 (lepton is muon) self.SIGLEP = self.getNweighted() self.AddCutflowColumn(self.SIGLEP,'SIGLEP') #For ease, merge some lepton columns that will be useful later (for lepton-type specific variables, use LeptonType to determine if electron or muon) self.a.Define('Lepton_pt','LeptonType == 1 ? Muon_pt[kinMuIdx] : Electron_pt[kinEleIdx]') self.a.Define('Lepton_eta','LeptonType == 1 ? Muon_eta[kinMuIdx] : Electron_eta[kinEleIdx]') self.a.Define('Lepton_phi','LeptonType == 1 ? Muon_phi[kinMuIdx] : Electron_phi[kinEleIdx]') self.a.Define('Lepton_mass','LeptonType == 1 ? Muon_mass[kinMuIdx] : Electron_mass[kinEleIdx]') return self.a.GetActiveNode() def MXvsMY_studies(self): ##### NEW VARIABLES FOR LATER USE ##### #W_leptonic transverse mass self.a.Define('W_massTran','TransverseMass(MET_pt,Lepton_pt,MET_phi,Lepton_phi)') #Transverse W mass # self.a.Define('W_massTran_genMET','TransverseMass(MET_fiducialGenPt,Lepton_pt,MET_fiducialGenPhi,Lepton_phi)') #using generator-level MET variables #Lorentz 4-vectors self.a.Define('MET_vect','hardware::TLvector(MET_pt,0,MET_phi,0)') #neutrino mass negligable, for now assuming MET_eta = 0 (p_z = 0) self.a.Define('Lepton_vect','hardware::TLvector(Lepton_pt,Lepton_eta,Lepton_phi,Lepton_mass)') self.a.Define('Wqq_vect','hardware::TLvector(Wqq_pt,Wqq_eta,Wqq_phi,Wqq_msoftdrop)') self.a.Define('Hbb_vect','hardware::TLvector(Higgs_pt,Higgs_eta,Higgs_phi,Higgs_msoftdrop)') #Invariant masses of W/Y/X self.a.Define('W_massInv','hardware::InvariantMass({MET_vect,Lepton_vect})') #full invariant mass self.a.Define('Y_mass','hardware::InvariantMass({Lepton_vect,MET_vect,Wqq_vect})') self.a.Define('X_mass','hardware::InvariantMass({Lepton_vect,MET_vect,Wqq_vect,Hbb_vect})') studiesPlots = HistGroup('studiesPlots') ####################################### #First lets make some plots examining the lepton quality cuts in the different MC samples #Muon_mediumId, Electron_mvaFall17V2noIso vs eta, Electron_mvaFall17V2noIso_WP80, Electron_mvaFall17V2noIso_WP90, Electron_mvaFall17V2noIso_WPL start=self.a.GetActiveNode() muonEvents=self.a.Cut('Muon_events','LeptonType == 1') self.a.SetActiveNode(muonEvents) self.a.ObjectFromCollection('kinMu','Muon','kinMuIdx') #studiesPlots.Add('kinMu_mediumId',self.a.GetActiveNode().DataFrame.Histo1D(('kinMu_mediumId','kinMu_mediumId',2,0,2),'kinMu_mediumId','weight__nominal')) #bins may not work self.a.SetActiveNode(start) electronEvents=self.a.Cut('Electron_events','LeptonType == 0') self.a.SetActiveNode(electronEvents) self.a.ObjectFromCollection('kinEle','Electron','kinEleIdx') #studiesPlots.Add('kinEle_mvaFall17V2noIso vs eta',self.a.DataFrame.Histo2D(('kinEle_mvaFall17V2noIso vs eta','kinEle_mvaFall17V2noIso vs eta',1000,0,1,250,0,2.5),'kinEle_mvaFall17V2noIso', 'kinEle_eta','weight__nominal')) #Make three plots for electron mva (for different etas/ECAL regions) no_eta = self.a.GetActiveNode() inner_barrel = self.a.Cut('inner_barrel','abs(kinEle_eta) < 0.8') self.a.SetActiveNode(inner_barrel) studiesPlots.Add('kinEle_mvaFall17V2noIso (inner barrel)',self.a.DataFrame.Histo1D(('kinEle_mvaFall17V2noIso (|eta| < 0.8)','kinEle_mvaFall17V2noIso (inner barrel - |eta| < 0.8)',100,0,1),'kinEle_mvaFall17V2noIso', 'weight__nominal')) self.a.SetActiveNode(no_eta) outer_barrel = self.a.Cut('outer_barrel','abs(kinEle_eta) > 0.8 && abs(kinEle_eta) < 1.479') self.a.SetActiveNode(outer_barrel) studiesPlots.Add('kinEle_mvaFall17V2noIso (outer barrel)',self.a.DataFrame.Histo1D(('kinEle_mvaFall17V2noIso (0.8 < |eta| < 1.479)','kinEle_mvaFall17V2noIso (outer barrel - 0.8 < |eta| < 1.479)',100,0,1),'kinEle_mvaFall17V2noIso', 'weight__nominal')) self.a.SetActiveNode(no_eta) endcap = self.a.Cut('endcap','abs(kinEle_eta) > 1.479 && abs(kinEle_eta) < 2.5') self.a.SetActiveNode(endcap) studiesPlots.Add('kinEle_mvaFall17V2noIso (endcap)',self.a.DataFrame.Histo1D(('kinEle_mvaFall17V2noIso (1.479 < |eta| < 2.5)','kinEle_mvaFall17V2noIso (endcap - 1.479 < |eta| < 2.5)',100,0,1),'kinEle_mvaFall17V2noIso', 'weight__nominal')) ''' studiesPlots.Add('kinEle_mvaFall17V2noIso_WP80',self.a.GetActiveNode().DataFrame.Histo1D(('kinEle_mvaFall17V2noIso_WP80','kinEle_mvaFall17V2noIso_WP80',2,0,2),'kinEle_mvaFall17V2noIso_WP80','weight__nominal').GetValue()) print('kinele_mvaWP80 plot made') studiesPlots.Add('kinEle_mvaFall17V2noIso_WP90',self.a.GetActiveNode().DataFrame.Histo1D(('kinEle_mvaFall17V2noIso_WP90','kinEle_mvaFall17V2noIso_WP90',2,0,2),'kinEle_mvaFall17V2noIso_WP90','weight__nominal').GetValue()) print('kinele_mvaWP90 plot made') studiesPlots.Add('kinEle_mvaFall17V2noIso_WPL',self.a.GetActiveNode().DataFrame.Histo1D(('kinEle_mvaFall17V2noIso_WPL','kinEle_mvaFall17V2noIso_WPL',2,0,2),'kinEle_mvaFall17V2noIso_WPL','weight__nominal').GetValue()) print('kinele_mvaWPL plot made') ''' self.a.SetActiveNode(start) taggers = ['particleNetMD'] # now we want to plot mX vs mY for QCD, ttbar, and signal for t in taggers: self.ApplyMassCuts() start=self.a.GetActiveNode() # We use Wqq tagging scores to divide data into two regions: signal (enriched in signal) and control (enriched in background) # - Signal: Wqq > 0.8, pass lepton medium ID # - Control: Wqq < 0.8, fail lepton medium ID # We define a pass/fail criteria for the Hbb score within each region # - Region 1 (fail): Hbb < 0.94 # - Region 2 (pass): Hbb > 0.94 SR=self.ApplySRorCR('SR',t) SR_FP=self.ApplyPassFail('SR',t) self.a.SetActiveNode(start) CR=self.ApplySRorCR('CR',t) CR_FP=self.ApplyPassFail('CR',t) nodes=OrderedDict() nodes.update(SR_FP) nodes.update(CR_FP) bins = [80,0,4500] for node in nodes.keys(): self.a.SetActiveNode(nodes[node]) print('MX vs MY: Plotting for {}'.format(node)) studiesPlots.Add('MXvsMY_{}'.format(node), self.a.DataFrame.Histo2D(('MXvsMY_{}'.format(node), 'X vs Y Invariant Mass - {} {}'.format(node.split('_')[1],node.split('_')[0]), bins[0], bins[1], bins[2], bins[0], bins[1], bins[2]), 'X_mass', 'Y_mass', 'weight__nominal')) outFile = ROOT.TFile.Open('{}_{}_{}_MXvsMYstudies.root'.format(self.setname,self.year,self.ijob),'RECREATE') outFile.cd() studiesPlots.Do('Write') #self.a.PrintNodeTree('NodeTree.pdf',verbose=True) outFile.Close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-s', type=str, dest='setname', action='store',help='name of data set to run on') parser.add_argument('-y', type=str, dest='year', action='store', help='year',required=False) parser.add_argument('-j', type=int, dest='ijob',required=False, action='store', help='current job') parser.add_argument('-n', type=int, dest='njobs',required=False, action='store', help='number of jobs') args = parser.parse_args() setname=args.setname year=args.year ijob=args.ijob njobs=args.njobs filename='snapshots/{}_{}_snapshot.txt'.format(setname,year) ana = XHYbbWW(filename,ijob,njobs) # ana.ApplyStandardCorrections(post_snapshot=True) ana.Dijets() KinematicLepton(ana) MXvsMY_studies(ana)
michaelhesford/XHYbbWW_semileptonic
MXvsMY_studies.py
MXvsMY_studies.py
py
8,394
python
en
code
0
github-code
6
33186103812
from simplejson import dumps from webob import Response from pycurl import Curl from subprocess import Popen, PIPE from multiprocessing import Queue from traceback import format_exc from time import sleep import logging import tarfile import os import os.path import urllib import uuid import sys import os from config import conf from common import RequestHandler class GitRepository(object): def __init__(self, path=None): self.path = path def _cmd(self, args, shell=False): try: os.chdir(self.path) except: pass logging.debug('cwd: %s exec: %s' % (os.getcwd(), ' '.join(args))) p = Popen(args, stdout=PIPE, stderr=PIPE, shell=shell) ret = (p.communicate(), p.returncode) if ret[0][0]: logging.debug('\n'.join(ret[0])) return ret def _git(self, args): return self._cmd(['/usr/bin/git'] + args) def clone(self, gitpath): return self._git(['clone', gitpath, self.path]) def checkout(self, ref): return self._git(['checkout', ref]) def submodule_init(self): return self._git(['submodule', 'init']) def submodule_update(self): return self._git(['submodule', 'update']) def ls_remote(self, gitpath): output, retcode = self._git(['ls-remote', '--heads', '--tags', gitpath]) stdout, stderr = output return [x.split('\t') for x in stdout.split('\n') if x] def show_ref(self): output, retcode = self._git(['show-ref', '--heads', '--tags']) stdout, stderr = output return [x.split(' ', 1) for x in stdout.split('\n') if x] def build(self, signkey, pbuilderrc, resultsdir): if 'refs/heads/upstream' in [x[1] for x in self.show_ref()]: cmd = ['/usr/bin/git-buildpackage', '--git-sign', '--git-cleaner="fakeroot debian/rules clean"', '--git-keyid="%s"' % signkey, '--git-builder="pdebuild --debsign-k %s --auto-debsign --configfile %s --debbuildopts "-i.git -I.git -sa" --buildresult %s' % (signkey, pbuilderrc, resultsdir)] else: cmd = ['/usr/bin/pdebuild', '--debsign-k', signkey, '--auto-debsign', '--debbuildopts', '-i.git -I.git -sa', '--configfile', pbuilderrc, '--buildresult', resultsdir] return self._cmd(cmd) class PackageHandler(RequestHandler): def get(self, gitpath, gitrepo): gitpath = os.path.join(conf('buildbot.gitpath.%s' % gitpath), gitrepo) repo = GitRepository() refs = repo.ls_remote(gitpath) return Response(status=200, body=dumps(refs)) def post(self, gitpath, gitrepo): if not 'ref' in self.request.params: return Response(status=400, body='Required parameter "ref" is missing. You must pass a git tag, branch, or commit ID to be built.\n') gitpath = os.path.join(conf('buildbot.gitpath.%s' % gitpath), gitrepo) ref = self.request.params['ref'] cburl = self.request.params.get('cburl', None) submodules = self.request.params.get('submodules', None) buildid = uuid.uuid4().hex build_worker(gitpath, ref, buildid, cburl, submodules) return Response(status=200, body=buildid + '\n') class RepoListHandler(RequestHandler): def get(self, gitpath): try: gitindex = conf('buildbot.gitindex.%s' % gitpath) except KeyError: return Response(status=404, body='Unknown git path') response = urllib.urlopen(gitindex) index = response.read() index = [x.strip('\r\n ').split(' ')[0].rsplit('.')[0] for x in index.split('\n') if x.strip('\r\n ')] return Response(status=200, body=dumps(index)) class TarballHandler(RequestHandler): def get(self, buildid): builddir = os.path.join(conf('buildbot.buildpath'), buildid) if not os.path.exists(builddir): return Response(status=404, body='The build ID does not exist.\n') tarpath = os.path.join(builddir, 'package.tar.gz') if not os.path.exists(tarpath): return Response(status=400, body='The build is not done yet.\n') else: fd = file(tarpath, 'rb') data = fd.read() fd.close() return Response(status=200, body=data, content_type='application/x-tar-gz') class StatusHandler(RequestHandler): def get(self, buildid): builddir = os.path.join(conf('buildbot.buildpath'), buildid) if not os.path.exists(builddir): return Response(status=404, body='The build ID does not exist.\n') try: log = file('%s/build.log' % builddir, 'r').read() except: log = '' if not os.path.exists(builddir + '/package.tar.gz'): return Response(status=400, body='The build is not done yet.\n' + log) else: return Response(status=200, body='Build complete.\n' + log) def buildlog(buildid, message): filename = os.path.join(conf('buildbot.buildpath'), '%s/build.log' % buildid) fd = file(filename, 'a+') fd.write(message + '\n') fd.close() logging.debug(message) def build_thread(gitpath, ref, buildid, cburl=None, submodules=False): tmpdir = os.path.join(conf('buildbot.buildpath'), buildid) repo = GitRepository(tmpdir) output, retcode = repo.clone(gitpath) if retcode: buildlog(buildid, 'Unable to clone %s. %s\n' % (gitpath, '\n'.join(output))) return output, retcode = repo.checkout(ref) if retcode: buildlog(buildid, 'Unable to checkout %s. %s\n' % (ref, '\n'.join(output))) return if submodules: output, retcode = repo.submodule_init() buildlog(buildid, output[0]) buildlog(buildid, output[1]) output, retcode = repo.submodule_update() buildlog(buildid, output[0]) buildlog(buildid, output[1]) resultsdir = os.path.join(tmpdir, '.build_results') os.makedirs(resultsdir) output, retcode = repo.build(conf('buildbot.signkey'), conf('buildbot.pbuilderrc'), resultsdir) buildlog(buildid, output[0]) buildlog(buildid, output[1]) #logging.debug(output[0]) #logging.debug(output[1]) os.chdir(resultsdir) if not os.listdir(resultsdir) or retcode != 0: buildlog(buildid, 'Nothing in results directory. Giving up.') return tarpath = os.path.join(tmpdir, 'package.tar.gz') tar = tarfile.open(tarpath, 'w:gz') for name in os.listdir(resultsdir): tar.add(name) tar.close() buildlog(buildid, 'Build complete. Results in %s\n' % tarpath) data = file(tarpath, 'rb').read() buildlog(buildid, 'Built %i byte tarball' % len(data)) if cburl: buildlog(buildid, 'Performing callback: %s' % cburl) req = Curl() req.setopt(req.POST, 1) req.setopt(req.URL, str(cburl)) req.setopt(req.HTTPPOST, [('package', (req.FORM_FILE, str(tarpath)))]) req.setopt(req.WRITEDATA, file('%s/build.log' % tmpdir, 'a+')) req.perform() req.close() def build_worker(gitpath, ref, buildid, cburl, submodules): if os.fork() == 0: build_thread(gitpath, ref, buildid, cburl, submodules)
JeremyGrosser/repoman
repoman/buildbot.py
buildbot.py
py
7,178
python
en
code
84
github-code
6
9345182500
from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import lib.db from lib.helper import remove_tags, open_selenium from lib.log import log_text as log url = "https://2e.aonprd.com/Ancestries.aspx" def upload_heritage_data(): log("Starting Heritage Upload Preperation") heritage_data = organize_heritage_data() log("Preparation Done") log("Clearing Table") conn, row_count, result = lib.db.query_database("DELETE FROM official_heritages;", get_result=True, close_conn=False) log("Starting INSERT Process") for heritage in heritage_data: log("Inserting " + heritage + " Into Database") conn = lib.db.query_database("INSERT INTO official_heritages VALUES (" + heritage + ");", connection=conn, close_conn=False)[0] log("Commiting Database Changes") conn.commit() log("Closing Connection") conn.close() def grab_heritage_data(): heritage_output = [] log("Opening Browser") driver = open_selenium() log("Going to Page: " + url) driver.get(url) log("Waiting for Page to Load") time.sleep(5) log("Getting Page Source") html = driver.page_source log("Setting up BeautifulSoup with Source") soup = BeautifulSoup(html, "html.parser") log("Finding Initial HTML Container") container = soup.find(id="ctl00_RadDrawer1_Content_MainContent_DetailedOutput") log("Finding All Categories in Container") name_list = container.find_all("h2") for item in name_list: log("Grabbing Name in Category") elements = item.text.split("\n") log("Found: " + elements[0]) log("Getting All Links in Category") links = item.find_all("a") output_link = "" log("Finding Ancestry Page Link") for link in links: if link.get("href").startswith("Ancestries.aspx"): output_link = "https://2e.aonprd.com/" + link.get("href") log("Found: " + output_link) break log("Opening Ancestry Page") ancestry_driver = open_selenium() ancestry_driver.get(output_link) log("Waiting for Page to Load") time.sleep(5) log("Getting Ancestry Page Source") ancestry_html = ancestry_driver.page_source log("Setting up BeautifulSoup with Page Source") ancestry_soup = BeautifulSoup(ancestry_html, "html.parser") log("Finding Sub Navigation") sub_nav_container = ancestry_soup.find(id="ctl00_RadDrawer1_Content_MainContent_SubNavigation") sub_nav_list = sub_nav_container.find_all("h2") log("Getting All Sub Navigation Headings") heritage_list_link = "" log("Searching Headings for Heritage Link") for nav in sub_nav_list: nav_links = nav.find_all("a") for n in nav_links: if n.get("href").startswith("Heritages.aspx"): heritage_list_link = "https://2e.aonprd.com/" + n.get("href") log(f"Found Heritage Link for {elements[0]}: {heritage_list_link}") log("Closing Ancestry Browser. Opening Heritage Browser") ancestry_driver.close() heritage_driver = open_selenium() heritage_driver.get(heritage_list_link) log("Waiting for Page to Load") time.sleep(5) log("Setting up BeautifulSoup with Page Source") heritage_html = heritage_driver.page_source heritage_soup = BeautifulSoup(heritage_html, "html.parser") log("Getting Heritage List Container") heritage_container = heritage_soup.find(id="ctl00_RadDrawer1_Content_MainContent_DetailedOutput") log("Getting All Headings") heritage_list = heritage_container.find_all("h2") heritage_name = "" heritage_link = "" heritage_summary = "" log("Starting Search for Heritages") i = 0 for heritage in heritage_list: heritage_links = heritage.find_all("a") for l in heritage_links: if l.get("href").startswith("Heritages.aspx"): heritage_name = l.text.split("\n")[0] log("Found Heritage: " + heritage_name) heritage_link = "https://2e.aonprd.com/" + l.get("href") link_pos = heritage_html.find(l.get("href")) print(f"Link Pos: {link_pos}") versatile_heritage_pos = heritage_html.index("<h1 class=\"title\">Versatile Heritages</h1>") half_human_heritage_pos = heritage_html.find("<h1 class=\"title\">Half-Human Heritages") if half_human_heritage_pos == -1 or link_pos < half_human_heritage_pos: start_pos = heritage_html.index("<br>", link_pos) + len("<br>") else: first_break_pos = heritage_html.index("<br>", link_pos) + len("<br>") start_pos = heritage_html.index("<br>", first_break_pos) + len("<br>") h3_pos = heritage_html.find("<h3", start_pos) br_pos = heritage_html.find("<br>", start_pos) end_pos = 0 print(f"H3 Pos: {h3_pos}; BR Pos: {br_pos}") if h3_pos < br_pos and h3_pos != -1: end_pos = h3_pos elif br_pos < h3_pos and br_pos != -1: end_pos = br_pos elif br_pos != -1 and h3_pos == -1: end_pos = br_pos elif h3_pos != -1 and br_pos == -1: end_pos = h3_pos if end_pos > versatile_heritage_pos: end_pos = versatile_heritage_pos if start_pos > versatile_heritage_pos: break print(f"End Pos: {end_pos}; Next 50 Characters: {heritage_html[end_pos: end_pos + 50]}") heritage_summary = heritage_html[start_pos:end_pos].strip() print(heritage_summary) if heritage_summary.find("<b>Source</b>") > -1: end_pos += 3 temp_pos = heritage_html.find("<b>Source</b>", start_pos) start_pos = heritage_html.find("<br>", temp_pos) h3_pos = heritage_html.find("<h3", end_pos) br_pos = heritage_html.find("<br>", end_pos) if h3_pos < br_pos and h3_pos != -1: end_pos = h3_pos elif br_pos < h3_pos and br_pos != -1: end_pos = br_pos if end_pos > versatile_heritage_pos: end_pos = versatile_heritage_pos if start_pos > versatile_heritage_pos: break heritage_summary = heritage_html[start_pos:end_pos].strip() if heritage_summary.find("PFS Note") > -1: end_pos += 3 temp_pos = heritage_html.find("PFS Note", start_pos) start_pos = heritage_html.find("<br>", temp_pos) h3_pos = heritage_html.find("<h3", end_pos) br_pos = heritage_html.find("<br>", end_pos) if h3_pos < br_pos and h3_pos != -1: end_pos = h3_pos elif br_pos < h3_pos and br_pos != -1: end_pos = br_pos if end_pos > versatile_heritage_pos: end_pos = versatile_heritage_pos if start_pos > versatile_heritage_pos: break heritage_summary = heritage_html[start_pos:end_pos].strip() heritage_summary = remove_tags(heritage_summary, tag_to_remove="h2", remove_inside=True) heritage_summary = remove_tags(heritage_summary, tag_to_remove="table", remove_inside=True) heritage_summary = remove_tags(heritage_summary, tag_to_remove="i") heritage_summary = remove_tags(heritage_summary, tag_to_remove="u") heritage_summary = remove_tags(heritage_summary, tag_to_remove="b") heritage_summary = remove_tags(heritage_summary, tag_to_remove="a") log(str([heritage_name, heritage_link, elements[0], heritage_summary])) heritage_output.append([heritage_name, heritage_link, elements[0], heritage_summary]) nav_container = soup.find(id="ctl00_RadDrawer1_Content_MainContent_Navigation") nav_links = nav_container.find_all("a") for link in nav_links: if link.get("href").endswith("Versatile=true"): versatile_heritage_link = "https://2e.aonprd.com/" + link.get("href") log("Opening Versatile Heritage Browser") versatile_heritage_driver = open_selenium() versatile_heritage_driver.get(versatile_heritage_link) log("Waiting for Page to Load") time.sleep(5) log("Setting up BeautifulSoup with Page Source") versatile_heritage_html = versatile_heritage_driver.page_source versatile_heritage_soup = BeautifulSoup(versatile_heritage_html, "html.parser") log("Getting Heritage List Container") versatile_heritage_container = versatile_heritage_soup.find(id="ctl00_RadDrawer1_Content_MainContent_DetailedOutput") log("Getting All Headings") versatile_heritage_list = versatile_heritage_container.find_all("h2") versatile_heritage_name = "" versatile_heritage_link = "" versatile_heritage_summary = "" log("Searching For Versatile Heritages") for heritage in versatile_heritage_list: vh_links = heritage.find_all("a") for l in vh_links: if l.get("href").startswith("Ancestries.aspx"): versatile_heritage_name = l.text.split("\n")[0] log("Found Heritage: " + versatile_heritage_name) vh_ancestry_link = "https://2e.aonprd.com/" + l.get("href") log("Opening Versatile Heritage Ancestry Browser") vh_ancestry_driver = open_selenium() vh_ancestry_driver.get(vh_ancestry_link) log("Waiting for Page to Load") time.sleep(5) log("Setting up BeautifulSoup with Page Source") vh_ancestry_html = vh_ancestry_driver.page_source vh_ancestry_soup = BeautifulSoup(vh_ancestry_html, "html.parser") content_pos = vh_ancestry_soup.find(id="ctl00_RadDrawer1_Content_MainContent_DetailedOutput").sourcepos vh_h1_pos = vh_ancestry_html.index("<h1 class=\"title\">Versatile Heritage</h1>", content_pos) vh_h2_pos = vh_ancestry_html.index("</h2>", vh_h1_pos) + len("</h2>") break_pos_1 = vh_ancestry_html.index("<br>", vh_h2_pos) + len("<br>") break_pos_2 = vh_ancestry_html.index("<br>", break_pos_1) + len("<br>") break_pos_3 = vh_ancestry_html.index("<br>", break_pos_2) + len("<br>") end_pos = 0 span_pos = vh_ancestry_html.find("</span>", break_pos_3) h3_pos = vh_ancestry_html.find("<h3 class", break_pos_3) if h3_pos == -1: end_pos = span_pos else: if span_pos < h3_pos and span_pos != -1: end_pos = span_pos elif h3_pos < span_pos and h3_pos != -1: end_pos = h3_pos versatile_heritage_summary = vh_ancestry_html[break_pos_3:end_pos] versatile_heritage_summary = remove_tags(versatile_heritage_summary, tag_to_remove="h2", remove_inside=True) versatile_heritage_summary = remove_tags(versatile_heritage_summary, tag_to_remove="table", remove_inside=True) versatile_heritage_summary = remove_tags(versatile_heritage_summary, tag_to_remove="i") versatile_heritage_summary = remove_tags(versatile_heritage_summary, tag_to_remove="a") log(str([versatile_heritage_name, vh_ancestry_link, "Versatile", versatile_heritage_summary])) heritage_output.append([versatile_heritage_name, vh_ancestry_link, "Versatile", versatile_heritage_summary]) return heritage_output def organize_heritage_data(): log("Getting Heritage Data") output = grab_heritage_data() organized_data = [] log("Starting to Organize Heritage Data") for heritage in output: organized_data.append(f"\"{heritage[0]}\", \"{heritage[1]}\", \"{heritage[2]}\", \"{heritage[3]}\"") log(f"Added \"{heritage[0]}\", \"{heritage[1]}\", \"{heritage[2]}\", \"{heritage[3]}\" to Organized Data") return organized_data
sean-francis113/pf2edatascraper
lib/heritages.py
heritages.py
py
13,500
python
en
code
0
github-code
6
7002219401
import sendgrid from ...common import config sg = sendgrid.SendGridClient(config.sendgrid_api_key) def send(name, email, subject, html): message = sendgrid.Mail() message.add_to('{}'.format(email)) message.set_subject(subject) message.set_html(html) message.set_from(config.from_header) status, msg = sg.send(message)
minupalaniappan/gradfire
daviscoursesearch/flaskapp/service/email.py
email.py
py
330
python
en
code
12
github-code
6
28128126397
''' Count the nodes in the global phylogeny python3 count_nodes.py after_usher_optimized_fasttree_iter6.tree ''' import sys from ete3 import Tree t = Tree(sys.argv[1]) ct = 0 for node in t.traverse('postorder'): if node.is_leaf(): ct += 1 print(ct)
bpt26/parsimony
2_optimize_starting_tree/results/2.3.5/count_nodes.py
count_nodes.py
py
270
python
en
code
2
github-code
6
436459396
from gensim.corpora import TextCorpus, TextDirectoryCorpus from gensim.models.doc2vec import TaggedDocument from trec.treccorpus import TrecCorpus def test_get_texts(): path = "F:/Corpus/trectest/" file = path + "fr881.dat" # with open(file, 'r') as fp: # print(fp.read()) trecc = TrecCorpus(path, dictionary={}) for text, docno in trecc.get_texts(): print(docno, text) # print(trecc.getstream()) def test_parse_file(): def test(): for i in range(0,10): yield i for i in test(): print(i) break for i in test(): print(i) break def test_read_doc(): a = "ddsad" b = [1,2,3,4,5] class TaggedTrecDocument(object): def __init__(self, trec): self.trec = trec self.trec.metadata = True def __iter__(self): for content, (doc_id, title) in self.trec.get_texts(): yield TaggedDocument(content, [doc_id]) def test_parse_text2222(): # from trec.treccorpus import TrecCorpus pname = "f:/Corpus/trectest/" textt = TextDirectoryCorpus(pname, dictionary={}, metadata=True, lines_are_documents=True) documents = TaggedTrecDocument(textt) print(sum(1 for _ in documents)) print(sum(1 for _ in documents)) print(sum(1 for _ in documents)) def test_parse_text(): # from trec.treccorpus import TrecCorpus pname = "f:/Corpus/trectest/" trecc = TrecCorpus(pname, dictionary={}, metadata=True) documents = TaggedTrecDocument(trecc) print(sum(1 for _ in documents)) print(sum(1 for _ in documents)) print(sum(1 for _ in documents)) # total = 0 # print() # for text, (docno, title) in trecc.get_texts(): # # print(docno) # total += 1 # print(docno) # # print(next(trecc.get_texts())) # print(total) def test_traverse_all_docs(): # pname = "f:/Corpus/TrecData/" pname = "f:/Corpus/trectest/" trecc = TrecCorpus(pname, dictionary={}) count = 0 for text, docno in trecc.get_texts(): count += 1 if count % 1000 == 0: print(docno, text) break def test_save_to_file(): pname = "f:/Corpus/trectest/" trecc = TrecCorpus(pname, dictionary={}) sfile = "f:/Corpus/savetest.csv" trecc.save_to_file(sfile)
kongyq/Project-Arcs
trec/test_treccorpus.py
test_treccorpus.py
py
2,325
python
en
code
1
github-code
6
30754133985
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split(' '))) if a[0] < 0: neg = True a0 = a[0] else: neg = False a0 = a[0] somme = 0 for i in range(1, n): if a[i] < 0 and neg: a0 = max(a0, a[i]) elif a[i] > 0 and neg: somme += a0 neg = False a0 = a[i] elif a[i] < 0 and not neg: somme += a0 neg = True a0 = a[i] elif a[i] > 0 and not neg: a0 = max(a0, a[i]) somme += a0 print(somme)
Tanguyvans/Codeforces
636/C.py
C.py
py
607
python
en
code
0
github-code
6
24082328734
#!/usr/bin/python3 """ Make petitions to the Reddit API """ from requests import get def number_of_subscribers(subreddit): """ Takes a subreddit and compute the quantity of subs """ base_url = 'https://www.reddit.com/r/{}/about.json'.format(subreddit) header = { 'User-Agent': 'Linux:api_advanced:v0.0.0 (by /u/ElEnriquez)' } response = get(base_url, headers=header, allow_redirects=False) if (response.status_code != 200): return (0) data = response.json() subs = data.get('data').get('subscribers') return (subs)
WardenCode/holbertonschool-system_engineering-devops
0x16-api_advanced/0-subs.py
0-subs.py
py
584
python
en
code
0
github-code
6
24025809080
__author__ = 'sivvaidyanathan' from urllib2 import urlopen from bs4 import BeautifulSoup import codecs, sys filename = sys.argv[0] reader = open(filename, 'r') writer = codecs.open(filename + "_canonical", 'w', 'utf-8') for line in reader: url = line.strip() if url.find("http") == -1: url = "http://" + url data = urlopen(url).read() soup = BeautifulSoup(data) links = soup.findAll('link', rel="canonical") for link in links: writer.write(url + "\t" + link["href"] + "\n")
sivaramakrishnanvaidyanathan/crawler
histogram/link_canonical.py
link_canonical.py
py
520
python
en
code
0
github-code
6
26538911991
import hashlib import os.path from typing import List, Optional import requests from connectors.Triage.const import TRIAGE_URL, TRIAGE_LAST_100_RESULTS_FROM_NOW, TRIAGE_HEADER, OUTPUT_FOLDER from connectors.utils import upload_file_to_malstream def get_last_100_analysis() -> List: r = requests.get(f"{TRIAGE_URL}{TRIAGE_LAST_100_RESULTS_FROM_NOW}", headers=TRIAGE_HEADER) if r.status_code != 200: return [] return r.json()['data'] def download_file(_id: str) -> Optional[str]: r = requests.get(f"{TRIAGE_URL}/samples/{_id}/sample", headers=TRIAGE_HEADER) if r.status_code != 200: return None file_path = os.path.join(OUTPUT_FOLDER, hashlib.sha256(r.content).hexdigest()) with open(file_path, 'wb') as f: f.write(r.content) return file_path def main(): res = get_last_100_analysis() for r in res: file_path = download_file(r['id']) if not file_path: print(f'Error while download sample {r["id"]}') continue status_code = upload_file_to_malstream(file_path) if status_code != 200 and status_code != 409: print(f'Error on upload {file_path}') print(f"Cleaning extracted file {OUTPUT_FOLDER}") for f in os.listdir(OUTPUT_FOLDER): os.remove(os.path.join(OUTPUT_FOLDER, f)) if __name__ == '__main__': main()
CorraMatte/malstream
connectors/Triage/connector.py
connector.py
py
1,374
python
en
code
3
github-code
6
15260123974
import datetime import hashlib import json from flask import Flask, jsonify # Building a Blockchain class Blockchain: def __init__(self): """ Create Blockchain and a genesis block """ self.chain = [] self.create_block(proof=1, previous_hash='0') def create_block(self, proof, previous_hash): """ :param proof: Proof of new block :param previous_hash: hash of the previous block in Blockchain :return: newly created block """ block = {'index': len(self.chain) + 1, 'timestamp': str(datetime.datetime.now()), 'proof': proof, 'previous_hash': previous_hash} self.chain.append(block) return block def get_previous_block(self): """ :return: Last block of Blockchain """ return self.chain[-1] def proof_of_work(self, previous_proof): """ :param previous_proof: hash of the previous block in Blockchain :return: proof on new block """ new_proof = 1 check_proof = False while check_proof is False: hash_operation = hashlib.sha256(str((new_proof ** 2) - (previous_proof ** 2)).encode()).hexdigest() if hash_operation[:4] == '0000': check_proof = True else: new_proof += 1 return new_proof def hash(self, block): """ :param block: A block in a Blockchain :return: hash of the block """ encoded_block = json.dumps(block, sort_keys=True).encode() return hashlib.sha256(encoded_block).hexdigest() def is_chain_valid(self, chain): """ :param chain: list of blocks in Blockchain :return: True if chain is valid, otherwise False """ block_index = 1 previous_block = chain[0] while block_index < len(chain): block = chain[block_index] # Checks if previous_hash of current block is equal to hash of previous block if block['previous_hash'] != self.hash(previous_block): return False # Check if proof of current block satisfies the 4 zeroes condition or not previous_proof = previous_block['proof'] proof = block['proof'] hash_operation = hashlib.sha256(str((proof ** 2) - (previous_proof ** 2)).encode()).hexdigest() if hash_operation[:4] != '0000': return False previous_block = block block_index += 1 return True # Creating a web app app = Flask(__name__) # Creating a Blockchain blockchain = Blockchain() # Mining a new block @app.route('/mine_block', methods=['GET']) def mine_block(): previous_block = blockchain.get_previous_block() previous_proof = previous_block['proof'] proof = blockchain.proof_of_work(previous_proof) previous_hash = blockchain.hash(previous_block) block = blockchain.create_block(proof, previous_hash) response = {'message': 'Congratulations, you just mined a block!', 'index': block['index'], 'timestamp': block['timestamp'], 'proof': block['proof'], 'previous_hash': block['previous_hash']} return jsonify(response), 200 # Getting the full Blockchain @app.route('/get_chain', methods=['GET']) def get_chain(): response = {'chain': blockchain.chain, 'length': len(blockchain.chain)} return jsonify(response), 200 # Checking if the Blockchain is valid @app.route('/is_valid', methods=['GET']) def is_valid(): if blockchain.is_chain_valid(blockchain.chain): response = {'message': 'All good. The Blockchain is valid.'} else: response = {'message': 'We have a problem. The Blockchain is not valid'} return jsonify(response), 200 # Running the app app.run(host='0.0.0.0', port=1710)
imnishant/Blockchain
main.py
main.py
py
3,966
python
en
code
0
github-code
6
12701283102
import sys ground = [] ground_data = dict() TIME_BY_DIG, TIME_BY_PUT = 2, 1 min_time, that_height = 128000000, 0 def try_to_make(ground_data, trying_height): time = 0 for data in ground_data.items(): if data[0] < trying_height: time += TIME_BY_PUT * data[1] * (trying_height - data[0]) elif data[0] > trying_height: time += TIME_BY_DIG * data[1] * (data[0] - trying_height) return time, trying_height n, m, b = map(int, sys.stdin.readline().rstrip().split()) for i in range(n): ground += map(int, sys.stdin.readline().rstrip().split()) for i in ground: if i not in ground_data: ground_data[i] = 1 else: ground_data[i] += 1 existing_blocks = sum(ground) + b for height in range(257): if n * m * height > existing_blocks: continue temp_time, temp_that_height = try_to_make(ground_data, height) if temp_time < min_time: min_time, that_height = temp_time, temp_that_height elif temp_time == min_time: if that_height < temp_that_height: min_time, that_height = temp_time, temp_that_height print(min_time, that_height)
MinChoi0129/Algorithm_Problems
BOJ_Problems/18111.py
18111.py
py
1,158
python
en
code
2
github-code
6
18464680736
#!/usr/bin/python3 #encoding: utf-8 import requests import re from bs4 import BeautifulSoup import json #登录获取cookie login_url = "http://210.30.1.140/index.php/Public/checkLogin" #登录信息 logindata={ "txtName":"2015083216", "txtPass":"2015083216", "txtCheck":"no", } #获取cookie logind = requests.post(login_url,data=logindata) cookie = logind.cookies #提交题目 d = { "submit_language":"1", "submit_code":"#include <iostream> \n using namespace std;\n int main()\n{int a,b;cin>>a>>b; cout<<a+b<<endl; return 0;}", "problem_id":"303", "test_id":"", "__hash__":"a8edbf0347b55fdb7b7567c1505c15b1_d0ad44986cc057b42f6762993b550404" } url = "http://210.30.1.140/index.php/Problems/saveCode" for i in range(1,3): #循环填写请求的次数 r = requests.post(url, data=d,cookies=cookie) print(r.text) #返回请求后的内容 ''' requests post请求参考资料:http://blog.csdn.net/junli_chen/article/details/53670887 form形式 json形式 multipat形式 '''
chinazhenzhen/PythonLearn
RE4/5+.py
5+.py
py
1,019
python
en
code
0
github-code
6
51412731
from typing import * class Solution: def countTriplets(self, nums: List[int]) -> int: M = max(nums) cnt = [0]*(M+1) for i in nums: for j in nums: # AND can only decrease the number cnt[i&j] += 1 res = 0 for k in nums: for m in range(M+1): if (k&m) == 0: res += cnt[m] return res
code-cp/leetcode
solutions/982/main.py
main.py
py
436
python
en
code
0
github-code
6
42366132351
import tensorflow as tf import numpy as np IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32) def read_image_label_list(data_dir, data_list): """Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively. """ f = open(data_list, 'r') key_images = [] current_images = [] labels = [] for line in f: try: image_line = line[:-1].split('\n')[0] except ValueError: # Adhoc for test. image_line = line.strip("\n") if image_line == '': continue if len(image_line.split(' ')) == 3: key_image_path, current_image_path, label_path = image_line.split(' ') key_image = data_dir + key_image_path current_image = data_dir + current_image_path label = data_dir + label_path if not tf.gfile.Exists(key_image): raise ValueError('Failed to find file: ' + key_image) if not tf.gfile.Exists(label): raise ValueError('Failed to find file: ' + label) key_images.append(key_image) current_images.append(current_image) labels.append(label) else: key_image_path = image_line.split(' ') key_image = data_dir + key_image_path if not tf.gfile.Exists(key_image): raise ValueError('Failed to find file: ' + key_image) key_images.append(key_image) f.close() return key_images, current_images, labels def read_labeled_image_list(data_dir, data_list): """Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively. """ f = open(data_list, 'r') images = [] for line in f: try: image = line[:-1].split('\n')[0] except ValueError: # Adhoc for test. image = line.strip("\n") image = data_dir+image if not tf.gfile.Exists(image): raise ValueError('Failed to find file: ' + image) images.append(image) f.close() return images def resizer(raw_image, input_size): return tf.image.resize_image_with_crop_or_pad(raw_image, input_size[0], input_size[1]) def read_images_from_disk(input_queue, input_size, overlap, img_mean=IMG_MEAN): """Consumes a single filename and label as a ' '-delimited string. Args: filename_tensor: A scalar string tensor. Returns: Three tensors: the decoded images and flos. """ height = input_size[0]//2 height_overlap = height+overlap width = input_size[1]//2 width_overlap = width+overlap image_file = tf.read_file(input_queue[0]) image = tf.image.decode_image(image_file) image = tf.cast(image,tf.float32) img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=image) image_bgr = tf.concat(axis=2, values=[img_b, img_g, img_r]) image_bgr.set_shape((None, None, 3)) image_bgr = tf.expand_dims(tf.image.resize_images(image_bgr, input_size), 0) print(' before spliting ', image_bgr.shape) images = tf.concat([image_bgr[:, :height+overlap, :width+overlap, :], image_bgr[:, :height+overlap, width-overlap:, :], image_bgr[:, height-overlap:, :width+overlap, :], image_bgr[:, height-overlap:, width-overlap:, :]],0) print(' after spliting ', images.shape) # Preprocess. image_s = images-img_mean image_f = tf.image.resize_images(images/255.0, [(height_overlap)//2, (width_overlap)//2]) return image_s, image_f def to_bgr(image): img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=image) image_bgr = tf.concat(axis=2, values=[img_b, img_g, img_r]) return image_bgr def crop_and_upsample(prob, resized_image, raw_image, mask, num_classes): resized_h = tf.shape(resized_image)[1] resized_w = tf.shape(resized_image)[2] resized_shape = tf.stack([1, resized_h, resized_w, num_classes ]) raw_shape = tf.shape(raw_image)[:2] cropped_prob = tf.boolean_mask( tf.squeeze(prob), tf.squeeze(tf.equal(mask, 0))) reshaped_prob = tf.reshape(cropped_prob, resized_shape) upsampled_prob = tf.image.resize_bilinear(reshaped_prob, raw_shape) return tf.squeeze(tf.cast(tf.argmax(upsampled_prob, axis=-1), tf.int32)) def read_image_from_filename(data_dir, data_list, batch_size, input_size_to_rescale): key_image_list, current_image_list, label_list = read_image_label_list(data_dir, data_list) key_image_tensor = tf.convert_to_tensor(key_image_list, dtype=tf.string) current_image_tensor = tf.convert_to_tensor(current_image_list, dtype=tf.string) label_tensor = tf.convert_to_tensor(label_list, dtype=tf.string) queue = tf.train.slice_input_producer( [key_image_tensor, current_image_tensor, label_tensor], shuffle=False) key_image_contents = tf.read_file(queue[0]) current_image_contents = tf.read_file(queue[1]) label_contents = tf.read_file(queue[2]) key_images = tf.image.decode_png(key_image_contents, channels=3) current_images = tf.image.decode_png(current_image_contents, channels=3) labels = tf.image.decode_png(label_contents, channels=1) return key_images, current_images, labels def scale_and_mask(key_image, current_image, labels, input_size_to_rescale): cropped_key_image, cropped_current_image, resized_image, mask = scale_fixed_size(key_image, current_image, labels, input_size_to_rescale) return cropped_key_image, cropped_current_image, resized_image, mask # return _generate_image_and_label_batch_with_mask(cropped_image, cropped_f_image, mask, batch_size) def read_segment_flownet_images(input_queue, input_size, overlap): height = input_size[0] width = input_size[1] image_file = tf.read_file(input_queue[0]) image = tf.image.decode_image(image_file) image = resizer(image, [height, width]) image_s = image image_f = to_bgr(image) image_s = tf.cast(image_s, tf.float32) image_f = tf.cast(image_f, tf.float32) image_s.set_shape([None, None, 3]) image_f.set_shape([None, None, 3]) height = height + overlap width = width + overlap image_s = tf.image.resize_images((image_s) / 255.0, (height // 1, width // 1)) image_f = tf.image.resize_images((image_f) / 255.0, (height // 2, width // 2)) return image_s, image_f def _generate_image_and_label_batch_with_mask(image_s, image_f, mask, batch_size): """Construct a queued batch of images and labels. Args: image_s, image_f: 3-D Tensor of input image of type.float32. batch_size: Number of images per batch. Returns: bimages: Images. 4D tensor of [batch_size, height, width, 3] size. bflo: Flos. 4D tensor of [batch_size, height, width, 2] size. """ # Create a queue that shuffles the examples, and then # read 'batch_size' images + labels from the example queue. num_preprocess_threads = 4 bimage_s, bimage_f, bi_mask = tf.train.batch( [image_s, image_f, mask], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=1) return bimage_s, bimage_f, bi_mask def _generate_image_and_label_batch(image_s, image_f, batch_size): """Construct a queued batch of images and labels. Args: image_s, image_f: 3-D Tensor of input image of type.float32. batch_size: Number of images per batch. Returns: bimages: Images. 4D tensor of [batch_size, height, width, 3] size. bflo: Flos. 4D tensor of [batch_size, height, width, 2] size. """ # Create a queue that shuffles the examples, and then # read 'batch_size' images + labels from the example queue. num_preprocess_threads = 4 bimage_s, bimage_f = tf.train.batch( [image_s, image_f], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=1) return bimage_s, bimage_f def scale_fixed_size(key_image, current_image, raw_label, output_shape, ignore_label=255): current_f = to_bgr(current_image) key_image = tf.cast(key_image, tf.float32) / 255. current_f = tf.cast(current_f, tf.float32) / 255. raw_label = tf.cast(raw_label, tf.int32) raw_height = tf.shape(key_image)[0] raw_width = tf.shape(key_image)[1] image_batch = tf.expand_dims(key_image, 0) current_f_batch = tf.expand_dims(current_f, 0) label_batch = tf.expand_dims(raw_label, 0) raw_label_size = tf.shape(image_batch) raw_image_size = tf.shape(label_batch) image_f_size = tf.shape(current_f_batch) input_shape = tf.to_float(raw_image_size[1:3]) scale_shape = output_shape / input_shape scale = tf.reduce_min(scale_shape) scaled_input_shape = tf.to_int32(tf.round(input_shape * scale)) resized_image = tf.image.resize_nearest_neighbor( image_batch, scaled_input_shape) resized_current_f_image = tf.image.resize_nearest_neighbor( current_f_batch, scaled_input_shape) resized_label = tf.image.resize_nearest_neighbor( label_batch, scaled_input_shape) shifted_classes = resized_label + 1 cropped_key_image = tf.image.resize_image_with_crop_or_pad( resized_image, output_shape[0] // 2, output_shape[1] // 2) cropped_current_f_image = tf.image.resize_image_with_crop_or_pad( resized_current_f_image, output_shape[0] // 2, output_shape[1] // 2) cropped_label = tf.image.resize_image_with_crop_or_pad( shifted_classes, output_shape[0], output_shape[1]) mask = tf.to_int32(tf.equal(cropped_label, 0)) * (ignore_label + 1) cropped_label = cropped_label + mask - 1 return cropped_key_image, cropped_current_f_image, resized_image, mask def input_images(data_dir, data_list, batch_size, input_size, overlap): image_list = read_labeled_image_list(data_dir, data_list) images = tf.convert_to_tensor(image_list, dtype=tf.string) input_queue = tf.train.slice_input_producer([images], shuffle=False) image_s, image_f = read_segment_flownet_images(input_queue=input_queue, input_size=input_size, overlap=overlap) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(image_s, image_f, batch_size) def inputs(data_dir, data_list, batch_size, input_size, overlap, img_mean=IMG_MEAN): """Construct input for CIFAR evaluation using the Reader ops. Args: data_dir: Path to the FlowNet data directory. batch_size: Number of images per batch. Returns: image1, image2: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. """ image_list = read_labeled_image_list(data_dir, data_list) images = tf.convert_to_tensor(image_list, dtype=tf.string) input_queue = tf.train.slice_input_producer([images], shuffle=False) image_s, image_f = read_images_from_disk(input_queue, input_size, overlap, img_mean) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(image_s, image_f, batch_size)
rashmi-patil-1492/video-semantic-segmentation-network
tools/image_reader.py
image_reader.py
py
11,641
python
en
code
0
github-code
6
38544511106
import cv2 import mss from PIL import Image import numpy as np import time import json import math with open('Crypt.json', 'r') as json_file: data = json.load(json_file) with open('ItemGroups.json', 'r') as json_file: item_data = json.load(json_file) # record video of screen using cv2 fps = 30 fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter('output.mp4', fourcc, fps, (2560, 1440)) mon = {'left': 0, 'top': 0, 'width': 2560, 'height': 1440} map_unfound = cv2.imread('Crypt_06.png') map_found = map_unfound # Assign default value map_unfound_grey = cv2.cvtColor(map_found, cv2.COLOR_BGR2GRAY) MIN_CONFIDENCE = 0.55 map_count = 1 resized = False def click_event(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: # Draw a blue dot at the clicked location cv2.circle(map_found, (x, y), 5, (255, 0, 0), -1) # Log the coordinates of the click print(f'Clicked at ({x}, {y})') def transform (point, map, scale = 1): h, w, _ = map.shape x, y = point x = scale * (1 * x + 0) y = scale * (1 * y + 0) x = w - x *2 y = h - y*2 y = h - y return (x, y) with mss.mss() as sct: detected_location = False while True: img = sct.grab(mon) frame = Image.frombytes( 'RGB', (img.width, img.height), img.rgb, ) frame = np.array( frame) out.write(frame) # Resize the frame, Convert to grayscale. 1440p frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = frame[1160:1380, 2240:2460] frame = cv2.resize(frame, (int(frame.shape[1] * 0.8), int(frame.shape[0] * 0.8))) if not(detected_location): if(map_count < 6): map_count += 1 else: map_count = 1 map_unfound = cv2.imread(f'Crypt_0{map_count}.png') map_unfound_grey = cv2.cvtColor(map_unfound, cv2.COLOR_BGR2GRAY) map_unfound = cv2.resize(map_unfound, (1100,1100)) map_unfound = map_unfound[86:1010, 87:1002] map_unfound = cv2.resize(map_unfound, (690,690)) map_unfound_grey = cv2.cvtColor(map_unfound, cv2.COLOR_BGR2GRAY) resized = True else: MIN_CONFIDENCE = 0.32 map_found = map_unfound cv2.imshow('map ' + str(map_count), map_found) if "map" + str(map_count) in data: for entry in data["map" + str(map_count)]: entry_id = entry.get("id") coordinates = entry.get("coordinates") lat, lng = transform((coordinates["lat"], coordinates["lng"]), map_found) lat += 50; lng -= 55 for item in item_data["Golden Chest"]: if(entry_id == item): cv2.circle(map_found, (int(lng), int(lat)), 5, (23, 229, 232), -1) break if(entry_id == "Id_Spawner_Props_Statue01"): cv2.circle(map_found, (int(lng), int(lat)), 5, (65, 232, 23), -1) if(entry_id == "BP_CryptEscape"): cv2.circle(map_found, (int(lng), int(lat)), 5, (232, 159, 23), -1) #if(entry_id == "SpawnPoint"): #cv2.circle(map_found, (int(lng), int(lat)), 5, (245, 27, 238), -1) cv2.setMouseCallback('map ' + str(map_count), click_event) result = cv2.matchTemplate(map_unfound_grey, frame, cv2.TM_CCOEFF_NORMED) if (result.max() > MIN_CONFIDENCE): detected_location = True min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) # Draw player's location on reference map cv2.circle( map_found, (int(max_loc[0] + 25 + frame.shape[1] / 2), int(max_loc[1] - 25 + frame.shape[0] / 2)), 5, (0, 0, 255), -1) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break time.sleep(1/fps) out.release()
debug-it/DarkAndDarker-MapHelper
record.py
record.py
py
4,278
python
en
code
0
github-code
6
22003370311
from reviewminer.core import * import pandas as pd import reviewminer as rm reviews_df = pd.read_csv("./reviews.csv") print("comment" in reviews_df.columns) rm = ReviewMiner(reviews_df.head(100), 'id', 'comments') rm.aspect_opinon_for_all_comments() rm.popular_aspects_view(_testing=True) print(rm.top_aspects) rm.aspect_mute_list = ['room'] print('room' not in rm.top_aspects) #isinstance(rm.return_negative_comments_of_aspect('bed'), list) is True # rm.aspect_opinon_for_all_comments() # rm.overall_sentiment(_testing=True) #rm.id_column = 1 #rm._examine_id_column(1) # rm.one_time_analysis() # rm.aspect_opinon_for_all_comments() # print(rm.top_aspects) #print(ss.sentiment_for_one_comment(ss.df.iloc[10,1])) # aoe = AspectOpinionExtractor(reviews_df.head(100), 'id', 'comments') # aoe.aspect_opinon_for_all_comments() # aoe.popular_aspects_view() # #aoe.single_aspect_view("room") #aoe.single_aspect_view("room", num_top_words=5, xticks_rotation=30) # print(aoe.most_popular_opinions("room", 5)) # # sample_df = pd.DataFrame({ # 'id': [100, 101, 102, 103], # 'comments': ['The room is comfortable. The room is spacious.', # 'The sunny room is very spacious.', # 'The spacious room is sunny', # 'The spacious room is sunny. The beautiful room is comfortable']}) # # aoe = AspectOpinionExtractor(sample_df, 'id', 'comments') # aoe.aspect_opinon_for_all_comments() # print(len(aoe.df_with_aspects_opinions.loc[0, "aspects_opinions"])) # print(aoe.df_with_aspects_opinions) # # aoe.aspect_opinon_for_all_comments() # print(aoe.most_popular_opinions("room"))
tianyiwangnova/2021_project__ReviewMiner
sample_data/work_on_sample_data.py
work_on_sample_data.py
py
1,668
python
en
code
5
github-code
6
926386452
import os from unittest.mock import patch import pytest from rotkehlchen.db.dbhandler import DBHandler from rotkehlchen.externalapis.etherscan import Etherscan from rotkehlchen.tests.utils.mock import MockResponse from rotkehlchen.typing import ExternalService, ExternalServiceApiCredentials @pytest.fixture(scope='function') def temp_etherscan(function_scope_messages_aggregator, tmpdir_factory): directory = tmpdir_factory.mktemp('data') db = DBHandler( user_data_dir=directory, password='123', msg_aggregator=function_scope_messages_aggregator, initial_settings=None, ) # Test with etherscan API key api_key = os.environ.get('ETHERSCAN_API_KEY', None) if api_key: db.add_external_service_credentials(credentials=[ ExternalServiceApiCredentials(service=ExternalService.ETHERSCAN, api_key=api_key), ]) etherscan = Etherscan(database=db, msg_aggregator=function_scope_messages_aggregator) return etherscan def patch_etherscan(etherscan): count = 0 def mock_requests_get(_url): nonlocal count if count == 0: response = ( '{"status":"0","message":"NOTOK",' '"result":"Max rate limit reached, please use API Key for higher rate limit"}' ) else: response = '{"jsonrpc":"2.0","id":1,"result":"0x1337"}' count += 1 return MockResponse(200, response) return patch.object(etherscan.session, 'get', wraps=mock_requests_get) def test_maximum_rate_limit_reached(temp_etherscan): """ Test that we can handle etherscan's rate limit repsponse properly Regression test for https://github.com/rotki/rotki/issues/772" """ etherscan = temp_etherscan etherscan_patch = patch_etherscan(etherscan) with etherscan_patch: result = etherscan.eth_call( '0x4678f0a6958e4D2Bc4F1BAF7Bc52E8F3564f3fE4', '0xc455279100000000000000000000000027a2eaaa8bebea8d23db486fb49627c165baacb5', ) assert result == '0x1337'
fakecoinbase/rotkislashrotki
rotkehlchen/tests/external_apis/test_etherscan.py
test_etherscan.py
py
2,080
python
en
code
0
github-code
6
3889512912
# -*- coding: utf-8 -*- """ Created on Thu Aug 10 11:25:11 2017 Dempster-Shafer Combination rule @author: Zhiming """ from numpy import * def DSCombination (Dic1, Dic2): ## extract the frame dicernment sets=set(Dic1.keys()).union(set(Dic2.keys())) Result=dict.fromkeys(sets,0) ## Combination process for i in Dic1.keys(): for j in Dic2.keys(): if set(str(i)).intersection(set(str(j))) == set(str(i)): Result[i]+=Dic1[i]*Dic2[j] elif set(str(i)).intersection(set(str(j))) == set(str(j)): Result[j]+=Dic1[i]*Dic2[j] ## normalize the results f= sum(list(Result.values())) for i in Result.keys(): Result[i] /=f return Result
Zhiming-Huang/Dempster-shafer-combination-rules
DS.py
DS.py
py
784
python
en
code
16
github-code
6
16312524711
import jax.numpy as np from jax import grad, nn, random, jit from jax.experimental import stax, optimizers from jax.experimental.optimizers import l2_norm from jax.numpy import linalg from jax.experimental.stax import Dense, Relu, Tanh, Conv, MaxPool, Flatten, Softmax, LogSoftmax, Sigmoid from jax.tree_util import tree_flatten, tree_unflatten, tree_map from jax.nn import log_sigmoid from mnist import mnist from tqdm import tqdm import itertools import pickle LogSigmoid = elementwise(log_sigmoid) def model(rng): """Feature extraction network.""" init_params, forward = stax.serial( Conv(16, (8, 8), padding='SAME', strides=(2, 2)), Relu, MaxPool((2, 2), (1, 1)), Conv(32, (4, 4), padding='VALID', strides=(2, 2)), Relu, MaxPool((2, 2), (1, 1)), Flatten, Dense(32), Relu, Dense(1), LogSigmoid, ) temp, rng = random.split(rng) params = init_params(temp, (-1, 28, 28, 1))[1] return params, forward def data_stream(rng, batch_size, X, y): num_complete_batches, leftover = divmod(X.shape[0], batch_size) num_batches = num_complete_batches + bool(leftover) while True: temp, rng = random.split(rng) perm = random.permutation(temp, X.shape[0]) for i in range(num_batches): batch_idx = perm[i*batch_size:(i+1)*batch_size] yield X[batch_idx], y[batch_idx] if __name__ == "__main__": rng = random.PRNGKey(0) X, y, X_test, y_test = mnist() X, X_test = X.reshape(-1, 28, 28, 1), X_test.reshape(-1, 28, 28, 1) y, y_test = (np.argmax(y, 1) % 2 == 1).astype(np.float32), (np.argmax(y_test, 1) % 1 == 1).astype(np.float32) temp, rng = random.split(rng) params, predict = model(temp) def loss(params, batch, l2=0.05): X, y = batch y_hat = predict(params, X).reshape(-1) return -np.mean(y * np.log(y_hat) + (1. - y) * np.log(1. - y_hat)) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) iterations = 5000 batch_size = 64 step_size = 0.001 opt_init, opt_update, get_params = optimizers.adam(step_size) opt_state = opt_init(params) temp, rng = random.split(rng) batches = data_stream(temp, batch_size, X, y) for i in tqdm(range(iterations)): opt_state = update(i, opt_state, next(batches)) if i % 1000 == 0: params = get_params(opt_state) print('Loss: {:.4f}'.format(loss(params, (X, y)))) params = get_params(opt_state) exit() pickle.dump(lr_params, open('logistic_regression_params.pkl', 'wb')) pickle.dump(logistic_regression, open('logistic_regression.pkl', 'wb')) pickle.dump(fe_params, open('feature_extractor_params.pkl', 'wb')) pickle.dump(feature_extractor, open('feature_extractor.pkl', 'wb'))
ChrisWaites/data-deletion
src/d2d/projected_mnist/debug_for_seth.py
debug_for_seth.py
py
2,756
python
en
code
5
github-code
6
34197263982
import sys, math from math import pi as pi import numpy as np import cv2 from PyQt5.QtCore import QPoint, QRect, QSize, Qt, QPointF, QRectF, pyqtSignal, QTimer from PyQt5.QtGui import (QBrush, QConicalGradient, QLinearGradient, QPainter, QPainterPath, QPalette, QPen, QPixmap, QPolygon, QRadialGradient, QColor, QTransform, QPolygonF, QKeySequence, QIcon) from PyQt5.QtWidgets import (QApplication, QProgressBar, QCheckBox, QComboBox, QVBoxLayout, QHBoxLayout, QGridLayout, QLabel, QSpinBox, QWidget, QPushButton, QSpacerItem, QSizePolicy, QLCDNumber ) from PyQt5 import QtGui, QtCore from parallelIce.pose3dClient import Pose3DClient from parallelIce.laserClient import LaserClient import easyiceconfig as EasyIce from gui.threadGUI import ThreadGUI class MainWindow(QWidget): updGUI=pyqtSignal() def __init__(self, pose3d, laser1, laser2, laser3, parent=None): super(MainWindow, self).__init__(parent) layout = QGridLayout() self.quesito = quesoWidget(self, pose3d) self.tiempo = tiempoWidget(self) self.calidad = calidadWidget(self, laser1, laser2, laser3) self.distancia = distanciaWidget(self, pose3d) self.nota = notaWidget(self,pose3d, self.tiempo, self.calidad, self.distancia) self.logo = logoWidget(self) layout.addWidget(self.quesito,1,0) layout.addWidget(self.tiempo,0,0) layout.addWidget(self.distancia,0,2) layout.addWidget(self.calidad,1,2) layout.addWidget(self.nota,0,1) layout.addWidget(self.logo,2,2) vSpacer = QSpacerItem(30, 50, QSizePolicy.Ignored, QSizePolicy.Ignored) layout.addItem(vSpacer,1,0) self.setFixedSize(940,640); self.setLayout(layout) self.updGUI.connect(self.update) def update(self): self.quesito.updateG() self.distancia.updateG() self.calidad.updateG() self.nota.updateG() class logoWidget(QWidget): def __init__(self, winParent): super(logoWidget, self).__init__() self.winParent=winParent self.logo = cv2.imread("resources/logo_jderobot1.png",cv2.IMREAD_UNCHANGED) self.logo = cv2.resize(self.logo, (100, 100)) image = QtGui.QImage(self.logo.data, self.logo.shape[1], self.logo.shape[0], QtGui.QImage.Format_ARGB32); self.pixmap = QtGui.QPixmap.fromImage(image) self.height = self.pixmap.height() self.width = self.pixmap.width() self.mapWidget = QLabel(self) self.mapWidget.setPixmap(self.pixmap) self.mapWidget.resize(self.width, self.height) self.setMinimumSize(100,100) class calidadWidget(QWidget): def __init__(self,winParent, laser1, laser2, laser3): super(calidadWidget, self).__init__() self.winParent=winParent self.laser1 = laser1 self.laser2 = laser2 self.laser3 = laser3 self.numCrash = 0 self.MAX_CRASH = 1000 vLayout = QVBoxLayout() choquesLabel = QLabel("Choques:") self.bar = QProgressBar() self.bar.setValue(self.numCrash) st = "QProgressBar::chunk {background-color: #ff0000;}\n QProgressBar {border: 1px solid grey;border-radius: 2px;text-align: center;background: #eeeeee;}" self.bar.setStyleSheet(st) self.bar.setTextVisible(False) vLayout.addWidget(choquesLabel, 0) vLayout.addWidget(self.bar, 0) vSpacer = QSpacerItem(30, 80, QSizePolicy.Ignored, QSizePolicy.Ignored) vLayout.addItem(vSpacer) self.setLayout(vLayout) def get_laser_distance(self, laser): DIST = 15 maxAngle = 180 crash = False for i in range(0, maxAngle+1): # Distance in millimeters, we change to cm laserI = float(laser.distanceData[i])/float(10) if i != 0 and i != 180: if laserI <= DIST: crash = True return crash def updateG(self): laser_data_Front = self.laser1.getLaserData() laser_data_Rear = self.laser2.getLaserData() laser_data_Right = self.laser3.getLaserData() crashFront = self.get_laser_distance(laser_data_Front) crashRear = self.get_laser_distance(laser_data_Rear) crashRight = self.get_laser_distance(laser_data_Right) if crashFront or crashRear or crashRight: self.numCrash = self.numCrash + 1 percentajeCrash = self.numCrash * 100/self.MAX_CRASH self.bar.setValue(self.numCrash) self.update() class distanciaWidget(QWidget): def __init__(self,winParent, pose3d): super(distanciaWidget, self).__init__() self.winParent=winParent self.pose3d = pose3d self.distFrontFinal = 0 self.distRearFinal = 0 self.distanceSidewalk = 0 vLayout = QVBoxLayout() self.distances() distancesLabel = QLabel("Distancias:") self.distanceFrontalLabel = QLabel("Distancia frontal: " + str(round(self.distFrontFinal, 3)) + ' m') self.distanceRearLabel = QLabel("Distancia trasera: " + str(round(self.distRearFinal, 3)) + ' m') self.distanceSidewalkLabel = QLabel("Distancia a la acera: " + str(round(self.distanceSidewalk, 3)) + ' m') vLayout.addWidget(distancesLabel, 0) vLayout.addWidget(self.distanceFrontalLabel, 0) vLayout.addWidget(self.distanceRearLabel, 0) vLayout.addWidget(self.distanceSidewalkLabel, 0) self.setLayout(vLayout) def RTx(self, angle, tx, ty, tz): RT = np.matrix([[1, 0, 0, tx], [0, math.cos(angle), -math.sin(angle), ty], [0, math.sin(angle), math.cos(angle), tz], [0,0,0,1]]) return RT def RTy(self, angle, tx, ty, tz): RT = np.matrix([[math.cos(angle), 0, math.sin(angle), tx], [0, 1, 0, ty], [-math.sin(angle), 0, math.cos(angle), tz], [0,0,0,1]]) return RT def RTz(self, angle, tx, ty, tz): RT = np.matrix([[math.cos(angle), -math.sin(angle), 0, tx], [math.sin(angle), math.cos(angle),0, ty], [0, 0, 1, tz], [0,0,0,1]]) return RT def RTCar(self): yaw = self.pose3d.getYaw() RTz = self.RTz(yaw, 0, 0, 0) return RTz def distancePoint2Segment(self, A, B, C): # Segment: A[ax,ay] ; B[bx,by] # Point: C[cx, cy] # Calculate U parameter u = self.parameterU(A, B, C) if u < 0: distance = self.distancePoint2Point(A, C) elif u > 1: distance = self.distancePoint2Point(B, C) else: distance = self.distancePoint2Rect(A, B, C) return distance def parameterU(self, A, B, C): # Point A: [ax, ay] # Point B: [bx, by] # Point C: [cx, cy] # Parameter U of equations: Px = ax + u*(bx-ax); and Py = ay + u*(by-ay) u = ((C[0] - A[0])*(B[0] - A[0]) + (C[1] - A[1])*(B[1] - A[1])) / (pow((B[0] - A[0]),2) + pow((B[1] - A[1]),2)) return u def distancePoint2Point(self, Point1, Point2): # Point: 1[x1,y1] # Point: 2[x2,y2] return math.sqrt(pow((Point2[0]-Point1[0]),2) + pow((Point2[1]-Point1[1]),2)) def distancePoint2Rect(self, A, B, C): # Rect: A[ax,ay] ; B[bx,by] # Point: C[cx,cy] distance = abs((B[0] - A[0])*(C[1] - A[1]) - (B[1] - A[1])*(C[0] - A[0])) / (math.sqrt(pow((B[0]-A[0]),2) + pow((B[1]-A[1]),2))) return distance def distanceCar2Car(self, pointCarLeft, pointCarRight, pointFrontLeft, pointFrontRight, pointRearLeft, pointRearRight): # Mide la minima distancia desde los 4 vertices de un coche a la parte delantera o trasera de otro coche (segmento) # Segment: pointCarLeft[x,y] ; pointCarRight[x,y] # Point 1: pointFrontLeft[x,y] # Point 2: pointFrontRight[x,y] # Poitn 3: pointRearLeft[x,y] # Point 4: pointRearRight[x,y] distance = self.distancePoint2Segment(pointCarLeft, pointCarRight, pointFrontLeft) if (self.distancePoint2Segment(pointCarLeft, pointCarRight, pointFrontRight) < distance): distance = self.distancePoint2Segment(pointCarLeft, pointCarRight, pointFrontRight) if (self.distancePoint2Segment(pointCarLeft, pointCarRight, pointRearLeft) < distance): distance = self.distancePoint2Segment(pointCarLeft, pointCarRight, pointRearLeft) if (self.distancePoint2Segment(pointCarLeft, pointCarRight, pointRearRight) < distance): distance = self.distancePoint2Segment(pointCarLeft, pointCarRight, pointRearRight) return distance def distances(self): carSize = [5.75, 2.5] carSizeTaxi = [4, 2] #Poses sidewalk positionSideWalk_start = [-25, -4.25] positionSideWalk_final = [35, -4.25] # Poses parked cars (origin poses) # Frontal car pointCarFrontal_RearLeft = [14 - carSize[0]/2, -3+carSize[1]/2] pointCarFrontal_RearRight = [14 - carSize[0]/2, -3-carSize[1]/2] pointCarFrontal_FrontLeft = [14 + carSize[0]/2, -3+carSize[1]/2] pointCarFrontal_FrontRight = [14 + carSize[0]/2, -3-carSize[1]/2] # Rear Car pointCarRear_FrontLeft = [0.5 + carSize[0]/2, -3+carSize[1]/2] pointCarRear_FrontRight = [0.5 + carSize[0]/2, -3-carSize[1]/2] pointCarRear_RearLeft = [0.5 - carSize[0]/2, -3+carSize[1]/2] pointCarRear_RearRight = [0.5 - carSize[0]/2, -3-carSize[1]/2] # Pose 3D (origin poses) xFront = self.pose3d.getX() + carSizeTaxi[0]/2 xRear = self.pose3d.getX() - carSizeTaxi[0]/2 yLeft = self.pose3d.getY() + carSizeTaxi[1]/2 yRight = self.pose3d.getY() - carSizeTaxi[1]/2 # Final poses (Car's rotation) pointFrontLeft = self.RTCar() * np.matrix([[xFront], [yLeft], [1], [1]]) pointFrontLeft = [pointFrontLeft.flat[0],pointFrontLeft.flat[1]] pointFrontRight = self.RTCar() * np.matrix([[xFront], [yRight], [1], [1]]) pointFrontRight = [pointFrontRight.flat[0], pointFrontRight.flat[1]] pointRearLeft = self.RTCar() * np.matrix([[xRear], [yLeft], [1], [1]]) pointRearLeft = [pointRearLeft.flat[0],pointRearLeft.flat[1]] pointRearRight = self.RTCar() * np.matrix([[xRear], [yRight], [1], [1]]) pointRearRight = [pointRearRight.flat[0],pointRearRight.flat[1]] # Distance car -> parked front car distFrontFinal_1 = self.distanceCar2Car(pointCarFrontal_RearLeft, pointCarFrontal_RearRight, pointFrontLeft, pointFrontRight, pointRearLeft, pointRearRight) # Distance parked front car -> car distFrontFinal_2 = self.distanceCar2Car(pointFrontLeft, pointFrontRight, pointCarFrontal_RearLeft, pointCarFrontal_RearRight, pointCarFrontal_FrontLeft , pointCarFrontal_FrontRight) # Distance car -> parked rear car distRearFinal_1 = self.distanceCar2Car(pointCarRear_FrontLeft, pointCarRear_FrontRight, pointFrontLeft, pointFrontRight, pointRearLeft, pointRearRight) # Distance parked rear car -> car distRearFinal_2 = self.distanceCar2Car(pointRearLeft, pointRearRight, pointCarRear_FrontLeft , pointCarRear_FrontRight, pointCarRear_RearLeft , pointCarRear_RearRight) # Minimal distance if distFrontFinal_1 > distFrontFinal_2: self.distFrontFinal = distFrontFinal_1 else: self.distFrontFinal = distFrontFinal_2 if distRearFinal_1 > distRearFinal_2: self.distRearFinal = distRearFinal_1 else: self.distRearFinal = distRearFinal_2 # Distance car -> sidewalk self.distanceSidewalk = self.distanceCar2Car(positionSideWalk_start, positionSideWalk_final, pointFrontLeft, pointFrontRight, pointRearLeft, pointRearRight) def updateG(self): self.distances() self.distanceFrontalLabel.setText("Distancia frontal: " + str(round(self.distFrontFinal, 3)) + ' m') self.distanceRearLabel.setText("Distancia trasera: " + str(round(self.distRearFinal, 3)) + ' m') self.distanceSidewalkLabel.setText("Distancia a la acera: " + str(round(self.distanceSidewalk, 3)) + ' m') self.update() class notaWidget(QWidget): def __init__(self,winParent,pose3d, tiempo, calidad, distancia): super(notaWidget, self).__init__() self.winParent=winParent self.pose3d = pose3d self.time = tiempo self.calidad = calidad self.distancia = distancia self.hLayout = QHBoxLayout() self.button = QPushButton('Show me my mark') self.button.clicked.connect(self.notaFinal) self.hLayout.addWidget(self.button, 0) self.setLayout(self.hLayout) def notaFinal(self): notaAngle = self.testAngle() * 0.025 notaTime = self.testTime() * 0.025 notaDist = self.testDistance() * 0.025 notaCol = self.testCollision() * 0.025 nota = notaAngle + notaTime + notaDist + notaCol notaLabel = QLabel('Nota final: ' + str(nota)) self.hLayout.addWidget(notaLabel, 0) def testAngle(self): yawRad = self.pose3d.getYaw() angle = math.degrees(yawRad) + 90 if (angle >= 85 and angle <= 105): notaAngle = 100 elif (angle < 85 and angle >= 70 or angle > 105 and angle <= 120): notaAngle = 80 elif (angle < 70 and angle >= 60 or angle > 120 and angle <= 130): notaAngle = 50 else: notaAngle = 0 return notaAngle def testTime(self): minTime = 170 myTime = self.time.seconds notaTime = float(minTime*100)/float(myTime) if myTime < 170: notaTime = 100 return notaTime def testDistance(self): MyDistFront = self.distancia.distFrontFinal MyDistRear = self.distancia.distRearFinal MyDistSidewalk = self.distancia.distanceSidewalk if MyDistFront >= 1.5 and MyDistFront < 3.5: notaDistFront = 100 elif MyDistFront < 1.5 and MyDistFront >= 1: notaDistFront = 50 else: notaDistFront = 0 if MyDistRear >= 1.5 and MyDistRear < 3.5: notaDistRear = 100 elif MyDistRear < 1.5 and MyDistRear >= 1: notaDistRear = 50 else: notaDistRear = 0 if MyDistSidewalk > 0 and MyDistSidewalk <= 0.75: notaDistSidewalk = 100 elif MyDistSidewalk > 0.75 and MyDistSidewalk < 1.5: notaDistSidewalk = 50 else: notaDistSidewalk = 0 notaDist = float(notaDistFront+notaDistRear+notaDistSidewalk)/float(3) return notaDist def testCollision(self): minCrash = 0 if self.calidad.numCrash == 0: notaCol = 100 else: notaCol = float(minCrash*100)/float(self.calidad.numCrash) return notaCol def updateG(self): self.update() class tiempoWidget(QWidget): time = pyqtSignal() def __init__(self,winParent): super(tiempoWidget, self).__init__() self.winParent=winParent self.seconds = 0 hLayout = QHBoxLayout() tiempoLabel = QLabel("Tiempo") self.lcd = QLCDNumber(self) self.lcd.setMaximumSize(100,50) hLayout.addWidget(tiempoLabel,0) hLayout.addWidget(self.lcd, 1) hSpacer = QSpacerItem(300, 30, QSizePolicy.Ignored, QSizePolicy.Ignored) hLayout.addItem(hSpacer) self.setLayout(hLayout) timer = QTimer(self) timer.start(1000) timer.timeout.connect(self.printTime) # get the palette palette = self.lcd.palette() # foreground color palette.setColor(palette.WindowText, QColor(85, 85, 255)) # background color palette.setColor(palette.Background, QColor(0, 170, 255)) # "light" border palette.setColor(palette.Light, QColor(255, 0, 0)) # "dark" border palette.setColor(palette.Dark, QColor(0, 255, 0)) # set the palette self.lcd.setPalette(palette) def printTime(self): self.seconds += 1 self.lcd.display(self.seconds) class quesoWidget(QWidget): def __init__(self,winParent, pose3d): super(quesoWidget, self).__init__() self.winParent=winParent self.rectangle = QRectF(0.0, 0.0, 300.0, 300.0) self.pose3d = pose3d def drawRedZones(self, painter): self.setStyle(painter, QColor(255,70,70),QColor(255,70,70),1) startAngle = 0 * 16 spanAngle = 45 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) startAngle = 135 * 16 spanAngle = 45 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) startAngle = 180 * 16 spanAngle = 180 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) def drawOrangeZones(self, painter): self.setStyle(painter, QColor(255,220,23),QColor(255,220,23),1) startAngle = 45 * 16 spanAngle = 30 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) startAngle = 105 * 16 spanAngle = 30 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) def drawGreenZones(self, painter): self.setStyle(painter, QColor(117,240,154),QColor(117,240,154),1) startAngle = 75 * 16 spanAngle = 15 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) startAngle = 90 * 16 spanAngle = 15 * 16 painter.drawPie(self.rectangle, startAngle, spanAngle) def drawArrow(self, painter, angle=90): radius = 130 yawRad = self.pose3d.getYaw() angle = -(yawRad + pi/2) # PI/2 para centrar la aguja origx = self.rectangle.width() / 2 origy = self.rectangle.height() / 2 finx = radius * math.cos(angle) + origx finy = radius * math.sin(angle) + origy self.setStyle(painter, Qt.black,Qt.black,3) painter.drawLine(QPoint(origx,origy), QPoint(finx,finy)) painter.drawEllipse(145,145, 10, 10) def resetPen(self, painter): pen = QPen(Qt.black, 1) brush = QBrush() painter.setPen(pen) painter.setBrush(brush) def setStyle(self, painter, fillColor, penColor, stroke): brush = QBrush() pen = QPen(penColor, stroke) brush.setColor(fillColor) brush.setStyle(Qt.SolidPattern) painter.setBrush(brush) painter.setPen(pen) painter.setRenderHint(QPainter.Antialiasing) def paintEvent(self, event): painter = QPainter(self) self.drawRedZones(painter) self.drawOrangeZones(painter) self.drawGreenZones(painter) self.drawArrow(painter,120) def updateG(self): self.update() if __name__ == "__main__": app = QApplication(sys.argv) ic = EasyIce.initialize(sys.argv) pose3d = Pose3DClient(ic, "Autopark.Pose3D", True) laser1 = LaserClient(ic, "Autopark.Laser1", True) laser2 = LaserClient(ic, "Autopark.Laser2", True) laser3 = LaserClient(ic, "Autopark.Laser3", True) myGUI = MainWindow(pose3d, laser1, laser2, laser3) myGUI.show() t2 = ThreadGUI(myGUI) t2.daemon=True t2.start() sys.exit(app.exec_())
RoboticsLabURJC/2016-tfg-irene-lope
AutoPark_Practice/referee.py
referee.py
py
19,643
python
en
code
1
github-code
6
39610762661
from nltk.corpus import brown import nltk cfd = nltk.ConditionalFreqDist( (genre,word) for genre in brown.categories() for word in brown.words(categories=genre)) genre_word = [(genre, word) for genre in ['news'] for word in brown.words(categories=genre)] print(len(genre_word)) print(genre_word[:5])
milliongashawbeza/PublicNLPA
counting_words.py
counting_words.py
py
319
python
en
code
0
github-code
6
38290564345
# Find the path with the maximum sum in a given binary tree. # Write a function that returns the maximum sum. # A path can be defined as a sequence of nodes between any two nodes and # doesn’t necessarily pass through the root. import math class TreeNode: def __init__(self, val, left=None, right=None): self.val = val self.left = left self.right = right class MaxTreeNode(): def find_maximum_path_sum(self, root): self.maxPathSum = -math.inf self.findPathSum(root) return self.maxPathSum def findPathSum(self, currentNode): if not currentNode: return 0 leftPathSum = self.findPathSum(currentNode.left) rightPathSum = self.findPathSum(currentNode.right) leftPathSum = max(leftPathSum, 0) rightPathSum = max(rightPathSum, 0) pathSum = currentNode.val + leftPathSum + rightPathSum self.maxPathSum = max(self.maxPathSum, pathSum) return currentNode.val + max(leftPathSum, rightPathSum) def main(): maxTreeNode = MaxTreeNode() root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) print("Maximum Path Sum: " + str(maxTreeNode.find_maximum_path_sum(root))) root.left.left = TreeNode(1) root.left.right = TreeNode(3) root.right.left = TreeNode(5) root.right.right = TreeNode(6) root.right.left.left = TreeNode(7) root.right.left.right = TreeNode(8) root.right.right.left = TreeNode(9) print("Maximum Path Sum: " + str(maxTreeNode.find_maximum_path_sum(root))) root = TreeNode(-1) root.left = TreeNode(-3) print("Maximum Path Sum: " + str(maxTreeNode.find_maximum_path_sum(root))) main() # time complexity: O(N) # space complexity: O(N)
nanup/DSA
8. Depth First Search Revisit I/124. Binary Tree Maximum Path Sum.py
124. Binary Tree Maximum Path Sum.py
py
1,614
python
en
code
0
github-code
6
31877451015
import os import math import copy import codecs import numpy as np import srt import subprocess import datetime from utils import mkdir, basename_without_ext from voice_detector import VoiceDetector from tqdm import tqdm def shift_by_delay(bin_arr2, delay_by_frames): if delay_by_frames < 0: return bin_arr2[abs(delay_by_frames):] return np.concatenate([np.zeros(delay_by_frames).astype(np.uint8), bin_arr2]) def make_list_length_equal(lst1, lst2): len_lst1 = lst1.shape[0] len_lst2 = lst2.shape[0] max_len = max(len_lst1, len_lst2) return np.concatenate([lst1, np.zeros(max_len - len_lst1).astype(np.uint8)]), np.concatenate([lst2, np.zeros(max_len - len_lst2).astype(np.uint8)]) def error(bin_arr1, bin_arr2): # MAE return np.sum(bin_arr1.astype(np.uint8) ^ bin_arr2.astype(np.uint8)) / float(len(bin_arr1)) def get_err(tmp_bin_arr1, tmp_bin_arr2, delay_by_frames): #tmp_bin_arr1 = arr1[:] #tmp_bin_arr2 = arr2[:] # shift by delay tmp_bin_arr2 = shift_by_delay(tmp_bin_arr2, delay_by_frames) # align arrays tmp_bin_arr1, tmp_bin_arr2 = make_list_length_equal(tmp_bin_arr1, tmp_bin_arr2) # calculate error tmp_err = error(tmp_bin_arr1, tmp_bin_arr2) return delay_by_frames, tmp_err class GetSub: def __init__(self, aggressiveness, frame_duration_ms, padding_duration_ms): self.vad = VoiceDetector( aggressiveness, frame_duration_ms, padding_duration_ms) def timedelta_to_frame(self, td): ms = float(td.seconds) * 1000.0 + float(td.microseconds) * 0.001 return int(ms / self.vad.frame_duration_ms) def binary_array_from_srt(self, srt_path): common_encodings = ['latin1', 'utf-8', 'utf-16', 'cp1252'] subs = [] for encoding in common_encodings: try: srt_file = codecs.open(srt_path, 'r', encoding=encoding) srt_string = srt_file.read() srt_file.close() subs = np.array(list(srt.parse(srt_string))) break except BaseException as error: pass # print('An exception occurred: {}'.format(error)) start_end_pairs = [(self.timedelta_to_frame(sub.start), self.timedelta_to_frame(sub.end)) for sub in subs] # convert seconds and microseconds to milliseconds first_sub_frame = start_end_pairs[0][0] last_sub_frame = start_end_pairs[-1][1] bin_array = np.zeros(last_sub_frame).astype(np.uint8) print('Creating Binary Array from SRT..') for start_frame, end_frame in tqdm(start_end_pairs): bin_array[start_frame:end_frame] = 1 # TODO five_second_delay = int(5 * 1000 / self.vad.frame_duration_ms) # set max delay to 5% of video max_delay = max(five_second_delay, int(len(bin_array) * 0.05)) return bin_array, -first_sub_frame, max_delay, subs def chunks(self, lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def find_best_delay_milliseconds(self, bin_arr1, bin_arr2, delay_range_start, delay_range_end, error_csv_out): err = math.inf best_delay = 0 delay_range_len = delay_range_end - delay_range_start rows = np.zeros((delay_range_len, 2)) early_stop = False print('Finding Best Delay..') #with Parallel(n_jobs=cpus, prefer="threads") as parallel: for i, delay_by_frames in tqdm(enumerate(range(delay_range_start, delay_range_end)), total=delay_range_len): delay_by_frames, tmp_err = get_err( bin_arr1, bin_arr2, delay_by_frames, ) if tmp_err < err: err = tmp_err best_delay = delay_by_frames rows[i][0] = delay_by_frames * self.vad.frame_duration_ms * 0.001 rows[i][1] = tmp_err percent_change = (tmp_err - err) / err if percent_change > 0.1: early_stop = True rows = rows[:(i + 1)] break if early_stop: print('stopping early at', str(int(i / delay_range_len * 100.0)) + '%') #df = pd.DataFrame(rows, columns=["delay_in_seconds", "MAE"]) #df.set_index("delay_in_seconds", inplace=True) #df.to_csv(error_csv_out) return best_delay * self.vad.frame_duration_ms def align(self, vid_file_path, srt_path, out_dir, original_name): bin_arr1 = np.array(list(self.vad.detect(vid_file_path))).astype(np.uint8) bin_arr2, delay_range_start, delay_range_end, subs = self.binary_array_from_srt(srt_path) best_delay_ms = self.find_best_delay_milliseconds( bin_arr1, bin_arr2, delay_range_start, delay_range_end, os.path.join(out_dir, original_name + "_error.csv"), ) best_delay_sec = best_delay_ms * 0.001 print(f"best delay: {best_delay_sec}s") out_path = os.path.join(out_dir, original_name + "_synced.srt") td_to_shift = datetime.timedelta(seconds=best_delay_sec) print('Shifting Subtitles..') for subtitle in tqdm(subs): subtitle.start += td_to_shift subtitle.end += td_to_shift with open(out_path, 'w') as file: file.write(srt.compose(subs)) print('output aligned subs to:', out_path) def download(self, vid_file_path, language): out_dir = os.path.dirname(vid_file_path) temp_dir = "/temp/" mkdir(out_dir) mkdir(temp_dir) command1 = "python OpenSubtitlesDownload.py --cli --auto {} --output {} --lang {}" command1_list = command1.format(vid_file_path, temp_dir, language).split(" ") subprocess.call(command1_list) original_name = basename_without_ext(vid_file_path) srt_path = os.path.join(temp_dir, original_name + ".srt") # save original file as 'filename_unsynced.srt' out_path_unsynced = os.path.join(out_dir, original_name + "_unsynced.srt") command2 = "cp {} {}" command2_list = command2.format(srt_path, out_path_unsynced).split(" ") subprocess.call(command2_list) print('downloaded subs:', srt_path) self.align(vid_file_path, srt_path, out_dir, original_name)
derrick56007/getsub
src/get_sub.py
get_sub.py
py
6,510
python
en
code
5
github-code
6
4397925600
from multiprocessing import Process,Array from time import time import sqlite3 from .config import KASTEN_ANZ,VOK_DIR class vokabelKartei(Process): def __init__(self): self.conn = sqlite3.connect(VOK_DIR+"kartei.sqlite") self.conn.text_factory = str self.c = self.conn.cursor() self.c.execute("""CREATE TABLE IF NOT EXISTS sprachen (id INTEGER PRIMARY KEY, name TEXT, spr1 TEXT, spr2 TEXT)""") self.c.execute("""CREATE TABLE IF NOT EXISTS kapitel (id INTEGER PRIMARY KEY, name TEXT, spr_id INT)""") self.c.execute("""CREATE TABLE IF NOT EXISTS vokabeln (id INTEGER PRIMARY KEY, spr1 TEXT, spr2 TEXT, kap_id INT, kasten INT, spr_id INT, last_date INT)""") self.COMMIT_MODE = True self.DEBUG_MODE = False def close(self): self.c.close() def commit(self): if self.COMMIT_MODE == True and self.DEBUG_MODE == False: self.conn.commit() def execute(self,query_str,args=()): if self.DEBUG_MODE == True: print(query_str, args) self.c.execute(query_str,args) def set_commit_mode(self,mode): if mode == True and self.COMMIT_MODE == False: self.COMMIT_MODE = True self.commit() elif mode == False and self.COMMIT_MODE == True: self.COMMIT_MODE = False def get_kapitel(self,sprache,kap_id=-1): if kap_id != -1: self.execute("SELECT * FROM kapitel WHERE spr_id=? AND id=?", (sprache,kap_id)) else: self.execute("SELECT * FROM kapitel WHERE spr_id=?", (sprache,)) return self.c.fetchall() def get_vok(self,vok_id): self.execute("SELECT * FROM vokabeln WHERE id=?", (vok_id,)) return list(self.c.fetchall()[0]) def get_sprachen(self,spr_id=None): if spr_id != None: self.execute("SELECT * FROM sprachen WHERE id=?", (spr_id,)) else: self.execute("SELECT * FROM sprachen ORDER BY name ASC") return [list(x) for x in self.c.fetchall()] def get_stapel(self,sprache,kapitel=-1,kasten=0): if kapitel != -1 and kasten != 0: self.execute("""SELECT * FROM vokabeln WHERE spr_id=? AND kap_id=? AND kasten=?""", (sprache,kapitel,kasten)) elif kapitel != -1: self.execute("""SELECT * FROM vokabeln WHERE spr_id=? AND kap_id=?""", (sprache,kapitel)) elif kasten != 0: self.execute("""SELECT * FROM vokabeln WHERE spr_id=? AND kasten=?""", (sprache,kasten)) else: self.execute("SELECT * FROM vokabeln WHERE spr_id=?", (sprache,)) return self.c.fetchall() def rem_vok(self,vokids): if list != type(vokids): vokids = [vokids] for vok in vokids: self.execute("""DELETE FROM vokabeln WHERE id=?""", (vok,)) self.commit() def rem_kap(self,kap_id): self.execute("""DELETE FROM kapitel WHERE id=?""", (kap_id,)) self.execute("""DELETE FROM vokabeln WHERE kap_id=?""", (kap_id,)) self.commit() def rem_sprache(self,spr_id): self.execute("""DELETE FROM sprachen WHERE id=?""", (spr_id,)) self.execute("""DELETE FROM vokabeln WHERE spr_id=?""", (spr_id,)) self.execute("""DELETE FROM kapitel WHERE spr_id=?""", (spr_id,)) self.commit() def add_vok(self,*vok): kapitel = vok[3] if vok[3] == -1: kapitel = 0 self.execute("""INSERT INTO vokabeln(spr1,spr2,kap_id,kasten,spr_id) VALUES (?,?,?,?,?)""", (vok[0],vok[1],kapitel,1,vok[2])) self.commit() return self.c.lastrowid def add_sprache(self,name,spr1,spr2): self.execute("""INSERT INTO sprachen(name,spr1,spr2) VALUES (?,?,?)""", (name,spr1,spr2)) self.commit() return self.c.lastrowid def add_kapitel(self,name,spr_id): self.execute("""INSERT INTO kapitel(name,spr_id) VALUES (?,?)""", (name,spr_id)) self.commit() return self.c.lastrowid def edit_sprache(self,spr_id,name,spr1,spr2): self.execute("""UPDATE sprachen SET name=?,spr1=?,spr2=? WHERE id=?""", (name,spr1,spr2,spr_id)) self.commit() def edit_kapitel(self,kap_id,name): self.execute("""UPDATE kapitel SET name=? WHERE id=?""", (name,kap_id)) self.commit() def edit_vok(self,vok_id,spr1,spr2): self.execute("""UPDATE vokabeln SET spr1=?,spr2=? WHERE id=?""", (spr1,spr2,vok_id)) self.commit() def count_vok(self,sprache,kapitel=0,kasten=0): if kapitel != 0 and kasten != 0: self.execute("""SELECT COUNT(*) FROM vokabeln WHERE spr_id=? AND kap_id=? AND kasten=?""", (sprache,kapitel,kasten)) elif kasten != 0: self.execute("""SELECT COUNT(*) FROM vokabeln WHERE spr_id=? AND kasten=?""", (sprache,kasten)) elif kapitel != 0: self.execute("""SELECT COUNT(*) FROM vokabeln WHERE spr_id=? AND kap_id=?""", (sprache,kapitel)) else: self.execute("""SELECT COUNT(*) FROM vokabeln WHERE spr_id=?""", (sprache,)) return self.c.fetchall()[0][0] def change_kasten(self,vok_id,kasten): if kasten <= KASTEN_ANZ: self.execute("""UPDATE vokabeln SET kasten=? WHERE id=?""", (kasten,vok_id)) self.commit() def touch_vok(self,vok_id,null=False): timestamp = int(time()) if null: timestamp = 0 self.execute("""UPDATE vokabeln SET last_date=? WHERE id=?""", (timestamp,vok_id)) self.commit() def change_kap(self,vok_id,kapitel): self.execute("""UPDATE vokabeln SET kap_id=? WHERE id=?""", (kapitel,vok_id)) self.commit() def get_duplicate(self,spr1,spr_id,kap_id=-1): if kap_id != -1: self.execute("""SELECT * FROM vokabeln WHERE spr1=? AND spr_id=? AND kap_id=?""", (spr1,spr_id,kap_id)) else: self.execute("""SELECT * FROM vokabeln WHERE spr1=? AND spr_id=?""", (spr1,spr_id)) ergebnis = self.c.fetchall() if len(ergebnis) == 0: return None else: return list(ergebnis[0])
tuxor1337/voktrainer
vok/core/kartei.py
kartei.py
py
7,065
python
en
code
1
github-code
6
41195169929
import tensorflow.compat.v1 as tf import pandas as pd import numpy as np import time tf.disable_v2_behavior() def filterData(): df = pd.read_csv('diabetic_data.csv') print("how large the data sould be?") data_size = input() data = df.drop(['encounter_id', 'patient_nbr', 'weight', 'payer_code', 'medical_specialty', 'number_outpatient', 'number_inpatient'], axis=1) data = data.replace( ["[0-10)", "[10-20)", "[20-30)", "[30-40)", "[40-50)", "[50-60)", "[60-70)", "[70-80)", "[80-90)", "[90-100)"], [5, 15, 25, 35, 45, 55, 65, 75, 85, 95]) data = data.replace(["Up", "Down", "Ch", "Steady", "Yes", "No"], [3, 0, 1, 2, 1, 0]) data = data.replace(["None", "Normal", "Norm", ">200", ">300"], [0, 1, 1, 2, 3]) data = data.replace([">7", ">8"], [2, 3]) data = data.replace(["NO", "<30", ">30"], [0, 1, 2]) data = pd.get_dummies(data, columns=['race', 'gender', 'admission_source_id', 'discharge_disposition_id', 'admission_source_id', 'diag_1', 'diag_2', 'diag_3']) if data_size=="all": data_size=len(data) data_size = int(data_size) print(data_size) data = data[:data_size] print("done") data_train = data[:round(len(data)*7/10)] data_verif = data[round(len(data)*7/10):] print("training set length : "+str(len(data_train))) print("verification set length : "+str(len(data_verif))) label_train1 = data_train[['readmitted']] label_verif1 = data_verif[['readmitted']] data_train = data_train.drop(['readmitted'], axis=1) data_verif = data_verif.drop(['readmitted'], axis=1) data_train = data_train.to_numpy() data_verif = data_verif.to_numpy() label_train1 = label_train1.to_numpy() label_verif1 = label_verif1.to_numpy() label_train = np.zeros((len(label_train1), 3)) label_verif = np.zeros((len(label_verif1), 3)) for i in range(len(label_train1)): if label_train1[i][0] == 0: label_train[i] = np.array([1, 0, 0]) elif label_train1[i][0] == 1: label_train[i] = np.array([0, 1, 0]) elif label_train1[i][0] == 2: label_train[i] = np.array([0, 0, 1]) for i in range(len(label_verif1)): if label_verif1[i][0] == 0: label_verif[i] = np.array([1, 0, 0]) elif label_verif1[i][0] == 1: label_verif[i] = np.array([0, 1, 0]) elif label_verif1[i][0] == 2: label_verif[i] = np.array([0, 0, 1]) return data_train , label_train ,data_verif ,label_verif def train_model(): data_x = data_train data_y = label_train print("start training the model") start_time = time.time() for i in range(0, 1000): sess.run(update, feed_dict={x: data_x, y_: data_y}) # BGD print("finish training the model") print("--- %s seconds ---" % round(time.time() - start_time)) print("w:", sess.run(W), " b:", sess.run(b), " loss:", loss.eval(session=sess, feed_dict={x: data_x, y_: data_y})) def verification(): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("accuracy : " + str(sess.run(accuracy, feed_dict={x: data_verif, y_: label_verif}))) data_train,label_train ,data_verif , label_verif = filterData() features = len(data_train[0]) categories =3 x = tf.placeholder(tf.float32, [None, features]) y_ = tf.placeholder(tf.float32, [None, categories]) W = tf.Variable(tf.zeros([features,categories])) b = tf.Variable(tf.zeros([categories])) y = tf.nn.softmax(tf.matmul(x, W) + b) loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y) cross_entropy = tf.reduce_mean(loss) update = tf.train.AdamOptimizer().minimize(cross_entropy) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) train_model() verification()
sschwarcz/Diabetic-Re-admission-prediction
Codes/SoftmaxTensorflow.py
SoftmaxTensorflow.py
py
4,003
python
en
code
0
github-code
6
34493734325
from typing import Dict, List, Optional, Tuple, Union from flask import ( abort, g, jsonify, render_template, request, make_response, Response ) from werkzeug.exceptions import ( BadRequest, Forbidden, HTTPException, InternalServerError, NotFound ) from plot_weather import (BAD_REQUEST_IMAGE_DATA, INTERNAL_SERVER_ERROR_IMAGE_DATA, DebugOutRequest, app, app_logger, app_logger_debug) from plot_weather.dao.weathercommon import WEATHER_CONF from plot_weather.dao.weatherdao import WeatherDao from plot_weather.dao.devicedao import DeviceDao, DeviceRecord from plot_weather.db.sqlite3conv import DateFormatError, strdate2timestamp from plot_weather.plotter.plotterweather import ( ImageDateType, gen_plot_image, ImageDateParams, ParamKey ) from werkzeug.datastructures import Headers, MultiDict import psycopg2 from psycopg2.pool import SimpleConnectionPool from psycopg2.extensions import connection import plot_weather.util.dateutil as date_util APP_ROOT: str = app.config["APPLICATION_ROOT"] # エラーメッセージの内容 ※messages.confで定義 MSG_REQUIRED: str = app.config["MSG_REQUIRED"] MSG_INVALID: str = app.config["MSG_INVALID"] MSG_NOT_FOUND: str = app.config["MSG_NOT_FOUND"] # ヘッダー # トークン ※携帯端末では必須, 一致 ※ない場合は不一致とみなす # messages.conf で定義済み # 端末サイズ情報 ※携帯端末では必須, 形式は 幅x高さx密度 MSG_PHONE_IMG: str = "phone image size" REQUIRED_PHONE_IMG: str = f"401,{MSG_PHONE_IMG} {MSG_REQUIRED}" INVALID_PHONE_IMG: str = f"402,{MSG_PHONE_IMG} {MSG_INVALID}" # リクエストパラメータ PARAM_DEVICE: str = "device_name" PARAM_START_DAY: str = "start_day" PARAM_BOFORE_DAYS: str = "before_days" PARAM_YEAR_MONTH: str = "year_month" # リクエストパラメータエラー時のコード: 421番台以降 # デバイス名: 必須, 長さチェック (1-20byte), 未登録 DEVICE_LENGTH: int = 20 # デバイスリスト取得クリエスと以外の全てのリクエスト REQUIRED_DEVICE: str = f"421,{PARAM_DEVICE} {MSG_REQUIRED}" INVALIDD_DEVICE: str = f"422,{PARAM_DEVICE} {MSG_INVALID}" DEVICE_NOT_FOUND: str = f"423,{PARAM_DEVICE} {MSG_NOT_FOUND}" # 期間指定画像取得リクエスト # (1)検索開始日["start_day"]: 任意 ※未指定ならシステム日付を検索開始日とする # 日付形式(ISO8601: YYYY-mm-dd), 10文字一致 INVALID_START_DAY: str = f"431,{PARAM_START_DAY} {MSG_INVALID}" # (2)検索開始日から N日前 (1,2,3,7日): 必須 REQUIRED_BOFORE_DAY: str = f"433,{PARAM_BOFORE_DAYS} {MSG_REQUIRED}" INVALID_BOFORE_DAY: str = f"434,{PARAM_BOFORE_DAYS} {MSG_INVALID}" # 月間指定画像取得リクエスト # 年月: 必須, 形式(YYYY-mm), 7文字一致 REQUIRED_YEAR_MONTH: str = f"435,{PARAM_YEAR_MONTH} {MSG_REQUIRED}" INVALID_YEAR_MONTH: str = f"436,{PARAM_YEAR_MONTH} {MSG_INVALID}" # エラーメッセージを格納する辞書オブジェクト定義 MSG_DESCRIPTION: str = "error_message" # 固定メッセージエラー辞書オブジェクト ABORT_DICT_UNMATCH_TOKEN: Dict[str, str] = {MSG_DESCRIPTION: app.config["UNMATCH_TOKEN"]} # 可変メッセージエラー辞書オブジェクト: ""部分を置き換える ABORT_DICT_BLANK_MESSAGE: Dict[str, str] = {MSG_DESCRIPTION: ""} def get_connection() -> connection: if 'db' not in g: conn_pool: SimpleConnectionPool = app.config["postgreSQL_pool"] g.db: connection = conn_pool.getconn() g.db.set_session(readonly=True, autocommit=True) if app_logger_debug: app_logger.debug(f"g.db:{g.db}") return g.db @app.teardown_appcontext def close_connection(exception=None) -> None: db: connection = g.pop('db', None) if app_logger_debug: app_logger.debug(f"db:{db}") if db is not None: app.config["postgreSQL_pool"].putconn(db) @app.route(APP_ROOT, methods=["GET"]) def index() -> str: """本日データ表示画面 (初回リクエストのみ) :return: 本日データ表示HTMLページ (matplotlibでプロットした画像含む) """ if app_logger_debug: app_logger.debug(request.path) try: conn: connection = get_connection() # 年月日リスト取得 dao = WeatherDao(conn, logger=app_logger) yearMonthList: List[str] = dao.getGroupbyMonths( device_name=WEATHER_CONF["DEVICE_NAME"], start_date=WEATHER_CONF["STA_YEARMONTH"], ) if app_logger_debug: app_logger.debug(f"yearMonthList:{yearMonthList}") # 本日データプロット画像取得 image_date_params = ImageDateParams(ImageDateType.TODAY) img_base64_encoded: str = gen_plot_image( conn, image_date_params=image_date_params, logger=app_logger ) except Exception as exp: app_logger.error(exp) abort(InternalServerError.codde, InternalServerError(original_exception=exp)) strToday: str = app.config.get("STR_TODAY", "") titleSuffix: str = app.config.get("TITLE_SUFFIX", "") defaultMainTitle: str = strToday + titleSuffix return render_template( "showplotweather.html", ip_host=app.config["SERVER_NAME"], app_root_url=APP_ROOT, path_get_today="/gettoday", path_get_month="/getmonth/", str_today=strToday, title_suffix=titleSuffix, info_today_update_interval=app.config.get("INFO_TODAY_UPDATE_INTERVAL"), default_main_title=defaultMainTitle, year_month_list=yearMonthList, img_src=img_base64_encoded, ) @app.route("/plot_weather/gettoday", methods=["GET"]) def getTodayImage() -> Response: """本日データ取得リクエスト(2回以降) JavaScriptからのリクエスト想定 :return: jSON形式(matplotlibでプロットした画像データ(形式: png)のbase64エンコード済み文字列) (出力内容) jSON('data:image/png;base64,... base64encoded data ...') """ if app_logger_debug: app_logger.debug(request.path) try: conn: connection = get_connection() # 本日データプロット画像取得 image_date_params = ImageDateParams(ImageDateType.TODAY) img_base64_encoded: str = gen_plot_image( conn, image_date_params, logger=app_logger ) except psycopg2.Error as db_err: app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: app_logger.error(exp) return _createErrorImageResponse(InternalServerError.code) return _createImageResponse(img_base64_encoded) @app.route("/plot_weather/getmonth/<yearmonth>", methods=["GET"]) def getMonthImage(yearmonth) -> Response: """要求された年月の月間データ取得 :param yearmonth str: 年月 (例) 2022-01 :return: jSON形式(matplotlibでプロットした画像データ(形式: png)のbase64エンコード済み文字列) (出力内容) jSON('data:image/png;base64,... base64encoded data ...') """ if app_logger_debug: app_logger.debug(request.path) try: # リクエストパラメータの妥当性チェック: "YYYY-mm" + "-01" chk_yyyymmdd = yearmonth + "-01" # 日付チェック(YYYY-mm-dd): 日付不正の場合例外スロー strdate2timestamp(chk_yyyymmdd, raise_error=True) conn: connection = get_connection() # 指定年月(year_month)データプロット画像取得 image_date_params = ImageDateParams(ImageDateType.YEAR_MONTH) param: Dict[ParamKey, str] = image_date_params.getParam() param[ParamKey.YEAR_MONTH] = yearmonth image_date_params.setParam(param) img_base64_encoded: str = gen_plot_image( conn, image_date_params, logger=app_logger ) except DateFormatError as dfe: # BAD Request app_logger.warning(dfe) return _createErrorImageResponse(BadRequest.code) except psycopg2.Error as db_err: # DBエラー app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: # バグ, DBサーバーダウンなど想定 app_logger.error(exp) return _createErrorImageResponse(InternalServerError.code) return _createImageResponse(img_base64_encoded) @app.route("/plot_weather/getlastdataforphone", methods=["GET"]) def getLastDataForPhone() -> Response: """最新の気象データを取得する (スマートホン専用) [仕様変更] 2023-09-09 (1) リクエストパラメータ追加 device_name: デバイス名 ※必須 :param: request parameter: device_name="xxxxx" """ if app_logger_debug: app_logger.debug(request.path) # Debug output request.headers or request.arg or both _debugOutRequestObj(request, debugout=DebugOutRequest.HEADERS) # トークン必須 headers: Headers = request.headers if not _matchToken(headers): abort(Forbidden.code, ABORT_DICT_UNMATCH_TOKEN) # デバイス名必須 param_device_name: str = _checkDeviceName(request.args) try: conn: connection = get_connection() # 現在時刻時点の最新の気象データ取得 dao = WeatherDao(conn, logger=app_logger) rec_count: int row: Optional[Tuple[str, float, float, float, float]] # デバイス名に対応する最新のレコード取得 row = dao.getLastData(device_name=param_device_name) if row: rec_count = 1 measurement_time, temp_out, temp_in, humid, pressure = row return _responseLastDataForPhone( measurement_time, temp_out, temp_in, humid, pressure, rec_count) else: # デバイス名に対応するレコード無し rec_count = 0 return _responseLastDataForPhone(None, None, None, None, None, rec_count) except psycopg2.Error as db_err: app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: app_logger.error(exp) abort(InternalServerError.code, description=str(exp)) @app.route("/plot_weather/getfirstregisterdayforphone", methods=["GET"]) def getFirstRegisterDayForPhone() -> Response: """デバイスの観測データの初回登録日を取得する (スマートホン専用) [仕様追加] 2023-09-13 :param: request parameter: device_name="xxxxx" """ if app_logger_debug: app_logger.debug(request.path) # Debug output request.headers or request.arg or both _debugOutRequestObj(request, debugout=DebugOutRequest.HEADERS) # トークン必須 headers: Headers = request.headers if not _matchToken(headers): abort(Forbidden.code, ABORT_DICT_UNMATCH_TOKEN) # デバイス名必須 param_device_name: str = _checkDeviceName(request.args) try: conn: connection = get_connection() dao = WeatherDao(conn, logger=app_logger) # デバイス名に対応する初回登録日取得 first_register_day: Optional[str] = dao.getFisrtRegisterDay(param_device_name) if app_logger_debug: app_logger.debug(f"first_register_day[{type(first_register_day)}]: {first_register_day}") if first_register_day: return _responseFirstRegisterDayForPhone(first_register_day, 1) else: # デバイス名に対応するレコード無し return _responseFirstRegisterDayForPhone(None, 0) except psycopg2.Error as db_err: app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: app_logger.error(exp) abort(InternalServerError.code, description=str(exp)) @app.route("/plot_weather/gettodayimageforphone", methods=["GET"]) def getTodayImageForPhone() -> Response: """本日データ画像取得リクエスト (スマートホン専用) [仕様変更] 2023-09-09 (1) リクエストパラメータ追加 device_name: デバイス名 ※必須 (2) レスポンスにレコード件数を追加 ※0件エラーの抑止 :param: request parameter: device_name="xxxxx" :return: jSON形式(matplotlibでプロットした画像データ(形式: png)のbase64エンコード済み文字列) (出力内容) jSON('data:': 'img_src':'image/png;base64,... base64encoded data ...', 'rec_count':xxx) """ if app_logger_debug: app_logger.debug(request.path) _debugOutRequestObj(request, debugout=DebugOutRequest.HEADERS) # トークン必須 headers: Headers = request.headers if not _matchToken(headers): abort(Forbidden.code, ABORT_DICT_UNMATCH_TOKEN) # デバイス名必須 param_device_name: str = _checkDeviceName(request.args) # 表示領域サイズ+密度は必須: 形式(横x縦x密度) str_img_size: str = _checkPhoneImageSize(headers) try: conn: connection = get_connection() image_date_params = ImageDateParams(ImageDateType.TODAY) param: Dict[ParamKey, str] = image_date_params.getParam() param[ParamKey.PHONE_SIZE] = str_img_size image_date_params.setParam(param) rec_count: int img_base64_encoded: str rec_count, img_base64_encoded = gen_plot_image( conn, param_device_name, image_date_params, logger=app_logger ) return _responseImageForPhone(rec_count, img_base64_encoded) except psycopg2.Error as db_err: app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: app_logger.error(exp) abort(InternalServerError.code, description=str(exp)) @app.route("/plot_weather/getbeforedaysimageforphone", methods=["GET"]) def getBeforeDateImageForPhone() -> Response: """過去経過日指定データ画像取得リクエスト (スマートホン専用) [仕様変更] 2023-09-09 (1) リクエストパラメータ追加 device_name: デバイス名 ※必須 start_day: 検索開始日(iso8601形式) ※任意 (2) レスポンスにレコード件数を追加 ※0件エラーの抑止 :param: request parameter: ?device_name=xxxxx&start_day=2023-05-01&before_days=(2|3|7) :return: jSON形式(matplotlibでプロットした画像データ(形式: png)のbase64エンコード済み文字列) (出力内容) jSON('data:': 'img_src':'image/png;base64,... base64encoded data ...', 'rec_count':xxx) """ if app_logger_debug: app_logger.debug(request.path) _debugOutRequestObj(request, debugout=DebugOutRequest.BOTH) # トークン必須 headers = request.headers if not _matchToken(headers): abort(Forbidden.code, ABORT_DICT_UNMATCH_TOKEN) # デバイス名 ※必須チェック param_device_name: str = _checkDeviceName(request.args) # 検索開始日 ※任意、指定されている場合はISO8601形式チェック str_start_day: Optional[str] = _checkStartDay(request.args) if str_start_day is None: # 検索開始日がない場合は当日を設定 str_start_day = date_util.getTodayIsoDate() # Check before_days query parameter str_before_days: str = _checkBeforeDays(request.args) # 表示領域サイズ+密度は必須: 形式(横x縦x密度) str_img_size: str = _checkPhoneImageSize(headers) try: conn: connection = get_connection() image_date_params = ImageDateParams(ImageDateType.RANGE) param: Dict[ParamKey, str] = image_date_params.getParam() param[ParamKey.START_DAY] = str_start_day param[ParamKey.BEFORE_DAYS] = str_before_days param[ParamKey.PHONE_SIZE] = str_img_size image_date_params.setParam(param) rec_count: int img_base64_encoded: str rec_count, img_base64_encoded = gen_plot_image( conn, param_device_name, image_date_params, logger=app_logger ) return _responseImageForPhone(rec_count,img_base64_encoded) except psycopg2.Error as db_err: app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: app_logger.error(exp) abort(InternalServerError.code, description=str(exp)) @app.route("/plot_weather/get_devices", methods=["GET"]) def getDevices() -> Response: """センサーディバイスリスト取得リクエスト :return: JSON形式(idを除くセンサーディバイスリスト) (出力内容) JSON({"data":{"devices":[...]}') """ if app_logger_debug: app_logger.debug(request.path) devices_with_dict: List[Dict] try: conn: connection = get_connection() dao: DeviceDao = DeviceDao(conn, logger=app_logger) devices: List[DeviceRecord] = dao.get_devices() devices_with_dict = DeviceDao.to_dict_without_id(devices) resp_obj: Dict[str, Dict] = { "data": {"devices": devices_with_dict}, "status": {"code": 0, "message": "OK"} } return _make_respose(resp_obj, 200) except psycopg2.Error as db_err: app_logger.error(db_err) abort(InternalServerError.code, _set_errormessage(f"559,{db_err}")) except Exception as exp: app_logger.error(exp) abort(InternalServerError.code, description=str(exp)) def _debugOutRequestObj(request, debugout=DebugOutRequest.ARGS) -> None: if debugout == DebugOutRequest.ARGS or debugout == DebugOutRequest.BOTH: app_logger.debug(f"reqeust.args: {request.args}") if debugout == DebugOutRequest.HEADERS or debugout == DebugOutRequest.BOTH: app_logger.debug(f"request.headers: {request.headers}") def _matchToken(headers: Headers) -> bool: """トークン一致チェック :param headers: request header :return: if match token True, not False. """ token_value: str = app.config.get("HEADER_REQUEST_PHONE_TOKEN_VALUE", "!") req_token_value: Optional[str] = headers.get( key=app.config.get("HEADER_REQUEST_PHONE_TOKEN_KEY", "!"), type=str, default="" ) if req_token_value != token_value: app_logger.warning("Invalid request token!") return False return True def _checkPhoneImageSize(headers: Headers) -> str: """ ヘッダーに表示領域サイズ+密度([width]x[height]x[density])をつけてくる ※1.トークンチェックを通過しているのでセットされている前提で処理 ※2.途中でエラー (Androidアプリ側のBUG) ならExceptionで補足されJSONでメッセージが返却される :param headers: request header :return: (imageWidth, imageHeight, density) """ img_size: str = headers.get( app.config.get("HEADER_REQUEST_IMAGE_SIZE_KEY", ""), type=str, default="" ) if app_logger_debug: app_logger.debug(f"Phone imgSize: {img_size}") if len(img_size) == 0: abort(BadRequest.code, _set_errormessage(REQUIRED_PHONE_IMG)) sizes: List[str] = img_size.split("x") try: img_wd: int = int(sizes[0]) img_ht: int = int(sizes[1]) density: float = float(sizes[2]) if app_logger_debug: app_logger.debug(f"imgWd: {img_wd}, imgHt: {img_ht}, density: {density}") return img_size except Exception as exp: # ログには例外メッセージ app_logger.warning(f"[phone image size] {exp}") abort(BadRequest.code, _set_errormessage(INVALID_PHONE_IMG)) def _checkBeforeDays(args: MultiDict) -> str: # QueryParameter: before_days in (1,2,3,7) # before_days = args.get("before_days", default=-1, type=int) # args.get(key): keyが無い場合も キーが有る場合で数値以外でも -1 となり必須チェックができない # before_days = args.pop("before_days"): TypeError: 'ImmutableMultiDict' objects are immutable if len(args.keys()) == 0 or PARAM_BOFORE_DAYS not in args.keys(): abort(BadRequest.code, _set_errormessage(REQUIRED_BOFORE_DAY)) before_days = args.get(PARAM_BOFORE_DAYS, default=-1, type=int) if before_days not in [1,2,3,7]: abort(BadRequest.code, _set_errormessage(INVALID_BOFORE_DAY)) return str(before_days) def _checkDeviceName(args: MultiDict) -> str: """デバイス名チェック パラメータなし: abort(BadRequest) 該当レコードなし: abort(NotFound) return デバイス名 """ # 必須チェック if len(args.keys()) == 0 or PARAM_DEVICE not in args.keys(): abort(BadRequest.code, _set_errormessage(REQUIRED_DEVICE)) # 長さチェック: 1 - 20 param_device_name: str = args.get(PARAM_DEVICE, default="", type=str) chk_size: int = len(param_device_name) if chk_size < 1 or chk_size > DEVICE_LENGTH: abort(BadRequest.code, _set_errormessage(INVALIDD_DEVICE)) # 存在チェック if app_logger_debug: app_logger.debug("requestParam.device_name: " + param_device_name) exists: bool = False try: conn: connection = get_connection() dao: DeviceDao = DeviceDao(conn, logger=app_logger) exists = dao.exists(param_device_name) except Exception as exp: app_logger.error(exp) abort(InternalServerError.code, description=str(exp)) if exists is True: return param_device_name else: abort(BadRequest.code, _set_errormessage(DEVICE_NOT_FOUND)) def _checkStartDay(args: MultiDict) -> Optional[str]: """検索開始日の形式チェック パラメータなし: OK パラメータ有り: ISO8601形式チェック return 検索開始日 | None """ if len(args.keys()) == 0 or PARAM_START_DAY not in args.keys(): return None # 形式チェック param_start_day: str = args.get(PARAM_START_DAY, default="", type=str) if app_logger_debug: app_logger.debug(f"start_day: {param_start_day}") valid: bool = date_util.checkIso8601Date(param_start_day) if valid is True: return param_start_day else: # 不正パラメータ abort(BadRequest.code, _set_errormessage(INVALID_START_DAY)) def _createImageResponse(img_src: str) -> Response: """画像レスポンスを返却する (JavaScript用)""" resp_obj = {"status": "success", "data": {"img_src": img_src}} return _make_respose(resp_obj, 200) def _createErrorImageResponse(err_code) -> Response: """エラー画像レスポンスを返却する (JavaScript用)""" resp_obj = {"status": "error", "code": err_code} if err_code == BadRequest.code: resp_obj["data"] = {"img_src": BAD_REQUEST_IMAGE_DATA} elif err_code == InternalServerError.code: resp_obj["data"] = {"img_src": INTERNAL_SERVER_ERROR_IMAGE_DATA} return _make_respose(resp_obj, err_code) def _responseLastDataForPhone( mesurement_time: str, temp_out: float, temp_in: float, humid: float, pressure: float, rec_count: int ) -> Response: """気象データの最終レコードを返却する (スマホアプリ用)""" resp_obj: Dict[str, Dict[str, Union[str, float]]] = { "status": {"code": 0, "message": "OK"}, "data": { "measurement_time": mesurement_time, "temp_out": temp_out, "temp_in": temp_in, "humid": humid, "pressure": pressure, "rec_count": rec_count } } return _make_respose(resp_obj, 200) def _responseFirstRegisterDayForPhone( first_day: Optional[str], rec_count: int ) -> Response: """気象データの初回登録日を返却する (スマホアプリ用)""" resp_obj: Dict[str, Dict[str, Union[str, int]]] = { "status": {"code": 0, "message": "OK"}, "data": { "first_register_day": first_day, "rec_count": rec_count } } return _make_respose(resp_obj, 200) def _responseImageForPhone(rec_count: int, img_src: str) -> Response: """Matplotlib生成画像を返却する (スマホアプリ用) [仕様変更] 2023-09-09 レスポンスにレコード件数を追加 ※0件エラーの抑止 """ resp_obj: Dict[str, Dict[str, Union[int, str]]] = { "status": {"code": 0, "message": "OK"}, "data": { "img_src": img_src, "rec_count": rec_count } } return _make_respose(resp_obj, 200) def _set_errormessage(message: str) -> Dict: ABORT_DICT_BLANK_MESSAGE[MSG_DESCRIPTION] = message return ABORT_DICT_BLANK_MESSAGE # Request parameter check error. @app.errorhandler(BadRequest.code) # Token error. @app.errorhandler(Forbidden.code) # Device not found. @app.errorhandler(NotFound.code) @app.errorhandler(InternalServerError.code) def error_handler(error: HTTPException) -> Response: app_logger.warning(f"error_type:{type(error)}, {error}") # Bugfix: 2023-09-06 err_msg: str if isinstance(error.description, dict): # アプリが呼び出すabort()の場合は辞書オブジェクト err_msg = error.description["error_message"] else: # Flaskが出す場合は HTTPException) err_msg = error.description resp_obj: Dict[str, Dict[str, Union[int, str]]] = { "status": {"code": error.code, "message": err_msg} } return _make_respose(resp_obj, error.code) def _make_respose(resp_obj: Dict, resp_code) -> Response: response = make_response(jsonify(resp_obj), resp_code) response.headers["Content-Type"] = "application/json" return response
pipito-yukio/plot_weather_flaskapp
src/plot_weather/views/app_main.py
app_main.py
py
26,178
python
ja
code
0
github-code
6
71888723067
import numpy from sklearn.metrics import cohen_kappa_score, classification_report import torch from torch.autograd import Variable from tqdm import tqdm import torch.nn as nn from sklearn.metrics import cohen_kappa_score, classification_report from models import FitNet_4 from torch import optim import numpy as np def evaluation(test_dataloader, model, class_names, epoch, criterion): eval_loss_list = [] eval_acc = 0 pred_list = [] GT_list = [] pbar_test = tqdm(test_dataloader, total=len(test_dataloader)) with torch.no_grad(): for image, label in pbar_test: image = Variable(image).cuda() label = Variable(label).cuda() out = model(image) loss = criterion(out, label) eval_loss_list.append(loss.item()) _, pred = torch.max(out, 1) num_correct = (pred == label).sum() pred_list.extend(pred.cpu().numpy().tolist()) GT_list.extend(label.cpu().numpy().tolist()) eval_acc += num_correct.item() pbar_test.set_description("Testing:epoch{} loss:{}".format(epoch, loss.item())) epoch_test_acc = eval_acc / len(pbar_test) print( "Testing:epoch{} finished! Total loss:{}".format(epoch, np.mean(eval_loss_list))) print(classification_report(y_true=GT_list, y_pred=pred_list, target_names=class_names)) kappa = cohen_kappa_score(y1=pred_list, y2=GT_list) print("Kappa:{}".format(kappa))
Fivethousand5k/Pytorch-implemented-ECNN
eval.py
eval.py
py
1,542
python
en
code
3
github-code
6
36096748364
from threading import Thread import time import classifierAlexa import classifier_pyqt5 def main(): try: classifierAlexa_thread = Thread(target=classifierAlexa.app.run) classifierAlexa_thread.start() time.sleep(1) classifier_thread = Thread(target=classifier_pyqt5.startApp()) classifier_thread.start() except Exception: print("Unknown exception occurred!") raise if __name__ == '__main__': main()
KAIST-ITC/fall_detection
alexa_posture_classifier/main.py
main.py
py
472
python
en
code
1
github-code
6
6871646913
import numpy as np from PIL import Image def normalize(x): min = np.min(x) max = np.max(x) print(min,max) return ((x - min)/(max - min) * 255).astype(int) W=np.load('./data/W.npy') b=np.load('./data/b.npy') zero = np.zeros(W.shape) nag = normalize(np.minimum(W,0)) pos = normalize(np.maximum(W,0)) print("shape", nag[:,0].reshape((28,28)).shape) ns = nag[:,0].reshape((28,28)) print(np.expand_dims(ns, axis=2)) '''w, h = 512, 512 data = np.zeros((h, w, 3), dtype=np.uint8) data[256, 256] = [255, 0, 0] img = Image.fromarray(data, 'RGB') img.save('my.png') img.show()''' #print(nag[nag != 255], pos[pos != 1]) #print(nag[nag != 0],pos[pos != 0], pos_m, nag_m, np.sum(nag), np.sum(pos)) #print(W.shape) #print(W[W != 0])
tuntunwin/tf-tutorial
mnist1-plotmodel.py
mnist1-plotmodel.py
py
745
python
en
code
0
github-code
6
30709482723
import cv2 as cv import numpy as np from process import Resize, NormalizeImage class PicoDetProcess(): def __init__(self, trainsize=[320,320], mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225], score_threshold=0.4, nms_threshold=0.5 ): self.score_threshold = score_threshold self.nms_threshold = nms_threshold self.resize =Resize(trainsize) self.normalizeImage = NormalizeImage(mean = mean,std =std) def preprocess(self, images): input_im_lst = [] input_im_info_lst = [] for im in images: im, im_info = self.processim(im) input_im_lst.append(im) input_im_info_lst.append(im_info) inputs = self.create_inputs(input_im_lst, input_im_info_lst) return inputs def create_inputs(self, imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of images (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} im_shape = [] scale_factor = [] if len(imgs) == 1: inputs['image'] = np.array((imgs[0], )).astype('float32') inputs['im_shape'] = np.array( (im_info[0]['im_shape'], )).astype('float32') inputs['scale_factor'] = np.array( (im_info[0]['scale_factor'], )).astype('float32') return inputs for e in im_info: im_shape.append(np.array((e['im_shape'], )).astype('float32')) scale_factor.append(np.array((e['scale_factor'], )).astype('float32')) inputs['im_shape'] = np.concatenate(im_shape, axis=0) inputs['scale_factor'] = np.concatenate(scale_factor, axis=0) imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs] max_shape_h = max([e[0] for e in imgs_shape]) max_shape_w = max([e[1] for e in imgs_shape]) padding_imgs = [] for img in imgs: im_c, im_h, im_w = img.shape[:] padding_im = np.zeros( (im_c, max_shape_h, max_shape_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = img padding_imgs.append(padding_im) inputs['image'] = np.stack(padding_imgs, axis=0) return inputs def processim(self, im): # process image by preprocess_ops im_info = { 'scale_factor': np.array( [1., 1.], dtype=np.float32), 'im_shape': None, } im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) im = cv.cvtColor(im, cv.COLOR_BGR2RGB) im,im_info = self.resize(im,im_info) im,im_info = self.normalizeImage(im,im_info) # im = im.transpose((2, 0, 1)).copy() return im, im_info def postprocess(self, inputs, scale_factor): bboxs = inputs['bboxes'] scores = inputs['scores'] bbox,score = self.nms(bboxs[0],scores[0][0]) for box in bbox: box[0] = box[0] / scale_factor[1] box[1] = box[1] / scale_factor[0] box[2] = box[2] / scale_factor[1] box[3] = box[3] / scale_factor[0] outputs = dict(bboxes=np.array(bbox), scores=np.array(score)) return outputs def nms(self, bounding_boxes, confidence_score): ''' :param bounding_boxes: 候选框列表,[左上角坐标, 右下角坐标], [min_x, min_y, max_x, max_y], 原点在图像左上角 :param confidence_score: 候选框置信度 :param threshold: IOU阈值 :return: 抑制后的bbox和置信度 ''' picked = [] for i in range(confidence_score.shape[-1]): if confidence_score[i] > self.score_threshold: picked.append(i) bounding_boxes = bounding_boxes[picked,:] confidence_score = confidence_score[picked] # 如果没有bbox,则返回空列表 if len(bounding_boxes) == 0: return [], [] # bbox转为numpy格式方便计算 boxes = np.array(bounding_boxes) # 分别取出bbox的坐标 start_x = boxes[:, 0] start_y = boxes[:, 1] end_x = boxes[:, 2] end_y = boxes[:, 3] # 置信度转为numpy格式方便计算 score = np.array(confidence_score) # [0.9 0.75 0.8 0.85] # 筛选后的bbox和置信度 picked_boxes = [] picked_score = [] # 计算每一个框的面积 areas = (end_x - start_x + 1) * (end_y - start_y + 1) # 将score中的元素从小到大排列,提取其对应的index(索引),然后输出到order order = np.argsort(score) # [1 2 3 0] # Iterate bounding boxes while order.size > 0: # The index of largest confidence score # 取出最大置信度的索引 index = order[-1] # Pick the bounding box with largest confidence score # 将最大置信度和最大置信度对应的框添加进筛选列表里 picked_boxes.append(bounding_boxes[index]) picked_score.append(confidence_score[index]) # 求置信度最大的框与其他所有框相交的长宽,为下面计算相交面积做准备 # 令左上角为原点, # 两个框的左上角坐标x取大值,右下角坐标x取小值,小值-大值+1==相交区域的长度 # 两个框的左上角坐标y取大值,右下角坐标y取小值,小值-大值+1==相交区域的高度 # 这里可以在草稿纸上画个图,清晰明了 x1 = np.maximum(start_x[index], start_x[order[:-1]]) x2 = np.minimum(end_x[index], end_x[order[:-1]]) y1 = np.maximum(start_y[index], start_y[order[:-1]]) y2 = np.minimum(end_y[index], end_y[order[:-1]]) # 计算相交面积,当两个框不相交时,w和h必有一个为0,面积也为0 w = np.maximum(0.0, x2 - x1 + 1) h = np.maximum(0.0, y2 - y1 + 1) intersection = w * h # 计算IOU ratio = intersection / (areas[index] + areas[order[:-1]] - intersection) # 保留小于阈值的框的索引 left = np.where(ratio < self.nms_threshold) # 根据该索引修正order中的索引(order里放的是按置信度从小到大排列的索引) order = order[left] return picked_boxes, picked_score
guojin-yan/Automatic_aiming
aiming/person_process.py
person_process.py
py
6,767
python
en
code
3
github-code
6
70383323069
import copy from typing import List, Optional def deep_merge_dicts(original: dict, new_dict: dict) -> dict: """ Overview: Merge two dicts by calling ``deep_update`` Arguments: - original (:obj:`dict`): Dict 1. - new_dict (:obj:`dict`): Dict 2. Returns: - merged_dict (:obj:`dict`): A new dict that is d1 and d2 deeply merged. """ original = original or {} new_dict = new_dict or {} merged = copy.deepcopy(original) if new_dict: # if new_dict is neither empty dict nor None deep_update(merged, new_dict, True, []) return merged def deep_update( original: dict, new_dict: dict, new_keys_allowed: bool = False, whitelist: Optional[List[str]] = None, override_all_if_type_changes: Optional[List[str]] = None ): """ Overview: Update original dict with values from new_dict recursively. Arguments: - original (:obj:`dict`): Dictionary with default values. - new_dict (:obj:`dict`): Dictionary with values to be updated - new_keys_allowed (:obj:`bool`): Whether new keys are allowed. - whitelist (:obj:`Optional[List[str]]`): List of keys that correspond to dict values where new subkeys can be introduced. This is only at the top level. - override_all_if_type_changes(:obj:`Optional[List[str]]`): List of top level keys with value=dict, for which we always simply override the entire value (:obj:`dict`), if the "type" key in that value dict changes. .. note:: If new key is introduced in new_dict, then if new_keys_allowed is not True, an error will be thrown. Further, for sub-dicts, if the key is in the whitelist, then new subkeys can be introduced. """ whitelist = whitelist or [] override_all_if_type_changes = override_all_if_type_changes or [] for k, value in new_dict.items(): if k not in original and not new_keys_allowed: raise RuntimeError("Unknown config parameter `{}`. Base config have: {}.".format(k, original.keys())) # Both original value and new one are dicts. if isinstance(original.get(k), dict) and isinstance(value, dict): # Check old type vs old one. If different, override entire value. if k in override_all_if_type_changes and \ "type" in value and "type" in original[k] and \ value["type"] != original[k]["type"]: original[k] = value # Whitelisted key -> ok to add new subkeys. elif k in whitelist: deep_update(original[k], value, True) # Non-whitelisted key. else: deep_update(original[k], value, new_keys_allowed) # Original value not a dict OR new value not a dict: # Override entire value. else: original[k] = value return original
opendilab/GoBigger
gobigger/utils/config_utils.py
config_utils.py
py
2,978
python
en
code
483
github-code
6
34961662452
import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') class DynamicEvolutionStats: def __init__(self, seeds, specialist_type): self.seeds = seeds self.specialist_type = specialist_type self.init_data() def init_data(self): self.data = {} for seed in self.seeds: self.data[seed] = pd.DataFrame(columns=['generation', 'score', 'cycle']) def get_data(self, suffix='score'): for seed in self.seeds: df = pd.read_csv(f'../../data/specialist/dynamic_evolution/{self.specialist_type}/{seed}_{suffix}.csv') self.data[seed] = pd.concat([self.data[seed], df]).query("generation >= 1600") def get_seed(self, seed): return self.data.get(seed) def describe_seeds(self): describe = [] for seed in self.seeds: df = self.get_seed(seed) describe.append([ df.score.mean(), len(df.query('cycle == "score"')), len(df.query('cycle == "fit"')), ]) return pd.DataFrame( describe, columns=['score', 'score_time', 'fit_time'] ) def plot_seeds_scatter(self): for seed in self.seeds: df = self.get_seed(seed) plt.scatter(df.generation, df.score, s=1) plt.legend(self.seeds) plt.title(f'All Seeds Specialist Score') plt.xlabel('generation') plt.ylabel('score') plt.show() def describe_score(self): df = self.describe_seeds() plt.boxplot(df.score, labels=['mean']) plt.title(f'All Seeds Specialist Score Mean') plt.ylabel('score') plt.show() def describe_cycles(self): df = self.describe_seeds() plt.boxplot(df[['score_time', 'fit_time']], labels=['score_time', 'fit_time']) plt.title(f'All Seeds Specialist Cycles') plt.xlabel('process') plt.ylabel('cycles') plt.show()
arthur-plautz/curriculum-learning
models/specialist/stats/dynamic_evolution_stats.py
dynamic_evolution_stats.py
py
2,023
python
en
code
0
github-code
6
75342220666
from django.shortcuts import render from .forms import getData, getTraningInfo import requests from bs4 import BeautifulSoup from datetime import date, datetime import folium import geocoder # Create your views here. runs = {} def calculate_difference(key): run_date_str = runs[key]["date"][:10] + " 0:0:0" today = datetime.now() run_day = datetime.strptime(run_date_str, "%Y-%m-%d %H:%M:%S") difference = (run_day - today).days minus = 0 if today.weekday() != 0: minus += 7 - today.weekday() return difference - minus def calculate_distance(key): distance = '' i = 0 while runs[key]["distance"][i] != "k": distance += runs[key]["distance"][i] i += 1 return int(distance) def calculate_speed(hour, minutes, distance): minutes += hour*60 speed = minutes / distance return speed def speed_to_str(speed): minutes = speed // 1 sek = speed - minutes sek *= 60 if sek < 10: sek = "0" + str(round(sek)) else: sek = str(round(sek)) minutes = str(round(minutes)) return minutes + ":" + sek def basic_introduction(weeks): plan4 = { '1': {'pon': 'odpoczynek', 'wt': 'bieg 10 min', 'sr': 'opdoczynek', 'czw': 'bieg 10 min', 'pt': 'odpoczynek', 'weekend': 'bieg 15 min'}, '2': {'pon': 'odpoczynek', 'wt': 'bieg 15 min', 'sr': 'opdoczynek', 'czw': 'bieg 15 min', 'pt': 'odpoczynek', 'weekend': 'bieg 20 min'}, '3': {'pon': 'odpoczynek', 'wt': 'bieg 20 min', 'sr': 'opdoczynek', 'czw': 'bieg 25 min', 'pt': 'odpoczynek', 'weekend': 'bieg 25 min'}, '4': {'pon': 'odpoczynek', 'wt': 'bieg 25 min', 'sr': 'opdoczynek', 'czw': 'bieg 30 min', 'pt': 'odpoczynek', 'weekend': 'bieg 30 min'}} plan5 = { '1': {'pon': 'odpoczynek', 'wt': 'bieg 10 min', 'sr': 'opdoczynek', 'czw': 'bieg 10 min', 'pt': 'odpoczynek', 'weekend': 'bieg 10 min'}, '2': {'pon': 'odpoczynek', 'wt': 'bieg 15 min', 'sr': 'opdoczynek', 'czw': 'bieg 15 min', 'pt': 'odpoczynek', 'weekend': 'bieg 15 min'}, '3': {'pon': 'odpoczynek', 'wt': 'bieg 20 min', 'sr': 'opdoczynek', 'czw': 'bieg 20 min', 'pt': 'odpoczynek', 'weekend': 'bieg 20 min'}, '4': {'pon': 'odpoczynek', 'wt': 'bieg 25 min', 'sr': 'opdoczynek', 'czw': 'bieg 25 min', 'pt': 'odpoczynek', 'weekend': 'bieg 25 min'}, '5': {'pon': 'odpoczynek', 'wt': 'bieg 30 min', 'sr': 'opdoczynek', 'czw': 'bieg 30 min', 'pt': 'odpoczynek', 'weekend': 'bieg 30 min'}} plan2 = { '1': {'pon': 'odpoczynek', 'wt': 'bieg 10 min', 'sr': 'opdoczynek', 'czw': 'bieg 15 min', 'pt': 'odpoczynek', 'weekend': 'bieg 15 min'}, '2': {'pon': 'odpoczynek', 'wt': 'bieg 15 min', 'sr': 'opdoczynek', 'czw': 'bieg 20 min', 'pt': 'odpoczynek', 'weekend': 'bieg 30 min'}, } if weeks == 4: return plan4, weeks - 4, 5 elif weeks == 5: return plan5, weeks - 5, 6 else: print("tu jestem") return plan2, 2, 3 def introduction(weeks, actual_week, distance, week, mode, plan, weeks_for_introduction=0): mins = 0 if mode == "Basic": # pocztatkowy dystans dla basic mins = 2 if distance < 11: if weeks_for_introduction == 0: # ilosc tygodni na dostosowanie dystansu weeks_for_introduction = 4 elif distance < 22: if weeks_for_introduction == 0: weeks_for_introduction = 10 else: if weeks_for_introduction == 0: weeks_for_introduction = 15 # jako ze dystans jest bardzo duzy trening odbywa sie na max 3/4 jego wartosic distance *= 0.75 if mode == "Medium": mins = 5 if distance < 22: if weeks_for_introduction == 0: weeks_for_introduction = 4 else: if weeks_for_introduction == 0: weeks_for_introduction = 10 distance *= 0.75 if mode == "Advance": mins = 10 if weeks_for_introduction == 0: weeks_for_introduction = 10 distance *= 0.75 # ilosc kilometrow jaka zwiekszamy co kazdy tydzien jump = (distance - mins) / (weeks_for_introduction - 1) # iterowanie przez kazdy tydzien traningu wprowadzajacego for i in range(actual_week, actual_week + weeks_for_introduction): plan[str(i)] = {} weeks -= 1 # iterowanie przez kazdy dzien tygodnia (weekend jako 1 dzien czyli mozna se wybrac sob lub nd) for day in range(0, len(week)): if day % 2 == 0: plan[str(i)][week[day]] = "odpoczynek" elif (day == 1 or day == 3) and mins > 5: plan[str(i)][week[day]] = "bieg na " + str(round(mins / 2)) + "km" else: plan[str(i)][week[day]] = "bieg na " + str(round(mins)) + "km" mins += jump #aktualizowanie aktualnego tygonia actual_week += weeks_for_introduction return plan, weeks, actual_week def full_training(weeks, actual_week, distance, week, mode, plan, speed): # range (actual_week, actual_week + weeks) if mode == "Basic": # min predkosc po introduction ktora jest zwiekszana z klejnymi tygodniami min_speed = 10 if distance >= 22: distance *= 0.75 elif mode == "Medium": min_speed = 8 if distance >= 22: distance *= 0.75 else: min_speed = 7 if distance >= 22: distance *= 0.75 # zwiekszanie predkosci co tydzien o jump jump = (min_speed - speed) / weeks for i in range(actual_week, actual_week + weeks): plan[str(i)] = {} min_speed -= jump weeks -= 1 actual_week += 1 for day in range(0, len(week)): if day % 2 == 0: plan[str(i)][week[day]] = "odpoczynek" elif day == 1 and 5 < distance < 11: plan[str(i)][week[day]] = "bieg na " + str(round(distance / 2)) + "km w czasie " + \ speed_to_str(min_speed * 0.7) + " min/km" elif day == 1 and 5 < distance < 22: plan[str(i)][week[day]] = "bieg na " + str(round(distance / 2)) + "km w czasie " + \ speed_to_str(min_speed * 0.8) + " min/km" elif day == 1 and 5 < distance: plan[str(i)][week[day]] = "bieg na " + str(round(distance / 2)) + "km w czasie " + \ speed_to_str(min_speed * 0.9) + " min/km" elif day == 3 and mode != "Advance": plan[str(i)][week[day]] = "bieg interwalowy: 5x (bieg 1.5 min na maksimum mozliwosci + " \ "2 min wolnego truchtu) + wybiganie na " + str(round(distance / 2)) + "km" elif day == 3: plan[str(i)][week[day]] = "bieg interwalowy: 5x (bieg 1.5 min na maksimum mozliwosci pod gorke + " \ "2 min wolnego truchtu z gorki) + wybiganie na " + \ str(round(distance / 2)) + "km" else: plan[str(i)][week[day]] = "bieg na " + str(distance) + "km w czasie " + speed_to_str(min_speed) + \ " min/km" return plan, weeks, actual_week def home(request): global runs runs = {} if request.method == "POST": runs = {} # pobranie danych z forms po wcisnieciu przycisku form = getData(request.POST) # ustawienie zmiennej na global w celu modyfikacji dict runs if form.is_valid(): # pobieranie danych city = form.cleaned_data["city"] date_from_wrong = form.cleaned_data["date_from"] date_to_wrong = form.cleaned_data["date_to"] distance_from = form.cleaned_data["distance_from"] distance_to = form.cleaned_data["distance_to"] # zamiana daty if date_from_wrong is not None: date_from_correct = str(date_from_wrong.year) + "-" + str(date_from_wrong.month) + "-" + \ str(date_from_wrong.day) else: date_from_correct = "" if date_to_wrong is not None: date_to_correct = str(date_to_wrong.year) + "-" + str(date_to_wrong.month) + "-" + \ str(date_to_wrong.day) else: date_to_correct = "" # wyczyszczenie input-ow form = getData() # pobranie danych ze strony url = "https://run-log.com/events/?terms=" + city + "&date_from=" + date_from_correct + \ "&date_to=" + date_to_correct + "&distance_from=" + str(distance_from) + \ "&distance_to=" + str(distance_to) + "&location_radius=&action=" website = requests.get(url) result = website.text doc = BeautifulSoup(result, "html.parser") table = doc.tbody trs = table.contents i = 0 # iterowanie po kazdym elemenecie tabeli z danymi zawodow for tr in trs: i += 1 # sprawdzenie czy w tabeli istenieja biegi oraz czy nie sprawdzania jest pusty wiersz if i % 2 == 0 and i <= 10 and len(tr.contents) >= 10: run = {} date, name, distance, shit, location = tr.contents[1::2] run["date"] = date.text run["distance"] = distance.text.strip() run["location"] = location.text run["number"] = i/2 name = name.a.string # wyszukiwanie linkow do obrazu dla kazdego miasta w ktorym jest bieg r = requests.get( 'https://commons.wikimedia.org/w/index.php?search=' + run["location"] + '&title=Special:MediaSearch&go=Go&type=image') result = r.text doc = BeautifulSoup(result, "html.parser") images = doc.find('a', {'class': 'sdms-image-result'}) print(images) if not images: run["image"] = "#" else: r = requests.get(images['href']) result = r.text doc = BeautifulSoup(result, "html.parser") doc2 = doc.find('div', {'class': 'mw-body-content'}) image = doc2.find('img') run["image"] = image['src'] # w wypadku wystapnie biegu z taka sama nazwa dodanie numerka do nazyw if name in runs: runs[name+" ("+str(i/2)[0]+")"] = run else: runs[name] = run else: form = getData() return render(request, "runsite/home.html", {"Data": form, "Runs": runs}) def run_plan(request): # pobranie url storny (zawiera index dictionary z dpowiednimi zawodami) url = int(request.build_absolute_uri()[22]) key = list(runs.keys())[url-1] working = 1 # oblicznie ile dni oraz tygodni jest do zawodow days = calculate_difference(key) weeks = days//7 week = ['pon', 'wt', 'sr', 'cw', 'pt', 'weekend'] plan = {} # konwertowanie dystansu ze slownika na typ int (pomijanie metrow) distance = calculate_distance(key) # generowanie mapy ze znacznikiem lokalizacji biegu try: location = geocoder.location(runs[key]['location']) lat = location.lat lng = location.lng mapa = folium.Map(location=[lat, lng], zoom_start=12) folium.Marker([lat, lng]).add_to(mapa) except: location = geocoder.osm('PL') lat = location.lat lng = location.lng mapa = folium.Map(location=[lat, lng], zoom_start=12) mapa = mapa._repr_html_() if request.method == "POST": working = 1 # pobranie danych z forms po wcisnieciu przycisku form = getTraningInfo(request.POST) if form.is_valid(): type_of_training = form.cleaned_data["type"] time_hours = form.cleaned_data["time_hours"] if time_hours: try: time_hours = int(time_hours) except ValueError: working = 0 time_hours = 0 else: time_hours = 0 time_minutes = form.cleaned_data["time_minutes"] if time_minutes: try: time_minutes = int(time_minutes) except ValueError: working = 0 time_minutes = 0 else: time_minutes = 0 speed = calculate_speed(time_hours, time_minutes, distance) if time_minutes < 0 or time_hours < 0 or speed < 2.5: working = 0 form = getTraningInfo() if type_of_training == "Basic": speed *= 1.2 if weeks <= 3: print("nie da sie wygnerowa traningu1") working = 0 elif weeks <= 20: #pierwszy tryb (najkrotrze zawody) if distance < 11: if weeks < 6: plan, weeks, actual_week = basic_introduction(weeks) elif weeks >= 6: # pamietaj 6 - 2(basic_introduction) # pamietaj ze full_training() z tych weekow co zostaly po introduction plan, dif, actual_week = basic_introduction(2) print(weeks) # odjecie od pozostalych tygodni juz wykorzystanych weeks -= dif plan, weeks, actual_week = introduction(weeks, actual_week, distance, week, type_of_training, plan) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) #drugi tryb (srednio dlugie zaowdy) elif distance < 22: if weeks < 12: print("nie da sie wygenerowac treningu2") working = 0 elif weeks >= 12: plan, dif, actual_week = basic_introduction(2) weeks -= dif print(weeks) plan, weeks, actual_week = introduction(weeks, actual_week, distance, week, type_of_training, plan) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) #trzeci tryb(dlugie zawody) else: if weeks < 17: print("nie da sie wygenerowac treningu2") working = 0 if weeks >= 17: plan, dif, actual_week = basic_introduction(2) weeks -= dif plan, weeks, actual_week = introduction(weeks, actual_week, distance, week, type_of_training, plan) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) # ---------------------------------- else: if distance < 11: # wyliczenie na korym tygoniu konczy sie introducion (+2 by uwzglednic basic_introdution) weeks_for_introduction = round((weeks * 0.2)//1 + 2) plan, dif, actual_week = basic_introduction(2) weeks -= dif plan, weeks, actual_week = introduction(weeks, actual_week, distance, week, type_of_training, plan, weeks_for_introduction) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) elif distance < 22: weeks_for_introduction = round((weeks * 0.5) // 1 + 2) plan, dif, actual_week = basic_introduction(2) weeks -= dif plan, weeks, actual_week = introduction(weeks, actual_week, distance, week, type_of_training, plan, weeks_for_introduction) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) else: weeks_for_introduction = round((weeks * 0.75) // 1 + 2) plan, dif, actual_week = basic_introduction(2) weeks -= dif plan, weeks, actual_week = introduction(weeks, actual_week, distance, week, type_of_training, plan, weeks_for_introduction) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) elif type_of_training == "Medium": if weeks <= 3: print("nie da sie wygnerowa traningu1") working = 0 elif distance < 11: # dla malego dystansu w trybie medium nie ma introduction plan, weeks, actual_week = full_training(weeks, 1, distance, week, type_of_training, {}, speed) print(plan) print(weeks) print(actual_week) elif weeks <= 20: if distance < 22: if weeks < 4: print("nie da sie wygnerowa traningu2") working = 0 else: plan, weeks, actual_week = introduction(weeks, 1, distance, week, type_of_training, {}) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) else: if weeks < 10: print("nie da sie wygnerowa traningu2") working = 0 else: plan, weeks, actual_week = introduction(weeks, 1, distance, week, type_of_training, {}) print(plan) print(weeks) print(actual_week) print(speed) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) else: if distance < 22: weeks_for_introduction = round((weeks * 0.2) // 1) plan, weeks, actual_week = introduction(weeks, 1, distance, week, type_of_training, {}, weeks_for_introduction) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) else: weeks_for_introduction = round((weeks * 0.5) // 1) plan, weeks, actual_week = introduction(weeks, 1, distance, week, type_of_training, {}, weeks_for_introduction) print(plan) print(weeks) print(actual_week) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) else: speed *= 0.9 if weeks <= 3: print("nie da sie wygnerowa traningu1") working = 0 elif distance < 22: # dla malego dystansu oraz sredniego w trybie advance nie ma introduction plan, weeks, actual_week = full_training(weeks, 1, distance, week, type_of_training, {}, speed) print(plan) print(weeks) print(actual_week) elif weeks < 10: print("nie da sie wygnerowa traningu3") working = 0 elif weeks <= 20: plan, weeks, actual_week = introduction(weeks, 1, distance, week, type_of_training, {}) #print(plan) print(weeks) print(actual_week) print(speed) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) else: weeks_for_introduction = round((weeks * 0.5) // 1) plan, weeks, actual_week = introduction(weeks, 1, distance, week, type_of_training, {}, weeks_for_introduction) #print(plan) print(weeks) print(actual_week) print(speed) plan, weeks, actual_week = full_training(weeks, actual_week, distance, week, type_of_training, plan, speed) print(plan) print(weeks) print(actual_week) if working == 0: plan = {} for name, values in plan.items(): print(name) print(values) else: form = getTraningInfo() return render(request, "runsite/runPlan.html", {"Forms": form, "Key": key, "Run": runs[key], "Mapa": mapa, "Plan": plan, "Working": working})
kaczorwarka/Running-Events-Search-Engine-and-Traning-Plan-Generator
runsite/views.py
views.py
py
26,067
python
en
code
0
github-code
6
19270736433
named_params = { "Rest_time_T": float, "Duration_step": float, "Record_every_dT": float, "Record_every_dE": float, "Record_every_dI": float, "E_Range": int, "I_Range": int, "Current_step": float, "Voltage_step": float, "Scan_Rate": float, "vs_initial": bool, "Test1_Config": int, "Test1_Value": float, "Test2_Config": int, "Test2_Value": float, "Test3_Config": int, "Test3_Value": float, "Exit_Cond": int, "N_Cycles": int, "Step_number": int, "Scan_number": int, "loop_N_times": int, "protocol_number": int, "Begin_measuring_I": float, "End_measuring_I": float, "Begin_measuring_E": float, "End_measuring_E": float, } I_ranges = { "keep": -1, "100 pA": 0, "1 nA": 1, "10 nA": 2, "100 nA": 3, "1 uA": 4, "10 uA": 5, "100 uA": 6, "1 mA": 7, "10 mA": 8, "100 mA": 9, "1 A": 10, "booster": 11, "auto": 12, } E_ranges = { "+-2.5 V": 0, "+-5.0 V": 1, "+-10 V": 2, "auto": 3, } datatypes = { "VMP3": { "OCV": ["t_high", "t_low", "Ewe", "Ece"], "CPLIMIT": ["t_high", "t_low", "Ewe", "I", "cycle"], "CALIMIT": ["t_high", "t_low", "Ewe", "I", "cycle"], "PDYNLIMIT": ["t_high", "t_low", "Ec", "<I>", "<Ewe>", "cycle"], "GDYNLIMIT": ["t_high", "t_low", "Ic", "<I>", "<Ewe>", "cycle"], }, "SP-300": { "OCV": ["t_high", "t_low", "Ewe"], "CPLIMIT": ["t_high", "t_low", "Ewe", "I", "cycle"], "CALIMIT": ["t_high", "t_low", "Ewe", "I", "cycle"], "PDYNLIMIT": ["t_high", "t_low", "<I>", "<Ewe>", "cycle"], "GDYNLIMIT": ["t_high", "t_low", "<I>", "<Ewe>", "cycle"], }, } techfiles = { "VMP3": { "open_circuit_voltage": "ocv.ecc", "constant_current": "cplimit.ecc", "constant_voltage": "calimit.ecc", "sweep_voltage": "vscanlimit.ecc", "sweep_current": "iscanlimit.ecc", "loop": "loop.ecc", }, "SP-300": { "open_circuit_voltage": "ocv4.ecc", "constant_current": "cplimit4.ecc", "constant_voltage": "calimit4.ecc", "sweep_voltage": "vscanlimit4.ecc", "sweep_current": "iscanlimit4.ecc", "loop": "loop4.ecc", }, }
dgbowl/tomato
src/tomato/drivers/biologic/tech_params.py
tech_params.py
py
2,286
python
en
code
2
github-code
6
41714902184
from Crypto.Util.number import getPrime from Crypto.Util.number import inverse import hashlib import socket from threading import Thread host = 'localhost' port = 6000 mysocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try : mysocket.connect((host, port)) except socket.error : print("connexion echouer avec le serveur ") exit() print("connexion etablie avec le serveur") def gen_rsa_keypair (bits): p=getPrime(bits//2) q=getPrime(bits//2) n=p*q e=655337 d=inverse(e, (p-1)*(q-1)) return((e,n), (d,n)) #cle pub et cle priv key = gen_rsa_keypair(256) def rsa(m,key): return pow(m,key[0],key[1]) def rsa_enc(msg, key): m = int.from_bytes(msg.encode('utf-8'),'big') c = rsa(m, key) return c def rsa_dec(msg, key): txt_clair = rsa(msg, key) return txt_clair.to_bytes((txt_clair.bit_length()+7) // 8,'big').decode('utf-8') class Send(Thread): def __init__(self,arg): Thread.__init__(self) #super(Send, self).__init__() self.arg = arg def run(self): continuer = True while(continuer): message = input() message1 = self.arg.sendall(repr(key[0]).encode('utf8'))#cle try: enchifrer = rsa_enc(message, key[0]) #print("enchiffreeer = ",enchifrer) #self.arg.send(repr(enchifrer).encode('utf-8')) dechiffrer = rsa_dec(enchifrer, key[1]) #print("dechiffrer ", dechiffrer) self.arg.send(dechiffrer.encode('utf-8')) except socket.error: continuer = False break self.arg.close() class receive(Thread): def __init__(self,arg): Thread.__init__(self) # super(receive, self).__init__() self.arg = arg def run(self): continuer = True while(continuer): try: message = self.arg.recv(1024).decode('utf-8') except socket.error: continuer = False break else : print(">>>>>> {0}".format(message)) self.arg.close() if __name__ == "__main__": sn = Send(mysocket) sn.start() rv = receive(mysocket) rv.start()
samyberkane23/chat_s-curis-
client.py
client.py
py
2,458
python
en
code
0
github-code
6
14852849903
from collections import ChainMap import yaml with open('eve_static_data/invFlags.yaml') as flags_file: INV_FLAGS = {item['flagID']: item for item in yaml.full_load(flags_file)} INVENTORY_POSITIONS = [ *range(92, 99+1), # Rigs *range(27, 34+1), # High Slots *range(19, 26+1), # Med Slots *range(11, 18+1), # Low Slots 0 # Everything Else ]
DeForce/py_killboard
helpers/static.py
static.py
py
386
python
en
code
1
github-code
6
41860678548
import logging log = logging.getLogger(__name__) import re import requests from bs4 import BeautifulSoup try: # Python 2 has a standard urlparse library from urlparse import urlparse, ParseResult except: # Python 3 has the same library hidden in urllib.parse from urllib.parse import urlparse, ParseResult MAX_FILEIZE = 2**19 # bytes; this is .5MB MAX_CONNECTIONTIME = 20 # in seconds RE_bad_title = re.compile( """(?:<title>|&lt;title&gt;)(.*)(?:<?/title>|(?:&lt;)?/title&gt;)""", re.I) REGEX_doctype = re.compile("^\s*<!DOCTYPE[^>]*>", re.IGNORECASE) RE_whitespace = re.compile("\s+") PARSE_SAFE_FILES = ('html', 'txt', 'json', 'htm', 'xml', 'php', 'asp', 'aspx', 'ece', 'xhtml', 'cfm', 'cgi') # based on DJANGO # https://github.com/django/django/blob/master/django/core/validators.py # not testing ipv6 right now, because rules are needed for ensuring they are correct RE_VALID_HOSTNAME = re.compile( r'(?:' r'(?P<ipv4>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ipv4 r'|' # r'(?P<ipv6>\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 # r'|' r'(?P<localhost>localhost)' # localhost... r'|' r'(?P<domain>([A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}(?<!-)\.?))' # domain... r'(?P<port>:\d+)?' # optional port r')', re.IGNORECASE) RE_PORT = re.compile( r'^' r'(?P<main>.+)' r':' r'(?P<port>\d+)' r'$', re.IGNORECASE ) RE_DOMAIN_NAME = re.compile( r"""(^ (?: [A-Z0-9] (?: [A-Z0-9-]{0,61} [A-Z0-9] )? \. )+ (?: [A-Z]{2,6}\.? | [A-Z0-9-]{2,} (?<!-)\.?) $)""", re.VERBOSE | re.IGNORECASE) RE_IPV4_ADDRESS = re.compile( r'^(\d{1,3})\.(\d{1,3}).(\d{1,3}).(\d{1,3})$' # grab 4 octets ) RE_ALL_NUMERIC = re.compile("^[\d\.]+$") def is_parsed_valid_url(parsed, require_public_netloc=True, http_only=True): """returns bool `http_only` defaults True requires http or https for the scheme """ assert isinstance(parsed, ParseResult) log.debug("is_parsed_valid_url = %s", parsed) if not all((parsed.scheme, parsed.netloc)): log.debug(" FALSE - missing `scheme` or `netloc`") return False if http_only: if parsed.scheme not in ('http', 'https'): log.debug(" FALSE - invalid `scheme`") return False if require_public_netloc: log.debug(" validating netloc") _netloc_match = RE_VALID_HOSTNAME.match(parsed.netloc) if not _netloc_match: log.debug(" did not match regex") return False # we may assign these _netloc_clean = parsed.netloc _port = None _netloc_ported = RE_PORT.match(parsed.netloc) if _netloc_ported: _netloc_ported_groudict = _netloc_ported.groupdict() _netloc_clean = _netloc_ported_groudict['main'] _port = _netloc_ported_groudict['port'] _netloc_groudict = _netloc_match.groupdict() if _netloc_groudict['ipv4'] is not None: octets = RE_IPV4_ADDRESS.match(_netloc_clean) if octets: log.debug(" validating against ipv4") for g in octets.groups(): g = int(g) if int(g) > 255: log.debug(" invalid ipv4; encountered an octect > 255") return False log.debug(" valid ipv4") return True log.debug(" invalid ipv4") return False else: if _netloc_clean == 'localhost': log.debug(" localhost!") return True if RE_ALL_NUMERIC.match(_netloc_clean): log.debug(" This only has numeric characters. " "this is probably a fake or typo ip address.") return False if _port: try: _port = int(_port) if parsed.port != _port: log.debug(" netloc.port does not match our regex _port") return False except: raise log.debug(" _port is not an int") return False if RE_DOMAIN_NAME.match(_netloc_clean): log.debug(" valid public domain name format") return True log.debug(" this appears to be invalid") return False return True def is_parsed_valid_relative(parsed): """returns bool""" assert isinstance(parsed, ParseResult) if parsed.path and not any((parsed.scheme, parsed.hostname)): return True return False def parsed_to_relative(parsed): """turns a parsed url into a full relative url""" assert isinstance(parsed, ParseResult) _path = parsed.path # cleanup, might be unnecessary now if _path and _path[0] != "/": # prepend a slash _path = "/%s" % _path if parsed.query: _path += "?" + parsed.query if parsed.fragment: _path += "#" + parsed.fragment return _path def is_url_valid(url, require_public_netloc=None): """ tries to parse a url. if valid returns `ParseResult` (boolean eval is True); if invalid returns `False` """ if url is None: return False parsed = urlparse(url) if is_parsed_valid_url(parsed, require_public_netloc=require_public_netloc): return parsed return False def url_to_absolute_url(url_test, url_fallback=None, require_public_netloc=None): """ returns an "absolute url" if we have one. if we don't, it tries to fix the current url based on the fallback this shouldn't be needed, but it is. called by: MetadataParser.absolute_url() MetadataParser.get_discrete_url() args: `url_test` - the url to return/fix `url_fallback` - a fallback url. this is returned in VERY bad errors. in "not so bad" errors, this is parsed and used as the base to construct a new url. `require_public_netloc` - requires the hostname/netloc to be a valid IPV4 or public dns domain name """ if url_test is None and url_fallback is not None: return url_fallback parsed = urlparse(url_test) _path = parsed.path if _path: # sanity check # some stock plugins create invalid urls/files like '/...' in meta-data if _path[0] != "/": # prepend a slash _path = "/%s" % _path known_invalid_plugins = ['/...', ] if _path in known_invalid_plugins: return url_fallback # finally, fix the path # this isn't nested, because we could have kwargs _path = parsed_to_relative(parsed) if not _path: # so if our _path is BLANK, fuck it. # this can happen if someone puts in "" for the canonical return url_fallback rval = None # we'll use a placeholder for a source 'parsed' object that has a domain... parsed_domain_source = None # if we have a valid URL (OMFG, PLEASE)... if is_parsed_valid_url(parsed, require_public_netloc=require_public_netloc): parsed_domain_source = parsed else: # ok, the URL isn't valid # can we re-assemble it if url_fallback: parsed_fallback = urlparse(url_fallback) if is_parsed_valid_url( parsed_fallback, require_public_netloc=require_public_netloc ): parsed_domain_source = parsed_fallback if parsed_domain_source: rval = "%s://%s%s" % ( parsed_domain_source.scheme, parsed_domain_source.netloc, _path) return rval class NotParsable(Exception): def __init__(self, message='', raised=None, code=None): self.message = message self.raised = raised self.code = code def __str__(self): return "ApiError: %s | %s | %s" % (self.message, self.code, self.raised) class NotParsableFetchError(NotParsable): pass class MetadataParser(object): """ turns text or a URL into a dict of dicts, extracting as much relevant metadata as possible. the 'keys' will be either the 'name' or 'property' attribute of the node. we EXPECT/REQUIRE a `head` in the document. the attribute's prefix are removed when storing into it's bucket eg: og:title -> 'og':{'title':''} metadata is stored into subgroups: page extracted from page elements saved into MetadataParser.metadata['page'] example: <head><title>Awesome</title></head> MetadataParser.metadata = {'page': {'title':'Awesome'}} opengraph has 'og:' prefix saved into MetadataParser.metadata['og'] example: <meta property="og:title" content="Awesome"/> MetadataParser.metadata = {'og': {'og:title':'Awesome'}} dublin core has 'dc:' prefix saved into MetadataParser.metadata['dc'] example: <meta property="dc:title" content="Awesome"/> MetadataParser.metadata = {'dc': {'dc:title':'Awesome'}} meta has no prefix saved into MetadataParser.metadata['meta'] example: <meta property="title" content="Awesome"/> MetadataParser.metadata = {'meta': {'dc:title':'Awesome'}} NOTE: passing in ssl_verify=False will turn off ssl verification checking in the requests library. this can be necessary on development machines """ url = None url_actual = None strategy = None metadata = None LEN_MAX_TITLE = 255 only_parse_file_extensions = None require_public_netloc = None force_doctype = None requests_timeout = None # allow for the beautiful_soup to be saved soup = None og_minimum_requirements = ['title', 'type', 'image', 'url'] twitter_sections = ['card', 'title', 'site', 'description'] strategy = ['og', 'dc', 'meta', 'page'] def __init__( self, url=None, html=None, strategy=None, url_data=None, url_headers=None, force_parse=False, ssl_verify=True, only_parse_file_extensions=None, force_parse_invalid_content_type=False, require_public_netloc=True, force_doctype=False, requests_timeout=None, ): """ creates a new `MetadataParser` instance. kwargs: `url` url to parse `html` instead of a url, parse raw html `strategy` default: None sets default metadata strategy (['og', 'dc', 'meta', 'page']) see also `MetadataParser.get_metadata()` `url_data` data passed to `requests` library as `params` `url_headers` data passed to `requests` library as `headers` `force_parse` default: False force parsing invalid content `ssl_verify` default: True disable ssl verification, sometimes needed in development `only_parse_file_extensions` default: None set a list of valid file extensions. see `metadata_parser.PARSE_SAFE_FILES` for an example list `force_parse_invalid_content_type` default: False force parsing invalid content types by default this will only parse text/html content `require_public_netloc` default: True require a valid `netloc` for the host. if `True`, valid hosts must be a properly formatted public domain name, IPV4 address or "localhost" `force_doctype` default: False if set to true, will replace a doctype with 'html' why? some cms give a bad doctype (like nasa.gov) which can break lxml/bsd `requests_timeout` default: None if set, proxies the value into `requests.get` as `timeout` """ self.metadata = { 'og': {}, 'meta': {}, 'dc': {}, 'page': {}, 'twitter': {} } if strategy: self.strategy = strategy if url is not None: url = url.strip() self.url = url self.url_actual = url self.ssl_verify = ssl_verify self.soup = None self.force_doctype = force_doctype self.response = None self.response_headers = {} self.require_public_netloc = require_public_netloc self.requests_timeout = requests_timeout if only_parse_file_extensions is not None: self.only_parse_file_extensions = only_parse_file_extensions if html is None: html = self.fetch_url( url_data=url_data, url_headers=url_headers, force_parse=force_parse, force_parse_invalid_content_type=force_parse_invalid_content_type ) self.parser(html, force_parse=force_parse) def is_opengraph_minimum(self): """ returns true/false if the page has the minimum amount of opengraph tags """ return all([hasattr(self, attr) for attr in self.og_minimum_requirements]) def fetch_url( self, url_data=None, url_headers=None, force_parse=False, force_parse_invalid_content_type=False ): """ fetches the url and returns it. this was busted out so you could subclass. """ # should we even download/parse this? if not force_parse and self.only_parse_file_extensions is not None: parsed = urlparse(self.url) path = parsed.path if path: url_fpath = path.split('.') if len(url_fpath) == 0: # i have no idea what this file is, it's likely using a # directory index pass elif len(url_fpath) > 1: url_fext = url_fpath[-1] if url_fext in self.only_parse_file_extensions: pass else: raise NotParsable("I don't know what this file is") # borrowing some ideas from # http://code.google.com/p/feedparser/source/browse/trunk/feedparser/feedparser.py#3701 if not url_headers: url_headers = {} # if someone does usertracking with sharethis.com, they get a hashbang # like this: http://example.com/page#.UHeGb2nuVo8 # that fucks things up. url = self.url.split('#')[0] r = None try: # requests gives us unicode and the correct encoding, yay r = requests.get( url, params=url_data, headers=url_headers, allow_redirects=True, verify=self.ssl_verify, timeout=self.requests_timeout, stream=True, ) content_type = None if 'content-type' in r.headers: content_type = r.headers['content-type'] # content type can have a character encoding in it... content_type = [i.strip() for i in content_type.split(';')] content_type = content_type[0].lower() if ( ( (content_type is None) or (content_type != 'text/html') ) and (not force_parse_invalid_content_type) ): raise NotParsable("I don't know what type of file this is! " "content-type:'[%s]" % content_type) # okay, now we need to read ## TODO ## TODO ## TODO ## TODO html = r.text self.response = r # lowercase all of the HTTP headers for comparisons per RFC 2616 self.response_headers = dict((k.lower(), v) for k, v in r.headers.items()) self.url_actual = r.url if r.status_code != 200: raise NotParsableFetchError( message="Status Code is not 200", code=r.status_code ) except requests.exceptions.RequestException as error: raise NotParsableFetchError( message="Error with `requests` library. Inspect the `raised`" " attribute of this error.", raised=error ) return html def absolute_url(self, link=None): """ makes the url absolute, as sometimes people use a relative url. sigh. """ url_fallback = self.url_actual or self.url or None return url_to_absolute_url( link, url_fallback=url_fallback, require_public_netloc=self.require_public_netloc ) def parser(self, html, force_parse=False): """parses the html """ if not isinstance(html, BeautifulSoup): # clean the html? if self.force_doctype: html = REGEX_doctype.sub("<!DOCTYPE html>", html) try: doc = BeautifulSoup(html, "lxml") except: doc = BeautifulSoup(html, "html.parser") else: doc = html # let's ensure that we have a real document... if not doc or not doc.html or not doc.html.head: return # stash the bs4 doc for further operations self.soup = doc ogs = doc.html.head.findAll( 'meta', attrs={'property': re.compile(r'^og')} ) for og in ogs: try: self.metadata['og'][og['property'][3:]] = og['content'].strip() except (AttributeError, KeyError): pass except: log.debug("Ran into a serious error parsing `og`") pass twitters = doc.html.head.findAll( 'meta', attrs={'name': re.compile(r'^twitter')} ) for twitter in twitters: try: self.metadata['twitter'][ twitter['name'][8:]] = twitter['value'].strip() except (AttributeError, KeyError): pass # pull the text off the title try: _title_text = doc.html.head.title.text if len(_title_text) > self.LEN_MAX_TITLE: _title_text = _title_text[:self.LEN_MAX_TITLE] self.metadata['page']['title'] = _title_text except AttributeError: pass # is there an image_src? images = doc.findAll( 'link', attrs={'rel': re.compile("^image_src$", re.I)} ) if images: image = images[0] if image.has_attr("href"): img_url = image['href'].strip() self.metadata['page']['image'] = img_url elif image.has_attr("content"): img_url = image['content'].strip() self.metadata['page']['image'] = img_url else: pass # figure out the canonical url canonicals = doc.findAll( 'link', attrs={'rel': re.compile("^canonical$", re.I)} ) if canonicals: canonical = canonicals[0] if canonical.has_attr("href"): link = canonical['href'].strip() self.metadata['page']['canonical'] = link elif canonical.has_attr("content"): link = canonical['content'].strip() self.metadata['page']['canonical'] = link else: pass # pull out all the metadata meta = doc.html.head.findAll(name='meta') for m in meta: try: k = None v = None attrs = m.attrs k = None if 'name' in attrs: k = 'name' elif 'property' in attrs: k = 'property' elif 'http-equiv' in attrs: k = 'http-equiv' if k: k = attrs[k].strip() if 'content' in attrs: v = attrs['content'].strip() if (len(k) > 3) and (k[:3] == 'dc:'): self.metadata['dc'][k[3:]] = v else: self.metadata['meta'][k] = v except AttributeError: pass def get_metadata(self, field, strategy=None): """ looks for the field in various stores. defaults to the core strategy, though you may specify a certain item. if you search for 'all' it will return a dict of all values. """ if strategy: _strategy = strategy else: _strategy = self.strategy if _strategy == 'all': rval = {} for store in self.metadata: if field in self.metadata[store]: rval[store] = self.metadata[store][field] return rval for store in _strategy: if store in self.metadata: if field in self.metadata[store]: return self.metadata[store][field] return None def get_discrete_url( self, og_first=True, canonical_first=False, allow_invalid=False ): """convenience method. if `allow_invalid` is True, it will return the raw data. if `allow_invalid` is False (default), it will try to correct the data (relative to absolute) or reset to None. """ og = self.get_metadata('url', strategy=['og']) canonical = self.get_metadata('canonical', strategy=['page']) if not allow_invalid: # fallback url is used to drop a domain url_fallback = self.url_actual or self.url or None if og and not is_url_valid( og, require_public_netloc=self.require_public_netloc ): # try making it absolute og = url_to_absolute_url( og, url_fallback=url_fallback, require_public_netloc=self.require_public_netloc ) if not is_url_valid( og, require_public_netloc=self.require_public_netloc ): # set to NONE if invalid og = None if canonical and not is_url_valid( canonical, require_public_netloc=self.require_public_netloc ): # try making it absolute canonical = url_to_absolute_url( canonical, url_fallback=url_fallback, require_public_netloc=self.require_public_netloc ) if not is_url_valid( canonical, require_public_netloc=self.require_public_netloc ): # set to NONE if invalid canonical = None rval = [] if og_first: rval = (og, canonical) elif canonical_first: rval = (canonical, og) for i in rval: if i: return i return self.absolute_url() def get_metadata_link(self, field, strategy=None): """sometimes links are bad; this tries to fix them. most useful for meta images""" # `_value` will be our raw value _value = self.get_metadata(field, strategy=strategy) if not _value: return None # `value` will be our clean value # remove whitespace, because some bad blogging platforms add in whitespace by printing elements on multiple lines. d'oh! value = RE_whitespace.sub('', _value) # if the url is valid, RETURN IT if is_url_valid(value, require_public_netloc=self.require_public_netloc): return value # fallback url is used to drop a domain url_fallback = self.url_actual or self.url or None # try making it absolute value_fixed = url_to_absolute_url( value, url_fallback = url_fallback, require_public_netloc = self.require_public_netloc ) if is_url_valid(value_fixed, require_public_netloc=self.require_public_netloc): return value_fixed return None
xethorn/metadata_parser
metadata_parser/__init__.py
__init__.py
py
25,325
python
en
code
null
github-code
6
43967691056
#!/usr/bin/env python import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="split blast results by organism") parser.add_argument("blast", type=argparse.FileType("r")) args = parser.parse_args() blast = [x.split("\t") for x in args.blast.readlines()] for row in blast: if "<>" in row[24]: for i in row[24].strip().split("<>"): row_copy = row row_copy[24] = i print("\t".join(row_copy).strip()) else: print("\t".join(row).strip())
TAMU-CPT/galaxy-tools
tools/blast/split_blast.py
split_blast.py
py
576
python
en
code
5
github-code
6
18075698551
def plunder(city, people_to_kill, gold_to_steal): town = [t for t in towns if t.name == city][0] town.population -= people_to_kill town.gold -= gold_to_steal print(f"{city} plundered! {gold_to_steal} gold stolen, {people_to_kill} citizens killed.") if town.population <= 0 or town.gold <= 0: towns.remove(town) print(f"{city} has been wiped off the map!") def prosper(city, gold_to_add): town = [t for t in towns if t.name == city][0] if gold_to_add < 0: print("Gold added cannot be a negative number!") else: town.gold += gold_to_add print(f"{gold_to_add} gold added to the city treasury. {city} now has {town.gold} gold.") class Town: def __init__(self, name, population, gold): self.name = name self.population = population self.gold = gold def __repr__(self): return f"{self.name} -> Population: {self.population} citizens, Gold: {self.gold} kg" towns = [] while True: command = input() if command == "Sail": break tokens = command.split("||") current_town = tokens[0] current_population = int(tokens[1]) current_gold = int(tokens[2]) if towns: existing_town = [t for t in towns if t.name == current_town] if existing_town: existing_town[0].population += current_population existing_town[0].gold += current_gold continue town = Town(current_town, current_population, current_gold) towns.append(town) while True: command = input() if command == "End": break tokens = command.split("=>") if tokens[0] == "Plunder": plunder(tokens[1], int(tokens[2]), int(tokens[3])) elif tokens[0] == "Prosper": prosper(tokens[1], int(tokens[2])) sorted_towns = sorted(towns, key=lambda t: (-t.gold, t.name)) if towns: print(f"Ahoy, Captain! There are {len(towns)} wealthy settlements to go to:") for town in sorted_towns: print(town) else: print("Ahoy, Captain! All targets have been plundered and destroyed!")
liusska/Python-Fundamentals-Jan-2021
Final Exam Solutions/04.04.2020_2/p!rates_CLASS_solution_03.py
p!rates_CLASS_solution_03.py
py
2,146
python
en
code
0
github-code
6
11214657296
import pika import sys conn = pika.BlockingConnection(pika.URLParameters('amqp://guest:guest@localhost:25672/%2F')) channel = conn.channel() channel.exchange_declare(exchange='direct_logs', exchange_type='direct') severity = sys.argv[1] if len(sys.argv) > 1 else 'info' message = ' '.join(sys.argv[2:]) or "Hello World!" channel.basic_publish( exchange='direct_logs', routing_key=severity, body=message ) print(f" [*] Sent {severity}:{message}") conn.close()
lamida/rabbit-hole
04-routing/emit_log_direct.py
emit_log_direct.py
py
465
python
en
code
0
github-code
6
39255343614
from django.conf.urls import url from network.views import views_auth from network.views import views_app urlpatterns = [ # Main page url(r'^home/(?P<msg>.*)$', views_auth.main_page, name="Home"), # url(r'$', views_auth.main_page, name="Home"), # Auth urls url(r'^login/(?P<info>.*)$', views_auth.login_page, name="Login"), url(r'^logout', views_auth.logout_page, name="Logout"), url(r'^registration', views_auth.registration_page), # App urls url(r'^userpage/(?P<usr_id>.[0-9])', views_app.user_page, name="UserPage"), url(r'^userpage/wall/new_record', views_app.new_wall_record, name="NewWallRecord"), url(r'^userpage/wall/new_like', views_app.new_like, name="AddLike"), url(r'^userpage/wall/new_comment', views_app.new_comment, name="AddComment"), url(r'^userpage/wall/delete_post', views_app.delete_post, name="DeletePost"), url(r'^error/', views_app.error_page, name="UserPage"), url(r'^im/', views_app.mail_page, name="UserMail"), url(r'^send_msg/(?P<user_id>.[0-9])', views_app.send_msg, name="SendMessage"), url(r'^friend_request/', views_app.send_friend_request, name="FriendRequest"), url(r'^friends/', views_app.user_friends, name="Friends"), url(r'^delete_friend/', views_app.delete_friend, name="Delete Friend"), url(r'^sent/', views_app.user_sent_msgs, name="Sent msgs"), url(r'^requests/', views_app.user_requests, name="Friend requests"), url(r'^accept_request/', views_app.accept_request, name="Accept_request"), url(r'^decline_request/', views_app.decline_request, name="Decline_request") ]
Sipleman/Course-work_SocialNetwork
network/urls.py
urls.py
py
1,612
python
en
code
0
github-code
6
4818229922
import numpy as np def linan(s1, s2): try: a1, b1, c1 = map(float, s1.split(" ")) a2, b2, c2 = map(float, s2.split(" ")) a = np.array([[a1, b1], [a2, b2]]) b = np.array([c1, c2]) solution = np.linalg.solve(a, b) return f"{solution[0]} {solution[1]}" except np.linalg.LinAlgError as e: return "Нет решений" str1 = input() str2 = input() print(linan(str1, str2))
SmartOven/itmo-ml
lab1/task1.py
task1.py
py
439
python
en
code
0
github-code
6
11995663710
#!/usr/bin/env python3 import rospy import numpy as np from geometry_msgs.msg import Point, PointStamped from queenie.msg import ExtremePoints import tf2_ros import tf2_geometry_msgs import time class PointTransform: def __init__(self): self.tf_buffer = tf2_ros.Buffer() # tf buffer length self.tf_listener = tf2_ros.TransformListener(self.tf_buffer) # self.pub = rospy.Publisher('/reward_signal', Float32, queue_size=10) self.extreme_points_seb = rospy.Subscriber("extreme_points_camera_frame", ExtremePoints, self.extreme_points_cb) self.handle_centroid_sub = rospy.Subscriber("/handle_centroid", PointStamped, self.handle_centroid_cb) self.extreme_points_transformed_pub = rospy.Publisher("extreme_points", ExtremePoints, queue_size=1) self.handle_centroid_pub = rospy.Publisher("handle_centroid_transformed", PointStamped, queue_size=1) self.count = 0 self.rightmost_point = Point() self.leftmost_point = Point() self.rate = rospy.Rate(25) def handle_centroid_cb(self, data): x = 0 while x < 5: try: trans = self.tf_buffer.lookup_transform("odom", "camera_optical", rospy.Time()) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): self.rate.sleep() continue x += 1 handle_centroid_transformed = tf2_geometry_msgs.do_transform_point(data, trans) self.handle_centroid_pub.publish(handle_centroid_transformed) def extreme_points_cb(self, data:ExtremePoints): x = 0 while x < 5: try: trans = self.tf_buffer.lookup_transform("odom", "camera_optical", rospy.Time()) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): self.rate.sleep() continue x += 1 rightmost_transformed = tf2_geometry_msgs.do_transform_point(data.rightmost, trans) leftmost_transformed = tf2_geometry_msgs.do_transform_point(data.leftmost, trans) object_centroid_transformed = tf2_geometry_msgs.do_transform_point(data.point_centroid, trans) extreme_points_transformed = ExtremePoints() extreme_points_transformed.leftmost = leftmost_transformed extreme_points_transformed.rightmost = rightmost_transformed extreme_points_transformed.point_centroid = object_centroid_transformed self.extreme_points_transformed_pub.publish(extreme_points_transformed) def main(): rospy.init_node('point_transform', anonymous=True) point_transform = PointTransform() rospy.spin() if __name__ == '__main__': main()
arehman1806/queenie
src/nodes/point_transform.py
point_transform.py
py
2,827
python
en
code
0
github-code
6
30543883588
from . import pblm import sys import torch import torch.nn as nn class CNN_A(pblm.PrebuiltLightningModule): def __init__(self, classes): super().__init__(self.__class__.__name__) # Model Layer Declaration self.conv1 = nn.Conv1d(1, 16, kernel_size=5, stride=2) self.conv2 = nn.Conv1d(16, 32, kernel_size=5, stride=2) self.conv3 = nn.Conv1d(32, 64, kernel_size=5, stride=2) self.dense1 = nn.Linear(64 * 309, 512) self.dense2 = nn.Linear(512, 256) self.dense3 = nn.Linear(256, classes) def forward(self, x): x = x.reshape(x.shape[0], 1, -1) # Convolutional Layer x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = self.conv3(x) x = nn.functional.relu(x) # Flattening x = x.reshape(x.shape[0], -1) # Dense Layers x = self.dense1(x) x = nn.functional.relu(x) x = self.dense2(x) x = nn.functional.relu(x) x = self.dense3(x) return x if __name__ == "__main__": model = CNN_A(4)
kendreaditya/heart-auscultation
src/models/modules/CNN/CNN.py
CNN.py
py
1,135
python
en
code
2
github-code
6
7584763107
import random import os from modnn import Neuron from modnn import Connection from modnn import utils class Genome: def __init__(self, config): self.config = config self.input_num = self.config['INPUT_NUM'] self.output_num = self.config['OUTPUT_NUM'] self.normal_num = self.config['NORMAL_NUM'] self.lv1_num = self.config['LV1_MODULATORY_NUM'] self.lv2_num = self.config['LV2_MODULATORY_NUM'] self.connection_num = self.config['CONNECTION_NUM'] self.max_bias = self.config['MAX_BIAS'] self.min_bias = self.config['MIN_BIAS'] self.min_weight = self.config['MIN_WEIGHT'] self.max_weight = self.config['MAX_WEIGHT'] self.weight_upper_limit = self.config['WEIGHT_UPPER_LIMIT'] self.weight_lower_limit = self.config['WEIGHT_LOWER_LIMIT'] self.min_abcd = self.config['MIN_ABCD'] self.max_abcd = self.config['MAX_ABCD'] self.input_neurons = [Neuron(id = i, bias = random.uniform(self.min_bias, self.max_bias)) for i in range(self.input_num)] self.output_neurons = [Neuron(id = i + self.input_num , bias = random.uniform(self.min_bias, self.max_bias)) for i in range(self.output_num)] self.normal_neurons = [Neuron(id = i + self.input_num + self.output_num, bias = random.uniform(self.min_bias, self.min_bias)) for i in range(self.normal_num)] self.lv1_neurons = [Neuron(id = i + self.input_num + self.output_num + self.normal_num, bias = random.uniform(self.min_bias, self.max_bias)) for i in range(self.lv1_num)] self.lv2_neurons = [Neuron(id = i + self.input_num + self.output_num + self.normal_num + self.lv1_num, bias = random.uniform(self.min_bias, self.max_bias)) for i in range(self.lv2_num)] total_neuron_num = len(self.input_neurons) + len(self.output_neurons) + len(self.normal_neurons) + len(self.lv1_neurons) + len(self.lv2_neurons) self.connections = [ Connection(random.randint(0, total_neuron_num -1), random.randint(0, total_neuron_num -1), random.uniform(self.min_weight, self.max_weight)) for i in range(self.connection_num)] self.a = random.uniform(self.min_abcd, self.max_abcd) self.b = random.uniform(self.min_abcd, self.max_abcd) self.c = random.uniform(self.min_abcd, self.max_abcd) self.d = random.uniform(self.min_abcd, self.max_abcd) #ニューロンidからニューロンの種類を取得する def get_neuron_type(self, neuron_id): if neuron_id < self.input_num: return 'input' elif neuron_id < self.input_num + self.output_num: return 'output' elif neuron_id < self.input_num + self.output_num + self.neuron_num: return 'normal' elif neuron_id < self.input_num + self.output_num + self.neuron_num + self.lv1_num: return 'lv1' else: return 'lv2' #結合がルールに則っているかを判定する def is_valid_connection(self, connection): in_type = self.get_neuron_type(connection.from_neuron_id) out_type = self.get_neuron_type(connection.to_neuron_id) #出力ニューロンは結合元になれない if in_type == 'output': return False #入力ニューロンは結合先になれない elif out_type == 'input': return False #結合元と結合先が同じニューロンになれない elif connection.from_neuron_id == connection.to_neuron_id: return False #Lv.1の修飾ニューロンは通常ニューロン・出力ニューロン以外に結合できない elif in_type == 'lv1' and out_type != 'normal' and out_type != 'output': return False #Lv.2の修飾ニューロンはLv.1の修飾ニューロン以外に結合できない elif in_type == 'lv2' and out_type != 'lv1': return False else: return True if __name__ == '__main__': # 設定ファイルのパス pwd = os.path.dirname(os.path.abspath(__file__)) # このファイルのディレクトリの絶対パスを取得 print(pwd) config_file_path = './tests/config.txt' # 設定ファイルを読み込む config = utils.read_config_file(config_file_path) # 読み込んだ設定をプログラム内で利用する例 normal_num = config['NORMAL_NUM'] input_num = config['INPUT_NUM'] output_num = config['OUTPUT_NUM'] connection_num = config['CONNECTION_NUM'] # 利用例として、読み込んだ設定を出力してみる print("Normal neurons:", normal_num) print("Input neurons:", input_num) print("Output neurons:", output_num) print("Number of connections:", connection_num) genome = Genome(config_file_path) print(genome.input_neurons) print(genome.output_neurons) print(genome.normal_neurons) print(genome.lv1_neurons) print(genome.lv2_neurons)
kato-mahiro/modnn
modnn/genome.py
genome.py
py
4,986
python
en
code
0
github-code
6
30754324975
from heapq import heappop, heappush n = int(input()) a = list(map(int, input().split())) hp = 0 ans = 0 pt = list() for i in range(n): if a[i] > 0: hp += a[i] ans += 1 elif hp + a[i] >= 0: hp += a[i] ans += 1 heappush(pt, a[i]) elif pt: a1 = heappop(pt) if a1 < a[i]: hp = hp - a1 + a[i] heappush(pt, a[i]) else: heappush(pt, a1) print(ans)
Tanguyvans/Codeforces
723/C2.py
C2.py
py
459
python
en
code
0
github-code
6
36317150759
import numpy as np def P_generator(MatingPool,Boundary,Coding,MaxOffspring): # % 交叉, 变异并生成新的种群 # % 输入: MatingPool, 交配池, 其中每第i个和第i + 1 # 个个体交叉产生两个子代, i为奇数 # % Boundary, 决策空间, 其第一行为空间中每维的上界, 第二行为下界 # % Coding, 编码方式, 不同的编码方式采用不同的交叉变异方法 # % MaxOffspring, 返回的子代数目, 若缺省则返回所有产生的子代, 即和交配池的大小相同 # % 输出: Offspring, 产生的子代新种群 N, D = MatingPool.shape if MaxOffspring < 1 or MaxOffspring > N: MaxOffspring = N if Coding == "Real": ProC = 1 ProM = 1/D DisC = 20 DisM = 20 Offspring = np.zeros((N, D)) for i in range(0,N,2): beta = np.zeros((D,)) miu = np.random.random((D,)) #np.random.rand(D,) beta[miu <= 0.5] = (2 * miu[miu <= 0.5])**(1/(DisC+1)) beta[miu > 0.5] = (2-2 * miu[miu > 0.5]) ** (-1 / (DisC + 1)) beta = beta * ((-1) ** (np.random.randint(0, 2, (D,)))) beta[np.random.random((D,)) > ProC] = 1 Offspring[i, :] = ((MatingPool[i, :] + MatingPool[i+1, :] )/2) + (np.multiply(beta, (MatingPool[i, :] - MatingPool[i+1, :])/2 )) Offspring[i+1, :] = ((MatingPool[i, :] + MatingPool[i+1, :] )/2) - (np.multiply(beta, (MatingPool[i, :] - MatingPool[i+1, :])/2 )) Offspring_temp = Offspring[:MaxOffspring,:] # print(range(MaxOffspring,Offspring.shape[0])) # np.delete(Offspring, range(MaxOffspring,Offspring.shape[0]), axis=0) 并没有真正的对 对象进行操作,仅仅你是个浅操作 Offspring = Offspring_temp if MaxOffspring == 1: MaxValue = Boundary[0,:] MinValue = Boundary[1,:] else: MaxValue = np.tile(Boundary[0,:],(MaxOffspring,1)) MinValue = np.tile(Boundary[1,:],(MaxOffspring,1)) #np.bitwise_and 用于矩阵的逻辑运算 k = np.random.random((MaxOffspring, D)) miu = np.random.random((MaxOffspring, D)) Temp = np.bitwise_and(k <= ProM, miu <0.5) Offspring[Temp] = Offspring[Temp] + np.multiply((MaxValue[Temp] - MinValue[Temp]), ((2 * miu[Temp] + np.multiply( 1 - 2 * miu[Temp], (1 - (Offspring[Temp] - MinValue[Temp]) / (MaxValue[Temp] - MinValue[Temp])) ** (DisM + 1))) ** (1 / ( DisM + 1)) - 1)) Temp = np.bitwise_and(k <= ProM, miu >= 0.5) Offspring[Temp] = Offspring[Temp] + np.multiply((MaxValue[Temp] - MinValue[Temp]), (1-((2 *(1-miu[Temp])) + np.multiply( 2 * (miu[Temp]-0.5), (1 - (MaxValue[Temp] - Offspring[Temp]) / (MaxValue[Temp] - MinValue[Temp])) ** (DisM + 1))) ** (1 / ( DisM + 1)) )) Offspring[Offspring > MaxValue] = MaxValue[Offspring>MaxValue] Offspring[Offspring < MinValue] = MinValue[Offspring < MinValue] elif Coding == "Binary": Offspring = [] return Offspring
DevilYangS/NSGA-II-python
NSGA_II/public/P_generator.py
P_generator.py
py
3,156
python
en
code
5
github-code
6
35782338526
#%% import numpy as np import matplotlib.pyplot as plt #%% x = np.arange(0, 6 * np.pi, 0.025) y_true = np.sin(x) y = y_true + np.random.normal(scale=1, size=len(x)) plt.scatter(x, y, color="k") plt.plot(x, y_true, color="red") #%% np.random.seed(42) from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.ensemble import RandomForestRegressor model = HistGradientBoostingRegressor(random_state=42, max_iter=20, max_leaf_nodes=64, min_samples_leaf=30) model.fit(x.reshape(-1, 1), y) preds = model.predict(x.reshape(-1, 1)) plt.scatter(x, y) plt.plot(x, preds, color="red") #%% def gen_one_frame(use_fraction: float, left_to_right: bool): use_fraction = round(use_fraction, 3) print(use_fraction) if left_to_right: visible_idx = np.arange(0, len(preds) * use_fraction).astype("int") else: visible_idx = np.arange(len(preds) * use_fraction, len(preds)).astype("int") fig, ax = plt.subplots(figsize=(10, 5)) ax.scatter(x, y, color="k", alpha=0.1) ax.plot(x[visible_idx], preds[visible_idx], color="blue") ax.set_title(f"frac = {use_fraction}") fig.savefig( f"ML-Basics/frames/{'ltr' if left_to_right else 'rtl'}_frame_{use_fraction}.png" ) plt.close() for f in np.arange(0.01, 1, 0.005): gen_one_frame(use_fraction=f, left_to_right=True) for f in np.arange(0.01, 1, 0.005): gen_one_frame(use_fraction=f, left_to_right=False) #%% import glob from PIL import Image # filepaths fp_in = "ML-Basics/frames/*.png" fp_out = "ML-Basics/out_gif.gif" imgs = (Image.open(f) for f in sorted(glob.glob(fp_in))) img = next(imgs) # extract first image from iterator img.save(fp=fp_out, format="GIF", append_images=imgs, save_all=True, duration=100, loop=0)
moritzwilksch/DataScienceEducation
ML-Basics/fancy_gif.py
fancy_gif.py
py
1,801
python
en
code
1
github-code
6
70337573629
import math import copy import numpy as np import pprint import torch import torch.nn as nn import torch.nn.functional as F from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats import slowfast.models.losses as losses import slowfast.models.optimizer as optim import slowfast.utils.checkpoint as cu import slowfast.utils.distributed as du import slowfast.utils.logging as logging import slowfast.utils.metrics as metrics import slowfast.utils.misc as misc import slowfast.visualization.tensorboard_vis as tb from slowfast.datasets import loader from slowfast.datasets.mixup import MixUp from slowfast.models import build_model from slowfast.utils.meters import EpochTimer, TrainMeter, ValMeter, AdaMeter logger = logging.get_logger(__name__) def train_epoch( train_loaders, model, optimizers, scaler, train_meter, cur_epoch, cfg, writer=None, ): """ Perform the video training for one epoch. Args: train_loaders (list of loader): source and target video training loader. model (model): the video model to train. optimizer (optim): the optimizer to perform optimization on the model's parameters. train_meter (TrainMeter): training meters to log the training performance. cur_epoch (int): current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ source_loader = train_loaders[0] target_unl_loader = train_loaders[1] if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: target_lab_loader = train_loaders[2] optimizer_f, optimizer_c = optimizers[0], optimizers[1] # Enable train mode. model.train() train_meter.iter_tic() data_size = len(source_loader) target_unl_iter = iter(target_unl_loader) target_unl_size = len(target_unl_loader) if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: target_lab_iter = iter(target_lab_loader) target_lab_size = len(target_lab_loader) for cur_iter, (inputs_source, labels_source, _, _) in enumerate(source_loader): # Load the data. if cur_iter%target_unl_size==0: target_unl_iter = iter(target_unl_loader) inputs_target_unl, labels_target_unl, _, _ = next(target_unl_iter) if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: if cur_iter%target_lab_size==0: target_lab_iter = iter(target_lab_loader) inputs_target_lab, labels_target_lab, _, _ = next(target_lab_iter) # Transfer the data to the current GPU device. for i in range(len(inputs_source)): inputs_source[i] = inputs_source[i].cuda(non_blocking=True) inputs_target_unl[i] = inputs_target_unl[i].cuda(non_blocking=True) labels_source = labels_source.cuda() labels_target_unl = labels_target_unl.cuda() if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: for i in range(len(inputs_source)): inputs_target_lab[i] = inputs_target_lab[i].cuda(non_blocking=True) labels_target_lab = labels_target_lab.cuda() # Update the learning rate. lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg) optim.set_lr(optimizer_f, lr) optim.set_lr(optimizer_c, lr) train_meter.data_toc() source_weak = inputs_source[1] source_strong = inputs_source[0] target_unl_weak = inputs_target_unl[1] target_unl_strong = inputs_target_unl[0] if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: target_lab_weak = inputs_target_lab[1] target_lab_strong = inputs_target_lab[0] if not cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: lab_inputs = [source_strong] lab_labels = labels_source unl_inputs = [target_unl_weak] unl_labels = labels_target_unl else: lab_inputs = [torch.cat((source_strong, target_lab_strong), dim=0)] lab_labels = torch.cat((labels_source, labels_target_lab), dim=0) unl_inputs = [target_unl_weak] unl_labels = labels_target_unl with torch.cuda.amp.autocast(enabled=cfg.TRAIN.MIXED_PRECISION): # Step A train all networks to minimize loss on source domain optimizer_f.zero_grad() optimizer_c.zero_grad() lab_preds, lab_feats = model(lab_inputs) criterion = nn.CrossEntropyLoss() loss_s = criterion(lab_preds, lab_labels) loss_s.backward() optimizer_f.step() optimizer_c.step() # Step B train classifier to maximize discrepancy optimizer_f.zero_grad() optimizer_c.zero_grad() unl_preds, unl_feats = model(unl_inputs, reverse=True) new_preds = F.softmax(unl_preds, dim=1) loss_h = cfg.MME.LAMBDA * torch.mean( torch.sum(new_preds * (torch.log(new_preds + 1e-5)), 1)) loss_h.backward() optimizer_f.step() optimizer_c.step() prototypes = model.module.head.weight.clone().detach() # Compute the errors. num_topks_correct = metrics.topks_correct(lab_preds, lab_labels, (1, 5)) top1_err, top5_err = [ (1.0 - x / lab_preds.size(0)) * 100.0 for x in num_topks_correct ] # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss_s, loss_h, top1_err, top5_err = du.all_reduce( [loss_s, loss_h, top1_err, top5_err] ) # Copy the stats from GPU to CPU (sync point). loss_s, loss_h, top1_err, top5_err = ( loss_s.item(), loss_h.item(), top1_err.item(), top5_err.item() ) batch_size = inputs_source[0].size(0)*max(cfg.NUM_GPUS, 1) # Update and log stats. train_meter.update_stats( top1_err, top5_err, loss_s, lr, batch_size, ) # write to tensorboard format if available. if writer is not None: dict2write = { "Train/loss_s": loss_s, "Train/loss_h": -loss_h, "Train/lr": lr, "Train/Top1_err": top1_err, "Train/Top5_err": top5_err, } writer.add_scalars(dict2write, global_step=data_size * cur_epoch + cur_iter) if cfg.TENSORBOARD.DIST_VIS.ENABLE and (data_size * cur_epoch + cur_iter)%cfg.TENSORBOARD.DIST_VIS.LOG_PERIOD==1: writer.add_confusion_matrix( torch.argmax(torch.cat(train_meter.all_source_weak, dim=0), dim=1), torch.cat(train_meter.all_source_labels, dim=0), tag="Confusion/Labeled", global_step=data_size * cur_epoch + cur_iter ) writer.add_confusion_matrix( torch.argmax(torch.cat(train_meter.all_target_weak, dim=0), dim=1), torch.cat(train_meter.all_target_labels, dim=0), tag="Confusion/Unlabeled", global_step=data_size * cur_epoch + cur_iter ) if cfg.TENSORBOARD.SAMPLE_VIS.ENABLE and (data_size * cur_epoch + cur_iter)%cfg.TENSORBOARD.SAMPLE_VIS.LOG_PERIOD==0: writer.add_video_pred( lab_inputs[0], torch.argmax(lab_preds, dim=1), lab_labels, tag="Sample/Source", global_step = data_size * cur_epoch + cur_iter, ) writer.add_video_pred( unl_inputs[0], torch.argmax(unl_preds, dim=1), unl_labels, tag="Sample/Target", global_step = data_size * cur_epoch + cur_iter, ) train_meter.iter_toc() # measure allreduce for this meter train_meter.update_predictions( lab_preds, lab_feats, lab_labels, unl_preds, unl_feats, unl_labels, prototypes, ) train_meter.log_iter_stats(cur_epoch, cur_iter) torch.cuda.synchronize() train_meter.iter_tic() del inputs_source, inputs_target_unl, labels_source, labels_target_unl if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: del inputs_target_lab, labels_target_lab # in case of fragmented memory torch.cuda.empty_cache() # Log epoch stats. train_meter.log_epoch_stats(cur_epoch) # write to tensorboard format if available. if writer is not None: if cfg.TENSORBOARD.EPOCH_LOG.ENABLE: writer.writer.add_scalars( "Error/Top1_err", {"Train": train_meter.num_top1_mis / train_meter.num_samples}, global_step=cur_epoch ) writer.writer.add_scalars( "Error/Top5_err", {"Train": train_meter.num_top5_mis / train_meter.num_samples}, global_step=cur_epoch ) if cfg.TENSORBOARD.CONFUSION_MATRIX.ENABLE: all_preds = [pred.clone().detach() for pred in train_meter.all_source_strong] all_labels = [label.clone().detach() for label in train_meter.all_source_labels] all_preds = [pred.cpu() for pred in all_preds] all_labels = [label.cpu() for label in all_labels] writer.plot_eval( preds=all_preds, labels=all_labels, global_step=cur_epoch, tag="Confusion/Train" ) train_meter.reset() @torch.no_grad() def eval_epoch( val_loader, model, val_meter, cur_epoch, cfg, writer=None ): """ Evaluate the model on the val set. Args: val_loader (loader): data loader to provide validation data. model (model): model to evaluate the performance. val_meter (ValMeter): meter instance to record and calculate the metrics. cur_epoch (int): number of the current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Evaluation mode enabled. The running stats would not be updated. model.eval() val_meter.iter_tic() for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader): if cfg.NUM_GPUS: # Transferthe data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) labels = labels.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) val_meter.data_toc() preds, _ = model(inputs) if cfg.DATA.MULTI_LABEL: if cfg.NUM_GPUS > 1: preds, labels = du.all_gather([preds, labels]) else: # Compute the errors. num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) # Combine the errors across the GPUs. top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] if cfg.NUM_GPUS > 1: top1_err, top5_err = du.all_reduce([top1_err, top5_err]) # Copy the errors from GPU to CPU (sync point). top1_err, top5_err = top1_err.item(), top5_err.item() val_meter.iter_toc() # Update and log stats. val_meter.update_stats( top1_err, top5_err, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), # If running on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU. ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Val/Top1_err": top1_err, "Val/Top5_err": top5_err}, global_step=len(val_loader) * cur_epoch + cur_iter, ) if cfg.TENSORBOARD.SAMPLE_VIS.ENABLE and (len(val_loader) * cur_epoch + cur_iter)%cfg.TENSORBOARD.SAMPLE_VIS.LOG_PERIOD==0: writer.add_video_pred( inputs[0], torch.argmax(preds, dim=1), labels, tag="Sample/Val", global_step = len(val_loader) * cur_epoch + cur_iter, ) val_meter.update_predictions(preds, labels) val_meter.log_iter_stats(cur_epoch, cur_iter) val_meter.iter_tic() # Log epoch stats. val_meter.log_epoch_stats(cur_epoch) # write to tensorboard format if available. if writer is not None: if cfg.TENSORBOARD.EPOCH_LOG.ENABLE: writer.writer.add_scalars( "Error/Top1_err", {"Val": val_meter.num_top1_mis / val_meter.num_samples}, global_step=cur_epoch ) writer.writer.add_scalars( "Error/Top5_err", {"Val": val_meter.num_top5_mis / val_meter.num_samples}, global_step=cur_epoch ) if cfg.TENSORBOARD.CONFUSION_MATRIX.ENABLE: all_preds = [pred.clone().detach() for pred in val_meter.all_preds] all_labels = [ label.clone().detach() for label in val_meter.all_labels ] if cfg.NUM_GPUS: all_preds = [pred.cpu() for pred in all_preds] all_labels = [label.cpu() for label in all_labels] writer.plot_eval( preds=all_preds, labels=all_labels, global_step=cur_epoch, tag="Confusion/Val" ) val_meter.reset() def calculate_and_update_precise_bn(loader, model, num_iters=200, use_gpu=True): """ Update the stats in bn layers by calculate the precise stats. Args: loader (loader): data loader to provide training data. model (model): model to update the bn stats. num_iters (int): number of iterations to compute and update the bn stats. use_gpu (bool): whether to use GPU or not. """ def _gen_loader(): for inputs, *_ in loader: if use_gpu: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) yield inputs # Update the bn stats. update_bn_stats(model, _gen_loader(), num_iters) def train(cfg): """ Train a video model for many epochs on train set and evaluate it on val set. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Set up environment. du.init_distributed_training(cfg) # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Print config. logger.info("Train with config:") logger.info(pprint.pformat(cfg)) # Build the video model and print model statistics. cfg.EXTRACT.ENABLE = True cfg.SWIN.TEMP = cfg.MME.TEMP cfg.SWIN.ETA = cfg.MME.ETA model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. sub_modules = [] if cfg.NUM_GPUS > 1: for name, sub_module in model.module.named_modules(): if name!="head": sub_modules.append(sub_module) else: for name, sub_module in model.named_modules(): if name!="head": sub_modules.append(sub_module) backbone = nn.Sequential(*sub_modules) classifier = model.module.get_submodule("head") optimizer_f = optim.construct_optimizer(backbone, cfg) optimizer_c = optim.construct_optimizer(classifier, cfg) optimizers = [optimizer_f, optimizer_c] # Create a GradScaler for mixed precision training scaler = torch.cuda.amp.GradScaler(enabled=cfg.TRAIN.MIXED_PRECISION) # Load a checkpoint to resume training if applicable. start_epoch = cu.load_train_checkpoint(cfg, model, optimizer_f, scaler if cfg.TRAIN.MIXED_PRECISION else None) # Create the video train and val loaders. if cfg.ADAPTATION.SEMI_SUPERVISED.ENABLE: source_cfg = copy.deepcopy(cfg) source_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.SOURCE source_cfg.DATA.IMDB_FILES.VAL = cfg.ADAPTATION.TARGET source_loader = loader.construct_loader(source_cfg, "train") val_loader = loader.construct_loader(source_cfg, "val") target_lab_cfg = copy.deepcopy(cfg) target_lab_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.TARGET target_lab_cfg.DATA.IMDB_FILES.VAL = cfg.ADAPTATION.SOURCE target_lab_cfg.TRAIN.BATCH_SIZE = int(cfg.ADAPTATION.ALPHA * source_cfg.TRAIN.BATCH_SIZE) target_lab_loader = loader.construct_loader(target_lab_cfg, "lab") target_unl_cfg = copy.deepcopy(cfg) target_unl_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.TARGET target_unl_cfg.DATA.IMDB_FILES.VAL = cfg.ADAPTATION.SOURCE target_unl_cfg.TRAIN.BATCH_SIZE = int(cfg.ADAPTATION.BETA * source_cfg.TRAIN.BATCH_SIZE) target_unl_loader = loader.construct_loader(target_unl_cfg, "unl") bn_cfg = copy.deepcopy(cfg) bn_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.SOURCE + cfg.ADAPTATION.TARGET bn_cfg.ADAMATCH.ENABLE = False precise_bn_loader = ( loader.construct_loader(bn_cfg, "train", is_precise_bn=True) if cfg.BN.USE_PRECISE_STATS else None ) train_loaders = [source_loader, target_unl_loader, target_lab_loader] else: source_cfg = copy.deepcopy(cfg) source_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.SOURCE source_cfg.DATA.IMDB_FILES.VAL = cfg.ADAPTATION.TARGET source_loader = loader.construct_loader(source_cfg, "train") val_loader = loader.construct_loader(source_cfg, "val") target_unl_cfg = copy.deepcopy(cfg) target_unl_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.TARGET target_unl_cfg.DATA.IMDB_FILES.VAL = cfg.ADAPTATION.SOURCE target_unl_cfg.TRAIN.BATCH_SIZE = int(cfg.ADAPTATION.BETA * source_cfg.TRAIN.BATCH_SIZE) target_unl_loader = loader.construct_loader(target_unl_cfg, "train") bn_cfg = copy.deepcopy(cfg) bn_cfg.DATA.IMDB_FILES.TRAIN = cfg.ADAPTATION.SOURCE + cfg.ADAPTATION.TARGET bn_cfg.ADAMATCH.ENABLE = False precise_bn_loader = ( loader.construct_loader(bn_cfg, "train", is_precise_bn=True) if cfg.BN.USE_PRECISE_STATS else None ) train_loaders = [source_loader, target_unl_loader] # Create meters. train_meter = AdaMeter(len(train_loaders[0]), cfg) val_meter = ValMeter(len(val_loader), cfg) # set up writer for logging to Tensorboard format. if cfg.TENSORBOARD.ENABLE and du.is_master_proc( cfg.NUM_GPUS * cfg.NUM_SHARDS ): writer = tb.TensorboardWriter(cfg) else: writer = None # Perform the training loop. logger.info("Start epoch: {}".format(start_epoch + 1)) epoch_timer = EpochTimer() for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH): # Shuffle the dataset. for train_loader in train_loaders: loader.shuffle_dataset(train_loader, cur_epoch) # Train for one epoch. epoch_timer.epoch_tic() train_epoch( train_loaders, model, optimizers, scaler, train_meter, cur_epoch, cfg, writer, ) epoch_timer.epoch_toc() logger.info( f"Epoch {cur_epoch} takes {epoch_timer.last_epoch_time():.2f}s. Epochs " f"from {start_epoch} to {cur_epoch} take " f"{epoch_timer.avg_epoch_time():.2f}s in average and " f"{epoch_timer.median_epoch_time():.2f}s in median." ) logger.info( f"For epoch {cur_epoch}, each iteraction takes " f"{epoch_timer.last_epoch_time()/len(train_loaders[0]):.2f}s in average. " f"From epoch {start_epoch} to {cur_epoch}, each iteraction takes " f"{epoch_timer.avg_epoch_time()/len(train_loaders[0]):.2f}s in average." ) is_checkp_epoch = cu.is_checkpoint_epoch( cfg, cur_epoch, None ) is_eval_epoch = misc.is_eval_epoch( cfg, cur_epoch, None ) # Compute precise BN stats. if ( (is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0 ): calculate_and_update_precise_bn( precise_bn_loader, model, min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)), cfg.NUM_GPUS > 0, ) _ = misc.aggregate_sub_bn_stats(model) # Save a checkpoint. if is_checkp_epoch: cu.save_checkpoint( cfg.OUTPUT_DIR, model, optimizer_f, cur_epoch, cfg, scaler if cfg.TRAIN.MIXED_PRECISION else None, ) # Evaluate the model on validation set. if is_eval_epoch: eval_epoch( val_loader, model, val_meter, cur_epoch, cfg, writer, ) if writer is not None: writer.close() raise SystemExit('Training Ends')
alimottaghi/slowfast
tools/train_mme.py
train_mme.py
py
22,644
python
en
code
0
github-code
6
26225206883
# Unedited def reallocate(banks): n = len(banks) i = banks.argmax() k = banks[i] banks[i] = 0 for j in range(1, k + 1): banks[(i + j) % n] += 1 k -= 1 counter = 0 while True: reallocate(banks) counter += 1 tup = tuple(banks) if tup in tracker: print(counter, tracker[tup], counter - tracker[tup]) break else: tracker[tup] = counter
pirsquared/Advent-of-Code
2017/Day06.py
Day06.py
py
415
python
en
code
1
github-code
6
23061764300
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import urllib.request import re import os import random import time from time import sleep import json from collections import OrderedDict def dropSameListEle(inList): outList=[] for x in inList: if x not in outList and x != '': outList.append(x) return outList class FWIKI: #初始化,传入起始页码,截止页码 def __init__(self): self.baseUrl="http://fgowiki.com/guide/petdetail/" #抓取页面 def getPage(self,url): try: request=urllib.request.Request(url) response=urllib.request.urlopen(request) page=response.read().decode('utf-8') return page except (urllib.request.URLError,e): print('erro') if hasattr(e,'reason'): print('reason',e.reason) return None #提取信息 def getInf(self,regExpress,page,pos): pattern=re.compile(regExpress,re.S) result=re.search(pattern,page) if result: result = result.group(pos).strip() result = re.sub(r'・',r'·',result) result = re.sub(r'〔(.*?)〕',r'(\1)',result) result = re.sub(r'((.*?))',r'(\1)',result) return result else: return None f=FWIKI() whiteList=[83,149,151,152,168] startPage=1 endPage=182 skillList=[] pSkillList=[] NPList=[] nameDict=OrderedDict() while startPage<=endPage: try: if startPage in whiteList: startPage = startPage + 1 continue url=f.baseUrl+str(startPage) page=f.getPage(url) page=page.encode().decode('unicode_escape') name=f.getInf(r'"NAME":"(.*?)"',page,1) nameDict[startPage]=name skill=f.getInf(r'"SKILL_R1":"(.*?)"',page,1) skillList.append(skill) skill=f.getInf(r'"SKILL_R2":"(.*?)"',page,1) skillList.append(skill) skill=f.getInf(r'"SKILL_R3":"(.*?)"',page,1) skillList.append(skill) np= f.getInf(r'"T_NAME":"(.*?)"',page,1) np = re.sub(r'\(.*?\)','',np) NPList.append(np) pSkill=f.getInf(r'"CSKILL_R1":"(.*?)"',page,1) pSkillList.append(pSkill) pSkill=f.getInf(r'"CSKILL_R2":"(.*?)"',page,1) pSkillList.append(pSkill) pSkill=f.getInf(r'"CSKILL_R3":"(.*?)"',page,1) pSkillList.append(pSkill) pSkill=f.getInf(r'"CSKILL_R4":"(.*?)"',page,1) pSkillList.append(pSkill) print(str(startPage)) if startPage <= endPage: sleep(random.uniform(3,5)) startPage = startPage + 1 except Exception as e: print('Error:',e) if startPage<=endPage: sleep(random.uniform(2,3)) NPList=dropSameListEle(NPList) skillList=dropSameListEle(skillList) pSkillList=dropSameListEle(pSkillList) lines='var servantsDict = {\n' for x in nameDict: lines+='\t"'+str(x)+'" : "'+nameDict[x]+'",\n' lines+='};\n\n\n\n' lines+='var noblePhantasmsDict = {\n' for x in NPList: lines+='\t"" : "'+str(x)+'",\n' lines+='};\n\n\n\n' lines+='var skillsDict = {\n' for x in skillList: lines+='\t"" : "'+str(x)+'",\n' lines+='};\n\n\n\n' lines+='var passiveSkillsDict = {\n' for x in pSkillList: lines+='\t"" : "'+str(x)+'",\n' lines+='};\n\n\n\n' with open('servants_new.json','w+',encoding='utf-8') as wpoint: wpoint.write(lines) print('Task is finished!')
pplost/for-test
tools/新建文件夹/fetch - 副本.py
fetch - 副本.py
py
3,180
python
en
code
0
github-code
6
34508776850
# https://practice.geeksforgeeks.org/problems/maximum-index-1587115620/1/?track=md-arrays&batchId=144 def max_index(a,n ): max_diff = -1 for i in range(n): j = n-1 while i < j: if a[i] <=a[j] and max_diff < (j-i): max_diff = j-i j = j-1 return max_diff # For a given array arr[], # returns the maximum j - i # such that arr[j] > arr[i] def maxIndexDiff(arr, n): maxDiff = 0; LMin = [0] * n RMax = [0] * n # Construct LMin[] such that # LMin[i] stores the minimum # value from (arr[0], arr[1], # ... arr[i]) LMin[0] = arr[0] for i in range(1, n): LMin[i] = min(arr[i], LMin[i - 1]) # Construct RMax[] such that # RMax[j] stores the maximum # value from (arr[j], arr[j + 1], # ..arr[n-1]) RMax[n - 1] = arr[n - 1] for j in range(n - 2, -1, -1): RMax[j] = max(arr[j], RMax[j + 1]); # Traverse both arrays from left # to right to find optimum j - i # This process is similar to # merge() of MergeSort i, j = 0, 0 maxDiff = -1 while (j < n and i < n): if (LMin[i] <= RMax[j]): maxDiff = max(maxDiff, j - i) j = j + 1 else: i = i + 1 return maxDiff if __name__ == "__main__": a = [9, 2, 3, 4, 5, 6, 7, 8, 18, 0] print(maxIndexDiff(a, len(a)))
ved93/deliberate-practice-challenges
code-everyday-challenge/n195_max_index.py
n195_max_index.py
py
1,399
python
en
code
0
github-code
6
19115978156
s = input() count = 0 for i in s: if i == 'R': count += 1 elif i != 'R' and count == 0: continue else: break print(count) ''' #alternative solution S = input() print(S.count("R") if S.count("R") != 2 else 2 if S[1] == "R" else 1)#See separate sheet '''
NPE-NPE/code
python/abc/175/a.py
a.py
py
290
python
en
code
0
github-code
6
21844969705
texts = [] for i in range(4): text = input() texts.append(text) length = int(input("Enter length you want to check: ")) is_found = False for i in texts: if length > len(i): is_found = True else: is_found = False if is_found: print("Available") else: print("Unavailable")
Areg14/DroneEduLab
Lesson12/Problem6.py
Problem6.py
py
313
python
en
code
0
github-code
6
2518952492
# 删除一个字符串所有的a,并复制所有的b def str_remove(str): n = len(str) count = 0 i = 0 j = 0 while i < len(str): if str[i] == "a": str= str[:i] + str[i+1:] i -=1 i +=1 while j < len(str): if str[j] =="b": count +=1 j +=1 return str,count # 节省了空间但是改变了原来数组的顺序 def str_remove_array(str): str = list(str) i = 0 j = 0 count = 0 while i <len(str): if str[i] == "a": str[i]=str[-1] str.pop() i -=1 i +=1 while j <len(str): if str[j] =="b": count +=1 j +=1 return "".join(str),count def space(str): i = 0 while i < len(str): if str[i] ==" ": str = str[:i] +"%20"+str[i+1:] i -=1 i+=1 return str if __name__ == '__main__': a = " b cdefagabdb " # str,count = str_remove_array(a) # print(str) # print(count) b = space(a) print(b)
youyuebingchen/Algorithms
qiyue_alg/str_02.py
str_02.py
py
1,054
python
en
code
0
github-code
6
9179526990
import os import stat import string from absl.testing import absltest from src.test.py.bazel import test_base # pylint: disable=g-import-not-at-top if os.name == 'nt': import win32api class LauncherTest(test_base.TestBase): def _buildJavaTargets(self, bazel_bin, binary_suffix): self.RunBazel(['build', '//foo']) main_binary = os.path.join(bazel_bin, 'foo/foo%s' % binary_suffix) self.assertTrue(os.path.isfile(main_binary)) self.assertTrue( os.path.isdir( os.path.join(bazel_bin, 'foo/foo%s.runfiles' % binary_suffix))) if self.IsWindows(): self.assertTrue(os.path.isfile(main_binary)) self.AssertRunfilesManifestContains( os.path.join( bazel_bin, 'foo/foo%s.runfiles/MANIFEST' % binary_suffix ), '_main/bar/bar.txt', ) else: self.assertTrue( os.path.islink( os.path.join(bazel_bin, 'foo/foo.runfiles/_main/bar/bar.txt') ) ) _, stdout, _ = self.RunProgram([main_binary]) self.assertEqual(len(stdout), 4) self.assertEqual(stdout[0], 'hello java') if self.IsWindows(): self.assertRegexpMatches( stdout[1], r'java_runfiles=.*foo\\foo%s.runfiles' % binary_suffix) self.assertEqual(stdout[2], 'runfiles_manifest_only=1') self.assertRegexpMatches( stdout[3], r'^runfiles_manifest_file=[a-zA-Z]:[/\\].*MANIFEST$') else: self.assertRegexpMatches(stdout[1], r'java_runfiles=.*/foo/foo.runfiles') self.assertEqual(stdout[2], 'runfiles_manifest_only=') self.assertRegexpMatches(stdout[3], r'^runfiles_manifest_file.*MANIFEST$') def _buildShBinaryTargets(self, bazel_bin, bin1_suffix): self.RunBazel(['build', '//foo:bin1.sh']) bin1 = os.path.join(bazel_bin, 'foo', 'bin1.sh%s' % bin1_suffix) self.assertTrue(os.path.exists(bin1)) self.assertTrue( os.path.isdir( os.path.join(bazel_bin, 'foo/bin1.sh%s.runfiles' % bin1_suffix))) self.RunBazel(['build', '//foo:bin2.cmd']) bin2 = os.path.join(bazel_bin, 'foo/bin2.cmd') self.assertTrue(os.path.exists(bin2)) self.assertTrue( os.path.isdir(os.path.join(bazel_bin, 'foo/bin2.cmd.runfiles'))) exit_code, _, stderr = self.RunBazel( ['build', '//foo:bin3.bat'], allow_failure=True ) if self.IsWindows(): self.AssertExitCode(exit_code, 1, stderr) self.assertIn('target name extension should match source file extension', os.linesep.join(stderr)) else: bin3 = os.path.join(bazel_bin, 'foo', 'bin3.bat') self.assertTrue(os.path.exists(bin3)) self.assertTrue( os.path.isdir(os.path.join(bazel_bin, 'foo/bin3.bat.runfiles'))) if self.IsWindows(): self.assertTrue(os.path.isfile(bin1)) self.assertTrue(os.path.isfile(bin2)) else: self.assertTrue(os.path.islink(bin1)) self.assertTrue(os.path.islink(bin2)) self.assertTrue(os.path.islink(bin3)) if self.IsWindows(): self.AssertRunfilesManifestContains( os.path.join( bazel_bin, 'foo/bin1.sh%s.runfiles/MANIFEST' % bin1_suffix ), '_main/bar/bar.txt', ) self.AssertRunfilesManifestContains( os.path.join(bazel_bin, 'foo/bin2.cmd.runfiles/MANIFEST'), '_main/bar/bar.txt', ) else: self.assertTrue( os.path.islink( os.path.join(bazel_bin, 'foo/bin1.sh.runfiles/_main/bar/bar.txt') ) ) self.assertTrue( os.path.islink( os.path.join(bazel_bin, 'foo/bin2.cmd.runfiles/_main/bar/bar.txt') ) ) self.assertTrue( os.path.islink( os.path.join(bazel_bin, 'foo/bin3.bat.runfiles/_main/bar/bar.txt') ) ) _, stdout, _ = self.RunProgram([bin1]) self.assertEqual(len(stdout), 3) self.assertEqual(stdout[0], 'hello shell') if self.IsWindows(): self.assertEqual(stdout[1], 'runfiles_manifest_only=1') self.assertRegexpMatches( stdout[2], (r'^runfiles_manifest_file=' r'[a-zA-Z]:/.*/foo/bin1.sh%s.runfiles/MANIFEST$' % bin1_suffix)) else: # TODO(laszlocsomor): Find out whether the runfiles-related envvars should # be set on Linux (e.g. $RUNFILES, $RUNFILES_MANIFEST_FILE). Currently # they aren't, and that may be a bug. If it's indeed a bug, fix that bug # and update this test. self.assertEqual(stdout[1], 'runfiles_manifest_only=') self.assertEqual(stdout[2], 'runfiles_manifest_file=') if self.IsWindows(): exit_code, stdout, stderr = self.RunProgram([bin2]) self.AssertExitCode(exit_code, 0, stderr) self.assertEqual(stdout[0], 'hello batch') def _buildPyTargets(self, bazel_bin, binary_suffix): # Verify that the build of our py_binary succeeds. self.RunBazel(['build', '//foo:foo']) # Verify that generated files exist. foo_bin = os.path.join(bazel_bin, 'foo', 'foo%s' % binary_suffix) self.assertTrue(os.path.isfile(foo_bin)) self.assertTrue( os.path.isdir( os.path.join(bazel_bin, 'foo/foo%s.runfiles' % binary_suffix))) # Verify contents of runfiles (manifest). if self.IsWindows(): self.AssertRunfilesManifestContains( os.path.join( bazel_bin, 'foo/foo%s.runfiles/MANIFEST' % binary_suffix ), '_main/bar/bar.txt', ) else: self.assertTrue( os.path.islink( os.path.join(bazel_bin, 'foo/foo.runfiles/_main/bar/bar.txt') ) ) # Try to run the built py_binary. _, stdout, _ = self.RunProgram([foo_bin]) self.assertEqual(stdout[0], 'Hello World!') # Try to use the py_binary as an executable in a Starlark rule. self.RunBazel(['build', '//foo:hello']) # Verify that the Starlark action generated the right output. hello_path = os.path.join(bazel_bin, 'foo', 'hello.txt') self.assertTrue(os.path.isfile(hello_path)) with open(hello_path, 'r') as f: self.assertEqual(f.read(), 'Hello World!') # Verify that running py_test succeeds. self.RunBazel(['test', '//foo:test']) def _buildAndCheckArgumentPassing(self, package, target_name): _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self.RunBazel(['build', '//%s:%s' % (package, target_name)]) bin_suffix = '.exe' if self.IsWindows() else '' bin1 = os.path.join(bazel_bin, package, '%s%s' % (target_name, bin_suffix)) self.assertTrue(os.path.exists(bin1)) self.assertTrue( os.path.isdir( os.path.join(bazel_bin, '%s/%s%s.runfiles' % (package, target_name, bin_suffix)))) arguments = ['a', 'a b', '"b"', 'C:\\a\\b\\', '"C:\\a b\\c\\"'] _, stdout, _ = self.RunProgram([bin1] + arguments) self.assertEqual(stdout, arguments) def testJavaBinaryLauncher(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'java_binary(', ' name = "foo",', ' srcs = ["Main.java"],', ' main_class = "Main",', ' data = ["//bar:bar.txt"],', ')', ]) self.ScratchFile('foo/Main.java', [ 'public class Main {', ' public static void main(String[] args) {' ' System.out.println("hello java");', ' System.out.println("java_runfiles=" + ', ' System.getenv("JAVA_RUNFILES"));', ' System.out.println("runfiles_manifest_only=" + ', ' System.getenv("RUNFILES_MANIFEST_ONLY"));', ' System.out.println("runfiles_manifest_file=" + ', ' System.getenv("RUNFILES_MANIFEST_FILE"));', ' }', '}', ]) self.ScratchFile('bar/BUILD', ['exports_files(["bar.txt"])']) self.ScratchFile('bar/bar.txt', ['hello']) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self._buildJavaTargets(bazel_bin, '.exe' if self.IsWindows() else '') def testJavaBinaryArgumentPassing(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'java_binary(', ' name = "bin",', ' srcs = ["Main.java"],', ' main_class = "Main",', ')', ]) self.ScratchFile('foo/Main.java', [ 'public class Main {', ' public static void main(String[] args) {' ' for (String arg : args) {', ' System.out.println(arg);', ' }' ' }', '}', ]) self._buildAndCheckArgumentPassing('foo', 'bin') def testShBinaryLauncher(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile( 'foo/BUILD', [ # On Linux/MacOS, all sh_binary rules generate an output file with # the same name as the rule, and this is a symlink to the file in # `srcs`. (Bazel allows only one file in `sh_binary.srcs`.) # On Windows, if the srcs's extension is one of ".exe", ".cmd", or # ".bat", then Bazel requires the rule's name has the same # extension, and the output file will be a copy of the source file. 'sh_binary(', ' name = "bin1.sh",', ' srcs = ["foo.sh"],', ' data = ["//bar:bar.txt"],', ')', 'sh_binary(', ' name = "bin2.cmd",', # name's extension matches that of srcs[0] ' srcs = ["foo.cmd"],', ' data = ["//bar:bar.txt"],', ')', 'sh_binary(', ' name = "bin3.bat",', # name's extension doesn't match srcs[0]'s ' srcs = ["foo.cmd"],', ' data = ["//bar:bar.txt"],', ')', ]) foo_sh = self.ScratchFile('foo/foo.sh', [ '#!/bin/bash', 'echo hello shell', 'echo runfiles_manifest_only=${RUNFILES_MANIFEST_ONLY:-}', 'echo runfiles_manifest_file=${RUNFILES_MANIFEST_FILE:-}', ]) foo_cmd = self.ScratchFile('foo/foo.cmd', ['@echo hello batch']) self.ScratchFile('bar/BUILD', ['exports_files(["bar.txt"])']) self.ScratchFile('bar/bar.txt', ['hello']) os.chmod(foo_sh, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) os.chmod(foo_cmd, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self._buildShBinaryTargets(bazel_bin, '.exe' if self.IsWindows() else '') def testShBinaryArgumentPassing(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'sh_binary(', ' name = "bin",', ' srcs = ["bin.sh"],', ')', ]) foo_sh = self.ScratchFile('foo/bin.sh', [ '#!/bin/bash', '# Store arguments in a array', 'args=("$@")', '# Get the number of arguments', 'N=${#args[@]}', '# Echo each argument', 'for (( i=0;i<$N;i++)); do', ' echo ${args[${i}]}', 'done', ]) os.chmod(foo_sh, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) self._buildAndCheckArgumentPassing('foo', 'bin') def testPyBinaryLauncher(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile( 'foo/foo.bzl', [ 'def _impl(ctx):', ' ctx.actions.run(', ' arguments=[ctx.outputs.out.path],', ' outputs=[ctx.outputs.out],', ' executable=ctx.executable._hello_world,', ' use_default_shell_env=True)', '', 'helloworld = rule(', ' implementation=_impl,', ' attrs={', ' "srcs": attr.label_list(allow_files=True),', ' "out": attr.output(mandatory=True),', ' "_hello_world": attr.label(executable=True, cfg="exec",', ' allow_files=True,', ' default=Label("//foo:foo"))', ' }', ')', ], ) self.ScratchFile('foo/BUILD', [ 'load(":foo.bzl", "helloworld")', '', 'py_binary(', ' name = "foo",', ' srcs = ["foo.py"],', ' data = ["//bar:bar.txt"],', ')', '', 'py_test(', ' name = "test",', ' srcs = ["test.py"],', ')', '', 'helloworld(', ' name = "hello",', ' out = "hello.txt",', ')' ]) foo_py = self.ScratchFile('foo/foo.py', [ '#!/usr/bin/env python3', 'import sys', 'if len(sys.argv) == 2:', ' with open(sys.argv[1], "w") as f:', ' f.write("Hello World!")', 'else:', ' print("Hello World!")', ]) test_py = self.ScratchFile('foo/test.py', [ '#!/usr/bin/env python3', 'import unittest', 'class MyTest(unittest.TestCase):', ' def test_dummy(self):', ' pass', 'if __name__ == \'__main__\':', ' unittest.main()', ]) self.ScratchFile('bar/BUILD', ['exports_files(["bar.txt"])']) self.ScratchFile('bar/bar.txt', ['hello']) os.chmod(foo_py, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) os.chmod(test_py, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self._buildPyTargets(bazel_bin, '.exe' if self.IsWindows() else '') def testPyBinaryArgumentPassing(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'py_binary(', ' name = "bin",', ' srcs = ["bin.py"],', ')', ]) self.ScratchFile('foo/bin.py', [ 'import sys', 'for arg in sys.argv[1:]:', ' print(arg)', ]) self._buildAndCheckArgumentPassing('foo', 'bin') def testPyBinaryLauncherWithDifferentArgv0(self): """Test for https://github.com/bazelbuild/bazel/issues/14343.""" self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'py_binary(', ' name = "bin",', ' srcs = ["bin.py"],', ')', ]) self.ScratchFile('foo/bin.py', ['print("Hello world")']) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] # Verify that the build of our py_binary succeeds. self.RunBazel(['build', '//foo:bin']) # Try to run the built py_binary. binary_suffix = '.exe' if self.IsWindows() else '' foo_bin = os.path.join(bazel_bin, 'foo', 'bin%s' % binary_suffix) args = [r'C:\Invalid.exe' if self.IsWindows() else '/invalid'] _, stdout, _ = self.RunProgram(args, executable=foo_bin) self.assertEqual(stdout[0], 'Hello world') def testWindowsJavaExeLauncher(self): # Skip this test on non-Windows platforms if not self.IsWindows(): return self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('foo/BUILD', [ 'java_binary(', ' name = "foo",', ' srcs = ["Main.java"],', ' main_class = "Main",', ' jvm_flags = ["--flag1", "--flag2"],', ' data = ["advice-1.jar", "advice-2.jar"],', ')', ]) self.ScratchFile('foo/advice-1.jar') self.ScratchFile('foo/advice-2.jar') self.ScratchFile('foo/Main.java', [ 'public class Main {', ' public static void main(String[] args) {', ' System.out.println("helloworld");', ' }', '}', ]) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self.RunBazel(['build', '//foo:foo']) binary = os.path.join(bazel_bin, 'foo', 'foo.exe') self.assertTrue(os.path.exists(binary)) # Add this flag to make launcher print the command it generated instead of # launching the real program. print_cmd = '--print_launcher_command' _, stdout, _ = self.RunProgram([binary, '--debug', print_cmd]) self.assertIn( '-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005', stdout) _, stdout, _ = self.RunProgram( [binary, '--debug', print_cmd], env_add={'DEFAULT_JVM_DEBUG_PORT': '12345'}, ) self.assertIn( '-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=12345', stdout) _, stdout, _ = self.RunProgram( [binary, '--debug=12345', print_cmd], env_add={ 'DEFAULT_JVM_DEBUG_SUSPEND': 'n', 'PERSISTENT_TEST_RUNNER': 'true', }, ) self.assertIn( '-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=12345' ',quiet=y', stdout) _, stdout, _ = self.RunProgram([binary, '--main_advice=MyMain', print_cmd]) self.assertIn('MyMain', stdout) _, stdout, _ = self.RunProgram([ binary, '--main_advice_classpath=foo/advice-1.jar;foo/advice-2.jar', print_cmd, ]) self.assertIn('-classpath', stdout) classpath = stdout[stdout.index('-classpath') + 1] self.assertIn('foo/advice-1.jar', classpath) self.assertIn('foo/advice-2.jar', classpath) _, stdout, _ = self.RunProgram( [binary, '--main_advice_classpath=C:\\foo\\bar', print_cmd] ) self.assertIn('-classpath', stdout) classpath = stdout[stdout.index('-classpath') + 1] self.assertIn('C:\\foo\\bar', classpath) _, stdout, _ = self.RunProgram( [binary, '--jvm_flag="--some_path="./a b/c""', print_cmd] ) self.assertIn('"--some_path=\\"./a b/c\\""', stdout) _, stdout, _ = self.RunProgram( [binary, '--jvm_flags="--path1=a --path2=b"', print_cmd] ) self.assertIn('--path1=a', stdout) self.assertIn('--path2=b', stdout) _, stdout, _ = self.RunProgram( [binary, print_cmd], env_add={'JVM_FLAGS': '--foo --bar'} ) self.assertIn('--flag1', stdout) self.assertIn('--flag2', stdout) self.assertIn('--foo', stdout) self.assertIn('--bar', stdout) exit_code, stdout, stderr = self.RunProgram( [binary, '--singlejar', print_cmd], allow_failure=True ) self.AssertExitCode(exit_code, 1, stderr) self.assertIn('foo_deploy.jar does not exist', ''.join(stderr)) self.RunBazel(['build', '//foo:foo_deploy.jar']) _, stdout, _ = self.RunProgram([binary, '--singlejar', print_cmd]) self.assertIn('-classpath', stdout) classpath = stdout[stdout.index('-classpath') + 1] self.assertIn('foo_deploy.jar', classpath) _, stdout, _ = self.RunProgram([binary, '--print_javabin']) self.assertIn('local_jdk/bin/java.exe', ''.join(stdout)) my_tmp_dir = self.ScratchDir('my/temp/dir') _, stdout, _ = self.RunProgram( [binary, print_cmd], env_add={'TEST_TMPDIR': my_tmp_dir} ) self.assertIn('-Djava.io.tmpdir=%s' % my_tmp_dir, stdout) _, stdout, _ = self.RunProgram([binary, '--classpath_limit=0', print_cmd]) self.assertIn('-classpath', stdout) classpath = stdout[stdout.index('-classpath') + 1] self.assertRegexpMatches(classpath, r'foo-[A-Za-z0-9]+-classpath.jar$') def testWindowsNativeLauncherInNonEnglishPath(self): if not self.IsWindows(): return self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('bin/BUILD', [ 'java_binary(', ' name = "bin_java",', ' srcs = ["Main.java"],', ' main_class = "Main",', ')', 'sh_binary(', ' name = "bin_sh",', ' srcs = ["main.sh"],', ')', ]) self.ScratchFile('bin/Main.java', [ 'public class Main {', ' public static void main(String[] args) {' ' System.out.println("helloworld");', ' }', '}', ]) self.ScratchFile('bin/main.sh', [ 'echo "helloworld"', ]) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self.RunBazel(['build', '//bin/...']) for f in [ 'bin_java.exe', 'bin_java.exe.runfiles_manifest', 'bin_sh.exe', 'bin_sh', 'bin_sh.exe.runfiles_manifest', ]: self.CopyFile(os.path.join(bazel_bin, 'bin', f), os.path.join(u'./\u6d4b\u8bd5', f)) unicode_binary_path = u'./\u6d4b\u8bd5/bin_java.exe' _, stdout, _ = self.RunProgram([unicode_binary_path]) self.assertEqual('helloworld', ''.join(stdout)) unicode_binary_path = u'./\u6d4b\u8bd5/bin_sh.exe' _, stdout, _ = self.RunProgram([unicode_binary_path]) self.assertEqual('helloworld', ''.join(stdout)) def testWindowsNativeLauncherInLongPath(self): if not self.IsWindows(): return self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile( 'bin/BUILD', [ 'java_binary(', ' name = "not_short_bin_java",', ' srcs = ["Main.java"],', ' main_class = "Main",', ')', 'sh_binary(', ' name = "not_short_bin_sh",', ' srcs = ["main.sh"],', ')', 'py_binary(', ' name = "not_short_bin_py",', ' srcs = ["not_short_bin_py.py"],', ')', ], ) self.ScratchFile('bin/Main.java', [ 'public class Main {', ' public static void main(String[] args) {' ' System.out.println("helloworld");', ' }', '}', ]) self.ScratchFile('bin/main.sh', [ 'echo "helloworld"', ]) self.ScratchFile( 'bin/not_short_bin_py.py', [ 'print("helloworld")', ], ) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] exit_code, _, stderr = self.RunBazel(['build', '//bin/...']) self.AssertExitCode(exit_code, 0, stderr) # Create a directory with a path longer than 260 long_dir_path = './' + '/'.join( [(c * 8 + '.' + c * 3) for c in string.ascii_lowercase]) # The 'not_short_' prefix ensures that the basenames are not already 8.3 # short paths. Due to the long directory path, the basename will thus be # replaced with a short path such as "not_sh~1.exe" below. for f in [ 'not_short_bin_java.exe', 'not_short_bin_java.exe.runfiles_manifest', 'not_short_bin_sh.exe', 'not_short_bin_sh', 'not_short_bin_sh.exe.runfiles_manifest', 'not_short_bin_py.exe', 'not_short_bin_py.zip', 'not_short_bin_py.exe.runfiles_manifest', ]: self.CopyFile( os.path.join(bazel_bin, 'bin', f), os.path.join(long_dir_path, f)) long_binary_path = os.path.abspath( long_dir_path + '/not_short_bin_java.exe' ) # subprocess doesn't support long path without shell=True _, stdout, _ = self.RunProgram([long_binary_path], shell=True) self.assertEqual('helloworld', ''.join(stdout)) # Make sure we can launch the binary with a shortened Windows 8dot3 path short_binary_path = win32api.GetShortPathName(long_binary_path) self.assertIn('~', os.path.basename(short_binary_path)) _, stdout, _ = self.RunProgram([short_binary_path], shell=True) self.assertEqual('helloworld', ''.join(stdout)) long_binary_path = os.path.abspath(long_dir_path + '/not_short_bin_sh.exe') # subprocess doesn't support long path without shell=True _, stdout, _ = self.RunProgram([long_binary_path], shell=True) self.assertEqual('helloworld', ''.join(stdout)) # Make sure we can launch the binary with a shortened Windows 8dot3 path short_binary_path = win32api.GetShortPathName(long_binary_path) self.assertIn('~', os.path.basename(short_binary_path)) _, stdout, _ = self.RunProgram([short_binary_path], shell=True) self.assertEqual('helloworld', ''.join(stdout)) long_binary_path = os.path.abspath(long_dir_path + '/not_short_bin_py.exe') # subprocess doesn't support long path without shell=True _, stdout, _ = self.RunProgram([long_binary_path], shell=True) self.assertEqual('helloworld', ''.join(stdout)) # Make sure we can launch the binary with a shortened Windows 8dot3 path short_binary_path = win32api.GetShortPathName(long_binary_path) self.assertIn('~', os.path.basename(short_binary_path)) _, stdout, _ = self.RunProgram([short_binary_path], shell=True) self.assertEqual('helloworld', ''.join(stdout)) def testWindowsNativeLauncherInvalidArgv0(self): if not self.IsWindows(): return self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile( 'bin/BUILD', [ 'java_binary(', ' name = "bin_java",', ' srcs = ["Main.java"],', ' main_class = "Main",', ')', 'sh_binary(', ' name = "bin_sh",', ' srcs = ["main.sh"],', ')', 'py_binary(', ' name = "bin_py",', ' srcs = ["bin_py.py"],', ')', ], ) self.ScratchFile( 'bin/Main.java', [ 'public class Main {', ( ' public static void main(String[] args) {' ' System.out.println("helloworld");' ), ' }', '}', ], ) self.ScratchFile( 'bin/main.sh', [ 'echo "helloworld"', ], ) self.ScratchFile( 'bin/bin_py.py', [ 'print("helloworld")', ], ) _, stdout, _ = self.RunBazel(['info', 'bazel-bin']) bazel_bin = stdout[0] self.RunBazel(['build', '//bin/...']) _, stdout, _ = self.RunProgram( ['C:\\Invalid'], executable=os.path.join(bazel_bin, 'bin', 'bin_java.exe'), ) self.assertEqual('helloworld', ''.join(stdout)) _, stdout, _ = self.RunProgram( ['C:\\Invalid'], executable=os.path.join(bazel_bin, 'bin', 'bin_sh.exe') ) self.assertEqual('helloworld', ''.join(stdout)) _, stdout, _ = self.RunProgram( ['C:\\Invalid'], executable=os.path.join(bazel_bin, 'bin', 'bin_py.exe') ) self.assertEqual('helloworld', ''.join(stdout)) def AssertRunfilesManifestContains(self, manifest, entry): with open(manifest, 'r') as f: for l in f: tokens = l.strip().split(' ', 1) if len(tokens) == 2 and tokens[0] == entry: return self.fail('Runfiles manifest "%s" did not contain "%s"' % (manifest, entry)) if __name__ == '__main__': absltest.main()
bazelbuild/bazel
src/test/py/bazel/launcher_test.py
launcher_test.py
py
26,523
python
en
code
21,632
github-code
6
24293929563
def sqrt(x): low = 0 high = x while high - low > 0.001: mid = (high + low) / 2 if abs(mid ** 2 - x) < 0.0001: return mid if mid ** 2 > x: high = mid elif mid ** 2 < x: low = mid return round((high+low)/2, 3) def main(): assert sqrt(5) == 2.236 if __name__ == '__main__': main()
ckallum/Daily-Interview-Pro
solutions/square_root.py
square_root.py
py
374
python
en
code
16
github-code
6
32505732795
# -*- coding: utf-8 *- import pprint import re import sys import importlib from Symfopy.Component.HttpFoundation import Request, Response class Router(object): var_regex = re.compile(r'\{(\w+)(?::([^}]+))?\}') def __init__(self, routes = {}): self.routes = dict() for name in routes: vars = routes[name].get('defaults', {}) self.add_route(name, routes[name]['route'],\ routes[name]['controller'], **vars) def load_controller(self, string): module_name, func_name = string.split(':', 1) module = importlib.import_module(module_name) #__import__(module_name) #module = sys.modules[module_name] func = getattr(module, func_name) return func def add_route(self, name, route, controller, **vars): #if isinstance(controller, basestring): # controller = self.load_controller(controller) self.routes[name] = (re.compile(self.template_to_regex(route)), controller, vars) @staticmethod def template_to_regex(template): regex = '' last_pos = 0 for match in Router.var_regex.finditer(template): regex += re.escape(template[last_pos:match.start()]) var_name = match.group(1) expr = match.group(2) or '[^/]+' expr = '(?P<%s>%s)' % (var_name, expr) regex += expr last_pos = match.end() regex += re.escape(template[last_pos:]) regex = '^%s$' % regex return regex def __str__(self): return pprint.pformat(self.__dict__) @staticmethod def notfound(message = None, **kwargs): content = ['<h1>Not Found</h1>'] if isinstance(message, basestring): content.append('<p>'+ message + '</p>') elif isinstance(message, list): for x in message: if isinstance(x, basestring): content.append('<p>'+ x + '</p>') return Response(content, 404) def rest_controller(cls): def replacement(request, **urlvars): action = urlvars.get('action', None) if action: action += '_' + request.get_method().lower() urlvars.pop('action') else: if isinstance(action, basestring): urlvars.pop('action') action = request.get_method().lower() instance = cls(**urlvars) try: method = getattr(instance, action) except Exception: return Router.notfound('No action ' + action) return method(request) return replacement def rest_controller_template(cls): def replacement(request, template = None, **urlvars): action = urlvars.get('action', None) if action: action += '_' + request.get_method().lower() urlvars.pop('action') else: if isinstance(action, basestring): urlvars.pop('action') action = request.get_method().lower() instance = cls(**urlvars) try: method = getattr(instance, action) except Exception: return Router.notfound('No action ' + action) if template: return method(request, template) else: return method(request) replacement.member_func = cls return replacement
alculquicondor/Symfopy
vendor/Symfopy/Component/Routing.py
Routing.py
py
3,380
python
en
code
0
github-code
6
2398607314
""" Makes a movie of the previously downloaded GEOS data """ import os import pathlib from typing import List, Tuple, Union import numpy as np import matplotlib.pyplot as plt import DownloadData import ReadNetCDF4 import VideoWriter plt.style.use('myDarkStyle.mplstyle') # ====================================================================================================================== # Constants FILL_VALUE = 0x3fff FILL_VALUE2 = 1023 CMAP = 'hot' FPS = 12 FIG_SIZE = [16, 9] # ====================================================================================================================== class MovieFigure: """ A Simple class for holding the figure to made into a movie """ def __init__(self, numImages: int = 1, figsize: Tuple[float, float] = (19.2, 10.8)): """ Constructor Args: numImages: the number of images wide figsize: the overall figure size """ self._fig, self._axes = plt.subplots(nrows=1, ncols=numImages, figsize=figsize) self._setup() # ================================================================================================================== @property def fig(self) -> plt.Figure: """ Returns the figure handle """ return self._fig # ================================================================================================================== def updateFigure(self, axisNumber: int, image: np.ndarray, dateAndTime: str, band: DownloadData.Band, **plotKwargs) -> None: """ Updates the figure Args: axisNumber: the axis number to update image: the numpy array of the image, or filepath to the .nc file dateAndTime: the date and time of the image band: the GEOS band plotKwargs: the kwargs to pass to matplotlib imshow() """ if axisNumber >= len(self._axes): raise IndexError(f'axisNumber={axisNumber} is out of the range [0, {len(self._axes)})') self._axes[axisNumber].imshow(X=image, **plotKwargs) title = f'Band {band.name.replace("_", "-")} {dateAndTime}' self._axes[axisNumber].set_title(title) # ================================================================================================================== def update(self) -> None: """ Updates the figure handle """ self._fig.canvas.draw() # ================================================================================================================== def _setup(self) -> None: """ Sets up the figure axes """ for axis in self._axes: axis.set_xticks([]) axis.set_yticks([]) axis.set_yticklabels([]) axis.set_xticklabels([]) axis.grid(b=False) axis.set_title('') plt.tight_layout() # ====================================================================================================================== def makeMovie(dataDirs: List[str], outputDir: str, outputName: str, cMax: Union[float, List[float]] = None) -> None: """ Makes a movie of the data found in the input directory. Expects the data to be orginized into day directories under dataDir Args: dataDirs: the data directory outputDir: the output directory to save the movie to outputName: the name of the output movie file cMax: list of maximum of the clim """ if not os.path.isdir(outputDir): # attempt to make the output directory if it doesn't already exist os.mkdir(outputDir) vw = VideoWriter.VideoWriter(filename=os.path.join(outputDir, outputName), fps=FPS, isColor=True) allFiles = list() for dataDir in dataDirs: allFiles.append(getAllImageFiles(dataDir=dataDir)) numFiles = [len(files) for files in allFiles] if numFiles.count(numFiles[0]) != len(numFiles): raise RuntimeError(f'Different number of image files in the data directories') for fileIdx in range(len(allFiles[0])): # matplotlib appears to be a memory hog for some reason, so instantiate a new fig for each set of files # instead of simply updating... movieFig = MovieFigure(numImages=len(dataDirs), figsize=FIG_SIZE) for dirIdx in range(len(allFiles)): file = allFiles[dirIdx][fileIdx] print(f'Processing File {file}') image, dateAndTime, band = ReadNetCDF4.readImage(filename=str(file), doPlot=False) # a bit of cleanup image[image == FILL_VALUE] = np.nan image[image == FILL_VALUE2] = np.nan cLimMax = None # get rid of IDE warning if cMax is not None: if type(cMax) is list: cLimMax = cMax[dirIdx] elif type(cMax) is float: cLimMax = cMax else: cLimMax = np.nanmax(image) movieFig.updateFigure(axisNumber=dirIdx, image=image, dateAndTime=dateAndTime, band=band, clim=[0, cLimMax], cmap=CMAP) movieFig.update() vw.addMatplotlibFigureHandle(fig=movieFig.fig, doPlot=False) plt.close(movieFig.fig) # ====================================================================================================================== def getAllImageFiles(dataDir: str) -> List[pathlib.Path]: """ Return all of the image files in dataDir. Assumes a folder structure of days and hours beneath Args: dataDir: the data directory Returns: list of files """ if not os.path.isdir(dataDir): raise RuntimeError(f'Input directory can not be found\n\t{dataDir}') files = list() dayDirs = os.listdir(dataDir) for dayDir in dayDirs: fullDayDir = os.path.join(dataDir, dayDir) if not os.path.isdir(fullDayDir): continue hourDirs = os.listdir(fullDayDir) for hourDir in hourDirs: fullHourDir = os.path.join(fullDayDir, hourDir) files.extend(pathlib.Path(fullHourDir).glob('*.nc')) return files # ====================================================================================================================== if __name__ == '__main__': MOVIE_NAME = 'GOES_16' OUTPUT_DIR = os.path.join(pathlib.Path(os.path.abspath(__file__)).parent, '..', 'movie') DATA_TOP_DIR = os.path.join(pathlib.Path(os.path.abspath(__file__)).parent, '..', 'data') DATA_DIRS = list() DATA_DIRS.append(os.path.join(DATA_TOP_DIR, 'BLUE_1')) DATA_DIRS.append(os.path.join(DATA_TOP_DIR, 'SWIR_7')) CMAX = [600, 4] makeMovie(dataDirs=DATA_DIRS, outputDir=OUTPUT_DIR, outputName=MOVIE_NAME, cMax=CMAX)
dpilger26/GOES
scripts/MakeMovie.py
MakeMovie.py
py
7,699
python
en
code
1
github-code
6
34291432876
import os, csv class CarBase: def __init__(self, brand, photo_file_name, carrying): self.photo_file_name = photo_file_name self.brand = brand self.carrying = carrying def get_photo_file_ext(self): return os.path.splitext(self.photo_file_name)[1] class Car(CarBase): def __init__(self, brand, photo_file_name, carrying, passenger_seats_count): super().__init__(brand, photo_file_name, carrying) self.car_type = "car" self.passenger_seats_count = int(passenger_seats_count) class Truck(CarBase): def __init__(self, brand, photo_file_name, carrying, body_whl): super().__init__(brand, photo_file_name, carrying) self.car_type = "truck" if body_whl == '': body_whl = '0x0x0' self.body_width = float(body_whl.split('x')[0]) self.body_height = float(body_whl.split('x')[1]) self.body_length = float(body_whl.split('x')[2]) def get_body_volume(self): return self.body_width * self.body_height * self.body_length class SpecMachine(CarBase): def __init__(self, brand, photo_file_name, carrying, extra): super().__init__(brand, photo_file_name, carrying) self.car_type = "spec_machine" self.extra = extra def get_car_list(csv_filename): car_list = [] with open(csv_filename, 'r') as csv_f: reader_s = csv.reader(csv_f, delimiter=';') for row in reader_s: if (row[0:1] == ['']) or (row[1:2] == ['']) or (row[3:4] == ['']) or (row[5:6] == ['']): continue else: if row[0:1] == ['car']: if row[2:3] == ['']: continue else: car_list.append(Car(''.join(row[1:2]), ''.join(row[3:4]), ''.join(row[5:6]), ''.join(row[2:3]))) elif row[0:1] == ['truck']: car_list.append(Truck(''.join(row[1:2]), ''.join(row[3:4]), ''.join(row[5:6]), ''.join(row[4:5]))) elif row[0:1] == ['spec_machine']: car_list.append(SpecMachine(''.join(row[1:2]), ''.join(row[3:4]), ''.join(row[5:6]), ''.join(row[6:7]))) return car_list
evgp/learning_python
w3_cars/w3_2_autodrom.py
w3_2_autodrom.py
py
2,251
python
en
code
0
github-code
6
22165701043
inteiros = [1,3,4,5,7,8,9] pares = [x for x in inteiros if x % 2 == 0] print(pares) quadrados = [n*n for n in inteiros] print(quadrados) frutas = ["maçã", "banana", "laranja", "melancia"] frutas = [fruta.upper() for fruta in frutas] print(frutas)
sergiaoprogramador/introducaozinha-rapida-python
list_comprehensions.py
list_comprehensions.py
py
250
python
pt
code
0
github-code
6
43926964501
# Coda con priorita' per creare la frontiera from queue import PriorityQueue # put per inserire # get per prendere class StrutturaMappa(): def __init__(self): self.mappa = dict() def aggiungiVia(self, viaInput): # inserisce nodo senza collegamento e senza peso self.mappa.update({viaInput : list()}) # Aggiorna il nodo con il valore uguale a viaPartenza # se non esiste, ne crea uno nuovo def aggiungiCollegamento(self, viaPartenza, viaArrivo, pesoArco): # Peso espresso in metri self.mappa[viaPartenza].append({viaArrivo : pesoArco}) def visualizzaStrade(self): for strade in self.mappa: print(strade) def visualizzaCollegamenti(self): for strade in self.mappa.keys(): print('Strada: ', strade) print('Collegata con: ') for collegamento in self.mappa.get(strade): chiavi = list(collegamento.keys()) for chiave in chiavi: print('\t',chiave,' distanza:',collegamento.get(chiave),'metri') print('\n') def getVicini(self, viaPartenza): return self.mappa.get(viaPartenza) # Restituisci il costo dato un elemento preso dall'insieme dei vicini def getCosto(self, elementoInsiemeVicini): # Trasformo l'elemento in lista, e prendo l'unico elemento in posizione 0 (unico) chiave = list(elementoInsiemeVicini.keys())[0] # Restituisco il valore della chiave, ovvero il costo return elementoInsiemeVicini.get(chiave) # Oggetto mappa = StrutturaMappa() # Inserimento delle strade senza archi mappa.aggiungiVia("Via Capruzzi") mappa.aggiungiVia("Via Policlinico") mappa.aggiungiVia("Viale Aviatori") mappa.aggiungiVia("Via Marcuzzi") mappa.aggiungiVia("Via Napoli") mappa.aggiungiVia("Corso Roma") mappa.aggiungiVia("Via Lattea") mappa.aggiungiVia("Via degli Dei") mappa.aggiungiVia("Via delle querce") mappa.aggiungiVia("Viale del Todis") mappa.aggiungiVia("Corso Umberto Primo") # Inserimento degli archi con peso (metri) mappa.aggiungiCollegamento('Via Capruzzi','Via Marcuzzi', 200) mappa.aggiungiCollegamento('Via Policlinico','Viale Aviatori', 100) mappa.aggiungiCollegamento('Viale Aviatori','Via Policlinico', 100) mappa.aggiungiCollegamento('Viale Aviatori','Via Marcuzzi', 100) mappa.aggiungiCollegamento('Viale Aviatori','Via Napoli', 100) mappa.aggiungiCollegamento('Via Marcuzzi','Via Capruzzi', 200) mappa.aggiungiCollegamento('Via Marcuzzi','Viale Aviatori', 200) mappa.aggiungiCollegamento('Via Napoli','Viale Aviatori', 100) mappa.aggiungiCollegamento('Corso Roma','Corso Giannone', 100) mappa.aggiungiCollegamento('Via Lattea','Via degli Dei', 200) mappa.aggiungiCollegamento('Via Lattea','Via delle querce', 400) mappa.aggiungiCollegamento('Via degli Dei','Via Lattea', 200) mappa.aggiungiCollegamento('Via degli Dei','Viale del Todis', 200) mappa.aggiungiCollegamento('Via delle querce','Via Lattea', 400) mappa.aggiungiCollegamento('Via delle querce','Corso Umberto Primo', 200) mappa.aggiungiCollegamento('Viale del Todis','Via degli Dei', 200) mappa.aggiungiCollegamento('Corso Umberto Primo','Via delle querce', 200) #---------------------------------------------------------------------- #vicino = mappa.getVicini('Viale Aviatori')[0] #print(mappa.getCosto(vicino))
GianmarcoMo/ProgettoICon
grafo.py
grafo.py
py
3,474
python
it
code
0
github-code
6
75079239548
from dal import autocomplete from django import forms from .models import Tag class TForm(forms.ModelForm): class Meta: model = Tag fields = ('Tag_name') widgets = { 'Tag_name': autocomplete.ModelSelect2(url='test') }
codebottlehun/WithMe
tag/forms.py
forms.py
py
270
python
en
code
0
github-code
6
36090200838
"""Some useful functions to deal with GitHub.""" import datetime from github import Github from github import UnknownObjectException import click class GitHubMux: """Class that let's you operate in multiple repos of the same org at the same time.""" def __init__(self, organization, token, exclude): """ Instantiate class. Args: organization(string): Organization name. token(string): Token to interact with GitHub API. exclude(tuple): Tuple with all the repo names that have to excluded from processing. """ self.token = token self.gh = Github(self.token) self.exclude = exclude try: self.org = self.gh.get_organization(organization) except UnknownObjectException: raise Exception("Looks like organization `{}` doesn't exist.".format(organization)) def exclude_repo(self, repo): """ Exclude a repo. Args: repo(string): Repo of the name to exclude """ self.exclude = self.exclude + (repo, ) def repos(self): """Return repos to process.""" for repo in self.org.get_repos(): if repo.name in self.exclude: self.exclude_repo click.secho("Skipping repo `{}`.".format(repo.name), fg="blue") else: yield repo def _set_label_repo(self, repo, name, color): """ Create a label if it doesn't exist already. Args: repo(Repository): Repo where you want to create the label name(string): Name of the label color(string): Color of the label Return: (Label) Either the label that was created of the existing one. """ try: label = repo.get_label(name) if label.color == color: click.secho("Label `{}` already exists in repo `{}`. ".format(name, repo.name), fg='green') else: click.secho("Label `{}` already exists in repo `{}` " "but has a different color. Fixing.".format(name, repo.name), fg='yellow') label.edit(name, color) except UnknownObjectException: click.secho("Label `{}` doesn't exist in repo `{}`. Creating.".format(name, repo.name), fg='yellow') label = repo.create_label(name, color) return label def set_label(self, name, color): """ Create a label in all repos if it doesn't exist. Args: name(string): Name of the label color(string): Color of the label """ for repo in self.repos(): self._set_label_repo(repo, name, color) def _unset_label_repo(self, repo, name): """ Delete a label if it exists. Args: repo(Repository): Repo where you want to create the label name(string): Name of the label """ try: label = repo.get_label(name) click.secho("Label `{}` exists in repo `{}`. Deleting.".format(name, repo.name), fg='yellow') label.delete() except UnknownObjectException: click.secho("Label `{}` is already missing in repo `{}`.".format(name, repo.name), fg='green') def unset_label(self, name): """ Delete a label in all the repos that it exists. Args: name(string): Name of the label """ for repo in self.repos(): self._unset_label_repo(repo, name) def rename_label(self, name, new_name): """ Rename an existing label in all the repos that it exists. Args: name(str): Current name of the label new_name(str): New name for the label """ for repo in self.repos(): try: label = repo.get_label(name) click.secho("Label `{}` exists in repo `{}`. Renaming.".format(name, repo.name), fg='yellow') label.edit(new_name, label.color) except UnknownObjectException: click.secho("Couldn't find label `{}` in repo `{}`.".format(name, repo.name), fg='green') def _get_labels_from_repo(self, repo): """ Get labels from a repo. Args: repo(Repository): Repository to process. Return: list(Label): List of Labels of repo. """ labels = set() for label in repo.get_labels(): labels.add((label.name, label.color)) return labels def synch_from_repo(self, repo): """ Synch labels across repos. Ensure that all repos have exactly the same labels as another repo that holds the source of truth. If labels exists same color is enforced, if labels don't exist they are created and if there are more labels than necessary they are deleted. Args: repo(str): Name of the repo that holds the truth. """ repo = self.org.get_repo(repo) orig_labels = self._get_labels_from_repo(repo) for r in self.repos(): if r.name == repo.name: continue click.secho("Processing {}".format(r.name), fg="cyan") r_labels = self._get_labels_from_repo(r) to_update = orig_labels - r_labels for l_tuple in to_update: self._set_label_repo(r, l_tuple[0], l_tuple[1]) # We refresh labels as some might have changed color in the previous step r_labels = self._get_labels_from_repo(r) to_delete = r_labels - orig_labels for l_tuple in to_delete: self._unset_label_repo(r, l_tuple[0]) def search_issue_by_title(self, title, org, repo): """ Search for an issue with `title` in org/repo. Args: title(string): Title of the issue org(string): Organization name the issue has to belong to repo(string): Repository name the issue has to belong to Return: (Issue): that matches the criteria or None. Raise: (Exception): If there is more than one match. """ query = "{} in:Title repo:{}/{}".format(title, org, repo) issues = self.gh.search_issues(query) for i in issues: if i.title == title: return i return None def move_issue(self, issue_id, src_repo, dst_repo): """ Move an issue between different repos. Original issue is going to be closed while the new one will reference to the original issue and mention the original reporter. Args: issue_id(int): Issue number src_repo(string): Name of the source repo where the issue lives dst_repo(string): Name of the repo where you want to move the issue to """ src_repo = self.org.get_repo(src_repo) dst_repo = self.org.get_repo(dst_repo) issue = src_repo.get_issue(issue_id) new_body = "Original issue {}/{}#{} created by @{}\n\n{}".format( src_repo.organization.name, src_repo.name, issue.number, issue.user.login, issue.body) issue.edit(state="closed") new_issue = dst_repo.create_issue(title=issue.title, body=new_body, labels=issue.labels) click.secho("Issue moved, new ID is #{} - {}".format(new_issue.id, new_issue.url), fg="yellow") issue.create_comment("This issue has been 'moved' to {}/{}#{}".format( dst_repo.organization.name, dst_repo.name, new_issue.number)) def spread_issue(self, issue_id, src_repo): """ Spread an issue to multiple repos. Given a issue_id from a source repo it will create issues in the rest of the repos linking back to the original one. Args: issue_id(int): Issue number of the issue you want to spread. src_repo(string): Repository name where the issue lives. """ issue = self.org.get_repo(src_repo).get_issue(issue_id) self.exclude_repo(issue.repository.name) body = "See details in the parent issue {}/{}#{}\n\n".format( issue.repository.organization.name, issue.repository.name, issue.number) for repo in self.repos(): new_issue = self.search_issue_by_title(issue.title, repo.organization.name, repo.name) if new_issue: click.secho("Issue already exists, ID is {}/{}#{} - {}".format( new_issue.repository.organization.name, new_issue.repository.name, new_issue.number, new_issue.url), fg="green") else: new_issue = repo.create_issue(title=issue.title, body=body, labels=issue.labels) click.secho("Issue created, ID is {}/{}#{} - {}".format( new_issue.repository.organization.name, new_issue.repository.name, new_issue.number, new_issue.url), fg="yellow") def pr_stats(self, days): """Gather stats for the past few days.""" stats = {} summary_user = {} summary_repo = {} for repo in self.repos(): stats[repo.name] = {} summary_repo[repo.name] = { "count": 0, "commits": 0, "additions": 0, "deletions": 0, } for pr in repo.get_pulls(state="all", sort="created", direction="desc"): if pr.created_at < (datetime.datetime.now() - datetime.timedelta(days=days)): break summary_repo[repo.name]["count"] += 1 summary_repo[repo.name]["commits"] += pr.commits summary_repo[repo.name]["additions"] += pr.additions summary_repo[repo.name]["deletions"] += pr.deletions if pr.user.login not in stats[repo.name]: stats[repo.name][pr.user.login] = { "count": 1, "commits": pr.commits, "additions": pr.additions, "deletions": pr.deletions, } else: stats[repo.name][pr.user.login]["count"] += 1 stats[repo.name][pr.user.login]["commits"] += pr.commits stats[repo.name][pr.user.login]["additions"] += pr.additions stats[repo.name][pr.user.login]["deletions"] += pr.deletions if pr.user.login not in summary_user: summary_user[pr.user.login] = { "count": 1, "commits": pr.commits, "additions": pr.additions, "deletions": pr.deletions, } else: summary_user[pr.user.login]["count"] += 1 summary_user[pr.user.login]["commits"] += pr.commits summary_user[pr.user.login]["additions"] += pr.additions summary_user[pr.user.login]["deletions"] += pr.deletions return { "stats": stats, "summary_user": summary_user, "summary_repo": summary_repo } def issue_stats(self, days): """Gather stats for the past few days.""" stats = {} for repo in self.repos(): stats[repo.name] = {"count": 0} for issue in repo.get_issues(state="closed", sort="updated", direction="desc"): if issue.updated_at < (datetime.datetime.now() - datetime.timedelta(days=days)): break stats[repo.name]["count"] += 1 return { "stats": stats, }
napalm-automation/tooling
gh_tools/github_helpers.py
github_helpers.py
py
13,728
python
en
code
1
github-code
6
8417498337
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution(object): def deleteDuplicates(self, head): """ :type head: ListNode :rtype: ListNode """ cur = head if cur == None: return None while cur.next!= None: if cur.next.val == cur.val: if cur.next.next == None: cur.next = None return head else: cur.next=cur.next.next else: cur = cur.next return head
SarthakPradhan/LeetCode
remove-duplicates-from-sorted-list/remove-duplicates-from-sorted-list.py
remove-duplicates-from-sorted-list.py
py
679
python
en
code
0
github-code
6
2736199577
import keras from keras import backend as K from keras.callbacks import Callback import numpy as np class BitsLogger(Callback): def __init__(self, nConvs=9, **kwargs): self.norm = 1./np.log(float(nConvs)) self.bits_history=[] self.filterLayers=[] super(BitsLogger, self).__init__(**kwargs) def on_train_begin(self, logs): layers = self.model.layers for l in layers: if l.name == 'model_1': layers=l.layers for l in layers: if "filter_mask" in l.name: self.filterLayers.append(l) def on_epoch_end(self, epoch, logs={}): bitsum=0. for l in self.filterLayers: weights=K.flatten(l.filterProbs) b=-self.norm*K.sum(weights*K.log(weights)) bitsum += b print(' Activation bits: ' + str(K.eval(bitsum))) logs['activation_bits'] = K.eval(bitsum) self.bits_history.append(K.eval(bitsum)) class EntropyLogger(Callback): def __init__(self, **kwargs): self.entropy_history=[] self.filterLayers=[] self.constant = 0.5*np.log(2*np.pi) + 0.5 self.hmin=0. self.hmax=0. self.norm=1. super(EntropyLogger, self).__init__(**kwargs) def on_train_begin(self, logs): layers = self.model.layers for l in layers: if l.name == 'model_1': layers=l.layers for l in layers: if "filter_mask" in l.name: self.filterLayers.append(l) nFilters = K.eval(K.shape(self.filterLayers[-1].filterProbs)[-1]) r=np.random.uniform(size=(1000000, nFilters)) sigma = np.std(r, axis=1) self.hmin = 1.05 * np.log(np.amin(sigma, axis=0)) self.hmax = 0.95 * np.log(np.amax(sigma, axis=0)) self.norm = 1. / (self.hmax - self.hmin) def on_epoch_end(self, epoch, logs={}): s=0. for l in self.filterLayers: weights = K.flatten(l.filterProbs) s += self.norm*(K.log(K.std(weights)) - self.hmin) print(' entropy: ' + str(K.eval(s)) ) logs['entropy'] = K.eval(s) self.entropy_history.append(K.eval(s))
twoev/APEMEN
utils/callbacks.py
callbacks.py
py
2,012
python
en
code
0
github-code
6
25226116736
from sklearn import datasets import pandas as pd iris = datasets.load_iris() iris_df = pd.DataFrame(iris.data) iris_df.columns = iris.feature_names iris_df['target'] = iris.target # original target = 0,1,2 int32 print(iris_df.target) # changing them by using DF.astype(type) print(iris_df.target.astype(float))
HawkingLaugh/Data-Processing-Using-Python
Week4/28. inconsistent_data_handling.py
28. inconsistent_data_handling.py
py
313
python
en
code
0
github-code
6
35425394354
from yaml_parser import parse_yaml from voluptuous import Schema,Object, Range, Coerce, All, Any, Optional, Lower, Invalid import re import sys import argparse """ Python YAML validator """ list_of_ints = All([Coerce(int)], msg='invalid list of ints') from datetime import datetime def check_date(datestring): try: fmt='%Y-%m-%d' date_to_test = datetime.strptime(datestring, fmt) Coerce(datetime) except: raise Invalid('expected in Y-m-d') simulation_schema=Schema({ 'quantiles': [All(Coerce(int), Range(1, 100), msg='not a valid quantile')], 'prediction': { 'model': str, 'window': int }, 'startdate': check_date, 'enddate': check_date, 'replenishment': { 'model': str }, 'input_file' : str }) replenishment_schema=Schema({ 'quantiles': [All(Coerce(int), Range(1, 100), msg='not a valid quantile')], 'prediction': { 'model': str, 'window': int }, 'replenishment': { 'model': str }, 'input_file' : str }) def test_file(yamlconfig, types): if types=='simulation': simulation_schema(yamlconfig['simulation']) if types=='replenishemnt': replenishment_schema(yamlconfig['replenishment']) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-y","--yaml", help="yaml inputfile to test", type=str) parser.add_argument("-t","--types", help="type of yaml", type=str) args = parser.parse_args() ### Parse YAML to test to_test = parse_yaml(args.yaml) test_file(to_test,args.types)
philippmack/europython2015-pmack
config/validator.py
validator.py
py
1,633
python
en
code
1
github-code
6
3008185523
# Day 8 import numpy as np from copy import copy def run_part_1(data): hidden, max_x, max_y = prepare_data(data) for x in range(1, max_x - 1): for y in range(1, max_y - 1): sides = [ data[x, :y], data[x, y+1:], data[:x, y], data[x+1:, y]] if any(np.max(side) < data[x, y] for side in sides): continue hidden[x, y] = 1 # This tree should be blocked return np.size(data) - np.sum(hidden) def run_part_2(data): scenic_scores, max_x, max_y = prepare_data(data) for x in range(1, max_x - 1): for y in range(1, max_y - 1): sides = [ np.flip(data[x, :y]), data[x, y+1:], np.flip(data[:x, y]), data[x+1:, y]] trees = [] for side in sides: if np.any(side >= data[x, y]): trees.append(np.where(side >= data[x, y])[0][0] + 1) else: trees.append(side.size) scenic_scores[x, y] = np.prod(np.array(trees)) return np.max(scenic_scores) def prepare_data(data): empty_data = copy(data) empty_data.fill(0) return (empty_data, data.shape[0], data.shape[1]) def parse_input(data): return np.array([[int(height) for height in list(line)] for line in data])
swemoney/AdventOfCode
2022/08/day.py
day.py
py
1,334
python
en
code
0
github-code
6
41646398531
""" Module containing routines to setup the training of policies. """ import argparse from typing import Optional, Sequence from aizynthfinder.training.utils import Config from aizynthfinder.training.keras_models import ( train_expansion_keras_model, train_filter_keras_model, train_recommender_keras_model, ) def main(optional_args: Optional[Sequence[str]] = None) -> None: """Entry-point for the aizynth_training tool""" parser = argparse.ArgumentParser("Tool to train a network policy") parser.add_argument("config", help="the filename to a configuration file") parser.add_argument( "model", choices=["expansion", "filter", "recommender"], help="the model to train", ) args = parser.parse_args(optional_args) config = Config(args.config) if args.model == "expansion": train_expansion_keras_model(config) elif args.model == "filter": train_filter_keras_model(config) elif args.model == "recommender": train_recommender_keras_model(config) if __name__ == "__main__": main()
AlanHassen/modelsmatter
aizynthfinder/training/training.py
training.py
py
1,085
python
en
code
1
github-code
6
3749581806
import glob import platform import setuptools import Cython.Build # By compiling this separately as a C library, we avoid problems # with passing C++-specific flags when building the extension lrslib = ('lrslib', {'sources': glob.glob("solvers/lrs/*.c")}) cppgambit = setuptools.Extension( "pygambit.lib.libgambit", sources=( ["pygambit/lib/libgambit.pyx"] + glob.glob("core/*.cc") + glob.glob("games/*.cc") + glob.glob("games/agg/*.cc") + glob.glob("solvers/*/*.cc") + ["tools/lp/nfglp.cc", "tools/lp/efglp.cc", "tools/logit/path.cc", "tools/logit/nfglogit.cc", "tools/logit/efglogit.cc"] ), language="c++", include_dirs=["."], extra_compile_args=( ["-std=c++11"] if platform.system() == "Darwin" else [] ) ) def readme(): with open("README.rst") as f: return f.read() setuptools.setup( name="pygambit", version="16.0.2", description="Software tools for game theory", long_description=readme(), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering :: Mathematics" ], keywords="game theory Nash equilibrium", license="GPL2+", author="Theodore Turocy", author_email="[email protected]", url="http://www.gambit-project.org", project_urls={ 'Documentation': 'https://gambitproject.readthedocs.io/', 'Source': 'https://github.com/gambitproject/gambit', 'Tracker': 'https://github.com/gambitproject/gambit/issues', }, python_requires=">=3.7", install_requires=[ 'lxml', # used for reading/writing GTE files 'numpy', 'scipy', ], libraries=[lrslib], packages=['pygambit', 'pygambit.games', 'pygambit.lib'], ext_modules=Cython.Build.cythonize(cppgambit) )
vignesh7056/gambit
src/setup.py
setup.py
py
2,265
python
en
code
null
github-code
6
6066153310
import pygame from _draw import * from _utils import * class gui(): def __init__(self, white, screen, width, height, smallNokiaFont, hugeNokiaFont, font, bigFont, hugeFont, smallFont, nanoFont, themeColour, exitButton, nextButton, dialogue, sDialogue, smsDialogue, music, borderSlide, notificationDialogue, user_input, statusButton , inventoryButton , noteButton , nokiaFont , nanoNokiaFont , smsFont , musicFont, jumboFont , gameTime , smsScrollDialogue, squareFont, squareFontH, debugSwitch = True, clicked=False, ): self.white = white self.screen = screen self.width = width self.height = height self.smallNokiaFont = smallNokiaFont self.hugeNokiaFont = hugeNokiaFont self.font = font self.bigFont = bigFont self.hugeFont = hugeFont self.smallFont = smallFont self.nanoFont = nanoFont self.themeColour = themeColour self.exitButton = exitButton self.nextButton = nextButton self.dialogue = dialogue self.sDialogue = sDialogue self.smsDialogue = smsDialogue self.music = music self.borderSlide = borderSlide self.notificationDialogue = notificationDialogue self.user_input = user_input self.statusButton = statusButton self.inventoryButton = inventoryButton self.noteButton = noteButton self.nokiaFont = nokiaFont self.nanoNokiaFont = nanoNokiaFont self.smsFont = smsFont self.musicFont = musicFont self.jumboFont = jumboFont self.gameTime = gameTime self.smsScrollDialogue = smsScrollDialogue self.squareFont = squareFont self.squareFontH = squareFontH self.debugSwitch = debugSwitch self.clicked = clicked self.greenA = (36,65,45) self.greenB = (82,128,58) self.greenC = (173,195,63) self.greenD = (215,233,149) self.darkGreen = (5,37,23) self.buttonGreen = (47,75,45) self.offwhite = (245,245,245) self.screenDefault = (201,221,126) self.screenColour = (201,221,126) self.greenText = (29,153,29) self.greenBorder = (127,187,73) self.darkGrey = (44,52,56) self.lightBlack = (40,41,35) self.lightGrey = (72,77,79) # ---------------Images self.signal = pygame.image.load('pics/phoneLogos/signal.png') self.bottomNavMock = pygame.image.load('pics/assets/mocks/navBottom.png') self.bottomNav = pygame.image.load('pics/assets/nav/navBottom.png') self.nextDayBtn = [pygame.image.load('pics/assets/nav/nextDay1.png'),pygame.image.load('pics/assets/nav/nextDay2.png')] self.tileBackground = pygame.image.load('pics/assets/backgrounds/tile.png') self.gradientBackground = pygame.image.load('pics/assets/backgrounds/gradient.png') self.cubeBackground = pygame.image.load('pics/assets/backgrounds/cube.png') # -------------widget images self.widgetNode = [pygame.image.load('pics/assets/widgetNode/widgetNode1.png'),pygame.image.load('pics/assets/widgetNode/widgetNode2.png'),pygame.image.load('pics/assets/widgetNode/widgetNode3.png')] self.smallActiveWidget = pygame.image.load('pics/assets/widgetNode/smallActiveWidget.png') self.medActiveWidget = pygame.image.load('pics/assets/widgetNode/medActiveWidget.png') self.medActiveWidgetLab = pygame.image.load('pics/assets/widgetNode/widgetMedLabel.png') self.bigActiveWidget = pygame.image.load('pics/assets/widgetNode/bigActiveWidget.png') # ----- Mech imgs self.mechBoxMed = impFilesL('mechBoxMed1.png',tDir = 'pics/assets/mechBox/') self.mechBoxBig = impFilesL('mechBoxBig1.png',tDir = 'pics/assets/mechBox/') self.mechBoxGreen = impFilesL('mechBoxGreen1.png',tDir = 'pics/assets/mechBox/') self.mechBoxMedLight = [pygame.image.load('pics/assets/mechBox/mechBoxMedLight1.png'),pygame.image.load('pics/assets/mechBox/mechBoxMedLight2.png'),pygame.image.load('pics/assets/mechBox/mechBoxMedLight3.png'),pygame.image.load('pics/assets/mechBox/mechBoxMedLight4.png')] self.mechBtnMed = [pygame.image.load('pics/assets/buttons/mechBtnMed1.png'),pygame.image.load('pics/assets/buttons/mechBtnMed2.png')] self.mechPlainBtnMed = [pygame.image.load('pics/assets/buttons/medMechBtn1.png'),pygame.image.load('pics/assets/buttons/medMechBtn2.png')] self.extendableBox = [pygame.image.load('pics/assets/textBox/extendableDarkGreen1.png'),pygame.image.load('pics/assets/textBox/extendableDarkGreen2.png')] self.notitfyBtnSmall = [pygame.image.load('pics/assets/buttons/buttonSmall1.png'),pygame.image.load('pics/assets/buttons/buttonSmall2.png')] self.notitfyBtnMed = [pygame.image.load('pics/assets/buttons/buttonMed1.png'),pygame.image.load('pics/assets/buttons/buttonMed2.png')] self.signal = pygame.image.load('pics/phoneLogos/signal.png') self.minis = [pygame.image.load('pics/assets/minis/minibuttons1.png'),pygame.image.load('pics/assets/minis/minibuttons2.png'),pygame.image.load('pics/assets/minis/minibuttons3.png'),pygame.image.load('pics/assets/minis/minibuttons4.png'),pygame.image.load('pics/assets/minis/minibuttons5.png'),pygame.image.load('pics/assets/minis/minibuttons6.png'),pygame.image.load('pics/assets/minis/minibuttons7.png'),pygame.image.load('pics/assets/minis/minibuttons8.png'),pygame.image.load('pics/assets/minis/minibuttons9.png'),pygame.image.load('pics/assets/minis/minibuttons10.png')] # ------mouse self.mx = 0 self.my = 0 #buttons self.sell = impFilesL('sell1.png',tDir = 'pics/assets/buttons/') self.bank = impFilesL('bank1.png',tDir = 'pics/assets/buttons/') self.auto = impFilesL('auto1.png',tDir = 'pics/assets/buttons/') self.selectMe = impFilesL('selectme1.png',tDir = 'pics/assets/buttons/') self.increment = impFilesL('increment1.png',tDir = 'pics/assets/buttons/') self.decrement = impFilesL('decrement1.png',tDir = 'pics/assets/buttons/') self.menuBG = None self.hideExitButton = False def border(self,colour=(128,0,0)): self.bx,self.by = 0.1*self.width,0.1*self.height self.bw,self.bh = 0.8*self.width,0.8*self.height rect = pygame.draw.rect(self.screen, colour, [self.bx, self.by,self.bw , self.bh],4) def mouseCollides(self,mousePos,x,y,w,h): if mousePos[0] > x and mousePos[0] < x + w: if mousePos[1] > y and mousePos[1] < y + h: return(True) return(False) def incrementableWidget(self,x,y,text,value,inc=1,cap=100,userInput=None,incrementKey=None,insta=False,instaMessage='Auto On'): """+ button and text to increment and return value """ textx, texty = x+60,y+10 #---------exit if auto on if(insta): drawSelectableImage(self.increment[0],self.increment[1],(x,y),self,trim=False) hov, tw,ty = drawText(self.screen,self.nanoNokiaFont, instaMessage,textx ,texty, self.greenD) xEnd,yEnd = textx + tw, y + self.minis[5].get_rect().h return(value,xEnd,yEnd) # --------- display text displayText = text + ' ' + str(value) selected = drawSelectableImage(self.increment[0],self.increment[1],(x,y),self,trim=False) if(userInput.upper() == incrementKey.upper()): selected = True if(selected): if(inc<=cap): value = value + inc else: value = value + cap hov, tw,ty = drawText(self.screen,self.nanoNokiaFont, displayText,textx ,texty, self.greenD) xEnd,yEnd = textx + tw, y + self.minis[5].get_rect().h return(value,xEnd,yEnd) def incDecWidgetAbsolute(self,x,y,text,value,inc=1,cap=100,userInput="none",incrementKey="notset"): """+ button and text to increment and return value """ displayText = text + ' ' + str(value) selected = drawSelectableImage(self.decrement[0],self.decrement[1],(x,y),self,trim=False) if(userInput.upper() == incrementKey.upper()): selected = True if(selected): if((value - inc)>=0): value = value - inc else: value = 0 x = x + self.decrement[0].get_rect().w plusSelected = drawSelectableImage(self.increment[0],self.increment[1],(x,y),self,trim=False) if(plusSelected): if((value + inc)<=cap): value = value + inc else: value = cap textx, texty = x+60,y+10 hov, tw,ty = drawText(self.screen,self.nanoNokiaFont, displayText,textx ,texty, self.greenD) xEnd,yEnd = textx + tw, y + self.minis[5].get_rect().h return(value,xEnd,yEnd) def debug(self,debugMessage): if(self.debugSwitch): print(debugMessage) def debugDetailed(self,debugMessage): if(self.debugSwitch=='detailed'): print(debugMessage) class notificationDialogue(): def __init__(self): self.initialised = False self.origText = '' self.origSource = '' self.textArray = [] self.colour = (0,0,0) self.y = 0 self.senPos = 0 def drawDialogue(self,gui,myfont, text,pos,maxWidth,maxHeight,clicked, colour=(255, 255, 255),skip=False,verticalSep=1.1,maxVerticleLines=80,displayNextButton=False,source=None): sx,sy = pos[0],pos[1] x,y = sx,sy tRemaining = "" hovered = gui.mouseCollides((gui.mx,gui.my),x,y,maxWidth,maxHeight) # reset if called by new function if(self.origText!= text or self.origSource!= source): self.initialised=False self.origText = text if(self.initialised== False): # format paragraph into array of fitted sentences self.origText = text self.origSource = source self.senPos = 0 dAr,para = [], "" for word in text.split(' '): pre = para para += word + " " textsurface = myfont.render(para, True, colour) w = textsurface.get_rect().width if(w>= maxWidth): dAr.append(pre) para = word + " " dAr.append(para) self.textArray = dAr self.initialised = True hTotal = 0 for sentence in range(0,len(self.textArray)): textsurface = myfont.render(self.textArray[sentence], True, colour) h = textsurface.get_rect().height gui.screen.blit(textsurface,(x,y)) y = y + verticalSep*h hTotal = hTotal + verticalSep*h tRemaining = self.textArray[sentence+1:] # Condition: If lines exceed specified MAX LINES, break here if((sentence>=maxVerticleLines-1)): break # Condition: If lines exceed specified HEIGHT if(hTotal >= maxHeight): break #if(displayNextButton): nextP = gui.nextButton.display(gui,noBorder=False) # Condition: If lines remaining and clicked, go next page if(clicked and hovered and (len(tRemaining)>0)): self.textArray = tRemaining
murchie85/bumdee
_gui.py
_gui.py
py
12,565
python
en
code
0
github-code
6
73787039549
""" Code to explore the PDF and CDF of weight distributions. We use truncated lognormals to define the distribution of excitatory connections. We scale that by -8 for inhibitory connections. We represent the inhibitory connections with a negative number as a convention to be consistent with the network simulator (NEST), although technically conductances must be positive. """ import scipy.interpolate import scipy.stats as st import numpy as np def _approx_pdf_from_cdf(cdf, vmin, vmax, n_samples=10**5): """numerically approximate the Probability Density Function from the cumulative""" x = np.linspace(vmin, vmax, n_samples) mid = .5 * (x[:-1] + x[1:]) derivative = np.diff(cdf(x)) / np.diff(x) return scipy.interpolate.interp1d(mid, derivative, fill_value=0., bounds_error=False) def _approx_inv_cdf_from_cdf(cdf, vmin, vmax, n_samples=10**5): """numerically approximate the inverse of a Cumulative Distribution Function""" x = np.linspace(vmin, vmax, n_samples) return scipy.interpolate.interp1d(cdf(x), x, fill_value=0., bounds_error=False) class TruncatedLognormal: """ Represents a truncated, and possibly scaled, lognormal distribution. """ def __init__(self, loc, scale, shape, vmax, g=1): self.loc = loc self.scale = scale self.shape = shape self.vmax = vmax self.g = g self.base_lognorm = st.lognorm( loc=self.loc, scale=self.scale, s=self.shape) self.base_lognorm_cdf_vmax = self.base_lognorm.cdf(self.vmax) self._pdf = _approx_pdf_from_cdf(self.cdf, *self.vrange) self._icdf = _approx_inv_cdf_from_cdf(self.cdf, *self.vrange) @property def vrange(self) -> tuple: """truncated range of X""" vrange = 0, self.vmax * self.g if self.g < 0: vrange = vrange[1], vrange[0] return vrange def linspace(self, num=50): """generate samples linearly on the domain of X""" return np.linspace(*self.vrange, num=num) def cdf(self, weight): """Cumulative Distribution Function""" weight_norm = weight / self.g prob = np.minimum(self.base_lognorm.cdf(weight_norm) / self.base_lognorm_cdf_vmax, 1) if self.g < 0: prob = 1 - prob return prob def pdf(self, weight): """Probability Density Function""" return self._pdf(weight) def inv_cdf(self, prob): """ Inverse of the Cumulative Distribution Function. Maps from probability to values. """ return self._icdf(prob) def rev_cdf(self, prob): """ Reversed Cumulative Distribution Function. Cumulative summation is done right-to-left. """ return 1 - self.cdf(prob) def mean(self): """Estimated mean from the distribution""" x = self.linspace(1_000_000) p = self.pdf(x) p = p / np.sum(p) mean = np.sum(x * p) return mean def var(self): """Estimated var from the distribution""" mean = self.mean() x = self.linspace(1_000_000) p = self.pdf(x) p = p / np.sum(p) mean = np.sum(np.square(x - mean) * p) return mean def std(self): """Estimated std from the distribution""" return np.sqrt(self.var()) def quantile(self, q): """Estimated quantile from the distribution""" assert 0 <= q <= 1 return self.inv_cdf(q).item() def median(self): """Estimated median from the distribution""" return self.quantile(.5) def min(self): """Min value of the distribution""" return self.quantile(0) def max(self): """Max value of the distribution""" return self.quantile(1) class ConnDist: """Combination of exc and inh weight distributions""" def __init__(self, e_weights_loc, e_weights_scale, e_weights_shape, e_weights_vmax, g): assert g < 0 self.exc = TruncatedLognormal( e_weights_loc, e_weights_scale, e_weights_shape, e_weights_vmax ) self.inh = TruncatedLognormal( e_weights_loc, e_weights_scale, e_weights_shape, e_weights_vmax, g=g, ) @classmethod def from_batch(cls, batch): param_names = ['e_weights_loc', 'e_weights_scale', 'e_weights_vmax', 'e_weights_shape', 'g'] weight_dist_params = batch.reg[param_names].drop_duplicates() assert len(weight_dist_params) == 1 weight_dist_params = weight_dist_params.iloc[0] return cls(**weight_dist_params)
comp-neural-circuits/tctx
tctx/analysis/wdist.py
wdist.py
py
4,725
python
en
code
1
github-code
6
24222566552
from tkinter import* from PIL import Image ,ImageTk from tkinter import ttk from tkinter import messagebox import mysql.connector import urllib.request urllib.request.urlretrieve( 'https://iocl.com/images/indane_1.jpg', "indane1.png") urllib.request.urlretrieve( 'https://cdn5.newsnationtv.com/images/2022/01/01/lpg-gas-price-today-83.jpg', "cylinder.jpg") class LPGbooking: def __init__(self,root): self.root=root self.root.title ("LPG Booking ") self.root.geometry("1295x550+30+100") #======variables======== self.var_consid=StringVar() self.var_bookdate=StringVar() self.var_booking_type=StringVar() self.var_deldate=StringVar() self.var_paidtax=StringVar() self.var_subtotal=StringVar() self.var_total=StringVar() #*********Title***************** lbl_title=Label(self.root,text="LPG BOOKING ",font=("times new roman",15,"bold"),bg="black",fg="dark orange",bd=4,relief=RIDGE) lbl_title.place(x=0,y=0,width=1290,height=70) #***********LOGO************** img1=Image.open(r"indane1.png") img1=img1.resize((200,70),Image.ANTIALIAS) self.photoimg1=ImageTk.PhotoImage(img1) labelimg=Label(self.root,image=self.photoimg1,bd=4,relief=RIDGE) labelimg.place(x=0,y=0,width=200,height=70) #**************Label Frame****************** labelframeleft=LabelFrame(self.root,bd=2,relief=RIDGE,text="LPG Booking",padx=2,font=("times new roman",14,"bold")) labelframeleft.place(x=5,y=70,width=425,height=472) #********************Labels and Entries***************** #cust contact lbl_cust_contact=Label(labelframeleft,text="Consumer ID :",font=("arial",12,"bold"),padx=2,pady=6) lbl_cust_contact.grid(row=0,column=0,sticky="w") entry_contact=ttk.Entry(labelframeleft,textvariable=self.var_consid,font=("arial",12,"bold"),width=20) entry_contact.grid(row=0,column=1,sticky="w") #fetch data button btnFetchData=Button(labelframeleft,command=self.Fetch_cust,text="Fetch Data",font=("arial",10,"bold"),bg="black",fg="gold",width=10) btnFetchData.place(x=320,y=4) #booking date booking_date=Label(labelframeleft,font=("arial",12,"bold"), text="Booking Date :",padx=2,pady=6) booking_date.grid(row=1,column=0,sticky="w") txt_booking_date=ttk.Entry (labelframeleft,textvariable=self.var_bookdate,font=("arial",12,"bold")) txt_booking_date.grid(row=1,column=1) #delivery date lbl_deliverydate=Label(labelframeleft,font=("arial",12,"bold"), text="Delivery Date :",padx=2,pady=6) lbl_deliverydate.grid(row=2,column=0,sticky="w") txt_deliverydate=ttk.Entry (labelframeleft,textvariable=self.var_deldate,font=("arial",12,"bold")) txt_deliverydate.grid(row=2,column=1) #booking type lblbookingtype=Label(labelframeleft,font=("arial",12,"bold"), text="Cylinder Type :",padx=2,pady=6) lblbookingtype.grid(row=3,column=0,sticky="w") combo_search=ttk.Combobox(labelframeleft,textvariable=self.var_booking_type,font=("arial",12,"bold")) combo_search["value"]=("Small","Medium","Large") combo_search.current(0) combo_search.grid(row=3,column=1,padx=8) #paid tax lbltax=Label(labelframeleft,font=("arial",12,"bold"), text="Paid Tax :",padx=2,pady=6) lbltax.grid(row=4,column=0,sticky="w") txttax=ttk.Entry (labelframeleft,textvariable=self.var_paidtax,font=("arial",12,"bold")) txttax.grid(row=4,column=1) #sub Total lblsub=Label(labelframeleft,font=("arial",12,"bold"), text="Sub Total :",padx=2,pady=6) lblsub.grid(row=5,column=0,sticky="w") txtsub=ttk.Entry (labelframeleft,textvariable=self.var_subtotal,font=("arial",12,"bold")) txtsub.grid(row=5,column=1) #Total cost lbltotal=Label(labelframeleft,font=("arial",12,"bold"), text="Total Amount :",padx=2,pady=6) lbltotal.grid(row=6,column=0,sticky="w") txttotal=ttk.Entry (labelframeleft,textvariable=self.var_total,font=("arial",12,"bold")) txttotal.grid(row=6,column=1) #========bill button====== btnbill=Button(labelframeleft,text="BILL",command=self.total,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btnbill.grid(row=10,column=0,padx=1,sticky="w") #===========btn============ btn_frame=Frame(labelframeleft,bd=2,relief=RIDGE) btn_frame.place(x=0,y=400,width=412,height=780) btnadd=Button(btn_frame,text="BOOK",command=self.add_data,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btnadd.grid(row=0,column=0,padx=1) btnupdate=Button(btn_frame,text="UPDATE",command=self.update,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btnupdate.grid(row=0,column=1,padx=1) btndel=Button(btn_frame,text="DELETE",command=self.deletes,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btndel.grid(row=0,column=2,padx=1) btnreset=Button(btn_frame,text="RESET",command=self.reset,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btnreset.grid(row=0,column=3,padx=1) #=======right side image=========== img3=Image.open(r"cylinder.jpg") img3=img3.resize((430,200),Image.ANTIALIAS) self.photoimg3=ImageTk.PhotoImage(img3) labelimg=Label(self.root,image=self.photoimg3,bd=4,relief=RIDGE) labelimg.place(x=850,y=80,width=430,height=200) #========table frame search system============= Table_Frame=LabelFrame(self.root,bd=2,relief=RIDGE,text="VIEW DETAILS AND SEARCH SYSTEM",font=("arial",12,"bold"),bg="white",fg="red",width=9) Table_Frame.place(x=435,y=280,width=850,height=260) lblsearch=Label(Table_Frame,font=("arial",12,"bold"),text="Search by :",bg="red",fg="yellow") lblsearch.grid(row=0,column=0,sticky="w",padx=8) self.search_var=StringVar() combo_search=ttk.Combobox(Table_Frame,textvariable=self.search_var,font=("arial",12,"bold"),width=24,state="readonly") combo_search["value"]=("ConsumerID") combo_search.current(0) combo_search.grid(row=0,column=1,padx=8) self.txt_search=StringVar() entry_search=ttk.Entry(Table_Frame,textvariable=self.txt_search,width=24,font=("arial",12,"bold")) entry_search.grid(row=0,column=2,padx=8) btnsearch=Button(Table_Frame,text="SEARCH",command=self.search,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btnsearch.grid(row=0,column=3,padx=8) btnshowall=Button(Table_Frame,text="SHOW ALL",command=self.fetch_data,font=("arial",12,"bold"),bg="black",fg="orange",width=9) btnshowall.grid(row=0,column=4,padx=8) #=======show data table======== details_tbale=Frame(Table_Frame,bd=2,relief=RIDGE) details_tbale.place(x=5,y=50,width=835,height=180) scroll_x=ttk.Scrollbar(details_tbale,orient=HORIZONTAL) scroll_y=ttk.Scrollbar(details_tbale,orient=VERTICAL) self.book_table=ttk.Treeview(details_tbale,column=("Cons","bDate","DDate","Btype"),xscrollcommand=scroll_x.set,yscrollcommand=scroll_y.set) scroll_x.pack(side=BOTTOM,fill="x") scroll_y.pack(side=RIGHT,fill="y") scroll_x.config(command=self.book_table.xview) scroll_y.config(command=self.book_table.yview) self.book_table.heading("Cons",text="ConsumerID") self.book_table.heading("bDate",text="Booking Date") self.book_table.heading("DDate",text="Delivery Date") self.book_table.heading("Btype",text="Booking Type") self.book_table["show"]="headings" self.book_table.column("Cons",width=100) self.book_table.column("DDate",width=100) self.book_table.column("bDate",width=100) self.book_table.column("Btype",width=100) self.book_table.pack(fill=BOTH,expand=1) self.book_table.bind("<ButtonRelease-1>",self.get_cursor) self.fetch_data() def add_data(self): if self.var_consid.get()=="" or self.var_bookdate=="" or self.var_deldate=="": messagebox.showerror("Error","Please Enter the Required Fields",parent=self.root) else: try: conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() my_cursor.execute("INSERT INTO booking values(%s,%s,%s,%s)",(self.var_consid.get(),self.var_bookdate.get(),self.var_deldate.get(),self.var_booking_type.get())) conn.commit() self.fetch_data() conn.close() messagebox.showinfo("Success","Booking has been Done",parent=self.root) except Exception as es: messagebox.showwarning("Warning",f"Something went Wrong :{str(es)}",parent=self.root) def fetch_data(self): conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() my_cursor.execute("Select * from booking") rows=my_cursor.fetchall() if len(rows)!=0: self.book_table.delete(*self.book_table.get_children()) for i in rows: self.book_table.insert("",END,values=i) conn.commit() conn.close() def get_cursor(self,event=""): cursor_row=self.book_table.focus() content=self.book_table.item(cursor_row) row=content["values"] self.var_consid.set(row[0]), self.var_bookdate.set(row[1]), self.var_deldate.set(row[2]), self.var_booking_type.set(row[3]) def update(self): if self.var_consid=="": messagebox.showerror("Error","Please Enter Consumer ID ",parent=self.root) else: conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() my_cursor.execute("UPDATE booking SET BookingDate=%s,DeliveryDate=%s,BookingType=%s WHERE ConsumerID=%s",( self.var_bookdate.get(), self.var_deldate.get(), self.var_booking_type.get(), self.var_consid.get() )) conn.commit() self.fetch_data() conn.close() messagebox.showinfo("Update","Customer Details Successfully Updated",parent=self.root) def deletes(self): mdel=messagebox.askyesno("LPG Booking System","Are u Sure you want to Delete the selected Booking",parent=self.root) if mdel>0: conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query="delete from booking where ConsumerID=%s" value=(self.var_consid.get(),) my_cursor.execute(query,value) else: if not mdel: return conn.commit() self.fetch_data() conn.close() def reset(self): # self.var_cons.set(""), self.var_bookdate.set(""), self.var_deldate.set(""), self.var_consid.set(""), self.var_paidtax.set(""), self.var_total.set(""), self.var_booking_type.set("") self.var_subtotal.set("") #==================All data fetch============= def Fetch_cust(self): if self.var_consid.get()=="": messagebox.showerror("Error","Please enter Consumer ID",parent=self.root) else: conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query=("select Name from customer where ConsumerID=%s") value =(self.var_consid.get(),) my_cursor.execute(query,value ) row=my_cursor.fetchone() if row==None: messagebox.showerror("Error","This Consumer ID is not Found",parent=self.root) else: conn.commit() conn.close() showDataframe=Frame(self.root,bd=4,relief=RIDGE,padx=2) showDataframe.place(x=450,y=82,width=300,height=180) lblName=Label(showDataframe,text="Name :",font =("arial",12,"bold")) lblName.place(x=0,y=0) lbl=Label(showDataframe,text=row,font =("arial",12,"bold")) lbl.place(x=90,y=0) # insert{ command=self.Fetch_contact } in fetch data button line 1 before font # =============GENDER================== conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query=("select Gender from customer where ConsumerID=%s") value =(self.var_consid.get(),) my_cursor.execute(query,value ) row=my_cursor.fetchone() lblGender=Label(showDataframe,text="Gender :",font =("arial",12,"bold")) lblGender.place(x=0,y=30) lbl2=Label(showDataframe,text=row,font =("arial",12,"bold")) lbl2.place(x=90,y=30) #===================MOBILE===================== conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query=("select Mobile from customer where ConsumerID=%s") value =(self.var_consid.get(),) my_cursor.execute(query , value ) row=my_cursor.fetchone() lblmobile=Label(showDataframe,text="Mobile :",font =("arial",12,"bold")) lblmobile.place(x=0,y=60) lbl3=Label(showDataframe,text=row,font =("arial",12,"bold")) lbl3.place(x=90,y=60) #===================Email===================== conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query=("select Email from customer where ConsumerID=%s") value =(self.var_consid.get(),) my_cursor.execute(query , value ) row=my_cursor.fetchone() lblEmail=Label(showDataframe,text="Email :",font =("arial",12,"bold")) lblEmail.place(x=0,y=90) lbl4=Label(showDataframe,text=row,font =("arial",12,"bold")) lbl4.place(x=90,y=90) # #====================IDPROOF==================== conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query=("select IDProof from customer where ConsumerID=%s") value =(self.var_consid.get(),) my_cursor.execute(query , value ) row=my_cursor.fetchone() lblidpro=Label(showDataframe,text="ID Proof :",font =("arial",12,"bold")) lblidpro.place(x=0,y=120) lbl4=Label(showDataframe,text=row,font =("arial",12,"bold")) lbl4.place(x=90,y=120) # #=======================ID NUMBER======================== conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() query=("select IDNumber from customer where ConsumerID=%s") value =(self.var_consid.get(),) my_cursor.execute(query , value ) row=my_cursor.fetchone() lblidnum=Label(showDataframe,text="ID Number :",font =("arial",12,"bold")) lblidnum.place(x=0,y=150) lbl5=Label(showDataframe,text=row,font =("arial",12,"bold")) lbl5.place(x=90,y=150) def search(self): conn=mysql.connector.connect(host="localhost",username="root",password="Aditya8318@",database="lpg_booking") my_cursor=conn.cursor() s1=str(self.search_var.get()) s2=str(self.txt_search.get()) # query1="SELECT * from customer WHERE "+s1+"=%s" # value=(s2,) # my_cursor.execute(query1,value) t="SELECT * from booking WHERE "+s1+" LIKE '%"+s2+"%'" my_cursor.execute(t) rows=my_cursor.fetchall() if len(rows)!=0: self.book_table.delete(*self.book_table.get_children()) for i in rows: self.book_table.insert("",END,values=i) conn.commit() conn.close() def total(self): if(self.var_booking_type.get()=="Small"): q1=float(546) tax=float(0.18*q1) totalbill=float(tax+q1) self.var_paidtax.set(tax) self.var_total.set(totalbill) self.var_subtotal.set(q1) elif(self.var_booking_type.get()=="Medium"): q1=float(870) tax=float(0.18*q1) totalbill=float(tax+q1) self.var_paidtax.set(tax) self.var_total.set(totalbill) self.var_subtotal.set(q1) elif(self.var_booking_type.get()=="Large"): q1=float(1136) tax=float(0.18*q1) totalbill=float(tax+q1) self.var_paidtax.set(tax) self.var_total.set(totalbill) self.var_subtotal.set(q1) if __name__=="__main__": root=Tk() obj=LPGbooking(root) root.mainloop()
anonymouslyfadeditzme/Anonymously-Faded
booking.py
booking.py
py
19,472
python
en
code
0
github-code
6
43256048913
import os import xlsxwriter # Change basepath if applicable basepath = "C:\\Users\\AYuen\\Environmental Protection Agency (EPA)\\ECMS - Documents\\newfiles\\" workbook = xlsxwriter.Workbook(basepath+'fileandid.xlsx') worksheet = workbook.add_worksheet("Sheet 1") # Start from the first cell. # Rows and columns are zero indexed. row = 0 col = 0 # Get all files in the directory qq = [] for (root, dirs, files) in os.walk(basepath, topdown=False): if len(files) > 0: for file in files: qq.append(os.path.join(root,file)) print(qq[1]) for item in qq: rid = item.split('\\')[6] fname = item.split('\\')[7] print(f'record id is {rid}') print(f'file name is {fname}') worksheet.write(row, col, rid) worksheet.write(row, col + 1, fname) row += 1 workbook.close()
USEPA/Document_Processing_Scripts
getidfilename.py
getidfilename.py
py
827
python
en
code
1
github-code
6
14835956764
import torch import torchaudio import numpy as np import opensmile from collections import namedtuple from .scan_data import scan_rootdir, CHANNELS from .load_data import load_anno_tensor, load_vad_df from .segment_data import SegmentEgs class ChunkOpenSmileDataSet: def __init__(self, rootdir, channels=CHANNELS, #transform=torchaudio.transforms.MFCC(n_mfcc=40), # n_mfcc=80, melkwargs={'n_fft': 1280} feats2anno_rate=1, chunk_size_s=2, chunk_hop_s=1, use_vad=True): """ feats2anno_rate = feats_sr / anno_sr """ self.rootdir = rootdir self.channels = channels self.transform = opensmile.Smile( feature_set=opensmile.FeatureSet.ComParE_2016, feature_level=opensmile.FeatureLevel.Functionals) #self.transform = transform self.feats2anno_rate = feats2anno_rate self.finfos = scan_rootdir(rootdir, channels) preloaded_annos = [load_anno_tensor(f.anno[0]) for f in self.finfos] self.segments = [] Chunk = namedtuple('Chunk', ['start_sec', 'end_sec']) for f, p_a in zip(self.finfos, preloaded_annos): if use_vad and f.vad: for _, row in load_vad_df(f.vad).iterrows(): start = row.start_sec #row.end_sec keep_doing=True while keep_doing: end = start + chunk_size_s if end > row.end_sec: end = row.end_sec start = max(0, end-chunk_size_s) keep_doing=False chunk = Chunk(start, end) start += chunk_hop_s self.segments.append(SegmentEgs(f, chunk, p_a)) else: total = torchaudio.info(f.wav[0]).num_frames//f.wav[1] for start in range(0, total - chunk_size_s, chunk_hop_s): chunk = Chunk(start, start + chunk_size_s) self.segments.append(SegmentEgs(f, chunk, p_a)) print(f"{len(self.segments)} chunks") def __len__(self): return len(self.segments) def total_sec(self): return sum(s.duration for s in self.segments) def size(self, index): return self.segments[index].duration def __getitem__(self, index): seq = self.segments[index] wav_keeper = seq.wav_keeper feats = self.transform.process_file(wav_keeper.wav_fname, start=wav_keeper.start_sec, end = wav_keeper.end_sec).values# 1 X feats feats = torch.from_numpy(feats).T # feats X 1 anno = seq.anno.mean(dim=-2) #corr_anno_len = round(feats.shape[-1] / self.feats2anno_rate) # if abs(anno.shape[0] - corr_anno_len) > 2: # print(f"WARNING: element {index}, {anno.shape[0]=} ({corr_anno_len=}), {feats.shape[-1]=}, {self.feats2anno_rate=}") # anno = anno[:corr_anno_len] # corr_feats_len = round(anno.shape[0] * self.feats2anno_rate) # feats = feats[:, :corr_feats_len] return {'feats': feats, 'labels': anno, 'padding': torch.ones(anno.shape[0]), 'index': index}
medbar/maga_sis
3/ULM/utils/chunk_opensmile_dataset.py
chunk_opensmile_dataset.py
py
3,414
python
en
code
0
github-code
6
17388621437
# Import necessary Tkinter and sqlite3 libraries. import tkinter as tk import sqlite3 from sqlite3 import Error from PIL import Image, ImageTk import tkinter.messagebox as messagebox # Making things object oriented, define a class. class School_Data: '''Constructor to initialize the GUI window''' def __init__(self): self.root = tk.Tk() self.root.geometry('1200x700') self.connection = self.create_connection() self.home() self.root.mainloop() self.connection.close() def home(self): # Clear the screen and display the home screen self.clear_screen() # Create a menubar with two menus File and Action # From the File Menu the application can be closed # From the Action menu a message can be displayed. self.menubar = tk.Menu(self.root) self.filemenu = tk.Menu(self.menubar, tearoff=0) self.filemenu.add_command(label='Close', command=self.close) self.filemenu.add_separator() self.filemenu.add_command(label='Close without question', command=exit) self.actionmenu = tk.Menu(self.menubar, tearoff=0) self.actionmenu.add_command(label='Show Message', command=self.show_message) self.menubar.add_cascade(menu = self.filemenu, label='File') self.menubar.add_cascade(menu = self.actionmenu, label='Action') self.root.config(menu = self.menubar) # Create a label for the application title self.label = tk.Label(self.root, text="Sample School Data", font=("Calibri", 24)) self.label.pack(padx=20, pady=20) # Load and display an image image = Image.open("school_image.jpg") image = image.resize((800,300)) self.photo = ImageTk.PhotoImage(image) image_label = tk.Label(self.root, image=self.photo) image_label.pack(padx=10, pady=10) # Create a frame for the buttons self.homeframe = tk.Frame(self.root) self.homeframe.pack(padx=20, pady=20) # Add buttons for Add, Search, and Extra functionality self.add_button_in_frame(self.homeframe,"Add",0,0, self.add) self.add_button_in_frame(self.homeframe,"Search",0,1, self.search) self.add_button_in_frame(self.homeframe,"Extra",0,2, self.extra) def add_button_in_frame(self, parent, text, row, col, *commands): """ Create a button and place it in a frame within the parent widget. Args: parent (tk.Widget): The parent widget. text (str): The text to display on the button. row (int): The row number within the parent's grid layout. col (int): The column number within the parent's grid layout. *commands (callable): The command(s) to associate with the button. Returns: tk.Button: The created button. """ button = tk.Button(parent, text=text, font=("Arial", 14)) button.grid(row=row, column=col) for cmd in commands: button.config(command = lambda c=cmd: c()) return button def add_button(self, text, command): """ Create a button and place it in the root window with standard padding. Args: text (str): The text to display on the button. command (callable): The command(s) to associate with the button. """ button = tk.Button(self.root, text=text, font=("Arial", 14), command=command) button.pack(padx=10, pady=10) def add(self): """ Displays the screen for adding a new entry. """ self.clear_screen() # Create a label for the add screen title self.label = tk.Label(self.root, text="Add a new Entry", font=("Arial", 20)) self.label.pack(padx=20, pady=20) self.addframe = tk.Frame(self.root) self.addframe.pack(padx=10, pady=10) # Create input fields for name, age, and class self.create_label_and_entry(self.addframe, "Name", 0, "Name", "") self.create_label_and_entry(self.addframe, "Age", 1, "Age", "") self.create_label_and_entry(self.addframe, "Class", 2, "Class", "") self.addbtnframe = tk.Frame(self.root) self.addbtnframe.pack(padx=10, pady=10) # Add buttons to add the entry and return to the home screen self.add_button_in_frame(self.addbtnframe,"Add",0,1, self.connection_add) self.add_button_in_frame(self.addbtnframe,"Home",0,2, self.home) # Method to connect to database and pass the entries to save def connection_add(self): """ Add the new entry to the SQLite database. """ try: data_entry = '''CREATE TABLE IF NOT EXISTS Stud_Data (name TEXT, age INT, class INT)''' self.connection.execute(data_entry,) data_insert = '''INSERT INTO Stud_Data (name, age, class) VALUES (?,?,?)''' data_insert_tuple = ( self.Name.get('1.0', 'end-1c'), self.Age.get('1.0', 'end-1c'), self.Class.get('1.0', 'end-1c') ) # If any space is left blank, prompt user to enter all details else, execute the data entry # and display respective messages. if '' in data_insert_tuple: messagebox.showinfo(title='Error', message='Kindly fill in all the details') else: cursor = self.connection.cursor() cursor.execute(data_insert, data_insert_tuple) self.connection.commit() messagebox.showinfo(title='Congratulations!', message='Entry added Successfully!') self.clear_text(self.addframe) except Error as e: print(e) def search(self): """ Displays the screen for searching an entry. """ self.clear_screen() # Create a label for the search screen title self.label = tk.Label(self.root, text="Search an Entry", font=("Arial", 20)) self.label.pack(padx=20, pady=20) # Create frame for search input field self.searchframe = tk.Frame(self.root) self.searchframe.pack(padx=10, pady=10) self.attribute = tk.Label(self.searchframe, text="Search by", font=("Arial", 14)) self.attribute.grid(row=0, column=0) # Define a variable to store the attribute name selected by user by which user wants to search self.sel_string = tk.StringVar() # Define option menu to select Name, Age or Class and store value in variable self.attribute_sel = tk.OptionMenu(self.searchframe, self.sel_string, *["Name", "Age", "Class"]) self.attribute_sel.grid(row=1, column=0) # Text input by user which will be searched in the database self.search_value = tk.Text(self.searchframe, height=1, font=("Arial", 12)) self.search_value.grid(row=1, column=1) # Add buttons to search the entry and return to the home screen self.add_button("Search", self.connection_search) self.add_button("Home", self.home) def connection_search(self): """ Search for entries in the SQLite database. """ try: # Search user given text input in user selected attribute column of database search_column = self.sel_string.get() search_querry = "SELECT * FROM Stud_Data WHERE {} = ?".format(search_column) cursor = self.connection.cursor() # if text input is left blank, prompt user to enter a text # else store search results from database in global variable self.info if self.search_value.get('1.0', 'end-1c') == '': messagebox.showinfo(title='Error!', message='Kindly enter value for search') else: cursor.execute(search_querry, (self.search_value.get('1.0', 'end-1c'),)) self.info = cursor.fetchall() self.disp_search_results(self.info) self.connection.commit() except Error as e: print(e) def disp_search_results(self, info): '''Displays all the results of search command in database Args: info: list of all the rows from database that correspond to user search ''' # Clear any previously displayed search results self.clear_search_results() # Create label for results of search self.label = tk.Label(self.root, text="Search Results", font=("Arial", 20)) self.label.pack(padx=20, pady=20) # Create frame to display all matching results self.dispframe = tk.Frame(self.root) self.dispframe.pack(fill = 'y') # Create a variable to store the value of radiobutton self.rbvar = tk.StringVar() # if no matching result is found, display No Results found! # else display results if len(info) == 0: self.label_nor = tk.Label(self.root, text="No Results found!", font=("Arial", 16)) self.label_nor.pack(padx=20, pady=20) # Create radiobutton for each row of result # if a row is selected, option to edit or delete the row pops up else: for i, row in enumerate(info, start=1): self.rb = tk.Radiobutton(self.dispframe, variable=self.rbvar, value = i, command=self.enable_options) self.rb.grid(row=i, column=0) for j, val in enumerate(row): label = tk.Label(self.dispframe, text=val, relief=tk.RAISED, width=15, font=("Arial", 14)) label.grid(row=i, column=j+1, sticky= tk.W + tk.E) def enable_options(self): '''Method to display Edit and Delete buttons only on selection of a row''' present = False for widget in self.root.winfo_children(): if isinstance(widget, tk.Button) and (widget.cget('text') == 'Edit'): present = True if present == False: # If buttons not already present, create frame for buttons self.searchbtnframe = tk.Frame(self.root) self.searchbtnframe.pack(padx=10,pady=10) self.add_button_in_frame(self.searchbtnframe, 'Edit', 0,0, self.edit) self.add_button_in_frame(self.searchbtnframe, 'Delete', 0,1, self.delete_entry) def edit(self): ''' Edit the selected row in database''' # Extracting details of selected row selected_row = int(self.rbvar.get()) -1 (name, age, classl) = self.info[selected_row] # Clear screen for Edit screen self.clear_screen() # Create label for Edit screen self.label = tk.Label(self.root, text="Update an Entry", font=("Arial", 20)) self.label.pack(padx=20, pady=20) # Create frame for text entries that should replace the existing entry self.editframe = tk.Frame(self.root) self.editframe.pack(padx=10, pady=10) self.create_label_and_entry(self.editframe, "Name", 0, "Name", "") self.create_label_and_entry(self.editframe, "Age", 1, "Age", "") self.create_label_and_entry(self.editframe, "Class", 2, "Class", "") # Create a frame for buttons to execute the edit function or cancel the process self.editbtnframe = tk.Frame(self.root) self.editbtnframe.pack(padx=10, pady=10) self.add_button_in_frame(self.editbtnframe,"Update",0,1, lambda: self.edit_entry(self.info[int(self.rbvar.get()) - 1])) self.add_button_in_frame(self.editbtnframe,"Cancel",0,2, self.clear_text) self.add_button_in_frame(self.editbtnframe,"Back",0,3, self.search) self.add_button_in_frame(self.editbtnframe,"Home",0,4, self.home) def edit_entry(self, entry): ''' Method to execute the edit in Sqlite database''' edit_query = '''UPDATE Stud_Data SET name=?, age=?, class=? WHERE name=? AND age=? AND class=?''' data_edit_tuple = (self.Name.get('1.0', 'end-1c'), self.Age.get('1.0', 'end-1c'), self.Class.get('1.0', 'end-1c')) # If any field is left blank, prompt user to fill all details if '' in data_edit_tuple: messagebox.showinfo(title='Error', message='Kindly fill in all the details') else: cursor = self.connection.cursor() cursor.execute(edit_query, (self.Name.get('1.0', 'end-1c'), self.Age.get('1.0', 'end-1c'), self.Class.get('1.0', 'end-1c'), entry[0], entry[1], entry[2])) self.connection.commit() messagebox.showinfo(title='Congratulations!', message='Entry updated Successfully!') # Clear the text fields after operation self.clear_text(self.editframe) def delete_entry(self): '''Delete the selected entry''' # Confirm if user really wants to delete the entry sure = messagebox.askyesnocancel(title='Delete?', message='''Are you sure you want to delete this entry?''') if sure == True: cursor = self.connection.cursor() selected_row = int(self.rbvar.get()) -1 (name, age, classl) = self.info[selected_row] delete_query = '''DELETE from Stud_Data WHERE name = ? AND age = ? AND class = ?''' cursor.execute(delete_query, (name, age, classl)) self.connection.commit() messagebox.showinfo(title="Success", message="Entry deleted successfully!") self.connection_search() def create_label_and_entry(self, parent, text, row, entry_name, default_value): """ Create a label, an entry field, and place them in a frame within the parent widget. Args: parent (tk.Widget): The parent widget. label_text (str): The text to display on the label. row (int): The row number within the parent's grid layout. entry_placeholder (str): The placeholder text for the entry field. entry_default (str): The default value for the entry field. Returns: tuple: A tuple containing the label and entry field widgets. """ label = tk.Label(parent, text=text, font=("Arial", 14)) label.grid(sticky=tk.W + tk.E) entry = tk.Text(parent, height=1, font=("Arial", 12)) entry.bind("<KeyPress>", self.shortcut) entry.insert("1.0", default_value) entry.grid(row=row, column=1, sticky=tk.W + tk.E) setattr(self, entry_name, entry) def clear_text(self, frame): ''' Method to clear text fields if present on the screen''' text_entry = [widget for widget in frame.winfo_children() if isinstance(widget, tk.Text)] for element in text_entry: element.delete('1.0', 'end') def create_connection(self): '''Method to create connection with the Sqlite database''' try: connection = sqlite3.connect(r"c:\Users\rsahu\Documents\git_files\Repo1\data.db") return connection except Error as e: print(e) def clear_search_results(self): ''' Method to refresh and clear previously displyed results in case of new search or deleted entry''' for widget in self.root.winfo_children(): if isinstance(widget, tk.Frame) and widget != self.searchframe: widget.destroy() elif isinstance(widget, tk.Label) and widget.cget('text') == 'Search Results': widget.destroy() def shortcut(self, event): ''' Method to enable function through shortcut keys''' #print(event.keysym, event.state) if event.keysym == 'Return': self.connection_add() if event.keysym == 'Tab': current_widget = event.widget current_widget.tk_focusNext().focus() return 'break' def extra(self): """ Displays the screen for extra functionality (placeholder). """ self.clear_screen() # Create a label for the extra screen title self.label = tk.Label(self.root, text="Extra Functionality", font=("Arial", 20)) self.label.pack(padx=20, pady=20) self.extrabtnframe = tk.Frame(self.root) self.extrabtnframe.pack(padx=10, pady=10) # Add button to go back to the home screen self.add_button_in_frame(self.extrabtnframe, "Back", 0, 0, self.home) def clear_screen(self): '''Method to clear screen of widgets on the window''' for widget in self.root.winfo_children(): widget.destroy() def show_message(self): '''Method to show message when asked from Actionmenu''' messagebox.showinfo(title='Information', message='This is a sample GUI for entry of data of students in a school') def close(self): '''Method to kill the application window''' if messagebox.askyesno(title="Quit?", message='Do you really want to quit?'): self.root.destroy() # Instantiate the School_Data class to start the application. if __name__ == '__main__': School_Data()
rohan-sahuji/Repo1
Tkinter_GUI.py
Tkinter_GUI.py
py
17,391
python
en
code
0
github-code
6
14003038546
from app.custom_queue import CustomQueue from app.logger import get_logger from datetime import datetime, timedelta LOGGER = get_logger(__name__) QUEUE_MAX_SIZE = 20 class Queues(): def __init__(self): self.LS = CustomQueue(QUEUE_MAX_SIZE, 'LeftSingle') self.LT = CustomQueue(QUEUE_MAX_SIZE, 'LeftTriple') self.RT = CustomQueue(QUEUE_MAX_SIZE, 'RightTriple') self.RS = CustomQueue(QUEUE_MAX_SIZE, 'RightSingle') self.starting_time = datetime.now() self.Total_time = self.starting_time def add_time(self, queue: CustomQueue, time: timedelta): self.Total_time += time queue.time += time queue.count += 1 def add_to_LS(self, skyer): self.add_to(self.LS, skyer) def add_to_LT(self, skyer): self.add_to(self.LT, skyer) def add_to_RT(self, skyer): self.add_to(self.RT, skyer) def add_to_RS(self, skyer): self.add_to(self.RS, skyer) def add_to(self, queue: CustomQueue, skyer): queue.put(skyer) LOGGER.debug(f'Esquiador entrou na fila: {queue.name}') def normalize_time(self): self.Total_time -= self.starting_time self.LS.time -= self.starting_time self.LT.time -= self.starting_time self.RT.time -= self.starting_time self.RS.time -= self.starting_time def report_queue_time(self): self.normalize_time() total_count = self.LS.count + self.LT.count + self.RT.count + self.RS.count if total_count: LOGGER.info(f'Total time = {self.Total_time/total_count}') else: LOGGER.info('ninguem saiu de qualquer fila') if self.LS.count: LOGGER.info(f'{self.LS.name} time = {self.LS.time/self.LS.count}') else: LOGGER.info(f'ninguem saiu da fila {self.LS.name}') if self.LT.count: LOGGER.info(f'{self.LT.name} time = {self.LT.time/self.LT.count}') else: LOGGER.info(f'ninguem saiu da fila {self.LT.name}') if self.RT.count: LOGGER.info(f'{self.RT.name} time = {self.RT.time/self.RT.count}') else: LOGGER.info(f'ninguem saiu da fila {self.RT.name}') if self.RS.count: LOGGER.info(f'{self.RS.name} time = {self.RS.time/self.RS.count}') else: LOGGER.info(f'ninguem saiu da fila {self.RS.name}') def queue_sizes(self): LS_size = self.LS.qsize() LT_size = self.LT.qsize() RT_size = self.RT.qsize() RS_size = self.RS.qsize() return [LS_size, LT_size, RT_size, RS_size] def count_queues_lenght(self): LS_size, LT_size, RT_size, RS_size = self.queue_sizes() LOGGER.debug( f"""count_queues_lenght() {'###'*3} >Filas agora< LeftSingle: {LS_size} LeftTriple: {LT_size} RightTriple: {RT_size} RightSingle: {RS_size} {'###'*3} """)
ViniciusLinharesAO/ski-slope-problem-uece-ppc
app/queues.py
queues.py
py
3,005
python
en
code
0
github-code
6
18598274205
import requests from data_access.openWeatherMap.client import OpenWeatherMap from business_logic.services import GetWeatherService from config import OWM_API_KEY, OWM_BASE_URL from .server import Request, Response def get_weather_controller(request: Request) -> Response: cities = request.params.get('query')[0] with requests.Session() as session: weather_api = OpenWeatherMap(session=session, api_key=OWM_API_KEY, base_url=OWM_BASE_URL) weather_service = GetWeatherService(weather_api_adapter=weather_api) weather_data_in_cities = weather_service.get_weather_in_cities(cities=cities) headers = {"Content-Type": "text/html"} mes = "<html><body><h1><b>Weather Data Table</b></h1><table>" mes += "<tr><th>city</th><th>temp</th><th>description</th><th>humidity</th></tr>" for weather_data in weather_data_in_cities: mes += (f"<tr><td>{weather_data.name}</td><td>{weather_data.main.temp}</td>" f"<td>{weather_data.weather[0].description}</td><td>{weather_data.main.humidity}</td></tr>") mes += "</table></body></html>" return Response( status="200 OK", headers=headers, body=mes ) def hello_world_controller(request: Request) -> Response: mes = "<h1>Hello World!</h1>" headers = {"Content-Type": "text/html"} return Response( status="200 OK", headers=headers, body=mes ) urlpatterns = [ ('/', get_weather_controller), ('/hello', hello_world_controller) ] class WebApplication: # Web-Frameworks: Django, Flask, FastAPI def _get_404_error(self, request: Request) -> Response: mes = f"<h1>404 ERROR, URL {request.path} NOT FOUND" headers = {"Content-Type": "text/html"} return Response( status="404 NOT FOUND", headers=headers, body=mes ) def __call__(self, request: Request) -> Response: for url_path, controller in urlpatterns: if url_path == request.path: resp = controller(request) return resp return self._get_404_error(request=request)
pyteacher123/py35-onl
weather_app_refactored/presentation/web/application.py
application.py
py
2,199
python
en
code
2
github-code
6
6679634602
import numpy as np #import pandas as pd import matplotlib.pyplot as plt import argparse, sys import joblib import warnings warnings.filterwarnings('ignore') import torch import torch.nn as nn from torch.autograd import Variable import torchvision import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader import torch.nn.functional as F import torch.backends.cudnn as cudnn cudnn.benchmark = True from sklearn.metrics import roc_curve, auc, f1_score, precision_recall_curve, average_precision_score, ConfusionMatrixDisplay from medmnistutils.evaluationmetrics import accuracy, roc, presenf1cfsmtx from medmnistutils.medmnistdataloader import PathMNIST, OrganMNIST3D, PneumoniaMNIST, VesselMNIST3D, OCTMNIST #from medmnistutils.jiaodaresnet import ResNet18 as jiaodaresnet18 #from nets.unknownthreedresnet import resnet18 from medmnistutils.blingblingresnet import resnet18 as blingblingresnet18 from medmnistutils.O2Uzidairesnet import ResNet18 as O2Uresnet18 from medmnistutils.yixianresnet import resnet18 as yixian3dresnet18 parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='OCTMNIST', help='PathMNIST, OCTMNIST, PneumoniaMNIST, OrganMNIST3D, VesselMNIST3D') parser.add_argument('--noise_rate', type=float, default=0.4, help='noise rate') parser.add_argument('--batchsize', type=int, default=128, help='128') parser.add_argument('--num_epochs', type=int, default=200, help='number of epochs') #args = parser.parse_args(args=[]) args = parser.parse_args() if args.dataset =='PathMNIST': #2D, 9 classes, 89,996 / 10,004 / 7,180 newtransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[.5], std=[.5])]) train_dataset = PathMNIST(split = 'train', root = '../../medmnistdata', transform=newtransform, noise_rate=args.noise_rate) val_dataset = PathMNIST(split = 'val', root = '../../medmnistdata', transform=newtransform) test_dataset = PathMNIST(split = 'test', root = '../../medmnistdata', transform=newtransform) train_loader = DataLoader(train_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) model = O2Uresnet18(input_channel=train_dataset.in_channels, n_outputs=train_dataset.num_classes) #model = blingblingresnet18(num_classes=train_dataset.num_classes) if args.dataset =='OCTMNIST': #2D, 4 classes, newtransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[.5], std=[.5])]) train_dataset = OCTMNIST(split = 'train', root = '../../medmnistdata', transform=newtransform, noise_rate=args.noise_rate) val_dataset = OCTMNIST(split = 'val', root = '../../medmnistdata', transform=newtransform) test_dataset = OCTMNIST(split = 'test', root = '../../medmnistdata', transform=newtransform) train_loader = DataLoader(train_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) model = O2Uresnet18(input_channel=train_dataset.in_channels, n_outputs=train_dataset.num_classes) #model = blingblingresnet18(num_classes=train_dataset.num_classes) elif args.dataset =='PneumoniaMNIST': #2D, 2 class, 4,708 / 524 / 624 newtransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[.5], std=[.5])]) train_dataset = PneumoniaMNIST(split = 'train', root = '../../medmnistdata', transform=newtransform, noise_rate=args.noise_rate) val_dataset = PneumoniaMNIST(split = 'val', root = '../../medmnistdata', transform=newtransform) test_dataset = PneumoniaMNIST(split = 'test', root = '../../medmnistdata', transform=newtransform) train_loader = DataLoader(train_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) model = O2Uresnet18(input_channel=train_dataset.in_channels, n_outputs=train_dataset.num_classes) #model = blingblingresnet18(num_classes=train_dataset.num_classes) elif args.dataset =='OrganMNIST3D': #3D, 11 class, 972 / 161 / 610 train_dataset = OrganMNIST3D(split = 'train', root = '../../medmnistdata', transform=None, noise_rate=args.noise_rate) val_dataset = OrganMNIST3D(split = 'val', root = '../../medmnistdata', transform=None) test_dataset = OrganMNIST3D(split = 'test', root = '../../medmnistdata', transform=None) train_loader = DataLoader(train_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) model = yixian3dresnet18(num_classes = train_dataset.num_classes) elif args.dataset =='VesselMNIST3D': #3D, 2 class, 1,335 / 192 / 382 train_dataset = VesselMNIST3D(split = 'train', root = '../../medmnistdata', transform=None, noise_rate=args.noise_rate) val_dataset = VesselMNIST3D(split = 'val', root = '../../medmnistdata', transform=None) test_dataset = VesselMNIST3D(split = 'test', root = '../../medmnistdata', transform=None) train_loader = DataLoader(train_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=args.batchsize, drop_last = False, shuffle=True) model = yixian3dresnet18(num_classes = train_dataset.num_classes) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) error = nn.CrossEntropyLoss() learning_rate = 0.001 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) ############################################################################### 验证准确率列表 = [] 测试准确率列表= [] ############################################################################### #main loop for epoch in range(args.num_epochs): #train model.train() for images, labels, _ in train_loader: images, labels = images.to(device), labels.to(device) labels = labels.squeeze().long() outputs = model(images) loss = error(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() #evaluation valaccuracy = accuracy(model, val_loader) testaccuracy = accuracy(model, test_loader) print('epoch', epoch+1, 'val accuracy', valaccuracy, 'test accuracy', testaccuracy) ############################################################################### #以下都是不需要的 ############################################################################### 验证准确率列表.append(valaccuracy) 测试准确率列表.append(testaccuracy) 实验名 = '20230924baselineexp1' resultdict = dict() #模型 resultdict['model'] = model #acc变化图 resultdict['valacclist'] = 验证准确率列表 resultdict['testacclist'] = 测试准确率列表 验证准确率列表 = [x*100 for x in 验证准确率列表] 测试准确率列表 = [x*100 for x in 测试准确率列表] plt.plot(验证准确率列表, label = 'validation set') plt.plot(测试准确率列表, label = 'test set') plt.xlim((0,200)) plt.ylim((0,100)) #plt.title('origingal method on ' + args.dataset + ' under noise rate ' + str(args.noise_rate)) plt.xlabel('Epoch') plt.ylabel('Accuracy (%)') acc变化图文件名 = 实验名 + '_acccurve_' + args.dataset + '_' + str(args.noise_rate) + '.png' plt.legend() plt.savefig(acc变化图文件名) plt.show() #ROC曲线图 resultdict['valfprdict'], resultdict['valtprdict'], resultdict['valaucdict'] = roc(model, val_loader) resultdict['testfprdict'], resultdict['testtprdict'], resultdict['testaucdict'] = roc(model, test_loader) plt.plot(resultdict['valfprdict']["micro"], resultdict['valtprdict']["micro"], label='validation set, AUC ' + str(round(100*resultdict['valaucdict']["micro"],2))) plt.plot(resultdict['testfprdict']["micro"], resultdict['testtprdict']["micro"], label='test set, AUC ' + str(round(100*resultdict['testaucdict']["micro"],2))) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc="lower right") ROC文件名 = 实验名 + '_roccurve_' + args.dataset + '_' + str(args.noise_rate) + '.png' plt.savefig(ROC文件名) plt.show() #confusion matrix图 resultdict['valprecision'], resultdict['valrecall'], resultdict['valf1'], resultdict['valtruelist'], resultdict['valpredlist'], resultdict['valcfsmtx'] = presenf1cfsmtx(model, val_loader) ConfusionMatrixDisplay.from_predictions(resultdict['valtruelist'], resultdict['valpredlist'], cmap = plt.cm.Blues, colorbar = False) cfsmtx文件名 = 实验名 + '_valconfusionmatrix_' + args.dataset + '_' + str(args.noise_rate) + '.png' plt.savefig(cfsmtx文件名) plt.show() resultdict['testprecision'], resultdict['testrecall'], resultdict['testf1'], resultdict['testtruelist'], resultdict['testpredlist'], resultdict['testcfsmtx'] = presenf1cfsmtx(model, test_loader) ConfusionMatrixDisplay.from_predictions(resultdict['testtruelist'], resultdict['testpredlist'], cmap = plt.cm.Blues, colorbar = False) cfsmtx文件名 = 实验名 + '_testconfusionmatrix_' + args.dataset + '_' + str(args.noise_rate) + '.png' plt.savefig(cfsmtx文件名) plt.show() #txt txt文件名 = 实验名 + '_txt_' + args.dataset + '_' + str(args.noise_rate) + '.txt' with open (txt文件名, 'a', encoding='utf-8') as txt: txt.write('最后一轮acc' + "\n" ) txt.write(str(round(验证准确率列表[-1],2)) + "\n" ) txt.write(str(round(测试准确率列表[-1],2)) + "\n" ) txt.write('最后十轮acc平均' + "\n" ) txt.write(str(round(sum(验证准确率列表[-11:-1])/len(验证准确率列表[-11:-1]),2)) + "\n" ) txt.write(str(round(sum(测试准确率列表[-11:-1])/len(验证准确率列表[-11:-1]),2)) + "\n" ) txt.write('precision' + "\n" ) txt.write(str(round(100*resultdict['valprecision'],2)) + "\n" ) txt.write(str(round(100*resultdict['testprecision'],2)) + "\n" ) txt.write('recall' + "\n" ) txt.write(str(round(100*resultdict['valrecall'],2)) + "\n" ) txt.write(str(round(100*resultdict['testrecall'],2)) + "\n" ) txt.write('f1' + "\n" ) txt.write(str(round(100*resultdict['valf1'],2)) + "\n" ) txt.write(str(round(100*resultdict['testf1'],2)) + "\n" ) #保存整个文件 resultdict文件名 = 实验名 + '_resultdict_' + args.dataset + '_' + str(args.noise_rate) joblib.dump(resultdict, resultdict文件名)
gdqb233/inm363
baseline.py
baseline.py
py
11,328
python
en
code
0
github-code
6
38144650744
import unittest from src.BinaryTree import BinaryTree, BinaryTreeNode class TestBinaryTree(unittest.TestCase): """ This class tests the BinaryTree class """ def test_constructor(self): """ Tests the state of a binary tree's root after initialization """ try: # test invalid tree creation bt = BinaryTree(None) self.assertTrue(False) except ValueError: bt = BinaryTree(BinaryTreeNode(1)) self.assertEqual(bt.root.val, 1) def test_equivalent(self): """ Tests whether tree equivalence with both equivalent and non-equivalent trees """ bt1 = BinaryTree(BinaryTreeNode(1, BinaryTreeNode(2), BinaryTreeNode(3))) bt2 = BinaryTree(BinaryTreeNode(1, BinaryTreeNode(2), BinaryTreeNode(3))) self.assertTrue(bt1.is_equivalent(bt2)) bt3 = BinaryTree(BinaryTreeNode(1)) self.assertFalse(bt1.is_equivalent(bt3)) bt4 = BinaryTree(BinaryTreeNode(1, BinaryTreeNode(3), BinaryTreeNode(2))) self.assertFalse(bt1.is_equivalent(bt4)) def test_leaves_just_root(self): """ Tests the leaves returned from a singleton root tree """ bt = BinaryTree(BinaryTreeNode(1)) self.assertListEqual(list(bt.get_leaves()), [bt.root]) def test_leaves_basic(self): """ Tests the leaves returned from a tree with a root and two children """ nodes = BinaryTreeNode(1, BinaryTreeNode(2), BinaryTreeNode(3)) bt = BinaryTree(nodes) self.assertListEqual(list(bt.get_leaves()), [nodes.left, nodes.right]) def test_leaves_complex(self): """ Tests the leaves returned from a 3-generation tree with different configurations of children """ leaf1, leaf2, leaf3 = BinaryTreeNode(10), BinaryTreeNode(20), BinaryTreeNode(30) parent1, parent2 = BinaryTreeNode(5, leaf1, leaf2), BinaryTreeNode(15, leaf3) root = BinaryTreeNode(0, parent1, parent2) bt = BinaryTree(root) self.assertListEqual(list(bt.get_leaves()), [leaf1, leaf2, leaf3]) def test_preorder(self): """ Tests the nodes returned by a pre-order traversal of a 3-generation tree """ leaf1, leaf2, leaf3 = BinaryTreeNode(10), BinaryTreeNode(20), BinaryTreeNode(30) parent1, parent2 = BinaryTreeNode(5, leaf1, leaf2), BinaryTreeNode(15, leaf3) root = BinaryTreeNode(0, parent1, parent2) bt = BinaryTree(root) self.assertListEqual(list(bt.get_preorder()), [root, parent1, leaf1, leaf2, parent2, leaf3])
snitkdan/BlackJack
test/test_binarytree.py
test_binarytree.py
py
2,631
python
en
code
0
github-code
6
21051188362
from django.db import models from django_countries.fields import CountryField from product.models import product, product_version from django.contrib.auth.base_user import AbstractBaseUser, BaseUserManager from django.contrib.auth import get_user_model User = get_user_model() from decimal import Decimal from django.conf import settings class Order(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='order_user') full_name = models.CharField(max_length=50) address1 = models.CharField(max_length=250) address2 = models.CharField(max_length=250) city = models.CharField(max_length=100) phone = models.CharField(max_length=100) post_code = models.CharField(max_length=20) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) total_paid = models.DecimalField(max_digits=5, decimal_places=2) order_key = models.CharField(max_length=200) billing_status = models.BooleanField(default=False) class Meta: ordering = ('-created',) def __str__(self): return str(self.created) class OrderItem(models.Model): order = models.ForeignKey(Order, related_name='items', on_delete=models.CASCADE) product = models.ForeignKey(product, related_name='order_items', on_delete=models.CASCADE) price = models.DecimalField(max_digits=5, decimal_places=2) quantity = models.PositiveIntegerField(default=1) def __str__(self): return str(self.id) # type: ignore class Basket(models.Model): ... # """ # A base Basket class, providing some default behaviors that # can be inherited or overrided, as necessary. # """ # def __init__(self, request): # self.session = request.session # basket = self.session.get(settings.BASKET_SESSION_ID) # if settings.BASKET_SESSION_ID not in request.session: # basket = self.session[settings.BASKET_SESSION_ID] = {} # self.basket = basket # def add(self, product, qty): # """ # Adding and updating the users basket session data # """ # product_id = str(product.id) # if product_id in self.basket: # self.basket[product_id]["qty"] = qty # else: # self.basket[product_id] = {"price": str(product.regular_price), "qty": qty} # self.save() # def __iter__(self): # """ # Collect the product_id in the session data to query the database # and return products # """ # product_ids = self.basket.keys() # products = product.objects.filter(id__in=product_ids) # type: ignore # basket = self.basket.copy() # for product in products: # basket[str(product.id)]["product"] = product # for item in basket.values(): # item["price"] = Decimal(item["price"]) # item["total_price"] = item["price"] * item["qty"] # yield item # def __len__(self): # """ # Get the basket data and count the qty of items # """ # return sum(item["qty"] for item in self.basket.values()) # def update(self, product, qty): # """ # Update values in session data # """ # product_id = str(product) # if product_id in self.basket: # self.basket[product_id]["qty"] = qty # self.save() # def get_subtotal_price(self): # return sum(Decimal(item["price"]) * item["qty"] for item in self.basket.values()) # def get_total_price(self): # subtotal = sum(Decimal(item["price"]) * item["qty"] for item in self.basket.values()) # shipping = Decimal(0.00) if subtotal == 0 else Decimal(11.50) # return subtotal + Decimal(shipping) # def delete(self, product): # """ # Delete item from session data # """ # product_id = str(product) # if product_id in self.basket: # del self.basket[product_id] # self.save() # def clear(self): # # Remove basket from session # del self.session[settings.BASKET_SESSION_ID] # self.save() # def save(self): # self.session.modified = True class WishList(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE,null=True) item = models.ForeignKey(product_version, on_delete=models.CASCADE,blank=True, null=True) class Meta(object): verbose_name = 'WishList' verbose_name_plural = 'WishLists' def __str__(self): return f"{self.user}" class CheckoutBilling(models.Model): first_name = models.CharField(max_length=50,verbose_name='First Name', help_text='Max 255 character') last_name = models.CharField(max_length=50,verbose_name='Last Name', help_text='Max 255 character') company = models.TextField(verbose_name='Company') email = models.EmailField(verbose_name='Email Address') address = models.TextField(verbose_name='Street Address') country = CountryField(max_length=255, verbose_name='Country') telephone = models.CharField(max_length=25 ,verbose_name='Telephone') fax = models.CharField(max_length=50, verbose_name='Fax') user_id = models.ForeignKey(User, on_delete=models.CASCADE, null=True) class Meta: verbose_name = "Checkout Billing" verbose_name_plural = "Checkout Billings" def __str__(self): return self.first_name class Checkout(models.Model): address=models.CharField(max_length=100) created_at=models.DateField(auto_now_add=True) updated_at=models.DateField(auto_now=True) def __str__(self): return self.address class CheckoutShipping(models.Model): first_name = models.CharField(max_length=50,verbose_name='First Name', help_text='Max 255 character') last_name = models.CharField(max_length=50,verbose_name='Last Name', help_text='Max 255 character') company = models.TextField(verbose_name='Company') email = models.EmailField(verbose_name='Email Address') address = models.TextField(verbose_name='Street Address') country = CountryField(max_length=255, verbose_name='Country') telephone = models.CharField(max_length=25 ,verbose_name='Telephone') fax = models.CharField(max_length=50, verbose_name='Fax') user_id = models.ForeignKey(User, on_delete=models.CASCADE, null=True) class Meta: verbose_name = "Checkout Shipping" verbose_name_plural = "Checkout Shipping" def __str__(self): return self.first_name class ShoppingCart(models.Model): product_name=models.CharField(max_length=200) img = models.ImageField(upload_to = "images/") unit_price=models.CharField(max_length=10) qty=models.CharField(max_length=20) subtotal=models.CharField(max_length=25) coupon=models.CharField(max_length=20) zip_code=models.CharField(max_length=20) state=models.TextField() country=models.TextField(blank=False) class Meta: verbose_name = "Shopping Cart" verbose_name_plural = "Shopping Cart" def __str__(self): return self.product_name
Shafag42/SuperB_E-commerce
order/models.py
models.py
py
7,334
python
en
code
1
github-code
6
42539411350
from django.shortcuts import render, redirect from .models import * import os from django.conf import settings from django.http import HttpResponse import json # Create your views here. def cargarInicio(request): productos = Producto.objects.all() producto_perros = Producto.objects.filter(categoria_id=1) producto_gatos = Producto.objects.filter(categoria_id=2) return render(request,"inicio.html",{"prod" : productos, "prod_dogs":producto_perros, "prod_cats":producto_gatos}) def cargarAgregarProducto(request): categorias = Categoria.objects.all() productos = Producto.objects.all() return render(request, "agregarProducto.html",{"cate":categorias,"prod":productos}) def agregarProducto(request): #print("AGREGANDO PRODUCTOS A LA BBDD",request.POST) v_sku = request.POST['txtSku'] v_precio = request.POST['txtPrecio'] v_nombre = request.POST['txtNombre'] v_imagen = request.FILES['txtImagen'] v_descripcion = request.POST['txtDescripcion'] v_stock = request.POST['txtStock'] v_categoria = Categoria.objects.get(id_categoria = request.POST['cmbCategoria']) Producto.objects.create(sku = v_sku, precio = v_precio, nombre = v_nombre,imagen = v_imagen,descripcion = v_descripcion,stock = v_stock, categoria_id = v_categoria) return redirect('/agregarProducto') def cargarEditarProducto(request,sku): producto = Producto.objects.get(sku = sku) categorias = Categoria.objects.all() return render(request,"editarProducto.html",{"prod":producto,"cate":categorias}) def editarProducto(request): v_sku = request.POST['txtSku'] productoBD = Producto.objects.get(sku = v_sku) v_precio = request.POST['txtPrecio'] v_nombre = request.POST['txtNombre'] v_descripcion = request.POST['txtDescripcion'] v_stock = request.POST['txtStock'] v_categoria = Categoria.objects.get(id_categoria = request.POST['cmbCategoria']) try: v_imagen = request.FILES['txtImagen'] ruta_img = os.path.join(settings.MEDIA_ROOT,str(productoBD.imagen)) os.remove(ruta_img) except: v_imagen = productoBD.imagen productoBD.nombre = v_nombre productoBD.precio = v_precio productoBD.imagen = v_imagen productoBD.descripcion = v_descripcion productoBD.stock = v_stock productoBD.categoria_id = v_categoria productoBD.save() return redirect('/agregarProducto') def eliminarProducto(request,sku): producto = Producto.objects.get(sku = sku) ruta_img = os.path.join(settings.MEDIA_ROOT,str(producto.imagen)) os.remove(ruta_img) producto.delete() return redirect('/agregarProducto') def carrito(request): #print("CARRITO",request.body) productos = json.loads(request.body) for p in productos: print("SKU",p['sku']) print("CANTIDAD",p['cantidad']) return HttpResponse("OK!")
GuillermoVillacuraTorres/PGY3121-012D
django/apps/Tienda/views.py
views.py
py
2,897
python
es
code
null
github-code
6
33706250276
import sys from PySide2.QtWidgets import QApplication, QMainWindow, QGroupBox, QRadioButton aplicacao = QApplication(sys.argv) janela = QMainWindow() # setGeometry(esquerda, topo, largura, altura) janela.setGeometry( 100, 50, 300, 200 ) janela.setWindowTitle("Primeira Janela") # cria uma instancia de um grupo de seleção dentro da janela group_box = QGroupBox("Selecione uma opção", janela) group_box.move(50,50) group_box.resize(200,100) group_box.setStyleSheet('QGroupBox \ {background-color: yellow}') # cria os radio buttons dentro do grupo de seleção radio_btn_1 = QRadioButton("Opção 1", group_box) radio_btn_1.move(10,20) radio_btn_2 = QRadioButton("Opção 2", group_box) radio_btn_2.move(10,40) radio_btn_3 = QRadioButton("Opção 3", group_box) radio_btn_3.move(10,60) radio_btn_3.setChecked(True) janela.show() aplicacao.exec_() sys.exit()
leuribeiru/QtforPhyton
componentes_basicos/radio.py
radio.py
py
865
python
pt
code
1
github-code
6
32605878813
import discord import youtube_dl from bot_token import TOKEN if not TOKEN: raise ValueError("Please add your token to bot_token.py") client = discord.Client() @client.event async def on_message(message): if message.author== client.user : return elif message.content.startswith("*l"): msg = f'{message.content[3:]}Hello{message.author.mention}' await client.send_message(message.channel, msg) elif message.content.startswith("*chante"): url= message.content[8:] @client.event async def on_ready(): print('Logged in as') print(client.user.name) print(client.user.id) print('------') client.run(TOKEN)
F3YoD/Bot-python
tamer2.py
tamer2.py
py
669
python
en
code
0
github-code
6
43529823665
# -*- coding: utf-8 -*- """ Created on Fri Mar 22 11:51:37 2019 @author: javie """ import plotly_express as px from plotly.offline import plot def pl(df, r, var): tmp = df[df.randomSeed.isin(r)] plot(px.line(tmp, height=300 * len(r), x="tick", y = var, color="FirmNumID", line_dash="scenario", facet_row="randomSeed" )) # Several variables melting columns def plMelt(df, r, vars, id_vars=["randomSeed","scenario","tick","FirmNumID"]): tmp = df[df.randomSeed.isin(r)] tmp = tmp.melt(id_vars=id_vars, value_vars=vars) plot(px.line(tmp, height=300 * len(r), x="tick", y= "value", color="FirmNumID", line_dash="scenario", facet_col="variable", facet_row="randomSeed" ))
javiergarciasanchez/businessCycles
businessCycles/exploreData/Python/Graphs_plotly.py
Graphs_plotly.py
py
871
python
en
code
0
github-code
6
35049082181
""" 3D convolutions using GPU accelereration for Theano (using conv2d) https://github.com/jaberg/TheanoConv3d2d """ import theano from theano.gradient import DisconnectedType from theano.gof import Op, Apply from theano import tensor import theano.sandbox.cuda as cuda def get_diagonal_subtensor_view(x, i0, i1): """Helper function for DiagonalSubtensor and IncDiagonalSubtensor :note: it return a partial view of x, not a partial copy. """ if x.shape[i0] < x.shape[i1]: raise NotImplementedError('is this allowed?') idx = [slice(None)] * x.ndim idx[i0] = slice(x.shape[i1] - 1, None, None) xview = x.__getitem__(tuple(idx)) strides = list(xview.strides) strides[i1] -= strides[i0] xview.strides = strides return xview class DiagonalSubtensor(Op): """Return a form a nd diagonal subtensor. :param x: n-d tensor :param i0: axis index in x :param i1: axis index in x :note: Work on the GPU. ``x`` is some n-dimensional tensor, but this Op only deals with a matrix-shaped slice, using axes i0 and i1. Without loss of generality, suppose that ``i0`` picks out our ``row`` dimension, and i1 the ``column`` dimension. So the relevant part of ``x`` is some matrix ``u``. Suppose it has 7 rows and 4 columns:: [ 0 0 0 0 ] [ 0 0 0 0 ] [ 0 0 0 0 ] [ 0 0 0 0 ] [ 0 0 0 0 ] [ 0 0 0 0 ] The view returned by this function is also a matrix. It's a thick, diagonal ``stripe`` across u that discards the lower left triangle and the upper right triangle: [ x 0 0 0 ] [ x x 0 0 ] [ x x x 0 ] [ 0 x x x ] [ 0 0 x x ] [ 0 0 0 x ] In this case the return value would be this view of shape 3x4. The returned view has the same number of dimensions as the input ``x``, and the only difference is that the shape along dimension ``i0`` has been reduced by ``shape[i1] - 1`` because of the triangles that got chopped out. The NotImplementedError is meant to catch the case where shape[i0] is too small for the stripe to reach across the matrix, in which case it's not clear what this function should do. Maybe always raise an error. I'd look back to the call site in the Conv3D to see what's necessary at that point. """ def __str__(self): if self.inplace: return "%s{inplace}" % self.__class__.__name__ return "%s" % self.__class__.__name__ def __init__(self, inplace=False): self.inplace = inplace if inplace: self.view_map = {0: [0]} def __eq__(self, other): return type(self) == type(other) and self.inplace == other.inplace def __hash__(self): return hash((type(self), self.inplace)) def make_node(self, x, i0, i1): _i0 = tensor.as_tensor_variable(i0) _i1 = tensor.as_tensor_variable(i1) return Apply(self, [x, _i0, _i1], [x.type()]) def perform(self, node, inputs, output_storage): xview = get_diagonal_subtensor_view(*inputs) if self.inplace: output_storage[0][0] = xview else: output_storage[0][0] = xview.copy() def grad(self, inputs, g_outputs): z = tensor.zeros_like(inputs[0]) gx = inc_diagonal_subtensor(z, inputs[1], inputs[2], g_outputs[0]) return [gx, DisconnectedType()(), DisconnectedType()()] def connection_pattern(self, node): rval = [[True], [False], [False]] return rval diagonal_subtensor = DiagonalSubtensor(False) class IncDiagonalSubtensor(Op): """ The gradient of DiagonalSubtensor """ def __str__(self): if self.inplace: return "%s{inplace}" % self.__class__.__name__ return "%s" % self.__class__.__name__ def __init__(self, inplace=False): self.inplace = inplace if inplace: self.destroy_map = {0: [0]} def __eq__(self, other): return type(self) == type(other) and self.inplace == other.inplace def __hash__(self): return hash((type(self), self.inplace)) def make_node(self, x, i0, i1, amt): _i0 = tensor.as_tensor_variable(i0) _i1 = tensor.as_tensor_variable(i1) return Apply(self, [x, _i0, _i1, amt], [x.type()]) def perform(self, node, inputs, output_storage): x, i0, i1, amt = inputs if not self.inplace: x = x.copy() xview = get_diagonal_subtensor_view(x, i0, i1) xview += amt output_storage[0][0] = x def grad(self, inputs, g_outputs): x, i0, i1, amt = inputs gy = g_outputs[0] return [gy, DisconnectedType()(), DisconnectedType()(), diagonal_subtensor(gy, i0, i1)] def connection_pattern(self, node): rval = [[True], [False], [False], [True]] return rval inc_diagonal_subtensor = IncDiagonalSubtensor(False) def conv3d(signals, filters, signals_shape=None, filters_shape=None, border_mode='valid'): """Convolve spatio-temporal filters with a movie. :param signals: timeseries of images whose pixels have color channels. shape: [Ns, Ts, C, Hs, Ws] :param filters: spatio-temporal filters shape: [Nf, Tf, C, Hf, Wf] :param signals_shape: None or a tuple/list with the shape of signals :param filters_shape: None or a tuple/list with the shape of filters :param border_mode: The only one tested is 'valid'. :note: Work on the GPU. """ if isinstance(border_mode, str): border_mode = (border_mode, border_mode, border_mode) _signals_shape_5d = signals.shape if signals_shape is None else signals_shape _filters_shape_5d = filters.shape if filters_shape is None else filters_shape _signals_shape_4d = ( _signals_shape_5d[0] * _signals_shape_5d[1], _signals_shape_5d[2], _signals_shape_5d[3], _signals_shape_5d[4], ) _filters_shape_4d = ( _filters_shape_5d[0] * _filters_shape_5d[1], _filters_shape_5d[2], _filters_shape_5d[3], _filters_shape_5d[4], ) if border_mode[1] != border_mode[2]: raise NotImplementedError('height and width bordermodes must match') conv2d_signal_shape = _signals_shape_4d conv2d_filter_shape = _filters_shape_4d if signals_shape is None: conv2d_signal_shape = None if filters_shape is None: conv2d_filter_shape = None out_4d = tensor.nnet.conv2d( signals.reshape(_signals_shape_4d), filters.reshape(_filters_shape_4d), image_shape=conv2d_signal_shape, filter_shape=conv2d_filter_shape, border_mode = border_mode[1]) # ignoring border_mode[2] # reshape the output to restore its original size # shape = Ns, Ts, Nf, Tf, W-Wf+1, H-Hf+1 if border_mode[1] == 'valid': out_tmp = out_4d.reshape(( _signals_shape_5d[0], # Ns _signals_shape_5d[1], # Ts _filters_shape_5d[0], # Nf _filters_shape_5d[1], # Tf _signals_shape_5d[3] - _filters_shape_5d[3] + 1, _signals_shape_5d[4] - _filters_shape_5d[4] + 1, )) elif border_mode[1] == 'full': out_tmp = out_4d.reshape(( _signals_shape_5d[0], # Ns _signals_shape_5d[1], # Ts _filters_shape_5d[0], # Nf _filters_shape_5d[1], # Tf _signals_shape_5d[3] + _filters_shape_5d[3] - 1, _signals_shape_5d[4] + _filters_shape_5d[4] - 1, )) elif border_mode[1] == 'same': raise NotImplementedError() else: raise ValueError('invalid border mode', border_mode[1]) # now sum out along the Tf to get the output # but we have to sum on a diagonal through the Tf and Ts submatrix. if border_mode[0] == 'valid': out_5d = diagonal_subtensor(out_tmp, 1, 3).sum(axis=3) elif border_mode[0] in ('full', 'same'): out_5d = out_4d.reshape((_signals_shape_5d)) # raise NotImplementedError('sequence border mode', border_mode[0]) else: raise ValueError('invalid border mode', border_mode[1]) return out_5d def make_gpu_optimizer(op, to_gpu): """This function create optimizer that move some inputs to the GPU for op that work on both CPU and GPU. The op object is created by calling op(), so good default value are needed. We suppose the same op work with CPU and GPU inputs. :param op: the op that support GPU inputs :param to_gpu: a list of op inputs that are moved to the GPU. """ @theano.gof.local_optimizer([]) def local_to_gpu(node): """ op(host_from_gpu()) -> host_from_gpu(op) gpu_from_host(op) -> op(gpu_from_host) """ if isinstance(node.op, op): #op(host_from_gpu()) -> host_from_gpu(op) #If any of the input that go on the GPU are on the GPU, #move the op to the gpu. if any(node.inputs[idx].owner and isinstance(node.inputs[idx].owner.op, cuda.HostFromGpu) for idx in to_gpu): new_inp = list(node.inputs) for idx in to_gpu: new_inp[idx] = cuda.gpu_from_host(new_inp[idx]) return [cuda.host_from_gpu(op()(*new_inp))] if node.op == cuda.gpu_from_host: #gpu_from_host(op) -> op(gpu_from_host) host_input = node.inputs[0] if host_input.owner and isinstance(host_input.owner.op, op): op_node = host_input.owner new_inp = list(op_node.inputs) for idx in to_gpu: new_inp[idx] = cuda.gpu_from_host(new_inp[idx]) return [op()(*new_inp)] return False local_to_gpu.__name__ = "local_to_gpu_" + op.__name__ cuda.opt.register_opt()(local_to_gpu) if cuda.cuda_available: make_gpu_optimizer(DiagonalSubtensor, [0]) make_gpu_optimizer(IncDiagonalSubtensor, [0, 3])
lpigou/Theano-3D-ConvNet
convnet3d/conv3d2d.py
conv3d2d.py
py
10,163
python
en
code
83
github-code
6
1360579310
import pandas as pd import pathlib as pl import numpy as np import RootPath from abc import abstractmethod from Utils.Data.Features.RawFeatures import * from Utils.Data.Dictionary.MappingDictionary import * def map_column_single_value(series, dictionary): mapped_series = series.map(dictionary).astype(np.int32) return pd.DataFrame(mapped_series) def map_column_array(series, dictionary): mapped_series = series.map( lambda x: np.array([dictionary[y] for y in x.split('\t')], dtype=np.int32) if x is not pd.NA else None) return pd.DataFrame(mapped_series) class MappedFeaturePickle(Feature): """ Abstract class representing a dictionary that works with pickle file. """ def __init__(self, feature_name: str, dataset_id: str): super().__init__(feature_name, dataset_id) self.pck_path = pl.Path(f"{Feature.ROOT_PATH}/{self.dataset_id}/mapped/{self.feature_name}.pck.gz") self.csv_path = pl.Path(f"{Feature.ROOT_PATH}/{self.dataset_id}/mapped/{self.feature_name}.csv.gz") def has_feature(self): return self.pck_path.is_file() def load_feature(self): assert self.has_feature(), f"The feature {self.feature_name} does not exists. Create it first." df = pd.read_pickle(self.pck_path, compression="gzip") # Renaming the column for consistency purpose df.columns = [self.feature_name] return df @abstractmethod def create_feature(self): pass def save_feature(self, dataframe: pd.DataFrame): # Changing column name dataframe.columns = [self.feature_name] self.pck_path.parent.mkdir(parents=True, exist_ok=True) dataframe.to_pickle(self.pck_path, compression='gzip') # For backup reason # self.csv_path.parent.mkdir(parents=True, exist_ok=True) # dataframe.to_csv(self.csv_path, compression='gzip', index=True) class MappedFeatureTweetLanguage(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_tweet_language", dataset_id) def create_feature(self): feature = RawFeatureTweetLanguage(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingLanguageDictionary().load_or_create() mapped_dataframe = map_column_single_value(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureGroupedTweetLanguage(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_grouped_tweet_language", dataset_id) self.group_id_dict = {} self.current_mapping = 0 def get_grouped_id(self, language_id): # ??? inglese misto altre cose if language_id == 16 or language_id == 18 or language_id == 20: return 16 # [UNK] elif language_id == 26 or language_id == 56 or language_id == 57 or language_id == 58 or language_id == 59 or language_id == 61: return 26 # ??? elif language_id == 28 or language_id == 36 or language_id == 37 or language_id == 43 or language_id == 45 or language_id == 46: return 28 # persian / pashto elif language_id == 25 or language_id == 44 or language_id == 41: return 25 # lingue indiane elif language_id == 8 or language_id == 32 or language_id == 34 or language_id == 35 or language_id == 47 or language_id == 48 or language_id == 49 or language_id == 50 or language_id == 52 or language_id == 53 or language_id == 54 or language_id == 60 or language_id == 62: return 8 # lingue est europa elif language_id == 14 or language_id == 23 or language_id == 24 or language_id == 55: return 14 # lingue nord europa elif language_id == 21 or language_id == 31 or language_id == 38 or language_id == 39: return 21 # lingue centro europa / balcani elif language_id == 29 or language_id == 40 or language_id == 42: return 29 # others (vietnamita, birmano, armeno, georgiano, uiguro) elif language_id == 30 or language_id == 51 or language_id == 63 or language_id == 64 or language_id == 65: return 30 else: return language_id def remap_language_id(self, group_id): if group_id not in self.group_id_dict: self.group_id_dict[group_id] = self.current_mapping self.current_mapping += 1 return self.group_id_dict[group_id] def create_feature(self): feature = MappedFeatureTweetLanguage(self.dataset_id) dataframe = feature.load_or_create() #dataframe = dataframe.head() grouped_dataframe = pd.DataFrame(dataframe["mapped_feature_tweet_language"].map(lambda x: self.get_grouped_id(x))) #print(grouped_dataframe) mapped_dataframe = pd.DataFrame(dataframe["mapped_feature_tweet_language"].map(lambda x: self.remap_language_id(x))) #print(mapped_dataframe) self.save_feature(mapped_dataframe) class MappedFeatureTweetId(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_tweet_id", dataset_id) def create_feature(self): feature = RawFeatureTweetId(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingTweetIdDictionary().load_or_create() mapped_dataframe = map_column_single_value(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureCreatorId(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_creator_id", dataset_id) def create_feature(self): feature = RawFeatureCreatorId(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingUserIdDictionary().load_or_create() mapped_dataframe = map_column_single_value(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureEngagerId(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_engager_id", dataset_id) def create_feature(self): feature = RawFeatureEngagerId(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingUserIdDictionary().load_or_create() mapped_dataframe = map_column_single_value(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureTweetHashtags(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_tweet_hashtags", dataset_id) def create_feature(self): feature = RawFeatureTweetHashtags(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingHashtagDictionary().load_or_create() mapped_dataframe = map_column_array(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureTweetLinks(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_tweet_links", dataset_id) def create_feature(self): feature = RawFeatureTweetLinks(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingLinkDictionary().load_or_create() mapped_dataframe = map_column_array(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureTweetDomains(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_tweet_domains", dataset_id) def create_feature(self): feature = RawFeatureTweetDomains(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingDomainDictionary().load_or_create() mapped_dataframe = map_column_array(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe) class MappedFeatureTweetMedia(MappedFeaturePickle): def __init__(self, dataset_id: str): super().__init__("mapped_feature_tweet_media", dataset_id) def create_feature(self): feature = RawFeatureTweetMedia(self.dataset_id) dataframe = feature.load_or_create() dictionary = MappingMediaDictionary().load_or_create() mapped_dataframe = map_column_array(dataframe[feature.feature_name], dictionary) self.save_feature(mapped_dataframe)
MaurizioFD/recsys-challenge-2020-twitter
Utils/Data/Features/MappedFeatures.py
MappedFeatures.py
py
8,608
python
en
code
39
github-code
6
14731423365
from datetime import datetime import pandas as pd import pydash as _ from bs4 import BeautifulSoup from Base import NSEBase class NSE(NSEBase): """ A class to interact with NSE (National Stock Exchange) API. Attributes: valid_pcr_fields : list of valid fields for put-call ratio calculation Methods: __init__ : Initialize the NSE class get_option_chain : Get the option chain for a given ticker get_raw_option_chain : Get the raw option chain data for a given ticker get_options_expiry : Get the next expiry date for a given ticker get_all_derivatives_enabled_stocks : Get the list of equities available for derivatives trading get_equity_future_trade_info : Get the trade information of active future contracts for a given ticker get_equity_options_trade_info : Get the trade information of equity options for a given ticker _mapped_index_ticker_for_futures : Get the mapped index ticker for index futures get_index_futures_data : Get the data for index futures of a given index or ticker get_currency_futures : Get the data for currency futures get_commodity_futures : Get the data for commodity futures get_pcr : Get the put-call ratio for a given ticker and expiry date """ def __init__(self) -> None: """ The __init__ function is called when the class is instantiated. It sets up the session and headers for all subsequent requests. :param self: Represent the instance of the class :return: Nothing """ super().__init__() self.valid_pcr_fields = ['oi', 'volume'] # ---------------------------------------------------------------------------------------------------------------- # Utility Functions def get_option_chain(self, ticker: str, is_index: bool = True, expiry: datetime = None) -> pd.DataFrame: """ The get_option_chain function takes a ticker as input and returns the option chain for that ticker. The function uses the try_n_times_get_response function to get a response from NSE's API, which is then converted into a DataFrame using pd.json_normalize. :param self: Represent the instance of the class :param ticker: Specify the stock ticker for which we want to get the option chain its also called symbol in NSE :param is_index: (optional) Boolean value Specifies the given ticker is an index or not :param expiry: (optional) It takes the `expiry date` in the datetime format of the options contracts, default is very next expiry day :return: A dataframe with option chain """ params = {'symbol': ticker} if is_index: url = f'{self._base_url}/api/option-chain-indices' else: url = f'{self._base_url}/api/option-chain-equities' response = self.hit_and_get_data(url, params=params) if expiry is None: df = pd.DataFrame(pd.json_normalize(_.get(response, 'filtered.data', {}), sep='_')).set_index('strikePrice') else: df = pd.DataFrame(pd.json_normalize(_.get(response, 'records.data', {}), sep='_')).set_index('strikePrice') df = df[df['expiryDate'] == expiry.strftime('%d-%b-%Y')] return df def get_raw_option_chain(self, ticker: str, is_index: bool = True) -> dict: """ The get_option_chain function takes a ticker as input and returns the option chain for that ticker. The function uses the try_n_times_get_response function to get a response from NSE's API, which is then converted into a DataFrame using pd.json_normalize. :param is_index: Boolean value Specifies the given ticker is an index or not :param self: Represent the instance of the class :param ticker: Specify the stock ticker for which we want to get the option chain :return: A dataframe with option chain data """ params = {'symbol': ticker} if is_index: url = f'{self._base_url}/api/option-chain-indices' else: url = f'{self._base_url}/api/option-chain-equities' response = self.hit_and_get_data(url, params=params) return response def get_options_expiry(self, ticker: str, is_index: bool = False) -> datetime: """ The get_expiry function takes in a ticker and returns the next expiry date for that ticker. The function uses the NSE API to get all expiry dates for a given ticker, sorts them in ascending order, and then returns the nth element of this sorted list. :param self: Represent the instance of the class :param ticker: Specify the ticker / symbol for which we want to get the expiry date :param is_index: Boolean value Specifies the given ticker is an index or not :return: The very next expiry date """ params = {'symbol': ticker} if is_index: url = f'{self._base_url}/api/option-chain-indices' else: url = f'{self._base_url}/api/option-chain-equities' response = self.hit_and_get_data(url, params=params) dates = sorted([datetime.strptime(date_str, "%d-%b-%Y") for date_str in response.get('records', {}).get('expiryDates', [])]) return dates # ----------------------------------------------------------------------------------------------------------------_ # Equity Futures def get_all_derivatives_enabled_stocks(self) -> list: """ The get_all_derivatives_enabled_stocks provides the list of Equities available for derivative trading :param self: Represent the instance of the class :return: List of all Equities tickers / symbols for which derivative trading is allowed """ response = self.hit_and_get_data(f'{self._base_url}/api/master-quote') return response def get_equity_future_trade_info(self, ticker: str) -> pd.DataFrame: """ The get_equity_future_trade_info provides all active future contracts trade information including its price details :param self: Represent the instance of the class :param ticker: Specify the ticker / symbol for which we want to get the expiry date :return: A DataFrame of trade info data of Equity Future contracts """ params = {'symbol': ticker} response = self.hit_and_get_data(f'{self._base_url}/api/quote-derivative', params=params) future_data = [] for fno_data in response.get('stocks', []): if fno_data.get('metadata', {}).get('instrumentType') == 'Stock Futures': future_data.append(fno_data) df = pd.DataFrame(pd.json_normalize(future_data, sep='_')) df['ticker'] = response.get('info', {}).get('symbol', '') df['companyName'] = response.get('info', {}).get('companyName', '') df['industry'] = response.get('info', {}).get('industry', '') df['fut_timestamp'] = response.get('fut_timestamp', '') return df # ---------------------------------------------------------------------------------------------------------------- # Equity Options def get_equity_options_trade_info(self, ticker: str) -> pd.DataFrame: """ Gets equity options trade information for a given ticker. :param ticker: Ticker symbol of the equity options trade. :return: DataFrame containing the trade information. """ params = {'symbol': ticker} response = self.hit_and_get_data(f'{self._base_url}/api/quote-derivative', params=params) future_data = [] for fno_data in response.get('stocks', []): if fno_data.get('metadata', {}).get('instrumentType') == 'Stock Options': future_data.append(fno_data) df = pd.DataFrame(pd.json_normalize(future_data, sep='_')) df['ticker'] = response.get('info', {}).get('symbol', '') df['companyName'] = response.get('info', {}).get('companyName', '') df['industry'] = response.get('info', {}).get('industry', '') df['opt_timestamp'] = response.get('opt_timestamp', '') return df # ---------------------------------------------------------------------------------------------------------------- # Index Futures def _mapped_index_ticker_for_futures(self) -> dict: """ Mapped index ticker will give dict of available options with its corresponding ticker value :param self: Represent the instance of the class :return: A dict obj with all FUTURES mappings """ response = self.session.get(f'{self._base_url}//market-data/equity-derivatives-watch', headers=self.headers) soup = BeautifulSoup(response.text, features="html5lib") all_derivative_options = soup.find_all('option', attrs={"rel": "derivative"}) mapped_index_ticker = {} for i in all_derivative_options: mapped_index_ticker[i.get_text().lower()] = i['value'] return mapped_index_ticker def get_index_futures_data(self, index_or_ticker: str) -> pd.DataFrame: """ Fetches index futures data. :param self: Represent the instance of the class :param index_or_ticker: Name or ticker symbol of the index. :return: DataFrame containing the FUTURES data """ index_or_ticker = index_or_ticker.lower() mapped_tickers = {} try: mapped_tickers = self._mapped_index_ticker_for_futures() except Exception as err: print( f'Exception in fetching mapped ticker for this index try to pass actual ticker in the next call, ' f'Exact error : {err}') if index_or_ticker in mapped_tickers.keys(): ticker_to_used = mapped_tickers[index_or_ticker] else: ticker_to_used = index_or_ticker params = {'index': ticker_to_used} response = self.hit_and_get_data(f'{self._base_url}/api/liveEquity-derivatives', params=params) df = pd.DataFrame(response.get('data', [])) return df # ---------------------------------------------------------------------------------------------------------------- # Currency def get_currency_futures(self) -> pd.DataFrame: """ Fetches currency futures data. :param self: Represent the instance of the class :return: DataFrame containing the currency futures data """ params = {'index': 'live_market_currency', 'key': 'INR'} response = self.hit_and_get_data( f'{self._base_url}/api/liveCurrency-derivatives', params=params) df = pd.DataFrame(response.get('data', [])) return df # ---------------------------------------------------------------------------------------------------------------- # Commodity def get_commodity_futures(self) -> pd.DataFrame: """ Fetches commodity futures data. :param self: Represent the instance of the class :return: Pd.DataFrame: DataFrame containing the currency futures data """ response = self.hit_and_get_data(f'{self._base_url}/api/liveCommodity-derivatives') df = pd.DataFrame(response.get('data', [])) return df def get_pcr(self, ticker: str, is_index: bool = True, on_field: str = 'OI', expiry: datetime = None) -> float: """ Calculate the put-call ratio (PCR) for a given ticker. :param self: Represent the instance of the class :param ticker: The ticker symbol. :param is_index: Boolean value Specifies the given ticker is an index or not :param expiry: The expiry date of the option contract. Defaults to None. :param on_field: The field to calculate PCR on. `Volume` or `oi` (open-interest) Default to 'OI'. :return: The calculated PCR value """ on_field = on_field.lower() if on_field not in self.valid_pcr_fields: print(f'Un-supported filed is passed only these are the fields available : {self.valid_pcr_fields}') return 0 if expiry is None: df = self.get_option_chain(ticker, is_index=is_index) else: df = self.get_option_chain(ticker, is_index=is_index, expiry=expiry) if df.shape[0] == 0: print('Your filters lead to empty DataSet check all params, expiry, etc; returning 0 as default') return 0 if on_field == 'oi': put_oi = df['PE_openInterest'].sum() call_oi = df['CE_openInterest'].sum() return put_oi / call_oi else: put_vol = df['PE_totalTradedVolume'].sum() call_vol = df['CE_totalTradedVolume'].sum() return put_vol / call_vol
Sampad-Hegde/Bharat-SM-Data
Bharat_sm_data/Derivatives/NSE.py
NSE.py
py
13,281
python
en
code
2
github-code
6
1592231392
import asyncio from flask import Blueprint, abort, flash, redirect, render_template, request, jsonify, url_for, Response from werkzeug.utils import secure_filename import socket from flask_socketio import SocketIO, emit from app import app, db, socketio import os import time HOST = "127.0.1.1" WEBSOCKET_PORT = 9999 CHUNK_SIZE = 4096 # Define o tamanho do pacote. Pode ser ajustado conforme necessário. # Lista de endereços IP dos servidores para armazenamento de réplicas REPLICA_SERVERS = [HOST, HOST, HOST] #ips locais mockados #REPLICA_SERVERS = ["192.168.1.2", "192.168.1.3", "192.168.1.4"] # IPs das máquinas das réplicas main = Blueprint('main', __name__) MIME_TYPES = { "mp4": "video/mp4", "avi": "video/x-msvideo", "mkv": "video/x-matroska", "flv": "video/x-flv" } class StreamingError(Exception): """Exceção personalizada para erros de streaming.""" pass class Video(db.Model): __tablename__ = 'video' __table_args__ = {'extend_existing': True} id = db.Column(db.Integer, primary_key=True) filename = db.Column(db.String(150), unique=True, nullable=False) description = db.Column(db.String(500), nullable=True) with app.app_context(): db.create_all() def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS'] def upload_to_replica(filename, file_content): for server_ip in REPLICA_SERVERS: try: client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect((server_ip, WEBSOCKET_PORT)) # Enviar comando UPLOAD header = f"UPLOAD" client.send(header.encode()) # Enviar tamanho do arquivo como uma string de tamanho 10 client.send(str(len(file_content)).encode().zfill(10)) # Enviar tamanho do nome do arquivo client.send(str(len(filename)).encode().zfill(10)) # Enviar nome do arquivo client.send(filename.encode()) # Enviar os dados do arquivo client.sendall(file_content) client.close() except Exception as e: print(f"Erro ao enviar para servidor {server_ip}: {e}") @main.route('/upload', methods=['POST']) def upload_file(): if 'file' not in request.files: return jsonify({"error": "No file provided"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No file selected"}), 400 if file and allowed_file(file.filename): filename = secure_filename(file.filename) file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(file_path) new_video = Video(filename=filename) db.session.add(new_video) db.session.commit() with open(file_path, 'rb') as f: file_content = f.read() upload_to_replica(filename, file_content) return "File uploaded successfully! You can now upload another file." return jsonify({"error": "Invalid file type"}), 400 @main.route('/', methods=['GET']) def show_upload(): return render_template('upload.html') @main.route('/videos', methods=['GET']) def list_videos(): videos = Video.query.all() return render_template('video_list.html', videos=videos) from websockets import connect as ws_connect @main.route('/play/<int:video_id>', methods=['GET']) def play_video(video_id): video = Video.query.get(video_id) video_name = video.filename # Adicionando failover para o streaming de vídeo for _ in range(3): # Tenta até 3 vezes, uma para cada réplica try: return stream_video(video_name) except StreamingError: continue # Se ocorrer um erro, tenta a próxima réplica return "Não foi possível reproduzir o vídeo." def stream_video(video_name): try: client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect((HOST, 9999)) header = f"STREAM" client.send(header.encode()) client.send(str(len(video_name)).zfill(10).encode()) client.send(video_name.encode()) def generate(): while True: chunk = client.recv(CHUNK_SIZE) if not chunk: break yield chunk ext = video_name.split('.')[-1] mime_type = MIME_TYPES.get(ext, "video/mp4") return Response(generate(), content_type=mime_type) except ConnectionError: # Esta exceção pode ser lançada se houver um problema de conexão de rede raise StreamingError("Erro de conexão durante o streaming do vídeo") @main.route('/delete_video/<int:video_id>', methods=['POST']) def delete_video(video_id): video = Video.query.get(video_id) if video: db.session.delete(video) db.session.commit() return redirect(url_for('main.list_videos')) else: # Caso o vídeo não seja encontrado no banco de dados flash('Vídeo não encontrado', 'error') return redirect(url_for('main.list_videos')) if __name__ == '__main__': app.run(debug=True)
isaacbrasil/My-youtube-flask
app/blueprints/client.py
client.py
py
5,180
python
pt
code
0
github-code
6
10242082365
# -*- coding: utf-8 -*- """The Simulator takes in a :obj:`seagull.Board`, and runs a simulation given a set number of iterations and a rule. For each iteration, the rule is applied to the Board in order to evolve the lifeforms. After the simulation, run statistics are returned. .. code-block:: python import seagull as sg board = sg.Board() board.add(Blinker(), loc=(0,0)) # Initialize a simulator sim = sg.Simulator(board) stats = sim.run(sg.rules.conway_classic, iters=1000) You can always get the history of the whole simulation by calling the `get_history()` method. The length of the history will always be equal to :code:`iters + 1` since we include the initial state .. note:: Running a simulation does not change the :code:`state` attribute of the board. Internally, the simulator makes a copy of that layout and updates that instead. This is to avoid unintended behaviour when running simulations again and again. Various statistics such as entropy, peak cell coverage, and the like are returned as a dictionary. This gives us an idea on the characteristics of the simulation experiment. .. note:: Some statistics are highly-dependent on the size of the board and the number of iterations. For example, peak cell coverage (pertaining to the max. amount of active cells during the whole run) depends on board size. If you have better ideas for computing these statistics, please open-up an Issue! The :code:`run()` method only computes the progress of the board for the whole simulation, but it does not animate it yet. To create an animation, call the :code:`animate()` method: .. code-block:: python sim.animate() This returns a :obj:`matplotlib.animation.FuncAnimation` that you can turn into an interactive animation in your notebook or exported as a GIF. .. note:: When exporting to GIF, it is required to have the ffmpeg backend installed. """ # Import standard library from typing import Callable, Union # Import modules import matplotlib.pyplot as plt import numpy as np from loguru import logger from matplotlib import animation from .board import Board from .utils import statistics as stats class Simulator: def __init__(self, board: Board): """Initialize the class Parameters ---------- board : seagull.Board The board to run the simulation on """ self.board = board self.history = [] # type: list self.stats = {} # type: dict def run(self, rule: Callable, iters: int, **kwargs) -> dict: """Run the simulation for a given number of iterations Parameters ---------- rule : callable Callable that takes in an array and returns an array of the same shape. iters : int Number of iterations to run the simulation. Returns ------- dict Computed statistics for the simulation run """ layout = self.board.state.copy() # Append the initial state self.history.append(layout) # Run simulation for i in range(iters): layout = rule(layout, **kwargs) self.history.append(layout) self.stats = self.compute_statistics(self.get_history()) return self.stats def compute_statistics(self, history: Union[list, np.ndarray]) -> dict: """Compute various statistics for the board Parameters ---------- history : list or numpy.ndarray The simulation history Returns ------- dict Compute statistics """ logger.info("Computing simulation statistics...") sim_stats = { "peak_cell_coverage": np.max( [stats.cell_coverage(h) for h in history] ), "avg_cell_coverage": np.mean( [stats.cell_coverage(h) for h in history] ), "avg_shannon_entropy": np.mean( [stats.shannon_entropy(h) for h in history] ), "peak_shannon_entropy": np.max( [stats.shannon_entropy(h) for h in history] ), } return sim_stats def get_history(self, exclude_init=False) -> np.ndarray: """Get the simulation history Parameters ---------- exclude_init: bool If True, then excludes the initial state in the history Returns ------- numpy.ndarray Simulation history of shape :code:`(iters+1, board.size[0], board.size[1])` """ history = self.history[1:] if exclude_init else self.history return np.asarray(history) def animate(self, figsize=(5, 5), interval=100) -> animation.FuncAnimation: """Animate the resulting simulation Parameters ---------- figsize : tuple Size of the output figure interval : int Interval for transitioning between frames Returns ------- matplotlib.animation.FuncAnimation Animation generated from the run """ if not self.history: msg = "The run() argument must be executed first" logger.error(msg) raise ValueError(msg) logger.info("Rendering animation...") fig = plt.figure(figsize=figsize) ax = fig.add_axes([0, 0, 1, 1], xticks=[], yticks=[], frameon=False) X_blank = np.zeros(self.board.size, dtype=bool) im = ax.imshow(X_blank, cmap=plt.cm.binary, interpolation="nearest") im.set_clim(-0.05, 1) def _animate(i, history): current_pos = history[i] im.set_data(current_pos) return (im,) def _init(): im.set_data(X_blank) return (im,) history = self.get_history() anim = animation.FuncAnimation( fig, func=_animate, frames=range(history.shape[0]), init_func=_init, interval=interval, fargs=(history,), blit=True, ) return anim
ljvmiranda921/seagull
seagull/simulator.py
simulator.py
py
6,209
python
en
code
167
github-code
6
3116557557
import torch import torch.nn as nn from torch.optim import Adam import torch.nn.functional as F from random import randint import numpy as np # import subprocess # import multiprocessing # import concurrent.futures from time import time from math import sqrt CHANNEL = 256 BLOCKNUM = 40 BOARDSIZE = 8 BATCH = 50 EPOCHS = 20 DATASIZE = 7200 DATAUSE = 2000 ROUNDLIMIT = 500 PROCESS = 3 OUTPUT_INFO = 1 class resBlock(nn.Module): def __init__(self, x): super(resBlock, self).__init__() self.resBlock = nn.Sequential( nn.Conv2d(x, x, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(x), nn.ReLU(inplace=True), nn.Conv2d(x, x, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(x) ) self.relu = nn.ReLU(inplace=True) def forward(self, x): shortCut = x out = self.resBlock(x) out += shortCut out = self.relu(out) return out class resCNN(nn.Module): def __init__(self): super(resCNN, self).__init__() self.input = nn.Sequential( nn.Conv2d(3, CHANNEL, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(CHANNEL), nn.ReLU(inplace=True) ) self.resnet = nn.Sequential() for i in range(BLOCKNUM): self.resnet.add_module(str(i),resBlock(CHANNEL)) self.ph = nn.Sequential( nn.Conv2d(CHANNEL, 2, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(2), nn.ReLU(inplace=True), nn.Flatten(), nn.Linear(BOARDSIZE*BOARDSIZE*2, BOARDSIZE*BOARDSIZE), # nn.Softmax(dim=1) ) self.vh = nn.Sequential( nn.Conv2d(CHANNEL, 1, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(1), nn.ReLU(inplace=True), nn.Flatten(), nn.Linear(BOARDSIZE*BOARDSIZE, CHANNEL), nn.ReLU(inplace=True), nn.Linear(CHANNEL, 1), nn.Tanh() ) def forward(self, x): model = self.input(x) model = self.resnet(model) p = self.ph(model) v = self.vh(model) return p, v device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cnn = resCNN() cnn.load_state_dict(torch.load(r'./rescnn.pth')) cnn.to(device) optimizer = Adam(cnn.parameters(), weight_decay=1e-4) stateData = torch.zeros(DATASIZE, 3, 8, 8, dtype=float) policyData = torch.zeros(DATASIZE, 64, dtype=float) valueData = torch.zeros(DATASIZE, 1, dtype=float) policyLossFunc = nn.CrossEntropyLoss() valueLossFunc = nn.MSELoss() def calc(cood): return cood[0] * BOARDSIZE + cood[1] def lossFunction(policyOutput, valueOutput, policyTarget, valueTarget): policyLoss = policyLossFunc(policyOutput, policyTarget) valueLoss = valueLossFunc(valueOutput, valueTarget) return policyLoss + valueLoss def train(): cnn.train() use = torch.zeros(DATASIZE) inputData = torch.zeros(DATAUSE,3,8,8) policyTargetData = torch.zeros(DATAUSE,64) valueTargetData = torch.zeros(DATAUSE,1) i = 0 while i < DATAUSE: x = randint(0, DATASIZE - 1) if use[x] == 1: continue inputData[i] = stateData[x] policyTargetData[i] = policyData[x] valueTargetData[i] = valueData[x] use[x] = 1 i += 1 optimizer.zero_grad() for i in range(EPOCHS): policyLossAvg = 0.0 valueLossAvg = 0.0 if OUTPUT_INFO: print(f'epoch {i+1}:') for j in range(0, DATAUSE, BATCH): input = inputData[j:j+BATCH] policyTarget = policyTargetData[j:j+BATCH] valueTarget = valueTargetData[j:j+BATCH] policyOutput, valueOutput = cnn(input.to(device)) policyLoss = policyLossFunc(policyOutput, policyTarget.to(device)) valueLoss = valueLossFunc(valueOutput, valueTarget.to(device)) loss = policyLoss + valueLoss policyLossAvg += float(policyLoss) valueLossAvg += float(valueLoss) optimizer.zero_grad() loss.backward() optimizer.step() if OUTPUT_INFO: print(f' policy loss: {policyLossAvg / (DATAUSE / BATCH)}') print(f' value loss: {valueLossAvg / (DATAUSE / BATCH)}') print(f' total loss: {(policyLossAvg + valueLossAvg) / (DATAUSE / BATCH)}') torch.save(cnn.state_dict(), r'./rescnn.pth') class GameState: def __init__(self): self.board = np.zeros((8, 8), dtype=np.int8) # 0 ~ 7 self.board[3, 3] = self.board[4, 4] = -1 self.board[3, 4] = self.board[4, 3] = 1 #Black 1 White -1 self.history = [] def copy(self): state = GameState() state.board = np.copy(self.board) state.history = self.history[:] return state def makeMove(self, move, player): self.history.append(move) self.board[move] = player for d in (-1, 0, 1): for e in (-1, 0, 1): if d == 0 and e == 0: continue x, y = move x += d y += e to_flip = [] while x >= 0 and y >= 0 and x < 8 and y < 8 and self.board[x, y] == -player: to_flip.append((x, y)) x += d y += e if x >= 0 and y >= 0 and x < 8 and y < 8 and self.board[x, y] == player: for f in to_flip: self.board[f] = player def isValid(self, move, player): if self.board[move] != 0: return False for d in (-1, 0, 1): for e in (-1, 0, 1): if d == 0 and e == 0: continue x, y = move x += d y += e num = 0 while x >= 0 and y >= 0 and x < 8 and y < 8 and self.board[x, y] == -player: x += d y += e num += 1 if num > 0 and x >= 0 and y >= 0 and x < 8 and y < 8 and self.board[x, y] == player: return True return False def getValidMoves(self, player): moves = [] for i in range(8): for j in range(8): if self.isValid((i, j), player): moves.append((i, j)) return moves def isTerminal(self): if len(self.getValidMoves(1)) > 0: return False if len(self.getValidMoves(-1)) > 0: return False return True def getWinner(self): count = np.sum(self.board) if count > 0: return 1 elif count < 0: return -1 else: return 0 def getScore(self, player): cnt = 0 for i in range(8): for j in range(8): if self.board[i,j] == player: cnt += 1 return cnt def print(self): print(' ',end='') for i in range(8): print(i,end=' ') print('') for i in range(8): print(i,end=' ') for j in range(8): if self.board[i,j] == 1: print('#',end=' ') elif self.board[i,j] == -1: print('O',end=' ') else: print('.',end=' ') print('') PUCT_CONSTANT = 1 class MCTSNode: def __init__(self, state:GameState, player): self.state:GameState = state.copy() self.parent:MCTSNode = None self.children = [] self.unexploredMoves = state.getValidMoves(player) self.player = player self.n = 0 self.v = 0.0 self.p = 0.0 self.policyPredict = torch.zeros(64) self.valuePredict = 0.0 if type == 2: input = torch.zeros(3,8,8) for i in range(8): for j in range(8): if state.board[i,j] == 1: input[0,i,j] = 1 for i in range(8): for j in range(8): if state.board[i,j] == -1: input[1,i,j] = 1 for i in range(8): for j in range(8): input[2,i,j] = player input.unsqueeze_(0) output = cnn(input.to(device)) self.policyPredict = F.softmax(output[0][0], dim=-1) self.valuePredict = float(output[1][0]) def expand(self): if len(self.unexploredMoves) <= 0: return None move = self.unexploredMoves.pop() newState = self.state.copy() newState.makeMove(move, self.player) child = None if len(newState.getValidMoves(-self.player)) > 0: child = MCTSNode(newState, -self.player) else: child = MCTSNode(newState, self.player) child.parent = self child.p = float(self.policyPredict[calc(move)]) self.children.append(child) return child def puct(self, player): Q = self.v / self.n U = PUCT_CONSTANT * self.p * sqrt(self.parent.n + 1) / (self.n + 1) if player == -1: Q = -Q return Q + U def select(self, player): return max(self.children, key=lambda c: c.puct(player)) def backpropagate(self, v): self.n += 1 self.v += v if self.parent: self.parent.backpropagate(v) class CNNMCTS: def __init__(self): return def CNNMCTSBestMove(self, state, player, timeIterations): rootNode = MCTSNode(state, player) for i in range(timeIterations): node = rootNode while len(node.unexploredMoves) == 0 and node.state.isTerminal() == False: if len(node.children) > 0: node = node.select(player) else: break if len(node.unexploredMoves) > 0 and node.state.isTerminal() == False: node = node.expand() if node.state.isTerminal() == False: node.backpropagate(node.valuePredict) else: node.backpropagate(node.state.getWinner()) bestChild = rootNode.children[0] for child in rootNode.children: if child.n > bestChild.n: bestChild = child return bestChild.state.history[-1] def gen_py(): MCTS = CNNMCTS() cnt = 0 cnn.eval() while cnt < DATASIZE: c_state = GameState() currentPlayer = 1 cur = 0 lst = cnt while c_state.isTerminal() == 0: if len(c_state.getValidMoves(currentPlayer)) <= 0: currentPlayer = -currentPlayer continue bestMove = MCTS.CNNMCTSBestMove(c_state, currentPlayer, ROUNDLIMIT) cur += 1 if 5 <= cur and cur <= 54 and cnt < DATASIZE: for i in range(8): for j in range(8): if c_state.board[i,j] == 1: stateData[cnt,0,i,j] = 1 for i in range(8): for j in range(8): if c_state.board[i,j] == -1: stateData[cnt,1,i,j] = 1 for i in range(8): for j in range(8): stateData[cnt,2,i,j] = currentPlayer policyData[cnt] = calc(bestMove) cnt += 1 c_state.makeMove(bestMove, currentPlayer) currentPlayer = -currentPlayer valueData[lst:cnt] = c_state.getWinner() if OUTPUT_INFO: print(f'{cnt} / {DATASIZE}\r', end='') if OUTPUT_INFO: print('') if __name__ == '__main__': np.set_printoptions(suppress=True, precision=7) # multiprocessing.freeze_support() times = 0 while 1 : if OUTPUT_INFO: print(f'iteration {times}:') print('self-matching:') gen_py() # gen_cpp() # gen_mainProcess() # in train.py if OUTPUT_INFO: print('train start:') train() # archivePath = 'D:/Desktop/yanxue/rescnn_archive/rescnn-iteration' + str(times) +'.pth' # torch.save(cnn.state_dict(), archivePath)
wxwoo/yanxue
train_py.py
train_py.py
py
12,641
python
en
code
1
github-code
6
22397762010
import cv2 import pandas as pd import numpy as np from PIL import Image from torch.utils.data import Dataset class COVIDChestXRayDataset(Dataset): def __init__(self, path, size=128, augment=None): super(COVIDChestXRayDataset, self).__init__() print('{} initialized with size={}, augment={}'.format(self.__class__.__name__, size, augment)) print('Dataset is located in {}'.format(path)) self.size = size self.augment = augment image_dir = path / 'images' metadata_path = path / 'metadata.csv' df_metadata = pd.read_csv(metadata_path, header=0) # Drop CT scans df_metadata = df_metadata[df_metadata['modality'] == 'X-ray'] # Keep only PA/AP/AP Supine, drop Axial, L (lateral) allowed_views = ['PA', 'AP', 'AP Supine'] df_metadata = df_metadata[df_metadata['view'].isin(allowed_views)] # COVID-19 = 1, SARS/ARDS/Pneumocystis/Streptococcus/No finding = 0 self.labels = (df_metadata.finding == 'COVID-19').values.reshape(-1, 1) images = df_metadata.filename images = images.apply(lambda x: image_dir / x).values.reshape(-1, 1) self.df = pd.DataFrame(np.concatenate((images, self.labels), axis=1), columns=['image', 'label']) del images print("Dataset: {}".format(self.df)) @staticmethod def _load_image(path, size): img = Image.open(path) img = cv2.resize(np.array(img), (size, size), interpolation=cv2.INTER_AREA) if len(img.shape) == 2: img = np.expand_dims(img, axis=2) img = np.dstack([img, img, img]) else: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # size, size, chan -> chan, size, size img = np.transpose(img, axes=[2, 0, 1]) return img def __getitem__(self, index): row = self.df.iloc[index] img = self._load_image(row['image'], self.size) label = row['label'] if self.augment is not None: img = self.augment(img) return img, label def __len__(self): return self.df.shape[0]
defeatcovid19/defeatcovid19-net-pytorch
datasets/covid_chestxray_dataset.py
covid_chestxray_dataset.py
py
2,205
python
en
code
9
github-code
6
71689560509
# Import packages. import glob import numpy as np import os # import cvxpy as cp ################################################################################## # Data import ################################################################################## folder = 'runD' n_robots = '30' min_votes = '3' seed = '1' storage = '10' routing = '10' hashing_bucket = '5' name = '/vcsbppfile_' + min_votes + '_' + n_robots + '_' + seed + '_' + storage + '_' + routing + '_' + hashing_bucket + '.dat' path = os.path.abspath(os.path.join(os.getcwd(), '..', 'argos-application', 'data', folder)) file_names = glob.glob(path + name) file_names = sorted(file_names) print(file_names) def get_data(file_name): results = [] items = [] ################ Reading file ################################## with open(file_name, 'r') as file: while True: line = file.readline() if not line: break timestep, num_robots = map(int, line.split(' ')) total_tuples = 0 for _ in range(num_robots): line = file.readline().strip('\n').split(' ') rid = int(line[0][1:]) node_id = int(line[1]) num_tuples = int(line[2]) neighbors = int(line[3]) total_tuples += num_tuples results.append((timestep, rid, node_id, num_tuples, neighbors)) items.append(total_tuples) return results, items results_dict = {} load_dict = {} for name in file_names: n = name.split('/') n = n[-1].split('.') n = n[0].split('_') min_votes = n[1] num_robots = int(n[2]) results, load = get_data(name) results_dict[min_votes] = results load_dict[min_votes] = load ################################################################################## # Optimization ################################################################################## # https://stackoverflow.com/questions/10035752/elegant-python-code-for-integer-partitioning # See vscbpp_testing for more detail def accel_asc(n): a = [0 for i in range(n + 1)] k = 1 y = n - 1 while k != 0: x = a[k - 1] + 1 k -= 1 while 2 * x <= y: a[k] = x y -= x k += 1 l = k + 1 while x <= y: a[k] = x a[l] = y yield a[:k + 2] x += 1 y -= 1 a[k] = x + y y = x + y - 1 yield a[:k + 1] def solve_vscbpp_accel(total_tuples, num_robots, neighbors, memory_capacity): min_cost = num_robots optimal_partition = [] # Sort in ascending order a_neighbors = sorted(neighbors) idx_neighbors = np.argsort(neighbors) assignment_partitions = accel_asc(total_tuples) for partition in assignment_partitions: num_parts = len(partition) # Ignore partitions with too many parts if(num_parts > num_robots): continue # Sort in ascending order a_partition = sorted(partition) # Impose volume constraint if(a_partition[-1] > memory_capacity): continue # Match largest num neighbors with largest part size prod = np.multiply(a_neighbors[-num_parts:], memory_capacity - np.array(a_partition)) cur_cost = sum(np.divide(1, prod)) if (cur_cost < min_cost): # print (min_cost, cur_cost) min_cost = cur_cost optimal_partition = list([0] * (num_robots - len(partition)) + list(a_partition)) # Unsort back to initial neighbor order idx_unsort = idx_neighbors.argsort() opt_partition = np.array(optimal_partition)[idx_unsort] return min_cost, opt_partition ################################################################################## # Bin Packing ################################################################################## ########### Saving bin packing cost over time ########################### #### In simulation #### M = int(storage) + int(routing) for key in results_dict.keys(): results = results_dict[key] tuples = load_dict[key] x = [] y = [] # assignments = [] cost = 0 # assignment = np.zeros(num_robots) for i, result in enumerate(results): # assignment[result[1] - 1] = result[3] free_memory = float(M - result[3]) if (result[3] != 0): cost += 1 / max(result[4] * free_memory, 1) if((i+1)%num_robots == 0): print(result[0], tuples[result[0]-1]) x.append(result[0] / 10) y.append(cost) cost = 0 # assignments.append(assignment) # assignment = np.zeros(num_robots) # Write to file (made to match optimal, want to have a partial file if takes too long) with open("heuristic_" + folder + '_' + key + '_' + n_robots + ".txt", "w") as f: for i,j in zip(x,y): f.write(str(i) +"\n") f.write(str(j) +"\n") #### Optimal solution #### # M = int(storage) + int(routing) # for key in results_dict.keys(): # results = results_dict[key] # tuples = load_dict[key] # x_opt = [] # y_opt = [] # neighbors = np.zeros(num_robots) # for i, result in enumerate(results): # neighbors[result[1] - 1] = result[4] # if((i+1)%num_robots == 0): # print("t", result[0]) # # Skip time steps # if (result[0]%10 != 0): # continue # opt_cost, pa = solve_vscbpp_accel(tuples[result[0]-1], num_robots, neighbors, M) # x_opt = result[0] / 10 # y_opt = opt_cost # neighbors = np.zeros(num_robots) # with open("optimal_" + folder + '_' + key + '_' + n_robots + ".txt", "a") as f: # f.write(str(x_opt) +"\n") # f.write(str(y_opt) +"\n") #### Worst cost #### M = int(storage) + int(routing) for key in results_dict.keys(): results = results_dict[key] tuples = load_dict[key] x_worst = [] y_worst = [] worst_cost = 0 neighbors = np.zeros(num_robots) for i, result in enumerate(results): neighbors[result[1] - 1] = result[4] if((i+1)%num_robots == 0): items = tuples[result[0]-1] # Put one item in all bins with 0 neighbors (assuming low enough load factor) zero_neighbors = len(neighbors) - np.count_nonzero(neighbors) if(items > zero_neighbors): worst_cost += zero_neighbors items -= zero_neighbors if items > 0 and items < M: # Put all in one bin worst_cost += 1 else: # Sort number of neighbors in ascending order a_neighbors = sorted(neighbors) # Fill out memory of bins with lowest degree num_bins_to_fill = items // M worst_cost += num_bins_to_fill items -= num_bins_to_fill * M # same as modulo # Put remaining items in next lowest if(items > 0): n_low = a_neighbors[zero_neighbors + num_bins_to_fill - 1] free_memory = M - items worst_cost += 1 / (max(n_low * free_memory, 1)) x_worst = result[0] / 10 y_worst = worst_cost neighbors = np.zeros(num_robots) worst_cost = 0 with open("worst_" + folder + '_' + key + '_' + n_robots + ".txt", "a") as f: f.write(str(x_worst) +"\n") f.write(str(y_worst) +"\n") # # Generate data. # bins = 10 # items = 40 # np.random.seed(1) # neighbors = np.random.randint(1, bins, bins) # M = 20 # # Define and solve the CVXPY problem. # assignment = cp.Variable((items, bins), boolean=True) # selection = cp.Variable(bins, boolean=True) # # cost = 1/cp.multiply(neighbors, M - cp.sum(assignment, axis=0)) # cost = 1/neighbors # # objective = cp.sum(cp.multiply(cost, selection) + cp.multiply(cost/M, cp.max(cp.sum(assignment, axis=0))) ) # objective = cp.sum(cp.multiply(cost, selection) + cp.multiply(1/M, cp.max(cp.sum(assignment, axis=0))) ) # constraints = [ # cp.sum(assignment, axis=1) == 1, # cp.sum(assignment, axis=0) <= M * selection # ] # prob = cp.Problem(cp.Minimize(objective), constraints) # prob.solve() # # Print result. # print("Neigbors", neighbors) # print("\nThe optimal value is", prob.value) # # print("The optimal assignment is") # # print(assignment.value) # # print("The optimal selection is") # # print(selection.value) # # for tau in range(len(assignment.value)) # print("The optimal assignment per bin is") # print(np.sum(assignment.value, axis=0))
NESTLab/DistributedSemanticMaps
PythonScripts/vscbpp_cluster.py
vscbpp_cluster.py
py
8,797
python
en
code
0
github-code
6
26470760841
""" Problem 3: Largest Prime Factor https://projecteuler.net/problem=3 Goal: Find the largest prime factor of N. Constraints: 10 <= N <= 1e12 Fundamental Theorem of Arithmetic: There will only ever be a unique set of prime factors for any number. e.g.: N = 10 prime factors = {2, 5} largest = 5 """ from math import isqrt from util.maths.reusable import prime_factors def largest_prime_factor(n: int) -> int: """ Uses prime decomposition via the Sieve of Eratosthenes algorithm to return the largest prime factor. SPEED (WORSE for N with small factors) 53.54ms for N = 1e12 SPEED (WORST for N with large factors) 39.56ms for N = 600_851_475_143 """ factors = prime_factors(n) return max(factors.keys()) def largest_prime_factor_simple(n: int) -> int: """ Uses prime decomposition via trial division without any optimisation. SPEED (BEST for N with small factors) 3743ns for N = 1e12 SPEED (BEST for N with large factors) 2.7e+05ns for N = 600_851_475_143 """ factor = 2 while factor * factor <= n: while n % factor == 0 and n != factor: n //= factor factor += 1 return n def largest_prime_factor_recursive(n: int, f: int = 2) -> int: """ Original solution used a floored square root to get an integer value. This was replaced with math.isqrt(), introduced in Py 3.8. SPEED (WORSE for N with small factors) 52.41ms for N = 1e12 SPEED (BETTER for N with large factors) 12.85ms for N = 600_851_475_143 """ factors = [2] factors.extend(range(3, isqrt(n) + 1, 2)) for factor in factors: if n % factor == 0: return largest_prime_factor_recursive(n // factor, factor) if n > 2: f = max(f, n) return f
bog-walk/project-euler-python
solution/batch0/problem3.py
problem3.py
py
1,835
python
en
code
0
github-code
6
10918154737
import os import ast import subprocess import uuid import json import hashlib import socket import psutil from ipykernel.ipkernel import IPythonKernel def make_except_safe(code): code = code.replace('\n', '\n ') code = 'try:\n ' + code code = code + '\nexcept: pass\n' try: ast.parse(code) return code except: return '' SCIUNIT_HOME = os.path.expanduser('~/sciunit/') SCIUNIT_PROJECT_FILE = os.path.join(SCIUNIT_HOME, '.activated') SCIUNIT_SOCKET_FILE = os.path.join(SCIUNIT_HOME, 'listener.socket') class SciunitKernel(IPythonKernel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) implementation = super().implementation + ' sciunit' if (os.path.exists(SCIUNIT_PROJECT_FILE)): self.project = open(SCIUNIT_PROJECT_FILE).read().strip() self.project_name = os.path.basename(os.path.normpath(self.project)) if (os.path.exists(os.path.join(self.project, 'kernel'))): self.recording = False else: self.recording = True open(os.path.join(self.project, 'kernel'), 'w').write(json.dumps([])) else: self.project_name = 'Project_' + str(uuid.uuid4()) self.project = os.path.join(SCIUNIT_HOME, self.project_name) subprocess.run(['sciunit', 'create', self.project_name]) self.recording = True open(os.path.join(self.project, 'kernel'), 'w').write(json.dumps([])) self.eid = 1 self.file = os.path.join(self.project, 'run.py') self.valid = True files = psutil.Process().open_files() for file in files: os.close(file.fd) criu_path = os.path.join(self.project, 'criu0') data = ['Dump', os.getpid(), os.getppid(), criu_path, 0] client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) client.connect(SCIUNIT_SOCKET_FILE) client.sendall(json.dumps(data).encode()) client.close() def do_execute(self, code, silent, store_history=True, user_expressions=None, allow_stdin=False): criu_path = os.path.join(self.project, f'criu{self.eid}') if (os.path.exists(criu_path)): self.recording = False hashes = json.loads(open(os.path.join(self.project, 'kernel')).read()) if not self.recording and (len(hashes) == self.eid - 1): self.valid = False data = [] if self.valid: with open(self.file[1], 'a') as file: safe_code = make_except_safe(code) if safe_code: if self.recording: print('Recording e{}'.format(self.eid)) open(self.file, 'a').write(safe_code) subprocess.Popen(['sciunit', 'exec', 'python3', self.file], stdout=subprocess.PIPE).communicate() hashes.append(hashlib.sha256(safe_code.encode()).hexdigest()) open(os.path.join(self.project, 'kernel'), 'w').write(json.dumps(hashes)) data = ['Dump', os.getpid(), os.getppid(), criu_path, self.eid] else: if (hashlib.sha256(safe_code.encode()).hexdigest() != hashes[self.eid - 1]): print('Invalid, stopped repeating') self.valid = False else: print('Valid, repeating e{}'.format(self.eid)) subprocess.Popen(['sciunit', 'repeat', 'e{}'.format(self.eid)], stdout=subprocess.PIPE).communicate() data = ['Restore', os.getpid(), os.getppid(), criu_path, self.eid] self.eid += 1 output = super().do_execute(code, silent, False, user_expressions, allow_stdin) if data: client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) client.connect(SCIUNIT_SOCKET_FILE) client.sendall(json.dumps(data).encode()) client.close() # TODO: Wait without Socket return output if __name__ == '__main__': from ipykernel.kernelapp import IPKernelApp IPKernelApp.launch_instance(kernel_class=SciunitKernel)
depaul-dice/sciunit-NBv1
__main__.py
__main__.py
py
4,282
python
en
code
0
github-code
6
40565271392
# Crea una función llamada promedio que tome una lista de números como parámetro y devuelva el promedio de esos números. usuario = input( 'Ingresa un una lista de numeros separados por coma "," : ').split(",") def promedio(args): acumulador = 0 cantidad = len(args) for i in args: acumulador += int(i) resultado = acumulador / cantidad print(resultado) promedio(usuario)
maximiliano1997/informatorio-2023
Week-4/ejercicios/ejercicio9.py
ejercicio9.py
py
413
python
es
code
0
github-code
6
42663501049
import os import torch import datetime import numpy as np import pandas as pd from src.attn_analysis import gradcam from src.attn_analysis import iou_analysis from src.attn_analysis import blue_heatmap from src.attn_analysis import extract_disease_reps from src.attn_analysis import make_2d_plot_and_3d_gif import warnings warnings.filterwarnings('ignore') class AttentionAnalysis(object): def __init__(self, results_dir_force, base_results_dir, task, attention_type, attention_type_args, setname, valid_results_dir, custom_net, custom_net_args, params_path, stop_epoch, which_scans, dataset_class, dataset_args): """ Variables: <results_dir_force>: path to a results directory. If this is a valid path, then all results will be stored in here. If this is NOT a valid path, a new directory for the new results will be created based on <base_results_dir>. <base_results_dir>: path to the base results directory. A new directory will be created within this directory to store the results of this experiment. <task>: a list of strings. The strings may include 'iou_analysis', 'blue_heatmaps', and/or 'attn_plots'. If <task> contains 'iou_analysis' then calculate approximate IOU statistics for the final epoch of a model. Specifically, the 'IOU' is calculated as the ratio of raw scores within the allowed area to raw scores outside of the allowed area. Produces iou_wide_df, a dataframe with the following 5 columns: 'Epoch': int, the epoch in which the IOU was calculated. 'IOU': float, the 'IOU' value for this label's attention map vs. the segmentation ground truth (which in this case is the approximate attention ground truth.) 'Label': string for the label for which IOU was calculated e.g. 'airplane' 'VolumeAccession': volume accession number 'LabelsPerImage': total number of labels present in this image Also produces dfs that summarize the IOU across different ways of grouping the data. If <task> contains 'blue_heatmaps' then make a blue heatmap showing the disease scores for each slice. If <task> contains 'attn_plots' then make visualizations of the attention superimposed on the CT scan (as a 3D gif, and as a 2D plot for the slice with the highest score for that disease). Also if doing Grad-CAM, make a 2d debugging plot. <attention_type>: str; either 'gradcam-vanilla' for vanilla Grad-CAM, or 'hirescam' for HiResCAM, in which feature maps and gradients are element-wise multiplied and then we take the avg over the feature dimension, or 'hirescam-check' for alternative implementation of HiResCAM attention calculation, which can be used in a model that has convolutional layers followed by a single FC layer. In this implementation, the HiResCAM attention is calculated during the forward pass of the model by element-wise multiplying the final FC layer weights (the gradients) against the final representation. This option is called 'hirescam-check' because for models that meet the architecture requirements this implementation is a 'check' on the 'hirescam' option which actually accesses the gradients. 'hirescam-check' and 'hirescam' on the output of the last conv layer produce identical results on AxialNet as expected, since AxialNet is a CNN with one FC layer at the end. <attention_type_args>: dict; additional arguments needed to calculate the specified kind of attention. If the attention_type is one of the GradCAMs then in this dict we need to specify 'model_name' and 'target_layer_name' (see gradcam.py for more documentation) <setname>: str; which split to use e.g. 'train' or 'val' or 'test'; will be passed to the <dataset_class> <valid_results_dir>: path to a directory that contains the validation set IOU analysis results. Only needed if setname=='test' because we need to use validation set per-label thresholds to calculate results. <custom_net>: a PyTorch model <custom_net_args>: dict; arguments to pass to the PyTorch model <params_path>: str; path to the model parameters that will be loaded in <stop_epoch>: int; epoch at which the model saved at <params_path> was saved <which_scans>: a pandas DataFrame specifying what scans and/or abnormalities to use. It can be an empty pandas DataFrame, in which case all available scans in the set will be used and named with whatever volume accession they were saved with (real or fake). Or, it can be a filled in pandas DataFrame, with columns ['VolumeAcc','VolumeAcc_ForOutput','Abnormality'] where VolumeAcc is the volume accession the scan was saved with, VolumeAcc_ForOutput is the volume accession that should be used in the file name of any output files of this module (e.g. a DEID acc), and Abnormality is either 'all' to save all abnormalities for that scan, or it's comma-separated names of specific abnormalities to save for that scan. <dataset_class>: a PyTorch dataset class <dataset_args>: dict; arguments to pass to the <dataset_class>""" self.base_results_dir = base_results_dir self.task = task for specific_task in self.task: assert ((specific_task == 'iou_analysis') or (specific_task == 'blue_heatmaps') or (specific_task == 'attn_plots')) assert len(self.task) <= 2 if 'blue_heatmaps' in self.task: #only allow calculation of the blue_heatmaps if we are using #attention_type hirescam-check. Why? Because for both the blue #heatmaps and the hirescam-check visualizations, we need to run #the model to get out. And in gradcam we need to run the model again #later so we get a memory error if we try to do this after getting #out. assert attention_type == 'hirescam-check' self.attention_type = attention_type assert self.attention_type in ['gradcam-vanilla','hirescam','hirescam-check'] self.attention_type_args = attention_type_args if self.attention_type in ['gradcam-vanilla','hirescam']: assert 'model_name' in self.attention_type_args.keys() assert 'target_layer_name' in self.attention_type_args.keys() self.setname = setname self.valid_results_dir = valid_results_dir self.custom_net = custom_net self.custom_net_args = custom_net_args #dict of args self.params_path = params_path self.stop_epoch = stop_epoch self.which_scans = which_scans self.CTDatasetClass = dataset_class self.dataset_args = dataset_args #dict of args self.device = torch.device('cuda:0') self.verbose = self.dataset_args['verbose'] #True or False #Run self.set_up_results_dirs(results_dir_force) self.run() def set_up_results_dirs(self, results_dir_force): if os.path.isdir(results_dir_force): results_dir = results_dir_force else: #If you're not forcing a particular results_dir, then make a new #results dir: #Example params_path = '/home/rlb61/data/img-hiermodel2/results/2020-09/2020-09-27_AxialNet_Mask_CORRECT_dilateFalse_nearest/params/AxialNet_Mask_CORRECT_dilateFalse_nearest_epoch23' old_results_dir = os.path.split(os.path.split(os.path.split(self.params_path)[0])[0])[1] #e.g. '2020-09-27_AxialNet_Mask_CORRECT_dilateFalse_nearest' date = datetime.datetime.today().strftime('%Y-%m-%d') results_dir = os.path.join(self.base_results_dir,date+'_'+self.setname.capitalize()+'AttnAnalysis_of_'+old_results_dir) if not os.path.isdir(results_dir): os.mkdir(results_dir) #Subdirs for particular analyses: if 'iou_analysis' in self.task: self.iou_analysis_dir = os.path.join(results_dir,'iou_analysis_'+self.attention_type) if not os.path.exists(self.iou_analysis_dir): os.mkdir(self.iou_analysis_dir) if 'blue_heatmaps' in self.task: #Note that the blue heatmaps depend only on the model, and not on the #attention type self.blue_heatmaps_dir = os.path.join(results_dir,'blue_heatmaps') if not os.path.exists(self.blue_heatmaps_dir): os.mkdir(self.blue_heatmaps_dir) if 'attn_plots' in self.task: self.attn_2dplot_dir = os.path.join(results_dir,'attn_2dplot_'+self.attention_type) self.attn_3dgif_dir = os.path.join(results_dir,'attn_3dgif_dir_'+self.attention_type) for directory in [self.attn_2dplot_dir,self.attn_3dgif_dir]: if not os.path.exists(directory): os.mkdir(directory) for key in ['g1p1', 'g1p0', 'g0p1', 'g0p0']: if not os.path.exists(os.path.join(self.attn_2dplot_dir,key)): os.mkdir(os.path.join(self.attn_2dplot_dir,key)) if not os.path.exists(os.path.join(self.attn_3dgif_dir,key)): os.mkdir(os.path.join(self.attn_3dgif_dir,key)) if self.attention_type in ['gradcam-vanilla','hirescam']: self.gradcam_debug_dir = os.path.join(results_dir,self.attention_type+'_debug_dir') if not os.path.exists(self.gradcam_debug_dir): os.mkdir(self.gradcam_debug_dir) else: #even if attn_plots is not in task, we need to have a placeholder for #this directory to avoid an error later: self.gradcam_debug_dir = None def run(self): self.load_model() self.load_dataset() self.load_chosen_indices() if 'blue_heatmaps' in self.task: self.blue_heatmap_baseline = blue_heatmap.get_baseline(self.chosen_dataset, self.model, self.blue_heatmaps_dir) if 'iou_analysis' in self.task: thresh_perf_df_filename = 'Determine_Best_Threshold_For_Each_Label_Epoch'+str(self.stop_epoch)+'.csv' valid_thresh_perf_df_path = os.path.join(os.path.join(self.valid_results_dir,'iou_analysis_'+self.attention_type), thresh_perf_df_filename) self.iou_analysis_object = iou_analysis.DoIOUAnalysis(self.setname, self.stop_epoch, self.label_meanings, self.iou_analysis_dir, valid_thresh_perf_df_path) self.loop_over_dataset_and_labels() if 'iou_analysis' in self.task: self.iou_analysis_object.do_all_final_steps() ###################################################### # Methods to Load Model, Dataset, and Chosen Indices #---------------------- ###################################################### def load_model(self): print('Loading model') self.model = self.custom_net(**self.custom_net_args).to(self.device) check_point = torch.load(self.params_path, map_location='cpu') #map to CPU to avoid memory issue #TODO check if you need this self.model.load_state_dict(check_point['params']) self.model.eval() #If everything loads correctly you will see the following message: #IncompatibleKeys(missing_keys=[], unexpected_keys=[]) def load_dataset(self): print('Loading dataset') self.chosen_dataset = self.CTDatasetClass(setname = self.setname, **self.dataset_args) self.label_meanings = self.chosen_dataset.return_label_meanings() def load_chosen_indices(self): print('Loading chosen indices') if len([x for x in self.which_scans.columns.values.tolist() if x in ['VolumeAcc','VolumeAcc_ForOutput','Abnormality']])==3: #you did specify which scans to use, so figure out what indices #you need to query in the dataset to get those chosen scans: for df_idx in range(self.which_scans.shape[0]): volume_acc = self.which_scans.at[df_idx,'VolumeAcc'] self.which_scans.at[df_idx,'ChosenIndex'] = np.where(self.chosen_dataset.volume_accessions == volume_acc)[0][0] else: assert (self.which_scans == pd.DataFrame()).all().all() #you didn't specify which scans to use, so use all the scans in the dataset self.which_scans['ChosenIndex'] = [x for x in range(len(self.chosen_dataset))] self.which_scans['ChosenIndex'] = self.which_scans['ChosenIndex'].astype('int') ########### # Looping #----------------------------------------------------------------- ########### def loop_over_dataset_and_labels(self): if (self.task == ['iou_analysis'] and self.iou_analysis_object.loaded_from_existing_file): return #don't need to loop again if iou_wide_df already created print('Looping over dataset and labels') five_percent = max(1,int(0.05*self.which_scans.shape[0])) #Iterate through the examples in the dataset. df_idx is an integer for df_idx in range(self.which_scans.shape[0]): if self.verbose: print('Starting df_idx',df_idx) idx = self.which_scans.at[df_idx,'ChosenIndex'] #int, e.g. 5 example = self.chosen_dataset[idx] ctvol = example['data'].unsqueeze(0).to(self.device) #unsqueeze to create a batch dimension. out shape [1, 135, 3, 420, 420] gr_truth = example['gr_truth'].cpu().data.numpy() #out shape [80] volume_acc = example['volume_acc'] #this is a string, e.g. 'RHAA12345_5.npz' attn_gr_truth = example['attn_gr_truth'].data.cpu().numpy() #out shape [80, 135, 6, 6] #Get out and x_perslice_scores when using attention_type hirescam-check out = self.get_out_and_blue_heatmaps(ctvol, gr_truth, volume_acc) if self.verbose: print('Analyzing',volume_acc) #volume_acc sanity check and conversion to FAKE volume acc if indicated if 'VolumeAcc' in self.which_scans.columns.values.tolist(): intended_volume_acc = self.which_scans.at[df_idx,'VolumeAcc'] assert volume_acc == intended_volume_acc #Now, because which_scans is not empty, you can switch volume_acc #from the actual volume acc e.g. RHAA12345_6 to the fake ID, #because from here onwards, the volume acc is only used in file #names: volume_acc = self.which_scans.at[df_idx,'VolumeAcc_ForOutput'].replace('.npz','').replace('.npy','') #e.g. fake ID 'val12345' #Now organize the labels for this particular image that you want to #make heatmap visualizations for into g1p1, g1p0, g0p1, and g0p0 #g1p1=true positive, g1p0=false negative, g0p1=false positive, g0p0=true negative #we pass in volume_acc twice because the variable volume_acc could #be fake OR real, depending on the preceding logic, but #example['volume_acc'] is guaranteed to always be real. label_indices_dict = make_label_indices_dict(volume_acc, example['volume_acc'], gr_truth, self.params_path, self.label_meanings) for key in ['g1p1', 'g1p0', 'g0p1', 'g0p0']: chosen_label_indices = label_indices_dict[key] #e.g. [32, 37, 43, 46, 49, 56, 60, 62, 64, 67, 68, 71] if (('Abnormality' not in self.which_scans.columns.values.tolist()) or (self.which_scans.at[df_idx,'Abnormality'] == 'all')): #plot ALL abnormalities pass else: #plot only chosen abnormalities chosen_abnormalities = self.which_scans.at[df_idx,'Abnormality'].split(',') chosen_label_indices = [x for x in chosen_label_indices if self.label_meanings[x] in chosen_abnormalities] #Calculate label-specific attn and make label-specific attn figs for chosen_label_index in chosen_label_indices: #Get label_name and seg_gr_truth: label_name = self.label_meanings[chosen_label_index] #e.g. 'lung_atelectasis' seg_gr_truth = attn_gr_truth[chosen_label_index,:,:,:] #out shape [135, 6, 6] #segprediction is the raw attention. slice_idx is the index of #the slice with the highest raw score for this label segprediction, x_perslice_scores_this_disease = self.return_segprediction(out, ctvol, gr_truth, volume_acc, chosen_label_index) #out shape [135, 6, 6] segprediction_clipped_and_normed = clip_and_norm_volume(segprediction) if 'iou_analysis' in self.task: if key in ['g1p1','g1p0']: #TODO: implement IOU analysis for other options! also make this more efficient so no excessive calculations are done if self.verbose: print('Adding example to IOU analysis') self.iou_analysis_object.add_this_example_to_iou_wide_df(segprediction_clipped_and_normed, seg_gr_truth, volume_acc, label_name, num_labels_this_ct=int(gr_truth.sum())) if 'attn_plots' in self.task: if self.verbose: print('Making 2D and 3D attn figures') make_2d_plot_and_3d_gif.plot_attn_over_ct_scan(ctvol, segprediction_clipped_and_normed, x_perslice_scores_this_disease, volume_acc, label_name, os.path.join(self.attn_2dplot_dir,key), os.path.join(self.attn_3dgif_dir,key)) #Report progress if df_idx % five_percent == 0: print('Done with',df_idx,'=',round(100*df_idx/self.which_scans.shape[0],2),'%') del example, ctvol, gr_truth, volume_acc, attn_gr_truth, out def get_out_and_blue_heatmaps(self, ctvol, gr_truth, volume_acc): """Calculate 'out' which will be used for: 1. the blue heatmap figure (the 'x_perslice_scores') which is specific to a particular scan, NOT a particular label; 2. the 'hirescam-check' attention (the 'disease_reps') Note that we don't do this within the label for loop below because it's computationally wasteful to run a fixed model again and again on the same input CT scan. To avoid memory issues of running the model twice, for determining true positives/false positives/true negatives/false negatives, we use the pre-calculated predicted probabilities that were saved when the model was first run. out['out'] contains the prediction scores and has shape [1,80] out['disease_reps'] contains the 'hirescam-check' attention for all diseases and has shape [80, 135, 16, 6, 6] out['x_perslice_scores'] contains the abnormality scores for each slice and has shape [1, 80, 135]""" if self.attention_type == 'hirescam-check': out = self.model(ctvol) if 'blue_heatmaps' in self.task: if self.verbose: print('Making blue heatmap') blue_heatmap.visualize_slicediseases(out['out'], gr_truth, out['x_perslice_scores'].cpu().data.numpy(), volume_acc, self.blue_heatmaps_dir, self.label_meanings, self.blue_heatmap_baseline) return out else: return None def return_segprediction(self, out, ctvol, gr_truth, volume_acc, chosen_label_index): """Return the <segprediction> which is a volume of scores for a particular label""" if self.attention_type == 'hirescam-check': return extract_disease_reps.return_segprediction_from_disease_rep(out, chosen_label_index) elif self.attention_type in ['gradcam-vanilla','hirescam']: #note that if 'make_figure' is in self.task, then a 2d debugging #figure for Grad-CAM will also be saved in this step return gradcam.RunGradCAM(self.attention_type, self.model, self.device, self.label_meanings, self.gradcam_debug_dir, self.task, **self.attention_type_args).return_segprediction_from_grad_cam(ctvol, gr_truth, volume_acc, chosen_label_index) def make_label_indices_dict(possibly_fake_volume_acc, real_volume_acc, gr_truth, params_path, label_meanings): """Based on the <gr_truth> and the predicted probability that was pre-calculated, figure out which abnormalities are true positives (g1p1), false negatives (g1p0), false positives (g0p1), and true negatives (g0p0). g stands for ground truth and p stands for predicted probability. The predicted probabilities are read in from the predicted probabilities that were saved from the final model when it was done training. The path for these is inferred from params_path based on known directory structure. We also need to use this pre-calculated file because we need to get the median predicted probability for each abnormality. The predicted probabilities are binarized as 0 or 1 according to being above or below the median (50th percentile) for that abnormality. Returns a dictionary with keys g1p1, g1p0, g0p1, and g0p0 and values that are numpy arrays of numeric indices of the corresponding abnormalities e.g. array([32, 37, 64, 67, 68, 71])""" #Infer paths to the precomputed pred probs based on known directory organization: #e.g. precomputed_path = '/home/rlb61/data/img-hiermodel2/results/results_2019-2020/2020-10/2020-10-09_WHOLEDATA_BodyAvg_Baseline_FreshStart/pred_probs' precomputed_path = os.path.join(os.path.split(os.path.split(params_path)[0])[0],'pred_probs') files = os.listdir(precomputed_path) #e.g. ['valid_grtruth_ep4.csv', 'valid_predprob_ep4.csv'] pred_probs_file = [x for x in files if 'predprob' in x][0] #e.g. 'valid_predprob_ep4.csv' gr_truth_file = [x for x in files if 'grtruth' in x][0] #e.g. 'valid_grtruth_ep4.csv' #Open the pred probs and gr truth for this data subset #Each of them has volume accesions as the index, and abnormalities as #the columns. Example shape: [2085,80] pred_probs_all = pd.read_csv(os.path.join(precomputed_path, pred_probs_file),header=0,index_col=0) gr_truth_all = pd.read_csv(os.path.join(precomputed_path, gr_truth_file),header=0,index_col=0) #Sanity checks: for df in [pred_probs_all, gr_truth_all]: assert df.columns.values.tolist()==label_meanings assert (gr_truth_all.loc[real_volume_acc,:]==gr_truth).all() #Calculate the medians of the different abnormalities across the whole #data subset. medians = np.median(pred_probs_all,axis=0) #np array, e.g. shape [80] #Select out the predicted probabilities for just this scan pred_probs = pred_probs_all.loc[real_volume_acc,:] #pd Series w abn labels and float values, e.g. shape [80] #Get binary vector that's equal to 1 if the corresponding abnormality #has a pred prob greater than the median pred_probs_geq = (pred_probs >= medians).astype('int') #pd Series w abn labels and binary int values, e.g. shape [80] #Now divide up the abnormalities for this particular CT scan based on whether #they are above or below the median pred prob, and whether the gr truth #is 1 or 0 g0p0 = np.intersect1d(np.where(gr_truth==0)[0], np.where(pred_probs_geq==0)[0]) g0p1 = np.intersect1d(np.where(gr_truth==0)[0], np.where(pred_probs_geq==1)[0]) g1p0 = np.intersect1d(np.where(gr_truth==1)[0], np.where(pred_probs_geq==0)[0]) g1p1 = np.intersect1d(np.where(gr_truth==1)[0], np.where(pred_probs_geq==1)[0]) #Checks assert len(g1p0)+len(g1p1)==int(gr_truth.sum()) assert len(g0p0)+len(g0p1)+len(g1p0)+len(g1p1)==len(gr_truth) label_indices_dict = {'g0p0':g0p0.tolist(), 'g0p1':g0p1.tolist(), 'g1p0':g1p0.tolist(), 'g1p1':g1p1.tolist()} #uncomment the next line to print detailed info to the terminal: #print_for_future_reference(params_path, label_indices_dict, possibly_fake_volume_acc, pred_probs, medians, label_meanings) return label_indices_dict def print_for_future_reference(params_path, label_indices_dict, possibly_fake_volume_acc, pred_probs, medians, label_meanings): model_description = os.path.split(params_path)[1] for key in list(label_indices_dict.keys()): #the keys are ['g0p0','g0p1','g1p0','g1p1'] for idx in label_indices_dict[key]: print('\t'.join([model_description, possibly_fake_volume_acc, key, label_meanings[idx], str(round(pred_probs[idx],4)),'median:',str(round(medians[idx],4))])) ############# # Functions #------------------------------------------------------------------- ############# def clip_and_norm_volume(volume): volume = np.maximum(volume, 0) #ReLU operation volume = volume - np.min(volume) if np.max(volume)!=0: volume = volume / np.max(volume) return volume
rachellea/explainable-ct-ai
src/run_attn_analysis.py
run_attn_analysis.py
py
26,139
python
en
code
3
github-code
6
33180088903
from itertools import * def repl(a): if a == '01': return 712 elif a == '02': return 673 elif a == '03': return 1075 elif a == '04': return 875 elif a == '05': return 1622 elif a == '06': return 423 elif a == '10': return 712 elif a == '12': return 1385 elif a == '13': return 1800 elif a == '14': return 1577 elif a == '15': return 2348 elif a == '16': return 1128 elif a == '20': return 673 elif a == '21': return 1385 elif a == '23': return 1499 elif a == '24': return 239 elif a == '25': return 2046 elif a == '26': return 244 elif a == '30': return 1075 elif a == '31': return 1800 elif a == '32': return 1499 elif a == '34': return 1287 elif a == '35': return 551 elif a == '36': return 1266 elif a == '40': return 875 elif a == '41': return 1577 elif a == '42': return 239 elif a == '43': return 1287 elif a == '45': return 1835 elif a == '46': return 442 elif a == '50': return 1622 elif a == '51': return 2348 elif a == '52': return 2046 elif a == '53': return 551 elif a == '54': return 1835 elif a == '56': return 1813 elif a == '60': return 423 elif a == '61': return 1128 elif a == '62': return 244 elif a == '63': return 1266 elif a == '64': return 442 elif a == '65': return 1813 elif a == '00': return 0 elif a == '11': return 0 elif a == '22': return 0 elif a == '33': return 0 elif a == '44': return 0 elif a == '55': return 0 elif a == '66': return 0 def city(s): if s == '0': return 'Москва ' if s == '1': return 'Санкт-Петербург ' if s == '2': return 'Чебоксары ' if s == '3': return 'Ростов-на-Дону ' if s == '4': return 'Ульяновск ' if s == '5': return 'Сочи ' if s == '6': return 'Нижний Новгород ' ways = list(product('0123456',repeat=7)) waysR = [] wR = [] waysL = 0 n = 0 for k in ways: l = ''.join(k) if l.count('0')==1 and l.count('1')==1 and l.count('2')==1 and l.count('3')==1 and l.count('4')==1 and l.count('5')==1 and l.count('6')==1: c = 0 for j in range(6): s = l[j:j+2] c+= repl(s) if c > waysL: waysR = [] waysR.append(l) waysL = c elif c == waysL: waysR.append(l) for p in waysR: Y = '' for t in p: Y += city(t) wR.append(Y) print(waysL) print(wR)
Ethryna/InfTasks
2 полугодие/airports.py
airports.py
py
2,639
python
en
code
2
github-code
6