seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
37080023999
def solution(n): answer = 0 n_3 = '' while n >= 3: n_3 += str(n % 3) n = n // 3 n_3 += str(n) a = 1 for i in n_3[::-1]: answer += int(i) * a a *= 3 return answer
JeonggonCho/algorithm
프로그래머스/lv1/68935. 3진법 뒤집기/3진법 뒤집기.py
3진법 뒤집기.py
py
222
python
en
code
0
github-code
6
38776144324
import os import webbrowser from shutil import copyfile import random import cv2 import pickle from moviepy.editor import * from flask import Flask, render_template, redirect, url_for, request from flaskwebgui import FlaskUI pickle_base = "C:\\Users\\AI\\AIVideo_Player\\data\\" image_directory = 'C:\\Users\\AI\\Code\\VideoPlayer\\engine\\static\\images' n_recent_files = 3 current_directory = '' allowed_images = [] video_file_types = ['flv', 'mp4', 'avi', 'webm', 'mov', 'mpeg', 'wmv', 'mp3', 'MP4', 'mkv', 'MKV', 'AVI', 'MPEG', 'WEBM'] def pick(picklefile): picklefile = pickle_base+picklefile if os.path.isfile(picklefile): with open(picklefile, 'rb') as f: folders = pickle.load(f) else: folders = {} return folders def cache(item, picklefile): picklefile = pickle_base+picklefile with open(picklefile, 'wb') as f: pickle.dump(item, f) # ff = FFmpeg(executable='C:\\ffmpeg\\bin\\ffmpeg.exe', inputs={folder+folders[folder]['last_file']: None}, outputs={"C:\\Users\\AI\\AIVideo_Player\\data\\recntly_played\\thumbnail"+str(count)+".png": ['-vf', 'fps=1']}) # ff.run() app = Flask(__name__) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 # do your logic as usual in Flask @app.route("/") def index(): favourites = pick('favourites.pickle') folders = pick('cache.pickle') backup_gif = '' for file in favourites: gif_filename = 'C:\\Users\\AI\\Code\\VideoPlayer\\engine\\static\\images\\' + os.path.basename(file) + '.gif' if favourites[file]['changed'] or not os.path.isfile(gif_filename): try: seconds = favourites[file]['time'] - 3.5 clip = (VideoFileClip(file).subclip(seconds, seconds+7.5)) clip.write_gif(gif_filename) except OSError: pass favourites[file]['changed'] = False cache(favourites, 'favourites.pickle') for folder in folders: filename = 'C:\\Users\\AI\\Code\\VideoPlayer\\engine\\static\\images\\' + folders[folder]['filename'] + '.png' backup_gif = folders[folder]['filename'] +'.gif' gif_filename = 'C:\\Users\\AI\\Code\\VideoPlayer\\engine\\static\\images\\' + backup_gif if not os.path.isfile(filename): cap = cv2.VideoCapture(folders[folder]['full_path']) cap.set(1, 100) res, frame = cap.read() cv2.imwrite(filename, frame) try: clip = (VideoFileClip(folders[folder]['full_path']).subclip((1, 7.7), (1, 14.12))) clip.write_gif(gif_filename) except OSError: pass print(favourites) if favourites != {}: favourite_gif = os.path.basename(random.choice(list(favourites)))+'.gif' else: favourite_gif = backup_gif path = "index.html" print(favourite_gif) return render_template(path, folders=folders, favourite_gif=favourite_gif) @app.route('/viewer', defaults={'_file_path': 'sample'}) @app.route('/viewer/<_file_path>') def viewer(_file_path): folders = pick('cache.pickle') time_dict = pick('time_dict.pickle') file_path = _file_path.replace('>', '\\') dirname, filename = os.path.dirname(file_path), os.path.basename(file_path) folders[dirname] = { 'full_path': str(file_path), 'filename': str(filename) } try: last_time = time_dict[file_path] except KeyError: last_time = 0.0 time_dict[file_path] = 0.0 folders[dirname]['last_time'] = last_time # folder_stack = pick('folder_stack.pickle') folder_stack = list(folders) folder_stack.append(dirname) while len(folder_stack)>n_recent_files+1: try: del folders[folder_stack[0]] folder_stack.remove(folder_stack[0]) except KeyError: folder_stack.remove(folder_stack[0]) cache(folders, 'cache.pickle') cache(time_dict, 'time_dict.pickle') cache(folder_stack, 'folder_stack.pickle') view_locaiton = os.getcwd()+url_for('static', filename='images/'+filename) allowed_images.append(os.path.basename(view_locaiton)) try: copyfile(file_path, view_locaiton) except FileNotFoundError: pass path = "viewer.html" filename = os.path.basename(view_locaiton) while len(allowed_images)>4: allowed_images.remove(allowed_images[0]) print(filename) return render_template(path, file_name=url_for('static', filename='images/'+filename), full_file_path=_file_path, last_time=last_time, _filename=filename.replace('%20', ' ')) @app.route("/folders", defaults={'_path': '?'}) @app.route("/folders/<_path>") def folders(_path): folder_stack = pick('folder_stack.pickle') path = _path.replace('>', '\\') if any(path.endswith(_) for _ in video_file_types): return redirect("http://127.0.0.1:5000/viewer/"+path.replace('\\', '>')) elif path == '?': try: path = folder_stack[-1] except KeyError: path = 'C:\\' elif path.endswith('<<'): path = os.path.dirname(path) elif path == '<<<': path = 'C:\\' f = lambda s: path+"\\"+s try: folders_full_path = list(map(f, os.listdir(path))) folders_list = os.listdir((path)) except NotADirectoryError: return "AIVIDEO_PLAYER does not support this file type" return render_template('folders.html', folders_full_path=folders_full_path, folders_list=folders_list, directory=path) @app.route("/changeVideo", defaults={'param': ' '}) @app.route("/changeVideo/", methods=['POST', 'GET']) def changeVideo(): last_video = request.args.get('last_video') last_video = last_video.replace('>', '\\') last_video = last_video.replace('<', ' ') last_time = request.args.get('last_time') favourite = request.args.get('favourite') favourite_time = request.args.get('favouriteTime') command = request.args.get('command') folders = pick('cache.pickle') time_dict = pick('time_dict.pickle') favourites = pick('favourites.pickle') directory = os.path.dirname(last_video) filename = os.path.basename(last_video) if favourite == 'true': print('adding to favourite') favourites[last_video] = {'time':float(favourite_time),'changed':True} cache(favourites, 'favourites.pickle') folders[directory] = { 'full_path': str(last_video), 'filename': str(filename), 'last_time': float(last_time) } time_dict[last_video] = last_time cache(time_dict, 'time_dict.pickle') cache(folders, 'cache.pickle') _dir_list = os.listdir(directory) dir_list = [_ for _ in _dir_list if any(_.endswith(__) for __ in video_file_types)] if command == 'next': next_file = directory + "\\" + dir_list[dir_list.index(filename) + 1] return redirect("http://127.0.0.1:5000/viewer/" + next_file.replace('\\', '>')) elif command == 'previous': previous_file = directory + "\\" + dir_list[dir_list.index(filename) - 1] return redirect("http://127.0.0.1:5000/viewer/" + previous_file.replace('\\', '>')) elif command == 'backspace': return redirect('http://127.0.0.1:5000/') elif command == 'exit': for file in os.listdir(image_directory): if file not in [os.path.basename(_)+'.gif' for _ in favourites] and not file.startswith('icons8') and file not in [folders[__]['filename'] for __ in folders] and file not in [folders[__]['filename']+'.gif' for __ in folders] and file not in [folders[__]['filename']+'.png' for __ in folders] and file not in allowed_images: os.remove(image_directory+'\\'+file) exit() return '' # call the 'run' method app.run() print('done')
olusegvn/VideoPlayer
engine/AIVideoPlayerBackend.py
AIVideoPlayerBackend.py
py
7,987
python
en
code
0
github-code
6
44042814684
import pandas as pd import re import graphlab as gl from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import NMF from nltk.stem.wordnet import WordNetLemmatizer from helper import * class Registries(object): def __init__(self, filepath): self.filepath = filepath self.data = None def preprocess_registries_data(self): self.data = pd.read_csv(self.filepath) self.data['product_details'] = [x.strip('[]').split(',') for x in self.data['product_details']] self.data['product_att'] = [x.strip('[]').split(',') for x in self.data['product_att']] self.data['product_name'] = [p[0].strip('u\'').decode('unicode_escape').encode('ascii','ignore') for p in self.data.product_details] self.data['product_url'] = [x[-1].strip(' u\'') for x in self.data.product_details] self.data['product_id'] = [int(re.search(r'/(\d+)\?',x).group(1)) if x!='' else '' for x in self.data.product_url] self.data = self.data[self.data.product_id != ''] # convert to integer for graphlab models self.data['color'] = [x[0].strip(' u\'') for x in self.data.product_att] self.data['color_scheme'] = ['NEUTRAL' if type(x) is float else 'BLUE' if 'BLUE' in x.split() else 'PINK' if 'PINK' in x.split() else 'NEUTRAL' for x in self.data.color] self.data['size_others'] = [x[1].strip(' u\'') if type(x) is str else '' for x in self.data.product_att] # self.data['price'] = self.data.price.astype(float).fillna(0.0) self.data = self.data.drop(['product_details', 'product_att'], axis=1) return self.data def load_registry_data(self, data): self.data = data def create_registry_df(self): # Create registries dataframe self.registries = self.data[['id', 'product_id']] self.registries['requested'] = 1 return self.registries def create_items_df(self): self.items = self.data[['product_id', 'product_name','color', 'color_scheme', 'size_others','price']] self.get_item_category_with_NMF() return self.items def tfidf_item_desc(self): self.items['desc'] = [x+' '+y for x, y in zip(self.items.product_name, self.items.size_others)] corpus = self.items['desc'].values wordnet = WordNetLemmatizer() docs_wordnet = [[wordnet.lemmatize(word) for word in re.split('\W+', words)] for words in corpus] stop_words = ['baby', 'child', 'infant', 'newborn', 'in', 'with', 'of', '+', '&', 'and', 'by'] self.items.vectorizer = TfidfVectorizer(stop_words=stop_words) self.items.doc_term_mat = self.items.vectorizer.fit_transform(corpus) # feature_words = self.items.vectorizer.get_feature_names() return self.items.doc_term_mat def get_item_category_with_NMF(self, num_category=4): self.items.doc_term_mat = self.tfidf_item_desc() nmf = NMF(n_components=num_category) W_sklearn = nmf.fit_transform(self.items.doc_term_mat) H_sklearn = nmf.components_ items_cat_ind = np.argsort(W_sklearn, axis=1) self.items['category'] = items_cat_ind[:,-1] # get the top category return self.items def get_item_pairwise_dist(self, metric='cosine'): tfidf_arr = self.items.doc_term_mat.toarray() dist_mat = pairwise_distances(tfidf_arr, metric) return dist_mat def dummify(df,column_name, drop_first = False): dummies = pd.get_dummies(df[column_name], prefix = column_name, drop_first = False) df = df.drop(column_name, axis = 1) return pd.concat([df,dummies], axis = 1) def to_SFrame(self, categorical_cols): ''' categorical_cols: list of column names for categorical variables ''' items_gl = self.items.dropna() reg_gl = self.registries.dropna() for col in categorical_cols: items_gl = dummify(items_gl, col) items_gl = gl.SFrame(items_gl) reg_gl = gl.SFrame(reg_gl) return reg_gl, items_gl def train_test_split(self, test_proportion = 0.2): reg_gl, _ = self.to_SFrame train, test = gl.recommender.util.random_split_by_user(dataset = reg_gl, user_id = 'id', item_id = 'product_id', max_num_users = 1000, item_test_proportion = 0.2, random_seed = 100) return train, test
vynguyent/Expecting-the-unexpected
Model/registries.py
registries.py
py
4,677
python
en
code
0
github-code
6
40254170266
# Configuration file for jupyterHub...there's probably a better way of doing this # Define the custom authentication class JupyterHub attempts to use c.JupyterHub.authenticator_class = 'oauthenticator.LocalODROAuthenticator' # Define the ODR server location odr_base_url = '[[ ENTER ODR SERVER BASEURL HERE ]]' c.ODROAuthenticator.token_url = odr_base_url + '/oauth/v2/token' c.ODROAuthenticator.userdata_url = odr_base_url + '/api/v1/userdata.json' c.ODROAuthenticator.username_key = 'jupyterhub_username' # Define the JupyterHub server location jupyterhub_base_url = '[[ ENTER JUPYTERHUB SERVER BASEURL HERE ]]' c.ODROAuthenticator.oauth_callback_url = jupyterhub_base_url + '/hub/oauth_callback' # Define parameters needed for the OAuth process c.ODROAuthenticator.client_id = '[[ ENTER OAUTH CLIENT_ID HERE ]]' c.ODROAuthenticator.client_secret = '[[ ENTER OAUTH CLIENT_SECRET HERE ]]' # Instruct JupyterHub to create system users based on the OAuth server c.LocalAuthenticator.create_system_users = True # Needed to secure a route to the OAuth token manager...can use "openssl rand -hex 32". Shouldn't match other keys. c.ODROAuthenticator.manager_token = '[[ ENTER SOME SECRET KEY HERE ]]' c.ODROAuthenticator.manager_port = '8094' # API tokens to allow JupyterHub services to communicate with JupyterHub's API...can use "openssl rand -hex 32". c.JupyterHub.service_tokens = { '[[ ENTER SOME OTHER SECRET KEY HERE ]]': 'odr_oauth_manager', '[[ ENTER YET ANOTHER SECRET KEY HERE ]]': 'odr_external', '[[ ENTER SECRET KEY #3 HERE ]]': 'odr_bridge', } # Needed to secure a route between ODR and jupyterhub odr_bridge_token = '[[ ENTER SECRET KEY #4 HERE ]]' odr_bridge_port = '9642' # JupyterHub service definition c.JupyterHub.services = [ { 'name': 'odr_oauth_manager', 'admin': False, 'command': ['python', 'odr_oauth_manager.py'], 'url': 'http://127.0.0.1:' + c.ODROAuthenticator.manager_port, 'environment': { 'port_number': c.ODROAuthenticator.manager_port, 'oauth_client_id': c.ODROAuthenticator.client_id, 'oauth_client_secret': c.ODROAuthenticator.client_secret, 'oauth_token_url': c.ODROAuthenticator.token_url, 'oauth_manager_token': c.ODROAuthenticator.manager_token, }, }, { 'name': 'odr_external', 'admin': True, # Needs access to jupyterhub api }, { 'name': 'odr_bridge', 'admin': False, 'command': ['python', 'odr_bridge.py'], 'url': 'http://127.0.0.1:' + odr_bridge_port, 'environment': { 'bridge_token': odr_bridge_token, 'port_number': odr_bridge_port, }, } ]
OpenDataRepository/data-publisher
external/jupyterhub/jupyterhub_config.py
jupyterhub_config.py
py
2,732
python
en
code
14
github-code
6
36079540438
import atexit import json import logging import os # needs install import websocket from log.timeutil import * logger = logging.getLogger() logger.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) logger.addHandler(handler) import log.encoder try: import thread except ImportError: import _thread as thread class BitWs: '''logging utility using bitmex realtime(websockets) API''' def __init__(self, log_file_dir=os.sep + "tmp", flag_file_name = os.sep + "tmp" + os.sep + "BITWS-FLG", id = None, fix_file=None): self.last_action = None self.log_file_root_name = None self.log_file_name = None self.ws = None self.log_file_dir = log_file_dir self.last_time = 0 self.compress = True self.terminate_count = 200 self.terminated_by_peer = False self.fix_file = fix_file if id: self.pid = id else: self.pid = str(os.getpid()) self.reset() self.flag_file_name = flag_file_name if not self.fix_file: self.rotate_file() def __del__(self): # self.dump_message() self.rotate_file() self.remove_terminate_flag() def reset(self): self.last_message = None self.reset_timestamp() def reset_timestamp(self): self.last_time = int(timestamp()) def get_flag_file_name(self): return self.flag_file_name def create_terminate_flag(self): self.remove_terminate_flag() file_name = self.get_flag_file_name() with open(file_name + "tmp", "w") as file: file.write(self.get_process_id()) file.close() os.rename(file_name + "tmp", file_name) def check_terminate_flag(self): file_name = self.get_flag_file_name() if os.path.isfile(file_name): with open(file_name, "r") as file: id = file.readline() if id != self.get_process_id(): self.terminate_count = self.terminate_count - 1 if self.terminate_count == 0: return True return False def get_process_id(self): return self.pid def remove_terminate_flag(self): file_name = self.get_flag_file_name() if os.path.isfile(file_name): os.remove(file_name) def rotate_file(self): if self.log_file_name: if os.path.isfile(self.log_file_name): os.rename(self.log_file_name, self.log_file_root_name) timestring = time_stamp_string().replace(":", "-").replace('+', '-') self.log_file_root_name = self.log_file_dir + os.sep + 'BITLOG' + self.get_process_id() + '-' + timestring + ".log" self.log_file_name = self.log_file_root_name + ".current" def dump_message(self): if self.last_message is None: return self.dump_message_line(self.last_message) self.reset() def dump_message_line(self, message): message['TIME'] = self.last_time if self.fix_file: file_name = self.fix_file else: file_name = self.log_file_name with open(file_name, "a") as file: json_string = json.dumps(message, separators=(',', ':')) if self.compress: file.write(log.encoder.encode(json_string)) else: file.write(json_string) file.write('\n') def remove_symbol(self, message): for m in message['data']: del (m['symbol']) def on_message(self, ws, message): message = json.loads(message) table = message['table'] if 'table' in message else None if table == "orderBookL2": self.remove_symbol(message) self.on_order_book_message(ws, message) elif table == "funding": self.remove_symbol(message) self.on_funding_message(ws, message) elif table == "trade": self.remove_symbol(message) self.on_trade_message(ws, message) def on_trade_message(self, ws, message): # logger.debug("trade") self.dump_message_line(self.strip_trade_message(message)) def strip_trade_message(self, message): data = message['data'] side = None price = 0 size = 0 last_time_stamp = data[0]['timestamp'] for d in data: if last_time_stamp != d['timestamp']: break side = d['side'] price = d['price'] size += d['size'] del(data[1:]) data[0]['side'] = side data[0]['price'] = price data[0]['size'] = size del(data[0]['grossValue'], data[0]['homeNotional'], data[0]['trdMatchID'], data[0]['foreignNotional']) return message def on_funding_message(self, ws, message): logger.debug("funding") self.dump_message_line(message) pass def on_order_book_message(self, ws, message): action = message['action'] if 'action' in message else None if action == 'partial': logger.debug("partial") self.rotate_file() self.create_terminate_flag() current_time = int(timestamp()) if current_time == self.last_time and self.last_action == action and action != None: if self.last_message != None: self.last_message['data'] += message['data'] else: self.last_message = message else: if self.last_message != None: self.dump_message() self.last_message = message self.reset_timestamp() self.last_action = action if self.check_terminate_flag(): self.ws.close() self.rotate_file() self.terminated_by_peer = True logger.debug("terminated") def on_error(self, ws, error): logger.debug(error) def on_close(self, ws): logger.debug("### closed ###") def on_open(self, ws): ws.send('{"op": "subscribe", "args": ["funding:XBTUSD", "orderBookL2:XBTUSD", "trade:XBTUSD"]}') def start(self): websocket.enableTrace(True) self.ws = websocket.WebSocketApp("wss://www.bitmex.com/realtime", on_message=self.on_message, on_error=self.on_error, on_close=self.on_close, on_open=self.on_open) self.ws.run_forever(ping_interval=70, ping_timeout=30) if __name__ == "__main__": bitmex = BitWs(fix_file='/tmp/bit.log') atexit.register(bitmex.rotate_file) bitmex.start()
yasstake/mmf
log/bitws.py
bitws.py
py
6,831
python
en
code
1
github-code
6
35863858862
n = int(input()) s = input() ans = 0 ans_list = [] R_index = [] G_index = [] B_index = [] for i in range(n): if s[i] == 'R': R_index.append(i) elif s[i] == 'G': G_index.append(i) elif s[i] == 'B': B_index.append(i) ans = len(R_index) * len(G_index) * len(B_index) for j in range(1, n-1): for i in range(min(n-j-1,j)+1): # print(j,i) # print(min(n-j-1,j)) # # print(s[j-i],s[j],s[j+i]) if s[j-i] != s[j] and s[j] != s[j+i] and s[j-i] != s[j+i]: # print('here') ans -= 1 print(ans)
bokutotu/atcoder
ABC/162/d_.py
d_.py
py
589
python
en
code
0
github-code
6
39688600504
# 55. Jump Game # Time: O(len(nums)) # Space: O(1) class Solution: def canJump(self, nums: List[int]) -> bool: if len(nums)<=1: return True max_pos = nums[0] for index in range(len(nums)): max_pos = max(max_pos, index+nums[index]) if index>=max_pos: return False if max_pos>=len(nums)-1: return True return False
cmattey/leetcode_problems
Python/lc_55_jump_game.py
lc_55_jump_game.py
py
435
python
en
code
4
github-code
6
73675802426
# This script fills the newly created point geofield # coding=utf-8 import os, sys proj_path = "/home/webuser/webapps/tigaserver/" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tigaserver_project.settings") sys.path.append(proj_path) os.chdir(proj_path) from django.core.wsgi import get_wsgi_application application = get_wsgi_application() import csv import string import random from django.contrib.auth.models import User, Group from tigaserver_app.models import EuropeCountry USERS_FILE = '/home/webuser/Documents/filestigaserver/registre_usuaris_aimcost/test_users_14072020.csv' def split_name(s): split = s.split(" ") name = split[0] first_name = split[1] return { "name": name, "last_name": first_name } def get_username(s): split = split_name(s) elem1 = split['name'][0].lower() elem2 = split['last_name'].lower().split("-")[0] return elem1 + "." + elem2 def generate_password( size=6, chars= string.ascii_uppercase + string.ascii_lowercase + string.digits ): return ''.join(random.choice(chars) for _ in range(size)) def delete_euro_users(): users = User.objects.filter(groups__name='eu_group_europe') for u in users: u.delete() def delete_users(): with open(USERS_FILE) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') next(csv_reader) for row in csv_reader: name = row[0] username = get_username(name) try: user = User.objects.get(username=username) user.delete() except User.DoesNotExist: print("User with username {0} not found".format(name)) def make_user_regional_manager(user, country): user.userstat.national_supervisor_of = country user.save() def assign_user_to_country(user, country): user.userstat.native_of = country user.save() def perform_checks(): with open(USERS_FILE) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') next(csv_reader) for row in csv_reader: country_iso = row[7] try: print("Looking for country {0} with iso_code {1}".format(row[2], row[7])) e = EuropeCountry.objects.get(iso3_code=country_iso) print("Exists, doing nothing") except EuropeCountry.DoesNotExist: print("{0} country with iso_code {1} does not exist".format(row[2],row[7])) try: eu_group = Group.objects.get(name="eu_group_europe") except Group.DoesNotExist: print("Eu group does not exist, create") eu_group = Group.objects.create(name="eu_group_europe") eu_group.save() try: es_group = Group.objects.get(name="eu_group_spain") except Group.DoesNotExist: print("Es group does not exist, create") es_group = Group.objects.create(name="eu_group_spain") es_group.save() def check_users_by_email(comparison_file, output_file_name): ignore_list = ['[email protected]','[email protected]','[email protected]','[email protected]','[email protected]','[email protected]'] with open(comparison_file) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') next(csv_reader) for row in csv_reader: email = row[1] if email not in ignore_list: try: user = User.objects.get(email=email) except User.DoesNotExist: print("User with name {0} - {1} is not in database".format(row[0],row[1])) def inactivate_euro_users(): euro_users = User.objects.filter(groups__name='eu_group_europe') for user in euro_users: user.is_active = False user.save() def create_users(add_users_to_euro_groups=True, ignore_regional_managers = False): perform_checks() experts_group = Group.objects.get(name="expert") with open(USERS_FILE) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') next(csv_reader) for row in csv_reader: name = row[0] email = row[1] country = row[2] sp = split_name(name) #username = get_username(name) username = row[3] password = row[4] country_iso = row[7] user = User.objects.create_user(username=username,first_name=sp['name'],last_name=sp['last_name'],email=email,password=password) if add_users_to_euro_groups: regional_group = Group.objects.get(name=row[5]) regional_group.user_set.add(user) experts_group.user_set.add(user) country = EuropeCountry.objects.get(iso3_code=country_iso) assign_user_to_country(user,country) if not ignore_regional_managers: if row[6] == '1': print("Making user regional manager") make_user_regional_manager(user, country) print("{0} {1} {2}".format( username, email, password )) create_users(add_users_to_euro_groups=False, ignore_regional_managers = True) #perform_checks() #delete_users() #check_users_by_email('/home/webuser/Documents/filestigaserver/registre_usuaris_aimcost/user_check.csv','')
Mosquito-Alert/mosquito_alert
util_scripts/create_aimsurv_experts.py
create_aimsurv_experts.py
py
5,288
python
en
code
6
github-code
6
24923567054
# -*- coding: utf-8 -*- """ Created on Mon Apr 1 18:19:38 2013 @author: matz """ import math import sys import cvtype import datatype import document import generator import package import test # abbreviations DT = test.Default() # calcHistWrapper dcl = document.Document() dclIncludes = ["<opencv2/core/core.hpp>"] dcl.text( """ void calcHist(const cv::Mat & input, cv::Mat & result, const float min, const float max, int size); """) dtnIncludes = ["<opencv2/imgproc/imgproc.hpp>"] dtn = document.Document() dtn.text( """ void calcHist(const cv::Mat & input, cv::Mat & result, const float min, const float max, int size) { int channels[] = {0}; float range[] = {min, max}; const float* ranges[] = {range}; cv::calcHist(&input, 1, channels, cv::Mat(), result, 1, &size, ranges); } """) calcHistWrapper = package.Function(dcl, dclIncludes, dtn, dtnIncludes) # minEnclosingCircleWrapper dcl = document.Document() dclIncludes = ["<opencv2/core/core.hpp>"] dcl.text( """ void minEnclosingCircle(const cv::Mat & points, cv::Mat & result); """) dtnIncludes = ["<opencv2/imgproc/imgproc.hpp>"] dtn = document.Document() dtn.text( """ void minEnclosingCircle(const cv::Mat & points, cv::Mat & result) { cv::Point2f center; float radius; cv::minEnclosingCircle(points, center, radius); result = cv::Mat(1, 3, CV_32F); result.at<float>(0, 0) = center.x; result.at<float>(0, 1) = center.y; result.at<float>(0, 2) = radius; } """) minEnclosingCircleWrapper = package.Function(dcl, dclIncludes, dtn, dtnIncludes) # fitLineWrapper dcl = document.Document() dclIncludes = ["<opencv2/core/core.hpp>"] dcl.text( """ void fitLine(const cv::Mat & points, cv::Mat & result, const int distType, const double param, const double reps, const double aeps); """) dtnIncludes = ["<cmath>", "<opencv2/imgproc/imgproc.hpp>"] dtn = document.Document() dtn.text( """ void fitLine(const cv::Mat & points, cv::Mat & result, const int distType, const double param, const double reps, const double aeps) { cv::Vec4f line; cv::fitLine(points, line, distType, param, reps, aeps); result = cv::Mat(1, 2, CV_32F); result.at<float>(0, 0) = (line[1]*line[2] - line[0]*line[3]); result.at<float>(0, 1) = std::atan2(line[0], line[1]) * 180 / M_PI; } """) fitLineWrapper = package.Function(dcl, dclIncludes, dtn, dtnIncludes) # extractRectangle dcl = document.Document() dclIncludes = ["<opencv2/core/core.hpp>"] dcl.text( """ void extractRectangle(const cv::Mat & image, const cv::RotatedRect& rectangle, cv::Mat & result); """) dtnIncludes = ["<opencv2/imgproc/imgproc.hpp>"] dtn = document.Document() dtn.text( """ void extractRectangle(const cv::Mat & image, const cv::RotatedRect& rectangle, cv::Mat & result) { cv::Rect bbox = rectangle.boundingRect(); bbox.x = std::min(std::max(bbox.x, 0), image.cols - 1); bbox.y = std::min(std::max(bbox.y, 0), image.rows - 1); bbox.width = std::min(std::max(bbox.width, 1), image.cols - bbox.x); bbox.height = std::min(std::max(bbox.height, 1), image.rows - bbox.y); cv::Mat cropped = image(bbox); float angle = rectangle.angle; cv::Size size = rectangle.size; if (rectangle.angle < -45.) { angle += 90.0; std::swap(size.width, size.height); } cv::Point2f shiftedCenter = rectangle.center - cv::Point2f(bbox.x, bbox.y); cv::Mat transform = cv::getRotationMatrix2D(shiftedCenter, angle, 1.0); cv::Mat rotated; cv::warpAffine(cropped, rotated, transform, cropped.size(), cv::INTER_CUBIC); cv::getRectSubPix(rotated, rectangle.size, shiftedCenter, result); } """) extractRectangleWrapper = package.Function(dcl, dclIncludes, dtn, dtnIncludes) # initializations initInCopy = document.Document(( "{1}->initializeImage({0}->width(), {0}->height(), {0}->stride(), " "{1}->data(), {0}->pixelType());").format("srcCastedData", "dstCastedData" )) initOutCopy = document.Document(( "{1}->initializeImage({1}->width(), {1}->height(), {1}->stride(), " "{1}->data(), {0}->pixelType());").format("srcCastedData", "dstCastedData" )) initInResize = document.Document(( "int width = int(m_dsizex) ? int(m_dsizex) : int(srcCastedData->width() * double(m_fx));\n" "int height = int(m_dsizey) ? int(m_dsizey) : int(srcCastedData->height() * double(m_fy));\n" "{1}->initializeImage(width, height, width * {0}->pixelSize(), " "{1}->data(), {0}->pixelType());").format("srcCastedData", "dstCastedData") ) initInDsize = document.Document(( "int width = int(m_dsizex);\n" "int height = int(m_dsizey);\n" "{1}->initializeImage(width, height, width * {0}->pixelSize(), " "{1}->data(), {0}->pixelType());").format("srcCastedData", "dstCastedData") ) initInDdepth = document.Document(( "runtime::Image::PixelType pixelType = cvsupport::computeOutPixelType(" "convertDdepth(m_ddepth), srcCastedData->pixelType());\n" "unsigned int stride = runtime::Image::pixelSize(pixelType) * " "srcCastedData->width();\n" "{1}->initializeImage({0}->width(), {0}->height(), stride, " "{1}->data(), pixelType);").format("srcCastedData", "dstCastedData" )) initOutDdepth = document.Document(( "runtime::Image::PixelType pixelType = cvsupport::computeOutPixelType(" "convertDdepth(m_ddepth), srcCastedData->pixelType());\n" "unsigned int stride = runtime::Image::pixelSize(pixelType) * " "srcCastedData->width();\n" "{1}->initializeImage({1}->width(), {1}->height(), stride, " "{1}->data(), pixelType);").format("srcCastedData", "dstCastedData" )) initInFloat32 = document.Document(( "unsigned int stride = {0}->cols() * runtime::Matrix::valueSize(runtime::Matrix::FLOAT_32);\n" "{1}->initializeMatrix({0}->rows(), {0}->cols(), stride, " "{1}->data(), runtime::Matrix::FLOAT_32);").format("srcCastedData", "dstCastedData" )) # arguments srcImg = package.Argument( "src", "Source", cvtype.Mat(), datatype.Image() ) srcImgMono = package.Argument( "src", "Source", cvtype.Mat(), datatype.Image("runtime::Variant::MONO_IMAGE") ) srcImgMono8bit = package.Argument( "src", "Source", cvtype.Mat(), datatype.Image("runtime::Variant::MONO_8_IMAGE") ) dstImg = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Image(), initIn = initInCopy, initOut = initOutCopy ) dstImgResize = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Image(), initIn = initInResize, initOut = initOutCopy ) dstImgDsize = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Image(), initIn = initInDsize, initOut = initOutCopy ) dstImgFloat32 = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Float32Matrix(), initIn = initInFloat32 ) ddepthDefault = package.Constant( "-1" ) ksizex = package.NumericParameter( "ksizex", "Kernel size X", cvtype.Int(), datatype.UInt32(), default = 3, minValue = 1 ) ksizey = package.NumericParameter( "ksizey", "Kernel size Y", cvtype.Int(), datatype.UInt32(), default = 3, minValue = 1 ) ksizexOdd = package.NumericParameter( "ksizex", "Kernel size X", cvtype.Int(), datatype.UInt32(), default = 3, minValue = 1, rules = [package.OddRule()] ) ksizeyOdd = package.NumericParameter( "ksizey", "Kernel size Y", cvtype.Int(), datatype.UInt32(), default = 3, minValue = 1, rules = [package.OddRule()] ) descriptions = [ package.EnumDescription("MORPH_RECT", "Rectangle"), package.EnumDescription("MORPH_ELLIPSE", "Ellipse"), package.EnumDescription("MORPH_CROSS", "Cross") ] shape = package.EnumParameter( "shape", "Kernel shape", descriptions = descriptions, default = 0 ) kernel = package.Call( "getStructuringElement(shapeCvData, cv::Size(ksizexCvData, ksizeyCvData))", [ksizex, ksizey, shape] ) anchor = package.Constant( "cv::Point(-1, -1)" ) defaultSize = package.Constant( "cv::Size(-1, -1)" ) iterations = package.NumericParameter( "iterations", "Number of iterations", cvtype.Int(), datatype.UInt32(), minValue = 1, default = 1 ) ksize = package.NumericParameter( "ksize", "Kernel size", cvtype.Int(), datatype.UInt32(), minValue = 1, step = 2, default = 3, rules = [package.OddRule()] ) d = package.NumericParameter( "d", "Pixel neigbourhood diameter", cvtype.Int(), datatype.UInt32(), default = 9 ) dsizex = package.NumericParameter( "dsizex", "Size X", cvtype.Int(), datatype.UInt32() ) dsizey = package.NumericParameter( "dsizey", "Size Y", cvtype.Int(), datatype.UInt32() ) dx = package.NumericParameter( "dx", "Order X derivative", cvtype.Int(), datatype.UInt32(), default = 1 ) dy = package.NumericParameter( "dy", "Order Y derivative", cvtype.Int(), datatype.UInt32(), default = 0 ) sigmaColor = package.NumericParameter( "sigmaColor", "Sigma color", cvtype.Float64(), datatype.Float64(), default = 50.0 ) sigmaSpace = package.NumericParameter( "sigmaSpace", "Sigma space", cvtype.Float64(), datatype.Float64(), default = 50.0 ) sigmaX = package.NumericParameter( "sigmaX", "Sigma X", cvtype.Float64(), datatype.Float64(), default = 0.0 ) sigmaY = package.NumericParameter( "sigmaY", "Sigma Y", cvtype.Float64(), datatype.Float64(), default = 0.0 ) descriptions = [ package.EnumDescription("SAME", "Same as input", -1), package.EnumDescription("DEPTH_8_BIT", "8-bit", "CV_8U"), package.EnumDescription("DEPTH_16_BIT", "16-bit", "CV_16U") ] ddepth = package.EnumParameter( "ddepth", "Destination depth", descriptions = descriptions, default = 0 ) scale = package.NumericParameter( "scale", "Scale", cvtype.Float64(), datatype.Float64(), default = 1.0 ) delta = package.NumericParameter( "delta", "Delta", cvtype.Float64(), datatype.Float64(), default = 0.0 ) dstImgDdepth = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Image(), initIn = initInDdepth, initOut = initOutDdepth ) thresh = package.NumericParameter( "threshold", "Threshold", cvtype.Float64(), datatype.Float64(), default = 127.0 ) maxval = package.NumericParameter( "maxval", "Maximal value", cvtype.Float64(), datatype.Float64(), default = 255.0 ) blockSize = package.NumericParameter( "blockSize", "Block size", cvtype.Int(), datatype.UInt32(), default = 3, minValue = 1, rules = [package.OddRule()] ) descriptions = [ package.EnumDescription("SIZE_3", "3","3"), package.EnumDescription("SIZE_5", "5","5"), package.EnumDescription("SIZE_PRECISE", "Precise", "CV_DIST_MASK_PRECISE") ] maskSize = package.EnumParameter( "maskSize", "Mask size", descriptions = descriptions, default = 0 ) seedPointX = package.NumericParameter( "seedPointX", "Seed point X", cvtype.Int(), datatype.UInt32() ) seedPointY = package.NumericParameter( "seedPointY", "Seed point Y", cvtype.Int(), datatype.UInt32() ) newVal = package.NumericParameter( "newVal", "New value", cvtype.Float64(), datatype.Float64() ) harrisK = package.NumericParameter( "k", "Harris parameter", cvtype.Float64(), datatype.Float64(), default = 1 ) accumulatorThreshold = package.NumericParameter( "threshold", "Accumulator threshold", cvtype.Int(), datatype.UInt32(), default = 100 ) minLineLength = package.NumericParameter( "minLineLength", "Minimum line length", cvtype.Float64(), datatype.Float64(), default = 50 ) maxLineGap = package.NumericParameter( "maxLineGap", "Maximum allowed gap", cvtype.Float64(), datatype.Float64(), default = 5 ) pointMatrix = package.MatrixArgument( "pointMatrix", "Point coordinates", cvtype.Mat(), datatype.Float32Matrix(), cols = 2, visualization = datatype.Visualization.POINT ) winSizeX = package.NumericParameter( "winSizeX", "Width of search window", cvtype.Int(), datatype.UInt32(), default = 5 ) winSizeY = package.NumericParameter( "winSizeY", "Height of search window", cvtype.Int(), datatype.UInt32(), default = 5 ) noArray = package.Constant( "cv::noArray()" ) # test data lenna = test.ImageFile("lenna.jpg") lenna_bw = test.ImageFile("lenna.jpg", grayscale = True) edges = test.ImageFile("edges.png", grayscale = True) affine_transformation = test.MatrixFile("affine.npy") perspective_transformation = test.MatrixFile("perspective.npy") camera_matrix = test.MatrixFile("camera_matrix.npy") dist_coeffs = test.MatrixFile("dist_coeffs.npy") memory = test.ImageBuffer(1000000) bigMemory = test.ImageBuffer(10000000) circle = test.ImageFile("circle.png", grayscale = True) contours = test.ImageFile("contours.png", grayscale = True) cornerImage = test.ImageFile("corners.png", grayscale = True) cornerCoordinates = test.MatrixFile("corners.npy") contour_1 = test.MatrixFile("contour_1.npy") # 32-bit integer coordinates contour_2 = test.MatrixFile("contour_2.npy") # 32-bit integer coordinates contour_f32 = test.MatrixFile("contour_f32.npy") contour_f64 = test.MatrixFile("contour_f64.npy") points_i32 = test.MatrixFile("points_i32.npy") points_f32 = test.MatrixFile("points_f32.npy") points_f64 = test.MatrixFile("points_f64.npy") non_convex_f32 = test.MatrixFile("non_convex_f32.npy") contourList = test.List(contour_1, contour_2) rotated_rect = test.MatrixFile("rotated_rect.npy") rotated_rect_top_right = test.MatrixFile("rotated_rect_top_right.npy") rotated_rect_bottom_left = test.MatrixFile("rotated_rect_bottom_left.npy") # bilateralFilter manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImg), d, sigmaColor, sigmaSpace], tests = [ [lenna, memory, 9, 100, 75] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), d, sigmaColor, sigmaSpace], tests = [ [lenna, DT, DT, DT, DT], [lenna_bw, DT, 9, 100, 75] ] ) bilateralFilter = package.Method( "bilateralFilter", options = [manual, allocate] ) # blur manual = package.Option( "manual", "Manual", [package.Input(srcImg, True), package.Output(dstImg), package.Size(ksizex, ksizey)], tests = [ [lenna, memory, (3, 4)], [lenna_bw, test.RefData(lenna), DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), package.Size(ksizex, ksizey)], tests = [ [lenna, DT, DT], [lenna_bw, DT, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImg), package.RefInput(dstImg, srcImg), package.Size(ksizex, ksizey)], tests = [ [lenna, DT, DT] ] ) blur = package.Method( "blur", options = [manual, allocate, inPlace] ) # boxFilter manual = package.Option( "manual", "Manual", [package.Input(srcImg, True), package.Output(dstImg), ddepthDefault, package.Size(ksizex, ksizey)], tests = [ [lenna, memory, DT, (5, 4)], [lenna, test.RefData(lenna), DT, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), ddepthDefault, package.Size(ksizex, ksizey)], tests = [ [lenna_bw, DT, DT, (4, 5)], ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImg), package.RefInput(dstImg, srcImg), ddepthDefault, package.Size(ksizex, ksizey)], tests = [ [lenna, DT, DT, DT], ] ) boxFilter = package.Method( "boxFilter", options = [manual, allocate, inPlace] ) # dilate and erode manual = package.Option( "manual", "Manual", [package.Input(srcImg, True), package.Output(dstImg), kernel, anchor, iterations], tests = [ [lenna, memory, (3, 4, 1), DT, 2], [lenna_bw, memory, DT, DT, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), kernel, anchor, iterations], tests = [ [lenna, DT, DT, DT, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImg), package.RefInput(dstImg, srcImg), kernel, anchor, iterations], tests = [ [lenna_bw, DT, (DT, DT, 2), DT, DT] ] ) dilate = package.Method( "dilate", options = [manual, allocate, inPlace] ) erode = package.Method( "erode", options = [manual, allocate, inPlace] ) # GaussianBlur manual = package.Option( "manual", "Manual", [package.Input(srcImg, True), package.Output(dstImg), package.Size(ksizexOdd, ksizeyOdd), sigmaX, sigmaY], tests = [ [lenna, memory, (3, 5), 1.5, 2.5], [lenna, test.RefData(lenna), DT, DT, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), package.Size(ksizexOdd, ksizeyOdd), sigmaX, sigmaY], tests = [ [lenna, DT, (3, 5), -1, -1] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImg), package.RefInput(dstImg, srcImg), package.Size(ksizexOdd, ksizeyOdd), sigmaX, sigmaY], tests = [ [lenna, DT, DT, 0, 0] ] ) GaussianBlur = package.Method( "GaussianBlur", options = [manual, allocate, inPlace] ) # medianBlur manual = package.Option( "manual", "Manual", [package.Input(srcImg, True), package.Output(dstImg), ksize], tests = [ [lenna, memory, 3], [lenna_bw, test.RefData(lenna), 5] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), ksize], tests = [ [lenna_bw, DT, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImg), package.RefInput(dstImg, srcImg), ksize], tests = [ [lenna, DT, DT] ] ) medianBlur = package.Method( "medianBlur", options = [manual, allocate, inPlace] ) # morphologyEx descriptions = [ package.EnumDescription("MORPH_OPEN", "Open"), package.EnumDescription("MORPH_CLOSE", "Close"), package.EnumDescription("MORPH_GRADIENT", "Gradient"), package.EnumDescription("MORPH_TOPHAT", "Tophat"), package.EnumDescription("MORPH_BLACKHAT", "Blackhat") ] op = package.EnumParameter( "op", "Operation", descriptions = descriptions, default = 1 ) manual = package.Option( "manual", "Manual", [package.Input(srcImg, True), package.Output(dstImg), op, kernel, anchor, iterations], tests = [ [lenna, memory, 0, (3, 4, 0), DT, DT], [lenna, test.RefData(lenna), 2, (DT, DT, 1), DT, 3] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), op, kernel, anchor, iterations], tests = [ [lenna_bw, DT, 0, DT, DT, DT], [lenna, DT, 3, (DT, DT, 2), DT, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImg), package.RefInput(dstImg, srcImg), op, kernel, anchor, iterations], tests = [ [lenna_bw, DT, 1, (DT, DT, 1), DT, DT], [lenna, DT, 3, DT, DT, DT] ] ) morphologyEx = package.Method( "morphologyEx", options = [manual, allocate, inPlace] ) # Laplacian manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgDdepth), ddepth, ksize, scale, delta], tests = [ [lenna, memory, 0, 3, DT, DT], [lenna_bw, memory, 1, 3, 1, 0] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgDdepth), ddepth, ksize, scale, delta], tests = [ [lenna_bw, DT, 2, 5, 100, 1000], [lenna, DT, 2, 7, 50, 500] ] ) laplacian = package.Method( "Laplacian", options = [manual, allocate] ) # Sobel sobelKsize = package.NumericParameter( "ksize", "Kernel size", cvtype.Int(), datatype.UInt32(), minValue = 1, maxValue = 7, step = 2, default = 3, rules = [package.OddRule()] ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgDdepth), ddepth, dx, dy, sobelKsize, scale, delta], tests = [ [lenna, memory, 0, 1, 1, 1, 1, 0], [lenna_bw, memory, 1, 2, 0, 3, 1, 0] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgDdepth), ddepth, dx, dy, sobelKsize, scale, delta], tests = [ [lenna, DT, 0, DT, 2, 5, 2, DT], [lenna_bw, DT, 2, DT, DT, DT, 100, DT] ] ) sobel = package.Method( "Sobel", options = [manual, allocate] ) # Scharr manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgDdepth), ddepth, dx, dy, scale, delta], tests = [ [lenna, memory, 0, 0, 1, 1, 0], [lenna_bw, memory, 1, 1, 0, 1, 0] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgDdepth), ddepth, dx, dy, scale, delta], tests = [ [lenna, DT, 0, DT, DT, 2, DT], [lenna_bw, DT, 2, 0, 1, 100, DT] ] ) scharr = package.Method( "Scharr", options = [manual, allocate] ) # pyrDown initInPyrDown = document.Document(( "int width = int((srcCastedData->width() + 1) / 2 );\n" "int height = int((srcCastedData->height() + 1) / 2 );\n" "{1}->initializeImage(width, height, width * {0}->pixelSize(), " "{1}->data(), {0}->pixelType());").format("srcCastedData", "dstCastedData") ) dstImgPyr = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Image(), initIn = initInPyrDown, initOut = initOutCopy ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgPyr)], tests = [ [lenna, memory] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgPyr)], tests = [ [lenna_bw, DT] ] ) pyrDown = package.Method( "pyrDown", options = [manual, allocate] ) # pyrUp initInPyrUp = document.Document(( "int width = 2 * srcCastedData->width();\n" "int height = 2 * srcCastedData->height();\n" "{1}->initializeImage(width, height, width * {0}->pixelSize(), " "{1}->data(), {0}->pixelType());").format("srcCastedData", "dstCastedData") ) dstImgPyr = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Image(), initIn = initInPyrUp, initOut = initOutCopy ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgPyr)], tests = [ [lenna, bigMemory] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgPyr)], tests = [ [lenna_bw, DT] ] ) pyrUp = package.Method( "pyrUp", options = [manual, allocate] ) # resize fx = package.NumericParameter( "fx", "Scale X", cvtype.Float64(), datatype.Float64(), default = 1.0 ) fy = package.NumericParameter( "fy", "Scale Y", cvtype.Float64(), datatype.Float64(), default = 1.0 ) descriptions = [ package.EnumDescription("INTER_NEAREST", "Nearest neighbour"), package.EnumDescription("INTER_LINEAR", "Bilinear") ] interpolation = package.EnumParameter( "interpolation", "Interpolation", descriptions = descriptions, default = 1 ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgResize), package.Size(dsizex, dsizey), fx, fy, interpolation], tests = [ [lenna, memory, DT, DT, DT], [lenna, memory, (100, 200), 0], [lenna_bw, memory, (100, 200), 0.5, 0.3, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgResize), package.Size(dsizex, dsizey), fx, fy, interpolation], tests = [ [lenna_bw, DT, DT, 0.5, 0.3, DT] ] ) resize = package.Method( "resize", options = [manual, allocate] ) # warpAffine affineM = package.MatrixParameter( "affineM", "Affine transformation", datatype.FloatMatrix(), default = "cvsupport::Matrix::eye(2, 3, runtime::Matrix::FLOAT_32)", rows = 2, cols = 3 ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgDsize), affineM, package.Size(dsizex, dsizey)], tests = [ [lenna_bw, memory, affine_transformation, (400, 500)], [lenna, memory, DT, (400, 500)] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgDsize), affineM, package.Size(dsizex, dsizey)], tests = [ [lenna, DT, affine_transformation, (400, 500)] ] ) warpAffine = package.Method( "warpAffine", options = [manual, allocate] ) # warpPerspective perspectiveM = package.MatrixParameter( "affineM", "Perspective transformation", datatype.FloatMatrix(), default = "cvsupport::Matrix::eye(3, 3, runtime::Matrix::FLOAT_32)", rows = 3, cols = 3 ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImgDsize), perspectiveM, package.Size(dsizex, dsizey)], tests = [ [lenna_bw, memory, perspective_transformation, (400, 500)], [lenna, memory, DT, (400, 500)] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImgDsize), perspectiveM, package.Size(dsizex, dsizey)], tests = [ [lenna, DT, perspective_transformation, (400, 500)] ] ) warpPerspective = package.Method( "warpPerspective", options = [manual, allocate] ) # undistort cameraMatrix = package.MatrixParameter( "cameraMatrix", "Camera matrix", datatype.FloatMatrix(), default = "cvsupport::Matrix::eye(3, 3, runtime::Matrix::FLOAT_32)", rows = 3, cols = 3 ) distCoeffs = package.MatrixParameter( "distCoeffs", "Distortion coefficients", datatype.FloatMatrix(), default = "cvsupport::Matrix::zeros(1, 5, runtime::Matrix::FLOAT_32)", rows = 1, cols = 5 ) manual = package.Option( "manual", "Manual", [package.Input(srcImg), package.Output(dstImg), cameraMatrix, distCoeffs], tests = [ [lenna_bw, memory, camera_matrix, dist_coeffs], [lenna, memory, DT, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Allocation(dstImg), cameraMatrix, distCoeffs], tests = [ [lenna, DT, camera_matrix, dist_coeffs] ] ) undistort = package.Method( "undistort", options = [manual, allocate] ) # undistortPoints srcPts = package.MatrixArgument( "src", "Source", cvtype.Mat(channels = 2), datatype.Float32Matrix(), cols = 2, visualization = datatype.Visualization.POINT ) dstPts = package.MatrixArgument( "dst", "Destination", cvtype.Mat(channels = 2), datatype.Float32Matrix(), cols = 2, visualization = datatype.Visualization.POINT ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcPts), package.Allocation(dstPts), cameraMatrix, distCoeffs], tests = [ [points_f32, DT, camera_matrix, dist_coeffs], [points_f32, DT, DT, DT] ] ) undistortPoints = package.Method( "undistortPoints", options = [allocate] ) # adaptiveThreshold descriptions = [ package.EnumDescription("THRESH_BINARY", "Binary"), package.EnumDescription("THRESH_BINARY_INV", "Binary inverted") ] adaptiveThresholdType = package.EnumParameter( "thresholdType", "Threshold type", descriptions = descriptions, default = 0 ) descriptions = [ package.EnumDescription("ADAPTIVE_THRESH_MEAN_C", "Mean of block"), package.EnumDescription("ADAPTIVE_THRESH_GAUSSIAN_C", "Weighted sum of block") ] adaptiveMethod = package.EnumParameter( "adaptiveMethod", "Adaptive method", descriptions = descriptions, default = 0 ) subtractedC = package.Constant("0") manual = package.Option( "manual", "Manual", [package.Input(srcImgMono8bit, True), package.Output(dstImg), maxval, adaptiveMethod, adaptiveThresholdType, blockSize, subtractedC], tests = [ [lenna_bw, memory, DT, DT, DT, DT, DT], [lenna_bw, test.RefData(lenna_bw), 128, 1, 1, 5, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono8bit, True), package.Allocation(dstImg), maxval, adaptiveMethod, adaptiveThresholdType, blockSize, subtractedC], tests = [ [lenna_bw, DT, 200, 1, 0, 9, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImgMono8bit), package.RefInput(dstImg, srcImgMono8bit), maxval, adaptiveMethod, adaptiveThresholdType, blockSize, subtractedC], tests = [ [lenna_bw, DT, 80, 0, 1, 7, DT] ] ) adaptiveThreshold = package.Method( "adaptiveThreshold", options = [manual, allocate, inPlace] ) # threshold descriptions = [ package.EnumDescription("THRESH_BINARY", "Binary"), package.EnumDescription("THRESH_BINARY_INV", "Binary inverted"), package.EnumDescription("THRESH_TRUNC", "Truncate"), package.EnumDescription("THRESH_TOZERO", "Truncate to zero"), package.EnumDescription("THRESH_TOZERO_INV", "Truncate to zero inverted") ] thresholdType = package.EnumParameter( "thresholdType", "Threshold type", descriptions = descriptions, default = 0 ) manual = package.Option( "manual", "Manual", [package.Input(srcImgMono, True), package.Output(dstImg), thresh, maxval, thresholdType], tests = [ [lenna_bw, memory, DT, DT, DT], [lenna_bw, test.RefData(lenna_bw), 128, DT, 2] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstImg), thresh, maxval, thresholdType], tests = [ [lenna_bw, DT, DT, DT, 3] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImgMono), package.RefInput(dstImg, srcImgMono), thresh, maxval, thresholdType], tests = [ [lenna_bw, DT, DT, DT, 4] ] ) threshold = package.Method( "threshold", options = [manual, allocate, inPlace] ) # distanceTransform descriptions = [ package.EnumDescription("DIST_L1", "L1 distance","CV_DIST_L1"), package.EnumDescription("DIST_L2", "L2 distance", "CV_DIST_L2"), package.EnumDescription("DIST_C", "C", "CV_DIST_C") ] distanceType = package.EnumParameter( "distanceType", "Distance type", descriptions = descriptions, default = 0 ) manual = package.Option( "manual", "Manual", [package.Input(srcImgMono), package.Output(dstImgFloat32), distanceType, maskSize], tests = [ [circle, memory, DT, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstImgFloat32), distanceType, maskSize], tests = [ [circle, DT, 2, 0], [circle, DT, 1, 1], [circle, DT, 0, 2] ] ) distanceTransform = package.Method( "distanceTransform", options = [manual, allocate] ) # floodFill seedPointX = package.NumericParameter( "seedPointX", "Seed point X", cvtype.Int(), datatype.UInt32() ) seedPointY = package.NumericParameter( "seedPointY", "Seed point Y", cvtype.Int(), datatype.UInt32() ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImgMono), package.Point(seedPointX, seedPointY), newVal], tests = [ [circle, (20, 10), 125.] ] ) floodFill = package.Method( "floodFill", options = [inPlace] ) # integral initInIntegral = document.Document(( "unsigned int stride = ({0}->cols() + 1) * runtime::Matrix::valueSize(runtime::Matrix::INT_32);\n" "{1}->initializeMatrix({0}->rows() + 1, {0}->cols() + 1, stride, " "{1}->data(), runtime::Matrix::INT_32);").format("srcCastedData", "dstCastedData" )) dstImgIntegral = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Matrix(), initIn = initInIntegral ) manual = package.Option( "manual", "Manual", [package.Input(srcImgMono), package.Output(dstImgIntegral)], tests = [ [lenna_bw, bigMemory] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstImgIntegral)], tests = [ [circle, DT] ] ) integral = package.Method( "integral", options = [manual, allocate] ) # calcHist histMin = package.NumericParameter( "histMin", "Minimum", cvtype.Float32(), datatype.Float32(), default = 0 ) histMax = package.NumericParameter( "histMax", "Maximum", cvtype.Float32(), datatype.Float32(), default = 256 ) histSize = package.NumericParameter( "histSize", "Number of bins", cvtype.Int(), datatype.UInt32(), default = 16 ) dstMatrix = package.Argument( "dst", "Destination", cvtype.Mat(), datatype.Matrix(), visualization = datatype.Visualization.HISTOGRAM ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstMatrix), histMin, histMax, histSize], tests = [ [circle, DT, 0, 256, 5], [lenna_bw, DT, 0, 256, 20] ] ) calcHist = package.Method( "calcHist", namespace = "", options = [allocate] ) # equalizeHist manual = package.Option( "manual", "Manual", [package.Input(srcImgMono8bit, True), package.Output(dstImg)], tests = [ [lenna_bw, memory], [lenna_bw, test.RefData(lenna_bw)] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono8bit), package.Allocation(dstImg)], tests = [ [lenna_bw, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImgMono8bit), package.RefInput(dstImg, srcImgMono)], tests = [ [lenna_bw, DT] ] ) equalizeHist = package.Method( "equalizeHist", options = [manual, allocate, inPlace] ) # findContours descriptions = [ package.EnumDescription("RETR_EXTERNAL", "Extreme outer contours", "CV_RETR_EXTERNAL"), package.EnumDescription("RETR_LIST", "All contours", "CV_RETR_LIST") ] findContoursMode = package.EnumParameter( "mode", "Mode", descriptions = descriptions, default = 0 ) descriptions = [ package.EnumDescription("CHAIN_APPROX_NONE", "Store all points", "CV_CHAIN_APPROX_NONE"), package.EnumDescription("CHAIN_APPROX_SIMPLE", "Compress straight segments", "CV_CHAIN_APPROX_SIMPLE"), package.EnumDescription("CHAIN_APPROX_TC89_L1", "Teh-Chin L1", "CV_CHAIN_APPROX_TC89_L1"), package.EnumDescription("CHAIN_APPROX_TC89_KCOS", "Teh-Chin Kcos", "CV_CHAIN_APPROX_TC89_KCOS") ] findContoursMethod = package.EnumParameter( "method", "Method", descriptions = descriptions, default = 0 ) dstListOfMatrices = package.Argument( "dst", "Destination", cvtype.VectorOfMat(), datatype.List(datatype.Int32Matrix()), visualization = datatype.Visualization.POLYGON ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono8bit), package.Allocation(dstListOfMatrices), findContoursMode, findContoursMethod], tests = [ [contours, DT, DT, DT], [contours, DT, DT, 1] ] ) findContours = package.Method( "findContours", options = [allocate] ) # drawContours ch1 = package.NumericParameter( "ch1", "Channel 1", cvtype.Int(), datatype.UInt8(), default = 0 ) ch2 = package.NumericParameter( "ch2", "Channel 2", cvtype.Int(), datatype.UInt8(), default = 0 ) ch3 = package.NumericParameter( "ch3", "Channel 3", cvtype.Int(), datatype.UInt8(), default = 0 ) thickness = package.NumericParameter( "thickness", "Thickness", cvtype.Int(), datatype.Int32(), default = 1 ) listOfContours = package.Argument( "contours", "Contours", cvtype.VectorOfMat(), datatype.List(datatype.Float32Matrix()), visualization = datatype.Visualization.POLYGON ) drawContoursImage = package.Argument( "img", "Image", cvtype.Mat(), datatype.Image() ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(drawContoursImage), package.Input(listOfContours), package.Constant(-1), package.Scalar(ch1, ch2, ch3), thickness], tests = [ [lenna_bw, contourList, DT, (255, 0, 0), DT], [lenna, contourList, DT, (255, 0, 0), -1] ] ) drawContours = package.Method( "drawContours", options = [inPlace] ) # approxPolyDP curve = package.MatrixArgument( "curve", "Polygon", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), visualization = datatype.Visualization.POLYGON_OR_POLYLINE, cols = 2 ) outCurve = package.MatrixArgument( "outCurve", "Polygon", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), visualization = datatype.Visualization.POLYGON_OR_POLYLINE, cols = 2 ) epsilon = package.NumericParameter( "epsilon", "Maximal error in pixels", cvtype.Float64(), datatype.Float64(), default = 10.0, minValue = 0.0 ) closed = package.Parameter( "closed", "Curve is closed", cvtype.Bool(), datatype.Bool(), default = False ) allocate = package.Option( "allocate", "Allocate", [package.Input(curve), package.Allocation(outCurve), epsilon, closed], tests = [ [contour_1, DT, DT, DT], [contour_f32, DT, 5.0, DT] ] ) approxPolyDP = package.Method( "approxPolyDP", options = [allocate] ) # boundingRect rect = package.MatrixArgument( "rect", "Rectangle", cvtype.Rect(), datatype.Int32Matrix(), cols = 4, rows = 1, visualization = datatype.Visualization.RECTANGLE ) points = package.MatrixArgument( "points", "Point set", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POINT ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.ReturnValue(rect)], tests = [ [points_i32, DT], [points_f32, DT] ] ) boundingRect = package.Method( "boundingRect", options = [allocate] ) # contourArea points = package.MatrixArgument( "contour", "Input points", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), visualization = datatype.Visualization.POLYGON, cols = 2 ) area = package.Argument( "area", "Area", cvtype.Float64(), datatype.Float64() ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.ReturnValue(area)], tests = [ [non_convex_f32, DT], [points_i32, DT] ] ) contourArea = package.Method( "contourArea", options = [allocate] ) # convexHull points = package.MatrixArgument( "curve", "Input points", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POINT ) hull = package.MatrixArgument( "outCurve", "Convex hull", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POLYGON ) epsilon = package.NumericParameter( "epsilon", "Maximal error in pixels", cvtype.Float64(), datatype.Float64(), default = 10.0, minValue = 0.0 ) clockwise = package.Parameter( "clockwise", "Output orientation", cvtype.Bool(), datatype.Bool(), default = False ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.Allocation(hull), clockwise], tests = [ [non_convex_f32, DT, DT], [points_i32, DT, DT] ] ) convexHull = package.Method( "convexHull", options = [allocate] ) # fitEllipse ellipse = package.MatrixArgument( "ellipse", "Bounding box", cvtype.RotatedRect(), datatype.Float32Matrix(), cols = 5, rows = 1, visualization = datatype.Visualization.ELLIPSE ) points = package.MatrixArgument( "points", "Point set", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POINT ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.ReturnValue(ellipse)], tests = [ [points_i32, DT], [points_f32, DT] ] ) fitEllipse = package.Method( "fitEllipse", options = [allocate] ) # fitLine line = package.MatrixArgument( "line", "Line (\\u03C1, \\u03B8)", cvtype.Mat(), datatype.Float32Matrix(), cols = 3, rows = 1, visualization = datatype.Visualization.LINE ) points = package.MatrixArgument( "points", "Point set", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POINT ) descriptions = [ package.EnumDescription("DIST_L2", "L2", "CV_DIST_L2"), package.EnumDescription("DIST_L1", "L1", "CV_DIST_L1"), package.EnumDescription("DIST_L12", "L12", "CV_DIST_L12"), package.EnumDescription("DIST_FAIR", "Fair", "CV_DIST_FAIR"), package.EnumDescription("DIST_WELSCH", "Welsch", "CV_DIST_WELSCH"), package.EnumDescription("DIST_HUBER", "Huber", "CV_DIST_HUBER") ] distType = package.EnumParameter( "distType", "Distance type", descriptions = descriptions, default = 0 ) param = package.Constant("0") reps = package.NumericParameter( "reps", "Accuracy of \\u03C1", cvtype.Float64(), datatype.Float64(), default = 0.01, minValue = 0.0 ) aeps = package.NumericParameter( "aeps", "Accuracy of \\u03B8", cvtype.Float64(), datatype.Float64(), default = 0.01, minValue = 0.0 ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.Allocation(line), distType, param, reps, aeps], tests = [ [points_i32, DT, DT, DT, DT], [points_f32, DT, DT, DT, DT] ] ) fitLine = package.Method( "fitLine", namespace = "", options = [allocate] ) # minAreaRect rect = package.MatrixArgument( "rect", "Rectangle", cvtype.RotatedRect(), datatype.Float32Matrix(), cols = 5, rows = 1, visualization = datatype.Visualization.ROTATED_RECTANGLE ) points = package.MatrixArgument( "points", "Point set", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POINT ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.ReturnValue(rect)], tests = [ [points_i32, DT], [points_f32, DT] ] ) minAreaRect = package.Method( "minAreaRect", options = [allocate] ) # minEnclosingCircle circle = package.MatrixArgument( "circle", "Circle", cvtype.Mat(), datatype.Float32Matrix(), cols = 3, rows = 1, visualization = datatype.Visualization.CIRCLE ) points = package.MatrixArgument( "points", "Point set", cvtype.Mat(channels = 2), datatype.Any32BitMatrix(), cols = 2, visualization = datatype.Visualization.POINT ) allocate = package.Option( "allocate", "Allocate", [package.Input(points), package.Allocation(circle)], tests = [ [points_i32, DT], [points_f32, DT] ] ) minEnclosingCircle = package.Method( "minEnclosingCircle", namespace = "", options = [allocate] ) # Canny threshold1 = package.NumericParameter( "threshold1", "Threshold 1", cvtype.Float64(), datatype.Float64(), default = 64 ) threshold2 = package.NumericParameter( "threshold2", "Threshold 2", cvtype.Float64(), datatype.Float64(), default = 128 ) manual = package.Option( "manual", "Manual", [package.Input(srcImgMono, True), package.InputOutput(dstImg), threshold1, threshold2], tests = [ [lenna_bw, memory, DT, DT], [lenna_bw, test.RefData(lenna_bw), 64, 128] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstImg), threshold1, threshold2], tests = [ [lenna_bw, DT, DT, DT] ] ) inPlace = package.Option( "inPlace", "In place", [package.InputOutput(srcImgMono), package.RefInput(dstImg, srcImgMono), threshold1, threshold2], tests = [ [lenna_bw, DT, DT, DT] ] ) canny = package.Method( "Canny", options = [manual, allocate, inPlace] ) # cornerHarris manual = package.Option( "manual", "Manual", [package.Input(srcImgMono, False), package.Output(dstImgFloat32), blockSize, ksize, harrisK], tests = [ [lenna_bw, bigMemory, DT, DT, DT], ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstImgFloat32), blockSize, ksize, harrisK], tests = [ [lenna_bw, DT, DT, DT, DT] ] ) cornerHarris = package.Method( "cornerHarris", options = [manual, allocate] ) # cornerMinEigenVal manual = package.Option( "manual", "Manual", [package.Input(srcImgMono, False), package.Output(dstImgFloat32), blockSize, ksize], tests = [ [lenna_bw, bigMemory, DT, DT, DT], ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstImgFloat32), blockSize, ksize], tests = [ [lenna_bw, DT, DT, DT, DT] ] ) cornerMinEigenVal = package.Method( "cornerMinEigenVal", options = [manual, allocate] ) # cornerSubPix defaultTermCriteria = package.Constant( "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, -1, -1)" ) inPlace = package.Option( "inPlace", "In place", [package.Input(srcImgMono), package.InputOutput(pointMatrix), package.Size(winSizeX, winSizeY), defaultSize, defaultTermCriteria], tests = [ [cornerImage, cornerCoordinates, (DT, DT)] ] ) cornerSubPix = package.Method( "cornerSubPix", options = [inPlace] ) # goodFeaturesToTrack useHarrisDetector = package.Parameter( "useHarrisDetector", "Use Harris detector", cvtype.Bool(), datatype.Bool(), default = False ) maxCorners = package.NumericParameter( "maxCorners", "Maximum number of corners", cvtype.Int(), datatype.UInt32(), default = 10 ) qualityLevel = package.NumericParameter( "qualityLevel", "Minimal accepted quality", cvtype.Float64(), datatype.Float64(), default = 0.01 ) minDistance = package.NumericParameter( "minDistance", "Minimal distance between corners", cvtype.Float64(), datatype.Float64(), default = 1.0 ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(pointMatrix), maxCorners, qualityLevel, minDistance, noArray, blockSize, useHarrisDetector, harrisK], tests = [ [cornerImage, DT, DT, DT, DT, DT, DT] ] ) goodFeaturesToTrack = package.Method( "goodFeaturesToTrack", options = [allocate] ) # HoughLinesP dstMatrixLineSegments = package.MatrixArgument( "dst", "Destination", cvtype.Mat(), datatype.Matrix(), cols = 4, visualization = datatype.Visualization.LINE_SEGMENT ) rho = package.NumericParameter( "rho", "Distance resolution", cvtype.Float64(), datatype.Float64(), default = 1.0 ) theta = package.NumericParameter( "theta", "Angle resolution", cvtype.Float64(), datatype.Float64(), default = math.pi / 180 ) lineSegmentsPostCall = document.Document( "dstCvData = dstCvData.reshape(1, dstCvData.cols);" ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono), package.Allocation(dstMatrixLineSegments), rho, theta, accumulatorThreshold, minLineLength, maxLineGap], tests = [ [edges, DT, DT, DT, DT, DT, DT] ], postCall = lineSegmentsPostCall ) houghLinesP = package.Method( "HoughLinesP", options = [allocate] ) # preCornerDetect descriptions = [ package.EnumDescription("BORDER_DEFAULT", "Default"), package.EnumDescription("BORDER_CONSTANT", "Constant"), package.EnumDescription("BORDER_REFLECT", "Reflect"), package.EnumDescription("BORDER_REPLICATE", "Replicate"), ] borderType = package.EnumParameter( "borderType", "Border type", descriptions = descriptions, default = "BORDER_DEFAULT" ) manual = package.Option( "manual", "Manual", [package.Input(srcImgMono8bit), package.Output(dstImgFloat32), sobelKsize, borderType], tests = [ [lenna_bw, bigMemory, DT, DT] ] ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImgMono8bit), package.Allocation(dstImgFloat32), sobelKsize, borderType], tests = [ [lenna_bw, DT, 5, 2] ] ) preCornerDetect = package.Method( "preCornerDetect", options = [manual, allocate] ) # ExtractRectangle rect = package.MatrixArgument( "rect", "Rectangle", cvtype.RotatedRect(), datatype.Float32Matrix(), cols = 5, rows = 1, visualization = datatype.Visualization.ROTATED_RECTANGLE ) allocate = package.Option( "allocate", "Allocate", [package.Input(srcImg), package.Input(rect), package.Allocation(dstImg)], tests = [ [lenna, rotated_rect, DT], [lenna, rotated_rect_top_right, DT], [lenna, rotated_rect_bottom_left, DT] ] ) extractRectangle = package.Method( "extractRectangle", namespace = "", options = [allocate] ) imgproc = package.Package( "cvimgproc", 0, 1, 0, methods = [ bilateralFilter, blur, boxFilter, dilate, erode, GaussianBlur, medianBlur, morphologyEx, laplacian, pyrDown, pyrUp, scharr, sobel, resize, adaptiveThreshold, threshold, warpAffine, warpPerspective, undistort, undistortPoints, distanceTransform, floodFill, integral, calcHist, equalizeHist, findContours, drawContours, approxPolyDP, boundingRect, contourArea, convexHull, fitEllipse, fitLine, minAreaRect, minEnclosingCircle, canny, cornerHarris, cornerMinEigenVal, cornerSubPix, goodFeaturesToTrack, houghLinesP, preCornerDetect, extractRectangle ], functions = [ calcHistWrapper, minEnclosingCircleWrapper, fitLineWrapper, extractRectangleWrapper ], testFiles = [ "lenna.jpg", "circle.png", "affine.npy", "perspective.npy", "camera_matrix.npy", "dist_coeffs.npy", "edges.png", "contours.png", "corners.png", "corners.npy", "contour_1.npy", "contour_2.npy", "contour_f64.npy", "contour_f32.npy", "non_convex_f32.npy", "points_i32.npy", "points_f32.npy", "points_f64.npy", "rotated_rect.npy", "rotated_rect_top_right.npy", "rotated_rect_bottom_left.npy" ] ) package = imgproc if __name__ == '__main__': if len(sys.argv) > 1: for arg in sys.argv[1:]: generator.generateMethodFiles(package, globals()[arg]) else: generator.generatePackageFiles(package)
uboot/stromx-opencv
opencv/cvimgproc.py
cvimgproc.py
py
50,787
python
en
code
0
github-code
6
34711984830
# Coding Math Episode 2 # Display a sine wave import pygame import math import numpy as np pygame.init() RED = pygame.color.THECOLORS['red'] screen = pygame.display.set_mode((800, 600)) screen_rect = screen.get_rect() print(f"Size of the screen ({screen_rect.width}, {screen_rect.height})") screen_fonts = pygame.font.SysFont("monospace", 12) label = screen_fonts.render("Press key up or down to change the period...", 1, (255,255,0)) pygame.display.set_caption("Episode 2") main_loop = True amplifier = 200 angles = np.arange(0.0, math.pi * 4, 0.01) while main_loop: pygame.time.delay(100) for event in pygame.event.get(): if (event.type == pygame.QUIT or event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE): main_loop = False if event.type == pygame.KEYDOWN and event.key == pygame.K_UP: amplifier += 5 if event.type == pygame.KEYDOWN and event.key == pygame.K_DOWN: amplifier -= 5 screen.fill((0,0,0)) for angle in angles: x = angle * amplifier y = math.sin(angle) * amplifier pygame.draw.rect(screen, RED, (x, -y + screen_rect.height/2, 2, 2), 1) screen.blit(label, ((screen_rect.width - label.get_rect().width) // 2, (screen_rect.height - 20))) pygame.display.update() pygame.quit()
piquesel/coding-math
ep2.py
ep2.py
py
1,397
python
en
code
0
github-code
6
5671705163
import random import uuid import pytest from aws.src.database.domain.dynamo_domain_objects import Tenure, HouseholdMember, TenuredAsset, Asset, AssetTenure, \ Patch, Person, PersonTenure def test_generates_tenure(tenure_dict: dict): tenure = Tenure.from_data(tenure_dict) assert isinstance(tenure, Tenure) assert tenure.id == str(uuid.uuid4()) assert isinstance(tenure.tenuredAsset, TenuredAsset) assert tenure.tenuredAsset.id == str(uuid.uuid4()) assert isinstance(tenure.householdMembers[0], HouseholdMember) assert tenure.householdMembers[0].fullName == 'FAKE_First FAKE_Last' def test_generates_asset(asset_dict: dict): asset = Asset.from_data(asset_dict) assert isinstance(asset, Asset) assert asset.id == asset_dict.get('id') assert asset.assetAddress.get('addressLine1') == asset_dict.get('assetAddress').get('addressLine1') assert isinstance(asset.tenure, AssetTenure) assert asset.tenure.id == asset_dict.get('tenure').get('id') assert isinstance(asset.patches[0], Patch) assert asset.patches[0].id == asset_dict.get('patches')[0].get('id') def test_generates_person(person_dict: dict): person = Person.from_data(person_dict) assert isinstance(person, Person) assert person.id == person_dict.get('id') assert isinstance(person.tenures[0], PersonTenure) assert person.tenures[0].id == person_dict.get('tenures')[0].get('id') @pytest.fixture def tenure_dict(): return { "id": str(uuid.uuid4()), "charges": { "billingFrequency": "Weekly", "combinedRentCharges": 0, "combinedServiceCharges": 0, "currentBalance": 3019.14, "originalRentCharge": 0, "originalServiceCharge": 0, "otherCharges": 0, "rent": 0, "serviceCharge": 0, "tenancyInsuranceCharge": 0 }, "endOfTenureDate": "2017-11-06", "evictionDate": "1900-01-01", "householdMembers": [ { "id": str(uuid.uuid4()), "dateOfBirth": "1066-07-29", "fullName": "FAKE_First FAKE_Last", "isResponsible": True, "personTenureType": "Tenant", "type": "person" } ], "informHousingBenefitsForChanges": False, "isMutualExchange": False, "isSublet": False, "legacyReferences": [ { "name": "uh_tag_ref", "value": f"{random.randint(10 ** 7, 10 ** 8 - 1)}/01" }, { "name": "u_saff_tenancy", "value": "" } ], "notices": [ { "effectiveDate": "1900-01-01", "endDate": None, "expiryDate": "1900-01-01", "servedDate": "1900-01-01", "type": "" } ], "paymentReference": str(random.randint(10 ** 10, 10 ** 11 - 1)), "potentialEndDate": "1900-01-01", "startOfTenureDate": "2017-05-30", "subletEndDate": "1900-01-01", "successionDate": "1900-01-01", "tenuredAsset": { "id": str(uuid.uuid4()), "fullAddress": "THE HACKNEY SERVICE CENTRE 1 Hackney Service Centre E8 1DY", "propertyReference": str(random.randint(10 ** 7, 10 ** 8 - 1)), "type": "Dwelling", "uprn": str(random.randint(10 ** 12, 10 ** 13 - 1)) }, "tenureType": { "code": "THO", "description": "Temp Hostel" }, "terminated": { "isTerminated": True, "reasonForTermination": "" } } @pytest.fixture def asset_dict(): return { "id": str(uuid.uuid4()), "assetAddress": { "addressLine1": "FLAT 10 220 TEST ROAD", "addressLine2": "HACKNEY", "addressLine3": "LONDON", "postCode": "E8 1AA", "uprn": str(random.randint(10 ** 12, 10 ** 13 - 1)) }, "assetCharacteristics": { "numberOfBedrooms": 1, "numberOfLifts": 0, "numberOfLivingRooms": 0, "yearConstructed": "0" }, "assetId": str(random.randint(10 ** 12, 10 ** 13 - 1)), "assetLocation": { "parentAssets": [ { "id": str(uuid.uuid4()), "name": "Hackney Homes", "type": "NA" } ], "totalBlockFloors": 0 }, "assetManagement": { "isCouncilProperty": False, "isNoRepairsMaintenance": False, "isTMOManaged": False, "managingOrganisation": "London Borough of Hackney", "managingOrganisationId": str(uuid.uuid4()), "owner": "KUS", "propertyOccupiedStatus": "VR" }, "assetType": "Dwelling", "isActive": 0, "parentAssetIds": str(uuid.uuid4()), "patches": [ { "id": str(uuid.uuid4()), "domain": "MMH", "name": "SN4", "parentId": str(uuid.uuid4()), "patchType": "patch", "responsibleEntities": [ { "id": str(uuid.uuid4()), "name": "Fake_First Fake_Last", "responsibleType": "HousingOfficer" } ], "versionNumber": None } ], "rootAsset": "ROOT", "tenure": { "id": str(uuid.uuid4()), "endOfTenureDate": "2050-12-12T00:00:00Z", "paymentReference": str(random.randint(10 ** 12, 10 ** 13 - 1)), "startOfTenureDate": "2030-12-12T00:00:00Z", "type": "Secure" }, "versionNumber": 3 } @pytest.fixture def person_dict(): return { "id": str(uuid.uuid4()), "dateOfBirth": "1962-04-18T00:00:00.0000000Z", "firstName": "FAKE_First", "lastModified": "2022-09-06T06:31:03.5321566Z", "links": [ ], "personTypes": [ "Tenant", "HouseholdMember" ], "preferredFirstName": "FAKE_First", "preferredSurname": "FAKE_Last", "preferredTitle": "Reverend", "surname": "FAKE_Last", "tenures": [ { "id": str(uuid.uuid4()), "assetFullAddress": "2 Fake Road, N16 1AA", "assetId": str(uuid.uuid4()), "endDate": None, "paymentReference": str(random.randint(10 ** 10, 10 ** 11 - 1)), "propertyReference": str(random.randint(10 ** 7, 10 ** 8 - 1)), "startDate": "2013-12-23", "type": "Secure", "uprn": "100021063882" }, { "id": str(uuid.uuid4()), "assetFullAddress": "75 Fake Road, E5 1AA", "assetId": str(uuid.uuid4()), "endDate": "2012-10-26", "paymentReference": str(random.randint(10 ** 10, 10 ** 11 - 1)), "propertyReference": str(random.randint(10 ** 7, 10 ** 8 - 1)), "startDate": "2012-04-19", "type": "Temp Annex", "uprn": str(random.randint(10 ** 12, 10 ** 13 - 1)) }, { "id": str(uuid.uuid4()), "assetFullAddress": "15 Fake Road N16 1AA", "assetId": str(uuid.uuid4()), "endDate": None, "paymentReference": str(random.randint(10 ** 10, 10 ** 11 - 1)), "propertyReference": str(random.randint(10 ** 7, 10 ** 8 - 1)), "startDate": "1997-07-24T00:00:00.0000000Z", "type": "Leasehold (RTB)", "uprn": str(random.randint(10 ** 12, 10 ** 13 - 1)) } ], "title": "Reverend", "versionNumber": 1 }
LBHackney-IT/mtfh-scripts
aws/tests/domain/test_dynamo_domain_objects.py
test_dynamo_domain_objects.py
py
8,127
python
en
code
0
github-code
6
22561698639
import os from bazelrio_gentool.utils import ( TEMPLATE_BASE_DIR, render_templates, ) from bazelrio_gentool.dependency_helpers import BaseDependencyWriterHelper def write_shared_root_files( module_directory, group, include_raspi_compiler=False, test_macos=True, include_windows_arm_compiler=True, ): template_files = [ ".github/workflows/build.yml", ".github/workflows/lint.yml", ".github/workflows/publish.yml", # "generate/WORKSPACE", ".bazelignore", ".bazelrc-buildbuddy", ".bazelversion", ".bazelrc", ".gitignore", "BUILD.bazel", "README.md", "WORKSPACE.bzlmod", ".styleguide", ".styleguide-license", ] if os.path.exists(os.path.join(module_directory, "generate", "auto_update.py")): template_files.append(".github/workflows/auto_update.yml") render_templates( template_files, module_directory, os.path.join(TEMPLATE_BASE_DIR, "shared"), group=group, include_raspi_compiler=include_raspi_compiler, include_windows_arm_compiler=include_windows_arm_compiler, test_macos=test_macos, ) def write_shared_test_files(module_directory, group): template_files = [ ".bazelrc-buildbuddy", ".bazelversion", ".bazelrc", "WORKSPACE.bzlmod", ] render_templates( template_files, os.path.join(module_directory, "tests"), os.path.join(TEMPLATE_BASE_DIR, "shared"), group=group, ) class BazelDependencySetting(BaseDependencyWriterHelper): def __init__( self, repo_name, version, sha, needs_stripped_prefix=False, old_release_style=False, ): BaseDependencyWriterHelper.__init__( self, repo_name, version, sha, "https://github.com/bazelbuild", old_release_style=old_release_style, needs_stripped_prefix=needs_stripped_prefix, ) def download_repository(self, indent_num, maybe=True): if self.repo_name == "googletest": return f"""http_archive( name = "googletest", sha256 = "{self.sha}", strip_prefix = "googletest-{self.version}", urls = ["https://github.com/google/googletest/archive/refs/tags/v{self.version}.tar.gz"], )""" # if self.use_long_form: # return self.temp_longform_http_archive(indent_num, maybe) return self.http_archive(indent_num=indent_num, maybe=maybe, native=False) # def temp_longform_http_archive(self, indent_num, maybe): # indent = " " * indent_num # file_extension = "zip" if self.use_zip else "tar.gz" # output = f"""{indent}{self.repo_name.upper()}_COMMITISH = "{self.version}" # {self.repo_name.upper()}_SHA = "{self.sha}" # """ # if maybe: # output += f"maybe(\n http_archive," # else: # output += f"http_archive(" # output += f""" # {indent} name = "{self.repo_name}", # {indent} sha256 = {self.repo_name.upper()}_SHA, # {indent} strip_prefix = "{self.repo_name}-{{}}".format({self.repo_name.upper()}_COMMITISH), # {indent} url = "https://github.com/bazelbuild/{self.repo_name}/archive/{{}}.{file_extension}".format({self.repo_name.upper()}_COMMITISH), # )""" # return output def get_bazel_dependencies(): def add_dep(repo_name, sha="", **kwargs): output[repo_name] = BazelDependencySetting(repo_name, sha=sha, **kwargs) output = {} add_dep(repo_name="platforms", version="0.0.7", sha="") add_dep( repo_name="rules_python", version="0.24.0", sha="0a8003b044294d7840ac7d9d73eef05d6ceb682d7516781a4ec62eeb34702578", needs_stripped_prefix=True, ) add_dep( repo_name="rules_java", version="6.4.0", sha="27abf8d2b26f4572ba4112ae8eb4439513615018e03a299f85a8460f6992f6a3", # use_long_form=True, ) add_dep( repo_name="rules_jvm_external", version="5.3", sha="d31e369b854322ca5098ea12c69d7175ded971435e55c18dd9dd5f29cc5249ac", needs_stripped_prefix=True, # use_zip=True, # use_long_form=True, ) add_dep(repo_name="rules_cc", version="0.0.8", sha="") add_dep( repo_name="googletest", version="1.14.0", sha="8ad598c73ad796e0d8280b082cebd82a630d73e73cd3c70057938a6501bba5d7", ) add_dep( repo_name="rules_proto", version="5.3.0-21.7", sha="dc3fb206a2cb3441b485eb1e423165b231235a1ea9b031b4433cf7bc1fa460dd", old_release_style=True, needs_stripped_prefix=True, ) add_dep( repo_name="bazel_skylib", version="1.4.2", sha="66ffd9315665bfaafc96b52278f57c7e2dd09f5ede279ea6d39b2be471e7e3aa", ) return output
bzlmodRio/gentool
bazelrio_gentool/generate_shared_files.py
generate_shared_files.py
py
4,947
python
en
code
0
github-code
6
70281053308
from typing import Dict, Any, Union, Optional, List import torch import numpy as np from overrides import overrides from transformers import ViltProcessor from PIL import Image from allennlp.data.fields.field import DataArray from allennlp.data.fields.metadata_field import MetadataField class ViltField(MetadataField): """ A class representing a tensor, which could have arbitrary dimensions. A batch of these tensors are padded to the max dimension length in the batch for each dimension. """ __slots__ = ["metadata", "vilt_processor", "vilt_half_precision"] def __init__(self, metadata: Any, vilt_processor: ViltProcessor, vilt_half_precision: bool = True) -> None: super(ViltField, self).__init__(metadata) self.metadata = metadata self.vilt_processor = vilt_processor self.vilt_half_precision = vilt_half_precision @overrides def batch_tensors(self, tensor_list: List[DataArray]) -> List[DataArray]: # type: ignore texts = [] images = [] for tensor in tensor_list: text = tensor['text'] texts.append(text) image = tensor['image'] image_data = Image.open(image).convert("RGB") images.append(image_data) processed = self.vilt_processor(text = texts, images=images, return_tensors='pt', padding=True) to_ret = {} for k, v in processed.items(): if self.vilt_half_precision and (isinstance(v, torch.FloatTensor) or isinstance(v, torch.cuda.FloatTensor)): processed[k] = v.half() to_ret[k] = processed[k] return to_ret
esteng/ambiguous_vqa
models/allennlp/data/fields/vilt_field.py
vilt_field.py
py
1,820
python
en
code
5
github-code
6
72014782588
class Graph: def __init__(self): self.dict = {} def addVertex(self, vertex): if vertex not in self.dict.keys(): self.dict[vertex] = [] return True return False def BFS(self, vertex): queue = [vertex] visited = [vertex] while queue: p = queue.pop(0) print(p) for adjacentVertex in self.dict[p]: if adjacentVertex not in visited: visited.append(adjacentVertex) queue.append(adjacentVertex) def DFS(self, vertex): stack = [vertex] visited = [vertex] while stack: p = stack.pop() print(p) for adjacentVertex in self.dict[p]: if adjacentVertex not in visited: stack.append(adjacentVertex) visited.append(adjacentVertex) def removeVertex(self, vertex): if vertex in self.dict.keys(): for value in self.dict[vertex]: self.dict[value].remove(vertex) del self.dict[vertex] return True return False def print_graph(self): for vertex in self.dict: print(vertex, ":", self.dict[vertex]) def addEdge(self, vertex1, vertex2): if vertex1 and vertex2 in self.dict.keys(): if vertex2 not in self.dict[vertex1]: self.dict[vertex1].append(vertex2) if vertex1 not in self.dict[vertex2]: self.dict[vertex2].append(vertex1) return True return False def removeEdge(self, vertex1, vertex2): if vertex1 and vertex2 in self.dict.keys(): try: self.dict[vertex1].remove(vertex2) self.dict[vertex2].remove(vertex1) except ValueError: pass return True return False graph = Graph() graph.addVertex("a") graph.addVertex("b") graph.addVertex("c") graph.addVertex("d") graph.addVertex("e") graph.addVertex("f") graph.addEdge("a", "b") graph.addEdge("a", "c") graph.addEdge("b", "d") graph.addEdge("b", "e") graph.addEdge("c", "e") graph.addEdge("d", "e") graph.addEdge("d", "f") graph.addEdge("e", "f") # # graph.removeEdge("a", "c") # graph.removeVertex("c") graph.print_graph() # graph.BFS("a") graph.DFS("a")
jetunp/Practice
graph.py
graph.py
py
2,374
python
en
code
0
github-code
6
19700262291
''' NOTAS ":.0f" continua sendo valor float, apesar de mostrar um valor inteiro. A funcionalidade do int() e do trunc() é a mesma. Para arredondamento preciso de acordo com as regras matemáticas, usar round(). ''' def Inteiro(): n=float(input('Digite um número quebrado: ')) print('O valor transformado em inteiro é {}'.format(int(n))) print('O tipo do número é {}'.format(type(int(n)))) def Quebrar(): n=float(input('Digite um número quebrado: ')) print('O valor quebrado como inteiro é {:.0f}'.format(n)) print('O tipo do número é {}'.format(type(n))) def Truncar(): from math import trunc n=float(input('Digite um número quebrado: ')) print('O valor truncado é {}'.format(trunc(n))) print('O tipo do número é {}'.format(type(trunc(n)))) def Arredondar(): n=float(input('Digite um número quebrado: ')) print('O valor arredondado é {}.'.format(round(n))) print('O tipo do número é {}'.format(type(round(n)))) def Menu(): Escolha = int(input('''Digite a função que você quer rodar 0 = Inteiro 1 = Quebrar 2 = Truncar 3 = Arredondar Sua escolha é: ''')) if Escolha == 0: Inteiro() elif Escolha == 1: Quebrar() elif Escolha == 2: Truncar() elif Escolha == 3: Arredondar() else: print('Selecione uma opção válida') Menu() Menu()
PR1905/Estudos-Python
desafio016 - Arredondamento e Menus.py
desafio016 - Arredondamento e Menus.py
py
1,380
python
pt
code
0
github-code
6
26095879865
import os import sys import torch import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter import Optimizer writer = SummaryWriter('./runs') grad_clip = 1.0 # clip gradients at an absolute value of save_prefix='' def clip_gradient(optimizer, grad_clip): # """ # 剪辑反向传播期间计算的梯度,以避免梯度爆炸。 # # param optimizer:具有要剪裁的渐变的优化器 # # :参数梯度剪辑:剪辑值 # """ for group in optimizer.param_groups: for param in group['params']: if param.grad is not None: param.grad.data.clamp_(-grad_clip, grad_clip) def train(train_iter, dev_iter, model, args): # global args global save_prefix save_dir = args.save_dir if not os.path.isdir(save_dir): os.makedirs(save_dir) filename = args.snapshot save_prefix = os.path.join(save_dir, filename) if args.snapshot: snapshot = os.path.join(args.save_dir, args.snapshot) if os.path.exists(snapshot): print('\nLoading model from {}...\n'.format(snapshot)) model = torch.load(snapshot)['model'] optimizer=torch.load(snapshot)['optimizer'] else: optimizer = Optimizer.Optimizer( torch.optim.Adam(model.parameters(), betas=(0.9, 0.98), eps=1e-09)) if args.cuda: model.cuda() # optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) steps = 0 best_acc = 0 last_step = 0 model.train() for epoch in range(1, args.epochs + 1): for batch in train_iter: feature, target = batch.text, batch.label feature.t_(), target.sub_(1) # w.add_graph(model, (feature,)) if args.cuda: feature, target = feature.cuda(), target.cuda() optimizer.zero_grad() logits = model(feature) loss = F.cross_entropy(logits, target) loss.backward() # Clip gradients clip_gradient(optimizer.optimizer, grad_clip) optimizer.step() steps += 1 if steps % args.log_interval == 0: corrects = (torch.max(logits, 1)[1].view(target.size()).data == target.data).sum() train_acc = corrects / batch.batch_size sys.stdout.write( '\rBatch[{}] - loss: {:.6f} acc: {:.4f}({}/{})'.format(steps, loss.item(), train_acc, corrects, batch.batch_size)) writer.add_scalar('Batch/train_loss', loss.item() ,optimizer.step_num) writer.add_scalar('Batch/learning_rate', optimizer.lr, optimizer.step_num) if steps % args.test_interval == 0: dev_acc = eval(dev_iter, model, args,optimizer) if dev_acc > best_acc: best_acc = dev_acc last_step = steps if args.save_best: print('Saving best model, acc: {:.4f}\n'.format(best_acc)) save(model, best_acc,optimizer) writer.add_scalar('best/acc', best_acc, optimizer.step_num) elif steps - last_step >= args.early_stopping: print('\nearly stop by {} steps, acc: {:.4f}'.format(args.early_stopping, best_acc)) raise KeyboardInterrupt else: # print(type(model.fc.weight),type(torch.load(save_prefix)['model'].fc.weight)) # print(torch.load(save_prefix)['model'].fc.weight==model.fc.weight) w=model.fc.weight+ torch.load(save_prefix)['model'].fc.weight # print('1') b=model.fc.bias+ torch.load(save_prefix)['model'].fc.bias model.fc.weight=torch.nn.Parameter(w/2) model.fc.bias = torch.nn.Parameter(b / 2) def eval(data_iter, model, args,optimizer): model.eval() corrects, avg_loss = 0, 0 for batch in data_iter: feature, target = batch.text, batch.label feature.t_(), target.sub_(1) if args.cuda: feature, target = feature.cuda(), target.cuda() logits = model(feature) loss = F.cross_entropy(logits, target) avg_loss += loss.item() corrects += (torch.max(logits, 1) [1].view(target.size()).data == target.data).sum() size = len(data_iter.dataset) avg_loss /= size accuracy = corrects / size print('\nEvaluation - loss: {:.6f} acc: {:.4f}({}/{}) \n'.format(avg_loss, accuracy, corrects, size)) writer.add_scalar('Evaluation/train_loss', avg_loss, optimizer.step_num) writer.add_scalar('Evaluation/learning_rate', optimizer.lr, optimizer.step_num) return accuracy def save(model, best_acc,optimizer): state = { 'best_acc': best_acc, 'model': model, 'optimizer':optimizer} torch.save(state, save_prefix)
dubochao/CNN-sentiment-analysis
train.py
train.py
py
5,496
python
en
code
0
github-code
6
9369376357
import pyodbc cnxn = pyodbc.connect("DRIVER={ODBC Driver 17 for SQL Server};" "Server=DESKTOP-0A2HT13;" "Database=Databricks;" "UID=prajwal;" "PWD=Prajwal082;" "Trusted_Connection=yes;") cursor = cnxn.cursor() cursor.execute('SELECT * FROM [dbo].[Customer]') for row in cursor: print('row = %r' % (row,)) # import pyodbc # conn_str = pyodbc.connect( # 'Driver={org.postgresql.Driver};' # 'Server=localhost;' # 'Port=5432;' # 'Database=Test;' # 'UID=postgres;' # 'PWD=1234;' # ) # conn = pyodbc.connect(conn_str, autocommit=True) # Error occurs here # cursor = cnxn.cursor() # cursor.execute('select * from students') # for row in cursor: # print('row = %r' % (row,))
Prajwal082/Main
postgres.py
postgres.py
py
814
python
en
code
0
github-code
6
11415062176
""" [ [ [ "M: How long have you been teaching in this middle school?", "W: For ten years. To be frank, I'm tired of teaching the same textbook for so long though I do enjoy being a teacher. I'm considering trying something new." ], [ { "question": "What's the woman probably going to do?", "choice": [ "To teach a different textbook.", "To change her job.", "To learn a different textbook." ], "answer": "To change her job." }, { "question": "If the man and his wife go on the recommended package tour, how much should they pay?", "choice": [ "$1,088.", "$1,958.", "$2,176." ], "answer": "$1,958." } ], "14-349" ], ... """ import json import argparse from pathlib import Path from typing import Dict, List, Mapping, Generator, Optional, Union from copy import deepcopy import itertools import re import logging from .reader import DatasetReader from .types import (Sample, SingleQuestionSample, SingleQuestionSingleOptionSample, NLIWithOptionsSample, PureNLISample) from dataclasses import dataclass, asdict logger = logging.getLogger(__name__) class DreamReader(DatasetReader): def __init__(self, input_type: str = 'DreamJSON', output_type: str = 'SingleQuestionSample'): if input_type != 'DreamJSON': raise ValueError(f"{input_type} unsupported") self.input_type = input_type self.output_type = output_type self.fitb_pattern = re.compile(r'_+') def _read_data(self, path: Path) -> Dict: with open(path) as f: samples = json.load(f) return samples def read(self, path: Path, return_dict: bool = False) -> List[Union[Sample, Dict]]: def reader_func(p: Path) -> List[Sample]: samples = self._read_data(p) # Give names to fields json_samples = [] for s in samples: json_samples.append({ 'passage': s[0], 'questions': s[1], 'id': s[2] }) return json_samples if self.output_type == 'SingleQuestionSample': def sample_converter(x: Dict) -> Dict: # Do some preprocessing here # combine the dialogue sentences x['passage'] = ' '.join(x['passage']) # fix fitb format for q_n, q in enumerate(x['questions']): x['questions'][q_n]['question'] = self.fitb_pattern.sub( '_', x['questions'][q_n]['question']) # number the answer for q_n, question in enumerate(x['questions']): # this will throw if answer does not match one of the # choices exactly idx = question['choice'].index(question['answer']) question['answer'] = idx return x # do nothing def aggregate_converter( x: List[Dict]) -> List[SingleQuestionSample]: all_res = [] for s in x: para = s['passage'] for q_n, q in enumerate(s['questions']): all_res.append( SingleQuestionSample( id=s['id'] + f"_{q_n}", question=q['question'], article=para, options=q['choice'], answer=q['answer'])) return all_res else: raise ValueError(f"outpu_type {self.output_type} not supported") input_samples = [sample_converter(s) for s in reader_func(path)] output_samples = aggregate_converter(input_samples) if return_dict: return [s.__dict__ for s in output_samples] else: return output_samples
nli-for-qa/conversion
qa2nli/qa_readers/dream.py
dream.py
py
4,251
python
en
code
1
github-code
6
22241072161
import torch import math import torch.nn as nn import torch.nn.functional as F from typing import List class Convolution(nn.Module): def __init__(self, in_ch, out_ch): super(Convolution, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, 1, 1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, 1, 1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, input): return self.conv(input) class Curvature(torch.nn.Module): def __init__(self, ratio): super(Curvature, self).__init__() weights = torch.tensor([[[[-1/16, 5/16, -1/16], [5/16, -1, 5/16], [-1/16, 5/16, -1/16]]]]) self.weight = torch.nn.Parameter(weights).cuda() self.ratio = ratio def forward(self, x): B, C, H, W = x.size() x_origin = x x = x.reshape(B*C,1,H,W) out = F.conv2d(x, self.weight) out = torch.abs(out) p = torch.sum(out, dim=-1) p = torch.sum(p, dim=-1) p=p.reshape(B, C) _, index = torch.topk(p, int(self.ratio*C), dim=1) selected = [] for i in range(x_origin.shape[0]): selected.append(torch.index_select(x_origin[i], dim=0, index=index[i]).unsqueeze(0)) selected = torch.cat(selected, dim=0) return selected class Entropy_Hist(nn.Module): def __init__(self, ratio, win_w=3, win_h=3): super(Entropy_Hist, self).__init__() self.win_w = win_w self.win_h = win_h self.ratio = ratio def calcIJ_new(self, img_patch): total_p = img_patch.shape[-1] * img_patch.shape[-2] if total_p % 2 != 0: tem = torch.flatten(img_patch, start_dim=-2, end_dim=-1) center_p = tem[:, :, :, int(total_p / 2)] mean_p = (torch.sum(tem, dim=-1) - center_p) / (total_p - 1) if torch.is_tensor(img_patch): return center_p * 100 + mean_p else: return (center_p, mean_p) else: print("modify patch size") def histc_fork(ij): BINS = 256 B, C = ij.shape N = 16 BB = B // N min_elem = ij.min() max_elem = ij.max() ij = ij.view(N, BB, C) def f(x): with torch.no_grad(): res = [] for e in x: res.append(torch.histc(e, bins=BINS, min=min_elem, max=max_elem)) return res futures : List[torch.jit.Future[torch.Tensor]] = [] for i in range(N): futures.append(torch.jit.fork(f, ij[i])) results = [] for future in futures: results += torch.jit.wait(future) with torch.no_grad(): out = torch.stack(results) return out def forward(self, img): with torch.no_grad(): B, C, H, W = img.shape ext_x = int(self.win_w / 2) # 考虑滑动窗口大小,对原图进行扩边,扩展部分长度 ext_y = int(self.win_h / 2) new_width = ext_x + W + ext_x # 新的图像尺寸 new_height = ext_y + H + ext_y # 使用nn.Unfold依次获取每个滑动窗口的内容 nn_Unfold=nn.Unfold(kernel_size=(self.win_w,self.win_h),dilation=1,padding=ext_x,stride=1) # 能够获取到patch_img,shape=(B,C*K*K,L),L代表的是将每张图片由滑动窗口分割成多少块---->28*28的图像,3*3的滑动窗口,分成了28*28=784块 x = nn_Unfold(img) # (B,C*K*K,L) x= x.view(B,C,3,3,-1).permute(0,1,4,2,3) # (B,C*K*K,L) ---> (B,C,L,K,K) ij = self.calcIJ_new(x).reshape(B*C, -1) # 计算滑动窗口内中心的灰度值和窗口内除了中心像素的灰度均值,(B,C,L,K,K)---> (B,C,L) ---> (B*C,L) fij_packed = self.histc_fork(ij) p = fij_packed / (new_width * new_height) h_tem = -p * torch.log(torch.clamp(p, min=1e-40)) / math.log(2) a = torch.sum(h_tem, dim=1) # 对所有二维熵求和,得到这张图的二维熵 H = a.reshape(B,C) _, index = torch.topk(H, int(self.ratio*C), dim=1) # Nx3 selected = [] for i in range(img.shape[0]): selected.append(torch.index_select(img[i], dim=0, index=index[i]).unsqueeze(0)) selected = torch.cat(selected, dim=0) return selected class Network(nn.Module): def __init__(self, in_ch=3, mode='ori', ratio=None): super(Network, self).__init__() self.mode = mode if self.mode == 'ori': self.ratio = [0,0] if self.mode == 'curvature': self.ratio = ratio self.ife1 = Curvature(self.ratio[0]) self.ife2 = Curvature(self.ratio[1]) if self.mode == 'entropy': self.ratio = ratio self.ife1 = Entropy_Hist(self.ratio[0]) self.ife2 = Entropy_Hist(self.ratio[1]) # ---- U-Net ---- self.conv1 = Convolution(in_ch, 64) self.pool1 = nn.MaxPool2d(2) # feature map = shape(m/2,n/2,64) self.conv2 = Convolution(64, 128) self.pool2 = nn.MaxPool2d(2) # feature map = shapem/4,n/4,128) self.conv3 = Convolution(128, 256) self.pool3 = nn.MaxPool2d(2) # feature map = shape(m/8,n/8,256) self.conv4 = Convolution(256, 512) self.pool4 = nn.MaxPool2d(2) # feature map = shape(m/16,n/16,512) self.conv5 = Convolution(512, 1024) # feature map = shape(m/16,n/16,1024) self.up_conv1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0, output_padding=0) self.conv6 = Convolution(1024, 512) # feature map = shape(m/8,n/8,512) self.up_conv2 = nn.ConvTranspose2d(512, 256, 2, 2, 0, 0) self.conv7 = Convolution(int(256*(2+self.ratio[1])), 256) # feature map = shape(m/4,n/4,256) self.up_conv3 = nn.ConvTranspose2d(256, 128, 2, 2, 0, 0) self.conv8 = Convolution(int(128*(2+self.ratio[0])), 128) # feature map = shape(m/2,n/2,128) self.up_conv4 = nn.ConvTranspose2d(128, 64, 2, 2, 0, 0) self.conv9 = Convolution(128, 64) # feature map = shape(m,n,64) self.out_conv1 = nn.Conv2d(64, 1, 1, 1, 0) def forward(self, x): c1 = self.conv1(x) p1 = self.pool1(c1) c2 = self.conv2(p1) p2 = self.pool2(c2) c3 = self.conv3(p2) p3 = self.pool3(c3) c4 = self.conv4(p3) p4 = self.pool4(c4) c5 = self.conv5(p4) if self.mode != 'ori': c2 = torch.cat([c2, self.ife1(c2)]) c3 = torch.cat([c3, self.ife2(c3)]) up1 = self.up_conv1(c5) merge1 = torch.cat([up1, c4], dim=1) c6 = self.conv6(merge1) up2 = self.up_conv2(c6) merge2 = torch.cat([up2, c3], dim=1) c7 = self.conv7(merge2) up3 = self.up_conv3(c7) merge3 = torch.cat([up3, c2], dim=1) c8 = self.conv8(merge3) up4 = self.up_conv4(c8) merge4 = torch.cat([up4, c1], dim=1) c9 = self.conv9(merge4) S_g_pred = self.out_conv1(c9) return S_g_pred
yezi-66/IFE
unet_github/lib/Network.py
Network.py
py
7,331
python
en
code
26
github-code
6
19340985778
class EvenTree(object): def __init__(self, graph={}): self.graph = graph self.visited_node = [] self.total_forest = 0 def calculate_forest(self): for k,v in self.graph.items(): if k not in self.visited_node: key1 = k key_list = [key1] self.visited_node.append(key1) new_dict = defaultdict(list) count, new_dict = self.total_count(key_list, self.graph, self.visited_node, new_dict) #If count is even number, increase number of total_forest if count % 2 == 0: self.total_forest += 1 for key,values in new_dict.iteritems(): for i in values: if i in new_dict.keys(): #If node has odd number of child #It means that EVEN Tree can be created by taking node as parent if len(new_dict[i]) % 2 != 0: self.total_forest += 1 return self.total_forest ''' Recursively count total nodes for node in key_list including the key node e.g. graph {2: [1], 3: [1], 4: [3], 5: [2], 6: [1], 7: [2], 8: [6], 9: [8], 10: [8]} if we take node 2, the count is 3. since, 2 is the parent of 2 nodes 7 and 5. ''' def total_count(self, key_list, graph, visited_node, new_dict, count=1): if key_list: key1 = key_list.pop(0) for key,values in graph.iteritems(): if key1 == values[0]: #pushing child node in key_list to get nodes originating from it #Since we want to cut the tree from the original key node key_list.append(key) #mark each child node as visited node self.visited_node.append(key) new_dict[values[0]].append(key) count += 1 #Recursive call to function for each child node count, new_dict = self.total_count(key_list, graph, self.visited_node, new_dict, count) return ( count, new_dict ) class GraphTests(unittest.TestCase): def test_graph1(self): graph1 = {2: [1], 3: [1], 4: [3], 5: [2], 6: [1], 7: [2], 8: [6], 9: [8], 10: [8]} obj1 = EvenTree(graph1) self.assertEqual(obj1.calculate_forest(), 2) def test_graph2(self): graph2 = {2: [1], 3: [1], 4: [3], 5: [2], 6: [5], 7: [1], 8: [1], 9: [2], 10: [7], 11: [10], 12: [3], 13: [7], 14: [8], 15: [12], 16: [6], 17: [6], 18: [10], 19: [1], 20: [8]} obj2 = EvenTree(graph2) self.assertEqual(obj2.calculate_forest(),4) if __name__ == "__main__": import unittest from collections import defaultdict, Iterable import itertools suite = unittest.TestLoader().loadTestsFromTestCase(GraphTests) unittest.TextTestRunner(verbosity=2).run(suite)
sunilchauhan/EvenTree
EvenTree.py
EvenTree.py
py
3,088
python
en
code
0
github-code
6
31272615348
# -*- coding: utf-8 -*- """Image transformation test meant to be run with pytest.""" import sys import pytest from confmap import ImageTransform from confmap import HyperbolicTiling sys.path.append("tests") def test_tilesAndTransform(): im=ImageTransform('./examples/sample1.png',0,data=None ,c=1.*(1.+0.j),r=1.*(1.+0.j) ,d=0.08+0.55j,output_width=750 ,output_height=1000,blur=False,smoothshift=-0,shift=0.) im.mirror(Y=2,X=1) res=im.transform(print_and_save=False) HT=HyperbolicTiling('./examples/sample1.png',prefix='./examples/',suffix='0', output_width=1550,output_height=640,data=res) im=ImageTransform(HT,d=0.04) im.arctan() im.similitude(c=1.9) HT.transform(c=0.95,d=0.+0.0j,backcolor=True,vanishes=False, nbit=25,delta=0e-3,print_and_save=True, sommets=(6,4,4,4,6,4,4,4)) return True if __name__ == "__main__": pytest.main()
FCoulombeau/confmap
tests/test_tilesAndTransforms.py
test_tilesAndTransforms.py
py
1,016
python
en
code
8
github-code
6
21666698024
#https://leetcode.com/problems/valid-sudoku/ class Solution: #Traverse the entire board once, and check each cell to see if there's another cell with the same value #in the same row, column, and square. Immediately return False if such a cell is found def isValidSudoku(self, board: list[list[str]]) -> bool: #Helper method that takes the row and column of a cell, and returns which square it's on (0 through 8) def getSquare(row: int, col: int) -> int: if (row // 3) < 1: #If it's in the first three rows return (col // 3) elif (row // 3) >= 1 and (row //3) < 2: #If it's in the middle three rows return 3 + (col // 3) else: #If it's in the last three rows return 6 + (col // 3) #More efficient helper method to return square number for a given cell. We're numbering the squares so that #its number is the number of squares above and to its left def getSquare2(row: int, col: int) -> int: return (3 * (row // 3)) + (col // 3) rowSetList = [set() for _ in range(9)] #Use list comprehension to create list of nine sets colSetList = [set() for _ in range(9)] squareSetList = [set() for _ in range(9)] for row in range(len(board)): for col in range(len(board[0])): value = board[row][col] if not value.isdigit() : continue #We ignore non-numeric cells square = getSquare(row,col) #Square range from 0 to 8 if (value in rowSetList[row]) or (value in colSetList[col]) or (value in squareSetList[square]): #print(f'Value {value} at board[{row}][{col}] is duplicate') return False else: rowSetList[row].add(value) colSetList[col].add(value) squareSetList[square].add(value) #If we make it here, then our board is a valid sodoku board return True def main(): board = [["8","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] solution = Solution() print(solution.isValidSudoku(board)) #False since top left square has two cells with value 8 if __name__ == "__main__": #Entry point main() #Calling main method
Adam-1776/Practice
DSA/validSodoku/solution.py
solution.py
py
2,643
python
en
code
0
github-code
6
19575911667
def bissextile(): try: n = int(date.get()) if n%4==0 and (n//100)%4==0: tmp = "Is Bissextile" else: tmp = "Is Not Bissextile" txt.set(tmp) except: txt.set("The value isn't an integer") from tkinter import * from keyboard import * def kInput(): if is_pressed('enter'): bissextile() main = Tk() main.resizable(False, False) main.title("Bissextile") date = Entry(main, width=25, justify=CENTER) date.grid(row = 1, column = 1) txt = StringVar() screenReturn = Label(main,width=25, textvariable=txt) screenReturn.grid(row= 2, column = 1) testButton = Button(main, text="Test if bissextile", command=bissextile) testButton.grid(row=3, column=1) def shutdown(): global run run = False main.quit() main.protocol("WM_DELETE_WINDOW", shutdown) run=True while run: kInput() main.update()
OJddJO/NSI
bissextile.py
bissextile.py
py
934
python
en
code
0
github-code
6
28654892890
import re def day3_2(): with open("day3 - input.txt") as input: # with open("day3 - input1.txt") as input: # with open("day3 - input2.txt") as input: wires = [num.strip() for num in input.read().split()] wire_0 = wires[0].split(",") wire_1 = wires[1].split(",") wire_0_hor = [] wire_0_ver = [] wire_1_hor = [] wire_1_ver = [] intersections = [] # Go through the wire and add both the old and new xy coordinates along with # the total previous magnitude to its respective horizontal and vertical move lists def rldu(wire, wire_hor, wire_ver, pairx, pairy, total_mag): for each in wire: path = re.search(r'(\w)(.*)', each) direction = path.group(1) magnitude = int(path.group(2)) oldx = pairx oldy = pairy if direction == "R": pairx += magnitude wire_hor.append([(oldx, oldy), (pairx, oldy), total_mag]) elif direction == "L": pairx -= magnitude wire_hor.append([(oldx, oldy), (pairx, oldy), total_mag]) elif direction == "U": pairy += magnitude wire_ver.append([(oldx, oldy), (oldx, pairy), total_mag]) elif direction == "D": pairy -= magnitude wire_ver.append([(oldx, oldy), (oldx, pairy), total_mag]) total_mag +=magnitude # Go through wire 0's horizontal list to find the wire 1's horizontal intersections # Append the intersection coordinate and the total magnitude to get there def find_intersections( wire_x_hor, wire_y_ver, intersections): for hor in wire_x_hor: minx = min(hor[0][0], hor[1][0]) maxx = max(hor[0][0], hor[1][0]) for ver in wire_y_ver: miny = min(ver[0][1], ver[1][1]) maxy = max(ver[0][1], ver[1][1]) x = ver[0][0] y = hor[0][1] if minx <= x and x <= maxx and miny <= y and y <= maxy: w0_mag = hor[2]+abs(hor[0][0]-x) w1_mag = ver[2]+abs(ver[0][1]-y) tm = w0_mag + w1_mag intersections.append((ver[0][0], hor[0][1], tm)) rldu(wire_0, wire_0_hor, wire_0_ver, 0, 0, 0) rldu(wire_1, wire_1_hor, wire_1_ver, 0, 0, 0) find_intersections(wire_0_hor, wire_1_ver, intersections) find_intersections(wire_1_hor, wire_0_ver, intersections) # The first intersection is (0, 0), which isn't what we want intersections.pop(0) min_steps = intersections[0][2] for each in intersections: if each[2] < min_steps: min_steps = each[2] print("min amount of steps is: {}".format(min_steps)) day3_2() # Really cool implementation by redditor jadenPete # !/usr/bin/env python3 # with open("day3.txt", "r") as file: # def crawl_wire(): # loc = [0, 0] # steps = 0 # for move in file.readline().split(","): # delta = {"L": (0, -1), "R": (0, 1), "U": (1, 1), "D": (1, -1)}[move[0]] # for _ in range(int(move[1:])): # loc[delta[0]] += delta[1] # steps += 1 # yield tuple(loc), steps # visited = {} # for loc, steps in crawl_wire(): # if loc not in visited: # visited[loc] = steps # print(min(steps + visited[loc] for loc, steps in crawl_wire() if loc in visited))
mellumfluous/AdventOfCode-2019
day3_2.py
day3_2.py
py
3,391
python
en
code
0
github-code
6
74142898108
from django.http import JsonResponse from django.shortcuts import render # Create your views here. from django.views.generic import View from django_redis import get_redis_connection from redis import StrictRedis from apps.goods.models import GoodsSKU from utils.common import LoginRequiredViewMixin, BaseCartView class CartAddView(BaseCartView): def post(self, request, command='add'): """添加商品到购物车""" params = super().post(request, command) # 接受数据:user_id,sku_id,count user_id, sku_id, count, sku = params['user_id'], \ params['sku_id'], \ params['count'], \ params['sku'] # print(user_id, sku_id, count) # print('+'*50) # 添加商品到购物车,如果redis中已有该商品的id,那么就增加它的数量 strict_redis = get_redis_connection() # strict_redis = StrictRedis() key = 'cart_%s' % user_id val = strict_redis.hget(key, sku_id) if val: count += int(val) # 库存逻辑判断 if count > sku.stock: return JsonResponse({'code':5, 'errmsg':'库存不足'}) # 操作redis数据库存储商品到购物车 strict_redis.hset(key, sku_id, count) total_count = 0 vals = strict_redis.hvals(key) for val in vals: total_count += int(val) context = { 'code':0, 'total_count':total_count, } return JsonResponse(context) class CartInfoView(LoginRequiredViewMixin, View): """购物车显示界面:需要先登录""" def get(self, request): # 查询当前登录用户添加到购物车中的所有商品 strict_redis = get_redis_connection() key = 'cart_%s' % request.user.id # 获取购物车中所有商品,返回一个字典,包含sku_id和对应的数量count cart_dict = strict_redis.hgetall(key) # 保存购物车中所有的商品对象 skus = [] # 商品总数量 total_count = 0 # 商品总金额 total_amount = 0 for sku_id, count in cart_dict.items(): try: # 根据sku_id获取sku对象 sku = GoodsSKU.objects.get(id=sku_id) # 列表中新增一个商品对象 skus.append(sku) except Exception as e: print(e) # sku对象动态新增一个实例属性:count sku.count = int(count) # sku对象动态新增一个实例属性:amount sku.amount = sku.price * sku.count # 累加购物车中所有商品的数量和总金额 total_count += sku.count total_amount += sku.amount context = { 'skus': skus, 'total_count': total_count, 'total_amount': total_amount, } return render(request, 'cart.html', context) class CartUpdateView(LoginRequiredViewMixin, BaseCartView): def post(self, request, command='update'): """修改购物车商品数量""" # print(CartUpdateView.mro()) # print('-' * 50) params = super().post(request, command) sku_id = params['sku_id'] count = params['count'] # print(sku_id) # print(count) # print('-' * 50) # todo:业务处理:保存购物车商品数量 strict_redis = get_redis_connection() key = 'cart_%s' % request.user.id strict_redis.hset(key, sku_id, count) # 响应json return JsonResponse({'code': 0, 'message': '修改商品数量成功',}) class CartDeleteView(LoginRequiredViewMixin, BaseCartView): def post(self, request, command='delete'): """删除购物车中的商品""" # 获取请求参数:sku_id sku_id = super().post(request, command)['sku_id'] # 业务处理:从redis中删除商品 strict_redis = get_redis_connection() key = 'cart_%s' % request.user.id strict_redis.hdel(key, sku_id) # 响应请求 return JsonResponse({'code':0, 'message':'删除成功!'})
xmstu/dailyfresh2
dailyfresh/apps/cart/views.py
views.py
py
4,266
python
en
code
0
github-code
6
13042124891
# -*- coding: utf-8 -*- """ Created on Wed Dec 5 16:42:07 2018 @author: lud """ import matplotlib #import matplotlib.pyplot as plt matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg # implement the default mpl key bindings from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure import tkinter as Tk from mpl_toolkits.mplot3d.art3d import Poly3DCollection import numpy as np import pandas as pd from argparse import ArgumentParser import os def cuboid_data2(o, size=(1,1,1)): X = [[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]], [[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]], [[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]], [[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]], [[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]], [[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]]] X = np.array(X).astype(float) for i in range(3): X[:,:,i] *= size[i] X += np.array(o) return X def plotCubeAt2(positions,sizes=None,colors=None, **kwargs): if not isinstance(colors,(list,np.ndarray)): colors=["C0"]*len(positions) if not isinstance(sizes,(list,np.ndarray)): sizes=[(1,1,1)]*len(positions) g = [] for p,s,c in zip(positions,sizes,colors): g.append( cuboid_data2(p, size=s) ) return Poly3DCollection(np.concatenate(g), facecolors=np.repeat(colors,6), **kwargs) def main(path, width, depth, height): #get all data files source_files = [] for file in os.listdir(path): if file.endswith(".csv"): source_files.append(os.path.join(path, file)) #get data def getData(df): if len(df.columns < 7): df['6'] = 0 sizes = [tuple(x) for x in df.iloc[:,[1,2,3]].values] positions = [tuple(x) for x in df.iloc[:,[4,5,6]].values] colors = ["limegreen"]*df.shape[0] pc = plotCubeAt2(positions,sizes,colors=colors, edgecolor="k", linewidth = 0.4) return pc #create figure fig = Figure() root = Tk.Tk() root.wm_title("Plot boxes") canvas = FigureCanvasTkAgg(fig, master=root) ax = fig.add_subplot(111,projection='3d') ax.set_aspect('equal') ax.set_xlim([0,width]) ax.set_ylim([0,depth]) ax.set_zlim([0,height]) if len(source_files) > 0: box_data = pd.read_csv(source_files[0], header = None) else: box_data = pd.DataFrame(np.full((1,6),0,dtype = int)) ax.add_collection3d(getData(box_data)) canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) def refresh(df): ax.collections.clear() ax.add_collection(getData(df)) canvas.draw() def ok(): newfile = tkvar.get() box_data = pd.read_csv(newfile, header = None) refresh(box_data) def option_changed(*args): newfile = tkvar.get() box_data = pd.read_csv(newfile, header = None) refresh(box_data) # Create a Tkinter variable tkvar = Tk.StringVar(root) if len(source_files) > 0: tkvar.set(source_files[0]) else: tkvar.set('No file') tkvar.trace("w", option_changed) popupMenu = Tk.OptionMenu(root, tkvar, '', *source_files) popupMenu.pack(side=Tk.TOP) def on_key_event(event): print('you pressed %s' % event.key) key_press_handler(event, canvas, toolbar) canvas.mpl_connect('key_press_event', on_key_event) def _quit(): root.quit() # stops mainloop root.destroy() # this is necessary on Windows to prevent # Fatal Python Error: PyEval_RestoreThread: NULL tstate button = Tk.Button(master=root, text='Quit', command=_quit) button.pack(side=Tk.BOTTOM) root.mainloop() # main('E:\\Projects\\BinPacking\\test',800,1200,2055) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-p", "--path", dest="layer_data_path", help="find data from path", metavar="PATH") parser.add_argument("-w", "--width", dest="width", type = int, default=800, help="plane width, default 800") parser.add_argument("-d", "--depth", dest="depth", type = int, default=1200, help="plane depth, default 1200") parser.add_argument("-hei", "--height", dest="height", type = int, default=2055, help="bin height, default 2055") args = parser.parse_args() main(args.layer_data_path, args.width, args.depth, args.height)
stevenluda/cuboidPlotter
PlotCuboids.py
PlotCuboids.py
py
4,848
python
en
code
0
github-code
6
75177510266
import os import string import json from collections import namedtuple from sys import stdout from lex.oed.languagetaxonomy import LanguageTaxonomy from apps.tm.models import Lemma, Wordform, Definition, Language, ProperName from apps.tm.build import buildconfig LEMMA_FIELDS = buildconfig.LEMMA_FIELDS BlockData = namedtuple('BlockData', LEMMA_FIELDS) def populate_db(): """ Populate the database table for Language, Lemma, Wordform, and Definition """ stdout.write('Emptying the tables...\n') empty_tables() stdout.write('Populating Language records...\n') populate_language() stdout.write('Populating Lemma, Wordform, and Definition records...\n') populate_lexical() stdout.write('Populating ProperName records...\n') populate_proper_names() def empty_tables(): """ Empty the database tables of any existing content """ Wordform.objects.all().delete() Lemma.objects.all().delete() Definition.objects.all().delete() Language.objects.all().delete() ProperName.objects.all().delete() def populate_language(): """ Populate the Language table """ taxonomy = LanguageTaxonomy() taxonomy.families = set(buildconfig.LANGUAGE_FAMILIES) max_length = Language._meta.get_field('name').max_length language_objects = [] for language in taxonomy.languages(): name = language.name[:max_length] language_objects.append(Language(id=language.id, name=name, family=None)) Language.objects.bulk_create(language_objects) for language in taxonomy.languages(): family = taxonomy.family_of(language.name) if family is not None: src = Language.objects.get(id=language.id) target = Language.objects.get(id=family.id) src.family = target src.save() def populate_lexical(): """ Populate the Lemma, Wordform, and Definition tables """ in_dir = os.path.join(buildconfig.FORM_INDEX_DIR, 'refined') frequency_cutoff = buildconfig.FREQUENCY_CUTOFF taxonomy = LanguageTaxonomy() lemma_counter = 0 definition_counter = 0 for letter in string.ascii_lowercase: stdout.write('Inserting data for %s...\n' % letter) blocks = [] in_file = os.path.join(in_dir, letter + '.json') with open(in_file, 'r') as filehandle: for line in filehandle: data = json.loads(line.strip()) blocks.append(BlockData(*data)) lemmas = [] wordforms = [] definitions = [] for i, block in enumerate(blocks): lang_node = taxonomy.node(language=block.language) if lang_node is None: language_id = None else: language_id = lang_node.id if block.definition and block.f2000 < frequency_cutoff: definition_counter += 1 definitions.append(Definition(id=definition_counter, text=block.definition[:100])) definition_id = definition_counter else: definition_id = None lemma_counter += 1 lemmas.append(Lemma(id=lemma_counter, lemma=block.lemma, sort=block.sort, wordclass=block.wordclass, firstyear=block.start, lastyear=block.end, refentry=block.refentry, refid=block.refid, thesaurus_id=block.htlink, language_id=language_id, definition_id=definition_id, f2000=_rounder(block.f2000), f1950=_rounder(block.f1950), f1900=_rounder(block.f1900), f1850=_rounder(block.f1850), f1800=_rounder(block.f1800), f1750=_rounder(block.f1750),)) for typelist in (block.standard_types, block.variant_types, block.alien_types): for typeunit in typelist: wordforms.append(Wordform(sort=typeunit[0], wordform=typeunit[1], wordclass=typeunit[2], lemma_id=lemma_counter, f2000=_rounder(typeunit[4]), f1900=_rounder(typeunit[5]), f1800=_rounder(typeunit[6]),)) if i % 1000 == 0: Definition.objects.bulk_create(definitions) Lemma.objects.bulk_create(lemmas) Wordform.objects.bulk_create(wordforms) definitions = [] lemmas = [] wordforms = [] Definition.objects.bulk_create(definitions) Lemma.objects.bulk_create(lemmas) Wordform.objects.bulk_create(wordforms) def populate_proper_names(): """ Populate the ProperName table """ in_dir = os.path.join(buildconfig.FORM_INDEX_DIR, 'proper_names') in_file = os.path.join(in_dir, 'all.txt') names = [] counter = 0 with open(in_file) as filehandle: for line in filehandle: data = line.strip().split('\t') if len(data) == 3: counter += 1 sortable, name, common = data if common.lower() == 'true': common = True else: common = False names.append(ProperName(lemma=name, sort=sortable, common=common)) if counter % 1000 == 0: ProperName.objects.bulk_create(names) names = [] ProperName.objects.bulk_create(names) def _rounder(n): n = float('%.2g' % n) if n == 0 or n > 1: return int(n) else: return n
necrop/wordrobot
apps/tm/build/lexicon/populatedb.py
populatedb.py
py
6,316
python
en
code
0
github-code
6
72623372987
#!/usr/bin/python # -*- coding: utf-8 -*- import mock import unittest from cloudshell.networking.brocade.cli.brocade_cli_handler import BrocadeCliHandler from cloudshell.networking.brocade.runners.brocade_state_runner import BrocadeStateRunner class TestBrocadeStateRunner(unittest.TestCase): def setUp(self): cli_handler = mock.MagicMock() logger = mock.MagicMock() resource_config = mock.MagicMock() api = mock.MagicMock() super(TestBrocadeStateRunner, self).setUp() self.tested_instance = BrocadeStateRunner(cli=cli_handler, logger=logger, resource_config=resource_config, api=api) def tearDown(self): super(TestBrocadeStateRunner, self).tearDown() del self.tested_instance def test_cli_handler_property(self): """ Check that property return correct instance. Should return BrocadeCliHandler """ self.assertIsInstance(self.tested_instance.cli_handler, BrocadeCliHandler)
QualiSystems/cloudshell-networking-brocade
tests/networking/brocade/runners/test_brocade_state_runner.py
test_brocade_state_runner.py
py
1,123
python
en
code
0
github-code
6
35153932961
age = input("What is your current age?") #4680 weeks in 90 years daysold = int(age) * 365 weeksold = int(age) * 52 monthsold = int(age) * 12 days = (365*90) - daysold weeks = 4680 - weeksold months = (12*90) - monthsold print("You have " + str(days) + " days, " + str(weeks) + " weeks, and " + str(months) + " months left.")
georgewood749/life_in_weeks_calculator
main.py
main.py
py
329
python
en
code
0
github-code
6
3277704581
import os from playwright.sync_api import sync_playwright key = "2731" os.makedirs(f"res/{key}", exist_ok=True) def main(): with sync_playwright() as p: browser = p.chromium.launch(headless=False, slow_mo= 5000) page = browser.new_page() page.goto("https://mri.cts-mrp.eu/portal/details?productnumber=NL/H/2731/001") # with page.expect_download() as download_info: # page.get_by_text("Download excel").click() # download = download_info.value # download.save_as(f"res/{key}/{key}.xlsx") # Selector for document download buttons: .mat-button-base.ng-star-inserted # STUDY LOCATOR METHODS, esp. "nth" in iterator elements = page.get_by_role("listitem").get_by_role("button").all() count = elements.count() print(f"Number of detected elements is: {count}") # for doc in elements: # for i in range(count): # elements.nth(i).click(modifiers=["Control", "Shift"]) # handles = page.query_selector_all(".documents-list .mat-button-wrapper .mat-icon-no-color") # with page.expect_download() as download_info: # doc.click() # download = download_info.value # doc_name = download.suggested_filename # download.save_as(f"res/{key}/{doc_name}.pdf") browser.close() main()
ReCodeRa/MRI_02
MRI/pw_down_sync_single_pdf.py
pw_down_sync_single_pdf.py
py
1,397
python
en
code
0
github-code
6
9736948830
import pickle import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score, accuracy_score from tensorflow import keras import matplotlib.pyplot as plt import tensorflow_addons as tfa import health_doc import matplotlib.pyplot as plt import gc from imp import reload from doc_preprocessing import get_data_from_kfold import BERT reload(BERT) from BERT import make_model, model_fit, model_save, model_load from BERT import get_tokenizer, get_tokenized_data, get_model_result, calc_score # model # 0: Normal multi-label classification # 1: Knowledge Distillation mode = 0 if (mode): # ### Get Teacher model prediction with open('id_teacher_predict','rb') as f: id_teacher_predict = pickle.load(f) if __name__ == '__main__': # ### Loading HealthDoc dataset dataset_path = "../dataset/HealthDoc/" dataset_id, dataset_label, dataset_content, dataset_label_name = health_doc.loading(dataset_path) # ### Loading K-fold list with open('k_id', 'rb') as f: k_id = pickle.load(f) with open('k_label', 'rb') as f: k_label = pickle.load(f) K = len(k_id) tokenizer = get_tokenizer() # get BERT tokenizer for cv_times in range(10): cv_micro_f1 = [] cv_macro_f1 = [] cv_accuray = [] cv_weighted_f1 = [] cv_label_f1 = [] for testing_time in range(K): # ### Split data for train and test subset_test = [testing_time] subset_train = np.delete(np.arange(K), subset_test) x_train, y_train = get_data_from_kfold(k_id, k_label, subset_train) x_test, y_test = get_data_from_kfold(k_id, k_label, subset_test) model_path = f'/content/model/{subset_test[0]}/' # ### Training Model #x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.15) # get tokenized data with BERT input format x_train_vec = get_tokenized_data(x_train, dataset_content, tokenizer) x_test = get_tokenized_data(x_test, dataset_content, tokenizer) #x_val = getTokenized(x_val, dataset_content, tokenizer) tf.keras.backend.clear_session() model = make_model(9) if (mode): y_train_teacher = np.empty(x_train.shape+(9,)) for i, x in enumerate(x_train): y_train_teacher[i,:] = id_teacher_predict[x] print('Training Multi-label model with KD') history = model_fit(model, x_train_vec, y_train_teacher) else: print('Training Multi-label model without KD') history = model_fit(model, x_train_vec, y_train) gc.collect() # ### Predict Result y_pred = get_model_result(model, x_test) # ### Calculate Predict Reslut micro_f1, macro_f1, weighted_f1, subset_acc = calc_score(y_test, y_pred) cv_micro_f1.append(micro_f1) cv_macro_f1.append(macro_f1) cv_weighted_f1.append(weighted_f1) cv_accuray.append(subset_acc) label_f1=[] for i, label_name in enumerate(dataset_label_name): label_f1.append(f1_score(y_test[:,i], y_pred[:,i])) print(f'{label_name:<15}:{label_f1[-1]: .4f}') cv_label_f1.append(label_f1) with open('multi-times cv result.csv', 'a') as f: f.write(f'{sum(cv_micro_f1)/K: .4f},') f.write(f'{sum(cv_macro_f1)/K: .4f},') f.write(f'{sum(cv_weighted_f1)/K: .4f},') f.write(f'{sum(cv_accuray)/K: .4f},') label_f1_mean = np.mean(cv_label_f1, axis=0) for f1_mean in label_f1_mean: f.write(f'{f1_mean: .4f},') f.write('\n')
Szu-Chi/NLP_Final_Hierarchical_Transfer_Learning
BERT_multi_student.py
BERT_multi_student.py
py
4,067
python
en
code
0
github-code
6
25018394942
import datetime import hashlib import json from urllib.parse import urlparse import requests from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import padding import config import crypto class Blockchain: def __init__(self, key_path=None): # Initialize a chain which will contain blocks self.chain = [] # a simple list containing blovks # Create a list which contains a list of transactions before they # are added to the block. Think of it as a cache of transactions which # happened, but are not yet written to a block in a blockchain. self.transactions = [] # Create a genesis block - the first block # Previous hash is 0 because this is a genesis block! self.create_block(proof=1, previous_hash='0') # Create a set of nodes self.nodes = set() if key_path: self.private_key = crypto.load_private_key(key_path) self.address = self.generate_address(self.private_key.public_key()) def create_block(self, proof, previous_hash): # Define block as a dictionary block = {'index': len(self.chain) + 1, 'timestamp': str(datetime.datetime.now()), 'proof': proof, 'previous_hash': previous_hash, # Here we can add any additional data related to the currency 'transactions': self.transactions } # Now we need to empty the transactions list, since all those transactions # are now contained in the block. self.transactions = [] # Append block to the blockchain self.chain.append(block) return block def get_previous_block(self): return self.chain[-1] def get_address(self): return self.address def proof_of_work(self, previous_proof): new_proof = 1 # nonce value check_proof = False while check_proof is False: # Problem to be solved (this makes the minig hard) # operation has to be non-symetrical!!! hash_operation = hashlib.sha256(str(config.BLOCKCHAIN_PROBLEM_OPERATION_LAMBDA( previous_proof, new_proof)).encode()).hexdigest() # Check if first 4 characters are zeros if hash_operation[:len(config.LEADING_ZEROS)] == config.LEADING_ZEROS: check_proof = True else: new_proof += 1 # Check proof is now true return new_proof def hash_of_block(self, block): # Convert a dictionary to string (JSON) encoded_block = json.dumps(block, sort_keys=True).encode() return hashlib.sha256(encoded_block).hexdigest() def is_chain_valid(self, chain): previous_block = chain[0] block_index = 1 while block_index < len(chain): # 1 Check the previous hash block = chain[block_index] if block['previous_hash'] != self.hash_of_block(previous_block): return False # 2 Check all proofs of work previous_proof = previous_block['proof'] proof = block['proof'] hash_operation = hashlib.sha256(str(config.BLOCKCHAIN_PROBLEM_OPERATION_LAMBDA( previous_proof, proof)).encode()).hexdigest() if hash_operation[:len(config.LEADING_ZEROS)] != config.LEADING_ZEROS: return False # Update variables previous_block = block block_index += 1 return True def add_transaction(self, sender, receiver, amount, private_key): # Create a transaction dictionary transaction = { 'sender': sender, 'receiver': receiver, 'amount': amount } # Sign the transaction signature = private_key.sign( json.dumps(transaction, sort_keys=True).encode(), padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH ), hashes.SHA256() ) # Add the signature and public key to the transaction transaction['signature'] = signature transaction['public_key'] = private_key.public_key().public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) # Add the transaction to the list of transactions self.transactions.append(transaction) # Return the index of the next block in the blockchain previous_block = self.get_previous_block() return previous_block['index'] + 1 def add_node(self, address): parsed_url = urlparse(address) # Add to the list of nodes # parsed_url() method returns ParseResult object which has an attribute netloc # which is in a format adress:port eg. 127.0.0.1:5000 self.nodes.add(parsed_url.netloc) def replace_chain(self): network = self.nodes longest_chain = None max_length = len(self.chain) for node in network: # Find the largest chain (send a request) response = requests.get(f'http://{node}/get-chain') if response.status_code == 200: length = response.json()['length'] chain = response.json()['chain'] # Check chain if it is the longest one and also a valid one if length > max_length and self.is_chain_valid(chain): max_length = length longest_chain = chain if longest_chain: # Replace the chain self.chain = longest_chain return True # Otherwise, the chain is not replaced return False def save_blockchain(self, filename): with open(filename, 'w') as file: json.dump(self.chain, file, indent=4) def load_blockchain(self, filename): with open(filename, 'r') as file: self.chain = json.load(file) def generate_address(self, public_key): public_key_bytes = public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) return hashlib.sha256(public_key_bytes).hexdigest()
ivana-dodik/Blockchain
EP -- zadatak 03/bez master key/blockchain.py
blockchain.py
py
6,409
python
en
code
0
github-code
6
70170907387
import numpy as np #%% def continuous_angle(x): last = 0 out = [] for angle in x: while angle < last-np.pi: angle += 2*np.pi while angle > last+np.pi: angle -= 2*np.pi last = angle out.append(angle) return np.array(out) #%% def dist2agent(data): for i in range(1,10): x = data[' x%d'%i] y = data[' y%d'%i] xa = data[' x0'] ya = data[' y0'] data[' dist%d'%i] = np.sqrt((x-xa)**2+(y-ya)**2) return data def poly2(data): for i in range(10): x = data[' x%d' % i] y = data[' y%d' % i] data[' x2%d' % i] = x**2 data[' y2%d' % i] = y**2 data[' xy%d' % i] = x*y return data def speed_direction(data): for i in range(10): speed = np.zeros(11) sin_dir = np.zeros(11) cos_dir = np.zeros(11) x = data[' x%d' % i] y = data[' y%d' % i] speed[0] = np.sqrt((x[1]-x[0])**2+(y[1]-y[0])**2) direction = np.arctan2(y[1]-y[0],x[1]-x[0]) sin_dir[0] = np.sin(direction) cos_dir[0] = np.cos(direction) speed[10] = np.sqrt((x[10]-x[9])**2+(y[10]-y[9])**2) direction = np.arctan2(y[10]-y[9],x[10]-x[9]) sin_dir[10] = np.sin(direction) cos_dir[10] = np.cos(direction) for t in range(1,10): speed[t] = np.sqrt((x[t+1]-x[t-1])**2+(y[t+1]-y[t-1])**2)/2 direction = np.arctan2(y[t+1]-y[t-1],x[t+1]-x[t-1]) sin_dir[t] = np.sin(direction) cos_dir[t] = np.cos(direction) data[' speed%d' % i] = speed data[' sin(dir)%d' % i] = sin_dir data[' cos(dir)%d' % i] = cos_dir return data def acceleration(data): for i in range(10): a = np.zeros(11) speed = data[' speed%d' % i] a[0] = speed[1]-speed[0] a[10] = speed[10]-speed[9] for t in range(1,10): a[t] = (speed[t+1]-speed[t-1])/2 data[' acceleration%d' % i] = a return data def turning(data): for i in range(10): turn = np.zeros(11) sin_dir = data[' sin(dir)%d' % i] cos_dir = data[' cos(dir)%d' % i] direction = np.arctan2(sin_dir, cos_dir) direction = continuous_angle(direction) turn[0] = direction[1]-direction[0] turn[10] = direction[10]-direction[9] for t in range(1,10): turn[t] = (direction[t+1]-direction[t-1])/2 data[' turning%d' % i] = turn return data def replace_agent(data): for i in range(10): if data[' role%d' % i][0] == ' agent': temp = data[[' id0',' role0',' type0',' x0',' y0',' present0']] data[[' id0',' role0',' type0',' x0',' y0',' present0']] = data[[' id%d'%i,' role%d'%i,' type%d'%i,' x%d'%i,' y%d'%i,' present%d'%i]] data[[' id%d'%i,' role%d'%i,' type%d'%i,' x%d'%i,' y%d'%i,' present%d'%i]] = temp return data def empty_fix(data, x_max=30, y_max=10): xs = np.array([2*x_max,2*x_max,-2*x_max,-2*x_max,3*x_max,3*x_max,-3*x_max,-3*x_max,4*x_max]) ys = np.array([2*y_max,-2*y_max,2*y_max,-2*y_max,3*y_max,-3*y_max,3*y_max,-3*y_max,-4*y_max]) j = 0 for i in range(1,10): if data[' present%d'%i][0] == 0: data[' x%d'%i] = xs[j]*np.ones(11) data[' y%d'%i] = ys[j]*np.ones(11) j += 1 data[' role%d'%i] = ' others' data[' type%d'%i] = ' car' return data
aliseyfi75/Autonomous-Driving
Codes/add_features.py
add_features.py
py
3,966
python
en
code
0
github-code
6
8381595021
from os import system import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import PolyCollection from mpl_toolkits.axes_grid import make_axes_locatable ############################################################################## # matplotlib configuration linewidth = 2.0 fontsize = 12 params = { # 'backend': 'ps', 'axes.labelsize': fontsize, 'text.fontsize': fontsize, 'legend.fontsize': 0.9*fontsize, 'xtick.labelsize': 0.9*fontsize, 'ytick.labelsize': 0.9*fontsize, 'text.usetex': False, # 'figure.figsize': fig_size } matplotlib.rcParams.update(params) markers = ['o', 's', '^', 'd', 'v', '*', 'h', '<', '>'] markersize = 8 nodesize = 1000 ############################################################################## def init_plot(is_tight_layout=False, ind_fig=0, **kwargs): plt.close("all") fig = plt.figure(ind_fig, **kwargs) ax = fig.add_subplot(111) if is_tight_layout: fig.tight_layout() return ax def new_plot(is_tight_layout=False, ind_fig=0): fig = plt.figure(ind_fig) ax = fig.add_subplot(111) if is_tight_layout: fig.tight_layout() ind_fig += 1 return ax, ind_fig def save_fig(figname, is_adjust_border=False): #ffigname = figname+".png" # plt.savefig(ffigname,format='PNG') ffigname = figname+".pdf" if is_adjust_border: plt.subplots_adjust(left=0.12, bottom=0.1, right=0.86, top=0.9, wspace=0.2, hspace=0.2) plt.savefig(figname+".pdf", format='PDF') # plt.savefig(figname+".eps",format='eps',transparent=True) #system("ps2pdf -dEPSCrop "+figname+".eps "+figname+".pdf") #system("rm "+figname+".eps") return ffigname
ngctnnnn/DRL_Traffic-Signal-Control
sumo-rl/sumo/tools/contributed/sumopy/agilepy/lib_misc/matplotlibtools.py
matplotlibtools.py
py
1,749
python
en
code
17
github-code
6
4495169101
# -*- coding: utf-8 -*- """ Tests for CSV Normalizer """ import csv from io import StringIO from _pytest.capture import CaptureFixture from pytest_mock import MockFixture from src.csv_normalizer import main def test_outputs_normalized_csv(mocker: MockFixture, capsys: CaptureFixture[str]) -> None: with open("tests/sample.csv", encoding="utf-8", newline="") as csv_file: mocker.patch("sys.stdin", csv_file) main() captured = capsys.readouterr() assert len(captured.out) > 0 assert len(captured.err) == 0 written_csv = csv.reader(StringIO(captured.out)) with open("tests/output-sample.csv", encoding="utf-8", newline="") as expected_csv_file: expected_csv = csv.reader(expected_csv_file) for written_line, expected_line in zip(written_csv, expected_csv): assert written_line == expected_line def test_handles_error_properly(mocker: MockFixture, capsys: CaptureFixture[str]) -> None: with open("tests/sample-with-broken-fields.csv", encoding="utf-8", newline="") as csv_file: mocker.patch("sys.stdin", csv_file) main() captured = capsys.readouterr() assert len(captured.err) > 0 expected_errors = [ "Invalid timestamp: 4/1/11 11:00:00 �M", "invalid literal for int() with base 10: '9412�'", "Duration is in an invalid format: 123:32.123", "Duration has an invalid value: 1:a:32.123", "Duration is in an invalid format: 132:33.123", "Duration has an invalid value: 1:a:33.123", ] errors = captured.err.splitlines() assert len(errors) == len(expected_errors) for error, expected_error in zip(errors, expected_errors): assert error == expected_error assert len(captured.out) > 0 written_csv = csv.reader(StringIO(captured.out)) with open( "tests/output-sample-with-broken-fields.csv", encoding="utf-8", newline="" ) as expected_csv_file: expected_csv = csv.reader(expected_csv_file) for written_line, expected_line in zip(written_csv, expected_csv): assert written_line == expected_line
felipe-lee/csv_normalization
tests/test_csv_normalizer.py
test_csv_normalizer.py
py
2,253
python
en
code
0
github-code
6
33595739631
from flask import Flask, render_template, request, redirect, url_for from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from database_setup import Base, Movie app = Flask(__name__) engine = create_engine('sqlite:///books-collection.db?check_same_thread=False') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() @app.route('/') @app.route('/movies') def showMovies(): movies = session.query(Movie).all() return render_template("movies.html", movies=movies) @app.route('/movies/new/', methods=['GET', 'POST']) def newMovie(): if request.method == 'POST': newMovie = Movie(title=request.form['name'], author=request.form['author'], cast=request.form['cast'], price=request.form['price']) session.add(newMovie) session.commit() return redirect(url_for('showMovies')) else: return render_template('newMovie.html') # Эта функция позволит нам обновить книги и сохранить их в базе данных. @app.route("/movies/<int:movie_id>/edit/", methods=['GET', 'POST']) def editMovie(movie_id): editedMovie = session.query(Movie).filter_by(id=movie_id).one() if request.method == 'POST': if request.form['name'] or request.form['author'] or request.form['cast'] or request.form['price']: editedMovie.title = request.form['name'] editedMovie.title = request.form['author'] editedMovie.title = request.form['cast'] editedMovie.title = request.form['price'] return redirect(url_for('showMovies')) else: return render_template('editMovie.html', movie=editedMovie) # Эта функция для удаления книг @app.route('/movies/<int:movie_id>/delete/', methods=['GET', 'POST']) def deleteMovie(movie_id): movieToDelete = session.query(Movie).filter_by(id=movie_id).one() if request.method == 'POST': session.delete(movieToDelete) session.commit() return redirect(url_for('showMovies', movie_id=movie_id)) else: return render_template('deleteMovie.html', movie=movieToDelete) if __name__ == '__main__': app.debug = True app.run(port=4996)
mrSlavik22mpeitop/stepik_selenium
flask_app_mpei.py
flask_app_mpei.py
py
2,261
python
en
code
0
github-code
6
29104292358
import numpy as np import pandas as pd np.random.seed(123) data = pd.DataFrame({'A': np.random.normal(0, 1, 50), 'B': np.random.normal(0, 1, 50), 'C': np.random.normal(0, 1, 50)}) # extract a single column from the DataFrame col = data['C'] threshold = 0.5 # filter out the outliers in the selected column col_filtered = col[np.abs(col) <= threshold] # use the .loc accessor to filter out the outliers in the selected column col_filtered1 = col.loc[np.abs(col) <= threshold] print("Original column:\n", col) print("\nFiltered column:\n", col_filtered) print("\nFiltered column (.loc):\n", col_filtered1)
shifa309/-Deep-Learning-BWF-Shifa-Imran
Task15/Shifa_6.py
Shifa_6.py
py
653
python
en
code
0
github-code
6
16439987677
import math from datetime import datetime, timedelta from decimal import Decimal from financial.input import ( FinancialDataInput, FinancialStatisticsInput, NullFinancialDataInput, NullFinancialStatisticsInput, ) from financial.model import FinancialData, db class FinancialDataInputValidationService: def __init__(self, request_args): self.validation_errors = [] self.financial_data = self.validate_and_parse_financial_data_input(request_args) def validate_and_parse_financial_data_input( self, request_args ) -> FinancialDataInput | NullFinancialDataInput: # default start_date is 14 days ago start_date = request_args.get( "start_date", (datetime.now() + timedelta(days=-14)).strftime("%Y-%m-%d") ) # default end_date is today end_date = request_args.get("end_date", datetime.now().strftime("%Y-%m-%d")) for field_name, date in (("start_date", start_date), ("end_date", end_date)): try: datetime.strptime(date, "%Y-%m-%d") except ValueError: self.validation_errors.append(f"{field_name} is not a valid date") return NullFinancialDataInput() start_date = datetime.strptime(start_date, "%Y-%m-%d").date() end_date = datetime.strptime(end_date, "%Y-%m-%d").date() if start_date > end_date: self.validation_errors.append("start_date is after end_date") return NullFinancialDataInput() # use "IBM" as default symbol symbol = request_args.get("symbol", "IBM") if symbol not in ["IBM", "AAPL"]: self.validation_errors.append("symbol is not valid") return NullFinancialDataInput() limit = request_args.get("limit", "5") # Use 1 as default page number. Page 1 is the first page. page = request_args.get("page", "1") for field_name, value in [("limit", limit), ("page", page)]: try: int(value) except ValueError: self.validation_errors.append(f"{field_name} is not a valid integer") return NullFinancialDataInput() return FinancialDataInput( start_date=start_date, end_date=end_date, symbol=symbol, limit=int(limit), page=int(page), ) class FinancialStatisticsInputValidationService: def __init__(self, request_args): self.validation_errors = [] self.financial_statistics = self.validate_and_parse_financial_statistics_input( request_args ) def validate_and_parse_financial_statistics_input( self, request_args ) -> FinancialStatisticsInput | NullFinancialStatisticsInput: # check if all required fields are present for required_field in ("start_date", "end_date", "symbol"): if required_field not in request_args: self.validation_errors.append(f"{required_field} is required") return NullFinancialStatisticsInput() start_date = request_args.get("start_date") end_date = request_args.get("end_date") for field_name, date in (("start_date", start_date), ("end_date", end_date)): try: datetime.strptime(date, "%Y-%m-%d") except ValueError: self.validation_errors.append(f"{field_name} is not a valid date") return NullFinancialStatisticsInput() start_date = datetime.strptime(start_date, "%Y-%m-%d").date() end_date = datetime.strptime(end_date, "%Y-%m-%d").date() if start_date > end_date: self.validation_errors.append("start_date is after end_date") return NullFinancialStatisticsInput() symbol = request_args.get("symbol") # symbol only allows IBM and AAPL if symbol not in ("IBM", "AAPL"): self.validation_errors.append("symbol is not valid") return NullFinancialStatisticsInput() return FinancialStatisticsInput( start_date=start_date, end_date=end_date, symbol=symbol ) class GetFinancialDataService: """Service to get financial data from database""" def __init__(self, financial_data_input: FinancialDataInput): self.financial_data_input = financial_data_input self.financial_data_output = [] self.pagination = {} def get_financial_data(self) -> None: financial_data = db.session.scalars( db.select(FinancialData) .where( FinancialData.symbol == self.financial_data_input.symbol, FinancialData.date >= self.financial_data_input.start_date, FinancialData.date <= self.financial_data_input.end_date, ) .order_by(FinancialData.date) ).all() self.format_pagination(len(financial_data)) self.format_financial_data(financial_data) def format_financial_data(self, financial_data: list[FinancialData]) -> None: start_index = ( self.financial_data_input.page - 1 ) * self.financial_data_input.limit end_index = start_index + self.financial_data_input.limit self.financial_data_output = [ { "symbol": row.symbol, "date": row.date.strftime("%Y-%m-%d"), "open_price": row.open_price, "close_price": row.close_price, "volume": row.volume, } for row in financial_data[start_index:end_index] ] def format_pagination(self, total_length: int) -> None: # page starts at 1 self.pagination = { "total": total_length, "limit": self.financial_data_input.limit, "page": self.financial_data_input.page, "pages": math.ceil(total_length / self.financial_data_input.limit), } class CalculateFinancialStatisticsService: """Service to get financial data from database and calculate financial statistics""" def __init__(self, financial_statistics_input: FinancialStatisticsInput): self.financial_statistics_input = financial_statistics_input self.financial_statistics_output = {} def calculate_financial_statistics(self) -> None: financial_data = db.session.scalars( db.select(FinancialData).where( FinancialData.symbol == self.financial_statistics_input.symbol, FinancialData.date >= self.financial_statistics_input.start_date, FinancialData.date <= self.financial_statistics_input.end_date, ) ).all() self.format_financial_statistics(financial_data) def format_financial_statistics(self, financial_data: list[FinancialData]) -> None: self.financial_statistics_output = { "symbol": self.financial_statistics_input.symbol, "start_date": self.financial_statistics_input.start_date.strftime( "%Y-%m-%d" ), "end_date": self.financial_statistics_input.end_date.strftime("%Y-%m-%d"), "average_daily_open_price": str( self.calculate_average_daily_open_price(financial_data) ), "average_daily_close_price": str( self.calculate_average_daily_close_price(financial_data) ), "average_daily_volume": str( self.calculate_average_daily_volume(financial_data) ), } def calculate_average_daily_volume( self, financial_data: list[FinancialData] ) -> Decimal: """Calculate average daily volume. Round to nearest integer""" return round(sum(row.volume for row in financial_data) / len(financial_data)) def calculate_average_daily_open_price( self, financial_data: list[FinancialData] ) -> Decimal: """Calculate average daily open price. Round to 2 decimal places""" return round( (sum(row.open_price for row in financial_data) / len(financial_data)), 2 ) def calculate_average_daily_close_price( self, financial_data: list[FinancialData] ) -> Decimal: """Calculate average daily close price. Round to 2 decimal places""" return round( (sum(row.close_price for row in financial_data) / len(financial_data)), 2 )
pevenc12/python_assignment
financial/services.py
services.py
py
8,468
python
en
code
null
github-code
6
21480418170
from collections import namedtuple from functools import partial from itertools import count, groupby, zip_longest import bpy import numpy as np import re from .log import log, logd from .helpers import ( ensure_iterable, get_context, get_data_collection, get_layers_recursive, load_property, reshape, save_property, select_only, swap_names, titlecase, ) logs = partial(log, category="SAVE") custom_prop_pattern = re.compile(r'(.+)?\["([^"]+)"\]') prop_pattern = re.compile(r'(?:(.+)\.)?([^"\.]+)') class GRET_OT_property_warning(bpy.types.Operator): """Changes won't be saved""" bl_idname = 'gret.property_warning' bl_label = "Not Overridable" bl_options = {'INTERNAL'} def draw_warning_if_not_overridable(layout, bid, data_path): """Adds a warning to a layout if the requested property is not available or not overridable.""" if bid and bid.override_library: try: if not bid.is_property_overridable_library(data_path): layout.operator(GRET_OT_property_warning.bl_idname, icon='ERROR', text="", emboss=False, depress=True) return True except TypeError: pass return False class PropertyWrapper(namedtuple('PropertyWrapper', 'struct prop_name is_custom')): """Provides read/write access to a property given its data path.""" __slots__ = () @classmethod def from_path(cls, struct, data_path): # To set a property given a data path it's necessary to split the struct and attribute name. # `struct.path_resolve(path, False)` returns a bpy_prop, and bpy_prop.data holds the struct. # Unfortunately it knows but doesn't expose the attribute name (see `bpy_prop.__str__`) # It's also necessary to determine if it's a custom property, the interface is different. # Just parse the data path with a regular expression instead. try: prop_match = custom_prop_pattern.fullmatch(data_path) if prop_match: if prop_match[1]: struct = struct.path_resolve(prop_match[1]) prop_name = prop_match[2] if prop_name not in struct: return None return cls(struct, prop_name, True) prop_match = prop_pattern.fullmatch(data_path) if prop_match: if prop_match[1]: struct = struct.path_resolve(prop_match[1]) prop_name = prop_match[2] if not hasattr(struct, prop_name): return None return cls(struct, prop_name, False) except ValueError: return None @property def data_path(self): return f'["{self.prop_name}"]' if self.is_custom else self.prop_name @property def title(self): if self.is_custom: return titlecase(self.prop_name) # Custom property name should be descriptive enough else: return f"{getattr(self.struct, 'name', self.struct.bl_rna.name)} {titlecase(self.prop_name)}" @property def default_value(self): if self.is_custom: return self.struct.id_properties_ui(self.prop_name).as_dict()['default'] else: prop = self.struct.bl_rna.properties[self.prop_name] if getattr(prop, 'is_array', False): return reshape(prop.default_array, prop.array_dimensions) return getattr(prop, 'default', None) @property def value(self): if self.is_custom: return self.struct[self.prop_name] else: return save_property(self.struct, self.prop_name) @value.setter def value(self, new_value): if self.is_custom: self.struct[self.prop_name] = new_value else: load_property(self.struct, self.prop_name, new_value) class PropOp(namedtuple('PropOp', 'prop_wrapper value')): __slots__ = () def __new__(cls, struct, data_path, value=None): prop_wrapper = PropertyWrapper.from_path(struct, data_path) if not prop_wrapper: raise RuntimeError(f"Couldn't resolve {data_path}") saved_value = prop_wrapper.value if value is not None: prop_wrapper.value = value return super().__new__(cls, prop_wrapper, saved_value) def revert(self, context): self.prop_wrapper.value = self.value class PropForeachOp(namedtuple('PropForeachOp', 'collection prop_name values')): __slots__ = () def __new__(cls, collection, prop_name, value=None): assert isinstance(collection, bpy.types.bpy_prop_collection) if len(collection) == 0: # Can't investigate array type if there are no elements (would do nothing anyway) return super().__new__(cls, collection, prop_name, np.empty(0)) prop = collection[0].bl_rna.properties[prop_name] element_type = type(prop.default) num_elements = len(collection) * prop.array_length saved_values = np.empty(num_elements, dtype=element_type) collection.foreach_get(prop_name, saved_values) if value is not None: values = np.full(num_elements, value, dtype=element_type) collection.foreach_set(prop_name, values) return super().__new__(cls, collection, prop_name, saved_values) def revert(self, context): if self.values.size > 0: self.collection.foreach_set(self.prop_name, self.values) class CallOp(namedtuple('CallOp', 'func args kwargs')): __slots__ = () def __new__(cls, func, *args, **kwargs): assert callable(func) return super().__new__(cls, func, args, kwargs) def revert(self, context): self.func(*self.args, **self.kwargs) class SelectionOp(namedtuple('SelectionOp', 'selected_objects active_object collection_hide ' 'layer_hide object_hide')): __slots__ = () def __new__(cls, context): return super().__new__(cls, selected_objects=context.selected_objects[:], active_object=context.view_layer.objects.active, collection_hide=[(cl, cl.hide_select, cl.hide_viewport, cl.hide_render) for cl in bpy.data.collections], layer_hide=[(layer, layer.hide_viewport, layer.exclude) for layer in get_layers_recursive(context.view_layer.layer_collection)], object_hide=[(obj, obj.hide_select, obj.hide_viewport, obj.hide_render) for obj in bpy.data.objects]) def revert(self, context): for collection, hide_select, hide_viewport, hide_render in self.collection_hide: try: collection.hide_select = hide_select collection.hide_viewport = hide_viewport collection.hide_render = hide_render except ReferenceError: pass for layer, hide_viewport, exclude in self.layer_hide: try: layer.hide_viewport = hide_viewport layer.exclude = exclude except ReferenceError: pass for obj, hide_select, hide_viewport, hide_render in self.object_hide: try: obj.hide_select = hide_select obj.hide_viewport = hide_viewport obj.hide_render = hide_render except ReferenceError: pass select_only(context, self.selected_objects) try: context.view_layer.objects.active = self.active_object except ReferenceError: pass class CollectionOp(namedtuple('CollectionOp', 'collection remove_func_name items is_whitelist')): __slots__ = () def __new__(cls, collection, items=None): assert isinstance(collection, bpy.types.bpy_prop_collection) # Find out if there's a remove-like function available for func_name in ('remove', 'unlink', ''): func = collection.bl_rna.functions.get(func_name) if (func is not None and sum(param.is_required for param in func.parameters) == 1 and func.parameters[0].type == 'POINTER'): break if not func_name: raise RuntimeError(f"'{collection.bl_rna.name}' is not supported") if items is None: # On reverting, remove all but the current items return super().__new__(cls, collection, func_name, set(collection), True) else: # On reverting, remove the specified items return super().__new__(cls, collection, func_name, set(items), False) def revert(self, context): # Allow passing in object names instead of object references # Compare types, don't use `isinstance` as that will throw on removed objects items = set(self.collection.get(el) if type(el) == str else el for el in self.items) items.discard(None) remove_func = getattr(self.collection, self.remove_func_name) if self.is_whitelist: # Remove items not in the set for item in set(self.collection) - items: logs("Removing", item) remove_func(item) else: # Remove items in the set for item in items: try: logs("Removing", item) remove_func(item) except ReferenceError: pass class RenameOp(namedtuple('RenameOp', 'bid name other_bid')): __slots__ = () def __new__(cls, bid, name, start_num=0, name_format="{name}{num}"): data_collection = get_data_collection(bid) if data_collection is None: raise RuntimeError(f"Type {type(bid).__name__} is not supported") saved_name = bid.name bid.tag = True # Not strictly necessary, tagging allows custom naming format to work for num in count(start=start_num): new_name = name if (num == start_num) else name_format.format(name=name, num=num) other_bid = data_collection.get(new_name) if not other_bid or bid == other_bid: bid.name = new_name return super().__new__(cls, bid, saved_name, None) elif other_bid and not other_bid.tag: swap_names(bid, other_bid) return super().__new__(cls, bid, saved_name, other_bid) def revert(self, context): if self.other_bid: try: swap_names(self.bid, self.other_bid) except ReferenceError: pass self.bid.name = self.name # Ensure the name is reverted if swap_names failed self.bid.tag = False class SaveState: """Similar to an undo stack. See SaveContext for example usage.""" def __init__(self, context, name, refresh=False): self.context = context self.name = name self.refresh = refresh self.operations = [] def revert(self): while self.operations: self._pop_op() if self.refresh: # Might be necessary in some cases where context.scene.view_layers.update() is not enough self.context.scene.frame_set(self.context.scene.frame_current) def _push_op(self, op_cls, *args, **kwargs): try: self.operations.append(op_cls(*args, **kwargs)) logs("Push", self.operations[-1], max_len=90) except Exception as e: logs(f"Error pushing {op_cls.__name__}: {e}") def _pop_op(self): op = self.operations.pop() try: logs("Pop", op, max_len=90) op.revert(self.context) except Exception as e: logs(f"Error reverting {op.__class__.__name__}: {e}") def prop(self, struct, data_paths, values=[None]): """Save the specified properties and optionally assign new values.""" if isinstance(data_paths, str): data_paths = data_paths.split() if not isinstance(values, list): values = [values] if len(values) != 1 and len(values) != len(data_paths): raise ValueError("Expected either a single value or as many values as data paths") for data_path, value in zip_longest(data_paths, values, fillvalue=values[0]): self._push_op(PropOp, struct, data_path, value) def prop_foreach(self, collection, prop_name, value=None): """Save the specified property for all elements in the collection.""" self._push_op(PropForeachOp, collection, prop_name, value) def selection(self): """Save the current object selection.""" self._push_op(SelectionOp, self.context) def temporary(self, collection, items): """Mark one or more items for deletion.""" self._push_op(CollectionOp, collection, ensure_iterable(items)) def temporary_bids(self, bids): """Mark one or more IDs for deletion.""" for bid_type, bids in groupby(ensure_iterable(bids), key=lambda bid: type(bid)): if bid_type is not type(None): self._push_op(CollectionOp, get_data_collection(bid_type), bids) def keep_temporary_bids(self, bids): """Keep IDs that were previously marked for deletion.""" bids = set(ensure_iterable(bids)) for op in reversed(self.operations): if isinstance(op, CollectionOp) and not op.is_whitelist: op.items.difference_update(bids) def collection(self, collection): """Remember the current contents of a collection. Any items created later will be removed.""" self._push_op(CollectionOp, collection) def viewports(self, header_text=None, show_overlays=None, **kwargs): """Save and override 3D viewport settings.""" for area in self.context.screen.areas: if area.type == 'VIEW_3D': # Don't think there's a way to find out the current header text, reset on reverting self._push_op(CallOp, area.header_text_set, None) area.header_text_set(header_text) for space in area.spaces: if space.type == 'VIEW_3D': if show_overlays is not None: self._push_op(PropOp, space.overlay, 'show_overlays', show_overlays) for field_name, field_value in kwargs.items(): self._push_op(PropOp, space.shading, field_name, field_value) def rename(self, bid, name): """Save the IDs current name and give it a new name.""" self._push_op(RenameOp, bid, name) def clone_obj(self, obj, to_mesh=False, parent=None, reset_origin=False): """Clones or converts an object. Returns a new, visible scene object with unique data.""" if to_mesh: dg = self.context.evaluated_depsgraph_get() new_data = bpy.data.meshes.new_from_object(obj, preserve_all_data_layers=True, depsgraph=dg) self.temporary_bids(new_data) new_obj = bpy.data.objects.new(obj.name + "_", new_data) self.temporary_bids(new_obj) else: new_data = obj.data.copy() self.temporary_bids(new_data) new_obj = obj.copy() self.temporary_bids(new_obj) new_obj.name = obj.name + "_" new_obj.data = new_data assert new_data.users == 1 if obj.type == 'MESH': # Move object materials to mesh for mat_index, mat_slot in enumerate(obj.material_slots): if mat_slot.link == 'OBJECT': new_data.materials[mat_index] = mat_slot.material new_obj.material_slots[mat_index].link = 'DATA' # New objects are moved to the scene collection, ensuring they're visible self.context.scene.collection.objects.link(new_obj) new_obj.hide_set(False) new_obj.hide_viewport = False new_obj.hide_render = False new_obj.hide_select = False new_obj.parent = parent if reset_origin: new_data.transform(new_obj.matrix_world) bpy.ops.object.origin_set(get_context(new_obj), type='ORIGIN_GEOMETRY', center='MEDIAN') else: new_obj.matrix_world = obj.matrix_world return new_obj class SaveContext: """ Saves state of various things and keeps track of temporary objects. When leaving scope, operations are reverted in the order they were applied. Example usage: with SaveContext(bpy.context, "test") as save: save.prop_foreach(bpy.context.scene.objects, 'location') bpy.context.active_object.location = (1, 1, 1) """ def __init__(self, *args, **kwargs): self.save = SaveState(*args, **kwargs) def __enter__(self): return self.save def __exit__(self, exc_type, exc_value, traceback): self.save.revert() class StateMachineBaseState: def __init__(self, owner): self.owner = owner def on_enter(self): pass def on_exit(self): pass class StateMachineMixin: """Simple state machine.""" state_stack = None state_events_on_reentry = True @property def state(self): return self.state_stack[-1] if self.state_stack else None def pop_state(self, *args, **kwargs): if self.state: self.state_stack.pop().on_exit(*args, **kwargs) if self.state_events_on_reentry and self.state: self.state.on_enter() def push_state(self, state_class, *args, **kwargs): assert state_class new_state = state_class(self) if self.state_events_on_reentry and self.state: self.state.on_exit() if self.state_stack is None: self.state_stack = [] self.state_stack.append(new_state) if new_state: new_state.on_enter(*args, **kwargs) class DrawHooksMixin: space_type = bpy.types.SpaceView3D draw_post_pixel_handler = None draw_post_view_handler = None def hook(self, context): if not self.draw_post_pixel_handler and hasattr(self, "on_draw_post_pixel"): self.draw_post_pixel_handler = self.space_type.draw_handler_add(self.on_draw_post_pixel, (context,), 'WINDOW', 'POST_PIXEL') if not self.draw_post_view_handler and hasattr(self, "on_draw_post_view"): self.draw_post_pixel_handler = self.space_type.draw_handler_add(self.on_draw_post_view, (context,), 'WINDOW', 'POST_VIEW') def unhook(self): if self.draw_post_pixel_handler: self.space_type.draw_handler_remove(self.draw_post_pixel_handler, 'WINDOW') self.draw_post_pixel_handler = None if self.draw_post_view_handler: self.space_type.draw_handler_remove(self.draw_post_view_handler, 'WINDOW') self.draw_post_view_handler = None def show_window(width=0.5, height=0.5): """Open a window at the cursor. Size can be pixels or a fraction of the main window size.""" # Hack from https://blender.stackexchange.com/questions/81974 with SaveContext(bpy.context, "show_window") as save: render = bpy.context.scene.render prefs = bpy.context.preferences main_window = bpy.context.window_manager.windows[0] save.prop(prefs, 'is_dirty view.render_display_type') save.prop(render, 'resolution_x resolution_y resolution_percentage') render.resolution_x = int(main_window.width * width) if width <= 1.0 else int(width) render.resolution_y = int(main_window.height * height) if height <= 1.0 else int(height) render.resolution_percentage = 100 prefs.view.render_display_type = 'WINDOW' bpy.ops.render.view_show('INVOKE_DEFAULT') return bpy.context.window_manager.windows[-1] def show_text_window(text, title, width=0.5, height=0.5, font_size=16): """Open a window at the cursor displaying the given text.""" # Open a render preview window, then modify it to show a text editor instead window = show_window(width, height) area = window.screen.areas[0] area.type = 'TEXT_EDITOR' space = area.spaces[0] assert isinstance(space, bpy.types.SpaceTextEditor) # Make a temporary text string = text text = bpy.data.texts.get(title) or bpy.data.texts.new(name=title) text.use_fake_user = False text.from_string(string) text.cursor_set(0) # Minimal interface if font_size is not None: space.font_size = font_size space.show_line_highlight = True space.show_line_numbers = False space.show_margin = False space.show_region_footer = False space.show_region_header = False space.show_region_ui = False space.show_syntax_highlight = False space.show_word_wrap = True space.text = text def register(settings, prefs): bpy.utils.register_class(GRET_OT_property_warning) def unregister(): bpy.utils.unregister_class(GRET_OT_property_warning)
greisane/gret
operator.py
operator.py
py
21,651
python
en
code
298
github-code
6
12984152626
#7. Dadas dos listas enlazadas simples ya creadas (PTR1 y PTR2) ordenadas #ascendentemente, hacer un algoritmo que cree una tercera lista PTR3 #ordenada descendentemente con los elementos comunes de las dos listas. from List import List,Node PTR1 = List(list=[1,3,5,7,9,10]) PTR2 = List(list=[1,2,4,5,6,6,7,8,9,11]) PTR3 = List() i = PTR1.first while i: if PTR2.count(i.data) > 0: PTR3.append(i.data) i = i.next PTR3.reverse() PTR3.show()
WaffleLovesCherries/ActividadListasEnlazadas
ClassList/Ejercicio7.py
Ejercicio7.py
py
466
python
es
code
0
github-code
6
10422164463
from __future__ import annotations import traceback from PySide6 import QtWidgets from randovania.games.prime2.patcher.claris_randomizer import ClarisRandomizerExportError def create_box_for_exception(val: Exception) -> QtWidgets.QMessageBox: box = QtWidgets.QMessageBox( QtWidgets.QMessageBox.Critical, "An exception was raised", ( f"An unhandled Exception occurred:\n{val}\n\n" "When reporting, make sure to paste the entire contents of the following box." "\nIt has already be copied to your clipboard." ), QtWidgets.QMessageBox.Ok, ) from randovania.gui.lib import common_qt_lib common_qt_lib.set_default_window_icon(box) detailed_exception = "".join(traceback.format_exception(val)) if isinstance(val, ClarisRandomizerExportError): detailed_exception += "\n\n" detailed_exception += val.detailed_text() box.setDetailedText(detailed_exception) common_qt_lib.set_clipboard(detailed_exception) # Expand the detailed text for button in box.buttons(): if box.buttonRole(button) == QtWidgets.QMessageBox.ActionRole: button.click() break box_layout: QtWidgets.QGridLayout = box.layout() box_layout.addItem( QtWidgets.QSpacerItem(600, 0, QtWidgets.QSizePolicy.Policy.Minimum, QtWidgets.QSizePolicy.Policy.Expanding), box_layout.rowCount(), 0, 1, box_layout.columnCount(), ) return box
randovania/randovania
randovania/gui/lib/error_message_box.py
error_message_box.py
py
1,513
python
en
code
165
github-code
6
32713874308
import scrapy class KistaSpider(scrapy.Spider): name = "kista" def start_requests(self): urls = ['https://www.hemnet.se/bostader?location_ids%5B%5D=473377&item_types%5B%5D=bostadsratt', ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): yield { 'sold': response.css("span.result-type-toggle__sold-count::text").re(r'\d+'), 'for_sell': response.css("span.result-type-toggle__for-sale-count::text").re(r'\d+') }
theone4ever/hemnet
hemnet/spiders/kista_bostadsratt_spider.py
kista_bostadsratt_spider.py
py
547
python
en
code
0
github-code
6
1482920507
# 从爬虫生成的Excel表格中读取数据并生成词云图 import os import sys import PIL import jieba import openpyxl import wordcloud import configparser import numpy as np import pandas as pd import matplotlib.pyplot as plt from collections import Counter from multiprocessing import Pool # 定义一些参数,参数的详细介绍见GitHub上的readme.md config_file = 'config/config.ini' config_Section_Name = 'GC_DEFAULT' # 要读取的配置页名 stop_Word = ['!', '!', ':', '*', ',', ',', '?','《','》', '。', ' ', '的', '了', '是', '啊', '吗', '吧','这','你','我','他','就'] # 停用词表 def read_Danmu(workbook_Name, sheet_Name): # 从Excel表中读取数据 try: workbook = openpyxl.load_workbook(workbook_Name) worksheet = workbook[sheet_Name] # 当然也可以通过索引读sheet,为了可读性选择用名称 data = worksheet.iter_rows(values_only=1) return data #若报错,则返回空迭代器 except openpyxl.utils.exceptions.InvalidFileException: print(f"输入文件的路径或格式错误,请打开{config_file}文件重新配置路径\n") return iter(()) except KeyError: print(f"工作表页名错误,请检查Sheet的名字和{config_file}中是否一致\n") return iter(()) except: exc_type, exc_value, exc_traceback = sys.exc_info() print(f"发生错误: {exc_type} - {exc_value}") return iter(()) def cut_words(row): try: # 每行第一列是弹幕,第二列是出现次数 sentence = row[0] count = row[1] # 运用jieba 进行分词,将结果储存在Counter中,再将其中词语的出现次数翻count倍 words = jieba.lcut(sentence) # 去除停用词表中的词 cut_Words = pd.Series(words) cut_Words = cut_Words[~cut_Words.isin(stop_Word)] # 将分词存入计数器中 new_Counter = Counter(cut_Words.tolist()) for item in new_Counter: new_Counter[item] *= count # 弹幕中词语出现数 = 弹幕出现次数*弹幕中词语出现次数 return new_Counter except TypeError: return Counter() #遇见异常输入的情况,返回空计数器。 def generate_Word_Cloud(counter): # 生成词云图 try: if not counter: # 如果计数器对象为空,则给出提示并退出函数 return "输入的词频为空!" img = PIL.Image.open(pic_Path).convert('RGBA') # 解决灰度图像ERROR pic = np.array(img) image_colors = wordcloud.ImageColorGenerator(pic) word_Cloud = wordcloud.WordCloud( font_path=font_Path, mask=pic, width=WC_Width, height=WC_Height, mode="RGBA", background_color='white') word_Cloud.generate_from_frequencies(counter) plt.imshow(word_Cloud.recolor(color_func=image_colors), interpolation='bilinear') word_Cloud.to_file(output_Path) plt.axis('off') plt.show() return f"词云图生成完成,请前往{output_Path}查看" except FileNotFoundError : #pic_Path 或 font_Path错误的情况 return f"图片或字体路径错误,请前往{config_file}核查。" except TypeError or ValueError : #WC_Width 或WC_Height类型或数组错误的情况 return f"图片的Height与Width设置有误,请前往{config_file}核查。" except PIL.UnidentifiedImageError : return f"不支持该类型的图片,请修改图片路径。" except Exception as e: return f"生成词云图时发生错误:{e}" def main(): rows = read_Danmu(workbook_Name, sheet_Name) word_counts = Counter() # 利用线程池优化分词速度,在生成所有弹幕的词云图是能节省时间 with Pool() as pool: cut_words_results = pool.map(cut_words, rows) for result in cut_words_results: word_counts.update(result) print(generate_Word_Cloud(word_counts)) if __name__ == "__main__": # 读取参数的配置 config = configparser.ConfigParser() if not os.path.exists(config_file): print(f"配置文件 {config_file} 不存在!") exit(1) config.read(config_file) workbook_Name = config.get(config_Section_Name, 'workbook_name', fallback='output/Top_20_danmu.xlsx') # 要读取的Excel表的名称,默认为crawler.py生成的文件 # 要读取的Excel表的页的名称,可从['Top 20', '所有弹幕']中选择 sheet_Name = config.get(config_Section_Name, 'sheet_Name', fallback='所有弹幕') WC_Width = config.getint( config_Section_Name, 'WC_Width', fallback=1200) # 词云图的宽度 WC_Height = config.getint( config_Section_Name, 'WC_Height', fallback=1200) # 词云图的高度 font_Path = config.get(config_Section_Name, 'font_Path', fallback="config/msyh.ttc") # 字体存储路径 pic_Path = config.get(config_Section_Name, 'pic_Path', fallback="config/m.png") # 词云背景图路径 output_Path = config.get( config_Section_Name, 'output_Path', fallback="output/word_could.png") main()
AyaGuang/bilibili-Danmu-Crawler
102101430/generate_Cloud.py
generate_Cloud.py
py
5,425
python
zh
code
0
github-code
6
37731445163
import math from visual import* import Image dx=-50 dy=15 #Green comment block was originally user input for drop position, etc., #but was commented out, just not deleted. """ dx=-20 dy=input("please input the drop y position....recommand 10 or higher") w=input("if you know the bounce height press '1', if you dont press '2' :") if w==1: bh=input("enter the 1st bounce height") res=sqrt(bh/dy)##the equation for resitution else: res=.89 else : print("try the balls we know!" ) type1=input("press '1' for b-ball, '2' for tennis ball") if type1==1:#b ball res=0.83#restitution elif type1==2:#t ball res=0.72 else: #no friction ball. no restitution res=1 """ im = Image.open('tennisball.jpg') tex = materials.texture(data=im, mapping='spherical') im2 = Image.open('BasketballColor.jpg') tex2 = materials.texture(data=im2, mapping='spherical') im3 = Image.open('golfball.jpg') tex3 = materials.texture(data=im3, mapping='spherical') floor = box(pos=(0,0,0), length=100, height=0.5, width=2, color= (1,1,1), material=materials.wood) #width=5, #edit floor1 = box(pos=(0,0,-5), length=100, height=0.5, width=2, color= (1,1,1), material=materials.wood) floor2 = box(pos=(0,0,5), length=100, height=0.5, width=2, color= (1,1,1), material=materials.wood) floor3 = box(pos=(0,0,-10), length=100, height=0.5, width=2, color= (1,1,1), material=materials.wood) pball = sphere(pos=(dx,dy,-10), radius=1.5, color=color.red, make_trail=True, material=materials.emissive) #edit ball = sphere(pos=(dx,dy,0), radius=1, material=tex, make_trail=True, color=color.green) ball2 = sphere(pos=(dx,dy,-5), radius=2, material=tex2, make_trail=True, color=color.orange) #the starting point of the ball .. add z value to make it 3d ball3 = sphere(pos=(dx,dy,5), radius=.5, material=tex3, make_trail=True) pball.velocity = vector(4,0) ball.velocity = vector(4,0) ball2.velocity = vector(4,0) ball3.velocity = vector(4,0)#(4,0,0) for 3d motion gravity = 9.81 dt = 0.01 #delta time frame of the ball while true: rate(100) #rate of speed pball.pos = pball.pos + pball.velocity*dt #ball.pos += velocity*dt ball.pos = ball.pos + ball.velocity*dt #ball.pos += velocity*dt ball2.pos = ball2.pos + ball2.velocity*dt #ball.pos += velocity*dt ball3.pos = ball3.pos + ball3.velocity*dt #ball.pos += velocity*dt if pball.y < .5: pball.velocity.y = abs(pball.velocity.y) else: pball.velocity.y = pball.velocity.y - gravity*dt if ball.y < .5: ball.velocity.y = abs(ball.velocity.y*0.905) else: ball.velocity.y = ball.velocity.y - gravity*dt if ball2.y < .5: ball2.velocity.y = abs(ball2.velocity.y*0.79) else: ball2.velocity.y = ball2.velocity.y - gravity*dt if ball3.y < .5: ball3.velocity.y = abs(ball3.velocity.y*0.78) else: ball3.velocity.y = ball3.velocity.y - gravity*dt """NOTE: All lines are original, except for the if-else statements, which are edited, unless otherwise stated. """
emayer2/Projects
Python Simulation/Ball Bounce.py
Ball Bounce.py
py
3,190
python
en
code
0
github-code
6
72474001467
import random import numpy as np from math import sqrt, log import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x1_list = [] x2_list = [] y_list = [] counter = 0 def drawFunc(minX, minY, maxX, maxY, ax = None): #fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) #ax.set_xlabel('x1') #ax.set_ylabel('x2') #ax.set_zlabel('f(x1,x2)') x1_array = np.arange(minX, maxX, 0.1) x2_array = np.arange(minY, maxY, 0.1) x1_array, x2_array = fill_arrays(x1_array, x2_array) R = fill_z(x1_array, x2_array) x1_array = np.arange(minX, maxX, 0.1) x2_array = np.arange(minY, maxY, 0.1) x1_array, x2_array = np.meshgrid(x1_array, x2_array) #R = f(x1_array, x2_array) #drawBoder(ax, x1_array, g1_1) #drawBoder(ax, x1_array, g2_1) #drawBoder(ax, x1_array, g3_1) #drawBoder(ax, x1_array, g4_1) #print(R) ax.plot_surface(x1_array, x2_array, R, alpha = 0.6) #plt.show() def fill_arrays(x, y): final_y = [] final_x = [] for i in range(len(y)): final_y.append([]) for j in range(len(x)): if (barier(x[j], y[i])): #if f(x[j], y[i]) > 50: #print("i =", i, "j =", j) #print("x =", x[j], "y =", y[i], "f =", f(x[j], y[i])) final_y[i].append(x[j]) else: final_y[i].append(0) for i in range(len(x)): final_x.append([]) for j in range(len(y)): if (barier(x[j], y[i])): final_x[i].append(y[j]) else: final_x[i].append(0) #for i in range(len(final_x)): # print(i,")", final_x[i]) return final_y, final_x def fill_z(x, y): z = [] for i in range(len(x)): z.append([]) for j in range(len(x[i])): if (x[i][j] != 0 and y[j][i] != 0): z[i].append(f(x[i][j], y[j][i])) else: z[i].append(0.0) #print("i =", i, "j =", j) #print("x =", x[i][j], "y =", y[j][i], "z =", z[i][j]) #for i in range(len(z)): # print(i,")", z[i]) r = np.array(z) #for i in range(len(z)): # r.__add__(np.array[z[i]]) return r def fill_F2(x, y): z = [] for i in range(len(x)): z.append([]) for j in range(len(x[i])): if (barier(x[i][j], y[i][j])): z[i].append(f(x[i][j], y[i][j])) else: z[i].append(0.0) r = np.array(z) #for i in range(len(z)): # r.__add__(np.array[z[i]]) #print(r) return r def g1_1(x1): return (-3*x1 + 6) / 2 def g2_1(x1): return (-x1 - 3) / (-1) def g3_1(x1): return (x1 - 7) / (-1) def g4_1(x1): return (2*x1 - 4) / 3 def drawBoder(ax, x1, g): zs = np.arange(0, 80, 35) X, Z = np.meshgrid(x1, zs) Y = g(X) #fig = plt.figure() #ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, alpha = 0.4) def show(x1_list, x2_list): N = int(x1_list.__len__()) if (N <= 0): return fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('f(x1,x2)') #x1_array = np.arange(min(x1_list) - 0.1, max(x1_list) + 0.1, 0.1) #x2_array = np.arange(min(x2_list) - 0.1, max(x2_list) + 0.1, 0.1) #x1_array, x2_array = np.meshgrid(x1_array, x2_array) #R = f(x1_array, x2_array) #ax.plot_surface(x1_array, x2_array, R, color='b', alpha=0.5) drawFunc(0, 0, 5, 5, ax) x1_list2 = [] x2_list2 = [] f_list = [] ax.scatter(x1_list[0], x2_list[0], f(x1_list[0], x2_list[0]), c='black') x1_list2.append(x1_list[0]) x2_list2.append(x2_list[0]) f_list.append(f(x1_list[0], x2_list[0])) for n in range(1, N - 1): ax.scatter(x1_list[n], x2_list[n], f(x1_list[n], x2_list[n]), c='red') x1_list2.append(x1_list[n]) x2_list2.append(x2_list[n]) f_list.append(f(x1_list[n], x2_list[n])) ax.scatter(x1_list[N - 1], x2_list[N - 1], f(x1_list[N - 1], x2_list[N - 1]), c='green') x1_list2.append(x1_list[N - 1]) x2_list2.append(x2_list[N - 1]) f_list.append(f(x1_list[N - 1], x2_list[n])) ax.plot(x1_list2, x2_list2, f_list, color="black") plt.show() # <---------- f def f(x1, x2): return (x1-6)**2 +(x2-7)**2 def f_x1(x1, x2): return 2*x1 - 12 def f_x2(x1, x2): return 2*x2 - 14 # --------------> # <---------- gi def g1(x1, x2): return -3*x1 - 2*x2 + 6 def g2(x1, x2): return -x1 + x2 - 3 def g3(x1, x2): return x1 + x2 - 7 def g4(x1, x2): return 2*x1 - 3*x2 - 4 # --------------> # <---------- gi_bool def g1_bool(x1, x2): return -3*x1 - 2*x2 + 6 <= 0 def g2_bool(x1, x2): return -x1 + x2 - 3 <= 0 def g3_bool(x1, x2): return x1 + x2 - 7 <= 0 def g4_bool(x1, x2): return 2*x1 - 3*x2 - 4 <= 0 def barier(x1, x2): return (g1_bool(x1, x2) and g2_bool(x1, x2) and g3_bool(x1, x2) and g4_bool(x1, x2)) # --------------> # <---------- X def F(x1, x2, r): return f(x1,x2) + P(x1, x2, r) def F_x1(x1, x2, r): return f_x1(x1, x2) + P_x1(x1, x2, r) def F_x2(x1, x2, r): return f_x2(x1, x2) + P_x2(x1, x2, r) # --------------> # <-------------- P def P(x1, x2, r): sum = 1/g1(x1, x2) + 1/g2(x1, x2) + 1/g3(x1, x2) + 1/g4(x1, x2) return -r*sum def P_x1(x1, x2, r): sum = 3/(g1(x1, x2)**2) + 1/(g2(x1, x2)**2) - 1/(g3(x1, x2)**2) - 1/(g4(x1, x2)**2) return -r*sum def P_x2(x1, x2, r): sum = 2/(g1(x1, x2)**2) - 1/(g2(x1, x2)**2) - 1/(g3(x1, x2)**2) + 3/(g4(x1, x2)**2) return -r*sum # ------------> def gradient(x1, x2, r): i = F_x1(x1, x2, r) j = F_x2(x1, x2, r) return [i, j] def module_of_gradient(grad): i = 0; j = 1 return sqrt(grad[i]**2 + grad[j]**2) def method_of_gradient_descent_with_a_constant_step(x1, x2, e, M, r): global counter k = 0 counter += 1 x1_next = x1 x2_next = x2 while True: counter += 2 grad = gradient(x1, x2, r) module_grad = module_of_gradient(grad) if ((module_grad < e) and (k >= M)): return (x1_next, x2_next) gamma = 0.1 x1_next = x1 - gamma * grad[0] x2_next = x2 - gamma * grad[1] counter += 2 while (F(x1_next, x2_next, r) - F(x1, x2, r) >= 0 or not barier(x1_next, x2_next)): gamma /= 4 x1_next = x1 - gamma * grad[0] x2_next = x2 - gamma * grad[1] counter += 1 #print(grad, 'x1 =', x1, 'x2 =', x2, 'x1_next =', x1_next, 'x2_next =', x2_next, 'gamma =', gamma) x1_list.append(x1); x2_list.append(x2) if ((sqrt(abs(x1_next - x1)**2 + abs(x2_next - x2)**2) <= e) & (abs(F(x1_next, x2_next, r) - F(x1, x2, r)) <= e)): return (x1_next, x2_next) x1 = x1_next x2 = x2_next k += 1 def barrier_function_method(x1, x2, r, C, e, M, k): min_x1, min_x2 = method_of_gradient_descent_with_a_constant_step(x1, x2, e, M, r) #print("x1 =", min_x1, "x2 =", min_x2) fine = P(min_x1, min_x2, r) #print("fine =", fine) if (abs(fine) <= e): return [(round(min_x1, round_num), round(min_x2, round_num), round(f(min_x1, min_x2), round_num)), k] k += 1 r = r/C return barrier_function_method(min_x1, min_x2, r, C, e, M, k) round_num = 4 x1 = 2.5 x2 = 1 e = 0.0001 M = 100 r = 1 c = 10 k = 0 result = barrier_function_method(x1, x2, r, c, e, M, k) print(f"Barrier function method: {result[0]}; count of iteractions = {result[1]}") print('Count of compute function =', counter + 1) show(x1_list, x2_list) #drawFunc(0, 0, 5, 5)
AlexSmirno/Learning
6 Семестр/Оптимизация/Lab_6_grad.py
Lab_6_grad.py
py
7,739
python
en
code
0
github-code
6
5838127346
from datetime import datetime from maico.sensor.stream import Confluence from maico.sensor.targets.human import Human from maico.sensor.targets.human_feature import MoveStatistics from maico.sensor.targets.first_action import FirstActionFeature import maico.sensor.streams.human_stream as hs class OneToManyStream(Confluence): KINECT_FPS = 30 FRAMES_FOR_MOVE = 15 MOVES_FOR_STAT = 4 def __init__(self, human_stream): self._observation_begin = None # hyper parameters (it will be arguments in future) self.move_threshold = 0.1 # above this speed, human act to move (not searching items) self.move_stream = hs.MoveStream(human_stream, self.FRAMES_FOR_MOVE, self.KINECT_FPS, self.move_threshold) self.move_stat_stream = hs.MoveStatisticsStream(self.move_stream, self.MOVES_FOR_STAT) super(OneToManyStream, self).__init__(human_stream, self.move_stat_stream) def notify(self, target): key = target.__class__ if key is Human: self._pool[key] = [target] # store only 1 (latest) human if self._observation_begin is None: self._observation_begin = datetime.utcnow() # remember first human else: if key not in self._pool: self._pool[key] = [] self._pool[key].append(target) if self.is_activated(): t = self.merge() self.out_stream.push(t) self.reset() def is_activated(self): hs = self.get(Human) stats = self.get(MoveStatistics) if len(hs) == 1 and len(stats) == 1: return True else: return False def merge(self): h = self.get(Human)[0] stat = self.get(MoveStatistics)[0] staying_time = (datetime.utcnow() - self._observation_begin).total_seconds() feature = FirstActionFeature( _id=h._id, staying_time=staying_time, mean_moving_rate=stat.moving_time.sum_ / stat.seconds.sum_, max_moving_rate=stat.moving_time.max_ / stat.seconds.mean_, min_moving_rate=stat.moving_time.min_ / stat.seconds.mean_, mean_moving_speed=stat.moving_speed.mean_ ) return feature
tech-sketch/maico
maico/sensor/streams/one_to_many_stream.py
one_to_many_stream.py
py
2,289
python
en
code
0
github-code
6
74432928827
""" This file is part of Candela. Candela is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Candela is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Candela. If not, see <http://www.gnu.org/licenses/>. """ import curses import sys import signal import threading import textwrap import platform import constants class Shell(): """ The main Candela class Controls the shell by taking control of the current terminal window. Performs input and output to the user """ def __init__(self, scriptfile=None): """ Create an instance of a Shell This call takes over the current terminal by calling curses.initscr() Sets global shell state, including size information, menus, stickers, the header, and the prompt. Kwargs: scriptfile - the name of the script file to run. If not None and the file exists, the script will be immediately run. """ self._register_sigint_handler() self.script_lines = self._parse_script_file(scriptfile) self.script_counter = 0 self.scriptfile = "" self.stdscr = curses.initscr() self.stdscr.keypad(1) self.platform = self._get_platform() # holds the backlog of shell output self.backbuffer = [] self.height,self.width = self.stdscr.getmaxyx() # the list of menus in the shell app self.menus = [] # the currently visible stickers in the app self.stickers = [] # should the command menu be shown self.should_show_help = True # for commands with only positional args, show the # name of the next argument as the user types self.should_show_hint = False # dictionary of functions to call on key events # keys are chars representing the pressed keys self.keyevent_hooks = {} # the text to stick in the upper left corner of the window self.header = "" self._header_bottom = 0 self._header_right = 0 self._header_right_margin = 50 self.prompt = "> " def _parse_script_file(self, filename): """ Open a file if it exists and return its contents as a list of lines Args: filename - the file to attempt to open """ self.scriptfile = filename try: f = open(filename, 'r') script_lines = f.readlines() script_lines = [a.strip('\n') for a in script_lines] f.close() except Exception as e: return return script_lines def runscript(self, scriptfile): """ Set up the global shell state necessary to run a script from a file Args: scriptfile - the string name of the file containing the script. paths are relative to system cwd """ self.script_lines = self._parse_script_file(scriptfile) self.script_counter = 0 def get_helpstring(self): """ Get the help string for the current menu. This string contains a preformatted list of commands and their descriptions from the current menu. """ _menu = self.get_menu() if not _menu: return helpstring = "\n\n" + _menu.title + "\n" + "-"*20 + "\n" + _menu.options() return helpstring def sticker(self, output, new_output="", pos=None): """ Place, change, or remove a sticker from the shell window. Candela has the concept of a sticker - a small block of text that is "stuck" to the window. They can be used to convey persistent information to the shell user. If only output is specified, this creates a new sticker with the string output. If output and new_output are specified, and there is an existing sticker whose text is the same as output, this will replace that sticker's text with new_output. Args: output - The text of the sticker to manipulate Kwargs: new_output - The text that will replace the text of the chosen sticker pos - The (y, x) tuple indicating where to place the sticker """ if len(self.stickers) > 0: sort = sorted(self.stickers, key=lambda x: x[1][0], reverse=True) ht = sort[0][1][0]+1 else: ht = 3 pos = pos or (ht, self.width - 20) match = None for text,_pos in self.stickers: if output == text: match = (text,_pos) break if match: self.remove_sticker(match[0]) sticker = (new_output or output, match[1] if match else pos) self.stickers.append(sticker) self._update_screen() def remove_sticker(self, text): """ Remove the sticker with the given text from the window Args: text - The text of the sticker to remove """ self.stickers = [a for a in self.stickers if a[0] != text] def _print_stickers(self): """ Print all current stickers at the appropriate positions """ for text,pos in self.stickers: _y,_x = pos if _x + len(text) > self.width: _x = self.width - len(text) - 1 self.stdscr.addstr(_y, _x, text) def _print_header(self): """ Print the header in the appropriate position """ ht = 0 for line in self.header.split("\n"): self.stdscr.addstr(ht, 0, line + (" "*self._header_right_margin)) if len(line) > self._header_right: self._header_right = len(line) ht += 1 self.stdscr.addstr(ht, 0, " "*(self._header_right+self._header_right_margin)) self._header_bottom = ht self.mt_width = self._header_right + 49 def clear(self): """ Remove all scrollback text from the window """ backbuffer = list(self.backbuffer) printstring = "\n" for i in range(self.height): self.put(printstring) def _print_backbuffer(self): """ Print the previously printed output above the current command line. candela.shell.Shell stores previously printed commands and output in a backbuffer. Like a normal shell, it handles printing these lines in reverse order to allow the user to see their past work. """ rev = list(self.backbuffer) rev.reverse() for i, tup in zip(range(len(rev)), rev): string, iscommand = tup ypos = self.height-2-i if ypos > 0: printstring = string if iscommand: printstring = "%s%s" % (self.prompt, string) self.stdscr.addstr(ypos,0,printstring) def _print_help(self): """ Print the menu help box for the current menu """ _helpstring = self.get_helpstring() if not _helpstring: return helpstrings = [" %s" % a for a in _helpstring.split("\n")] ht = 0 longest = len(max(helpstrings, key=len)) _x = self._header_right + self._header_right_margin if _x + longest > self.width: _x = self.width - longest - 1 for line in helpstrings: self.stdscr.addstr(ht, _x, line + " "*15) ht += 1 def put(self, output, command=False): """ Print the output string on the bottom line of the shell window Also pushes the backbuffer up the screen by the number of lines in output. Args: output - The string to print. May contain newlines Kwargs: command - False if the string was not a user-entered command, True otherwise (users of Candela should always use False) """ self._update_screen() if not output: return output = str(output) _x,_y = (self.height-1, 0) lines = [] for line in output.split('\n'): if len(line) > self.width - 3: for line in textwrap.wrap(line, self.width-3): lines.append(line) else: lines.append(line) for line in lines: # put the line self.stdscr.addstr(_x, _y, line) # add it to backbuffer backbuf_string = line to_append = (backbuf_string, command) if line != self.prompt: index = 0 if len(self.backbuffer) >= 200: index = 1 self.backbuffer = self.backbuffer[index:] + [to_append] def _input(self, prompt): """ Handle user input on the shell window. Works similarly to python's raw_input(). Takes a prompt and returns the raw string entered before the return key by the user. The input is returned withnewlines stripped. Args: prompt - The text to display prompting the user to enter text """ self.put(prompt) keyin = '' buff = '' hist_counter = 1 while keyin != 10: keyin = self.stdscr.getch() _y,_x = self.stdscr.getyx() index = _x - len(self.prompt) #self.stdscr.addstr(20, 70, str(keyin)) # for debugging try: if chr(keyin) in self.keyevent_hooks.keys(): cont = self.keyevent_hooks[chr(keyin)](chr(keyin), buff) if cont == False: continue except: pass if keyin in [127, 263]: # backspaces del_lo, del_hi = self._get_backspace_indices() buff = buff[:index+del_lo] + buff[index+del_hi:] self._redraw_buffer(buff) self.stdscr.move(_y, max(_x+del_lo, len(self.prompt))) elif keyin in [curses.KEY_UP, curses.KEY_DOWN]: # up and down arrows hist_counter,buff = self._process_history_command(keyin, hist_counter) elif keyin in [curses.KEY_LEFT, curses.KEY_RIGHT]: # left, right arrows if keyin == curses.KEY_LEFT: newx = max(_x - 1, len(self.prompt)) elif keyin == curses.KEY_RIGHT: newx = min(_x + 1, len(buff) + len(self.prompt)) self.stdscr.move(_y, newx) elif keyin == curses.KEY_F1: # F1 curses.endwin() sys.exit() elif keyin in [9]: # tab choices = self._tabcomplete(buff) if len(choices) == 1: if len(buff.split()) == 1 and not buff.endswith(' '): buff = choices[0] else: if len(buff.split()) != 1 and not buff.endswith(' '): buff = ' '.join(buff.split()[:-1]) if buff.endswith(' '): buff += choices[0] else: buff += ' ' + choices[0] elif len(choices) > 1: self.put(" ".join(choices)) elif len(choices) == 0: pass self._redraw_buffer(buff) elif keyin >= 32 and keyin <= 126: # ascii input buff = buff[:index-1] + chr(keyin) + buff[index-1:] self._redraw_buffer(buff) self.stdscr.move(_y, min(_x, len(buff) + len(self.prompt))) if self.should_show_hint and keyin == 32: command = self._get_command(buff) if hasattr(command, 'definition') and '-' not in command.definition: try: nextarg = command.definition.split()[len(buff.split())] self.stdscr.addstr(_y, _x+1, nextarg) self.stdscr.move(_y, _x) except: pass self.put(buff, command=True) self.stdscr.refresh() return buff def _get_backspace_indices(self): if self.platform == "Linux": return (0, 1) elif self.platform == "Darwin": return (-len(self.prompt)-1, -len(self.prompt)) def _tabcomplete(self, buff): """ Get a list of possible completions for the current buffer If the current buffer doesn't contain a valid command, see if the buffer is a prefix of any valid commands. If so, return those as possible completions. Otherwise, delegate the completion finding to the command object. Args: buff - The string buffer representing the current unfinished command input Return: A list of completion strings for the current token in the command """ menu = self.get_menu() commands = [] if menu: commands = menu.commands output = [] if len(buff.split()) <= 1 and ' ' not in buff: for command in commands: if command.name.startswith(buff): output.append(command.name) for alias in command.aliases: if alias.startswith(buff): output.append(alias) else: command = self._get_command(buff) if command: output = command._tabcomplete(buff) return output def _get_command(self, buff): """ Get the command instance referenced by string in the current input buffer Args: buff - The string version of the current command input buffer Return: The Command instance corresponding to the buffer command """ menu = self.get_menu() commands = [] if menu: commands = menu.commands if len(commands) == 0: self.put("No commands found. Maybe you forgot to set self.menus or self.menu?") self.put("Hint: use F1 to quit") for command in commands: if command.name == buff.split()[0] or buff.split()[0] in command.aliases: return command return None def _redraw_buffer(self, buff): """ Clear the bottom line and re-print the given string on that line Args: buff - The line to print on the cleared bottom line """ self.stdscr.addstr(self.height-1, 0, " "*(self.width-3)) self.stdscr.addstr(self.height-1, 0, "%s%s" % (self.prompt, buff)) def _process_history_command(self, keyin, hist_counter): """ Get the next command from the backbuffer and return it Also return the modified buffer counter. Args: keyin - The key just pressed hist_counter - The current position in the backbuffer """ hist_commands = [(s,c) for s,c in self.backbuffer if c] if not hist_commands: return hist_counter, "" buff = hist_commands[-hist_counter][0] self.stdscr.addstr(self.height-1, 0, " "*(self.width-3)) self.stdscr.addstr(self.height-1, 0, "%s%s" % (self.prompt, buff)) if keyin == curses.KEY_UP and hist_counter < len(hist_commands): hist_counter += 1 elif keyin == curses.KEY_DOWN and hist_counter > 0: hist_counter -= 1 return hist_counter, buff def _script_in(self): """ Substitute for _input used when reading from a script. Returns the next command from the script being read. """ if not self.script_lines: return None if self.script_counter < len(self.script_lines): command = self.script_lines[self.script_counter] self.script_counter += 1 else: command = None return command def main_loop(self): """ The main shell IO loop. The sequence of events is as follows: get an input command split into tokens find matching command validate tokens for command run command This loop can be broken out of only with by a command returning constants.CHOICE_QUIT or by pressing F1 """ ret_choice = None while ret_choice != constants.CHOICE_QUIT: success = True ret_choice = constants.CHOICE_INVALID choice = self._script_in() if choice: self.put("%s%s" % (self.prompt, choice)) else: choice = self._input(self.prompt) tokens = choice.split() if len(tokens) == 0: self.put("\n") continue command = self._get_command(choice) if not command: self.put("Invalid command - no match") continue try: args, kwargs = command.parse_command(tokens) success, message = command.validate(*args, **kwargs) if not success: self.put(message) else: ret_choice = command.run(*args, **kwargs) if ret_choice == constants.CHOICE_INVALID: self.put("Invalid command") else: menus = [a.name for a in self.menus] if str(ret_choice).lower() in menus: self.menu = ret_choice.lower() else: self.put("New menu '%s' not found" % ret_choice.lower()) except Exception as e: self.put(e) return self def get_menu(self): """ Get the current menu as a Menu """ if not self.menus: return try: return [a for a in self.menus if a.name == self.menu][0] except: return def defer(self, func, args=(), kwargs={}, timeout_duration=10, default=None): """ Create a new thread, run func in the thread for a max of timeout_duration seconds This is useful for blocking operations that must be performed after the next window refresh. For example, if a command should set a sticker when it starts executing and then clear that sticker when it's done, simply using the following will not work: def _run(*args, **kwargs): self.sticker("Hello!") # do things... self.remove_sticker("Hello!") This is because the sticker is both added and removed in the same refresh loop of the window. Put another way, the sticker is added and removed before the window gets redrawn. defer() can be used to get around this by scheduling the sticker to be removed shortly after the next window refresh, like so: def _run(*args, **kwargs): self.sticker("Hello!") # do things... def clear_sticker(): time.sleep(.1) self.remove_sticker("Hello!") self.defer(clear_sticker) Args: func - The callback function to run in the new thread Kwargs: args - The arguments to pass to the threaded function kwargs - The keyword arguments to pass to the threaded function timeout_duration - the amount of time in seconds to wait before killing the thread default - The value to return in case of a timeout """ class InterruptableThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.result = default def run(self): self.result = func(*args, **kwargs) it = InterruptableThread() it.start() it.join(timeout_duration) if it.isAlive(): return it.result else: return it.result def end(self): """ End the current Candela shell and safely shut down the curses session """ curses.endwin() def _register_sigint_handler(self): """ Properly handle ^C and any other method of sending SIGINT. This avoids leaving the user with a borked up terminal. """ def signal_handler(signal, frame): self.end() sys.exit(0) signal.signal(signal.SIGINT, signal_handler) def _update_screen(self): """ Refresh the screen and redraw all elements in their appropriate positions """ self.height,self.width = self.stdscr.getmaxyx() self.stdscr.clear() self._print_backbuffer() if self.width < self._header_right + 80 or self.height < self._header_bottom + 37: pass else: self._print_header() if self.should_show_help: self._print_help() self._print_stickers() self.stdscr.refresh() def _get_platform(self): """ Return the platform name. This is fine, but it's used in a hacky way to get around a backspace-cooking behavior in Linux (at least Ubuntu) """ return platform.uname()[0]
emmettbutler/candela
candela/shell.py
shell.py
py
21,960
python
en
code
71
github-code
6
44782282173
import os import LuckyDraw import Quiz import hangman import time def main(): def title(): clear() print("\t\t_______Game Vault______\n\n") def clear(): os.system('cls') def delay(): time.sleep(1) status = True while(status!=False): title() print("The available games are:") print("\n1.Hangman\n2.Luckydraw\n3.Quiz") ch=int(input("\n\nEnter your selection..\n\t\t:")) delay() if (ch==1): hangman.main() elif (ch==2): LuckyDraw.main() else: Quiz.main() title() c=input("Do you want to play another game?(y/n)\n\t\t:") c=c.lower() if c=='y': status=True else: status=False clear() print("\t\tThank you for visiting!!!!") delay() if __name__ == "__main__": main()
aswinachu02/Python-Projects
GameVault.py
GameVault.py
py
961
python
en
code
0
github-code
6
20723844837
# Exercise 1 : Family # 1. Create a class called Family and implement the following attributes: # - members: list of dictionaries with the following keys : name, age, gender and is_child (boolean). # - last_name : (string) # Initial members data: # [ # {'name':'Michael','age':35,'gender':'Male','is_child':False}, # {'name':'Sarah','age':32,'gender':'Female','is_child':False} # ] class Family() : def __init__(self, last_name): self.members = [] self.last_name = last_name def member(self, name, age, gender, is_child): member = { 'name': name, 'age': age, 'gender': gender, 'is_child': is_child } self.members.append(member) # 2. Implement the following methods: # - born: adds a child to the members list (use **kwargs), don’t forget to print a message congratulating the family. def born(self, **kwargs): self.child = {} for key, value in kwargs.items(): self.child[key] = value self.members.append(self.child) if 'name' in self.child : print(f"Congratulations to the {self.last_name} family on the birth of {self.child['name']}!") elif 'gender' in self.child and self.child['gender'] == 'Male' : print(f"Congratulations to the {self.last_name} family on the birth of their babyboy!") elif 'gender' in self.child and self.child['gender'] == 'Female' : print(f"Congratulations to the {self.last_name} family on the birth of their babygirl!") else : print(f"Congratulations to the {self.last_name} family on the birth of their child!") # - is_18: takes the name of a family member as a parameter and returns True if they are over 18 and False if not. def is_18(self, name) : for member in self.members: if 'name' in member and member['name'] == name: return member['age'] >= 18 return False # - family_presentation: a method that prints the family’s last name and all the members’ first name. def family_presentation(self) : print(f"The {self.last_name} family:") name_list = [] for member in self.members: if 'name' in member: name_list.append(member['name']) elif 'gender' in member : if member['gender'] == 'Male' : name_list.append('babyboy') elif member['gender'] == 'Female' : name_list.append('babygirl') else : name_list.append('baby') else : name_list.append('baby') names = ', '.join(name_list) print(names) smiths = Family("Smith") smiths.member('Michael', 35, 'Male', False) smiths.member('Sarah', 32, 'Female', False) for member in smiths.members: print(member) smiths.born(name='Emily', age=0, gender='Female') smiths.born(age=0, gender='Female') smiths.born(age=0, gender='Male') smiths.born(age=0) for member in smiths.members: print(member) print(smiths.is_18('Michael')) # Output: True print(smiths.is_18('Sarah')) # Output: True print(smiths.is_18('Emily')) # Output: False smiths.family_presentation() # print(smiths.members) # Exercise 2 : TheIncredibles Family # 1. Create a class called TheIncredibles. This class should inherit from the Family class: # This is no random family they are an incredible family, therefore we need to add the following # keys to our dictionaries: power and incredible_name. # Initial members data: # [ # {'name':'Michael','age':35,'gender':'Male','is_child':False,'power': 'fly','incredible_name':'MikeFly'}, # {'name':'Sarah','age':32,'gender':'Female','is_child':False,'power': 'read minds','incredible_name':'SuperWoman'} # ] class TheIncredibles(Family): def __init__(self, last_name): super().__init__(last_name) # def incredible_member(self, name, age, gender, is_child, power, incredible_name): # super().member(name, age, gender, is_child) # incredible_member = { # 'name': name, # 'age': age, # 'gender': gender, # 'is_child': is_child, # 'power' : power, # 'incredible_name' : incredible_name # } # self.members.append(incredible_member) def incredible_member(self, name, age, gender, is_child, power, incredible_name): member = { 'name': name, 'age': age, 'gender': gender, 'is_child': is_child, 'power': power, 'incredible_name': incredible_name } self.members.append(member) # 2. Add a method called use_power, this method should print the power of a member only if they are over 18 years old. # If not raise an exception (look up exceptions) which stated they are not over 18 years old. def use_power(self, name): for member in self.members: if member['name'] == name: if member['age'] >= 18: print(f"{member['name']} can use their power: {member['power']}") else: raise Exception(f"{member['name']} is not over 18 years old and cannot use their power.") # 3. Add a method called incredible_presentation which : # - Prints the family’s last name and all the members’ first name (ie. use the super() function, # to call the family_presentation method) # - Prints all the members’ incredible name and power. def incredible_presentation(self): super().family_presentation() for member in self.members: print(f"{member['incredible_name']} - Power: {member['power']}") incredible_family = TheIncredibles("Incredible") incredible_family.incredible_member('Michael', 35, 'Male', False, 'fly', 'MikeFly') incredible_family.incredible_member('Sarah', 32, 'Female', False, 'read minds','SuperWoman') # 4. Call the incredible_presentation method. incredible_family.incredible_presentation() # 5. Use the born method inherited from the Family class to add Baby Jack with the following power: “Unknown Power”. incredible_family.born(name="Baby Jack", age=0, gender="Male", is_child=True, power="Unknown Power", incredible_name="BabyJack") # 6. Call the incredible_presentation method again. incredible_family.incredible_presentation() incredible_family.use_power("Michael") incredible_family.use_power("Sarah") incredible_family.use_power("Baby Jack")
Alex-Rabaev/DI-Bootcamp
week 3/Day 2/ExercisesXP/W3D2_ExerciseXP_plus.py
W3D2_ExerciseXP_plus.py
py
6,662
python
en
code
1
github-code
6
34836695873
#!/usr/bin/env python3 """Tools to define Templates. Templates are very similar to plugins, but use jinja to transform `.enbt` template files upon installation. """ __author__ = "Miguel Hernández-Cabronero" __since__ = "2021/08/01" import sys import argparse import inspect import os import glob import shutil import tempfile import jinja2 import stat from .installable import Installable, InstallableMeta import enb.config from enb.config import options class MetaTemplate(InstallableMeta): def __init__(cls, *args, **kwargs): if cls.__name__ != "Template": cls.tags.add("template") super().__init__(*args, **kwargs) class Template(Installable, metaclass=MetaTemplate): """ Base class to define templates. Subclasses must be defined in the __plugin__.py file of the template's source dir. - Templates copy the source dir's contents (except for __plugin__.py) and then transforms any `*.enbt` file applying jinja and removing that extension. - Templates may require so-called fields in order to produce output. These fields can be automatically taken from enb.config.ini (e.g., file-based configuration), passed as arguments to the template installation CLI, and programmatically. - One or more templates can be installed into an existing directory, the __plugin__.py file is not written by default to the installation dir. """ # Map of required field names to their corresponding help required_fields_to_help = dict() # Files in the template's source dir ending with templatable_extension # are subject to jinja templating upon installation. templatable_extension = ".enbt" @classmethod def get_fields(cls, original_fields=None): try: return cls._fields except AttributeError: # If there are required fields, satisfy them or fail fields = dict(original_fields) if original_fields is not None else dict() if cls.required_fields_to_help: ini_cli_fields, unused_options = cls.get_field_parser().parse_known_args() # Syntax is "plugin install <template> <installation>, so # four non-parsed options are expected assert len(unused_options) >= 4, (sys.argv, ini_cli_fields, unused_options) unused_options = unused_options[4:] for field_name in cls.required_fields_to_help: if field_name not in fields: try: fields[field_name] = getattr(ini_cli_fields, field_name) assert fields[field_name] is not None except (KeyError, AssertionError) as ex: raise SyntaxError( f"Missing field {repr(field_name)}. Help for {field_name}:\n" f"{cls.required_fields_to_help[field_name]}\n\n" f"Invoke again with --{field_name}=\"your value\" or with -h for additional help.\n") from ex if unused_options: print(f"Warning: unused option{'s' if len(unused_options) > 1 else ''}. \n - ", end="") print('\n - '.join(repr(o) for o in unused_options)) print(f"NOTE: You can use '' or \"\" to define fields with spaces in them.") print() cls._fields = fields return fields @classmethod def install(cls, installation_dir, overwrite_destination=False, fields=None): """Install a template into the given dir. See super().install for more information. :param installation_dir: directory where the contents of the template are placed. It will be created if not existing. :param overwrite_destination: if False, a SyntaxError is raised if any of the destination contents existed prior to this call. Note that installation_dir can already exist, it is the files and directories moved into it that can trigger this SyntaxError. :param fields: if not None, it must be a dict-like object containing a field to field value mapping. If None, it is interpreted as an empty dictionary. Required template fields not present in fields will be then read from the CLI arguments. If those are not provided, then the default values read from `*.ini` configuration files. If any required field cannot not satisfied after this, a SyntaxError is raised. """ # If there are required fields, satisfy them or fail fields = cls.get_fields(original_fields=fields) template_src_dir = os.path.dirname(os.path.abspath(inspect.getfile(cls))) for input_path in glob.glob(os.path.join(template_src_dir, "**", "*"), recursive=True): if "__pycache__" in input_path: continue if os.path.basename(input_path) == "__plugin__.py": continue # By default, the original structure and file names are preserved. output_path = os.path.abspath(input_path).replace( os.path.abspath(template_src_dir), os.path.abspath(installation_dir)) # Directories are created when found if os.path.isdir(input_path): os.makedirs(output_path, exist_ok=True) continue input_is_executable = os.access(input_path, os.X_OK) # Files ending in '.enbt' will be identified as templates, processed and stripped of their extension. is_templatable = os.path.isfile(input_path) \ and os.path.basename(input_path).endswith(cls.templatable_extension) os.makedirs(os.path.dirname(output_path), exist_ok=True) if is_templatable: with tempfile.NamedTemporaryFile(mode="w+") as templated_file: jinja_env = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(os.path.abspath(input_path))), autoescape=jinja2.select_autoescape()) template = jinja_env.get_template(os.path.basename(input_path)) templated_file.write(template.render(**fields)) templated_file.flush() templated_file.seek(0) if os.path.exists(output_path[:-len(cls.templatable_extension)]) and not options.force: raise ValueError( f"Error installing template {cls.name}: output file {repr(output_path)} already exists " f"and options.force={options.force}. Run with -f to overwrite.") with open(output_path[:-len(cls.templatable_extension)], "w") as output_file: output_file.write(templated_file.read()) if input_is_executable: os.chmod(output_path[:-len(cls.templatable_extension)], os.stat(output_path[:-len(cls.templatable_extension)]).st_mode | stat.S_IEXEC) else: if os.path.exists(output_path) and not options.force: raise ValueError( f"Error installing template {cls.name}: output file {repr(output_path)} already exists " f"and options.force={options.force}. Run with -f to overwrite.") shutil.copy(input_path, output_path) cls.build(installation_dir=installation_dir) print(f"Template {repr(cls.name)} successfully installed into {repr(installation_dir)}.") @classmethod def get_field_parser(cls): description = f"Template {repr(cls.name)} installation help." if cls.required_fields_to_help: description += f"\n\nFields are automatically read from the following paths (in this order):\n" description += "\n".join(enb.config.ini.used_config_paths) # defined_description = f"\n\nAlready refined fields:" defined_field_lines = [] for field_name in sorted(cls.required_fields_to_help.keys()): try: defined_field_lines.append(f" {field_name} = {enb.config.ini.get_key('template', field_name)}") except KeyError: pass if defined_field_lines: description += f"\n\nFile-defined fields:\n" description += "\n".join(defined_field_lines) parser = argparse.ArgumentParser( prog=f"enb plugin install {cls.name}", description=description, formatter_class=argparse.RawTextHelpFormatter) required_flags_group = parser.add_argument_group( "Required flags (use '' or \"\" quoting for fields with spaces)") for field_name, field_help in cls.required_fields_to_help.items(): try: default_field_value = enb.config.ini.get_key("template", field_name) except KeyError: default_field_value = None if field_help[-1] != ".": field_help += "." required_flags_group.add_argument( f"--{field_name}", default=default_field_value, help=field_help, metavar=field_name) # This argument is for showing help to the user only, since it will have already been parsed # by enb.config.ini by the time this is called. parser.add_argument(f"--ini", nargs="*", required=False, type=str, help="Additional .ini paths with a [field] section containing field = value lines") return parser
miguelinux314/experiment-notebook
enb/plugins/template.py
template.py
py
9,816
python
en
code
3
github-code
6
71484280508
N, A, B, C, D = map(int, input().split()) S = "#{}#".format(input()) def reachable(start, end): now = start while now <= end: nex = now while nex <= end and S[now] == S[nex]: nex += 1 if S[now] == '#' and nex - now >= 2: return False now = nex return True if not reachable(A, C) or not reachable(B, D): print("No") quit() if C > D: can_over = False for i in range(B, D+1): if S[i-1] == S[i] == S[i+1] == ".": can_over = True if not can_over: print("No") quit() print("Yes")
knuu/competitive-programming
atcoder/agc/agc034_a.py
agc034_a.py
py
604
python
en
code
1
github-code
6
1090949893
from keras.applications import resnet50 from keras.applications import mobilenetv2 from keras.applications import mobilenet from keras.applications import vgg19 # from keras_squeezenet import SqueezeNet import conv.networks.get_vgg16_cifar10 as gvc import conv.networks.gen_conv_net as gcn # import conv.networks.MobileNet as mobilenet import conv.networks.MobileNet_for_mobile as mobilenet_for_mobile import conv.networks.VGG19_for_mobile as vgg19_for_mobile import conv.networks.SqueezeNet as sqn import conv.networks.DenseNet as dn import conv.networks.ResNet50 as rn50 from keras_applications.imagenet_utils import decode_predictions from keras.preprocessing.image import img_to_array from keras.applications import imagenet_utils from keras.engine.input_layer import Input from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras import optimizers from keras.layers.core import Lambda from keras import backend as K from keras import regularizers from keras.models import Model from keras import optimizers import keras import numpy as np from os import listdir from os.path import isfile, join import os import matplotlib.image as mpimg import time # SqueezeNet: https://github.com/rcmalli/keras-squeezenet/blob/master/examples/example_keras_squeezenet.ipynb # https://keras.io/applications/ def get_all_nets(network_name, include_top=True, num_filter=4): if(network_name=="ResNet50"): model = resnet50.ResNet101(weights='imagenet', include_top=include_top, input_shape=(224, 224, 3)) # if(include_top==False): # model.pop() elif(network_name=="MobileNetV2"): model = mobilenetv2.MobileNetV2(weights='imagenet', include_top=include_top, input_shape=(224, 224, 3)) elif(network_name=="MobileNet"): model = mobilenet.MobileNet(weights='imagenet', include_top=include_top,# pooling='avg', input_shape=(224, 224, 3)) elif(network_name=="MobileNet_for_mobile"): model = mobilenet_for_mobile.MobileNet( include_top=include_top, weights='imagenet', input_shape=(224, 224, 3), num_filter=num_filter) elif(network_name=="VGG19"): model = vgg19.VGG19(weights='imagenet', include_top=include_top, input_shape=(224, 224, 3)) elif(network_name=="VGG19_for_mobile"): model = vgg19_for_mobile.VGG19( include_top=include_top, weights='imagenet', input_shape=(224, 224, 3), num_filter=num_filter) elif(network_name=="SqueezeNet"): model = SqueezeNet(weights='imagenet', include_top=include_top, input_shape=(224, 224, 3)) # if(include_top==False): # model.pop() # model.pop() # model.pop() # model.pop() if(include_top): opt = optimizers.rmsprop(lr=0.0001, decay=1e-6) # Let's train the model using RMSprop model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) return model def get_nets_wo_weights(network_name, num_classes, include_top=False, input_shape=(32, 32, 3), num_filter=4, use_bias=False): if(network_name=="ResNet50"): model = rn50.ResNet50(include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_vert_filters=num_filter) elif(network_name=="DenseNet121"): model = dn.DenseNet121(include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_filter=num_filter) elif(network_name=="MobileNetV2"): model = mobilenetv2.MobileNetV2(include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes) elif(network_name=="MobileNet"): model = mobilenet.MobileNet( include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_filter=num_filter) elif(network_name=="MobileNet_for_mobile"): model = mobilenet_for_mobile.MobileNet( include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_filter=num_filter) elif(network_name=="VGG19"): model = vgg19.VGG19(input_shape=input_shape, include_top=include_top, weights=None, classes=num_classes) elif(network_name=="SqueezeNet"): model = sqn.SqueezeNet(input_shape=input_shape, include_top=include_top, weights=None, num_filter=num_filter, use_bias=use_bias, classes=num_classes) elif(network_name=="vgg"): model = gvc.get_conv_vert_net(x_shape=input_shape, num_classes=num_classes, num_vert_filters=num_filter, use_bias=use_bias) elif(network_name=="conv"): model = gcn.get_conv_vert_net(input_shape=input_shape, num_classes=num_classes, num_extra_conv_layers=2, num_ver_filter=num_filter, use_bias=use_bias) if(include_top == False): x = model.output # x = keras.layers.GlobalAveragePooling2D()(x) x = Flatten()(x) x = Dense(256, activation='relu')(x) # x = Activation('relu')(x) x = Dropout(0.5)(x) # x = Dense(num_output)(x) # x = Activation('softmax')(x) x = keras.layers.Dense(num_classes, activation='softmax', use_bias=True, name='Logits')(x) full_model = Model(inputs = model.input,outputs = x) else: full_model = model opt = optimizers.rmsprop(lr=0.0001, decay=1e-6) # Let's train the model using RMSprop full_model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) return full_model def get_box_nets(network_name, num_classes, include_top=False, input_shape=(32, 32, 3), num_filter=4, num_layer=4, use_bias=False): if(network_name=="ResNet50"): model = resnet50.ResNet50(include_top=include_top, input_shape=input_shape, weights=None) # if(include_top==False): # model.pop() elif(network_name=="DenseNet121"): model = dn.DenseNet121(include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_filter=num_filter, num_layer=num_layer) elif(network_name=="MobileNetV2"): model = mobilenetv2.MobileNetV2(include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes) elif(network_name=="MobileNet"): model = mobilenet.MobileNet( include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_filter=num_filter, num_layers=num_layer) elif(network_name=="MobileNet_for_mobile"): model = mobilenet_for_mobile.MobileNet( include_top=include_top, input_shape=input_shape, weights=None, classes=num_classes, num_filter=num_filter) elif(network_name=="VGG19"): model = vgg19.VGG19(input_shape=input_shape, include_top=include_top, weights=None, classes=num_classes) elif(network_name=="SqueezeNet"): model = sqn.SqueezeNet(input_shape=input_shape, include_top=include_top, weights=None, num_filter=num_filter, use_bias=use_bias, classes=num_classes, num_layers=num_layer) elif(network_name=="vgg"): model = gvc.get_conv_vert_net(x_shape=input_shape, num_classes=num_classes, num_vert_filters=num_filter, use_bias=use_bias) elif(network_name=="conv"): model = gcn.get_conv_vert_net(input_shape=input_shape, num_classes=num_classes, num_extra_conv_layers=num_layers, num_ver_filter=num_filter, use_bias=use_bias) opt = optimizers.rmsprop(lr=0.0001, decay=1e-6) # Let's train the model using RMSprop model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) return model def preprocess_image(network_name, x): if(network_name=="ResNet50"): x = resnet50.preprocess_input(x) elif(network_name=="MobileNetV2"): x = mobilenetv2.preprocess_input(x) elif(network_name=="MobileNet"): x = mobilenet.preprocess_input(x) elif(network_name=="VGG19"): x = vgg19.preprocess_input(x) elif(network_name=="SqueezeNet"): x = imagenet_utils.preprocess_input(x) return x def preprocess_image_fn(network_name): if(network_name=="ResNet50"): x = resnet50.preprocess_input elif(network_name=="MobileNetV2"): x = mobilenetv2.preprocess_input elif(network_name=="MobileNet"): x = mobilenet.preprocess_input elif(network_name=="VGG19"): x = vgg19.preprocess_input elif(network_name=="SqueezeNet"): x = imagenet_utils.preprocess_input return x def decodepred(network_name, preds): if(network_name=="ResNet50"): preds = resnet50.decode_predictions(preds, top=3)[0] elif(network_name=="MobileNetV2"): preds = mobilenetv2.decode_predictions(preds, top=3)[0] elif(network_name=="MobileNet"): preds = mobilenet.decode_predictions(preds, top=3)[0] elif(network_name=="VGG19"): preds = vgg19.decode_predictions(preds, top=3)[0] elif(network_name=="SqueezeNet"): preds = imagenet_utils.decode_predictions(preds, top=3)[0] return x def analyse_model(model): print("All functions ", dir(model)) print("Summary model ", model.summary()) print("Layer details ", dir(model.layers[2])) for i, layer in enumerate(model.layers): print("Length in each layer ", i, layer.name, layer.input_shape, layer.output_shape, len(layer.weights)) if(len(layer.weights)): for j, weight in enumerate(layer.weights): print("Weights ", j, weight.shape) return def add_classifier(base_model, num_output): for layer in base_model.layers: layer.trainable = False x = base_model.output x = keras.layers.GlobalAveragePooling2D()(x) # x = Dense(16, kernel_regularizer=regularizers.l2(0.01))(x) # x = Activation('relu')(x) # x = Dropout(0.5)(x) # x = Dense(num_output)(x) # x = Activation('softmax')(x) x = keras.layers.Dense(num_output, activation='softmax', use_bias=True, name='Logits')(x) model = Model(inputs = base_model.input,outputs = x) # initiate RMSprop optimizer opt = optimizers.rmsprop(lr=0.0001, decay=1e-6) # Let's train the model using RMSprop model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) return model def get_all_prediction(image_filelist): prediction_list = [] for filename in image_filelist: # img = image.load_img(os.path.join(imagenet_path, filename), target_size=(224, 224)) img = image.load_img(os.path.join(imagenet_path, filename), target_size=(227, 227)) # Squeezenet # img1 = mpimg.imread(os.path.join(imagenet_path, filename)) # print(img1.shape) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = imagenet_utils.preprocess_input(x) preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) print('Predicted:', filename, imagenet_utils.decode_predictions(preds, top=3)[0]) print("Pred values ", np.argmax(preds)) # Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)] prediction_list.append(preds) return prediction_list if __name__ == '__main__': network_types_list = ["MobileNetV2"]#, "ResNet50", "MobileNetV2", "VGG19"] # , "SqueezeNet" for network_type in network_types_list: print("Network Type ", network_type) model = get_all_nets(network_type, include_top=True) analyse_model(model) # model = get_all_nets(network_type, include_top=False) # model = add_classifier(model) imagenet_path = "/mnt/additional/aryan/imagenet_validation_data/ILSVRC2012_img_val/" # http://www.image-net.org/challenges/LSVRC/2012/ # https://cv-tricks.com/tensorflow-tutorial/keras/ # Finding actual predictions # http://machinelearninguru.com/deep_learning/data_preparation/hdf5/hdf5.html image_filelist = [f for f in listdir(imagenet_path) if isfile(join(imagenet_path, f))] print("Number of files ", len(image_filelist)) start_time = time.time() get_all_prediction(image_filelist[:10]) total_time = time.time() - start_time print("Total prediction time ", total_time) print("File list ", image_filelist[:10])
nitthilan/ml_tutorials
conv/networks/get_all_imagenet.py
get_all_imagenet.py
py
11,760
python
en
code
0
github-code
6
22618188640
# encoding: utf-8 # pylint: disable=redefined-outer-name,missing-docstring import pytest from tests import utils from app import create_app @pytest.yield_fixture(scope='session') def flask_app(): app = create_app(flask_config='testing') from app.extensions import db with app.app_context(): db.create_all() yield app db.drop_all() @pytest.yield_fixture() def db(flask_app): # pylint: disable=unused-argument,invalid-name from app.extensions import db as db_instance yield db_instance db_instance.session.rollback() @pytest.fixture(scope='session') def flask_app_client(flask_app): flask_app.test_client_class = utils.AutoAuthFlaskClient flask_app.response_class = utils.JSONResponse return flask_app.test_client() @pytest.yield_fixture(scope='session') def regular_user(flask_app): # pylint: disable=invalid-name,unused-argument from app.extensions import db regular_user_instance = utils.generate_user_instance( username='regular_user' ) db.session.add(regular_user_instance) db.session.commit() yield regular_user_instance db.session.delete(regular_user_instance) db.session.commit() @pytest.yield_fixture(scope='session') def readonly_user(flask_app): # pylint: disable=invalid-name,unused-argument from app.extensions import db readonly_user_instance = utils.generate_user_instance( username='readonly_user', is_readonly=True ) db.session.add(readonly_user_instance) db.session.commit() yield readonly_user_instance db.session.delete(readonly_user_instance) db.session.commit() @pytest.yield_fixture(scope='session') def admin_user(flask_app): # pylint: disable=invalid-name,unused-argument from app.extensions import db admin_user_instance = utils.generate_user_instance( username='admin_user', is_admin=True ) db.session.add(admin_user_instance) db.session.commit() yield admin_user_instance db.session.delete(admin_user_instance) db.session.commit()
DurandA/pokemon-battle-api
tests/conftest.py
conftest.py
py
2,085
python
en
code
3
github-code
6
30793951295
'''Instead of giving some hard coded values and changing it later in the entire code which will be very time consuming and troublesome we are going to create a class which will manage all the settings parameter so even if we have to change later we only need to make changes in this file ''' class settings: def __init__(self) -> None: #screen self.width = 1200 self.height = 800 self.bg_color = ("cyan") #ship self.ship_speed_factor= 2.0 self.ship_limit = 3 #Bullets self.bullet_speed_factor = 3 self.bullet_width = 5 self.bullet_height = 15 self.bullet_color = 25,25,112 self.bullets_allowed = 5 #alien self.alien_speed = 0.5 self.fleet_drop_speed = 10 self.fleet_direction = 1 #Amount by which difficulty of game should be increased self.speedup = 1.2 self.initialize_dynamic_settings() self.alien_points = 50 #These are the initial settings of game def initialize_dynamic_settings(self): self.ship_speed_factor = 2.0 self.bullet_speed_factor = 2 self.alien_speed = 0.5 self.fleet_direction = 1 #This function is called when player completes certain level . It increases the difficulty of the game def increase_speed(self): self.ship_speed_factor *= self.speedup self.bullet_speed_factor *= self.speedup self.alien_speed *= self.speedup self.alien_points *= self.speedup print(self.alien_points)
shreyashkhurud123/Alien_Invasion_Python
Alien_Invasion/Alien_Invasion/settings.py
settings.py
py
1,628
python
en
code
0
github-code
6
29534323943
from scipy.interpolate import Rbf # radial basis functions import matplotlib.pyplot as plt import numpy as np x = [1555,1203,568,1098,397,564,1445,337,1658,1517,948] y = [860,206,1097,425,594,614,553,917,693,469,306] x = [0.9, 0.6, 0.1, 0.5, 0.04, 0.1, 0.82, 0.0, 1.0, 0.89, 0.46] y = [0.73, 0.0, 1.0, 0.24, 0.43, 0.45, 0.38, 0.7, 0.54, 0.29, 0.11] z = [1]*len(x) rbf_adj = Rbf(x, y, z, function='gaussian') x_fine = np.linspace(0, 1, 81) y_fine = np.linspace(0, 1, 82) x_grid, y_grid = np.meshgrid(x_fine, y_fine) z_grid = rbf_adj(x_grid.ravel(), y_grid.ravel()).reshape(x_grid.shape) plt.gca().invert_yaxis() #plt.gca().invert_xaxis() plt.pcolor(x_fine, y_fine, z_grid); plt.plot(x, y, 'ok'); plt.xlabel('x'); plt.ylabel('y'); plt.colorbar(); plt.title('Heat Intensity Map'); plt.show()
twilly27/DatacomProject
Project/HeatMapping.py
HeatMapping.py
py
795
python
en
code
0
github-code
6
12611135709
import pytest from utils import * from fireplace.exceptions import GameOver LORD_JARAXXUS = "EX1_323" LORD_JARAXXUS_HERO = "EX1_323h" LORD_JARAXXUS_WEAPON = "EX1_323w" INFERNO = "EX1_tk33" INFERNO_TOKEN = "EX1_tk34" def test_jaraxxus(): game = prepare_game(CardClass.WARRIOR, CardClass.WARRIOR) game.player1.hero.power.use() game.player1.give(LIGHTS_JUSTICE).play() assert game.player1.weapon.id == LIGHTS_JUSTICE game.end_turn() game.end_turn() assert game.player1.hero.health == 30 assert game.player1.hero.armor == 2 game.player1.give(LORD_JARAXXUS).play() assert game.player1.hero.id == LORD_JARAXXUS_HERO assert game.player1.weapon.id == LORD_JARAXXUS_WEAPON assert game.player1.hero.health == 15 assert game.player1.hero.armor == 0 assert game.player1.hero.power.id == INFERNO assert len(game.player1.field) == 0 game.end_turn() game.end_turn() game.player1.hero.power.use() assert len(game.player1.field) == 1 assert game.player1.field[0].id == INFERNO_TOKEN def test_jaraxxus_cult_master(): game = prepare_game() game.player1.discard_hand() game.player1.summon("EX1_595") game.player1.give(LORD_JARAXXUS).play() assert len(game.player1.field) == 1 assert not game.player1.hand def test_jaraxxus_knife_juggler(): game = prepare_game() juggler = game.player1.summon("NEW1_019") game.player1.give(LORD_JARAXXUS).play() assert game.player2.hero.health == 30 assert juggler.health == 2 def test_jaraxxus_molten_giant(): game = prepare_game() jaraxxus = game.player1.give("EX1_323") molten = game.player1.give("EX1_620") jaraxxus.play() assert game.player1.hero.health == 15 assert molten.cost == 20 def test_jaraxxus_mirror_entity(): game = prepare_game() mirror = game.player1.give("EX1_294") mirror.play() game.end_turn() jaraxxus = game.player2.give(LORD_JARAXXUS) jaraxxus.play() assert not game.player1.secrets assert game.player2.hero.id == LORD_JARAXXUS_HERO assert len(game.player1.field) == 1 assert game.player1.field[0].id == LORD_JARAXXUS def test_jaraxxus_repentance(): game = prepare_game() repentance = game.player1.give("EX1_379") repentance.play() game.end_turn() jaraxxus = game.player2.give(LORD_JARAXXUS) jaraxxus.play() assert not game.player1.secrets assert game.player2.hero.id == LORD_JARAXXUS_HERO assert game.player2.hero.health == game.player2.hero.max_health == 1 def test_jaraxxus_snipe(): game = prepare_game() snipe = game.player1.give("EX1_609") snipe.play() game.end_turn() jaraxxus = game.player2.give(LORD_JARAXXUS) jaraxxus.play() assert len(game.player1.secrets) == 1 assert game.player2.hero.health == 15 def test_jaraxxus_sacred_trial(): game = prepare_game() trial = game.player1.give("LOE_027") trial.play() game.end_turn() game.player2.give(WISP).play() game.player2.give(WISP).play() game.player2.give(WISP).play() jaraxxus = game.player2.give(LORD_JARAXXUS) jaraxxus.play() # Will not trigger as 4th minion due to timing assert trial in game.player1.secrets assert not game.player2.hero.dead game.end_turn() game.end_turn() wisp4 = game.player2.summon(WISP) assert not wisp4.dead jaraxxus = game.player2.give(LORD_JARAXXUS) with pytest.raises(GameOver): jaraxxus.play() assert trial not in game.player1.secrets assert game.player2.hero.dead
jleclanche/fireplace
tests/test_jaraxxus.py
test_jaraxxus.py
py
3,302
python
en
code
645
github-code
6
44855982856
def stringToInt(s): multiply = 1 if s[0] == '-': multiply = -1 s = s[1:] mul = len(s)-1 num = 0 for ch in s: num = num + (10 ** mul) * (ord(ch)-48) mul = mul - 1 num = num * multiply return num print(stringToInt("-0000045637560003330003"))
sandeepjoshi1910/Algorithms-and-Data-Structures
stoi.py
stoi.py
py
319
python
en
code
0
github-code
6
10862974654
""" Run the model end to end """ import argparse import sys import torch from pathlib import Path import pytorch_lightning as pl from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from smallteacher.data import DataModule, train_augmentations from smallteacher.models import FullySupervised, SemiSupervised from smallteacher.constants import Metrics from smallteacher.config import BEST_MODEL_NAME from smallssd.data import LabelledData, UnlabelledData from smallssd.config import DATAFOLDER_PATH from smallssd.keys import CLASSNAME_TO_IDX import mlflow import mlflow.pytorch def parse_args(args): """Parse the arguments.""" parser = argparse.ArgumentParser( description="Simple training script for training a pytorch lightning model." ) parser.add_argument( "--model", help="Chooses model architecture", type=str, default="FRCNN", choices=["FRCNN", "RetinaNet", "SSD"], ) parser.add_argument( "--workers", help="Number of dataloader workers", type=int, default="1" ) parser.add_argument( "--mlflow_experiment", type=str, default="pytorch_lightning_experiment" ) parser.add_argument("--seed", type=int, default="42") return parser.parse_args(args) def get_checkpoint(version: int) -> Path: return list( Path(f"lightning_logs/version_{version}/checkpoints").glob("best_model*.ckpt") )[0] def train_fully_supervised(datamodule, model_name) -> int: model = FullySupervised( model_base=model_name, num_classes=len(CLASSNAME_TO_IDX), ) fully_supervised_trainer = pl.Trainer( callbacks=[ EarlyStopping(monitor=Metrics.MAP, mode="max", patience=10), ModelCheckpoint(filename=BEST_MODEL_NAME, monitor=Metrics.MAP, mode="max"), ], gpus=torch.cuda.device_count(), ) fully_supervised_trainer.fit(model, datamodule=datamodule) best_model = FullySupervised.load_from_checkpoint( get_checkpoint(fully_supervised_trainer.logger.version), model_base=model_name, num_classes=len(CLASSNAME_TO_IDX), ) fully_supervised_trainer.test(best_model, datamodule=datamodule) return fully_supervised_trainer.logger.version def train_teacher_student(datamodule, model_name, model_checkpoint) -> int: unlabelled_ds = UnlabelledData(root=DATAFOLDER_PATH) datamodule.add_unlabelled_training_dataset(unlabelled_ds) org_model = FullySupervised.load_from_checkpoint( model_checkpoint, model_base=model_name, num_classes=len(CLASSNAME_TO_IDX), ) model = SemiSupervised( trained_model=org_model.model, model_base=model_name, num_classes=len(CLASSNAME_TO_IDX), ) trainer = pl.Trainer( gpus=torch.cuda.device_count(), callbacks=[ EarlyStopping(monitor=Metrics.MAP, mode="max", patience=10), ModelCheckpoint(filename=BEST_MODEL_NAME, monitor=Metrics.MAP, mode="max"), ], ) trainer.fit(model, datamodule=datamodule) best_model = SemiSupervised.load_from_checkpoint( get_checkpoint(trainer.logger.version), model_base=model_name, num_classes=len(CLASSNAME_TO_IDX), ) trainer.test(best_model, datamodule=datamodule) return best_model def main(args=None): if args is None: args = sys.argv[1:] args = parse_args(args) mlflow.set_experiment(experiment_name=args.mlflow_experiment) pl.seed_everything(args.seed) datamodule = DataModule( *LabelledData(root=DATAFOLDER_PATH, eval=False).split( transforms=[train_augmentations, None] ), test_dataset=LabelledData(root=DATAFOLDER_PATH, eval=True), num_workers=args.workers, ) mlflow.pytorch.autolog() with mlflow.start_run(run_name=f"{args.model}_fully_supervised"): version_id = train_fully_supervised(datamodule, args.model) best_model_checkpoint = get_checkpoint(version_id) with mlflow.start_run(run_name=f"{args.model}_teacher_student"): best_model = train_teacher_student( datamodule, args.model, best_model_checkpoint ) mlflow.pytorch.log_model(best_model.model, artifact_path="model") if __name__ == "__main__": main()
SmallRobotCompany/smallteacher
smallssd/end_to_end.py
end_to_end.py
py
4,407
python
en
code
5
github-code
6
71060757628
import turtle from math import sin, cos, pi r = 200 inc = 2*pi/100 t = 0 n = 1.5 for i in range (100): x1 = r * sin(t) y1 = r * cos(t) x2 = r * sin(t+n) y2 = r * cos(t+n) turtle.penup() turtle.goto(x1, y1) turtle.pendown() turtle.goto(x2, y2) t += inc
Camilotk/python-pooii
tutoriais/desenho.py
desenho.py
py
290
python
en
code
0
github-code
6
69809912829
import threading from datetime import datetime from time import sleep from random import randint from queue import Queue # loops = [4,2] # def loop(nloop,nsec): # print('start loop',nloop,'at:',datetime.now()) # sleep(nsec) # print('loop',nloop,'done at:',datetime.now()) # def main(): # print('starting at:',datetime.now()) # threads = [] # nloops = range(len(loops)) # for i in nloops: # t = threading.Thread(target=loop,args=(i,loops[i])) # threads.append(t) # for i in nloops: # threads[i].start() # for i in nloops: # threads[i].join() # print('all DONE at:',datetime.now()) # class ThreadFunc(object): # def __init__(self,func,args,name=''): # self.name = name # self.func = func # self.args = args # def __call__(self): # 可执行函数 # print(self.name) # self.func(*self.args) # def main(): # print('starting at:',datetime.now()) # threads = [] # nloops = range(len(loops)) # for i in nloops: # t = threading.Thread(target=ThreadFunc(loop,(i,loops[i]),loop.__name__)) # threads.append(t) # for i in nloops: # threads[i].start() # for i in nloops: # threads[i].join() # print('all DONE at:',datetime.now()) # class Student(object): # def __init__(self,name,age): # self.name = name # self.age = age # def __call__(self): # print(self.name,self.age) class MyThread(threading.Thread): def __init__(self,func,args,name=''): threading.Thread.__init__(self) self.name = name self.func = func self.args = args def run(self): self.func(*self.args) def writeQ(queue): print('producing object for Q...') queue.put('xxx',1) print('size now',queue.qsize()) def readQ(queue): val = queue.get(1) print(val,'consumed object from Q ... size now',queue.qsize()) def writer(queue,loops): for i in range(loops): writeQ(queue) sleep(randint(1,3)) def reader(queue,loops): for i in range(loops): readQ(queue) sleep(randint(2,5)) funcs = [writer,reader] nfuncs = range(len(funcs)) def main(): nloops = randint(2,5) print('nloops',nloops) q = Queue(32) threads = [] for i in nfuncs: t = MyThread(funcs[i],(q,nloops),funcs[i].__name__) threads.append(t) for i in nfuncs: threads[i].start() for i in nfuncs: threads[i].join() print('all DONE') if __name__ == '__main__': main() # Student('wc',23)()
algebrachan/pythonStudy
py_by_myself/study_test/thread_test.py
thread_test.py
py
2,433
python
en
code
0
github-code
6
2254678822
import urllib from xml.dom import minidom import re def buildResponse(node_list): return_string = "" for i in node_list: return_string = return_string + i + "\n" return return_string.strip() def buildURL(key, word): return "http://www.dictionaryapi.com/api/v1/references/collegiate/xml/" + word + "?key=" + key def getXML(word): url = buildURL("1a276aec-1aa8-42d4-9575-d29c2d4fb105", word) response = urllib.urlopen(url).read() data = minidom.parseString(str(response)) return data def getDefinition(word): data = getXML(word) itemlist = data.getElementsByTagName('def') node_list = [] for i in itemlist: dts = i.getElementsByTagName('dt') node_list.append(str(dts[0].childNodes[0].nodeValue)) if len(node_list) < 3: return buildResponse(node_list) else: return buildResponse(node_list[:3])
sarthfrey/Texty
dictionaryDef.py
dictionaryDef.py
py
819
python
en
code
9
github-code
6
35031034974
from app.models.player import * import random player1 = Player("PLayer 1") player2 = Player("Player 2") players = [player1, player2] def one_player(name1): player1.name = name1 player2.name = "Computer" def add_players(name1, name2): player1.name = name1 player2.name = name2 def random_move(self): options = ["rock", "paper", "scissors"] move = random.choice(options) return move def set_moves(move1, move2): player1.move = move1 player2.move = move2 def result(): if player1.move == player2.move: return "Oooh it's a draw" elif (player1.move == "rock" and player2.move == "scissors"): return players[0].name + " wins" elif(player1.move == "scissors" and player2.move == "paper"): return players[0].name + " wins" elif(player1.move == "paper" and player2.move == "rock"): return players[0].name + " wins" else: return players[1].name + " wins"
linseycurrie/Wk2-HW-RockPaperScissors-Flask
app/models/play_game.py
play_game.py
py
953
python
en
code
0
github-code
6
6397362139
import sys from math import sqrt from itertools import compress # 利用byte求质数 def get_primes_3(n): """ Returns a list of primes < n for n > 2 """ sieve = bytearray([True]) * (n // 2) for i in range(3, int(n ** 0.5) + 1, 2): if sieve[i // 2]: sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1) return [2, *compress(range(3, n, 2), sieve[1:])] def is_prime(n): # Only used to test odd numbers. return all(n % d for d in range(3, round(sqrt(n)) + 1, 2)) def f(a, b): ''' Won't be tested for b greater than 10_000_000 >>> f(3, 3) The number of prime numbers between 3 and 3 included is 1 >>> f(4, 4) The number of prime numbers between 4 and 4 included is 0 >>> f(2, 5) The number of prime numbers between 2 and 5 included is 3 >>> f(2, 10) The number of prime numbers between 2 and 10 included is 4 >>> f(2, 11) The number of prime numbers between 2 and 11 included is 5 >>> f(1234, 567890) The number of prime numbers between 1234 and 567890 included is 46457 >>> f(89, 5678901) The number of prime numbers between 89 and 5678901 included is 392201 >>> f(89, 5678901) The number of prime numbers between 89 and 5678901 included is 392201 ''' count = 0 for i in range(a,b+1): if is_prime(i): count+=1 less_a_primes = get_primes_3(a + 1) less_b_primes = get_primes_3(b + 1) for item in less_a_primes: if item < a: less_b_primes.remove(item) count = len(less_b_primes) print(f'The number of prime numbers between {a} and {b} included is {count}') if __name__ == '__main__': import doctest doctest.testmod()
YuanG1944/COMP9021_19T3_ALL
9021 Python/review/mid-examples/2017S1_Sol/5.py
5.py
py
1,735
python
en
code
1
github-code
6
20495057760
import sys, iptc, re, socket single_options = False predesigned_rules = ['BlockIncomingSSH', 'BlockOutgoingSSH', 'BlockAllSSH', 'BlockIncomingHTTP', 'BlockIncomingHTTPS',\ 'BlockIncomingPing', 'BlockInvalidPackets', 'BlockSYNFlooding', 'BlockXMASAttack', 'ForceSYNPackets'] accepted_protocols = ['ah','egp','esp','gre','icmp','idp','igmp','ip','pim','pum','pup','raw','rsvp','sctp','tcp','tp','udp'] ipsrc = None ipsrc_range = None ipdst = None ipdst_range = None portsrc = None portsrc_range = None portdst = None portdst_range = None protocol = None interfacein = None interfaceout = None target = None custom_position = 0 direction = None checker = False ############################### List of Predefined Rules ############################# def block_incoming_ssh(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.dport = "22" match = rule.create_match("state") match.state = "NEW" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def block_outgoing_ssh(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "OUTPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.dport = "22" match = rule.create_match("state") match.state = "NEW" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def block_all_ssh(): chain1 = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") chain2 = iptc.Chain(iptc.Table(iptc.Table.FILTER), "OUTPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.dport = "22" match = rule.create_match("state") match.state = "NEW" target = iptc.Target(rule, "DROP") rule.target = target chain1.insert_rule(rule) chain2.insert_rule(rule) print("Successfully Created") def block_incoming_http(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.dport = "80" match = rule.create_match("state") match.state = "NEW" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def block_incoming_https(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.dport = "443" match = rule.create_match("state") match.state = "NEW" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def block_incoming_ping(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "icmp" match = rule.create_match("icmp") match.icmp_type = "echo-reply" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def block_invalid_packets(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() match = rule.create_match("state") match.state = "iNVALID" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def syn_flooding(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.tcp_flags = [ 'FIN,SYN,RST,ACK', 'SYN' ] match = rule.create_match("limit") match.limit = "10/second" target = iptc.Target(rule, "ACCEPT") rule.target = target chain.insert_rule(rule) print("Successfully Created") def block_xmas_attack(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.tcp_flags = [ 'ALL', 'ALL' ] target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") def force_syn_packets(): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") rule = iptc.Rule() rule.protocol = "tcp" match = rule.create_match("tcp") match.syn = "!1" match = rule.create_match("state") match.state = "NEW" target = iptc.Target(rule, "DROP") rule.target = target chain.insert_rule(rule) print("Successfully Created") # Function to delete rules all_rules_deleted = True def delete_rules(table): global all_rules_deleted all_rules_deleted = True for chain in table.chains: #print(chain.name) for rule in chain.rules: try: chain.delete_rule(rule) print(rule.protocol, rule.src, rule.dst, rule.target.name, "is DELETED") except: all_rules_deleted = False if(all_rules_deleted==False): #print("First Iteration Failed") delete_rules(table) # Function to delete a single rule def delete_rule(rule, table, direction = None): if(direction == 'input'): chain = iptc.Chain(table, "INPUT") deleted1 = False for index, rule in enumerate(chain.rules): if(int(rule_number) == index): try: chain.delete_rule(rule) print("Rule Successfully Deleted for Input") deleted1 = True except: sys.exit("The rule could not be deleted for Input. Please, try again.") if(deleted1 == False): print("The Rule Could Not Be Found for Input") elif (direction == 'output'): chain = iptc.Chain(table, "OUTPUT") deleted1 = False for index, rule in enumerate(chain.rules): if(int(rule_number) == index): try: chain.delete_rule(rule) print("Rule Successfully Deleted for Output") deleted1 = True except: sys.exit("The rule could not be deleted for Input. Please, try again.") if(deleted1 == False): print("The Rule Could Not Be Found for Output") else: sys.exit("Delete rule function error. Incorrect parameter") # First check, for options that should be used alone for index, value in enumerate(sys.argv): if(value == '-l' ): if (len(sys.argv)) != 2: sys.exit("The option -l does not accept additional options. Please, type: myFirewall -l") single_options = True table = iptc.Table(iptc.Table.FILTER) for chain in table.chains: #print ("Chain ",chain.name) rule_type = chain.name[:3] for index, rule in enumerate(chain.rules): dport = None sport = None ip_src_range = None ip_dst_range = None match_state = None match_tcp_flags = None for match in rule.matches: if (match.dport != None): dport = match.dport if (match.sport != None): sport = match.sport if (match.src_range != None): ip_src_range = match.src_range if (match.dst_range != None): ip_dst_range = match.dst_range if (match.state != None): match_state = match.state if (match.tcp_flags != None): match_tcp_flags = match.tcp_flags[match.tcp_flags.find(' ')+1:] if(ip_src_range != None): source_ip = ip_src_range else: source_ip = rule.src if(ip_dst_range != None): destination_ip = ip_dst_range else: destination_ip = rule.dst print ("==========================================") print ("RULE("+ rule_type+")", index, "||", "proto:", rule.protocol + " ||", "sport:", str(sport) + " ||", "dport:", str(dport) + " ||", "src:", source_ip + " ||", "dst:", destination_ip + " ||\n", "|| inInt:", str(rule.in_interface) + " ||", "outInt:", str(rule.out_interface) + " ||", "tcpflags:", str(match_tcp_flags) + " ||", "state:", str(match_state) + " ||", "Target:", rule.target.name) print ("==========================================") elif(value == '-r'): if (len(sys.argv)) != 2: sys.exit("The option -r does not accept additional options. Please, type: myFirewall -r") single_options = True table1 = iptc.Table(iptc.Table.FILTER) delete_rules(table1) table2 = iptc.Table(iptc.Table.MANGLE) delete_rules(table2) table3 = iptc.Table(iptc.Table.NAT) delete_rules(table3) table4 = iptc.Table(iptc.Table.RAW) delete_rules(table4) table5 = iptc.Table(iptc.Table.SECURITY) delete_rules(table5) elif(value == '-d'): if (len(sys.argv) != 3 and len(sys.argv) != 4): sys.exit("The option -d does not accept these options. Please, type: myFirewall -d RuleNumer [-in|-out]") single_options = True table = iptc.Table(iptc.Table.FILTER) rule_number = sys.argv[2] if(len(sys.argv) == 4): if (sys.argv[3] == '-in'): delete_rule(rule_number, table, direction = 'input') elif (sys.argv[3] == '-out'): delete_rule(rule_number, table, direction = 'output') else: sys.exit("Incorrect parameter. Please, type: myFirewall -d RuleNumer [-in|-out]") else: delete_rule(rule_number, table, direction = 'input') delete_rule(rule_number, table, direction = 'output') #for chain in table.chains: #for rule in chain.rules: # chain.delete_rule(rule) elif(value == '-all'): if ((len(sys.argv) != 3) and (sys.argv[index+1]!='ACCEPT') and (sys.argv[index+1]!='DROP')): sys.exit("The -all option lets the user to ACCEPT or DROP all packets, independently of ports,"+\ " protocols or IPs. Please, specify a ACCEPT or DROP argument") else: single_options = True rule = iptc.Rule() rule.target = rule.create_target(sys.argv[index+1]) chain1 = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") chain2 = iptc.Chain(iptc.Table(iptc.Table.FILTER), "OUTPUT") chain1.insert_rule(rule) chain2.insert_rule(rule) elif(value == '-rule'): single_options = True if (len(sys.argv)) != 3: if (len(sys.argv) == 2): print("The list of rules available is:\n") for i in predesigned_rules: print(i) else: sys.exit("The option -r does not accept additional options. Please, type: -rule RULE") elif(sys.argv[index+1] == 'BlockIncomingSSH'): block_incoming_ssh() elif(sys.argv[index+1] == 'BlockOutgoingSSH'): block_outgoing_ssh() elif(sys.argv[index+1] == 'BlockAllSSH'): block_all_ssh() elif(sys.argv[index+1] == 'BlockIncomingHTTP'): block_incoming_http() elif(sys.argv[index+1] == 'BlockIncomingHTTPS'): block_incoming_https() elif(sys.argv[index+1] == 'BlockIncomingPing'): block_incoming_ping() elif(sys.argv[index+1] == 'BlockInvalidPackets'): block_invalid_packets() elif(sys.argv[index+1] == 'BlockSYNFlooding'): syn_flooding() elif(sys.argv[index+1] == 'BlockXMASAttack'): block_xmas_attack() elif(sys.argv[index+1] == 'ForceSYNPackets'): force_syn_packets() else: print("Rule not available. The list of available rules is:\n") for i in predesigned_rules: print(i) print("") if(not single_options): # Iterator to retrieve all information and create a Rule for index, value in enumerate(sys.argv): if(value == '-ipsrc'): match_single = re.search('^(([0-9]?[0-9]\.)|(1[0-9][0-9]\.)|(2[0-5][0-5]\.)){3}(([0-9]?[0-9])|(1[0-9][0-9])|(2[0-5][0-5]))$', sys.argv[index+1]) match_range = re.search('^(([0-9]?[0-9]\.)|(1[0-9][0-9]\.)|(2[0-5][0-5]\.)){3}(([0-9]?[0-9])|(1[0-9][0-9])|(2[0-5][0-5]))-(([0-9]?[0-9]\.)|(1[0-9][0-9]\.)|(2[0-5][0-5]\.)){3}(([0-9]?[0-9])|(1[0-9][0-9])|(2[0-5][0-5]))$', sys.argv[index+1]) if((match_single==None) and (match_range==None)): sys.exit("The IP address format is incorrect") else: checker = True if(match_single!=None): ipsrc = sys.argv[index+1] if(match_range!=None): ipsrc_range = sys.argv[index+1] elif(value == '-ipdst'): match_single = re.search('^(([0-9]?[0-9]\.)|(1[0-9][0-9]\.)|(2[0-5][0-5]\.)){3}(([0-9]?[0-9])|(1[0-9][0-9])|(2[0-5][0-5]))$', sys.argv[index+1]) match_range = re.search('^(([0-9]?[0-9]\.)|(1[0-9][0-9]\.)|(2[0-5][0-5]\.)){3}(([0-9]?[0-9])|(1[0-9][0-9])|(2[0-5][0-5]))-(([0-9]?[0-9]\.)|(1[0-9][0-9]\.)|(2[0-5][0-5]\.)){3}(([0-9]?[0-9])|(1[0-9][0-9])|(2[0-5][0-5]))$', sys.argv[index+1]) if(match_single==None and match_range==None): sys.exit("The IP address format is incorrect") else: checker = True if(match_single!=None): ipdst = sys.argv[index+1] if(match_range!=None): ipdst_range = sys.argv[index+1] elif(value == '-portsrc'): match_single = re.search('^[0-9]+$', sys.argv[index+1]) match_range = re.search('^[0-9]+:[0-9]+$', sys.argv[index+1]) if(match_single==None and match_range==None): sys.exit("The Port/Port range format is incorrect") checker = True if(match_single != None): if(int(sys.argv[index+1])<65536 and int(sys.argv[index+1])>0): portsrc = sys.argv[index+1] else: sys.exit("The specified port is out of the boundaries. Please, type a value between 1 and 65535") elif(match_range != None): first_port_group = int(sys.argv[index+1][:sys.argv[index+1].find(':')]) second_port_group = int(sys.argv[index+1][sys.argv[index+1].find(':')+1:]) if(((first_port_group<65536) and (first_port_group>0) and (second_port_group<65536) and (second_port_group>0))): portsrc_range = sys.argv[index+1] else: sys.exit("The specified port range is out of the boundaries. Please, type values between 1 and 65535") else: sys.exit("Port incorrectly parsed") elif(value == '-portdst'): match_single = re.search('^[0-9]+$', sys.argv[index+1]) match_range = re.search('^[0-9]+:[0-9]+$', sys.argv[index+1]) if(match_single==None and match_range==None): sys.exit("The Port/Port range format is incorrect") checker = True if(match_single != None): if(int(sys.argv[index+1])<65536 and int(sys.argv[index+1])>0): portdst = sys.argv[index+1] else: sys.exit("The specified port is out of the boundaries. Please, type a value between 1 and 65535") elif(match_range != None): first_port_group = int(sys.argv[index+1][:sys.argv[index+1].find(':')]) second_port_group = int(sys.argv[index+1][sys.argv[index+1].find(':')+1:]) if(((first_port_group<65536) and (first_port_group>0) and (second_port_group<65536) and (second_port_group>0))): portdst_range = sys.argv[index+1] else: sys.exit("The specified port range is out of the boundaries. Please, type values between 1 and 65535") else: sys.exit("Port incorrectly parsed") elif(value == '-proto'): accepted = False for i in accepted_protocols: if(i == sys.argv[index+1]): accepted = True else: protocol = sys.argv[index+1] if(not accepted): sys.exit("The protocol provided is not accepted. The list of accepted protocols is:",'ah', 'egp','esp','gre','icmp','idp','igmp','ip','pim','pum','pup','raw','rsvp','sctp','tcp','tp','udp') checker = True elif(value == '-intin'): available_interface = False for i in socket.if_nameindex(): if(i[1] == sys.argv[index+1]): available_interface = True if(available_interface == False): sys.exit("The selected interface is not available on this system") else: interfacein = sys.argv[index+1] checker = True elif(value == '-intout'): available_interface = False for i in socket.if_nameindex(): if(i[1] == sys.argv[index+1]): available_interface = True if(available_interface == False): sys.exit("The selected interface is not available on this system") else: interfaceout = sys.argv[index+1] checker = True elif(value == '-pos'): match = re.search('^[0-9]*$', sys.argv[index+1]) if(match==None): sys.exit("Incorrect position format. Please, type an integer >= 0") else: custom_position = sys.argv[index+1] checker = True elif(value == '-t'): if(sys.argv[index+1] == "ACCEPT"): target = "ACCEPT" elif(sys.argv[index+1] == "DROP"): target = "DROP" else: sys.exit('Incorrect target option. Please, choose between "ACCEPT" and "DROP"') checker = True elif(value == '-in'): direction = 'incoming' elif(value == '-out'): direction = 'outgoing' else: if(checker == True or index==0): checker = False else: sys.exit("Incorrect option: " + value) rule = iptc.Rule() if(ipsrc != None): rule.src = ipsrc if(ipsrc_range != None or ipdst_range != None): match = rule.create_match("iprange") if(ipsrc_range != None): match.src_range = ipsrc_range else: match.dst_range = ipdst_range if(ipdst != None): rule.dst = ipdst if(protocol != None): rule.protocol = protocol if(protocol == "tcp" or protocol == "udp"): match = rule.create_match(protocol) if(portsrc != None or portdst != None): if(protocol == None): protocol = "tcp" rule.protocol = protocol match = rule.create_match(protocol) if(portsrc != None): match.sport = portsrc if(portdst != None): match.dport = portdst if(portsrc_range != None or portdst_range != None): if(protocol == None): protocol = "tcp" rule.protocol = protocol match = rule.create_match(protocol) if(portsrc_range != None): match.sport = portsrc_range if(portdst_range != None): match.dport = portdst_range if(interfacein != None): rule.in_interface = interfacein if(interfaceout != None): rule.out_interface = interfaceout if(target != None): rule.target = rule.create_target(target) else: sys.exit('You must specify a target: -t "ACCEPT" or -t "DROP"') if(direction == None): chain1 = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") chain2 = iptc.Chain(iptc.Table(iptc.Table.FILTER), "OUTPUT") try: chain1.insert_rule(rule, position=int(custom_position)) except: sys.exit("Index of insertion out of boundaries for existing Input table. Please, choose a value between 0 and (Max.AmountOfRules-1)") try: chain2.insert_rule(rule, position=int(custom_position)) except: sys.exit("Index of insertion out of boundaries for Output table. Please, choose a value between 0 and (Max.AmountOfRules-1)") elif(direction == "incoming"): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT") try: chain.insert_rule(rule, position=int(custom_position)) except: sys.exit("Index of insertion out of boundaries. Please, choose a value between 0 and (Max.AmountOfRules-1)") elif(direction == "outgoing"): chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "OUTPUT") try: chain.insert_rule(rule, position=int(custom_position)) except: sys.exit("Index of insertion out of boundaries. Please, choose a value between 0 and (Max.AmountOfRules-1)")
syerbes/myFirewall
myFirewall.py
myFirewall.py
py
21,668
python
en
code
0
github-code
6
28153479584
import src.fileIO as io import src.chris as chris import src.filepaths as fp import src.analysis as anal import src.plotting as plot from pathlib import Path def batch_calculate_peak_wavelength(parent_directory, batch_name, file_paths, directory_paths, plot_files): ''' Calculate sample batch peak wavelength and error, from individual files within batch. Args: parent_directory: <string> parent directory identifier batch_name: <string> batch name string file_paths: <array> array of target file paths directory_paths: <dict> dictionary containing required paths plot_files: <string> "True" or "False" for plotting output Returns: results_dictionary: <dict> Batch Name File Names File Paths Secondary Strings Individual file values for: Background Files Region Trim Index: <array> min, max indices popt: <array> fano fit parameters: peak, gamma, q, amplitude, damping pcov: <array> fano fit errors peak, gamma, q, amplitude, damping ''' batch_dictionary = fp.update_batch_dictionary( parent=parent_directory, batch_name=batch_name, file_paths=file_paths) for file in file_paths: wavelength, raw_intensity = io.read_GMR_file(file_path=file) sample_parameters = fp.sample_information(file_path=file) background_file, background_parameters = fp.find_background( background_path=directory_paths['Background Path'], sample_details=sample_parameters, file_string='.txt') print(background_file) if len(background_file) == 0: normalised_intensity = anal.normalise_intensity( raw_intensity=anal.timecorrected_intensity( raw_intensity=raw_intensity, integration_time=sample_parameters[ f'{parent_directory} Integration Time'])) else: _, background_raw_intensity = io.read_GMR_file( file_path=background_file[0]) background_parent = background_parameters['Parent Directory'] normalised_intensity = anal.bg_normal_intensity( intensity=raw_intensity, background_intensity=background_raw_intensity, integration_time=sample_parameters[ f'{parent_directory} Integration Time'], background_integration_time=background_parameters[ f'{background_parent} Integration Time']) out_string = sample_parameters[f'{parent_directory} Secondary String'] plot.spectrumplt( wavelength=wavelength, intensity=normalised_intensity, out_path=Path(f'{directory_paths["Results Path"]}/{batch_name}_{out_string}')) peak_results = chris.calc_peakwavelength( wavelength=wavelength, normalised_intensity=normalised_intensity, sample_details=sample_parameters, plot_figure=plot_files, out_path=Path( f'{directory_paths["Results Path"]}' f'/{batch_name}_{out_string}_Peak.png')) batch_dictionary.update( {f'{out_string} File': sample_parameters}) batch_dictionary.update( {f'{out_string} Background': background_parameters}) batch_dictionary.update(peak_results) return batch_dictionary if __name__ == '__main__': ''' Organisation ''' root = Path().absolute() info, directory_paths = fp.get_directory_paths(root_path=root) file_paths = fp.get_files_paths( directory_path=directory_paths['Spectrum Path'], file_string='.txt') parent, batches = fp.get_all_batches(file_paths=file_paths) ''' Batch Processing ''' for batch, filepaths in batches.items(): out_file = Path( f'{directory_paths["Results Path"]}' f'/{batch}_Peak.json') if out_file.is_file(): pass else: results_dictionary = batch_calculate_peak_wavelength( parent_directory=parent, batch_name=batch, file_paths=filepaths, directory_paths=directory_paths, plot_files=info['Plot Files']) io.save_json_dicts( out_path=out_file, dictionary=results_dictionary)
jm1261/PeakFinder
batch_peakfinder.py
batch_peakfinder.py
py
4,669
python
en
code
0
github-code
6
15206966945
# -*- coding: utf-8 -*- """ Ventricular tachycardia, ventricular bigeminy, Atrial fibrillation, Atrial fibrillation, Ventricular trigeminy, Ventricular escape , Normal sinus rhythm, Sinus arrhythmia, Ventricular couplet """ import tkinter as tk import scipy.io as sio from PIL import Image, ImageTk class App(): ancho=760 alto=760 estado=False contadores=[0,0,0,0,0,0,0,0,0]#son los que van a contar el numero de dato que se ejecuta #se va a cosiacar las señales Signal=0 def __init__(self): #cargar las variables .mat self.raiz=tk.Tk() self.importData() self.frame=tk.Frame(self.raiz,bg="white") self.frame.config(width=self.ancho,height=self.alto) self.frame.pack() self.titulo=tk.Label(self.frame,bg="white",text="Dispositivo Generador de Arritmias Cardiacas") self.titulo.config(font=("Grotesque",24)) self.titulo.place(x=0,y=0,width=self.ancho,height=self.alto//16) self.opcion = tk.IntVar() names=["Taquicardia ventricualar","Bigeminismo Ventricular","Fibrilacion atrial","Flutter atrial","Trigeminismo Ventricular", "Escape Ventricular","Ritmo Sinusal","Arritmia Sinusal","Couplet Ventricular"] for i in range(1,10): tk.Radiobutton(self.frame, text=names[i-1],font=("Grotesque",16) ,variable=self.opcion,bg="white",anchor="w", value=i, command=self.selec).place(x=50,y=self.alto//8+(i-1)*self.alto//20, width=self.ancho//2.5,height=self.alto//32) temp=Image.open('LOGO_UMNG.png') temp=temp.resize((200, 250), Image.ANTIALIAS) self.imagen = ImageTk.PhotoImage(temp) tk.Label(self.raiz, image=self.imagen,bg="white").place(x=450,y=140) self.nombres=tk.Label(self.frame,bg="white",text="Juan Camilo Sandoval Cabrera\nNohora Camila Sarmiento Palma",anchor="e") self.nombres.config(font=("Grotesque",12)) self.nombres.place(x=420,y=420,width=self.ancho//3,height=self.alto//16) tk.Button(self.frame, text="Iniciar",font=("Grotesque",16),command=self.Estado_DataON).place(x=270,y=600) tk.Button(self.frame, text="Pausar",font=("Grotesque",16),command=self.Estado_DataOFF).place(x=400,y=600) self.titulo.after(700,self.Enviar_Data) def Estado_DataON(self): self.estado=True def Estado_DataOFF(self): self.estado=False def Enviar_Data(self): delay=3 op=self.opcion.get() c=op-1 if self.estado: print(self.Signal[0,self.contadores[c]]) self.contadores[c]+=1 if c==7: delay=4 self.titulo.after(delay,self.Enviar_Data) def selec(self): op=self.opcion.get()#el lunes hacer el selector if op==1: self.Signal=self.VT #variables de las señales elif op==2: self.Signal=self.VB #variables de las señales elif op==3: self.Signal=self.AFIB #variables de las señales elif op==4: self.Signal=self.AFL #variables de las señales elif op==5: self.Signal=self.VTRI #variables de las señales elif op==6: self.Signal=self.VES #variables de las señales elif op==7: self.Signal=self.S #variables de las señales elif op==8: self.Signal=self.SARR #variables de las señales elif op==9: self.Signal=self.VCOUP #variables de las señales def iniciar(self): self.raiz.mainloop() def importData(self): AFIB=sio.loadmat('AFIB.mat') self.AFIB=AFIB['SignalNorm'] AFL=sio.loadmat('AFL.mat') self.AFL=AFL['SignalNorm'] S=sio.loadmat('S.mat') self.S=S['SignalNorm'] VES=sio.loadmat('VS.mat') self.VES=VES['SignalNorm'] VCOUP=sio.loadmat('VCop.mat') self.VCOUP=VCOUP['SignalNorm'] VT=sio.loadmat('TV.mat') self.VT=VT['SignalNorm'] SARR=sio.loadmat('SARR.mat') self.SARR=SARR['SignalNorm'] VB=sio.loadmat('VB.mat') self.VB=VB['SignalNorm'] #VT=sio.loadmat('VT.mat')#SE PERDIO #self.VT=VT['SignalNorm'] VTRI=sio.loadmat('VTRI.mat') self.VTRI=VTRI['SignalNorm'] def main(): mi_app = App() mi_app.iniciar() if __name__ == '__main__': main()
Sandovaljuan99/INMEDUMG
Cardiac arrhythmia simulator/IGPY.py
IGPY.py
py
4,934
python
es
code
1
github-code
6
73652351869
# 给你一个字符串 s 和一个整数 k 。你可以选择字符串中的任一字符,并将其更改为任何其他大写英文字符。该操作最多可执行 k 次。 # 在执行上述操作后,返回包含相同字母的最长子字符串的长度。 class Solution(object): def characterReplacement(self, s, k): """ :type s: str :type k: int :rtype: int """ num = [0] * 26 left = right = maxn = 0 n = len(s) while(right < n): num[ord(s[right]) - ord('A')] += 1 maxn = max(maxn, num[ord(s[right]) - ord('A')]) if right - left + 1 - maxn > k: num[ord(s[left]) - ord('A')] -= 1 left += 1 right += 1 return right - left s = "ABAB" k = 2 a = Solution() print(a.characterReplacement(s, k))
xxxxlc/leetcode
array/characterReplacement.py
characterReplacement.py
py
876
python
zh
code
0
github-code
6
7946323385
from flaskr.db import get_db no_of_existing_accounts = 3 def test_create_account(client, app): expected_account = { "account_number": "4", "account_name": "Brukskonto", "account_nickname": "Min Brukskonto", "account_owner_name": "Ola Nordmann", "account_type": "DEPOSIT", "currency": "NOK", "available_balance": "0", "booked_balance": "0", "status": "open" } input_data = { "account_name": "Brukskonto", "account_nickname": "Min Brukskonto", "account_owner_name": "Ola Nordmann", "account_type": "DEPOSIT", "currency": "NOK" } url = '/v1/accounts' assert client.get(url).status_code == 200 response = client.post(url, json=input_data) assert response.status_code == 201 # Created # Check that another account has been added to the database with app.app_context(): db = get_db() count = db.execute('SELECT COUNT(id) FROM account').fetchone()[0] assert count == no_of_existing_accounts + 1 assert response.json == expected_account def test_get_accounts(client): expected_result = { "accounts": [ { "account_number": "1", "account_name": "Brukskonto", "account_nickname": "Min Brukskonto", "account_owner_name": "Ola Nordmann", "account_type": "DEPOSIT", "currency": "NOK", "available_balance": "10000", "booked_balance": "8000", "status": "open" }, { "account_number": "2", "account_name": "Sparekonto", "account_nickname": "Min Sparekonto", "account_owner_name": "Ola Nordmann", "account_type": "SAVING", "currency": "NOK", "available_balance": "50000", "booked_balance": "50000", "status": "open" }, { "account_number": "3", "account_name": "Valutakonto", "account_nickname": "Min Valutakonto", "account_owner_name": "Ola Nordmann", "account_type": "CURRENCY", "currency": "USD", "available_balance": "5000", "booked_balance": "5000", "status": "open" } ] } url = '/v1/accounts' response = client.get(url) assert response.status_code == 200 # OK assert response.json == expected_result def test_get_wrong_url(client): bad_url = '/not_exists' assert client.get(bad_url).status_code == 404 # Not found def test_post_wrong_url(client): bad_url = '/not_exists' input_data = { "account_name": "Brukskonto", "account_nickname": "Min Brukskonto", "account_owner_name": "Ola Nordmann", "account_type": "DEPOSIT", "currency": "NOK" } response = client.post(bad_url, json=input_data) assert response.status_code == 404 # Not found def test_create_account_missing_data(client, app): input_data = { "nothing_useful": "blah" } url = '/v1/accounts' assert client.get(url).status_code == 200 response = client.post(url, json=input_data) assert response.status_code == 400 # Bad request # Check no incomplete accounts have been added to the db with app.app_context(): db = get_db() count = db.execute('SELECT COUNT(id) FROM account').fetchone()[0] assert count == no_of_existing_accounts # Check attempting to insert bad data doesn't break get assert client.get(url).status_code == 200 def test_create_account_invalid_account_type(client, app): input_data = { "account_name": "Brukskonto", "account_nickname": "Min Brukskonto", "account_owner_name": "Ola Nordmann", "account_type": "NOT_EXISTS", "currency": "NOK" } url = '/v1/accounts' assert client.get(url).status_code == 200 response = client.post(url, json=input_data) assert response.status_code == 400 # Bad request assert response.data == b'Account type NOT_EXISTS is not valid' # Check no incomplete accounts have been added to the db with app.app_context(): db = get_db() count = db.execute('SELECT COUNT(id) FROM account').fetchone()[0] assert count == no_of_existing_accounts # Check attempting to insert bad data doesn't break get assert client.get(url).status_code == 200
eilidht/Accounts
tests/test_account.py
test_account.py
py
4,629
python
en
code
0
github-code
6
8764441086
class animal: leg=4 @staticmethod def sum(x,y): sum=x+y print(sum) @staticmethod def mul(x,y): mul=x*y print(mul) @classmethod def walk(cls,name): print(f"{name} has {animal.leg} leg") @classmethod def evenodd(cls,num): if num%2==0: print(f"{num} is even number") else: print("f{num} is odd number") t1=animal() t1.sum(10,30) animal.mul(10,50) t1.walk("dog") animal.evenodd(10)
divyansh251/basic-oops-concepts
oops4.py
oops4.py
py
409
python
en
code
0
github-code
6
1040065850
import numpy as np import pandas as pd import operator from sklearn import preprocessing data = pd.read_csv("data.csv",header=None) min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) def classify(v,k,distance): target_values = data.iloc[:,-1] nearest_neighbors = knn(data,k,v,distance) classification_values = {} for index in nearest_neighbors: if target_values[index] not in classification_values.keys(): classification_values[target_values[index]] = 1 else: classification_values[target_values[index]] += 1 return max(classification_values.items(),key=operator.itemgetter(1))[0] def knn(vectors,k,vector_to_classify,distance): distances = [] for i in range(0,len(vectors)): x = vectors.loc[i,:] x = x[0:len(x)-1] x = min_max_scaler.fit_transform(x.values.astype(float).reshape(-1,1))[:,0] distances.append({"index": i, "value": distance(x,vector_to_classify)}) distances = sorted(distances,key=lambda x:x['value'], reverse=True) indexes = list(map(lambda distance: distance['index'],distances[0:k])) return indexes def euclidean_distance(x,y): summation = 0 for i in range(0,x.size): summation += ((x[i] - y[i])**2) return (summation)**(1/2) def manhattan_distance(x,y): summation = 0 for i in range(0,x.size): summation += abs(x[i]-y[i]) return summation def maximum_metric(x,y): max_distance = 0 for i in range(0,x.size): difference = abs(x[i]-y[i]) if(difference > max_distance): max_distance = difference return max_distance vectors_to_classify = [np.array([1100000,60,1,2,1,500]), np.array([1100000,60,1,2,1,500]), np.array([1800000,65,1,2,1,1000]), np.array([2300000,72,1,3,1,1400]), np.array([3900000,110,2,3,1,1800])] distances = [{'name':'Euclidean Distance','function':euclidean_distance}, {'name':'Manhattan Distance','function':manhattan_distance}, {'name':'Maximum Metric','function':maximum_metric}] for distance in distances: print("Distance " + str(distance['name'])) for k in [1,3,5]: print("K = " + str(k)) for v in vectors_to_classify: v = min_max_scaler.fit_transform(v.astype(float).reshape(-1,1))[:,0] print(classify(v,k,distance['function']))
egjimenezg/DataAnalysis
knn/knn.py
knn.py
py
2,364
python
en
code
0
github-code
6
16404587226
from ksz.src import plot import matplotlib.pyplot as plt data_path_list = [ '/data/ycli/dr12/galaxy_DR12v5_LOWZ_North_TOT_wMASS.dat', '/data/ycli/dr12/galaxy_DR12v5_LOWZ_South_TOT_wMASS.dat', '/data/ycli/dr12/galaxy_DR12v5_CMASS_North_TOT_wMASS.dat', '/data/ycli/dr12/galaxy_DR12v5_CMASS_South_TOT_wMASS.dat', #'/data/ycli/6df/6dFGS_2MASS_RA_DEC_Z_J_K_bJ_rF_GOOD.cat', #'/data/ycli/group_catalog/6dFGS_M_group.dat', #'/data/ycli/group_catalog/6dFGS_L_group.dat', '/data/ycli/group_catalog/SDSS_M_group.dat', #'/data/ycli/group_catalog/SDSS_L_group.dat', '/data/ycli/cgc/CGC_wMASS.dat', ] label_list = [ 'LOWZ North CGC', 'LOWZ South CGC', 'CMASS North', 'CMASS South', #'6dF', #'6dF mass-weighted halo center', #'6dF luminosity-weighted halo center', 'DR13 Group', #'dr13 luminosity-weighted halo center', 'DR7 CGC', ] ap_list = [ 7., 7., #0., #0., 8., #11., 11., #11., 7., #7., ] #plot.plot_stellarmass_hist(data_path_list, label_list) plot.plot_halomass_hist(data_path_list, label_list) #plot.plot_rvir_hist(data_path_list, label_list, rho_crit = 2.775e11, ap_list=ap_list) #plot.plot_z_hist(data_path_list, label_list) plt.show()
YichaoLi/pksz
plot_pipe/plot_stellar_mass.py
plot_stellar_mass.py
py
1,401
python
en
code
0
github-code
6
28610424615
from __future__ import annotations import json import subprocess import collections import concurrent.futures from os import path, system from datetime import datetime root_path = path.abspath("src/test_cases/UI") report_path = path.abspath("src/reports/concurrent_test_logs") def generate_pytest_commands(): config_run_test_dir = path.dirname(__file__) with open(path.join(config_run_test_dir, "config_run_multiple_test.json")) as f: config_data = json.load(f) list_test_suite = config_data['test_suite'] pytest_run_cmds = [] for suite in list_test_suite: test_name = suite['test']['name'].replace(".", "::") browser_name = suite['test']['browser'] test_suite_option = f"{suite['name']}::{test_name}" options_cmd = collections.namedtuple('OptionCmd', ['test_name', 'browser']) pytest_run_cmds.append(options_cmd(test_suite_option, browser_name)) return pytest_run_cmds def execute_pytest_cmd(option_cmd): run_cmd_process = subprocess.run(["pytest", f"{root_path}\\{option_cmd.test_name}", f"--browser={option_cmd.browser}"], capture_output=True) return run_cmd_process.stdout list_options_cmd = generate_pytest_commands() with concurrent.futures.ThreadPoolExecutor(max_workers=len(list_options_cmd)) as executor: running_cmd = {executor.submit(execute_pytest_cmd, options): options for options in list_options_cmd} for completed_cmd in concurrent.futures.as_completed(running_cmd): test_ran = running_cmd[completed_cmd].test_name.split("::")[-1] browser_ran = running_cmd[completed_cmd].browser try: time_logging = datetime.now().strftime("%Y.%m.%d_(%H-%M-%S.%f)") with open(f"{report_path}\\Result_{test_ran}_{time_logging}.log", "wb") as f: f.write(completed_cmd.result()) except Exception as exc: print(f"Pytest ran with error {exc}.")
huymapmap40/pytest_automation
src/config/parallel_test/run_parallel_test.py
run_parallel_test.py
py
2,068
python
en
code
1
github-code
6
13749339342
import ROOT #from root_numpy import root2array, root2rec, tree2rec import pylab,numpy,pickle import matplotlib pylab.rcParams['font.size'] = 14.0 pylab.rcParams['axes.labelsize']=18.0 pylab.rcParams['axes.titlesize']=20.0 pylab.rcParams['ytick.labelsize']='large' pylab.rcParams['xtick.labelsize']='large' pylab.rcParams['lines.markeredgewidth']=1.0 pylab.rc ('text', usetex=True) pylab.rc ('font', family='serif') pylab.rc ('font', serif='Computer Modern Roman') log_sigma_days = numpy.array([-5,-4,-3,-2,-1,-0.52287874528033762,0,1]) ### NEW GENIE 1460 Included ### dec0_e3_foldedspectrum = (1072.916206382002,0) dec16_e3_foldedspectrum = (1545.0315486757047,0) dec30_e3_foldedspectrum = (1803.4879220886971,0) dec45_e3_foldedspectrum = (1955.9670994116407,0) dec60_e3_foldedspectrum = (2117.1599069802728,0) dec75_e3_foldedspectrum = (2228.3197855702933,0) sa_avg_foldedspectrum = (1654.0807981564465,0) sys_adjustment = 0.89559693491089454 ### Int(EffaE-3) (JF,RH)### #samp2_e3_foldedspectrum_sum = (1759.219287256351,0) ## 100 GeV flux equal to 1.0 GeV^-1 cm^-2 s^-1 #samp2_e35_foldedspectrum_sum = (2925.5560058208703,0) ## #samp2_e25_foldedspectrum_sum = (1320.5883336274608,0) ## sens_e3_dec0_meansrc_events = numpy.array([6.4656,6.70643,6.7344,7.38432,10.4106,13.2816,16.2928,28.1549]) sens_e3_dec16_meansrc_events = numpy.array([6.4384,6.62176,6.79315,7.4096,10.5558,13.0896,16.5709,30.3184]) sens_e3_dec30_meansrc_events = numpy.array([7.632,7.32,7.54048,8.00864,10.68,12.6272,16.0406,27.1056]) sens_e3_dec45_meansrc_events = numpy.array([6.86976,6.87104,7.09792,8.60768,11.3456,12.983,16.1408,27.0288]) sens_e3_dec60_meansrc_events = numpy.array([6.77216,6.54144,7.29088,8.584,11.0262,13.2019,15.5658,24.368]) sens_e3_dec75_meansrc_events = numpy.array([5.6608,5.64512,5.95296,7.37824,10.8947,12.7984,15.9766,28.8221]) ul_e3_dec0_meansrc_events = numpy.array([7.5456,8.09952,9.06432,11.376,17.5674,22.2304,29.9581,60.232]) ul_e3_dec16_meansrc_events = numpy.array([7.77754,8.51104,9.67872,11.8336,18.1984,23.208,30.528,64.568]) ul_e3_dec30_meansrc_events = numpy.array([8.95392,9.34349,10.2138,12.5501,18.1462,22.568,29.6342,59.744]) ul_e3_dec45_meansrc_events = numpy.array([8.45888,8.73325,9.74496,12.8112,19.0477,22.5107,29.5024,59.3357]) ul_e3_dec60_meansrc_events = numpy.array([8.17261,8.74912,10.1846,13.3968,19.3747,23.0784,30.0032,57.7504]) ul_e3_dec75_meansrc_events = numpy.array([7.30272,7.66144,8.52512,11.688,19.0272,24.0032,31.9216,64.608]) ilow_en_bins = pickle.load(open("./pickles/effarea_low_energy_bins.pkl",'r')) high_en_bins = pickle.load(open("./pickles/effarea_high_energy_bins.pkl",'r')) genie_avg_area = pickle.load(open("./pickles/g1460_numu_effarea_avg.pkl",'r')) genie_dec0_area = pickle.load(open("./pickles/g1460_numu_effarea_dec0.pkl",'r')) genie_dec16_area = pickle.load(open("./pickles/g1460_numu_effarea_dec16.pkl",'r')) genie_dec30_area = pickle.load(open("./pickles/g1460_numu_effarea_dec30.pkl",'r')) genie_dec45_area = pickle.load(open("./pickles/g1460_numu_effarea_dec45.pkl",'r')) genie_dec60_area = pickle.load(open("./pickles/g1460_numu_effarea_dec60.pkl",'r')) genie_dec75_area = pickle.load(open("./pickles/g1460_numu_effarea_dec75.pkl",'r')) nugen_avg_area = pickle.load(open("./pickles/g1460_nugmu_effarea_avg.pkl",'r')) nugen_dec0_area = pickle.load(open("./pickles/g1460_nugmu_effarea_dec0.pkl",'r')) nugen_dec16_area = pickle.load(open("./pickles/g1460_nugmu_effarea_dec16.pkl",'r')) nugen_dec30_area = pickle.load(open("./pickles/g1460_nugmu_effarea_dec30.pkl",'r')) nugen_dec45_area = pickle.load(open("./pickles/g1460_nugmu_effarea_dec45.pkl",'r')) nugen_dec60_area = pickle.load(open("./pickles/g1460_nugmu_effarea_dec60.pkl",'r')) nugen_dec75_area = pickle.load(open("./pickles/g1460_nugmu_effarea_dec75.pkl",'r')) sa0 = 2*numpy.pi*((1-numpy.cos(numpy.deg2rad(95.))) - (1-numpy.cos(numpy.deg2rad(80.)))) sa16 = 2*numpy.pi*((1-numpy.cos(numpy.deg2rad(80.))) - (1-numpy.cos(numpy.deg2rad(65.)))) sa30 = 2*numpy.pi*((1-numpy.cos(numpy.deg2rad(65.))) - (1-numpy.cos(numpy.deg2rad(50.)))) sa45 = 2*numpy.pi*((1-numpy.cos(numpy.deg2rad(50.))) - (1-numpy.cos(numpy.deg2rad(35.)))) sa60 = 2*numpy.pi*((1-numpy.cos(numpy.deg2rad(35.))) - (1-numpy.cos(numpy.deg2rad(20.)))) sa75 = 2*numpy.pi*(1-numpy.cos(numpy.deg2rad(20.))) saTotal = 2*numpy.pi*(1-numpy.cos(numpy.deg2rad(95.))) sky_frac = [0.23989563791056959, 0.22901050354066707, 0.20251868181221927, 0.16222554659621455, 0.11087700847006936, 0.055472621670260208] fluxnorm_dec16_e3 = ul_e3_dec16_meansrc_events/dec16_e3_foldedspectrum[0] fluxnorm_dec0_e3 = ul_e3_dec0_meansrc_events/dec0_e3_foldedspectrum[0] fluxnorm_dec30_e3 = ul_e3_dec30_meansrc_events/dec30_e3_foldedspectrum[0] fluxnorm_dec45_e3 = ul_e3_dec45_meansrc_events/dec45_e3_foldedspectrum[0] fluxnorm_dec60_e3 = ul_e3_dec60_meansrc_events/dec60_e3_foldedspectrum[0] fluxnorm_dec75_e3 = ul_e3_dec75_meansrc_events/dec75_e3_foldedspectrum[0] uls = [ul_e3_dec0_meansrc_events,ul_e3_dec16_meansrc_events,ul_e3_dec30_meansrc_events,ul_e3_dec45_meansrc_events,ul_e3_dec60_meansrc_events,ul_e3_dec75_meansrc_events] event_ul_avg_list = [uls[i]*sky_frac[i] for i in range(len(sky_frac))] event_ul_avg = numpy.array([0.,0.,0.,0.,0.,0.,0.,0.]) for listy in event_ul_avg_list: event_ul_avg+=listy fluxnorm_sa_avg_e3 = event_ul_avg / sa_avg_foldedspectrum[0] #fluxnorm_0 = sens_bdt0_e3_meansrc_events/samp2_e3_foldedspectrum_sum[0] #fluxnorm_0_disco = disco_bdt0_e3_meansrc_events/samp2_e3_foldedspectrum_sum[0] #fluxnorm_0_25 = sens_bdt0_e25_meansrc_events/samp2_e25_foldedspectrum_sum[0] #fluxnorm_0_35 = sens_bdt0_e35_meansrc_events/samp2_e35_foldedspectrum_sum[0] pylab.figure() pylab.plot(log_sigma_days,event_ul_avg,'k-',lw=2,label="Averaged") pylab.plot(log_sigma_days,ul_e3_dec0_meansrc_events,'k--',lw=2,label=r"$\delta=0^{\circ}$") pylab.plot(log_sigma_days,ul_e3_dec30_meansrc_events,'k-.',lw=2,label=r"$\delta=30^{\circ}$") pylab.plot(log_sigma_days,ul_e3_dec60_meansrc_events,'k:',lw=2,label=r"$\delta=60^{\circ}$") pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad (Days)$') pylab.ylabel("NSrc Events") pylab.axis([-5,1,3,60]) pylab.grid() pylab.legend(loc="upper left") matplotlib.pyplot.gcf().subplots_adjust(right=.85) pylab.title(r"Upper Limit $E^{-3}$ 90% C.L.") pylab.savefig("LowEnTransient_NEventUpperLimit_E3_G1460_MultiDec") fig1=pylab.figure() pylab.plot(log_sigma_days,event_ul_avg,'k-',lw=2) #pylab.plot(0.77011529478710161,13.5279,"w*",ms=20.0,label="Most Significant Flare") #pylab.plot(log_sigma_days,disco_bdt0_e3_meansrc_events,'k-',lw=2,label="Discovery Potential") pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad$ (Days)') pylab.ylabel("NSrc Events") pylab.axis([-5,1,0,62]) pylab.grid() pylab.legend(loc="upper left") matplotlib.pyplot.gcf().subplots_adjust(right=.85) pylab.title(r"Upper Limit $E^{-3}$ 90$\%$ C.L.") pylab.savefig("LowEnTransient_NEventUpperLimit_E3_G1460_Avg.pdf") figgy=pylab.figure() ax = figgy.add_subplot(111) pylab.plot(log_sigma_days,fluxnorm_sa_avg_e3,'k-',lw=2,label=r"$E^{-3.0}$") pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad$ (Days)') pylab.ylabel(r"$\frac{dN}{dE}$ @ 100 GeV ($10^{-2}$GeV$^{-1}$ cm$^{-2}$)") pylab.axis([-5,1,0.00,0.037483054073961818]) pylab.yticks([0.0060456538828970677,0.012091307765794135,0.018136961648691202,0.024182615531588271,0.030228269414485337,0.036273923297382403],["0.6","1.21","1.81","2.42","3.02","3.63"]) ax.yaxis.tick_right() ax.yaxis.set_label_position("right") matplotlib.pyplot.gcf().subplots_adjust(right=.85) pylab.grid() #pylab.legend(loc="upper left") pylab.title(r"Time-Integrated Flux Upper Limit $E^{-3}$") pylab.savefig("LowEnTransient_FluxUpperLimit_E3_G1460_Avg.pdf") figgy=pylab.figure() ax = figgy.add_subplot(111) pylab.plot(log_sigma_days,event_ul_avg,'k-',lw=2,label=r"$E^{-3.0}$") pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad$ (Days)') pylab.ylabel("NSrc Events") pylab.axis([-5,1,0.00,62]) pylab.yticks([ 0., 10., 20., 30., 40., 50., 60.]) pylab.grid() ax2 = ax.twinx() ax2.set_ylim(0,0.037483054073961818) ax2.set_xlim(-5,1) ax2.set_yticks([0.0060456538828970677,0.012091307765794135,0.018136961648691202,0.024182615531588271,0.030228269414485337,0.036273923297382403]) ax2.set_yticklabels(["0.6","1.21","1.81","2.42","3.02","3.63"]) ax2.set_ylabel(r"$\frac{dN}{dE}$ @ 100 GeV ($10^{-2}$GeV$^{-1}$ cm$^{-2}$)") matplotlib.pyplot.gcf().subplots_adjust(right=.85) #pylab.legend(loc="upper left") pylab.title(r"Time-Integrated Flux Upper Limit $E^{-3}$") pylab.savefig("LowEnTransient_FluxUpperLimit_E3_G1460_Avg_DoubleY.pdf") figgy=pylab.figure() ax = figgy.add_subplot(111) pylab.plot(log_sigma_days,fluxnorm_dec0_e3,'k--',lw=2,label=r"$\delta = 0^{\circ}$") pylab.plot(log_sigma_days,fluxnorm_dec16_e3,'k-',lw=2,label=r"$\delta = 16^{\circ}$") pylab.plot(log_sigma_days,fluxnorm_dec30_e3,'k-.',lw=2,label=r"$\delta = 30^{\circ}$") pylab.plot(log_sigma_days,fluxnorm_dec60_e3,'k:',lw=2,label=r"$\delta = 60^{\circ}$") pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad$ (Days)') pylab.ylabel(r"$\frac{dN}{dE}$ @ 100 GeV ($10^{-2}$GeV$^{-1}$ cm$^{-2}$)") pylab.axis([-5,1,0.00,0.058]) pylab.yticks([0.00 , 0.00828571, 0.01657143, 0.02485714, 0.03314286, 0.04142857, 0.04971429, 0.058],["0.0","0.83","1.7","2.5","3.3","4.1","5.0","5.8"]) ax.yaxis.tick_right() ax.yaxis.set_label_position("right") matplotlib.pyplot.gcf().subplots_adjust(right=.85) pylab.grid() pylab.legend(loc="upper left") pylab.title(r"Time-Integrated Flux Upper Limit $E^{-3}$") pylab.savefig("LowEnTransient_FluxUpperLimit_E3_G1460_MultiDec.pdf") ''' pylab.figure(figsize=(10,8)) pylab.plot(log_sigma_days,fluxnorm_0,'b-',lw=2,label='Sensitivity (90% C.L.)') pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad (Days)$') pylab.ylabel(r"$\frac{dN}{dE}$ [$GeV^{-1} cm^{-2} s^{-1}$] @ 100 GeV Pivot Energy") #pylab.axis([-5,1,5e3,5e4]) pylab.yticks([0.001,0.005,0.01,0.015,0.02,0.025],["$1e-3$","$5.0e-3$","$1.0e-2$","1.5e-2","2.0e-2","2.5e-2"]) pylab.grid() pylab.legend(loc="upper left") pylab.title(r"Flux Sensitivity (MergedSim) $E^{-3}$") pylab.savefig("LowEnTransient_FluenceSensitivity_E3_MergedSim_FinalCut") pylab.figure(figsize=(10,8)) pylab.plot(log_sigma_days,fluxnorm_0,'b-',lw=2,label='Sensitivity (90% C.L.)') pylab.plot(log_sigma_days,fluxnorm_0_disco,'k-',lw=2,label='Discovery Potential') pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad (Days)$') pylab.ylabel(r"$\frac{dN}{dE}$ [$GeV^{-1} cm^{-2} s^{-1}$] @ 100 GeV Pivot Energy") #pylab.axis([-5,1,5e3,5e4]) pylab.yticks([0.001,0.005,0.01,0.015,0.02,0.025],["$1e-3$","$5.0e-3$","$1.0e-2$","1.5e-2","2.0e-2","2.5e-2"]) pylab.grid() pylab.legend(loc="upper left") pylab.title(r"Flux Sensitivity (MergedSim) $E^{-3}$") pylab.savefig("LowEnTransient_FluenceSensitivityAndDisco_E3_MergedSim_FinalCut") pylab.figure(figsize=(10,8)) pylab.plot(log_sigma_days,merged_samp1_e2_meansrc_events,'g-',lw=2,label='Sample 1') pylab.plot(log_sigma_days,merged_samp2_e2_meansrc_events,'b-',lw=2,label='Sample 2') pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad (Days)$') pylab.ylabel("NSrc Events") pylab.axis([-6,1,3,15]) pylab.grid() pylab.title("Sensitivity (MergedSim)") pylab.legend(loc='upper left') pylab.savefig("LowEnTransient_DiscoPotential_E2_MergedSim_SampleComparison") pylab.figure(figsize=(10,8)) pylab.plot(log_sigma_days,nugen_samp1_e2_meansrc_events,'g--',lw=2,label='Sample 1 (Nugen)') pylab.plot(log_sigma_days,nugen_samp2_e2_meansrc_events,'b--',lw=2,label='Sample 2 (Nugen)') pylab.plot(log_sigma_days,merged_samp1_e2_meansrc_events,'g-',lw=2,label='Sample 1 (MergedSim)') pylab.plot(log_sigma_days,merged_samp2_e2_meansrc_events,'b-',lw=2,label='Sample 2 (MergedSim)') pylab.xlabel(r'$Log_{10}(\sigma_{\omega})\quad (Days)$') pylab.ylabel("NSrc Events") pylab.axis([-6,1,3,15]) pylab.grid() pylab.title("Sensitivity") pylab.legend(loc='upper left') pylab.savefig("LowEnTransient_DiscoPotential_E2_NugenANDMerged_SampleComparison") '''
daughjd/bashscripts
PaperPlotter.py
PaperPlotter.py
py
11,938
python
en
code
0
github-code
6
6671408695
from netpyne import specs def set_netParams(Nin, Pops, Exc_ThtoAll, Exc_AlltoAll, Inh_AlltoAll): netParams = specs.NetParams() # object of class NetParams to store the network parameters netParams.defaultThreshold = 0.0 ## Cell parameters/rules GenericCell = {'secs': {}} GenericCell['secs']['soma'] = {'geom': {}, 'pointps': {}} # soma params dict GenericCell['secs']['soma']['geom'] = {'diam': 6.366, 'L': 5.0, 'cm': 1.0} # Area of 100 um2 --> point process current in [mA/cm2] GenericCell['secs']['soma']['pointps']['Izhi'] = { # soma Izhikevich properties 'mod': 'Izhi2007b_dyn_thr', 'C': 1, 'k': 0.04, 'vpeak': 10.0, 'celltype': 1} netParams.cellParams['IzhiCell'] = GenericCell # Population parameters - First, we define thalamic cells, then cortical. This impacts on individual gIDs read from Matlab connections # Population corresponding to thalamic cells netParams.popParams['artificial'] = {'cellModel': 'VecStim', 'numCells': Nin, 'spkTimes': [1]*Nin, 'xRange': [-0.01,0.01],'yRange': [0,0.01],'zRange': [-0.01,0.01]} # Populations in cortex for ntype in range(len(Pops)): name = Pops[str(ntype+1)]['Label'] + '-' + Pops[str(ntype+1)]['Layer'] netParams.popParams[name] = {'cellType': 'IzhiCell', 'cellsList': Pops[str(ntype+1)]['list']} # Defining a generic synapse netParams.synMechParams['exc'] = {'mod': 'FluctExp2Syn', 'tau_rise': 1.0, 'tau_fall': 2.0, 'cn': 4.0, 'type': 1} netParams.synMechParams['inh'] = {'mod': 'FluctExp2Syn', 'tau_rise': 1.0, 'tau_fall': 2.0, 'cn': 4.0, 'type': -1} ## Connections by "connList" uses IDs relative to the "preConds" and "postConds" netParams.connParams['Thalamus->All_exc'] = { 'preConds': {'pop': 'artificial'}, # conditions of presyn cells 'postConds': {'cellType': 'IzhiCell'}, # conditions of postsyn cells 'connList': Exc_ThtoAll['connList_gID'], # list of conns 'weight': Exc_ThtoAll['weightList'], # synaptic weight 'delay': Exc_ThtoAll['delayList'], # transmission delay (ms) 'synMech': 'exc'} netParams.connParams['All->All_exc'] = { 'preConds': {'cellType': 'IzhiCell'}, # conditions of presyn cells 'postConds': {'cellType': 'IzhiCell'}, # conditions of postsyn cells 'connList': Exc_AlltoAll['connList_gID'], # list of conns 'weight': Exc_AlltoAll['weightList'], # synaptic weight 'delay': Exc_AlltoAll['delayList'], # transmission delay (ms) 'synMech': 'exc'} netParams.connParams['All->All_inh'] = { 'preConds': {'cellType': 'IzhiCell'}, # conditions of presyn cells 'postConds': {'cellType': 'IzhiCell'}, # conditions of postsyn cells 'connList': Inh_AlltoAll['connList_gID'], # list of conns 'weight': Inh_AlltoAll['weightList'], # synaptic weight 'delay': Inh_AlltoAll['delayList'], # transmission delay (ms) 'synMech': 'inh'} return netParams
DepartmentofNeurophysiology/Cortical-representation-of-touch-in-silico-NetPyne
netParams.py
netParams.py
py
3,439
python
en
code
1
github-code
6
10528777232
import pygame from pygame.sprite import Sprite class Tiro(Sprite): """Class para manipular os tiros disparados pela nave""" def __init__(self, ik_game): """Cria um disparo na posição atual da nave""" super().__init__() self.screen = ik_game.screen self.configuracoes = ik_game.configuracoes self.cor = self.configuracoes.tiro_cor # Cria um disparo rect na posição (0, 0) e reposiciona no local certo self.rect = pygame.Rect(0, 0, self.configuracoes.tiro_width, self.configuracoes.tiro_height) self.rect.midtop = ik_game.nave.rect.midtop # Armazena a posição do disparo como um decimal self.y = float(self.rect.y) def update(self): """Move o tiro para cima na tela""" # Atualiza a posição decimal do disparo self.y -= self.configuracoes.tiro_vel # Atualiza a posição rect self.rect.y = self.y def draw_tiro(self): """Desenha o tiro na tela""" pygame.draw.rect(self.screen, self.cor, self.rect)
ruansmachado/Invasao_Klingon
tiro.py
tiro.py
py
1,130
python
pt
code
0
github-code
6
26345275028
dct = {} while True: inp = input() if inp == "drop the media": break command = inp.split(" ")[0] post_name = inp.split(" ")[1] if command == "post": dct[post_name] = {"Likes": 0, "Dislikes": 0, "Comments": {}} elif command == "like": dct[post_name]["Likes"] += 1 elif command == "dislike": dct[post_name]["Dislikes"] += 1 elif command == "comment": dct[post_name]["Comments"].update( {inp.split(" ")[2]: inp.split(" ")[3:]} ) for key, value in dct.items(): print("Post: {} | Likes: {} | Dislikes: {}\nComments:". format( key, value['Likes'], value['Dislikes']) ) if value["Comments"] == {}: print("None") else: for x, y in value["Comments"].items(): print("* {}: {}".format(x, " ".join(y)))
YovchoGandjurov/Python-Fundamentals
02. Lists and Dictionaries/Dictionaries/05.Social_Media_Posts.py
05.Social_Media_Posts.py
py
856
python
en
code
1
github-code
6
71548544188
import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import init from collections import OrderedDict from modules import CompactBasicBlock, BasicBlock, Bottleneck, DAPPM, segmenthead, GhostBottleneck bn_mom = 0.1 BatchNorm2d = nn.BatchNorm2d class CompactDualResNet(nn.Module): def __init__(self, block, layers, num_classes=19, planes=64, spp_planes=128, head_planes=128, augment=True): super(CompactDualResNet, self).__init__() highres_planes = planes * 2 self.augment = augment self.conv1 = nn.Sequential( nn.Conv2d(3,planes,kernel_size=3, stride=2, padding=1), #BatchNorm2d(planes, momentum=bn_mom), nn.ReLU(inplace=True), nn.Conv2d(planes,planes,kernel_size=3, stride=2, padding=1), #BatchNorm2d(planes, momentum=bn_mom), nn.ReLU(inplace=True), ) self.relu = nn.ReLU(inplace=False) self.layer1 = self._make_layer(block, planes, planes, layers[0]) self.layer2 = self._make_layer(block, planes, planes * 2, layers[1], stride=2) self.layer3 = self._make_layer(block, planes * 2, planes * 4, layers[2], stride=2) self.layer4 = self._make_layer(CompactBasicBlock, planes * 4, planes * 8, layers[3], stride=2) self.compression3 = nn.Sequential( nn.Conv2d(planes * 4, highres_planes, kernel_size=1, bias=False), BatchNorm2d(highres_planes, momentum=bn_mom), ) self.compression4 = nn.Sequential( nn.Conv2d(planes * 8, highres_planes, kernel_size=1, bias=False), BatchNorm2d(highres_planes, momentum=bn_mom), ) self.down3 = nn.Sequential( nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False), BatchNorm2d(planes * 4, momentum=bn_mom), ) self.down4 = nn.Sequential( nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False), BatchNorm2d(planes * 4, momentum=bn_mom), nn.ReLU(inplace=True), nn.Conv2d(planes * 4, planes * 8, kernel_size=3, stride=2, padding=1, bias=False), BatchNorm2d(planes * 8, momentum=bn_mom), ) self.layer3_ = self._make_layer(block, planes * 2, highres_planes, 2) self.layer4_ = self._make_layer(block, highres_planes, highres_planes, 2) self.layer5_ = self._make_ghost_bottleneck(GhostBottleneck, highres_planes , highres_planes, 1) self.layer5 = self._make_ghost_bottleneck(GhostBottleneck, planes * 8, planes * 8, 1, stride=2) self.spp = DAPPM(planes * 16, spp_planes, planes * 4) if self.augment: self.seghead_extra = segmenthead(highres_planes, head_planes, num_classes) self.final_layer = segmenthead(planes * 4, head_planes, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=bn_mom), ) layers = [] layers.append(block(inplanes, planes, stride, downsample)) inplanes = planes * block.expansion for i in range(1, blocks): if i == (blocks-1): layers.append(block(inplanes, planes, stride=1, no_relu=True)) else: layers.append(block(inplanes, planes, stride=1, no_relu=False)) return nn.Sequential(*layers) def _make_divisible(self, v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v def _make_ghost_bottleneck(self, block, inplanes, planes, blocks, stride=1): if stride != 1 or inplanes != planes * 2: out_channel = planes * 2 else: out_channel = planes cfg = [[3, 96, out_channel, 0, 1]] # k, t, c, SE, s input_channel = inplanes layers = [] for k, exp_size, c, se_ratio, s in cfg: output_channel = c hidden_channel = self._make_divisible(exp_size, 4) layers.append(block(input_channel, hidden_channel, output_channel, k, s, se_ratio=se_ratio)) input_channel = output_channel return nn.Sequential(*layers) def forward(self, x): width_output = x.shape[-1] // 8 height_output = x.shape[-2] // 8 layers = [] x = self.conv1(x) x = self.layer1(x) layers.append(x) x = self.layer2(self.relu(x)) layers.append(x) x = self.layer3(self.relu(x)) layers.append(x) x_ = self.layer3_(self.relu(layers[1])) x = x + self.down3(self.relu(x_)) x_ = x_ + F.interpolate( self.compression3(self.relu(layers[2])), size=[height_output, width_output], mode='bilinear') if self.augment: temp = x_ x = self.layer4(self.relu(x)) layers.append(x) x_ = self.layer4_(self.relu(x_)) x = x + self.down4(self.relu(x_)) x_ = x_ + F.interpolate( self.compression4(self.relu(layers[3])), size=[height_output, width_output], mode='bilinear') x_ = self.layer5_(self.relu(x_)) x = F.interpolate( self.spp(self.layer5(self.relu(x))), size=[height_output, width_output], mode='bilinear') x_ = self.final_layer(x + x_) if self.augment: x_extra = self.seghead_extra(temp) return [x_extra, x_] else: return x_ def get_seg_model(cfg, **kwargs): model = CompactDualResNet(BasicBlock, [2, 2, 2, 2], num_classes=19, planes=32, spp_planes=128, head_planes=64, augment=True) return model if __name__ == '__main__': import time device = torch.device('cuda') #torch.backends.cudnn.enabled = True #torch.backends.cudnn.benchmark = True model = CompactDualResNet(BasicBlock, [2, 2, 2, 2], num_classes=11, planes=32, spp_planes=128, head_planes=64) model.eval() model.to(device) iterations = None #input = torch.randn(1, 3, 1024, 2048).cuda() input = torch.randn(1, 3, 720, 960).cuda() with torch.no_grad(): for _ in range(10): model(input) if iterations is None: elapsed_time = 0 iterations = 100 while elapsed_time < 1: torch.cuda.synchronize() torch.cuda.synchronize() t_start = time.time() for _ in range(iterations): model(input) torch.cuda.synchronize() torch.cuda.synchronize() elapsed_time = time.time() - t_start iterations *= 2 FPS = iterations / elapsed_time iterations = int(FPS * 6) print('=========Speed Testing=========') torch.cuda.synchronize() torch.cuda.synchronize() t_start = time.time() for _ in range(iterations): model(input) torch.cuda.synchronize() torch.cuda.synchronize() elapsed_time = time.time() - t_start latency = elapsed_time / iterations * 1000 torch.cuda.empty_cache() FPS = 1000 / latency print(FPS)
himlen1990/cddrnet
utils/speed_test/cddrnet_eval_speed.py
cddrnet_eval_speed.py
py
8,667
python
en
code
1
github-code
6
9637017975
from selenium import webdriver from selenium.webdriver.edge.service import Service from selenium.webdriver.common.by import By from time import sleep class InternetSpeed: def __init__(self, edge_driver_path): self.driver = webdriver.Edge(service=Service(edge_driver_path)) self.down = 0 self.up = 0 self.get_internet_speed() def get_internet_speed(self): speedtest_url = "https://www.speedtest.net/" self.driver.get(speedtest_url) sleep(10) start_test = self.driver.find_element(by=By.XPATH, value='//*[@id="container"]/div/div[3]/div/div/div/div[2]/div[3]/div[1]/a') start_test.click() sleep(60) self.down = self.driver.find_element(by=By.XPATH, value='//*[@id="container"]/div/div[3]/div/div/div/div[2]/div[3]/div[3]/div/div[3]/div/div/div[2]/div[1]/div[2]/div/div[2]/span').text self.up = self.driver.find_element(by=By.XPATH, value='//*[@id="container"]/div/div[3]/div/div/div/div[2]/div[3]/div[3]/div/div[3]/div/div/div[2]/div[1]/div[3]/div/div[2]/span').text print(self.down) print(self.up) self.driver.quit()
na-lin/100-days-of-Python
Day51_Internet-Speed-Twitter-Complaint-Bot/internet_speed.py
internet_speed.py
py
1,309
python
en
code
0
github-code
6
74658795066
from lindertree.lsystem import * from lindertree.turtle_interprate import * axiom = string_to_symbols('!(1)F(5)X') constants = {'w':1.4, 'e':1.6, 'a':1.1} width_rule = Rule.from_string('!(x)', '!(x*w)', constants) elongation_rule = Rule.from_string('F(x)', 'F(x*e)', constants) angle_rule1 = Rule.from_string('+(x)', '+(x*a)', constants) angle_rule2 = Rule.from_string('-(x)', '-(x*a)', constants) branching_rule = Rule.from_string('X', '!(1)[+(25)F(2)X]F(2)[-(25)F(2)X]!(1)F(5)X', constants) rules = [width_rule, elongation_rule, branching_rule, angle_rule1, angle_rule2] print('Axiom : ' + symbols_to_string(axiom)) print('Rules : ') for rule in rules: print('- ' + str(rule)) symbols = generate_lsystem(8, axiom, rules) print(symbols_to_string(symbols)) turtle_interprate(symbols, init_pos=(0,-400))
valentinlageard/lindertree
example_parametric.py
example_parametric.py
py
807
python
en
code
1
github-code
6
28039146623
#! /usr/bin/env python3 __author__ = 'Amirhossein Kargaran 9429523 ' import os import sys import socket import pickle import select import signal import threading import time from threading import Thread from datetime import datetime # Local modules from APIs.logging import Log from APIs.logging import Color from APIs.security import * from Crypto.Random import random from filelock import FileLock file_path = "result.txt" lock_path = "result.txt.lock" lock = FileLock(lock_path, timeout=1) # Declare Global variables PORT = 5558 TERMINATE = False CLI_HASH = {} KEY = '' ll = list() class Server(): def __init__(self): self.HOST_IP = '0.0.0.0' self.HOST_PORT = '8081' self.MAX_USR_ACCPT = '100' def show_help(self): msg = ''' AVAILABLE COMMANDS: \h Print these information \d Set default configuration \sd Show default configuration \sc Show current configuration \sau Show active users \sac Show active chat rooms \sf Shutdown server forcefully \monitor Enables monitor mode''' print(msg) def show_config(self, type_='default'): if type_ in ('active', 'ACTIVE'): msg = ''' Active configuration of the server : HOST IP = ''' + self.HOST_IP + ''' HOST PORT = ''' + self.HOST_PORT + ''' MAX USER ALLOWED = ''' + self.MAX_USR_ACCPT logging.log('Showing Active server configuration') print(msg) else: msg = ''' Default configuration of the server: HOST IP = 0.0.0.0 HOST PORT = 8081 MAX USER ALLOWED = 100''' print(msg) def set_usr_config(self, parameters): if parameters: if sys.argv[1] in ('-h', '--help'): self.show_help() try: self.HOST_IP = sys.argv[1] self.HOST_PORT = sys.argv[2] self.MAX_USR_ACCPT = sys.argv[3] except: print('USAGE:\nscript ip_address port_number max_usr_accpt') sys.exit(0) else: self.HOST_IP = input('Enter host IP : ') self.HOST_PORT = input('Enter host PORT : ') self.MAX_USR_ACCPT = input('Enter max number of users server would accept : ') def update_active_users(self): self.user_list = [] for cli_obj in CLI_HASH.values(): self.user_list.append(cli_obj.userName) def signal_handler(self, signal, frame): print(' has been pressed.\n') def srv_prompt(self): # TODO: Add feature to view server socket status global TERMINATE while True: opt = input(Color.PURPLE + '\nenter command $ ' + Color.ENDC) if opt == '\h': self.show_help() elif opt == '\monitor': print('Monitoring mode ENABLED!') logging.silent_flag = False signal.signal(signal.SIGINT, self.signal_handler) signal.pause() print('Monitoring mode DISABLED') logging.silent_flag = True elif opt == '\sd': self.show_config(type_='default') elif opt == '\sc': self.show_config(type_='active') elif opt == '\sau': self.update_active_users() logging.log(self.user_list) print(self.user_list) elif opt == '\sf': print(Color.WARNING + 'WARNING: All users will be disconnected with out any notification!!' + Color.ENDC) opt = input('Do you really want to close server?[Y/N] ') if opt == 'Y': logging.log('Shuting down server...') print('Shuting down server...') TERMINATE = True sys.exit(0) else: logging.log('Aborted.') print('Aborted.') pass elif opt == '': pass else: print('COMMAND NOT FOUND!!') def init_clients(self): global CLI_HASH while not TERMINATE: try: self.server.settimeout(1) conn, addr = self.server.accept() except socket.timeout: pass except Exception as e: raise e else: logging.log( 'A connection from [{}.{}] has been received.'.format( addr[0], addr[1])) cli_obj = Client(conn, addr, self) CLI_HASH[conn] = cli_obj threading._start_new_thread(cli_obj.run, ('',)) try: print('Server has stopped listening on opened socket.') print('Broadcasting connection termination signal..') msg = "Sorry! We are unable to serve at this moment." for cli_socket in CLI_HASH.keys(): try: cli_socket.send(msg.encode()) except: cli_socket.close() CLI_HASH.pop(cli_socket) except: pass def init(self): logging.log('Initializing server') if len(sys.argv) == 1: self.show_config(type_='default') opt = input('Set these default config?[Y/n] ') if opt == '': opt = 'Y' if opt in ('Y', 'y', 'yes', 'Yes', 'YES'): print("Setting up default configurations...") else: self.set_usr_config(parameters=False) else: self.set_usr_config(parameters=True) self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) try: self.server.bind((self.HOST_IP, int(self.HOST_PORT))) self.server.listen(int(self.MAX_USR_ACCPT)) except: print('Unable to bind HOST IP and PORT.\nPlease check your configuration') sys.exit('EMERGENCY') print('\nServer is listening at {}:{}'.format(self.HOST_IP, self.HOST_PORT)) print('Server is configured to accept %s clients.' %(str(self.MAX_USR_ACCPT))) #thread_srv = threading.Thread(target=self.srv_prompt, args=()) thread_cli = threading.Thread(target=self.init_clients, args=()) thread_cli.start() self.srv_prompt() for thread in (thread_srv, thread_cli): thread.join() print('Server and Client threads are exited.') class Client(): def __init__(self, conn, addr, srv_obj): global PORT self.srv_obj = srv_obj self.conn = conn self.addr = addr self.userName = '-N/A-' self.PUBLIC_KEY = None self.KEY = '' self.items_file='result.txt' self.port = PORT PORT = PORT +1 self.EnSharedKey ="" def validate_user(self): pass def features(self, msg): if msg == '@getonline': self._loop_break_flag = True self.conn.send( AES_.encrypt(self.KEY, str(self.srv_obj.user_list))) if msg.split()[0][1:] in self.srv_obj.user_list: self._loop_break_flag = True for _conn in CLI_HASH: if CLI_HASH[_conn].userName == msg.split()[0][1:]: try: self.IND_SOCK = _conn msg_send = "<" + self.userName + "@" + self.addr[0] +\ "> [IND] " + ' '.join(msg.split()[1:]) self.broadcast(msg_send, IND_FLAG=True) except Exception as e: logging.log(msg_type='EXCEPTION', msg=e) def getSharedKey(self): TOKEN_CHAR_LIST = "abcdefghij!@#$%" # Generate unique symmetric 10bit key for each client passphrase = ''.join(random.sample(TOKEN_CHAR_LIST, 10)) shared_key = hasher(passphrase) EnSharedKey = RSA_.encrypt(self.PUBLIC_KEY, shared_key) if EnSharedKey: return (shared_key, EnSharedKey) else: logging.log("Unable to encrypt shared key with RSA.", msg_type='ERROR') def result(self , *args): file = open(self.items_file,"r") fileList = file.readlines() file.close() self.broadcast(fileList) def time1 (self): self.sock.listen(1) flag = 1 try : while True: print('waiting for a connection') connection, client_address = self.sock.accept() try: print('connection from', client_address) while True: data = connection.recv(64) if flag == 1 : self.Token, self.STRTOKEN = pickle.loads(data) if data: if (self.Token == self.KEY and self.STRTOKEN=="TOKEN") : print("This user is Valid") flag = 0 else: print("This user is not Valid") connection.close() return else : if data.decode()=="bye" : try: with lock.acquire(timeout=10): wfile = open(self.items_file, 'w+') for ilist in ll: wfile.write(str(ilist) + "\n") wfile.close() lock.release() except : print("Another instance of this application currently holds the lock.") if data : print(str(self.userName)+ " : " + str(data.decode())) ll.append(str(self.userName)+ " : " + str(data.decode())) else: return finally: connection.close() except : "what the fuck ?" def time2 (self): while True: try: self._loop_break_flag = False msg = self.conn.recv(20000) if msg: if msg.split()[0][0] == '@': self.srv_obj.update_active_users() self.features(msg) if not self._loop_break_flag: self.result() else: self.remove() pass except Exception as e: logging.log(msg_type='EXCEPTION', msg='[{}] {}'.format(self.userName, e)) def run(self, *args): data = self.conn.recv(4000) if data: self.userName, self.PUBLIC_KEY = pickle.loads(data) if self.PUBLIC_KEY: self.KEY, self.EnSharedKey = self.getSharedKey() else: tmp_conn = "{}:{}".format(self.addr[0], self.addr[1]) logging.log( "Public key has not been received from [{}@{}]".format( self.userName, tmp_conn)) logging.log( "[0.0.0.0:8081 --> {}] Socket has been terminated ".format(tmp_conn)) self.remove() if self.KEY == '': logging.log("Symmetric key generation failed") tmp_msg = "symmetric key {} has been sent to {}".format(self.KEY, self.userName) logging.log(tmp_msg) self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) local_hostname = socket.gethostname() local_fqdn = socket.getfqdn() ip_address = socket.gethostbyname(local_hostname) print("working on %s (%s) with %s" % (local_hostname, local_fqdn, ip_address)) server_address = (ip_address, self.port) print('starting up on %s port %s' % server_address) self.sock.bind(server_address) EnSharedKey = (self.port , self.EnSharedKey) EnSharedKey = pickle.dumps(EnSharedKey) self.conn.send(EnSharedKey) Thread(target=self.time1()).start() Thread(target=self.time2()).start() def broadcast(self, msg, IND_FLAG=False): msg = pickle.dumps(msg) if IND_FLAG: self.IND_SOCK.send(msg) return for cli_socket in CLI_HASH.keys(): if 1==1 : try: cli_socket.send(msg) except: raise Exception cli_socket.close() self.remove() def remove(self): if self.conn in CLI_HASH.keys(): self.conn.close() CLI_HASH.pop(self.conn) self.srv_obj.update_active_users() print(self.srv_obj.user_list) sys.exit() if __name__ == "__main__": try: logging = Log(f_name='server_chatroom_' + datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) logging.logging_flag = True logging.silent_flag = True logging.validate_file() server = Server() server.init() except SystemExit as e: if e.code != 'EMERGENCY': raise else: print(sys.exc_info()) print('Something went wrong!!\nPlease contact developers.') os._exit(1) except: raise Exception print('Something went wrong!!\nPlease contact developers\nTerminating the process forcefully..') time.sleep(1) os._exit(1)
kargaranamir/Operating-Systems
Project II/Code/chatServer.py
chatServer.py
py
14,141
python
en
code
0
github-code
6
9754918030
import click import unittest from click.testing import CliRunner from doodledashboard.notifications import TextNotification from parameterized import parameterized from sketchingdev.console import ConsoleDisplay from tests.sketchingdev.terminal.ascii_terminal import AsciiTerminal class TestConsoleDisplayWithText(unittest.TestCase): @parameterized.expand([ ((1, 1), "", """ +-+ || +-+ """), ((10, 3), "a", """ +----------+ || | a| || +----------+ """), ((10, 3), "centred", """ +----------+ || | centred| || +----------+ """), ((10, 3), "I'm centred", """ +----------+ | I'm| | centred| || +----------+ """), ((10, 3), "Hello World! This is too long", """ +----------+ | Hello| | World!| | This is| +----------+ """), ]) def test_text_centred_in_console(self, console_size, input_text, expected_ascii_terminal): expected_terminal = AsciiTerminal.extract_text(expected_ascii_terminal) text_notification = TextNotification() text_notification.set_text(input_text) cmd = create_cmd(lambda: ConsoleDisplay(console_size).draw(text_notification)) result = CliRunner().invoke(cmd, catch_exceptions=False) self.assertEqual(expected_terminal, result.output) def create_cmd(func): @click.command() def c(f=func): f() return c if __name__ == "__main__": unittest.main()
SketchingDev/Doodle-Dashboard-Display-Console
tests/sketchingdev/test_text_notification.py
test_text_notification.py
py
1,699
python
en
code
0
github-code
6
29050546230
from etl import ETL import os DATASET_PATH = "/home/login/datasets" DATASET_NAME = "CIMA" DATASET_SIZE = 377 validation_size = 0.2 validation_size = int(DATASET_SIZE * validation_size) validation_etl = ETL("/home/login/datasets", [], size=validation_size) validation_etl.load(DATASET_NAME) validation_path = os.path.join(DATASET_PATH, DATASET_NAME, "validation") if not os.path.exists(validation_path): os.mkdir(validation_path) data_path = os.path.join(DATASET_PATH, DATASET_NAME, "data") validation_set = validation_etl.cima for key, item in validation_set.items(): print(f"Moving {key} to validation.") old_path = os.path.join(data_path, key + ".csv") new_path = os.path.join(validation_path, key + ".csv") os.rename(old_path, new_path)
eskarpnes/anomove
etl/validation_split.py
validation_split.py
py
765
python
en
code
0
github-code
6
28558999835
from helper import is_prime, find_prime_factors, int_list_product def smallest_multiple(n): ls = list() for i in range(2,n): pf = find_prime_factors(i) for l in ls: for f in pf: if(l == f): pf.remove(f) break for f in pf: ls.append(f) ls.sort() return int_list_product(ls) print(str(smallest_multiple(20)))
thejefftrent/ProjectEuler.py
5.py
5.py
py
436
python
en
code
0
github-code
6
27070910668
import datetime as dt import random import pytest from scheduler import Scheduler, SchedulerError from scheduler.base.definition import JobType from scheduler.threading.job import Job from ...helpers import foo @pytest.mark.parametrize( "empty_set", [ False, True, ], ) @pytest.mark.parametrize( "any_tag", [ None, False, True, ], ) @pytest.mark.parametrize( "n_jobs", [ 0, 1, 2, 3, 10, ], ) def test_get_all_jobs(n_jobs, any_tag, empty_set): sch = Scheduler() assert len(sch.jobs) == 0 for _ in range(n_jobs): sch.once(dt.datetime.now(), foo) assert len(sch.jobs) == n_jobs if empty_set: if any_tag is None: jobs = sch.get_jobs() else: jobs = sch.get_jobs(any_tag=any_tag) else: if any_tag is None: jobs = sch.get_jobs(tags={}) else: jobs = sch.get_jobs(tags={}, any_tag=any_tag) assert len(jobs) == n_jobs @pytest.mark.parametrize( "job_tags, select_tags, any_tag, returned", [ [ [{"a", "b"}, {"1", "2", "3"}, {"a", "1"}], {"a", "1"}, True, [True, True, True], ], [ [{"a", "b"}, {"1", "2", "3"}, {"a", "2"}], {"b", "1"}, True, [True, True, False], ], [ [{"a", "b"}, {"1", "2", "3"}, {"b", "1"}], {"3"}, True, [False, True, False], ], [ [{"a", "b"}, {"1", "2", "3"}, {"b", "2"}], {"2", "3"}, True, [False, True, True], ], [ [{"a", "b"}, {"1", "2", "3"}, {"a", "1"}], {"a", "1"}, False, [False, False, True], ], [ [{"a", "b"}, {"1", "2", "3"}, {"a", "2"}], {"b", "1"}, False, [False, False, False], ], [ [{"a", "b"}, {"1", "2", "3"}, {"b", "1"}], {"1", "3"}, False, [False, True, False], ], [ [{"a", "b"}, {"1", "2", "3"}, {"b", "2"}], {"2", "3"}, False, [False, True, False], ], ], ) def test_get_tagged_jobs(job_tags, select_tags, any_tag, returned): sch = Scheduler() jobs = [sch.once(dt.timedelta(), lambda: None, tags=tags) for tags in job_tags] res = sch.get_jobs(tags=select_tags, any_tag=any_tag) for job, ret in zip(jobs, returned): if ret: assert job in res else: assert job not in res
DigonIO/scheduler
tests/threading/scheduler/test_sch_get_jobs.py
test_sch_get_jobs.py
py
2,720
python
en
code
51
github-code
6
25476219530
import random suits = ("Hearts", "Spades", "Diamonds", "Clubs") tarotSuits = ("Swords", "Cups", "Wands", "Coins") names = ("Ace", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King") tarotNames = ("Ace", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten", "Page", "Knight", "Queen", "King") arcana = ('The Fool', 'The Magician', 'The High Priestess', 'The Empress', 'The Emperor', 'The Hierophant', 'The Lovers', 'The Chariot', 'Strength', 'The Hermit', 'Wheel of Fortune', 'Justice', 'The Hanged Man', 'Death', 'Temperance', 'The Devil', 'The Tower', 'The Star', 'The Moon', 'The Sun', 'Judgement', 'The World') unoColors = ('Red', 'Green', 'Blue', 'Yellow') unoSpecials = ('Skip', 'Reverse', 'Draw') # TODO: # Give cards emoji representations # Implement into bot class Card: def get_value(self): if self.tarot: if self.suit == "Major": return arcana.index(self.name) else: return min(tarotNames.index(self.name) + 1, 10) if self.uno: return return min(names.index(self.name) + 1, 10) def __init__(self, suit, name, hidden=False, tarot=False, uno=False): self.suit = str(suit) self.name = str(name) self.hidden = hidden self.tarot = tarot self.uno = uno self.value = self.get_value() def __str__(self): if self.suit == "Major": return self.name if self.uno: return f'{self.suit} {self.name}' return f'{self.name} of {self.suit}' class Deck: def __init__(self, hand=False, tarot=False, uno=False): self.hand = hand self.tarot = tarot self.uno = uno self.stack = [] if self.hand: return if self.tarot: for suit in tarotSuits: for name in tarotNames: self.stack.append(Card(suit, name, tarot=True)) for name in arcana: self.stack.append(Card("Major", name, tarot=True)) return if self.uno: # Does not work for color in unoColors: for num in range(1, 10): self.stack.append(Card(color, num, uno=True)) self.stack.append(Card(color, num, uno=True)) for special in unoSpecials: self.stack.append(Card(color, special, uno=True)) self.stack.append(Card(color, special, uno=True)) for num in range(0, 4): self.stack.append(Card('Wild', '', uno=True)) self.stack.append(Card('Wild', 'Draw', uno=True)) return for suit in suits: for name in names: self.stack.append(Card(suit, name)) return def list(self, hidden=True): contents = "" for card in self.stack: if card.hidden and hidden: contents += f"*Hidden card,* " contents += f"{card}, " return contents def shuffle(self): random.shuffle(self.stack) def draw(self, pos=0, hidden=False): dealt = self.stack.pop(pos) if hidden: dealt.hidden = True return dealt def insert(self, card, pos=0, bottom=False): if bottom: self.stack.append(card) else: self.stack.insert(pos, card)
Malbrett/Nettlebot
cards.py
cards.py
py
3,490
python
en
code
0
github-code
6
35035790893
import csv import json import numpy as np from tabulate import tabulate import matplotlib.pyplot as plt from math import ceil from wand.image import Image as WImage from subprocess import Popen def make_json(csvFilePath,keyName,alldata): # create a dictionary data = {} # Open a csv reader called DictReader with open(csvFilePath, encoding='utf-8') as csvf: next(csvf) csvReader = csv.DictReader(csvf, delimiter='\t') # Convert each row into a dictionary # and add it to data for rows in csvReader: # Assuming a column named 'No' to # be the primary key key = rows['CATEGORY'] data[key] = rows alldata[keyName] = data jsonfile = json.dumps(alldata) return jsonfile def plots(Sample,file,normal,listSample): #listSample = [row[1] for row in batch] rows = [] path = "/storage/gluster/vol1/data/PUBLIC/SCAMBIO/ABT414_WES_Analysis/ABT414_Flank/ABT414_Flank/" if Sample == 'ALL' and not(normal): ROWS = 3 COLS = ceil(np.size(listSample)/ROWS) fig = plt.figure(figsize = (20, 15)) for row in range(ROWS): cols = [] for col in range(COLS): index = row * COLS + col if index<np.size(listSample): img = WImage(filename=path+listSample[index]+file) a = fig.add_subplot(COLS, ROWS, index+1) plt.axis('off') plt.grid(b=None) imgplot = plt.imshow(img) a.set_title(listSample[index]) else: fig = plt.figure(figsize = (15, 10)) a = fig.add_subplot(1, 1, 1) if not(normal): index = listSample.index(Sample) img = WImage(filename=path+listSample[index]+file) a.set_title(listSample[index]) else: img = WImage(filename=path+Sample+file) imgplot = plt.imshow(img) plt.axis('off') plt.grid(b=None) imgplot = plt.imshow(img) def multiPage(Sample,file,page,normal,listSample): page = page-1 #listSample = [row[1] for row in batch] path = "/storage/gluster/vol1/data/PUBLIC/SCAMBIO/ABT414_WES_Analysis/ABT414_Flank/ABT414_Flank/" fig = plt.figure(figsize = (20, 15)) a = fig.add_subplot(1, 1, 1) if not(normal): index = listSample.index(Sample) img = WImage(filename=path+listSample[index]+file+"["+str(page)+"]") a.set_title(listSample[index]) else: img = WImage(filename=path+Sample+file+"["+str(page)+"]") imgplot = plt.imshow(img) plt.axis('off') plt.grid(b=None) imgplot = plt.imshow(img) def tableShow(Sample,file, cols,listSample): path = "/storage/gluster/vol1/data/PUBLIC/SCAMBIO/ABT414_WES_Analysis/ABT414_Flank/ABT414_Flank/" if Sample == 'ALL': for index in range(np.size(listSample)): print('\n'+listSample[index]+'\n') table = [] filePath = path+listSample[index]+file with open (filePath, 'r') as f: for row in csv.reader(f,delimiter='\t'): if np.size(row)>1: content = [row[i] for i in cols] table.append(content) print(tabulate(table,headers="firstrow")) else: print(Sample+'\n') table = [] filePath = path+Sample+file with open (filePath, 'r') as f: for row in csv.reader(f,delimiter='\t'): if np.size(row)>1: content = [row[i] for i in cols] table.append(content) print(tabulate(table,headers="firstrow")) def commandsParallel(commands,commdsSize,commdsParallel): if commdsParallel>commdsSize: commdsParallel = commdsSize print ("Numbers of samples in parallel: "+ str(commdsParallel)) itersPar = ceil(commdsSize/commdsParallel) print("Numbers of iterations: "+ str(itersPar)) for i in range(itersPar): try: processes = [Popen(commands[(i*commdsParallel)+j], shell=True) for j in range(commdsParallel)] except IndexError: pass exitcodes = [p.wait() for p in processes]
miccec/ExomePipeline
interactPlots.py
interactPlots.py
py
4,422
python
en
code
0
github-code
6
968977222
import pyodbc import pandas as pd # Connection steps to the server from OnlineBankingPortalCSV2_code import Accounts, Customer server = 'LAPTOP-SELQSNPH' database = 'sai' username = 'maram' password = 'dima2k21' cnxn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+ password) cursor = cnxn.cursor() # import data from csv data = pd.read_csv (r'C:\Users\maram\PycharmProjects\pythonProject\OnlineBankingPortal_data_file3.csv') # Transactions table Transactions = pd.DataFrame(data, columns = ['Transaction_id','Acc_number','Transaction_type_code','Transaction_type_desc','Transaction_date','Card_number']) Transactions = Transactions.astype('str') Transactions['Transaction_id']=Transactions.groupby(['Transaction_date','Card_number'],sort=False).ngroup()+300 # Merge data inorder to get the required Id's Merge_Transactions_Accounts=pd.merge(Transactions,Accounts,on='Acc_number') Transactions['Account_id']=Merge_Transactions_Accounts.Account_id Transactions['Customer_id']=Merge_Transactions_Accounts.Customer_id print(Transactions) Transactions['Transaction_date'] = Transactions['Transaction_date'].astype('datetime64[ns]') # Cards table Cards = pd.DataFrame(data, columns = ['Acc_number','Card_id','Card_number','Maximum_limit','Expiry_Date','Credit_score']) Cards = Cards.astype('str') Cards['Expiry_Date']= Cards['Expiry_Date'].astype('datetime64[ns]') # Merge data inorder to get the required Id's Merge_Cards_Accounts=pd.merge(Cards,Accounts,on='Acc_number') Cards['Customer_id']=Merge_Cards_Accounts.Customer_id Cards = Cards[Cards.Card_number != 'nan'] Cards['Card_id'] = Cards.groupby(['Card_number'],sort=False).ngroup()+400 Cards = Cards.drop_duplicates(subset=None, keep="first", inplace=False) # Convert Credit score and Maximum limit from string->float->int Cards['Credit_score']=Cards['Credit_score'].astype(float) Cards['Credit_score']=Cards['Credit_score'].astype(int) Cards['Maximum_limit']=Cards['Maximum_limit'].astype(float) Cards['Maximum_limit']=Cards['Maximum_limit'].astype(int) print(Cards) # Transaction_details Table Transaction_details = pd.DataFrame(data, columns = ['Transaction_Amount','Merchant_details','Acc_number','Transaction_date']) Transaction_details = Transaction_details.astype('str') # Merge data inorder to get the required Id's Merge_Transaction_details_Transactions=pd.concat([Transactions,Transaction_details], ignore_index=True) Transaction_details['Transaction_id']=Merge_Transaction_details_Transactions.Transaction_id # Convert Transaction_id from string->float->int Transaction_details['Transaction_id']=Transaction_details['Transaction_id'].astype(float) Transaction_details['Transaction_id']=Transaction_details['Transaction_id'].astype(int) print(Transaction_details) # inserting data into tables for row in Transactions.itertuples(): cursor.execute(''' INSERT INTO Transactions (Customer_id,Account_id,Acc_number,Transaction_type_code,Transaction_type_desc,Transaction_date) VALUES (?,?,?,?,?,?) ''', row.Customer_id, row.Account_id, row.Acc_number, row.Transaction_type_code, row.Transaction_type_desc, row.Transaction_date, ) for row in Cards.itertuples(): cursor.execute(''' INSERT INTO Cards (Customer_id,Acc_number,Card_number,Maximum_limit,Expiry_Date,Credit_score) VALUES (?,?,?,?,?,?) ''', row.Customer_id, row.Acc_number, row.Card_number, row.Maximum_limit, row.Expiry_Date, row.Credit_score ) for row in Transaction_details.itertuples(): cursor.execute(''' INSERT INTO Transaction_details (Transaction_id,Transaction_Amount,Merchant_details,Acc_number) VALUES (?,?,?,?) ''', row.Transaction_id, row.Transaction_Amount, row.Merchant_details, row.Acc_number ) cnxn.commit()
divyamaram/Database-Managment-systems
OnlineBankingPortalCSV3_code.py
OnlineBankingPortalCSV3_code.py
py
4,255
python
en
code
0
github-code
6
10480951725
accounts = [[1,2,3],[2,3,4],[10,12]] c = [] n = 0 for i in accounts: n = 0 for j in i: n = j + n c.append(n) print(c) c.sort(reverse=True) a = c print(a) print(a[0])
SmolinIvan/Ivan_Project
Training/leetcode/sample2.py
sample2.py
py
202
python
en
code
0
github-code
6
31932908131
from pyspark.ml.classification import NaiveBayes from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() spark.sparkContext.setLogLevel("ERROR") data = spark.read.format("libsvm").load("file:///usr/lib/spark/data/mllib/sample_libsvm_data.txt") splits = data.randomSplit([0.6, 0.4], 1234) train = splits[0] test = splits[1] nb = NaiveBayes(smoothing=1.0, modelType="multinomial") model = nb.fit(train) predictions = model.transform(test) predictions.show() evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction",metricName="accuracy") accuracy = evaluator.evaluate(predictions) print("Test set accuracy = " + str(accuracy)) spark.stop()
geoffreylink/Projects
07 Machine Learning/SparkML/sparkML_CL_naivebayes.py
sparkML_CL_naivebayes.py
py
789
python
en
code
9
github-code
6
41466182049
num=int(input('Enter a Number : ')) copy=num count=len(str(num)) add=0 while(num!=0): rem=num%10 add+=rem**count num//=10 if(copy==add): print('Armstrong number') else: print('Not armstrong number')
Kanchana5/armstrong-number
Armstrong1.py
Armstrong1.py
py
219
python
en
code
0
github-code
6
11948273979
#!/usr/bin/python3.8 # -*- coding: utf-8 -*- # # SuperDrive # a live processing capable, clean(-ish) implementation of lane & # path detection based on comma.ai's SuperCombo neural network model # # @NamoDev # # ============================================================================ # # Parse arguments import os import warnings import argparse apr = argparse.ArgumentParser(description = "Predicts lane line and vehicle path using the SuperCombo neural network!") apr.add_argument("--input", type=str, dest="inputFile", help="Input capture device or video file", required=True) apr.add_argument("--disable-gpu", dest="disableGPU", action="store_true", help="Disables the use of GPU for inferencing") apr.add_argument("--disable-warnings", dest="disableWarnings", action="store_true", help="Disables console warning messages") apr.add_argument("--show-opencv-window", dest="showOpenCVVisualization", action="store_true", help="Shows OpenCV frame visualization") args = apr.parse_args() # Where are we reading from? CAMERA_DEVICE = str(args.inputFile) # Do we want to disable GPU? if args.disableGPU == True: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Do we want to disable warning messages? if args.disableWarnings == True: os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" warnings.filterwarnings("ignore") # ============================================================================ # import cv2 import sys import time import pathlib import numpy as np import tensorflow as tf from parser import parser import savitzkygolay as sg from undistort.undistort import undistort from timeit import default_timer as timer # OpenPilot transformations (needed to get the model to output correct results) from common.transformations.model import medmodel_intrinsics from common.transformations.camera import transform_img, eon_intrinsics # Are we running TF on GPU? if tf.test.is_gpu_available() == True: isGPU = True tfDevice = "GPU" else: isGPU = False tfDevice = "CPU" # Initialize undistort undist = undistort(frame_width=560, frame_height=315) # Initialize OpenCV capture and set basic parameters cap = cv2.VideoCapture(CAMERA_DEVICE) cap.set(3, 1280) cap.set(4, 720) cap.set(cv2.CAP_PROP_AUTOFOCUS, 0) # Load Keras model for lane detection # # path = [y_pos of path plan along x=range(0,192) | # std of y_pos of path plan along x=range(0,192) | # how many meters it can see] # 12 * 128 * 256 is 2 consecutive imgs in YUV space of size 256 * 512 lanedetector = tf.keras.models.load_model(str(pathlib.Path(__file__).parent.absolute()) + "/supercombo.keras") # We need a place to keep two separate consecutive image frames # since that's what SuperCombo uses fr0 = np.zeros((384, 512), dtype=np.uint8) fr1 = np.zeros((384, 512), dtype=np.uint8) # SuperCombo requires a feedback of state after each prediction # (to improve accuracy?) so we'll allocate space for that state = np.zeros((1, 512)) # Additional inputs to the steering model # # "Those actions are already there, we call it desire. # It's how the lane changes work" - @Willem from Comma # # Note: not implemented in SuperDrive (yet) desire = np.zeros((1, 8)) # We want to keep track of our FPS rate, so here's # some variables to do that fpsActual = 0; fpsCounter = 0; fpsTimestamp = 0; # OpenCV named windows for visualization (if requested) cv2.namedWindow("SuperDrive", cv2.WINDOW_AUTOSIZE) cv2.namedWindow("Vision path", cv2.WINDOW_KEEPRATIO) cv2.resizeWindow("Vision path", 200, 500) # Main loop here while True: # Get frame start time t_frameStart = timer() # FPS counter logic fpsCounter += 1 if int(time.time()) > fpsTimestamp: fpsActual = fpsCounter fpsTimestamp = int(time.time()) fpsCounter = 0 # Read frame (ret, frame) = cap.read() # Resize incoming frame to smaller size (to save resource in undistortion) frame = cv2.resize(frame, (560, 315)) # Undistort incoming frame # This is standard OpenCV undistortion using a calibration matrix. # In this case, a Logitech C920 is used (default for undistortion helper). # Just perform chessboard calibration to get the matrices! frame = undist.frame(frame) # Crop the edges out and try to get to (512,256), since that's what # the SuperCombo model uses. Note that this is skewed a bit more # to the sky, since my camera can "see" the hood and that probably won't # help us in the task of lane detection, so we crop that out frame = frame[14:270, 24:536] # Then we want to convert this to YUV frameYUV = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420) # Use Comma's transformation to get our frame into a format that SuperCombo likes frameYUV = transform_img(frameYUV, from_intr=eon_intrinsics, to_intr=medmodel_intrinsics, yuv=True, output_size=(512, 256)).astype(np.float32) \ / 128.0 - 1.0 # We want to push our image in fr1 to fr0, and replace fr1 with # the current frame (to feed into the network) fr0 = fr1 fr1 = frameYUV # SuperCombo input shape is (12, 128, 256): two consecutive images # in YUV space. We concatenate fr0 and fr1 together to get to that networkInput = np.concatenate((fr0, fr1)) # We then want to reshape this into the shape the network requires networkInput = networkInput.reshape((1, 12, 128, 256)) # Build actual input combination input = [networkInput, desire, state] # Then, we can run the prediction! # TODO: this is somehow very slow(?) networkOutput = lanedetector.predict(input) # Parse output and refeed state parsed = parser(networkOutput) state = networkOutput[-1] # Now we have all the points! # These correspond to points with x = <data in here>, y = range from # 0 to 192 (output of model) leftLanePoints = parsed["lll"][0] rightLanePoints = parsed["rll"][0] pathPoints = parsed["path"][0] # We may also want to smooth this out leftLanePoints = sg.savitzky_golay(leftLanePoints, 51, 3) rightLanePoints = sg.savitzky_golay(rightLanePoints, 51, 3) pathPoints = sg.savitzky_golay(pathPoints, 51, 3) # Compute position on current lane currentPredictedPos = (-1) * pathPoints[0] # Compute running time p_totalFrameTime = round((timer() - t_frameStart) * 1000, 2) print("Frame processed on " + tfDevice + " \t" + str(p_totalFrameTime) + " ms\t" + str(fpsActual) + " fps") # Output (enlarged) frame with text overlay if args.showOpenCVVisualization == True: canvas = frame.copy() canvas = cv2.resize(canvas, ((700, 350))) cv2.putText(canvas, "Vision processing time: " + str(p_totalFrameTime) + " ms (" + str(fpsActual) + " fps)", (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2) cv2.putText(canvas, "Device: " + tfDevice, (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2) cv2.putText(canvas, "Position: " + str(round(currentPredictedPos, 3)) + " m off centerline", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2) # Create canvas for graph plotting plotCanvas = np.zeros((500, 200, 3), dtype=np.uint8) # Plot points! ppmY = 10 ppmX = 20 # We know we can only display 500 / ppmY = 50 meters ahead # so limiting our loop will allow for a faster processing time for i in range(51): cv2.circle(plotCanvas, (int(100 - abs(leftLanePoints[i] * ppmX)), int(i * ppmY)), 2, (160, 160, 160), -1) cv2.circle(plotCanvas, (int(100 + abs(rightLanePoints[i] * ppmX)), int(i * ppmY)), 2, (160, 160, 160), -1) cv2.circle(plotCanvas, (int(100 - (pathPoints[i] * ppmX)), int(i * ppmY)), 4, (10, 255, 10), -1) # Flip plot path for display plotCanvas = cv2.flip(plotCanvas, 0) # Add some texts for distance cv2.putText(plotCanvas, "0 m", (10, 490), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200,200,200), 1) cv2.putText(plotCanvas, "10 m", (10, 400), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200,200,200), 1) cv2.putText(plotCanvas, "20 m", (10, 300), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200,200,200), 1) cv2.putText(plotCanvas, "30 m", (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200,200,200), 1) cv2.putText(plotCanvas, "40 m", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200,200,200), 1) cv2.putText(plotCanvas, "50 m", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200,200,200), 1) cv2.imshow("SuperDrive", canvas) cv2.imshow("Vision path", plotCanvas) if cv2.waitKey(1) & 0xFF == ord("q"): break
kaishijeng/SuperDrive
drive.py
drive.py
py
8,715
python
en
code
3
github-code
6
71361629947
from turtle import Turtle FONT = ("Courier", 24, "normal") class Scoreboard(Turtle): def __init__(self): super(Scoreboard, self).__init__() self.hideturtle() self.color('black') self.penup() self.level = 0 with open('data.txt') as high_score: self.high_level = int(high_score.read()) self.goto(-250, 250) self.update_scoreboard() def update_scoreboard(self): self.clear() self.write(arg=f'Level: {self.level} High score: {self.high_level}' , align='left', font=FONT) def add_point(self): self.level += 1 self.update_scoreboard() def reset(self): if self.level > self.high_level: self.high_level = self.level with open('data.txt', mode='w') as high_score: high_score.write(str(self.level)) self.level = 0 self.update_scoreboard()
Benji918/turtle-crossing-game
scoreboard.py
scoreboard.py
py
923
python
en
code
0
github-code
6
4583110582
from __future__ import division from copy import deepcopy import torch from torch.autograd import Variable import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu") import numpy as np import torch def average_rule(keys, Temp_state_dict, neighbors): aggr_state_dict = {} # aggr_state_dict= torch.sum(Temp_state_dict, 0) for key in keys: temp_state_dict = [deepcopy(Temp_state_dict[key][i]) for i in neighbors] aggr_state_dict[key] = torch.mean(torch.stack(temp_state_dict), 0) return aggr_state_dict def median_rule(keys, Temp_state_dict, neighbors): aggr_state_dict = {} for key in keys: temp_state_dict = [Temp_state_dict[key][i] for i in neighbors] aggr_state_dict[key], _ = torch.median(torch.stack(temp_state_dict), 0) return aggr_state_dict def actor_rule(agent_id, policy, Model_actor, Model_critic, Model_critic_2, ram, keys, ActorDict, neighbors, alpha, Accumu_Q_actor, filter, normalize=False, softmax=False): random_batch_size = 256 # gamma = 1 s1, a1, s2, _, _ = ram.sample(random_batch_size) # s1 = Variable(torch.from_numpy(np.float32(s1))).to(device) for neigh in neighbors: if policy == "TD3": pred_a1 = Model_actor[neigh](s1) Q_actor = Model_critic[agent_id].Q1(s1, pred_a1).mean() # Accumu_loss_actor[agent_id, neigh] = (1 - gamma) * Accumu_loss_actor[agent_id, neigh] + gamma * loss_actor Accumu_Q_actor[agent_id, neigh] = Q_actor elif policy == "DDPG": pred_a1 = Model_actor[neigh](s1) Q_actor = Model_critic[agent_id].forward(s1, pred_a1).mean() # Accumu_loss_actor[agent_id, neigh] = (1 - gamma) * Accumu_loss_actor[agent_id, neigh] + gamma * loss_actor Accumu_Q_actor[agent_id, neigh] = Q_actor elif policy == "PPO": pass elif policy == "SAC": # Prediction π(a|s), logπ(a|s), π(a'|s'), logπ(a'|s'), Q1(s,a), Q2(s,a) _, pi, log_pi = Model_actor[neigh](s1) # Min Double-Q: min(Q1(s,π(a|s)), Q2(s,π(a|s))), min(Q1‾(s',π(a'|s')), Q2‾(s',π(a'|s'))) min_q_pi = torch.min(Model_critic[agent_id](s1, pi), Model_critic_2[agent_id](s1, pi)).squeeze(1) # SAC losses para = 0.2 policy_loss = (para * log_pi - min_q_pi).mean() Accumu_Q_actor[agent_id, neigh] = -policy_loss else: raise NameError("Policy name is not defined!") Q = deepcopy(Accumu_Q_actor[agent_id, :]) min_Q = np.min(Accumu_Q_actor[agent_id, neighbors]) max_Q = np.max(Accumu_Q_actor[agent_id, neighbors]) if normalize: # Q = np.array([Q[neigh] - min_Q if neigh in neighbors else 0 for neigh in range(len(Q))]) # Q = Q / (max_Q - min_Q) Q = [Q[neigh] - max_Q if neigh in neighbors else 0 for neigh in range(len(Q))] Q = [np.exp(Q[neigh]) if neigh in neighbors else 0 for neigh in range(len(Q))] if softmax: if not normalize: Q = [Q[neigh] - max_Q if neigh in neighbors else 0 for neigh in range(len(Q))] Q = [np.exp(Q[neigh]) if neigh in neighbors else 0 for neigh in range(len(Q))] if filter: Q = [Q[neigh] if Q[neigh] >= Q[agent_id] else 0 for neigh in range(len(Q))] Q[agent_id] *= alpha[agent_id] sum_Q = sum(Q) Weight = Q / sum_Q # in case sum is not 1 Weight[agent_id] = 1 - sum(Weight[:agent_id]) - sum(Weight[agent_id + 1:]) print("agent %d, actor weight, loss" % agent_id, Weight, Accumu_Q_actor[agent_id, :]) aggr_state_dict = {} for key in keys: # temp_state_dict = [ActorDict[key][i] * Weight[i] * len(neighbors) for i in neighbors] # aggr_state_dict[key] = torch.mean(torch.stack(temp_state_dict), 0) temp_state_dict = [ActorDict[key][i] * Weight[i] for i in neighbors] aggr_state_dict[key] = torch.sum(torch.stack(temp_state_dict), 0) # filtering # aggr_actor = deepcopy(Model_actor[agent_id]) # aggr_actor.load_state_dict(aggr_state_dict) # pred_a1 = aggr_actor(s1) # Q_actor = Model_critic[agent_id].Q1(s1, pred_a1).mean() # if Q_actor > Accumu_Q_actor[agent_id, agent_id]: # print("agent %d, return aggregate model" % agent_id) # return aggr_state_dict # else: # return Model_actor[agent_id].state_dict() return aggr_state_dict def critic_rule(agent_id, policy, Model_actor, Model_critic, Model_critic_2, Model_target_critic, Model_target_critic_2, ram, keys, CriticDict, Critic2Dict, neighbors, alpha, Accumu_loss_critic, filter, softmax=False): random_batch_size = 256 GAMMA = 0.99 gamma = 1 s1, a1, s2, r1, not_done = ram.sample(random_batch_size) if policy == "SAC": r1, not_done = r1.squeeze(1), not_done.squeeze(1) for neigh in neighbors: # Use target actor exploitation policy here for loss evaluation if policy == "TD3": a2_k = Model_actor[agent_id](s2).detach() target_Q1, target_Q2 = Model_target_critic[agent_id].forward(s2, a2_k) target_Q = torch.min(target_Q1, target_Q2) # y_exp = r + gamma*Q'( s2, pi'(s2)) y_expected = r1 + not_done * GAMMA * target_Q # y_pred = Q( s1, a1) y_predicted_1, y_predicted_2 = Model_critic[neigh].forward(s1, a1) # compute critic loss, and update the critic loss_critic = F.mse_loss(y_predicted_1, y_expected) + F.mse_loss(y_predicted_2, y_expected) elif policy == "DDPG": a2_k = Model_actor[agent_id](s2).detach() target_Q = Model_target_critic[agent_id].forward(s2, a2_k) # y_exp = r + gamma*Q'( s2, pi'(s2)) y_expected = r1 + not_done * GAMMA * target_Q # y_pred = Q( s1, a1) y_predicted = Model_critic[neigh].forward(s1, a1) # compute critic loss, and update the critic loss_critic = F.mse_loss(y_predicted, y_expected) elif policy == "PPO": pass elif policy == "SAC": para = 0.2 # Prediction π(a|s), logπ(a|s), π(a'|s'), logπ(a'|s'), Q1(s,a), Q2(s,a) _, next_pi, next_log_pi = Model_actor[agent_id](s2) q1 = Model_critic[neigh](s1, a1).squeeze(1) q2 = Model_critic_2[neigh](s1, a1).squeeze(1) min_q_next_pi = torch.min(Model_target_critic[agent_id](s2, next_pi), Model_target_critic_2[agent_id](s2, next_pi)).squeeze(1) v_backup = min_q_next_pi - para * next_log_pi q_backup = r1 + GAMMA * not_done * v_backup qf1_loss = F.mse_loss(q1, q_backup.detach()) qf2_loss = F.mse_loss(q2, q_backup.detach()) loss_critic = qf1_loss + qf2_loss else: raise NameError("Policy name is not defined!") Accumu_loss_critic[agent_id, neigh] = (1 - gamma) * Accumu_loss_critic[agent_id, neigh] + gamma * loss_critic loss = deepcopy(Accumu_loss_critic[agent_id, :]) # if normalize: # min_Q = np.min(loss) # max_Q = np.max(loss) # loss = (loss - min_Q) / (max_Q - min_Q) reversed_Loss = np.zeros(len(Model_actor)) for neigh in neighbors: if filter: if Accumu_loss_critic[agent_id, neigh] <= Accumu_loss_critic[agent_id, agent_id]: reversed_Loss[neigh] = 1 / loss[neigh] else: # if softmax: # reversed_Loss[neigh] = np.exp(-loss[neigh]) # 1 / np.exp(loss[neigh]) # else: reversed_Loss[neigh] = 1 / loss[neigh] reversed_Loss[agent_id] *= alpha[agent_id] sum_reversedLoss = sum(reversed_Loss) # Weight = np.zeros(numAgent) # for neigh in range(0, numAgent): Weight = reversed_Loss / sum_reversedLoss # in case sum is not 1 Weight[agent_id] = 1 - sum(Weight[:agent_id]) - sum(Weight[agent_id + 1:]) print("agent %d, critic weight, loss, reversedloss" % agent_id, Weight, loss, reversed_Loss) # weight = torch.from_numpy(weight) aggr_state_dict = {} for key in keys: # temp_state_dict = [ActorDict[key][i] * Weight[i] * len(neighbors) for i in neighbors] # aggr_state_dict[key] = torch.mean(torch.stack(temp_state_dict), 0) temp_state_dict = [CriticDict[key][i] * Weight[i] for i in neighbors] aggr_state_dict[key] = torch.sum(torch.stack(temp_state_dict), 0) if policy == "SAC": aggr_state_dict_2 = {} for key in keys: # temp_state_dict = [ActorDict[key][i] * Weight[i] * len(neighbors) for i in neighbors] # aggr_state_dict[key] = torch.mean(torch.stack(temp_state_dict), 0) temp_state_dict_2 = [Critic2Dict[key][i] * Weight[i] for i in neighbors] aggr_state_dict_2[key] = torch.sum(torch.stack(temp_state_dict_2), 0) return aggr_state_dict, aggr_state_dict_2 return aggr_state_dict
cbhowmic/resilient-adaptive-RL
aggregateMethods.py
aggregateMethods.py
py
9,022
python
en
code
0
github-code
6
28160427846
import asyncio from time import time from httpx import RequestError from loguru import logger from src.client import IteriosApiClient from src.exceptions import FailedResponseError from src.helpers import ( get_random_country, get_random_dep_city, get_search_start_payload, get_timing_results, setup_logger, ) from src.settings import settings async def start_search(index: int): logger.info(f'Start search #{index}') start_time = time() try: async with IteriosApiClient() as client: country = get_random_country() dep_city = get_random_dep_city() main_reference = await client.get_main_reference( country_iso=country['iso_code'], dep_city_id=dep_city['id'], ) payload = get_search_start_payload( country_id=country['id'], dep_city_id=dep_city['id'], main_reference=main_reference, ) await client.start_search(payload) except (FailedResponseError, RequestError) as error: logger.error(f'Fail search #{index} ({repr(error)})') return index, None elapsed_time = round(time() - start_time, 2) logger.info(f'Finish search #{index} in {elapsed_time}s') return index, elapsed_time async def main(): logger.info(f'Test with {settings.request_count} requests') requests = [ start_search(index) for index in range(1, settings.request_count + 1) ] timings = await asyncio.gather(*requests) last_time = None for timing in timings: index, elapsed_time = timing if not elapsed_time: logger.info(f'#{index} - fail') continue if last_time: difference = round(elapsed_time - last_time, 2) logger.info(f'#{index} - {elapsed_time}s ({difference:+}s)') else: logger.info(f'#{index} - {elapsed_time}s') last_time = elapsed_time elapsed_times = [timing[1] for timing in timings] results = get_timing_results(elapsed_times) logger.info(f"Results: min({results['min']}s), max({results['max']}s), average({results['average']}s), fails({results['failed']}/{results['total']})") # noqa: E501 if __name__ == '__main__': setup_logger() asyncio.run(main())
qwanysh/iterios-stress
start_search.py
start_search.py
py
2,281
python
en
code
0
github-code
6
27537219474
import objreader def hexDig2hexStr(hexDig, length): hexDig = hexDig.upper() hexStr = hexDig[2:] # 0xFFFFF6 => FFFFF6 for i in range(0, length - len(hexStr)): # 位數不足補零 hexStr = '0' + hexStr return hexStr # Hex String => Dec Int Digit def hexStr2decDig(hexStr, bits): decDig = int(hexStr, 16) # 0xFFFFF6 => 16777206 if decDig & (1 << (bits-1)): # 2^0 << (bits-1) = 0x800000 => 8388608 decDig -= 1 << (bits) # Threshold Of Negative Number:Negative decDig > 7FFFFF >= Positive decDig # 2^0 << (bits) = 0x1000000 => 16777216 # if decDig >= int(pow(2, bits-1)): # decDig -= int(pow(2, bits)) return decDig # Dec Int Digit => Hex Int Digit def decDig2hexDig(decDig, bits): return hex((decDig + (1 << bits)) % (1 << bits)) # e.g. hex[(-10 + 256) % 256] = 0xF6 # e.g. hex[( 10 + 256) % 256] = 0x0A # Text Record # Col. 2-7: Starting address for object code in this record # Col. 8-9: Length of object code in this record in bytes # e.g. 0A: 10 bytes (20 half-bytes) # Col.10-69: Object code def processTRecord(Tline, CSADDR, PROGADDR, MemoryContent): TADDR = int(f'0x{Tline[1:7]}', 16) # 將 Address 從 string 更改成 hex digit TADDR += CSADDR TADDR -= PROGADDR TADDR *= 2 # 將 1byte (Binary) 用 2個 數字(HEX)表示, 故需要將 Address 兩倍 # e.g. 1011 0110 => B6 length = int(f'0x{Tline[7:9]}', 16) # 將 Length 從 string 更改成 hex digit for i in range(0, length * 2): # bytes = half-bytes * 2 MemoryContent[TADDR] = Tline[9 + i] # 將 Object code 照著 TADDR 的順序, 依序填入 MemoryContent 中 TADDR += 1 # Modification Record # Col. 2-7: Starting location of the address field to be modified, relative to the beginning of the program # Col. 8-9: Length of the address field to be modified (half-bytes) # Col. 10: Modification flag (+ or -) # Col. 11-16: External symbol whose value is to be added to or subtracted from the indicated field def processMRecord(Mline, CSADDR, PROGADDR, MemoryContent, ESTAB): MADDR = int(f'0x{Mline[1:7]}', 16) # 將 Address 從 string 更改成 hex digit MADDR += CSADDR MADDR -= PROGADDR MADDR *= 2 # 將 1byte (Binary) 用 2個 數字(HEX)表示, 故需要將 Address 兩倍 # e.g. 1011 0110 => B6 length = int(f'0x{Mline[7:9]}', 16) # 將 Length 從 string 更改成 hex digit if (length == 5): # "05"代表除了需要跳過 First Byte(OPCODE + n,i) MADDR += 1 # 還需要跳過 Second Half-Byte(x,b,p,e) # e.g."77100004" 跳過 "77" 與 "1", address field 才是 "00004" # FFFFF6 = ['F', 'F', 'F', 'F', 'F', '6'] current = "".join(MemoryContent)[MADDR:MADDR + length] # -10 = hexStr2decDig(0xFFFFF6, 24) decDig = hexStr2decDig(f'0x{current}', length * 4) # Mline 以 '\n' 結尾,故 token 的擷取位置是從 10 到 len(Mline)-1 key = Mline[10:len(Mline)-1] if Mline[9] == '+': decDig += ESTAB[key] else: decDig -= ESTAB[key] modifiedHexStr = hexDig2hexStr(decDig2hexDig(decDig, length * 4), length) for i in range(0, length): # 將更改後的 modifiedHexStr 照著 MADDR 的順序, 依序填入 MemoryContent 中 MemoryContent[MADDR] = modifiedHexStr[i] MADDR += 1 def execute(ESTAB, PROGADDR, PROG, MemoryContent): # Control Section Address CSADDR = PROGADDR for i in range(0, len(PROG)): lines = objreader.readOBJFiles(PROG[i]) # Header Record # Col. 2-7: Program name # Col. 8-13: Starting address (hexadecimal) # Col. 14-19 Length of object program in bytes Hline = objreader.readRecordWithoutSpace(lines[0]) # Replace All Space for Header Line # CSNAME = Hline[1:6] CSLTH = int(f'{Hline[12:18]}', 16) # 將 Address 從 string 更改成 hex digit for j in range(1, len(lines)): # Text Record if lines[j][0] == 'T': processTRecord(lines[j], CSADDR, PROGADDR, MemoryContent) # Modification Record if lines[j][0] == 'M': processMRecord(lines[j], CSADDR, PROGADDR, MemoryContent, ESTAB) CSADDR += CSLTH
Yellow-Shadow/SICXE
LinkingLoader2021/LinkingLoader/pass2.py
pass2.py
py
4,795
python
en
code
0
github-code
6
53879462
from zohocrmsdk.src.com.zoho.api.authenticator import OAuthToken from zohocrmsdk.src.com.zoho.crm.api import Initializer from zohocrmsdk.src.com.zoho.crm.api.business_hours import BusinessHoursOperations, BodyWrapper, BusinessHours, \ BreakHoursCustomTiming, ActionWrapper, BusinessHoursCreated, APIException from zohocrmsdk.src.com.zoho.crm.api.dc import USDataCenter from zohocrmsdk.src.com.zoho.crm.api.util import Choice class UpdateBusinessHours(object): @staticmethod def initialize(): environment = USDataCenter.PRODUCTION() token = OAuthToken(client_id="clientID", client_secret="clientSecret", grant_token="grantToken") Initializer.initialize(environment, token) @staticmethod def update_business_hours(): business_hours_operations = BusinessHoursOperations() request = BodyWrapper() business_hours = BusinessHours() business_days = [Choice("Monday")] business_hours.set_business_days(business_days) business_hours.set_week_starts_on(Choice("Monday")) business_hours.set_same_as_everyday(False) business_hours.set_id(440248001017425) bhct = BreakHoursCustomTiming() bhct.set_days(Choice("Monday")) business_timings = ["09:00", "17:00"] bhct.set_business_timing(business_timings) # bhct1 = BreakHoursCustomTiming() bhct1.set_days(Choice("Tuesday")) business_timing1 = ["10:30", "17:00"] bhct1.set_business_timing(business_timing1) # bhct2 = BreakHoursCustomTiming() bhct2.set_days(Choice("Wednesday")) business_timing2 = ["10:30", "17:00"] bhct2.set_business_timing(business_timing2) # custom_timing = [bhct, bhct1, bhct2] business_hours.set_custom_timing(custom_timing) # when same_as_everyday is true daily_timing = [Choice("10:00"), Choice("11:00")] business_hours.set_daily_timing(daily_timing) # business_hours.set_type(Choice("custom")) request.set_business_hours(business_hours) response = business_hours_operations.update_business_hours(request) if response is not None: print('Status Code: ' + str(response.get_status_code())) response_object = response.get_object() if response_object is not None: if isinstance(response_object, ActionWrapper): action_response = response_object.get_business_hours() if isinstance(action_response, BusinessHoursCreated): print("Status: " + action_response.get_status().get_value()) print("Code: " + action_response.get_code().get_value()) print("Details") details = action_response.get_details() for key, value in details.items(): print(key + ' : ' + str(value)) print("Message: " + action_response.get_message().get_value()) elif isinstance(action_response, APIException): print("Status: " + action_response.get_status().get_value()) print("Code: " + action_response.get_code().get_value()) print("Details") details = action_response.get_details() for key, value in details.items(): print(key + ' : ' + str(value)) print("Message: " + action_response.get_message().get_value()) elif isinstance(response_object, APIException): print("Status: " + response_object.get_status().get_value()) print("Code: " + response_object.get_code().get_value()) print("Details") details = response_object.get_details() for key, value in details.items(): print(key + ' : ' + str(value)) print("Message: " + response_object.get_message().get_value()) UpdateBusinessHours.initialize() UpdateBusinessHours.update_business_hours()
zoho/zohocrm-python-sdk-5.0
versions/1.0.0/samples/business_hours/UpdateBusinessHours.py
UpdateBusinessHours.py
py
4,189
python
en
code
0
github-code
6
25538067967
import streamlit as st import pandas as pd import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns sns.set_style("darkgrid") hide_st_style = """ <style> footer {visibility: hidden;} #MainMenu {visibility: hidden;} header {visibility: hidden;} #stException {visibility: hidden;} </style> """ st.markdown(hide_st_style, unsafe_allow_html=True) import preprocessor, helper #df2 = pd.read_csv("athlete_events.csv") df = pd.read_csv('athlete_events.csv') region_df = pd.read_csv('noc_regions.csv') process_data = preprocessor.preprocess(df, region_df) st.sidebar.image("https://i.ibb.co/mDH38WV/olympics-logo.png") st.sidebar.title("Olympics Analysis") user_menu = st.sidebar.radio( 'Select an option ', ('Overall Analysis','Medal Tally','country-wise-analysis','athlete-wise-analysis' ) ) st.sidebar.write(' ##### Developed by Somnath Paul') # default home page display # if user_menu radio button is if user_menu == 'Medal Tally': # year & country year, country = helper.country_year_list(df,region_df) # check box for year selection selected_year = st.sidebar.selectbox("select year", year) selected_country = st.sidebar.selectbox("select country", country) # fetch dataframe for selected options medal_df, title = helper.fetch_medal_tally(selected_year, selected_country, df, region_df,) # display dataframe st.title(title) st.dataframe(medal_df) elif user_menu == 'Overall Analysis': cities, len_cities, country, len_countries, events, len_of_events, sports, len_of_sports, year, len_of_year, athletes, len_of_athletes = helper.overall_analysis(df, region_df) st.title("STATISTICS :") # first column col1, col2= st.columns(2) with col1: st.write(""" ### Hosted Counties""") st.title(len_cities) with col2: st.write(""" ### Counties Participated """) st.title(len_countries) # second columns col1, col2, col3, col4 = st.columns(4) with col1: st.write("""### Sports""") st.title(len_of_sports) with col2: st.write(""" ### Events""") st.title(len_of_events) with col3: st.write(""" ### Editions""") st.title(len_of_year) with col4: st.write(""" ### Athletes""") st.title(len_of_athletes) # graph 1 # number of countries participated df_10 = helper.graph_1(df, region_df) fig = px.line(df_10, x="Year", y="Count") st.title("Countries participated in each year") st.plotly_chart(fig) # graph 2 # number of sports played in each year df_11 = helper.graph_2(df, region_df) fig = px.line(df_11, x="Year", y="Count") st.title("Sports played in each year") st.plotly_chart(fig) # graph 3 # number of events played in each year # events has many under one sport df_12 = helper.graph_3(df, region_df) fig = px.line(df_12, x="Year", y="Count") st.title("Events played in each year") st.plotly_chart(fig) # graph 4 : heatmap x_1 = helper.graph_4(df, region_df) fig = px.imshow(x_1) st.title("Over the year how many events played / sports") st.plotly_chart(fig) # table 2: top_players = helper.table_2(df, region_df) st.title("Top 10 player won medals") st.dataframe(top_players.head(10)) elif user_menu == 'country-wise-analysis': countries = helper.countries(df, region_df) countries.insert(0, 'Not Selected') options = st.selectbox("Select country",countries) if options == 'Not Selected': st.error('Please select country') else: df_13= helper.country_wise_analysis(df, region_df, options) # line chart fig = px.line(df_13, x='Year', y='Medal') st.subheader(f'Number of medals won by {options} over the year') st.plotly_chart(fig) df_20 = helper.countries_good_at(df, region_df, options) st.subheader(f'Medals won by {options} under different sports') st.dataframe(df_20) df_30 = helper.player_good_at_by_countries(df, region_df, options) st.subheader(f'Medals won by players for {options}') st.dataframe(df_30) else: # athletics wise analysis x1, x2, x3, x4 = helper.pdf_histogram(process_data) # histogram (PDF) of age in plotly import plotly.figure_factory as ff gl=['Gold player age', 'Silver player age', 'Bronze player age', 'Overall player age'] fig = ff.create_distplot([x1, x2, x3, x4], show_hist=False, show_rug=False, group_labels=gl) st.title("Athlete Wise Analysis") st.write(""" #### Age - Medals wise analysis :""") st.plotly_chart(fig) st.write(""" #### Player who won gold [ weight - height ]:""") height_gold, weight_gold, height_silver,weight_silver, height_bronze,weight_bronze = helper.Player_who_won_gold(process_data) plt.scatter(height_gold,weight_gold,color='gold') plt.scatter(height_silver,weight_silver ,color='lightsteelblue') plt.scatter(height_bronze,weight_bronze ,color='lavender') plt.legend(["Gold" , "Silver", "Bronze"], bbox_to_anchor = (1 , 1)) st.pyplot(plt) # Men vs Women participation over the years plot df_73, df_74 = helper.Men_Women_participation(process_data) st.write("### Men vs Women participation over the years") plt.figure(figsize=(8,5)) plt.plot( df_73['Year'], df_73['Sex'], color='olive') plt.plot( df_74['Year'], df_74['Sex']) plt.legend(["Male" , "Female"], bbox_to_anchor = (1 , 1)) st.pyplot(plt) # athletics age sport wise analysis sports = process_data['Sport'].unique().tolist() sports.insert(0, 'Not Selected') sport = st.selectbox("Select a sport",sports) if sport == 'Not Selected': st.error('Please select sport') else: y1 = helper.age_histogram_sports(process_data, sport) # labels gl=[sport] st.write(""" #### Age - sport wise analysis :""") fig = ff.create_distplot([y1], show_hist=False, show_rug=False, group_labels=gl) st.plotly_chart(fig)
Somnathpaul/Olympic-data-analysis
main.py
main.py
py
6,253
python
en
code
0
github-code
6
31238312514
# 조건을 활용한 리스트 내포 # 리스트를 선언 array = ["사과", "자두", "초콜릿", "바나나", "체리"] output = [fruit for fruit in array if fruit != "초콜릿"] """ array의 요소를 fruit이라고 할 때 초콜릿이 아닌 fruit으로 리스트를 재조합 실행함년 초콜릿을 제외한 요소만 모인 리스트를 만든다 if구문을 포함한 리스트 내포는 다음과 같은 형태로 사용 리스트 이름 = [표현식 for 반복자 in 반복할 수 있는 것 if 조건문] """ # 출력 print(output)
DreamisSleep/pySelf
chap4/array_comprehensions.py
array_comprehensions.py
py
555
python
ko
code
0
github-code
6
37213848810
from collections import Counter, defaultdict import pandas as pd import os import csv import json # get phoneme features from PHOIBLE # note the path is resolved-phoible.csv that is corrected for mismatches between phonemes in PHOIBLE and the XPF Corpus phoneme_features = pd.read_csv("Data/resolved-phoible.csv") phoneme_features.drop(["InventoryID", "Glottocode","ISO6393","LanguageName","SpecificDialect","GlyphID","Allophones","Marginal","Source"], axis="columns", inplace=True) phoneme_features = phoneme_features.rename(columns={'periodicGlottalSource':'voice'}) # list of all feature names in PHOIBLE table features = phoneme_features.copy() features.drop(["Phoneme","voice"],axis="columns", inplace=True) features = features.columns.values.tolist() # global variables to_feat = {} #dictonary of phoneme: feature representation phon_model = {} #dictionary of feature representation: {possible phonemes: # of occurrences} def change_to_feat(phoneme, previous): ''' Takes in a character string representing the IPA form of the phoneme and returns a feature representation of the phoneme based on PHOIBLE features Input: phoneme - character string representing current phoneme next - character string representing phoneme that follows Output: feature representation of the phoneme - character string ('feature1/[+,-,NA]|feature2/[+,-,NA]|etc...') each feature name/value pair is joined with '/' while separate feat/value pairs are joined with '|' can split the string representation using these characters ''' global to_feat global phon_model # create and add feature representation to to_feat dictionary if not already in it if to_feat.get(phoneme) is None: row = phoneme_features[phoneme_features["Phoneme"] == phoneme] feat = [] #creates feature representations for only obstruents if not row.empty: if row["sonorant"].values.tolist()[0] == '-': for f in features: t = row[f].values.tolist()[0] feat.append(t+'/'+f) feat = '|'.join(feat) to_feat[phoneme] = feat else: to_feat[phoneme] = phoneme else: to_feat[phoneme] = phoneme #get feature feat = to_feat.get(phoneme) if previous != '': #context con = " ".join([previous, feat]) #add feature to phoneme model if it doesn't already exist if phon_model.get(con) is None: phon_model[con] = defaultdict(int) # increment occurrence in phoneme model phon_model[con][phoneme] += 1 return feat def nphone_model(wordseglist, n=4, wordlen=8): ''' Create n-gram models for the given word list of phonemes. Params: - wordseglist: a list of words, where each word is a list of a string of the IPA representation such as [["b a"], ["d o"]] - n: Number of preceding segments in context - wordlen: Maximum length of words to use, including the word-initial and word-final tokens Returns: - consonant_vowel: A dictionary representing the CV n-gram model. Each key is a string representing the context (perfect representation of n segments). Each value is another dictionary, where the keys are whether the next segment is consonant, vowel, or word-final token, and the values are the counts. - consonant: A dictionary representing the consonant n-gram model. Each key is a string representing the context (imperfect representation of n segments). Each value is another dictionary, where the keys are the next consonant, and the values are the counts. - vowel: A dictionary representing the vowel n-gram model. Each key is a string representing the context (perfect representation of n segments). Each value is another dictionary, where the keys are the next vowel, and the values are the counts. ''' model = {} prev_context = [] for word in wordseglist: # each word is a list of exactly one string, the word prev_context = ['[_w'] # start of word prev_phon = {} # don't use words that aren't perfectly translated to IPA if '@' in word.split(" "): continue # don't use words that aren't the same length as generated words # n - 1 because [_w is included in generated words # wordlen - 2 because both [_w and ]_w are included in generated words if len(word.split(" ")) < (n - 1) or len(word.split(" ")) > (wordlen - 2): continue word = word.replace(" ː", "ː") prev_p = '' str_context = '' for phoneme in word.split(" "): if len(prev_context) == n: prev_context.insert(0,prev_p) f = [] for i in range(len(prev_context)-1): f.append(change_to_feat(prev_context[i+1],prev_context[i])) #con.extend(prev_context) # if prev_context[0] == "[_w": # f = ['[_w'] # for i in range(len(prev_context)-1): # f.append(change_to_feat(prev_context[i+1],prev_context[i])) # else: # con = [prev_phon[" ".join(prev_context)]] # con.extend(prev_context) # f = [] # for i in range(len(prev_context)-1): # f.append(change_to_feat(prev_context[i+1],prev_context[i])) str_context = " ".join(f) if model.get(str_context) is None: model[str_context] = defaultdict(int) model[str_context][phoneme] += 1 prev_context.pop(0) prev_p = prev_context[0] prev_context.pop(0) # remove earliest segment from context # update context prev_context.append(phoneme) if len(prev_context) == n: prev_phon[" ".join(prev_context)] = prev_p # add word-final context once you've reached the end of the word # remove voicing information at end of the word if len(prev_context) >= n: f = [] for i in range(len(prev_context)): if i==0: f.append(change_to_feat(prev_context[i],prev_phon[" ".join(prev_context)])) else: f.append(change_to_feat(prev_context[i],prev_context[i-1])) str_context = " ".join(f) if model.get(str_context) is None: model[str_context] = defaultdict(int) model[str_context][']_w'] += 1 return model def main(): ''' NOTE: this file handles reading in data differently #TODO: write down what code creates the word list used for this ''' global to_feat global phon_model word_lists = [] lang_codes = [] identity ='5000_3' ##TODO: change this depending on inputs to translate04.py f_name = "Data/word_list"+identity+".tsv" # READ IN THE WORD LIST tsv_file = open(f_name) read_tsv = csv.reader(tsv_file, delimiter="\t") for line in read_tsv: line[1]=line[1].strip('\n') word_lists.append(line) # SPLIT LIST PER LANGUAGE word_lists = word_lists[1:] split_list = {} l = [] for i in range(len(word_lists)): lang_code = word_lists[i][0] if split_list.get(lang_code) is None: split_list[lang_code] = [word_lists[i][1]] else: split_list[lang_code].append(word_lists[i][1]) # GO THROUGH EACH LANGUAGE (can adjust the word length here) for lang in split_list: print(lang) lang_codes.append(lang) curr_list = split_list[lang] model = nphone_model(curr_list,wordlen=10) outfile = "./Data/utf8_ngram_models/" if not os.path.exists(outfile): os.mkdir(outfile) for key, value in model.items(): k = key.split(" ") if len(k) != 4: print('oh no :(') # save output model with open(outfile + lang + "_model.json", 'w+', encoding='utf8') as fout: json.dump(model, fout, ensure_ascii=False) # CHANGE phon_model from # occurrence to probability for feat in phon_model: total = sum(phon_model.get(feat).values(),0.0) phon_model[feat] = {k: v / total for k,v in phon_model.get(feat).items()} # save phon_model with open(outfile + lang + "_phon_model.json", 'w+', encoding='utf8') as fout: json.dump(phon_model, fout, ensure_ascii=False) # save feature conversion dict with open(outfile + lang + "_to_feat.json", 'w+', encoding='utf8') as fout: json.dump(to_feat, fout, ensure_ascii=False) # reset to_feat and phon_model after each language to_feat = {} phon_model = {} # save a list of all language codes used in this analysis o_name = "Data/lang_codes" + identity + ".tsv" with open(o_name, 'w+', newline='') as f: write = csv.writer(f, delimiter="\t") write.writerows(lang_codes) return None if __name__ == "__main__": main()
daniela-wiepert/XPF-soft-constraints
FD/Code/ngram_model_fd.py
ngram_model_fd.py
py
9,512
python
en
code
0
github-code
6
5355823795
R=[-1,1,0,0] C=[0,0,-1,1] from heapq import heappush,heappop def dijkstra(): x=[(0,0)] dis[0][0]=mat[0][0] while(True): boo=False h=[] for i in x: a=i[0];b=i[1] for j in range(4): r=a+R[j] c=b+C[j] if(0<=r<n and 0<=c<n): heappush(h,(dis[a][b]+mat[r][c],(r,c),i)) while(h): v=heappop(h) dis_2=dis[v[2][0]][v[2][1]]+mat[v[1][0]][v[1][1]] if(dis[v[1][0]][v[1][1]]>dis_2): boo=True dis[v[1][0]][v[1][1]]=dis_2 x.append(v[1]) if(not boo): break return dis[-1][-1] for _ in range(int(input())): n=int(input()) temp=[int(i) for i in input().split()] mat=[];dis=[] for i in range(0,n*n,n): mat.append(temp[i:i+n]) dis.append([1e9]*n) visited=[[False]*n for i in range(n)] ans=dijkstra() print(ans)
avikram553/Basics-of-Python
Graph Algo/Dijkstra_on_matrix.py
Dijkstra_on_matrix.py
py
1,018
python
en
code
0
github-code
6