modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 00:36:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 00:36:49
card
stringlengths
11
1.01M
1aurent/speecht5_finetuned_fleurs_fr
1aurent
2023-08-01T20:12:30Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "fr", "dataset:google/fleurs", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-26T18:25:54Z
--- language: - fr license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - google/fleurs model-index: - name: speecht5_finetuned_fleurs_fr results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_fleurs_fr This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.3627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 250 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3958 | 2.82 | 250 | 0.3692 | | 0.3942 | 5.64 | 500 | 0.3651 | | 0.3924 | 8.46 | 750 | 0.3615 | | 0.3927 | 11.28 | 1000 | 0.3627 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
s3nh/lmsys-vicuna-7b-v1.5-16k-GGML
s3nh
2023-08-01T20:09:55Z
0
0
transformers
[ "transformers", "text-generation", "en", "arxiv:2307.09288", "arxiv:2306.05685", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T19:57:53Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/James-WYang/BigTranslate). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card ## Model Details Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288) ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api ## Training Details Vicuna v1.5 (16k) is fine-tuned from Llama 2 with supervised instruction fine-tuning and linear RoPE scaling. The training data is around 125K conversations collected from ShareGPT.com. These conversations are packed into sequences that contain 16K tokens each. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
OUniv/qloraFalcon7B_test
OUniv
2023-08-01T20:01:51Z
0
0
peft
[ "peft", "pytorch", "RefinedWebModel", "custom_code", "region:us" ]
null
2023-08-01T19:41:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
Sookeyy/Reinforce-CartPole-v1
Sookeyy
2023-08-01T19:48:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T19:48:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
s3nh/lmsys-longchat-7b-v1.5-32k-GGML
s3nh
2023-08-01T19:38:49Z
0
4
transformers
[ "transformers", "text-generation", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T19:23:46Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/lmsys/longchat-7b-v1.5-32k/tree/main). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
NasimB/aochildes_gutenberg_fixed_log_rarity-mixed-seed
NasimB
2023-08-01T19:38:38Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T17:20:41Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes_gutenberg_fixed_log_rarity-mixed-seed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes_gutenberg_fixed_log_rarity-mixed-seed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3592 | 0.29 | 500 | 5.3385 | | 5.0519 | 0.59 | 1000 | 4.9203 | | 4.7218 | 0.88 | 1500 | 4.6948 | | 4.4531 | 1.17 | 2000 | 4.5553 | | 4.3081 | 1.47 | 2500 | 4.4381 | | 4.201 | 1.76 | 3000 | 4.3366 | | 4.0871 | 2.05 | 3500 | 4.2702 | | 3.9013 | 2.35 | 4000 | 4.2246 | | 3.88 | 2.64 | 4500 | 4.1727 | | 3.8385 | 2.93 | 5000 | 4.1257 | | 3.6438 | 3.23 | 5500 | 4.1265 | | 3.5973 | 3.52 | 6000 | 4.0988 | | 3.5805 | 3.81 | 6500 | 4.0654 | | 3.4762 | 4.11 | 7000 | 4.0753 | | 3.3279 | 4.4 | 7500 | 4.0724 | | 3.3237 | 4.69 | 8000 | 4.0616 | | 3.3081 | 4.99 | 8500 | 4.0509 | | 3.1497 | 5.28 | 9000 | 4.0682 | | 3.1439 | 5.57 | 9500 | 4.0663 | | 3.1428 | 5.87 | 10000 | 4.0656 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
toughdata/flan-t5-base-eli5-question-generation-54500
toughdata
2023-08-01T19:33:16Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:eli5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-01T15:41:38Z
--- datasets: - eli5 language: - en --- This model generates short questions based on long answers. To use, prend "rephrase this as a question: " to your input text.
kingbri/airoboros-l2-13b-gpt4-m2.0-GPTQ
kingbri
2023-08-01T19:26:40Z
4
0
transformers
[ "transformers", "llama", "text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T19:37:24Z
--- language: - en --- This is a GPTQ quantized version of [airoboros-l2-13b-gpt4-m2.0](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-m2.0) using float16 Please refer to the original creator for more information. Branches: - main: 4 bits, groupsize 128, act order false - 4bit-128g-actorder: 4 bits, groupsize 128, act order true - 4bit-32g-actorder: 4 bits, groupsize 32, act order true
liusong299/sd-class-butterflies-32
liusong299
2023-08-01T19:22:26Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-01T19:22:14Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('liusong299/sd-class-butterflies-32') image = pipeline().images[0] image ```
jariasn/poca-SoccerTwos
jariasn
2023-08-01T19:19:24Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-01T19:17:35Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: jariasn/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Erfanfz/distilbert-base-uncased-finetuned-emotion
Erfanfz
2023-08-01T19:11:25Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-01T18:59:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9234086034451895 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2165 - Accuracy: 0.9235 - F1: 0.9234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8148 | 1.0 | 250 | 0.3120 | 0.898 | 0.8937 | | 0.2475 | 2.0 | 500 | 0.2165 | 0.9235 | 0.9234 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
VictorEigen/funcname_codebert_20235201_1652
VictorEigen
2023-08-01T19:02:29Z
61
0
transformers
[ "transformers", "tf", "encoder-decoder", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-01T16:53:55Z
--- base_model: '' tags: - generated_from_keras_callback model-index: - name: VictorEigen/funcname_codebert_20235201_1652 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VictorEigen/funcname_codebert_20235201_1652 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Validation Loss: 0.0005 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 28378, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.2481 | 0.0014 | 0 | | 0.0014 | 0.0005 | 1 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.2 - Tokenizers 0.13.3
digiplay/perfectlevel10
digiplay
2023-08-01T18:49:48Z
4,873
11
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-01T18:10:46Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- https://civitai.com/models/117591/perfectlevel10 Sample image : ![tmp3nsyt_7b.png](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/RNZZocA65KkXhGUGsLxmh.png)
timliu007/falcon-7b-qlora-ft-adapters
timliu007
2023-08-01T18:49:20Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-01T18:49:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
MaxBas/01-08-2023_19-25-49
MaxBas
2023-08-01T18:39:01Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-08-01T17:25:53Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: 01-08-2023_19-25-49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 01-08-2023_19-25-49 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5581 | 1.0 | 884 | 0.6011 | | 0.5129 | 2.0 | 1768 | 0.5674 | | 0.5038 | 3.0 | 2652 | 0.5604 | | 0.5068 | 4.0 | 3536 | 0.5502 | | 0.4936 | 5.0 | 4420 | 0.5465 | | 0.4871 | 6.0 | 5304 | 0.5426 | | 0.4855 | 6.79 | 6000 | 0.5452 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 2.13.1 - Tokenizers 0.13.3
leondz/artgpt2tox
leondz
2023-08-01T18:31:08Z
315
3
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T23:58:57Z
--- license: apache-2.0 language: - en ---
davidmunechika/coreml-landscape-anime-pro
davidmunechika
2023-08-01T18:29:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-01T18:09:44Z
--- license: creativeml-openrail-m ---
lmsys/vicuna-7b-v1.3
lmsys
2023-08-01T18:26:56Z
45,515
129
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-18T03:36:42Z
--- inference: false --- **NOTE: New version available** Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). <br> # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 125K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
lmsys/vicuna-13b-v1.3
lmsys
2023-08-01T18:26:48Z
15,885
197
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-18T03:38:59Z
--- inference: false --- **NOTE: New version available** Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). <br> # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 125K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
lmsys/vicuna-7b-v1.1
lmsys
2023-08-01T18:26:25Z
3,527
77
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-12T21:43:30Z
--- inference: false --- **NOTE: New version available** Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). <br> # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.1 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 70K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md) ## Acknowledgement Special thanks to [@TheBloke](https://huggingface.co/TheBloke) for hosting this merged version of weights earlier.
lmsys/vicuna-13b-v1.1
lmsys
2023-08-01T18:26:15Z
3,614
98
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-12T21:23:50Z
--- inference: false --- **NOTE: New version available** Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). <br> # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.1 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 70K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md) ## Acknowledgement Special thanks to [@TheBloke](https://huggingface.co/TheBloke) for hosting this merged version of weights earlier.
jclynn/CodeBERTa-small-v1-finetuned-codesearchnet
jclynn
2023-08-01T18:22:00Z
63
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "base_model:huggingface/CodeBERTa-small-v1", "base_model:finetune:huggingface/CodeBERTa-small-v1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-01T18:19:55Z
--- base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_keras_callback model-index: - name: jclynn/CodeBERTa-small-v1-finetuned-codesearchnet results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jclynn/CodeBERTa-small-v1-finetuned-codesearchnet This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7179 - Validation Loss: 1.4649 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -996, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.7179 | 1.4649 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.2 - Tokenizers 0.13.3
ssbuild/chatglm2-6b-32k-int4
ssbuild
2023-08-01T18:21:00Z
104
2
transformers
[ "transformers", "pytorch", "chatglm", "custom_code", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-01T08:18:16Z
--- license: apache-2.0 --- --- language: - zh - en tags: - glm - chatglm - thudm --- # ChatGLM2-6B ## 软件依赖 ```shell pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate ``` ## 代码调用 可以通过如下代码调用 ChatGLM-6B 模型来生成对话: ```ipython >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True) >>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda() >>> model = model.eval() >>> response, history = model.chat(tokenizer, "你好", history=[]) >>> print(response) 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。 >>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history) >>> print(response) 晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法: 1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。 2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。 3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。 4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。 5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。 6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。 如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。 ``` 关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM2-6B)。 For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM2-6B). ## Change Log * v1.0 ## 协议 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM2-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
fimu-docproc-research/CIVQA_layoutXLM_model
fimu-docproc-research
2023-08-01T17:55:48Z
62
1
transformers
[ "transformers", "pytorch", "layoutlmv2", "document-question-answering", "endpoints_compatible", "region:us" ]
document-question-answering
2023-06-18T21:37:07Z
# The finetuned LayoutXLm model on Czech dataset for Visual Question Answering The original model can be found [here](microsoft/layoutxlm-base) The CIVQA dataset is the Czech Invoice dataset for Visual Question Answering Achieved results: eval_answer_text_recall = 0.7065 eval_answer_text_f1 = 0.6998 eval_answer_text_precision = 0.7319
elifm/swin-tiny-patch4-window7-224-finetuned-sar
elifm
2023-08-01T17:40:34Z
214
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-01T15:08:58Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-sar results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9880478087649402 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-sar This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0351 - Accuracy: 0.9880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3706 | 1.0 | 53 | 0.1639 | 0.9442 | | 0.3062 | 2.0 | 106 | 0.1337 | 0.9509 | | 0.264 | 3.0 | 159 | 0.0671 | 0.9748 | | 0.1861 | 4.0 | 212 | 0.0470 | 0.9854 | | 0.2131 | 5.0 | 265 | 0.0351 | 0.9880 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.2 - Tokenizers 0.13.3
fimu-docproc-research/xlm-roberta-large-ner
fimu-docproc-research
2023-08-01T17:36:25Z
133
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-08T23:25:35Z
# The finetuned XLM-RoBERTa (large-sized model) for Named Entity Recognition This model was finetuned on the [Czech invoice dataset](fimu-docproc-research/tesseract-ocr-annotations). ## Achieved results: eval_accuracy = 0.9618613 eval_f1 = 0.7825681 eval_precision = 0.7752081
BaojunJia/sd-class-butterflies-32
BaojunJia
2023-08-01T17:27:41Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-01T16:59:47Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('BaojunJia/sd-class-butterflies-32') image = pipeline().images[0] image ```
Emperor-WS/ppo-LunarLander-v2-u8
Emperor-WS
2023-08-01T17:26:39Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T17:26:33Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -102.93 +/- 43.17 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 16 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 16 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Emperor-WS/ppo-CartPole-v1' 'batch_size': 2048 'minibatch_size': 128} ```
Shiro/roberta-large-movie-genre
Shiro
2023-08-01T17:25:49Z
127
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-31T22:02:05Z
license: mit # roberta-large-movies This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the movie competition dataset. link: https://huggingface.co/spaces/competitions/movie-genre-prediction This model is nased on a MLM (Mask language modeling) finetuning. The goal is to apply a domain transfer. It needs then to be finetuned on labels. It achieves the following results on the evaluation set: - Loss: 1.3261 - Accuracy: 0.7375 ## Model description roberta-large ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7698 | 0.18 | 500 | 1.6168 | 0.6738 | | 1.7761 | 0.36 | 1000 | 1.6522 | 0.6830 | | 1.7626 | 0.54 | 1500 | 1.6534 | 0.6660 | | 1.7602 | 0.72 | 2000 | 1.6576 | 0.6787 | | 1.7587 | 0.89 | 2500 | 1.6266 | 0.6773 | | 1.7047 | 1.07 | 3000 | 1.6060 | 0.6852 | | 1.6782 | 1.25 | 3500 | 1.5990 | 0.6906 | | 1.6733 | 1.43 | 4000 | 1.5377 | 0.6967 | | 1.6664 | 1.61 | 4500 | 1.6435 | 0.6747 | | 1.6719 | 1.79 | 5000 | 1.4839 | 0.6907 | | 1.6502 | 1.97 | 5500 | 1.5351 | 0.6897 | | 1.6233 | 2.15 | 6000 | 1.6818 | 0.6763 | | 1.6127 | 2.32 | 6500 | 1.5865 | 0.6853 | | 1.6274 | 2.5 | 7000 | 1.5004 | 0.7004 | | 1.601 | 2.68 | 7500 | 1.4522 | 0.6930 | | 1.6123 | 2.86 | 8000 | 1.5371 | 0.6894 | | 1.6074 | 3.04 | 8500 | 1.5342 | 0.6952 | | 1.563 | 3.22 | 9000 | 1.5682 | 0.6876 | | 1.5746 | 3.4 | 9500 | 1.5705 | 0.6958 | | 1.5539 | 3.58 | 10000 | 1.4711 | 0.7041 | | 1.578 | 3.75 | 10500 | 1.5466 | 0.6889 | | 1.5492 | 3.93 | 11000 | 1.4629 | 0.6969 | | 1.5291 | 4.11 | 11500 | 1.4265 | 0.7200 | | 1.5079 | 4.29 | 12000 | 1.5053 | 0.6966 | | 1.5283 | 4.47 | 12500 | 1.5257 | 0.6903 | | 1.5141 | 4.65 | 13000 | 1.5063 | 0.6950 | | 1.4979 | 4.83 | 13500 | 1.5636 | 0.6956 | | 1.5294 | 5.01 | 14000 | 1.5878 | 0.6835 | | 1.4641 | 5.18 | 14500 | 1.5575 | 0.6962 | | 1.4754 | 5.36 | 15000 | 1.4779 | 0.7007 | | 1.4696 | 5.54 | 15500 | 1.4520 | 0.6965 | | 1.4655 | 5.72 | 16000 | 1.6320 | 0.6830 | | 1.4792 | 5.9 | 16500 | 1.4152 | 0.7134 | | 1.4379 | 6.08 | 17000 | 1.4900 | 0.7042 | | 1.4281 | 6.26 | 17500 | 1.5407 | 0.6990 | | 1.436 | 6.44 | 18000 | 1.5343 | 0.6914 | | 1.4342 | 6.61 | 18500 | 1.5324 | 0.7024 | | 1.4176 | 6.79 | 19000 | 1.4486 | 0.7133 | | 1.4308 | 6.97 | 19500 | 1.4598 | 0.7032 | | 1.4014 | 7.15 | 20000 | 1.5750 | 0.6938 | | 1.3661 | 7.33 | 20500 | 1.5404 | 0.6985 | | 1.3857 | 7.51 | 21000 | 1.4692 | 0.7037 | | 1.3846 | 7.69 | 21500 | 1.5511 | 0.6941 | | 1.3867 | 7.87 | 22000 | 1.5321 | 0.6925 | | 1.3658 | 8.04 | 22500 | 1.5500 | 0.7021 | | 1.3406 | 8.22 | 23000 | 1.5239 | 0.6960 | | 1.3405 | 8.4 | 23500 | 1.4414 | 0.7055 | | 1.3373 | 8.58 | 24000 | 1.5994 | 0.6784 | | 1.3527 | 8.76 | 24500 | 1.5106 | 0.6970 | | 1.3436 | 8.94 | 25000 | 1.4714 | 0.7080 | | 1.3069 | 9.12 | 25500 | 1.4990 | 0.6953 | | 1.2969 | 9.3 | 26000 | 1.4810 | 0.6964 | | 1.3009 | 9.47 | 26500 | 1.5965 | 0.6876 | | 1.3227 | 9.65 | 27000 | 1.4296 | 0.7014 | | 1.3259 | 9.83 | 27500 | 1.4137 | 0.7189 | | 1.3131 | 10.01 | 28000 | 1.5342 | 0.7020 | | 1.271 | 10.19 | 28500 | 1.4708 | 0.7113 | | 1.2684 | 10.37 | 29000 | 1.4342 | 0.7046 | | 1.2767 | 10.55 | 29500 | 1.4703 | 0.7094 | | 1.2861 | 10.73 | 30000 | 1.3323 | 0.7309 | | 1.2617 | 10.9 | 30500 | 1.4562 | 0.7003 | | 1.2551 | 11.08 | 31000 | 1.4361 | 0.7170 | | 1.2404 | 11.26 | 31500 | 1.4537 | 0.7035 | | 1.2562 | 11.44 | 32000 | 1.4039 | 0.7132 | | 1.2489 | 11.62 | 32500 | 1.4372 | 0.7064 | | 1.2406 | 11.8 | 33000 | 1.4926 | 0.7087 | | 1.2285 | 11.98 | 33500 | 1.4080 | 0.7152 | | 1.2213 | 12.16 | 34000 | 1.4031 | 0.7170 | | 1.1998 | 12.33 | 34500 | 1.3541 | 0.7223 | | 1.2184 | 12.51 | 35000 | 1.3630 | 0.7308 | | 1.2195 | 12.69 | 35500 | 1.3125 | 0.7281 | | 1.2178 | 12.87 | 36000 | 1.4257 | 0.7119 | | 1.1918 | 13.05 | 36500 | 1.4108 | 0.7153 | | 1.1664 | 13.23 | 37000 | 1.3577 | 0.7227 | | 1.1754 | 13.41 | 37500 | 1.3777 | 0.7206 | | 1.1855 | 13.59 | 38000 | 1.3501 | 0.7354 | | 1.1644 | 13.76 | 38500 | 1.3747 | 0.7207 | | 1.1709 | 13.94 | 39000 | 1.3704 | 0.7184 | | 1.1613 | 14.12 | 39500 | 1.4307 | 0.7247 | | 1.1443 | 14.3 | 40000 | 1.3190 | 0.7221 | | 1.1356 | 14.48 | 40500 | 1.3288 | 0.7331 | | 1.1493 | 14.66 | 41000 | 1.3505 | 0.7240 | | 1.1417 | 14.84 | 41500 | 1.3146 | 0.7320 | | 1.1349 | 15.02 | 42000 | 1.3546 | 0.7333 | | 1.1169 | 15.19 | 42500 | 1.3709 | 0.7247 | | 1.1187 | 15.37 | 43000 | 1.4243 | 0.7218 | | 1.118 | 15.55 | 43500 | 1.3835 | 0.7264 | | 1.1165 | 15.73 | 44000 | 1.3240 | 0.7254 | | 1.114 | 15.91 | 44500 | 1.3264 | 0.7382 | | 1.105 | 16.09 | 45000 | 1.3214 | 0.7334 | | 1.0924 | 16.27 | 45500 | 1.3847 | 0.7282 | | 1.0915 | 16.45 | 46000 | 1.3604 | 0.7317 | | 1.0968 | 16.62 | 46500 | 1.3540 | 0.7319 | | 1.0772 | 16.8 | 47000 | 1.2475 | 0.7306 | | 1.0975 | 16.98 | 47500 | 1.2636 | 0.7448 | | 1.0708 | 17.16 | 48000 | 1.4056 | 0.7182 | | 1.0654 | 17.34 | 48500 | 1.3769 | 0.7276 | | 1.0676 | 17.52 | 49000 | 1.3357 | 0.7224 | | 1.0507 | 17.7 | 49500 | 1.4088 | 0.7124 | | 1.0424 | 17.88 | 50000 | 1.3146 | 0.7315 | | 1.0524 | 18.06 | 50500 | 1.2896 | 0.7393 | | 1.0349 | 18.23 | 51000 | 1.3987 | 0.7192 | | 1.0217 | 18.41 | 51500 | 1.2938 | 0.7381 | | 1.0238 | 18.59 | 52000 | 1.2962 | 0.7387 | | 1.0292 | 18.77 | 52500 | 1.3195 | 0.7371 | | 1.0426 | 18.95 | 53000 | 1.2835 | 0.7412 | | 1.0196 | 19.13 | 53500 | 1.2346 | 0.7473 | | 1.012 | 19.31 | 54000 | 1.3666 | 0.7338 | | 1.0256 | 19.49 | 54500 | 1.3140 | 0.7365 | | 0.9824 | 19.66 | 55000 | 1.2764 | 0.7416 | | 1.0048 | 19.84 | 55500 | 1.2514 | 0.7488 | | 0.9947 | 20.02 | 56000 | 1.3351 | 0.7432 | | 0.977 | 20.2 | 56500 | 1.2854 | 0.7451 | | 0.9862 | 20.38 | 57000 | 1.3666 | 0.7285 | | 0.9699 | 20.56 | 57500 | 1.3123 | 0.7348 | | 0.977 | 20.74 | 58000 | 1.3426 | 0.7255 | | 0.9749 | 20.92 | 58500 | 1.3763 | 0.7297 | | 0.9505 | 21.09 | 59000 | 1.2372 | 0.7434 | | 0.9438 | 21.27 | 59500 | 1.4334 | 0.7159 | | 0.944 | 21.45 | 60000 | 1.2690 | 0.7508 | | 0.9427 | 21.63 | 60500 | 1.2186 | 0.7486 | | 0.9553 | 21.81 | 61000 | 1.3941 | 0.7269 | | 0.9571 | 21.99 | 61500 | 1.4163 | 0.7274 | | 0.932 | 22.17 | 62000 | 1.2717 | 0.7523 | | 0.9166 | 22.35 | 62500 | 1.2177 | 0.7396 | | 0.9301 | 22.52 | 63000 | 1.3264 | 0.7378 | | 0.9351 | 22.7 | 63500 | 1.2570 | 0.7520 | | 0.9211 | 22.88 | 64000 | 1.2639 | 0.75 | | 0.9211 | 23.06 | 64500 | 1.2377 | 0.7606 | | 0.9196 | 23.24 | 65000 | 1.2739 | 0.7485 | | 0.9062 | 23.42 | 65500 | 1.3263 | 0.7365 | | 0.8965 | 23.6 | 66000 | 1.2814 | 0.7455 | | 0.9004 | 23.78 | 66500 | 1.2109 | 0.7562 | | 0.9094 | 23.95 | 67000 | 1.2629 | 0.7528 | | 0.8937 | 24.13 | 67500 | 1.2771 | 0.7375 | | 0.8711 | 24.31 | 68000 | 1.3746 | 0.7353 | | 0.8972 | 24.49 | 68500 | 1.2529 | 0.7454 | | 0.8863 | 24.67 | 69000 | 1.3219 | 0.7359 | | 0.8823 | 24.85 | 69500 | 1.3136 | 0.7367 | | 0.8759 | 25.03 | 70000 | 1.3152 | 0.7428 | | 0.8722 | 25.21 | 70500 | 1.3108 | 0.7570 | | 0.8548 | 25.38 | 71000 | 1.3503 | 0.7368 | | 0.8728 | 25.56 | 71500 | 1.3091 | 0.7403 | | 0.8633 | 25.74 | 72000 | 1.2952 | 0.7416 | | 0.8612 | 25.92 | 72500 | 1.1612 | 0.7719 | | 0.8677 | 26.1 | 73000 | 1.2855 | 0.7450 | | 0.8526 | 26.28 | 73500 | 1.2979 | 0.7545 | | 0.8594 | 26.46 | 74000 | 1.2570 | 0.7598 | | 0.8481 | 26.64 | 74500 | 1.2337 | 0.7492 | | 0.855 | 26.81 | 75000 | 1.2875 | 0.7444 | | 0.835 | 26.99 | 75500 | 1.2270 | 0.7585 | | 0.8309 | 27.17 | 76000 | 1.2540 | 0.7389 | | 0.8326 | 27.35 | 76500 | 1.3611 | 0.7375 | | 0.8398 | 27.53 | 77000 | 1.2248 | 0.7505 | | 0.8304 | 27.71 | 77500 | 1.2403 | 0.7607 | | 0.8373 | 27.89 | 78000 | 1.1709 | 0.7611 | | 0.8462 | 28.07 | 78500 | 1.2891 | 0.7508 | | 0.8259 | 28.24 | 79000 | 1.2452 | 0.7501 | | 0.8334 | 28.42 | 79500 | 1.2986 | 0.7468 | | 0.8115 | 28.6 | 80000 | 1.2880 | 0.7515 | | 0.8205 | 28.78 | 80500 | 1.2728 | 0.7562 | | 0.8261 | 28.96 | 81000 | 1.2661 | 0.7524 | | 0.8299 | 29.14 | 81500 | 1.2592 | 0.7486 | | 0.8276 | 29.32 | 82000 | 1.2325 | 0.7530 | | 0.8112 | 29.5 | 82500 | 1.3154 | 0.7478 | | 0.8111 | 29.67 | 83000 | 1.3343 | 0.7405 | | 0.8148 | 29.85 | 83500 | 1.2806 | 0.7485 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
nacielo/privateuse
nacielo
2023-08-01T17:18:15Z
89
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "base_model:nacielo/wav2vec2-gpt", "base_model:finetune:nacielo/wav2vec2-gpt", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-01T17:10:03Z
--- base_model: nacielo/wav2vec2-gpt tags: - generated_from_trainer model-index: - name: privateuse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # privateuse This model is a fine-tuned version of [nacielo/wav2vec2-gpt](https://huggingface.co/nacielo/wav2vec2-gpt) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 0.7575 | 24.1082 | 7.4663 | 18.6701 | 22.4544 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
nokotin/SpaceInvaders
nokotin
2023-08-01T17:12:08Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T17:11:31Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 716.50 +/- 281.96 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nokotin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nokotin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nokotin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
MariaK/vilt_finetuned_200
MariaK
2023-08-01T17:08:24Z
94
0
transformers
[ "transformers", "pytorch", "tensorboard", "vilt", "visual-question-answering", "generated_from_trainer", "dataset:vqa", "base_model:dandelin/vilt-b32-mlm", "base_model:finetune:dandelin/vilt-b32-mlm", "license:apache-2.0", "endpoints_compatible", "region:us" ]
visual-question-answering
2023-08-01T16:10:06Z
--- license: apache-2.0 base_model: dandelin/vilt-b32-mlm tags: - generated_from_trainer datasets: - vqa model-index: - name: vilt_finetuned_200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vilt_finetuned_200 This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) on the vqa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Nadarajan329/Agriculture
Nadarajan329
2023-08-01T17:06:25Z
0
1
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-01T17:06:25Z
--- license: bigscience-openrail-m ---
DanRR/sd_xl_base_1.0_ckpt
DanRR
2023-08-01T16:58:58Z
0
0
null
[ "region:us" ]
null
2023-08-01T16:58:08Z
Converted version of sdxl_1.0 to training format DO NOT USE! CKPT are dangerous and may content malitious code
bofenghuang/vigogne-2-13b-instruct
bofenghuang
2023-08-01T16:49:35Z
1,580
14
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "LLM", "llama-2", "fr", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-26T13:38:14Z
--- language: - fr pipeline_tag: text-generation library_name: transformers inference: false tags: - LLM - llama - llama-2 --- <p align="center" width="100%"> <img src="https://huggingface.co/bofenghuang/vigogne-2-13b-instruct/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;"> </p> # Vigogne-2-13B-Instruct: A Llama-2 based French instruction-following model Vigogne-2-13B-Instruct is a model based on [LLaMA-2-13B](https://ai.meta.com/llama) that has been fine-tuned to follow French instructions. For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne **Usage and License Notices**: Vigogne-2-13B-Instruct follows the same usage policy as Llama-2, which can be found [here](https://ai.meta.com/llama/use-policy). ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from vigogne.preprocess import generate_instruct_prompt model_name_or_path = "bofenghuang/vigogne-2-13b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto") user_query = "Expliquez la différence entre DoS et phishing." prompt = generate_instruct_prompt(user_query) input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device) input_length = input_ids.shape[1] generated_outputs = model.generate( input_ids=input_ids, generation_config=GenerationConfig( temperature=0.1, do_sample=True, repetition_penalty=1.0, max_new_tokens=512, ), return_dict_in_generate=True, ) generated_tokens = generated_outputs.sequences[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(generated_text) ``` You can also infer this model by using the following Google Colab Notebook. <a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_instruct.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ## Example Outputs *todo* ## Limitations Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
eelang/ppo-LunarLander-v2
eelang
2023-08-01T16:32:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T16:29:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 231.48 +/- 31.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aihakase/chilledremix_for_diffusers
aihakase
2023-08-01T16:30:53Z
45
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-09T04:50:45Z
--- license: creativeml-openrail-m ---
idajikuu/SpeechT5_TTS_Haitian2
idajikuu
2023-08-01T16:16:57Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "text-to-speech, Haitian Creole, TTS,speecht5", "generated_from_trainer", "ht", "dataset:cmu_haitian", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-30T12:38:09Z
--- language: - ht license: mit base_model: microsoft/speecht5_tts tags: - text-to-speech, Haitian Creole, TTS,speecht5 - generated_from_trainer datasets: - cmu_haitian model-index: - name: SpeechT5 TTS Haitian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Haitian This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the cmu_haitian dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
NasimB/aochildes_cbt_log_rarity-mixed-seed
NasimB
2023-08-01T16:14:39Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T14:11:52Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes_cbt_log_rarity-mixed-seed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes_cbt_log_rarity-mixed-seed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3642 | 0.29 | 500 | 5.3473 | | 5.0455 | 0.59 | 1000 | 4.9341 | | 4.7253 | 0.88 | 1500 | 4.7023 | | 4.4543 | 1.17 | 2000 | 4.5603 | | 4.3097 | 1.47 | 2500 | 4.4412 | | 4.2044 | 1.76 | 3000 | 4.3452 | | 4.0828 | 2.05 | 3500 | 4.2731 | | 3.91 | 2.35 | 4000 | 4.2325 | | 3.8773 | 2.64 | 4500 | 4.1780 | | 3.8389 | 2.93 | 5000 | 4.1277 | | 3.6395 | 3.23 | 5500 | 4.1337 | | 3.5987 | 3.52 | 6000 | 4.1049 | | 3.5818 | 3.81 | 6500 | 4.0689 | | 3.4719 | 4.11 | 7000 | 4.0787 | | 3.3261 | 4.4 | 7500 | 4.0750 | | 3.318 | 4.69 | 8000 | 4.0650 | | 3.317 | 4.99 | 8500 | 4.0531 | | 3.1547 | 5.28 | 9000 | 4.0712 | | 3.141 | 5.58 | 9500 | 4.0701 | | 3.1449 | 5.87 | 10000 | 4.0702 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
azhang1212/angela_shuffle_tokens_regular_eval
azhang1212
2023-08-01T16:08:58Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-01T14:53:15Z
--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_tokens_regular_eval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # angela_shuffle_tokens_regular_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1543 - Precision: 0.3906 - Recall: 0.2735 - F1: 0.3218 - Accuracy: 0.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1729 | 1.0 | 1283 | 0.1417 | 0.4191 | 0.1292 | 0.1975 | 0.9580 | | 0.1431 | 2.0 | 2566 | 0.1365 | 0.4356 | 0.1984 | 0.2726 | 0.9585 | | 0.1253 | 3.0 | 3849 | 0.1404 | 0.4376 | 0.2156 | 0.2889 | 0.9588 | | 0.1064 | 4.0 | 5132 | 0.1457 | 0.3784 | 0.2850 | 0.3251 | 0.9545 | | 0.089 | 5.0 | 6415 | 0.1543 | 0.3906 | 0.2735 | 0.3218 | 0.9556 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
StereoBartender/WhiskeyWithGrape
StereoBartender
2023-08-01T16:04:04Z
0
1
null
[ "license:other", "region:us" ]
null
2023-08-01T13:45:55Z
--- license: other --- Greetings! <center><img src="https://huggingface.co/Berry-real/WhiskeyWithGrape/resolve/main/suwa.png" width="50%"></center> just an interesting mix randomly created one evening, WIP, it is recommended to mix with something to soften the bitterness, enjoy! ill refine it a bit later recommended workflow: gen at 512x1024 and upscale it using img2img controlnet with colorfix + sharp, denoise about 0.4-0.6 depending on image ## Sample images <center><img src="https://huggingface.co/Berry-real/WhiskeyWithGrape/resolve/main/reimu.png"></center> <center><img src="https://huggingface.co/Berry-real/WhiskeyWithGrape/resolve/main/marisa.png"></center> <center><img src="https://huggingface.co/Berry-real/WhiskeyWithGrape/resolve/main/00057-2617748669.png"></center> ## Recommended servings -https://civitai.com/models/11772?modelVersionId=25820 ## Big thanks (To be completed, check them out!) - [Closertodeath](https://huggingface.co/closertodeath) for breathtaking loras - [Luna](https://huggingface.co/SweetLuna) for Aurora (base model) - TODO: reveive the recipe and credit all amazing creators ## License You are free to: 1. Share — copy and redistribute the material in any medium or format 2. Adapt — remix, transform, and build upon the material, as long as you freely share the changes Under the following terms: 1. You cannot use the model to deliberately produce nor share illegal or harmful outputs or content 2. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. 3. You may not use the material for commercial purposes, whether it be as a service, sold as is or merged into other material. 4. If you grant access to a modified version of the model available to users over a network, you must make your modified model available to those users immediately.
MiBo/llama2-ML-ArXiv-Papers
MiBo
2023-08-01T15:59:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T10:28:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
tamiti1610001/bert-fine-tuned-cola
tamiti1610001
2023-08-01T15:58:51Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-01T15:18:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5804132033917235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6993 - Matthews Correlation: 0.5804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4983 | 1.0 | 535 | 0.4890 | 0.5078 | | 0.2856 | 2.0 | 1070 | 0.5001 | 0.5678 | | 0.1774 | 3.0 | 1605 | 0.6993 | 0.5804 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
NprogramDev/ppo-Huggy
NprogramDev
2023-08-01T15:44:41Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-01T13:35:10Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NprogramDev/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
geranio/ppo-LunarLander-v2
geranio
2023-08-01T15:43:21Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T15:42:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.80 +/- 22.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dfalvearg/dqn-SpaceInvadersNoFrameskip-v4
dfalvearg
2023-08-01T15:33:17Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T15:32:50Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 329.00 +/- 157.97 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dfalvearg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dfalvearg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dfalvearg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
traeval/llama2-qlora-finetunined-french
traeval
2023-08-01T15:30:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T15:30:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
AdirK/ppo-Huggy
AdirK
2023-08-01T15:30:17Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-01T15:30:12Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AdirK/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kupkus1/TinyBunny
kupkus1
2023-08-01T15:26:21Z
0
0
null
[ "ru", "en", "uk", "region:us" ]
null
2023-08-01T15:25:28Z
--- language: - ru - en - uk ---
bayartsogt/wav2vec2-base-mn-pretrain-42h
bayartsogt
2023-08-01T15:24:34Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "pretraining", "speech", "mn", "dataset:test", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-07-23T05:20:48Z
--- language: mn datasets: - test tags: - speech license: apache-2.0 --- # Wav2Vec2-Base [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Data - Sample rate: 16Khz - Total pretrained data: 42H - Duration (sec): - mean: 5.276451094408402 - std: 2.2694219711399533 - max: 12.435937673420312 - min: 0.0005440165748211712 # Convert from FAIRSEQ to HF 1. Create a config ```python from transformers import Wav2Vec2Config config = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-base') config.save_pretrained('./') ``` 2. Convert using [the script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py) written by HF team ```bash wget convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py hf_name="<my-hf-repo-name>" ckpt="<path-to-pth-checkpoint>" python ./convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py \ --pytorch_dump_folder ${hf_name} \ --checkpoint_path ${ckpt} \ --config_path ./config.json \ --not_finetuned ```
checcoli/ppo-LunarLander-v2
checcoli
2023-08-01T15:17:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T15:17:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.18 +/- 19.75 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Blaise-g/longt5_tglobal_large_scitldr
Blaise-g
2023-08-01T15:08:55Z
119
3
transformers
[ "transformers", "pytorch", "safetensors", "longt5", "text2text-generation", "summarization", "biomedical papers", "en", "dataset:Blaise-g/scitldr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-09T12:44:09Z
--- language: en tags: - summarization - biomedical papers widget: - text: "Biomedical paper of choice \U0001F917" datasets: - Blaise-g/scitldr ---
Blaise-g/led_pubmed_sumpubmed_1
Blaise-g
2023-08-01T15:08:45Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "led", "text2text-generation", "summarization", "en", "dataset:Blaise-g/autotrain-data-SumPubmed", "dataset:Blaise-g/SumPubmed", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-07-29T00:41:04Z
--- tags: - summarization language: - en widget: - text: "Biomedical paper of choice \U0001F917" datasets: - Blaise-g/autotrain-data-SumPubmed - Blaise-g/SumPubmed co2_eq_emissions: emissions: 1027.9 model-index: - name: Blaise-g/led_pubmed_sumpubmed_1 results: - task: type: summarization name: Summarization dataset: name: Blaise-g/SumPubmed type: Blaise-g/SumPubmed config: Blaise-g--SumPubmed split: test metrics: - name: ROUGE-1 type: rouge value: 41.2523 verified: true - name: ROUGE-2 type: rouge value: 11.1291 verified: true - name: ROUGE-L type: rouge value: 20.2531 verified: true - name: ROUGE-LSUM type: rouge value: 37.1502 verified: true - name: loss type: loss value: 6.371099948883057 verified: true - name: gen_len type: gen_len value: 193.3744 verified: true --- # Validation Metrics - Loss: 2.133 - Rouge1: 45.861 - Rouge2: 14.179 - RougeL: 23.565 - RougeLsum: 40.908 - Gen Len: 195.334
Blaise-g/longt5_tglobal_large_sumpubmed
Blaise-g
2023-08-01T15:08:32Z
20
5
transformers
[ "transformers", "pytorch", "safetensors", "longt5", "text2text-generation", "summarization", "biomedical papers", "en", "dataset:Blaise-g/SumPubmed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-08T09:34:34Z
--- language: en tags: - summarization - biomedical papers widget: - text: "Biomedical paper of choice \U0001F917" datasets: - Blaise-g/SumPubmed ---
gzeskas/test-model-upload-1
gzeskas
2023-08-01T15:02:43Z
193
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "art", "artistic", "anime", "en", "license:other", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-24T08:48:29Z
--- language: - en license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers - anime inference: false --- # Dream Shaper ## Official Repository Read more about this model here: https://civitai.com/models/4384/dreamshaper Also please support by giving 5 stars and a heart, which will notify new updates. Please consider supporting me on Patreon or buy me a coffee - https://www.patreon.com/Lykon275 - https://snipfeed.co/lykon You can run this model on: - https://huggingface.co/spaces/Lykon/DreamShaper-webui - Mage.space, sinkin.ai and more
jariasn/a2c-PandaReachDense-v2
jariasn
2023-08-01T15:00:33Z
5
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T14:57:55Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.46 +/- 0.59 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrichardt/llama-101
mrichardt
2023-08-01T14:53:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "autotrain", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T12:22:37Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " --- # Model Trained Using AutoTrain A project to get familiar with finetuning a llama-2 model. Primarily used to gain experiences.
Davietheman/valorant-neon
Davietheman
2023-08-01T14:22:52Z
2
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-01T14:18:48Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Valorant_Neon Dreambooth model trained by Davietheman with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AtilliO/ppo-Huggy
AtilliO
2023-08-01T14:17:06Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-01T14:17:01Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AtilliO/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jariasn/a2c-AntBulletEnv-v0
jariasn
2023-08-01T14:10:18Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T14:09:11Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1896.57 +/- 121.74 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Testingkon/Railed_reil
Testingkon
2023-08-01T13:51:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-01T13:45:35Z
--- license: creativeml-openrail-m ---
IbrahimSalah/Arabic_Syllables_to_text_Converter_Using_MT5
IbrahimSalah
2023-08-01T13:41:38Z
75
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-28T11:24:16Z
# Arabic syllables to word converter using MT5 model This model will convert arabic syllables to full words.\ The models was intented to be used after Our [syllables based wav2vec model](https://huggingface.co/IbrahimSalah/Arabic_speech_Syllables_recognition_Using_Wav2vec2) # Example : -> input : بِاْ لِنْ نِسْ بَ تِ لِ لَسْ سُيْ يَ اِحْ مِمْ مِنْ طَ قَ تِشْ شَرْ قِلْ ءَوْ سَطْ\ -> output :بِالنِسْبَةِ لِلسُنْيَاح مِن مِنْطَقَةِ الشَرْق الأَوْسَط # To use the model ,the input needs special preprocessing steps. Please refer to this notebook for further details : [Syllable to text example](https://colab.research.google.com/drive/1VdY16ADTUq6SKcBiORbMm7c-BJC3JxLS?usp=sharing)
vrajur/ppo-LunarLander-v2
vrajur
2023-08-01T13:35:17Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T13:34:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 237.79 +/- 75.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
zein-barhoum/q-FrozenLake-v1-4x4-noSlippery
zein-barhoum
2023-08-01T13:34:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T13:34:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zein-barhoum/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
s3nh/airoboros-33b-gpt4-m2.0-GGML
s3nh
2023-08-01T13:27:02Z
0
0
transformers
[ "transformers", "text-generation-inference", "text-generation", "en", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T07:32:34Z
--- language: - en tags: - text-generation-inference pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/jondurbin/airoboros-l2-33b-gpt4-m2.0). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
NEO946B/Reinforce-Cartpole-v1
NEO946B
2023-08-01T13:23:45Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T13:23:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
w601sxs/b1ade-1b-wizard-chkpt-799k
w601sxs
2023-08-01T13:14:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T13:14:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
w601sxs/b1ade-1b-wizard-chkpt
w601sxs
2023-08-01T13:13:14Z
2
0
peft
[ "peft", "pytorch", "gpt_neox", "region:us" ]
null
2023-08-01T13:12:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
IHaveNoClueAndIMustPost/llama2-22b-wizard_vicuna-ggml
IHaveNoClueAndIMustPost
2023-08-01T13:05:15Z
0
1
null
[ "llama", "llama-2", "license:other", "region:us" ]
null
2023-08-01T12:01:35Z
--- license: other tags: - llama - llama-2 --- A 22B model merge by [grimpep](https://huggingface.co/grimpep) mixing [13Bv2-llama-modelmerge](https://huggingface.co/grimpep/13Bv2-llama-modelmerge) with [Wizard-Vicuna-30B-Superhot-8K](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16). <br>Please see the [original repo](https://huggingface.co/grimpep/llama2-22b-wizard_vicuna) for further information.<br><br> From my brief testing this model works great for chat or roleplaying using Llama2 syntax along with [SimpleProxy](https://github.com/anon998/simple-proxy-for-tavern) or SimpleProxy style prompt instruction.
efederici/it5-base-summarization
efederici
2023-08-01T13:01:11Z
192
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "t5", "text2text-generation", "summarization", "it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - it tags: - summarization --- # **Italian T5 Abstractive Summarization** gsarti/it5-base fine-tuned in italian for abstractive text summarization.
sasi2400/IntangibleBERT
sasi2400
2023-08-01T12:59:31Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:ProsusAI/finbert", "base_model:finetune:ProsusAI/finbert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-31T11:32:51Z
--- base_model: ProsusAI/finbert tags: - generated_from_trainer metrics: - accuracy model-index: - name: IntangibleBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IntangibleBERT This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0023 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 64 | 0.0094 | 1.0 | | No log | 2.0 | 128 | 0.0023 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
efederici/sentence-BERTino-v2-mmarco-4m
efederici
2023-08-01T12:59:09Z
2
2
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "it", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-07T15:50:47Z
--- pipeline_tag: sentence-similarity license: apache-2.0 language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-BERTino-v2-mmarco-4m This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a finetuned sentence-BERTino-v2-pt on ~4m mmarco examples. Use `query:` and `passage:` as prefix identifiers for questions and documents respectively. - loss: MultipleNegativesRankingLoss - infrastructure: A100 80GB If you find this project useful, consider supporting its development: [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://bmc.link/edoardofederici) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ "query: Questo è un esempio di frase", "passage: Questo è un ulteriore esempio" ] model = SentenceTransformer('efederici/sentence-BERTino-v2-mmarco-4m') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: 1. pass your input through the transformer model 2. apply the right pooling-operation on-top of the contextualized word embeddings ```python from transformers import AutoTokenizer, AutoModel import torch def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = [ "query: Questo è un esempio di frase", "passage: Questo è un ulteriore esempio" ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-BERTino-v2-mmarco-4m') model = AutoModel.from_pretrained('efederici/sentence-BERTino-v2-mmarco-4m') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
ai-characters/AI-Voice-Models-by-AI_Characters
ai-characters
2023-08-01T12:58:33Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-28T04:41:23Z
--- license: openrail --- If you like what I am doing, feel free to donate to my KoFi: https://ko-fi.com/aicharacters Here you can find all of my current AI voice models! Currently they were all created using RVC2. Note that some models may have multiple versions, in which case I recommend using the newer one as it likely is of higher quality! Feel free to also check out my StableDiffusion AI art models here on Huggingface or alternatively on CivitAI: https://civitai.com/user/AI_Characters
DuSommeville/CREATINGESSENCE
DuSommeville
2023-08-01T12:54:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-01T12:54:35Z
--- license: creativeml-openrail-m ---
rahulhuddar/llama2-chat-hub-my-finetuned-model
rahulhuddar
2023-08-01T12:51:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T12:51:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
heegyu/LIMA-13b-hf
heegyu
2023-08-01T12:49:55Z
3,656
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T12:29:28Z
--- license: other --- LLaMA-13B converted to work with Transformers/HuggingFace. This is under a special license, please see the LICENSE file for details. -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
akashAlphastream/distilbert-base-uncased-finetuned-cola
akashAlphastream
2023-08-01T12:18:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-01T12:12:32Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7872 - Matthews Correlation: 0.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5204 | 1.0 | 535 | 0.4614 | 0.4869 | | 0.3459 | 2.0 | 1070 | 0.4912 | 0.5185 | | 0.2251 | 3.0 | 1605 | 0.6142 | 0.5150 | | 0.1747 | 4.0 | 2140 | 0.7872 | 0.5411 | | 0.1223 | 5.0 | 2675 | 0.8451 | 0.5309 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
Ilovemykid/sim
Ilovemykid
2023-08-01T12:11:50Z
0
1
nemo
[ "nemo", "text-to-video", "en", "zu", "dataset:Anthropic/hh-rlhf", "license:creativeml-openrail-m", "region:us" ]
text-to-video
2023-08-01T12:04:57Z
--- license: creativeml-openrail-m datasets: - Anthropic/hh-rlhf language: - en - zu metrics: - character - accuracy - code_eval - bertscore library_name: nemo pipeline_tag: text-to-video ---
draziert/poca-SoccerTwos
draziert
2023-08-01T12:06:18Z
31
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-01T12:05:50Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: draziert/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ayushnangia/llama2-qlora-finetunined-french
Ayushnangia
2023-08-01T12:02:06Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-01T12:01:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
autosyrup/bert
autosyrup
2023-08-01T11:54:37Z
8
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T19:18:16Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3752 - Precision: 0.5495 - Recall: 0.5949 - F1: 0.5713 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.1826 | 0.4095 | 0.4084 | 0.4089 | 0.9362 | | No log | 2.0 | 302 | 0.1684 | 0.4941 | 0.5303 | 0.5116 | 0.9442 | | No log | 3.0 | 453 | 0.2528 | 0.5197 | 0.4477 | 0.4810 | 0.9398 | | 0.1001 | 4.0 | 604 | 0.2100 | 0.5182 | 0.5583 | 0.5375 | 0.9439 | | 0.1001 | 5.0 | 755 | 0.2556 | 0.5207 | 0.4783 | 0.4986 | 0.9419 | | 0.1001 | 6.0 | 906 | 0.2908 | 0.4132 | 0.4204 | 0.4168 | 0.9365 | | 0.0205 | 7.0 | 1057 | 0.3046 | 0.5 | 0.6236 | 0.5550 | 0.9435 | | 0.0205 | 8.0 | 1208 | 0.3057 | 0.5324 | 0.5750 | 0.5529 | 0.9458 | | 0.0205 | 9.0 | 1359 | 0.3122 | 0.5626 | 0.5776 | 0.5700 | 0.9469 | | 0.0082 | 10.0 | 1510 | 0.3673 | 0.5733 | 0.5263 | 0.5488 | 0.9441 | | 0.0082 | 11.0 | 1661 | 0.3432 | 0.5482 | 0.5270 | 0.5374 | 0.9455 | | 0.0082 | 12.0 | 1812 | 0.3305 | 0.5590 | 0.5716 | 0.5652 | 0.9445 | | 0.0082 | 13.0 | 1963 | 0.3293 | 0.5434 | 0.6009 | 0.5707 | 0.9431 | | 0.005 | 14.0 | 2114 | 0.4080 | 0.5627 | 0.5803 | 0.5713 | 0.9451 | | 0.005 | 15.0 | 2265 | 0.3752 | 0.5495 | 0.5949 | 0.5713 | 0.9455 | | 0.005 | 16.0 | 2416 | 0.4140 | 0.5823 | 0.5470 | 0.5641 | 0.9455 | | 0.002 | 17.0 | 2567 | 0.4308 | 0.5555 | 0.5670 | 0.5612 | 0.9438 | | 0.002 | 18.0 | 2718 | 0.4389 | 0.5594 | 0.5676 | 0.5635 | 0.9436 | | 0.002 | 19.0 | 2869 | 0.4463 | 0.5609 | 0.5676 | 0.5642 | 0.9444 | | 0.0007 | 20.0 | 3020 | 0.4512 | 0.5648 | 0.5636 | 0.5642 | 0.9448 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
AIeseshi/AIeseshi_LoRA
AIeseshi
2023-08-01T11:50:41Z
0
0
null
[ "text-to-image", "ja", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-27T11:54:40Z
--- license: creativeml-openrail-m language: - ja pipeline_tag: text-to-image --- AIエセ師です。 <br> LECOでLoRAを作成しました。<br> <br> **おっぱい増減スライダーLoRA(huge_breasts_1girl)** <br> LECOで作成したLoRA生成の処女作となります。<br> おっぱい増減スライダー:トリガーワード 1girl<br> breasts系プロンプトは不要となります。<br> 学習はBRAV6で作成しました。<br> 別モデルでも利用可能かと思いますが、BRA系での利用を推奨します。 <br> <img src="https://huggingface.co/AIeseshi/huge_breasts.safetensors/resolve/main/huge_breasts1.jpg" width="100%" height="100%"> <img src="https://huggingface.co/AIeseshi/huge_breasts.safetensors/resolve/main/huge_breasts2.jpg" width="100%" height="100%"> ↑画像提供者RAN:https://twitter.com/RAN_kimono_jp<br> <br> 各モデルのおっぱい増減スライダーを作成しました。<br> BRAV6:huge_breasts_BRA.safetensors<br> kisaragi:huge_breasts_kisaragi_yayoi_mix_v1.safetensors<br> yayoi_v1:huge_breasts_yayoi_mix_v1.safetensors<br> yayoi_v2:huge_breasts_yayoi_mix_v2.safetensors<br>
DavidLazer/llama2_finetuned_chatbot
DavidLazer
2023-08-01T11:34:18Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-08-01T11:17:12Z
--- tags: - generated_from_trainer model-index: - name: llama2_finetuned_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_finetuned_chatbot This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
wuxianchao/lazylora-7bhf
wuxianchao
2023-08-01T11:21:16Z
0
1
null
[ "arxiv:2305.14314", "arxiv:2106.09685", "arxiv:2110.07602", "arxiv:2104.08691", "arxiv:2303.16199", "license:llama2", "region:us" ]
null
2023-07-23T22:49:25Z
--- license: llama2 --- ## Lazy LoRA ### Benefits 0. using the updated [Meta's LLaMA-2 models](https://huggingface.co/meta-llama/Llama-2-7b-hf). 1. support [4-bit qlora](https://arxiv.org/abs/2305.14314), extreme GPU memory and inference time saving; 2. comparable MMLU evaluation dataset results: | | eval | test | comp-eval | comp-test | |---------------|--------|--------|-----------|-----------| |llama2-7b | 46.68% | 46.82% | | | |ckpt-200 | 44.28% | 46.03% | -2.40% | -0.79% | |ckpt-600 | 45.26% | 45.61% | -1.42% | -1.21% | llama2-7b: "4e4d531bcab430a66c4d562b7e89e21c0fa235ea" ### Introduction Determine the rank of LoRA layers by the singular values of pretrained weight matrices. Also, combines: 1. LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/abs/2106.09685) 2. Prefix Tuning: [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://aclanthology.org/2021.acl-long.3 53/), [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.or g/pdf/2110.07602.pdf) 3. Prompt Tuning: [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/abs/2104.08691) 4. LLaMA adapter: [LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention] (https://arxiv.org/abs/2303.16199) in one model. This allows you to perform LoRA (additional low rank adapters inserted to each linear layer), and prompt learning (additional virtual tokens attached to the input and to the attention layers acting as `past_key_values`) ## Usage: ```python import sys sys.path.insert(1, '/workspace/asr/peft/src') # TODO set this path to the lazy-lora source code path, # or you can install it from source code: # TODO, please install lazylora for usage: # git clone [email protected]:Xianchao-Wu/peft.git # cd peft # python setup.py install from transformers import (AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig) from peft import PeftModel, PeftConfig import os import torch #import ipdb; ipdb.set_trace() cache_dir="/workspace/asr/peft/qlora" # TODO set this cache_dir to the path where you # stored (or, want to store) llama2-7bhf model lazylora_dir=os.getcwd() # the path that contains 'adapter_config.json' # and 'adapter_model.bin' config = PeftConfig.from_pretrained(lazylora_dir) tokenizer = AutoTokenizer.from_pretrained( config.base_model_name_or_path, cache_dir=cache_dir, use_auth_token=True ) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto", cache_dir=cache_dir, use_auth_token=True ) #model.print_trainable_parameters() print(sum(p.numel() for p in model.parameters())) # 3,500,412,928 -> half-size of 7B due to 4-bit loading model = PeftModel.from_pretrained(model, lazylora_dir) print('after adding lazy lora parameters:') model.print_trainable_parameters() # trainable params: 0 || all params: 3,660,359,168 || trainable%: 0.0 ``` ## MMLU result: ### MMLU eval result: ```json {"mmlu_loss": 1.9065961667247102, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.3333333333333333, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_medical_genetics": 0.8181818181818182, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_professional_law": 0.38235294117647056, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_public_relations": 0.3333333333333333, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.65, "mmlu_eval_accuracy_college_computer_science": 0.5454545454545454, "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_high_school_microeconomics": 0.2692307692307692, "mmlu_eval_accuracy_college_biology": 0.25, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_miscellaneous": 0.5930232558139535, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_management": 0.36363636363636365, "mmlu_eval_accuracy_global_facts": 0.2, "mmlu_eval_accuracy": 0.4526436056641111} ``` ### MMLU test result: ```json {"mmlu_loss": 1.925738222594615, "mmlu_test_accuracy_business_ethics": 0.53, "mmlu_test_accuracy_medical_genetics": 0.53, "mmlu_test_accuracy_international_law": 0.628099173553719, "mmlu_test_accuracy_professional_law": 0.3363754889178618, "mmlu_test_accuracy_econometrics": 0.32456140350877194, "mmlu_test_accuracy_high_school_biology": 0.4806451612903226, "mmlu_test_accuracy_computer_security": 0.57, "mmlu_test_accuracy_global_facts": 0.34, "mmlu_test_accuracy_clinical_knowledge": 0.46037735849056605, "mmlu_test_accuracy_miscellaneous": 0.6347381864623244, "mmlu_test_accuracy_high_school_microeconomics": 0.39915966386554624, "mmlu_test_accuracy_public_relations": 0.5636363636363636, "mmlu_test_accuracy_high_school_computer_science": 0.45, "mmlu_test_accuracy_human_sexuality": 0.5572519083969466, "mmlu_test_accuracy_virology": 0.43373493975903615, "mmlu_test_accuracy_human_aging": 0.5695067264573991, "mmlu_test_accuracy_high_school_world_history": 0.6371308016877637, "mmlu_test_accuracy_college_medicine": 0.3699421965317919, "mmlu_test_accuracy_marketing": 0.6923076923076923, "mmlu_test_accuracy_world_religions": 0.6783625730994152, "mmlu_test_accuracy_college_physics": 0.23529411764705882, "mmlu_test_accuracy_high_school_chemistry": 0.33004926108374383, "mmlu_test_accuracy_elementary_mathematics": 0.2751322751322751, "mmlu_test_accuracy_high_school_psychology": 0.6018348623853211, "mmlu_test_accuracy_sociology": 0.5920398009950248, "mmlu_test_accuracy_astronomy": 0.4342105263157895, "mmlu_test_accuracy_high_school_mathematics": 0.27037037037037037, "mmlu_test_accuracy_high_school_us_history": 0.5343137254901961, "mmlu_test_accuracy_logical_fallacies": 0.49693251533742333, "mmlu_test_accuracy_high_school_statistics": 0.19907407407407407, "mmlu_test_accuracy_management": 0.5825242718446602, "mmlu_test_accuracy_moral_disputes": 0.5057803468208093, "mmlu_test_accuracy_formal_logic": 0.24603174603174602, "mmlu_test_accuracy_college_chemistry": 0.25, "mmlu_test_accuracy_college_mathematics": 0.3, "mmlu_test_accuracy_high_school_geography": 0.5050505050505051, "mmlu_test_accuracy_machine_learning": 0.35714285714285715, "mmlu_test_accuracy_philosophy": 0.5787781350482315, "mmlu_test_accuracy_college_computer_science": 0.32, "mmlu_test_accuracy_security_studies": 0.46938775510204084, "mmlu_test_accuracy_abstract_algebra": 0.27, "mmlu_test_accuracy_professional_psychology": 0.4526143790849673, "mmlu_test_accuracy_college_biology": 0.4444444444444444, "mmlu_test_accuracy_us_foreign_policy": 0.68, "mmlu_test_accuracy_professional_medicine": 0.4522058823529412, "mmlu_test_accuracy_prehistory": 0.48148148148148145, "mmlu_test_accuracy_anatomy": 0.45925925925925926, "mmlu_test_accuracy_moral_scenarios": 0.2346368715083799, "mmlu_test_accuracy_nutrition": 0.4738562091503268, "mmlu_test_accuracy_high_school_macroeconomics": 0.4461538461538462, "mmlu_test_accuracy_high_school_european_history": 0.6181818181818182, "mmlu_test_accuracy_jurisprudence": 0.5370370370370371, "mmlu_test_accuracy_professional_accounting": 0.35815602836879434, "mmlu_test_accuracy_high_school_government_and_politics": 0.6321243523316062, "mmlu_test_accuracy_high_school_physics": 0.32450331125827814, "mmlu_test_accuracy_electrical_engineering": 0.47586206896551725, "mmlu_test_accuracy_conceptual_physics": 0.3872340425531915, "mmlu_test_accuracy": 0.4560969792275357} ``` ## License and intended use This lazy-lora adapter is based on [Meta's LLaMA-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf), and using the [oasst1 dataset](https://huggingface.co/datasets/OpenAssistant/oasst1), following [Guanaco](https://huggingface.co/timdettmers/guanaco-65b). lazy lora adapter weights are available under LLAMA-2 license. Note the use of the lazy lora adapter weights, requires access to the LLaMA model weighs. Lazy lora is based on LLaMA and therefore should be used according to the LLaMA license. ## Risks and Biases The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. The model was trained on various public datasets; it is possible that this model could generate lewd, biased, or otherwise offensive outputs.
autosyrup/roberta
autosyrup
2023-08-01T11:18:42Z
28
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:Jean-Baptiste/roberta-large-ner-english", "base_model:finetune:Jean-Baptiste/roberta-large-ner-english", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T10:36:47Z
--- license: mit base_model: Jean-Baptiste/roberta-large-ner-english tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta This model is a fine-tuned version of [Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3908 - Precision: 0.5990 - Recall: 0.5581 - F1: 0.5778 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.2078 | 0.1899 | 0.2388 | 0.2115 | 0.9246 | | No log | 2.0 | 302 | 0.1499 | 0.4322 | 0.5535 | 0.4854 | 0.9393 | | No log | 3.0 | 453 | 0.1916 | 0.5204 | 0.4946 | 0.5072 | 0.9418 | | 0.1542 | 4.0 | 604 | 0.1671 | 0.4615 | 0.5109 | 0.4849 | 0.9426 | | 0.1542 | 5.0 | 755 | 0.1940 | 0.4841 | 0.4829 | 0.4835 | 0.9439 | | 0.1542 | 6.0 | 906 | 0.2462 | 0.5066 | 0.5651 | 0.5343 | 0.9428 | | 0.0616 | 7.0 | 1057 | 0.2106 | 0.5041 | 0.5271 | 0.5153 | 0.9437 | | 0.0616 | 8.0 | 1208 | 0.2621 | 0.5620 | 0.5202 | 0.5403 | 0.9474 | | 0.0616 | 9.0 | 1359 | 0.2903 | 0.5242 | 0.5550 | 0.5392 | 0.9440 | | 0.0326 | 10.0 | 1510 | 0.3083 | 0.5883 | 0.5628 | 0.5753 | 0.9483 | | 0.0326 | 11.0 | 1661 | 0.3125 | 0.5451 | 0.5853 | 0.5645 | 0.9444 | | 0.0326 | 12.0 | 1812 | 0.3616 | 0.5503 | 0.5388 | 0.5445 | 0.9427 | | 0.0326 | 13.0 | 1963 | 0.3398 | 0.5978 | 0.5023 | 0.5459 | 0.9447 | | 0.0155 | 14.0 | 2114 | 0.2942 | 0.5701 | 0.5550 | 0.5625 | 0.9467 | | 0.0155 | 15.0 | 2265 | 0.3723 | 0.5771 | 0.5597 | 0.5683 | 0.9462 | | 0.0155 | 16.0 | 2416 | 0.3651 | 0.5751 | 0.5760 | 0.5755 | 0.9439 | | 0.0062 | 17.0 | 2567 | 0.3674 | 0.5667 | 0.5891 | 0.5777 | 0.9455 | | 0.0062 | 18.0 | 2718 | 0.3866 | 0.5897 | 0.5403 | 0.5639 | 0.9463 | | 0.0062 | 19.0 | 2869 | 0.3908 | 0.5990 | 0.5581 | 0.5778 | 0.9470 | | 0.0033 | 20.0 | 3020 | 0.4036 | 0.5914 | 0.5620 | 0.5763 | 0.9467 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
wilson-wei/whisper-tiny-finetuned-minds14
wilson-wei
2023-08-01T11:17:08Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-01T11:05:40Z
--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds-14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MInDS-14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3578403216542217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-minds-14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MInDS-14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5412 - Wer Ortho: 0.3581 - Wer: 0.3578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0121 | 4.46 | 1000 | 0.5412 | 0.3581 | 0.3578 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.0 - Tokenizers 0.13.3
himanimaheshwari3/distilbert-base-uncased-finetuned-DIS-mlm5
himanimaheshwari3
2023-08-01T11:06:28Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-01T11:02:23Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-DIS-mlm5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-DIS-mlm5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.4911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.036 | 1.0 | 2 | 4.3499 | | 0.1722 | 2.0 | 4 | 4.3545 | | 0.6087 | 3.0 | 6 | 5.8627 | | 0.2151 | 4.0 | 8 | 3.6960 | | 0.2115 | 5.0 | 10 | 3.2086 | | 0.3443 | 6.0 | 12 | 5.1042 | | 0.1082 | 7.0 | 14 | 4.0195 | | 0.5068 | 8.0 | 16 | 3.6664 | | 0.7362 | 9.0 | 18 | 4.3850 | | 0.4281 | 10.0 | 20 | 4.6974 | | 1.3107 | 11.0 | 22 | 4.3258 | | 1.4157 | 12.0 | 24 | 4.8907 | | 2.5918 | 13.0 | 26 | 4.6595 | | 2.577 | 14.0 | 28 | 4.3417 | | 1.6291 | 15.0 | 30 | 5.0013 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
embaas/sentence-transformers-gte-small
embaas
2023-08-01T11:04:18Z
40
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-01T11:04:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # embaas/sentence-transformers-gte-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('embaas/sentence-transformers-gte-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=embaas/sentence-transformers-gte-small) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jscore2023/falcon-7b-3
jscore2023
2023-08-01T11:04:09Z
1
0
peft
[ "peft", "pytorch", "falcon", "custom_code", "endpoints_compatible", "region:us" ]
null
2023-08-01T09:13:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
heegyu/RedTulu-Uncensored-3B-0719
heegyu
2023-08-01T10:57:18Z
1,509
2
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-23T03:21:07Z
--- license: apache-2.0 language: - en --- Base Model: togethercomputer/RedPajama-INCITE-Base-3B-v1 Dataset from: https://github.com/allenai/open-instruct and uncensored it using code in ehartford/wizard_vicuna_70k_unfiltered Usage ``` ### Human: your instruction ### ASSISANT: output will be generated and ended with <|endoftext|> ```
JinsooKim/CartPole
JinsooKim
2023-08-01T10:57:06Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T10:57:00Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 177.70 +/- 9.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kadarm/llama2-7b-python
kadarm
2023-08-01T10:55:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T10:54:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
SiberiaSoft/SiberianPersonaFred
SiberiaSoft
2023-08-01T10:46:14Z
590
6
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "ru", "dataset:SiberiaSoft/SiberianPersonaChat", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-27T12:27:04Z
--- license: mit datasets: - SiberiaSoft/SiberianPersonaChat language: - ru pipeline_tag: text2text-generation widget: - text: '<SC6>Ты парень, консультант по разным вопросам. Ты очень умный. Любишь помогать собеседнику. Продолжи диалог:\nСобеседник: Почему трава зеленая?\nТы: <extra_id_0>' - text: '<SC6>Ты парень, консультант по разным вопросам. Ты очень умный. Любишь помогать собеседнику. Продолжи диалог:\nСобеседник: Привет, как дела?\nТы: <extra_id_0>' --- ### SiberiaSoft/SiberianPersonaFred Данная модель предназначена для имитации личности в диалоге. Подробнее [тут](https://huggingface.co/datasets/SiberiaSoft/SiberianPersonaChat) ### Формат описаний личности 1. Ты парень, пилот самолета. Увлекаешься дайвингом. Собираешь марки. Любишь древнюю архитектуру. 2. Ты девушка, художница. Увлекаешься нейросетевым искусством. Умеешь программировать. Любишь рисовать. Также в промпт можно подставлять факты о личности: ФИО, возраст и т.д 1. Я девушка 18 лет. Я учусь в институте. Живу с родителями. У меня есть кот. Ищу парня для семьи. Статья на habr: [ссылка](https://habr.com/ru/articles/751580/) ### Пример кода инференса ```python import torch import transformers use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") t5_tokenizer = transformers.GPT2Tokenizer.from_pretrained("SiberiaSoft/SiberianPersonaFred") t5_model = transformers.T5ForConditionalGeneration.from_pretrained("SiberiaSoft/SiberianPersonaFred") while True: print('-'*80) dialog = [] while True: msg = input('H:> ').strip() if len(msg) == 0: break msg = msg[0].upper() + msg[1:] dialog.append('Собеседник: ' + msg) # В начале ставится промпт персонажа. prompt = '<SC6>Ты парень, консультант по разным вопросам. Ты очень умный. Любишь помогать собеседнику. Продолжи диалог:' + '\n'.join(dialog) + '\nТы: <extra_id_0>' input_ids = t5_tokenizer(prompt, return_tensors='pt').input_ids out_ids = t5_model.generate(input_ids=input_ids.to(device), do_sample=True, temperature=0.9, max_new_tokens=512, top_p=0.85, top_k=2, repetition_penalty=1.2) t5_output = t5_tokenizer.decode(out_ids[0][1:]) if '</s>' in t5_output: t5_output = t5_output[:t5_output.find('</s>')].strip() t5_output = t5_output.replace('<extra_id_0>', '').strip() t5_output = t5_output.split('Собеседник')[0].strip() print('B:> {}'.format(t5_output)) dialog.append('Ты: ' + t5_output) ```
ztrip/autotrain-testtranste-79085141139
ztrip
2023-08-01T10:45:28Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "zh", "en", "dataset:ztrip/autotrain-data-testtranste", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-01T10:45:13Z
--- tags: - autotrain - translation language: - zh - en datasets: - ztrip/autotrain-data-testtranste co2_eq_emissions: emissions: 0.0013030083852032 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 79085141139 - CO2 Emissions (in grams): 0.0013 ## Validation Metrics - Loss: 6.040 - SacreBLEU: 0.000 - Gen len: 3.000
wilson-wei/whisper-small-finetuned-minds14
wilson-wei
2023-08-01T10:38:00Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-30T05:59:27Z
--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-small-finetuned-minds-14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MInDS-14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.9778869778869779 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-finetuned-minds-14 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the MInDS-14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6328 - Wer Ortho: 0.8836 - Wer: 0.9779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0017 | 4.48 | 1000 | 0.6328 | 0.8836 | 0.9779 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.0 - Tokenizers 0.13.3
caseywilliams27/Ever-Growing-Demand-for-Pink-Diamonds
caseywilliams27
2023-08-01T10:24:58Z
0
0
null
[ "region:us" ]
null
2023-08-01T10:17:27Z
--- metrics: - accuracy --- --- license: openrail language: - ja - fr - it - de - en tags: - Pink Diamonds - <strong>The Ever-Growing Demand for Pink Diamonds: A Sparkling Investment Trend</strong> ---<p>Pink diamonds are a captivating gemstone rarity that has captured the attention of both investors and collectors. These magnificent colored diamonds have come to represent exclusivity, luxury, and style. Because of its distinct beauty and reputation as a wise investment choice, the demand for pink diamonds has increased significantly in recent years. The dynamics of the diamond market, the factors behind the rise in demand for pink diamonds, and the attractiveness of diamonds as alternative asset classes are all discussed in this article.</p> <p><strong>1.Rarity and restricted Supply:</strong> The rarity and restricted supply of pink diamonds are at the root of their attractiveness. Pink diamonds are extremely rare in nature and make up a very small portion of the world's total production of diamonds. The majority of these diamonds were formerly obtained from the famous Argyle Diamond Mine in Australia, which stopped operating in 2020. Since there is no new supply of these alluring stones, their rarity has boosted their attractiveness, driving up demand from investors and collectors looking for a one-of-a-kind, limited-edition gem.</p> <p><strong>2.Symbol of Elegance and Romance:</strong> Pink diamonds are a popular choice for engagement rings and other high-end jewelry because they represent refinement and romanticism. Because of their light and delicate colour, which evokes feelings of love and generosity, they are a sentimental and meaningful gift option for key events. As a result, buyers looking to commemorate life's milestones with a touch of elegance and emotion have seen a significant surge in demand for <a href="https://flawlessfinejewelry.com/lab-grown-pink-coloured-diamonds-search/"><strong>Lab-Grown Pink Diamond Engagement Rings.</strong></a></p> <p><strong>3.Celebrity Endorsement and Media Influence:</strong> Pink diamonds have seen a considerable increase in demand as a result of celebrity endorsements and notable media appearances. The perception of these superb stones is tainted by high-profile individuals wearing stunning pink diamond jewelry on red carpets and in publications, which inspires aspirational enthusiasm. Because of the increased perception in the media that pink diamonds are the height of exclusivity and elegance, buyers seeking to imitate their favorite celebrities are buying more of them.</p> <p><strong>4.Investment Potential and Inflation Protection:</strong> Pink diamonds have become a popular investment choice due to their potential price rise over time and as a hedge against inflation. Pink diamonds are the ideal alternative asset since they have a more steady value retention than traditional financial markets, which has attracted many investors. Since they are regarded as a tangible and transportable repository of wealth, their scarcity and limited supply add to their investment appeal. Pink diamonds may also act as a hedge against inflation, which adds to their allure for investors trying to diversify their holdings.</p> <p><strong>5.Rising Affluence in Emerging economies:</strong> The rise of affluence in emerging economies, particularly in China and India, has considerably contributed to the rising demand for luxury items such as pink diamonds. As these regions' middle and upper classes grow, so does their desire for unique and distinguished goods. Pink diamonds, with their mesmerizing beauty and financial possibilities, have piqued the interest of these new sectors of luxury consumers, fueling demand even further.</p> <strong>CONCLUSION:</strong> <p>Pink diamonds' increasing popularity reflects their timeless beauty and status as a valuable investment. Scarcity and rarity will continue to define these precious jewels, increasing their allure among collectors, investors, and luxury fans. However, like with any investment, due diligence and expert counsel are essential for successfully navigating the diamond market. Pink diamonds' fascination is unquestionable, whether for personal decoration or investment goals, making them a brilliant treasure in the world of precious stones.</p>
Anjoe/german-poetry-gpt2-large
Anjoe
2023-08-01T10:24:13Z
58
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T17:24:19Z
--- license: mit tags: - generated_from_trainer model-index: - name: german-poetry-gpt2-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-poetry-gpt2-large This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on German poems. It achieves the following results on the evaluation set: - eval_loss: 3.5753 - eval_runtime: 100.7173 - eval_samples_per_second: 51.6 - eval_steps_per_second: 25.805 - epoch: 4.0 - step: 95544 ## Model description large version of gpt-2 ## Intended uses & limitations It could be used for poetry generation ## Training and evaluation data The model was trained on german poems from projekt Gutenberg ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
Anjoe/german-poetry-gpt2
Anjoe
2023-08-01T10:23:56Z
167
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-28T21:11:02Z
--- license: mit tags: - generated_from_trainer model-index: - name: german-poetry-gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-poetry-gpt2 This model is a fine-tuned version of [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 3.8196 - eval_runtime: 43.8543 - eval_samples_per_second: 86.993 - eval_steps_per_second: 5.45 - epoch: 9.0 - step: 11520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 22 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
with-madrid/with-e5-small-v2
with-madrid
2023-08-01T10:06:39Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-24T13:01:11Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # with-madrid/with-e5-small-v2 This model is to be used for information retrieval for https://with-madrid.com/ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 143 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 4.762918902353135e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8, "weight_decay": 0.00936376631468652 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nokotin/q-FrozenLake-v1-4x4-noSlippery
nokotin
2023-08-01T10:06:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T10:06:29Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nokotin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```