modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 18:52:31
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 18:52:05
card
stringlengths
11
1.01M
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-2_austria-8_s458
jonatasgrosman
2022-07-25T13:40:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T13:40:42Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_xls-r_accent_germany-2_austria-8_s458 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-2_austria-8_s368
jonatasgrosman
2022-07-25T13:36:22Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T13:35:55Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_xls-r_accent_germany-2_austria-8_s368 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-10_austria-0_s728
jonatasgrosman
2022-07-25T13:26:50Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T13:26:38Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_xls-r_accent_germany-10_austria-0_s728 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
benjamyu/autotrain-ms-2-1174443640
benjamyu
2022-07-25T13:26:05Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "en", "dataset:benjamyu/autotrain-data-ms-2", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-25T03:54:44Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - benjamyu/autotrain-data-ms-2 co2_eq_emissions: 4.619328856849087 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1174443640 - CO2 Emissions (in grams): 4.619328856849087 ## Validation Metrics - Loss: 2.689530849456787 - Rouge1: 15.9713 - Rouge2: 2.1067 - RougeL: 12.1778 - RougeLsum: 13.5772 - Gen Len: 18.9798 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/benjamyu/autotrain-ms-2-1174443640 ```
mtreviso/ct5-small-en-wiki-l2r
mtreviso
2022-07-25T13:22:55Z
22
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "en", "dataset:wikipedia", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-17T04:48:26Z
--- license: afl-3.0 language: en tags: - t5 datasets: - wikipedia --- # cT5-small left-to-right Github: https://github.com/mtreviso/chunked-t5 This is a variant of [cT5](https://huggingface.co/mtreviso/ct5-small-en-wiki) that was trained with a left-to-right autoregressive decoding mask. As a consequence, it does not support parallel decoding, but it still predicts the end-of-chunk token `</c>` at the end of each chunk.
mtreviso/ct5-small-en-wiki
mtreviso
2022-07-25T13:19:21Z
14
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "en", "dataset:wikipedia", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-21T06:28:42Z
--- license: afl-3.0 language: en tags: - t5 datasets: - wikipedia --- # chunked T5 - small (cT5-small) Github: https://github.com/mtreviso/chunked-t5 A T5 model that uses a new loss where a special end-of-chunk token `</c>` is appended after sentinel tokens. The decoder has to predict the full input with masked tokens followed by `</c>`. This allows a much faster auto-regressive generation since the decoder can predict multiple tokens in parallel. For example, for the input `the quick brown fox jumps over the lazy dog`: ``` encoder: the <extra_id_0> fox jumps <extra_id_1> the lazy dog T5 decoder : <extra_id_0> quick brown <extra_id_1> over <extra_id_2> cT5 decoder: <extra_id_0> quick brown </c> <extra_id_1> over </c> <extra_id_2> ``` The generation may look like this for T5 and cT5: ``` T5: <extra_id_0> T5: <extra_id_0> quick T5: <extra_id_0> quick brown T5: <extra_id_0> quick brown <extra_id_1> T5: <extra_id_0> quick brown <extra_id_1> over T5: <extra_id_0> quick brown <extra_id_1> over <extra_id_2> T5: <extra_id_0> quick brown <extra_id_1> over <extra_id_2> </s> cT5: <extra_id_0> <pad> <extra_id_1> <pad> <extra_id_2> </s> cT5: <extra_id_0> quick <pad> <extra_id_1> over <pad> <extra_id_2> </s> cT5: <extra_id_0> quick brown <pad> <extra_id_1> over </c> <extra_id_2> </s> cT5: <extra_id_0> quick brown </c> <extra_id_1> over </c> <extra_id_2> </s> ``` In the original T5, the decoder is called \\(n_s + 1 + \sum_i |s_i|\\) times autoregressively, where \\(n_s\\) is the number of sentinel tokens and \\(s_1,...,s_{n_s}\\) are the predicted chunks. In contrast, cT5's decoder is called just \\(max_i |s_i| + 1\\) times. The generation stops when all sentences were fully translated to complete chunks, i.e., until all `</c>` tokens were generated. Alternatively, you can also set `max_chunk_size` to manually force the model to stop after generating a chunk with `max_chunk_size` tokens. The overhead of calling the decoder with a longer input is less pronounced since this computation can be parallelized in GPUs/TPUs. ## Training details cT5 models used T5's weights as a starting point, and then it was finetuned on the English [wikipedia](https://huggingface.co/datasets/wikipedia) for 3 epochs, achieving ~74% validation accuracy (ct5-small). The training script is in JAX + Flax and can be found in `pretrain_ct5.py`. Flax checkpoints can be converted to PyTorch via `convert_flax_to_pytorch.py [flax_dirname]`. ## Checkpoints - ct5-small: https://huggingface.co/mtreviso/ct5-small-en-wiki - ct5-base: todo - ct5-large: todo ## Usage ```python from transformers import AutoTokenizer from modeling_ct5 import CT5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("mtreviso/ct5-small-en-wiki") model = CT5ForConditionalGeneration.from_pretrained("mtreviso/ct5-small-en-wiki") ``` For training: ```python input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids labels = tokenizer("<extra_id_0> man </c> <extra_id_1> the </c> <extra_id_2>", return_tensors="pt").input_ids outputs = model(input_ids=input_ids, labels=labels) loss = outputs.loss logits = outputs.logits ``` For generation: ```python texts = [ "The <extra_id_0> walks in <extra_id_1> park", "UN Chief says there is no way to <extra_id_0> in Syria", ] input_ids = tokenizer(texts, return_tensors="pt", padding=True).input_ids generated_ids = model.generate( input_ids, use_cache=False, # important to set to False to avoid caching eoc_token_id=tokenizer.vocab['</c>'], # important to set to the correct end-of-chunk id max_chunk_size=5, # the default is 9999999, which is a large number ) ``` This will produce the following tokens: ```python >> ['<pad>', '<extra_id_0>', '▁Walking', '▁Trail', '</c>', '<extra_id_1>', '▁the', '</c>', '<extra_id_2>', '</s>'] >> ['<pad>', '<extra_id_0>', '▁treat', '▁Syria', '</c>', '<extra_id_1>', '</s>', '<pad>', '<pad>', '<pad>'] ``` You have to pass `use_cache=False` to `generate()` in order to avoid caching during the generation procedure as caching is not available for parallel decoding. Currently, parallel decoding is only supported for PyTorch (greedy search, greedy sampling, beam search, beam sampling) and JAX (greedy search and greedy sampling). **Note on the beam search implementation**: my beam search implementation is slower than optimal. This is because I use the structures provided by HuggingFace's implementation, namely, BeamScores and BeamHypotheses to store the beam search results for each chunk in the input. In other words, my implementation computes independent "beams" for each chunk rather than for each input sequence. It is possible to make it faster by using a custom BeamScores and BeamHypotheses class, but I haven't done that yet. ## Evaluation See the notebook `evaluate_ct5.ipynb` for an example of how to evaluate cT5 in terms of accuracy and perplexity. The notebook `profile.ipynb` shows how to profile the model to get runtimes. Here is a comparison between cT5-small and T5-small on a subset of the WikiText-103 dataset using deterministic greedy search: | Model | Exact match ↑ | Edit distance ratio ↑ | Perplexity ↓ | Time (seconds) ↓ | |-------|---------------|----------------------|--------------|-----------------| | T5-small | 0.11 | 0.60 | 2.22 | 44.71 | | cT5-small | 0.09 | 0.58 | 1.48 | 10.63 | On this toy dataset, cT5-small has a lower perplexity while being faster than T5-small. However, more experiments are needed for a rigorous evaluation. If you are interested in applying cT5 to real data, please contact me.
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s350
jonatasgrosman
2022-07-25T13:06:58Z
3
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T13:06:44Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s350 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-5_austria-5_s412
jonatasgrosman
2022-07-25T12:52:21Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T12:52:09Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_xls-r_accent_germany-5_austria-5_s412 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-8_female-2_s428
jonatasgrosman
2022-07-25T12:38:26Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T12:37:55Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-8_female-2_s428 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s473
jonatasgrosman
2022-07-25T12:33:22Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T12:33:11Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s473 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s3
jonatasgrosman
2022-07-25T11:58:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:58:21Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s3 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s255
jonatasgrosman
2022-07-25T11:54:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:53:50Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s255 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s934
jonatasgrosman
2022-07-25T11:31:25Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:31:13Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s934 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s469
jonatasgrosman
2022-07-25T11:26:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:26:32Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s469 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
huggingtweets/bwahwtfbwah
huggingtweets
2022-07-25T11:22:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T11:21:28Z
--- language: en thumbnail: http://www.huggingtweets.com/bwahwtfbwah/1658748163123/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1543387213370638338/Xn8bL7wJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🤍🖤</div> <div style="text-align: center; font-size: 14px;">@bwahwtfbwah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🤍🖤. | Data | 🤍🖤 | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 501 | | Short tweets | 655 | | Tweets kept | 2089 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p4n65kie/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bwahwtfbwah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pyxv8zk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pyxv8zk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bwahwtfbwah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s400
jonatasgrosman
2022-07-25T11:22:02Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:21:49Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s400 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s496
jonatasgrosman
2022-07-25T10:58:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:57:52Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s496 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-2_belgium-8_s709
jonatasgrosman
2022-07-25T10:48:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:48:42Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-2_belgium-8_s709 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-2_belgium-8_s284
jonatasgrosman
2022-07-25T10:44:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:43:55Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-2_belgium-8_s284 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-10_belgium-0_s869
jonatasgrosman
2022-07-25T10:34:28Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:34:13Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-10_belgium-0_s869 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-10_belgium-0_s271
jonatasgrosman
2022-07-25T10:24:53Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:24:41Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-10_belgium-0_s271 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s947
jonatasgrosman
2022-07-25T10:20:18Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:19:46Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s947 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s693
jonatasgrosman
2022-07-25T10:13:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:12:51Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s693 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-5_belgium-5_s607
jonatasgrosman
2022-07-25T10:03:24Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:03:13Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-5_belgium-5_s607 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
MarcoYuTono/huawei-noahTinyBERT_General_6L_768_HotpotQA
MarcoYuTono
2022-07-25T09:51:16Z
15
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "tag1", "tag2", "en", "dataset:HotpotQA", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-22T21:29:10Z
--- language: - en tags: - tag1 - tag2 license: apache-2.0 datasets: - HotpotQA metrics: - SQuad --- This model fine-tuned `huawei-noahTinyBERT_General_6L_768` on `HotpotQA`. | EM | F1 | |------------|----------| | 31.552419 | 53.535072 |
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-8_female-2_s226
jonatasgrosman
2022-07-25T09:42:46Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:42:24Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-8_female-2_s226 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-8_female-2_s156
jonatasgrosman
2022-07-25T09:37:47Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:37:36Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-8_female-2_s156 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
osanseviero/swin_unetr_btcv_segmentation
osanseviero
2022-07-25T09:27:25Z
0
1
null
[ "MONAI", "arxiv:2201.01266", "arxiv:2111.14791", "region:us" ]
null
2022-07-25T09:27:20Z
--- tags: - MONAI --- # Description A pre-trained model for volumetric (3D) multi-organ segmentation from CT image. # Model Overview A pre-trained Swin UNETR [1,2] for volumetric (3D) multi-organ segmentation using CT images from Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset [3]. ## Data The training data is from the [BTCV dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/89480/) (Please regist in `Synapse` and download the `Abdomen/RawData.zip`). The dataset format needs to be redefined using the following commands: ``` unzip RawData.zip mv RawData/Training/img/ RawData/imagesTr mv RawData/Training/label/ RawData/labelsTr mv RawData/Testing/img/ RawData/imagesTs ``` - Target: Multi-organs - Task: Segmentation - Modality: CT - Size: 30 3D volumes (24 Training + 6 Testing) ## Training configuration The training was performed with at least 32GB-memory GPUs. Actual Model Input: 96 x 96 x 96 ## Input and output formats Input: 1 channel CT image Output: 14 channels: 0:Background, 1:Spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland ## Performance A graph showing the validation mean Dice for 5000 epochs. ![](./val_dice.png) <br> This model achieves the following Dice score on the validation data (our own split from the training dataset): Mean Dice = 0.8283 Note that mean dice is computed in the original spacing of the input data. ## commands example Execute training: ``` python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf ``` Override the `train` config to execute multi-GPU training: ``` torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf ``` Override the `train` config to execute evaluation with the trained model: ``` python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf ``` Execute inference: ``` python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf ``` Export checkpoint to TorchScript file: TorchScript conversion is currently not supported. # Disclaimer This is an example, not to be used for diagnostic purposes. # References [1] Hatamizadeh, Ali, et al. "Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images." arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266. [2] Tang, Yucheng, et al. "Self-supervised pre-training of swin transformers for 3d medical image analysis." arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791. [3] Landman B, et al. "MICCAI multi-atlas labeling beyond the cranial vault–workshop and challenge." In Proc. of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge 2015 Oct (Vol. 5, p. 12).
thu-coai/EVA1.0
thu-coai
2022-07-25T09:17:23Z
3
0
transformers
[ "transformers", "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-07-25T07:30:01Z
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-10_female-0_s246
jonatasgrosman
2022-07-25T09:13:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:12:53Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-10_female-0_s246 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-0_female-10_s878
jonatasgrosman
2022-07-25T09:03:39Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:03:23Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-0_female-10_s878 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-0_female-10_s496
jonatasgrosman
2022-07-25T08:58:17Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:58:04Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-0_female-10_s496 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-5_female-5_s966
jonatasgrosman
2022-07-25T08:48:50Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:48:38Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-5_female-5_s966 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-5_female-5_s358
jonatasgrosman
2022-07-25T08:44:14Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:44:03Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-5_female-5_s358 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s149
jonatasgrosman
2022-07-25T08:29:17Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:29:02Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s149 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
amartyobanerjee/bert-finetuned-ner
amartyobanerjee
2022-07-25T08:27:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-25T06:57:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9314097279472382 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.94095111185142 - name: Accuracy type: accuracy value: 0.9862541943839407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9314 - Recall: 0.9507 - F1: 0.9410 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0821 | 1.0 | 1756 | 0.0639 | 0.9108 | 0.9371 | 0.9238 | 0.9834 | | 0.0366 | 2.0 | 3512 | 0.0585 | 0.9310 | 0.9497 | 0.9403 | 0.9857 | | 0.019 | 3.0 | 5268 | 0.0622 | 0.9314 | 0.9507 | 0.9410 | 0.9863 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s1
jonatasgrosman
2022-07-25T08:23:58Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:23:47Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s1 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s646
jonatasgrosman
2022-07-25T08:19:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:19:08Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s646 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s578
jonatasgrosman
2022-07-25T08:14:41Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:14:29Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s578 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s317
jonatasgrosman
2022-07-25T08:09:59Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:09:46Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s317 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s335
jonatasgrosman
2022-07-25T08:05:21Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:05:07Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s335 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s27
jonatasgrosman
2022-07-25T08:00:18Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:00:07Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s27 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211
jonatasgrosman
2022-07-25T07:38:20Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:38:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
nlp-esg-scoring/bert-base-finetuned-esg-TCFD-clean
nlp-esg-scoring
2022-07-25T07:29:45Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-25T01:48:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nlp-esg-scoring/bert-base-finetuned-esg-TCFD-clean results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlp-esg-scoring/bert-base-finetuned-esg-TCFD-clean This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7816 - Validation Loss: 2.3592 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -571, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7776 | 2.3647 | 0 | | 2.7744 | 2.3469 | 1 | | 2.7683 | 2.3527 | 2 | | 2.7743 | 2.3708 | 3 | | 2.7809 | 2.3819 | 4 | | 2.7674 | 2.3599 | 5 | | 2.7715 | 2.3541 | 6 | | 2.7766 | 2.3423 | 7 | | 2.7834 | 2.3535 | 8 | | 2.7816 | 2.3592 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Migga/ViT-BERT-Chess-V2
Migga
2022-07-25T07:28:02Z
5
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-07-25T05:59:53Z
--- tags: - generated_from_trainer model-index: - name: ViT-BERT-Chess-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViT-BERT-Chess-V2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0385 | 1.0 | 2770 | 3.9132 | | 3.7453 | 2.0 | 5540 | 3.7552 | | 3.6513 | 3.0 | 8310 | 3.7128 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324
jonatasgrosman
2022-07-25T07:22:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:22:31Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
keithhon/nllb-200-3.3B
keithhon
2022-07-25T07:20:38Z
5
3
transformers
[ "transformers", "m2m_100", "text2text-generation", "nllb", "ace", "acm", "acq", "aeb", "af", "ajp", "ak", "als", "am", "apc", "ar", "ars", "ary", "arz", "as", "ast", "awa", "ayr", "azb", "azj", "ba", "bm", "ban", "be", "bem", "bn", "bho", "bjn", "bo", "bs", "bug", "bg", "ca", "ceb", "cs", "cjk", "ckb", "crh", "cy", "da", "de", "dik", "dyu", "dz", "el", "en", "eo", "et", "eu", "ee", "fo", "fj", "fi", "fon", "fr", "fur", "fuv", "gaz", "gd", "ga", "gl", "gn", "gu", "ht", "ha", "he", "hi", "hne", "hr", "hu", "hy", "ig", "ilo", "id", "is", "it", "jv", "ja", "kab", "kac", "kam", "kn", "ks", "ka", "kk", "kbp", "kea", "khk", "km", "ki", "rw", "ky", "kmb", "kmr", "knc", "kg", "ko", "lo", "lij", "li", "ln", "lt", "lmo", "ltg", "lb", "lua", "lg", "luo", "lus", "lvs", "mag", "mai", "ml", "mar", "min", "mk", "mt", "mni", "mos", "mi", "my", "nl", "nn", "nb", "npi", "nso", "nus", "ny", "oc", "ory", "pag", "pa", "pap", "pbt", "pes", "plt", "pl", "pt", "prs", "quy", "ro", "rn", "ru", "sg", "sa", "sat", "scn", "shn", "si", "sk", "sl", "sm", "sn", "sd", "so", "st", "es", "sc", "sr", "ss", "su", "sv", "swh", "szl", "ta", "taq", "tt", "te", "tg", "tl", "th", "ti", "tpi", "tn", "ts", "tk", "tum", "tr", "tw", "tzm", "ug", "uk", "umb", "ur", "uzn", "vec", "vi", "war", "wo", "xh", "ydd", "yo", "yue", "zh", "zsm", "zu", "dataset:flores-200", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-25T06:52:36Z
--- language: - ace - acm - acq - aeb - af - ajp - ak - als - am - apc - ar - ars - ary - arz - as - ast - awa - ayr - azb - azj - ba - bm - ban - be - bem - bn - bho - bjn - bo - bs - bug - bg - ca - ceb - cs - cjk - ckb - crh - cy - da - de - dik - dyu - dz - el - en - eo - et - eu - ee - fo - fj - fi - fon - fr - fur - fuv - gaz - gd - ga - gl - gn - gu - ht - ha - he - hi - hne - hr - hu - hy - ig - ilo - id - is - it - jv - ja - kab - kac - kam - kn - ks - ka - kk - kbp - kea - khk - km - ki - rw - ky - kmb - kmr - knc - kg - ko - lo - lij - li - ln - lt - lmo - ltg - lb - lua - lg - luo - lus - lvs - mag - mai - ml - mar - min - mk - mt - mni - mos - mi - my - nl - nn - nb - npi - nso - nus - ny - oc - ory - pag - pa - pap - pbt - pes - plt - pl - pt - prs - quy - ro - rn - ru - sg - sa - sat - scn - shn - si - sk - sl - sm - sn - sd - so - st - es - sc - sr - ss - su - sv - swh - szl - ta - taq - tt - te - tg - tl - th - ti - tpi - tn - ts - tk - tum - tr - tw - tzm - ug - uk - umb - ur - uzn - vec - vi - war - wo - xh - ydd - yo - yue - zh - zsm - zu language_details: "ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn" tags: - nllb license: "cc-by-nc-4.0" datasets: - flores-200 metrics: - bleu - spbleu - chrf++ --- # NLLB-200 This is the model card of NLLB-200's 3.3B variant. Here are the [metrics](https://tinyurl.com/nllb200dense3bmetrics) for that particular checkpoint. - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features. The exact training algorithm, data and the strategies to handle data imbalances for high and low resource languages that were used to train NLLB-200 is described in the paper. - Paper or other resource for more information NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022 - License: CC-BY-NC - Where to send questions or comments about the model: https://github.com/facebookresearch/fairseq/issues ## Intended Use - Primary intended uses: NLLB-200 is a machine translation model primarily intended for research in machine translation, - especially for low-resource languages. It allows for single sentence translation among 200 languages. Information on how to - use the model can be found in Fairseq code repository along with the training code and references to evaluation and training data. - Primary intended users: Primary users are researchers and machine translation research community. - Out-of-scope use cases: NLLB-200 is a research model and is not released for production deployment. NLLB-200 is trained on general domain text data and is not intended to be used with domain specific texts, such as medical domain or legal domain. The model is not intended to be used for document translation. The model was trained with input lengths not exceeding 512 tokens, therefore translating longer sequences might result in quality degradation. NLLB-200 translations can not be used as certified translations. ## Metrics • Model performance measures: NLLB-200 model was evaluated using BLEU, spBLEU, and chrF++ metrics widely adopted by machine translation community. Additionally, we performed human evaluation with the XSTS protocol and measured the toxicity of the generated translations. ## Evaluation Data - Datasets: Flores-200 dataset is described in Section 4 - Motivation: We used Flores-200 as it provides full evaluation coverage of the languages in NLLB-200 - Preprocessing: Sentence-split raw text data was preprocessed using SentencePiece. The SentencePiece model is released along with NLLB-200. ## Training Data • We used parallel multilingual data from a variety of sources to train the model. We provide detailed report on data selection and construction process in Section 5 in the paper. We also used monolingual data constructed from Common Crawl. We provide more details in Section 5.2. ## Ethical Considerations • In this work, we took a reflexive approach in technological development to ensure that we prioritize human users and minimize risks that could be transferred to them. While we reflect on our ethical considerations throughout the article, here are some additional points to highlight. For one, many languages chosen for this study are low-resource languages, with a heavy emphasis on African languages. While quality translation could improve education and information access in many in these communities, such an access could also make groups with lower levels of digital literacy more vulnerable to misinformation or online scams. The latter scenarios could arise if bad actors misappropriate our work for nefarious activities, which we conceive as an example of unintended use. Regarding data acquisition, the training data used for model development were mined from various publicly available sources on the web. Although we invested heavily in data cleaning, personally identifiable information may not be entirely eliminated. Finally, although we did our best to optimize for translation quality, mistranslations produced by the model could remain. Although the odds are low, this could have adverse impact on those who rely on these translations to make important decisions (particularly when related to health and safety). ## Caveats and Recommendations • Our model has been tested on the Wikimedia domain with limited investigation on other domains supported in NLLB-MD. In addition, the supported languages may have variations that our model is not capturing. Users should make appropriate assessments. ## Carbon Footprint Details • The carbon dioxide (CO2e) estimate is reported in Section 8.8.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859
jonatasgrosman
2022-07-25T07:18:00Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:17:47Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
circulus/kobart-trans-gyeongsang-v1
circulus
2022-07-25T06:48:10Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T01:54:06Z
KoBART 기반 경상도 사투리 스타일 변경 - AI-HUB 의 경상도 사투리 데이터 셋을 통해 훈련되었습니다. - 사용방법은 곧 올리도록 하겠습니다.
circulus/kobart-trans-jeolla-v1
circulus
2022-07-25T06:47:52Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T02:02:09Z
KoBART 기반 전라도 사투리 스타일 변경 - AI-HUB 의 전라도 사투리 데이터 셋을 통해 훈련되었습니다. - 사용방법은 곧 올리도록 하겠습니다.
circulus/kobart-trans-chungcheong-v1
circulus
2022-07-25T06:47:00Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T02:04:57Z
KoBART 기반 충청도 사투리 스타일 변경 - AI-HUB 의 충청도 사투리 데이터 셋을 통해 훈련되었습니다. - 사용방법은 곧 올리도록 하겠습니다.
swtx/Erlangshen-Roberta-110M-Similarity
swtx
2022-07-25T06:46:00Z
4
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "NLU", "NLI", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T06:22:56Z
--- language: - zh license: apache-2.0 tags: - bert - NLU - NLI inference: true widget: - text: "今天心情不好[SEP]今天很开心" --- # Erlangshen-Roberta-110M-Similarity, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). We collect 20 paraphrace datasets in the Chinese domain for finetune, with a total of 2773880 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') texta='今天的饭不好吃' textb='今天心情不好' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ``` ## Scores on downstream chinese tasks(The dev datasets of BUSTM and AFQMC may exist in the train set) | Model | BQ | BUSTM | AFQMC | | :--------: | :-----: | :----: | :-----: | | Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 | | Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 | | Erlangshen-MegatronBert-1.3B-Similarity | 86.31 | - | - | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
huggingtweets/reillocity
huggingtweets
2022-07-25T06:40:47Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T23:14:20Z
--- language: en thumbnail: http://www.huggingtweets.com/reillocity/1658731242865/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1268284452586700800/BtFzXFsw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Collier</div> <div style="text-align: center; font-size: 14px;">@reillocity</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Collier. | Data | Matt Collier | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 35 | | Short tweets | 38 | | Tweets kept | 3177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20sr7og7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @reillocity's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3i5czu5f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3i5czu5f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/reillocity') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s118
jonatasgrosman
2022-07-25T06:39:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:39:24Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-10_female-0_s118 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s980
jonatasgrosman
2022-07-25T06:35:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:34:53Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-0_female-10_s980 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s281
jonatasgrosman
2022-07-25T06:30:15Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:30:04Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-0_female-10_s281 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s952
jonatasgrosman
2022-07-25T06:20:57Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:20:46Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-5_female-5_s952 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
bigmorning/distilgpt_new3_0080
bigmorning
2022-07-25T06:09:30Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T06:04:01Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0080 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0080 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4883 - Validation Loss: 2.3693 - Epoch: 79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | | 2.4995 | 2.3813 | 60 | | 2.4990 | 2.3803 | 61 | | 2.4984 | 2.3794 | 62 | | 2.4977 | 2.3798 | 63 | | 2.4971 | 2.3779 | 64 | | 2.4964 | 2.3778 | 65 | | 2.4959 | 2.3778 | 66 | | 2.4954 | 2.3787 | 67 | | 2.4947 | 2.3758 | 68 | | 2.4942 | 2.3751 | 69 | | 2.4935 | 2.3739 | 70 | | 2.4929 | 2.3754 | 71 | | 2.4923 | 2.3750 | 72 | | 2.4918 | 2.3730 | 73 | | 2.4912 | 2.3729 | 74 | | 2.4906 | 2.3712 | 75 | | 2.4901 | 2.3714 | 76 | | 2.4894 | 2.3704 | 77 | | 2.4888 | 2.3699 | 78 | | 2.4883 | 2.3693 | 79 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s875
jonatasgrosman
2022-07-25T06:01:57Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:01:46Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-8_england-2_s875 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459
jonatasgrosman
2022-07-25T05:52:22Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:52:11Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456
jonatasgrosman
2022-07-25T05:47:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:47:28Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
wuhuaguo/distilbert-base-uncased-finetuned-cola
wuhuaguo
2022-07-25T05:29:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T03:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5489250601752835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8115 - Matthews Correlation: 0.5489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5223 | 1.0 | 535 | 0.5400 | 0.4165 | | 0.349 | 2.0 | 1070 | 0.5125 | 0.4738 | | 0.2392 | 3.0 | 1605 | 0.5283 | 0.5411 | | 0.1791 | 4.0 | 2140 | 0.7506 | 0.5301 | | 0.127 | 5.0 | 2675 | 0.8115 | 0.5489 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924
jonatasgrosman
2022-07-25T05:07:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:07:18Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s874
jonatasgrosman
2022-07-25T04:53:00Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:52:49Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s874 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s564
jonatasgrosman
2022-07-25T04:48:13Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:48:01Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s564 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
bigmorning/distilgpt_new3_0075
bigmorning
2022-07-25T04:44:50Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T04:39:38Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0075 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4912 - Validation Loss: 2.3729 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | | 2.4995 | 2.3813 | 60 | | 2.4990 | 2.3803 | 61 | | 2.4984 | 2.3794 | 62 | | 2.4977 | 2.3798 | 63 | | 2.4971 | 2.3779 | 64 | | 2.4964 | 2.3778 | 65 | | 2.4959 | 2.3778 | 66 | | 2.4954 | 2.3787 | 67 | | 2.4947 | 2.3758 | 68 | | 2.4942 | 2.3751 | 69 | | 2.4935 | 2.3739 | 70 | | 2.4929 | 2.3754 | 71 | | 2.4923 | 2.3750 | 72 | | 2.4918 | 2.3730 | 73 | | 2.4912 | 2.3729 | 74 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129
jonatasgrosman
2022-07-25T04:43:26Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:43:14Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364
jonatasgrosman
2022-07-25T04:38:52Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:38:41Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211
jonatasgrosman
2022-07-25T04:33:58Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:33:47Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108
jonatasgrosman
2022-07-25T04:29:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:28:54Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s75
jonatasgrosman
2022-07-25T04:24:10Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:23:59Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-10_female-0_s75 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s504
jonatasgrosman
2022-07-25T04:19:07Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:18:55Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-10_female-0_s504 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325
jonatasgrosman
2022-07-25T04:14:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:14:16Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801
jonatasgrosman
2022-07-25T04:04:30Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:04:16Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601
jonatasgrosman
2022-07-25T03:58:35Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:58:23Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
thu-coai/EVA2.0-large
thu-coai
2022-07-25T03:40:50Z
2
3
transformers
[ "transformers", "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-07-25T03:11:39Z
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953
jonatasgrosman
2022-07-25T03:39:23Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:39:11Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
PlausiblePrediction/q-FrozenLake-v1-4x4-noSlippery
PlausiblePrediction
2022-07-25T03:38:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-25T03:38:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nshenk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s807
jonatasgrosman
2022-07-25T03:34:41Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:34:27Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s807 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
bigmorning/distilgpt_new3_0070
bigmorning
2022-07-25T03:22:34Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T03:17:17Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0070 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0070 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4942 - Validation Loss: 2.3751 - Epoch: 69 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | | 2.4995 | 2.3813 | 60 | | 2.4990 | 2.3803 | 61 | | 2.4984 | 2.3794 | 62 | | 2.4977 | 2.3798 | 63 | | 2.4971 | 2.3779 | 64 | | 2.4964 | 2.3778 | 65 | | 2.4959 | 2.3778 | 66 | | 2.4954 | 2.3787 | 67 | | 2.4947 | 2.3758 | 68 | | 2.4942 | 2.3751 | 69 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s732
jonatasgrosman
2022-07-25T03:20:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:20:30Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s732 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545
jonatasgrosman
2022-07-25T03:06:09Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:05:59Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s527
jonatasgrosman
2022-07-25T03:01:24Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:01:13Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s527 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
thu-coai/EVA2.0-xlarge
thu-coai
2022-07-25T02:57:30Z
6
1
transformers
[ "transformers", "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-07-14T14:33:45Z
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s756
jonatasgrosman
2022-07-25T02:56:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T02:56:00Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s756 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s103
jonatasgrosman
2022-07-25T02:46:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-23T14:42:13Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s103 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ben-yu/autotrain-MS2-1173943517
ben-yu
2022-07-25T01:31:42Z
3
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain", "unk", "dataset:ben-yu/autotrain-data-MS2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-25T00:06:06Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ben-yu/autotrain-data-MS2 co2_eq_emissions: 0.687008092853648 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1173943517 - CO2 Emissions (in grams): 0.687008092853648 ## Validation Metrics - Loss: 2.806302070617676 - Rouge1: 0.0342 - Rouge2: 0.006 - RougeL: 0.0242 - RougeLsum: 0.0283 - Gen Len: 19.9989 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ben-yu/autotrain-MS2-1173943517 ```
bigmorning/distilgpt_new3_0060
bigmorning
2022-07-25T00:37:57Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T00:32:14Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0060 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5002 - Validation Loss: 2.3821 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/distilgpt_new3_0055
bigmorning
2022-07-24T23:14:10Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-24T23:08:24Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0055 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0055 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5035 - Validation Loss: 2.3859 - Epoch: 54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-finetuned-synthetic-generated-only
domenicrosati
2022-07-24T22:50:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-24T13:50:55Z
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-generated-only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-synthetic-generated-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - F1: 0.9839 - Precision: 0.9849 - Recall: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.009 | 1.0 | 10387 | 0.0104 | 0.9722 | 0.9919 | 0.9533 | | 0.0013 | 2.0 | 20774 | 0.0067 | 0.9825 | 0.9844 | 0.9805 | | 0.0006 | 3.0 | 31161 | 0.0077 | 0.9843 | 0.9902 | 0.9786 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Billwzl/20split_dataset_version1
Billwzl
2022-07-24T20:49:31Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-21T07:44:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20split_dataset_version1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20split_dataset_version1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7475 | 1.0 | 11851 | 2.5194 | | 2.5528 | 2.0 | 23702 | 2.4191 | | 2.4649 | 3.0 | 35553 | 2.3646 | | 2.4038 | 4.0 | 47404 | 2.3289 | | 2.3632 | 5.0 | 59255 | 2.2922 | | 2.3273 | 6.0 | 71106 | 2.2739 | | 2.2964 | 7.0 | 82957 | 2.2494 | | 2.2732 | 8.0 | 94808 | 2.2217 | | 2.2526 | 9.0 | 106659 | 2.2149 | | 2.2369 | 10.0 | 118510 | 2.2029 | | 2.222 | 11.0 | 130361 | 2.2020 | | 2.2135 | 12.0 | 142212 | 2.1942 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Chris1/reinforce-pixelcopter
Chris1
2022-07-24T20:27:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T15:43:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-pixelcopter results: - metrics: - type: mean_reward value: -2.60 +/- 1.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
pm390/a2c-AntBulletEnv-v0
pm390
2022-07-24T20:07:21Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T20:06:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 937.65 +/- 268.02 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sudo-s/modeversion2_m7_e8
sudo-s
2022-07-24T19:34:08Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-24T12:04:24Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: modeversion2_m7_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modeversion2_m7_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem7 dataset. It achieves the following results on the evaluation set: - Loss: 0.1060 - Accuracy: 0.9761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0231 | 0.06 | 100 | 3.8568 | 0.1883 | | 3.3863 | 0.12 | 200 | 3.2510 | 0.2596 | | 2.6187 | 0.18 | 300 | 2.6243 | 0.3882 | | 2.3097 | 0.23 | 400 | 2.2189 | 0.4527 | | 1.9016 | 0.29 | 500 | 1.9495 | 0.5244 | | 1.7478 | 0.35 | 600 | 1.6609 | 0.6091 | | 1.2345 | 0.41 | 700 | 1.4335 | 0.6426 | | 1.4129 | 0.47 | 800 | 1.3001 | 0.6752 | | 1.1722 | 0.53 | 900 | 1.2030 | 0.6785 | | 1.0808 | 0.59 | 1000 | 1.0051 | 0.7273 | | 0.8814 | 0.64 | 1100 | 1.0715 | 0.7063 | | 0.9831 | 0.7 | 1200 | 0.9283 | 0.7334 | | 0.8118 | 0.76 | 1300 | 0.8525 | 0.7631 | | 0.7203 | 0.82 | 1400 | 0.7849 | 0.7756 | | 0.8881 | 0.88 | 1500 | 0.8786 | 0.7487 | | 0.6407 | 0.94 | 1600 | 0.6896 | 0.8000 | | 0.7574 | 1.0 | 1700 | 0.7314 | 0.7754 | | 0.6063 | 1.06 | 1800 | 0.6312 | 0.8068 | | 0.4797 | 1.11 | 1900 | 0.5792 | 0.8296 | | 0.4973 | 1.17 | 2000 | 0.5846 | 0.8221 | | 0.4432 | 1.23 | 2100 | 0.7057 | 0.7905 | | 0.5518 | 1.29 | 2200 | 0.5621 | 0.8304 | | 0.3256 | 1.35 | 2300 | 0.5890 | 0.8143 | | 0.4284 | 1.41 | 2400 | 0.5204 | 0.8485 | | 0.3702 | 1.47 | 2500 | 0.5699 | 0.8256 | | 0.2858 | 1.52 | 2600 | 0.5815 | 0.8287 | | 0.3706 | 1.58 | 2700 | 0.4615 | 0.8571 | | 0.3484 | 1.64 | 2800 | 0.4812 | 0.8518 | | 0.2865 | 1.7 | 2900 | 0.4285 | 0.8638 | | 0.4474 | 1.76 | 3000 | 0.5217 | 0.8377 | | 0.2101 | 1.82 | 3100 | 0.4478 | 0.8589 | | 0.3545 | 1.88 | 3200 | 0.4444 | 0.8612 | | 0.2728 | 1.93 | 3300 | 0.4213 | 0.8645 | | 0.3525 | 1.99 | 3400 | 0.3551 | 0.8848 | | 0.0936 | 2.05 | 3500 | 0.4074 | 0.8748 | | 0.2118 | 2.11 | 3600 | 0.4089 | 0.8812 | | 0.2744 | 2.17 | 3700 | 0.3534 | 0.8894 | | 0.211 | 2.23 | 3800 | 0.4422 | 0.8599 | | 0.1684 | 2.29 | 3900 | 0.3705 | 0.8858 | | 0.1885 | 2.34 | 4000 | 0.3651 | 0.8862 | | 0.249 | 2.4 | 4100 | 0.4234 | 0.8687 | | 0.1485 | 2.46 | 4200 | 0.3784 | 0.8798 | | 0.1188 | 2.52 | 4300 | 0.3589 | 0.8873 | | 0.1274 | 2.58 | 4400 | 0.3570 | 0.8917 | | 0.2206 | 2.64 | 4500 | 0.3377 | 0.8920 | | 0.1287 | 2.7 | 4600 | 0.3170 | 0.9023 | | 0.1805 | 2.75 | 4700 | 0.3469 | 0.8934 | | 0.1505 | 2.81 | 4800 | 0.4258 | 0.8757 | | 0.1592 | 2.87 | 4900 | 0.3415 | 0.8948 | | 0.1297 | 2.93 | 5000 | 0.3168 | 0.9028 | | 0.1284 | 2.99 | 5100 | 0.3060 | 0.9089 | | 0.0833 | 3.05 | 5200 | 0.2610 | 0.9207 | | 0.0334 | 3.11 | 5300 | 0.2766 | 0.9197 | | 0.0847 | 3.17 | 5400 | 0.3366 | 0.9016 | | 0.1112 | 3.22 | 5500 | 0.3098 | 0.9079 | | 0.0477 | 3.28 | 5600 | 0.3385 | 0.9041 | | 0.0419 | 3.34 | 5700 | 0.2944 | 0.9139 | | 0.0827 | 3.4 | 5800 | 0.2715 | 0.9239 | | 0.0659 | 3.46 | 5900 | 0.2695 | 0.9230 | | 0.0244 | 3.52 | 6000 | 0.3050 | 0.9147 | | 0.0883 | 3.58 | 6100 | 0.2862 | 0.9203 | | 0.0527 | 3.63 | 6200 | 0.2383 | 0.9319 | | 0.0828 | 3.69 | 6300 | 0.2984 | 0.9182 | | 0.0678 | 3.75 | 6400 | 0.2135 | 0.9436 | | 0.0492 | 3.81 | 6500 | 0.2605 | 0.9296 | | 0.0374 | 3.87 | 6600 | 0.2192 | 0.9380 | | 0.1846 | 3.93 | 6700 | 0.2804 | 0.9187 | | 0.0557 | 3.99 | 6800 | 0.2599 | 0.9253 | | 0.0127 | 4.04 | 6900 | 0.2412 | 0.9336 | | 0.0203 | 4.1 | 7000 | 0.2214 | 0.9415 | | 0.0272 | 4.16 | 7100 | 0.2322 | 0.9356 | | 0.066 | 4.22 | 7200 | 0.2643 | 0.9325 | | 0.0628 | 4.28 | 7300 | 0.2170 | 0.9406 | | 0.0108 | 4.34 | 7400 | 0.2388 | 0.9405 | | 0.026 | 4.4 | 7500 | 0.2533 | 0.9372 | | 0.0401 | 4.45 | 7600 | 0.2407 | 0.9358 | | 0.0493 | 4.51 | 7700 | 0.2213 | 0.9415 | | 0.0951 | 4.57 | 7800 | 0.3016 | 0.9237 | | 0.0017 | 4.63 | 7900 | 0.2183 | 0.9448 | | 0.0561 | 4.69 | 8000 | 0.1962 | 0.9492 | | 0.0063 | 4.75 | 8100 | 0.1868 | 0.9522 | | 0.0054 | 4.81 | 8200 | 0.2068 | 0.9459 | | 0.0519 | 4.87 | 8300 | 0.2141 | 0.9429 | | 0.027 | 4.92 | 8400 | 0.2138 | 0.9438 | | 0.0034 | 4.98 | 8500 | 0.1774 | 0.9529 | | 0.0096 | 5.04 | 8600 | 0.1778 | 0.9512 | | 0.0011 | 5.1 | 8700 | 0.1854 | 0.9512 | | 0.0195 | 5.16 | 8800 | 0.1914 | 0.9483 | | 0.0245 | 5.22 | 8900 | 0.2156 | 0.9471 | | 0.0055 | 5.28 | 9000 | 0.1640 | 0.9574 | | 0.0166 | 5.33 | 9100 | 0.1770 | 0.9568 | | 0.0217 | 5.39 | 9200 | 0.2011 | 0.9479 | | 0.0017 | 5.45 | 9300 | 0.2210 | 0.9462 | | 0.0161 | 5.51 | 9400 | 0.1510 | 0.9621 | | 0.0193 | 5.57 | 9500 | 0.1643 | 0.9586 | | 0.0121 | 5.63 | 9600 | 0.1716 | 0.9535 | | 0.0146 | 5.69 | 9700 | 0.1720 | 0.9554 | | 0.0071 | 5.74 | 9800 | 0.1831 | 0.9541 | | 0.0018 | 5.8 | 9900 | 0.2076 | 0.9485 | | 0.0007 | 5.86 | 10000 | 0.1636 | 0.9599 | | 0.0005 | 5.92 | 10100 | 0.1625 | 0.9602 | | 0.0277 | 5.98 | 10200 | 0.1874 | 0.9546 | | 0.0005 | 6.04 | 10300 | 0.1790 | 0.9579 | | 0.0012 | 6.1 | 10400 | 0.1840 | 0.9544 | | 0.0431 | 6.15 | 10500 | 0.1571 | 0.9628 | | 0.0332 | 6.21 | 10600 | 0.1599 | 0.9591 | | 0.0014 | 6.27 | 10700 | 0.1493 | 0.9632 | | 0.0014 | 6.33 | 10800 | 0.1366 | 0.9661 | | 0.0006 | 6.39 | 10900 | 0.1582 | 0.9609 | | 0.0005 | 6.45 | 11000 | 0.1704 | 0.9589 | | 0.0004 | 6.51 | 11100 | 0.1376 | 0.9671 | | 0.0755 | 6.57 | 11200 | 0.1375 | 0.9654 | | 0.0002 | 6.62 | 11300 | 0.1361 | 0.9661 | | 0.0006 | 6.68 | 11400 | 0.1323 | 0.9675 | | 0.0009 | 6.74 | 11500 | 0.1239 | 0.9692 | | 0.0004 | 6.8 | 11600 | 0.1514 | 0.9631 | | 0.0002 | 6.86 | 11700 | 0.1386 | 0.9664 | | 0.0004 | 6.92 | 11800 | 0.1368 | 0.9659 | | 0.0004 | 6.98 | 11900 | 0.1276 | 0.9684 | | 0.0002 | 7.03 | 12000 | 0.1171 | 0.9712 | | 0.0002 | 7.09 | 12100 | 0.1142 | 0.9711 | | 0.0001 | 7.15 | 12200 | 0.1183 | 0.9727 | | 0.0002 | 7.21 | 12300 | 0.1167 | 0.9732 | | 0.0002 | 7.27 | 12400 | 0.1143 | 0.9737 | | 0.0001 | 7.33 | 12500 | 0.1129 | 0.9737 | | 0.0002 | 7.39 | 12600 | 0.1116 | 0.9742 | | 0.0002 | 7.44 | 12700 | 0.1126 | 0.9745 | | 0.0002 | 7.5 | 12800 | 0.1111 | 0.9748 | | 0.0002 | 7.56 | 12900 | 0.1102 | 0.9747 | | 0.0001 | 7.62 | 13000 | 0.1094 | 0.9747 | | 0.0001 | 7.68 | 13100 | 0.1086 | 0.9742 | | 0.0001 | 7.74 | 13200 | 0.1079 | 0.9748 | | 0.0002 | 7.8 | 13300 | 0.1062 | 0.9754 | | 0.0002 | 7.85 | 13400 | 0.1068 | 0.9757 | | 0.0001 | 7.91 | 13500 | 0.1061 | 0.9762 | | 0.0001 | 7.97 | 13600 | 0.1060 | 0.9761 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
sushrut58/my-finetuned-t5
sushrut58
2022-07-24T19:13:30Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T19:13:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-finetuned-t5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-t5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jakka/dqn-SpaceInvadersNoFrameskip-v4_1
jakka
2022-07-24T19:03:29Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T19:02:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 769.00 +/- 232.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakka -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jakka ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
bigmorning/distilgpt_new3_0040
bigmorning
2022-07-24T18:51:53Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-24T18:46:05Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0040 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5130 - Validation Loss: 2.3972 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Amiri/1_land_on_the_moon_PPO
Amiri
2022-07-24T18:15:55Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T18:03:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 65.60 +/- 85.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nateraw/my-aurora
nateraw
2022-07-24T17:53:19Z
2
0
diffusers
[ "diffusers", "tensorboard", "🧨 Diffuse It", "en", "dataset:aurora", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-07-24T17:32:57Z
--- language: en license: apache-2.0 library_name: diffusers tags: - "\U0001F9E8 Diffuse It" datasets: aurora metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # my-aurora ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `aurora` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nateraw/my-aurora/tensorboard?#scalars)
jakka/q-Taxi-v3
jakka
2022-07-24T16:09:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T16:09:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jakka/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```