modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 12:32:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 12:31:20
card
stringlengths
11
1.01M
neseudin/nhabbb
neseudin
2023-07-20T16:01:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T16:00:27Z
--- license: creativeml-openrail-m ---
Guilherme34/Jennifer2.0-Multiturn.Chat-BETATest0-Llama2-Lora-v0
Guilherme34
2023-07-20T16:01:25Z
5
2
peft
[ "peft", "region:us" ]
null
2023-07-20T13:02:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
NasimB/cbt-guten-norm-rarity-log-rarity-mixed
NasimB
2023-07-20T16:01:13Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T13:55:13Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: cbt-guten-norm-rarity-log-rarity-mixed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cbt-guten-norm-rarity-log-rarity-mixed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3451 | 0.29 | 500 | 5.3393 | | 5.0397 | 0.58 | 1000 | 4.9206 | | 4.711 | 0.87 | 1500 | 4.6904 | | 4.4458 | 1.17 | 2000 | 4.5517 | | 4.2933 | 1.46 | 2500 | 4.4297 | | 4.2024 | 1.75 | 3000 | 4.3324 | | 4.0876 | 2.04 | 3500 | 4.2618 | | 3.8969 | 2.33 | 4000 | 4.2227 | | 3.878 | 2.62 | 4500 | 4.1608 | | 3.83 | 2.91 | 5000 | 4.1117 | | 3.6525 | 3.21 | 5500 | 4.1057 | | 3.5976 | 3.5 | 6000 | 4.0782 | | 3.5747 | 3.79 | 6500 | 4.0477 | | 3.4836 | 4.08 | 7000 | 4.0427 | | 3.3253 | 4.37 | 7500 | 4.0383 | | 3.314 | 4.66 | 8000 | 4.0252 | | 3.3077 | 4.95 | 8500 | 4.0114 | | 3.1614 | 5.24 | 9000 | 4.0230 | | 3.1426 | 5.54 | 9500 | 4.0231 | | 3.1402 | 5.83 | 10000 | 4.0225 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
ndtest/distilbert-base-uncased-finetuned-emotion
ndtest
2023-07-20T15:55:35Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T14:58:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9145 - name: F1 type: f1 value: 0.9142322884703892 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2761 - Accuracy: 0.9145 - F1: 0.9142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.3414 | 0.901 | 0.8990 | | No log | 2.0 | 126 | 0.2761 | 0.9145 | 0.9142 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
chandan9t8/a2c-PandaReachDense-v2
chandan9t8
2023-07-20T15:50:05Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T15:47:05Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.41 +/- 0.17 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NasimB/aochildes-norm-rarity-log-rarity-no-cut
NasimB
2023-07-20T15:46:28Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T13:39:47Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes-norm-rarity-log-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes-norm-rarity-log-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3587 | 0.29 | 500 | 5.3374 | | 5.0473 | 0.59 | 1000 | 4.9329 | | 4.7166 | 0.88 | 1500 | 4.6905 | | 4.4468 | 1.17 | 2000 | 4.5469 | | 4.2996 | 1.47 | 2500 | 4.4324 | | 4.2018 | 1.76 | 3000 | 4.3343 | | 4.0845 | 2.05 | 3500 | 4.2599 | | 3.9014 | 2.34 | 4000 | 4.2138 | | 3.8737 | 2.64 | 4500 | 4.1624 | | 3.8298 | 2.93 | 5000 | 4.1071 | | 3.6371 | 3.22 | 5500 | 4.1078 | | 3.5947 | 3.52 | 6000 | 4.0806 | | 3.5728 | 3.81 | 6500 | 4.0497 | | 3.467 | 4.1 | 7000 | 4.0487 | | 3.3191 | 4.4 | 7500 | 4.0431 | | 3.318 | 4.69 | 8000 | 4.0308 | | 3.3039 | 4.98 | 8500 | 4.0207 | | 3.1482 | 5.28 | 9000 | 4.0361 | | 3.1394 | 5.57 | 9500 | 4.0345 | | 3.1279 | 5.86 | 10000 | 4.0337 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
giovannidispoto/ppo-SnowballTarget
giovannidispoto
2023-07-20T15:45:29Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-20T15:45:22Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: giovannidispoto/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Wyzard1004/ppo-SnowballTarget
Wyzard1004
2023-07-20T15:42:55Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-20T15:42:47Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Wyzard1004/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kinkpunk/whisper-tiny-en-US
kinkpunk
2023-07-20T15:36:31Z
81
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-20T15:14:27Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.34297520661157027 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6362 - Wer Ortho: 0.3473 - Wer: 0.3430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0013 | 17.54 | 500 | 0.6362 | 0.3473 | 0.3430 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.13.0+cu117 - Datasets 2.13.1 - Tokenizers 0.11.6
tyavika/09-Distilbert-QA-Pytorch-FULL
tyavika
2023-07-20T15:35:21Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-20T12:56:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 09-Distilbert-QA-Pytorch-FULL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 09-Distilbert-QA-Pytorch-FULL This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2659 | 1.0 | 3702 | 1.1538 | | 0.948 | 2.0 | 7404 | 1.1383 | | 0.6619 | 3.0 | 11106 | 1.1760 | | 0.4642 | 4.0 | 14808 | 1.3262 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
gFulvio/moralstories-bart-consequences.context-action_gen
gFulvio
2023-07-20T15:31:09Z
102
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "dataset:demelin/moral_stories", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-20T15:17:37Z
--- datasets: - demelin/moral_stories ---
engkufizz/falcon-7b-qlora-datacom
engkufizz
2023-07-20T15:12:59Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-20T15:12:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
diffusers/lora-trained-xl-starbucks
diffusers
2023-07-20T15:08:48Z
4
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:diffusers/stable-diffusion-xl-base-0.9", "base_model:adapter:diffusers/stable-diffusion-xl-base-0.9", "license:other", "region:us" ]
text-to-image
2023-06-29T10:02:44Z
--- license: other base_model: diffusers/stable-diffusion-xl-base-0.9 instance_prompt: a photo of sks logo tags: - 'stable-diffusion-xl' - 'stable-diffusion-xl-diffusers' - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - sayakpaul/lora-trained-xl-starbucks These are LoRA adaption weights for diffusers/stable-diffusion-xl-base-0.9. The weights were trained on a photo of sks logo using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. ## License [SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
epsilonai/WashingtonRVB
epsilonai
2023-07-20T15:07:24Z
0
0
null
[ "rooster teeth", "rvb", "redvsblue", "music", "en", "region:us" ]
null
2023-07-20T15:05:52Z
--- language: - en tags: - rooster teeth - rvb - redvsblue - music ---
faezehsgh/finetuning-sentiment-model-3000-samples
faezehsgh
2023-07-20T15:06:26Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T14:58:23Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8566666666666667 - name: F1 type: f1 value: 0.8571428571428571 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3132 - Accuracy: 0.8567 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
iBorrrrr/Yoru_TR
iBorrrrr
2023-07-20T15:06:05Z
0
0
null
[ "license:c-uda", "region:us" ]
null
2023-07-20T14:58:30Z
--- license: c-uda --- i'm making yoru stuff so if you want, you can support my youtube channel /// Youtube > iBorrrrr --- Yoru ile ilgili işleri yapıyorum bu yüzden isterseniz youtube kanalıma destek olabilirsiniz /// Youtube > iBorrrrr ---
epsilonai/FelixRVB
epsilonai
2023-07-20T15:03:45Z
0
0
null
[ "rvb", "redvsblue", "rooster teeth", "music", "en", "region:us" ]
null
2023-07-20T15:00:48Z
--- language: - en tags: - rvb - redvsblue - rooster teeth - music ---
epsilonai/ChurchRVB
epsilonai
2023-07-20T15:02:13Z
0
1
null
[ "rvb", "redvsblue", "rooster teeth", "music", "en", "region:us" ]
null
2023-07-20T14:58:44Z
--- language: - en tags: - rvb - redvsblue - rooster teeth - music ---
Vasanth/llama-7b-finetuned-chatbot
Vasanth
2023-07-20T14:59:38Z
0
1
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-07-20T11:56:35Z
--- tags: - generated_from_trainer model-index: - name: llama-7b-finetuned-chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-7b-finetuned-chatbot This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - lr_scheduler_warmup_steps: 2 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Kipsalo/Selma
Kipsalo
2023-07-20T14:56:50Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-20T14:56:13Z
--- license: bigscience-openrail-m ---
UholoDala/tweet_sentiments_analysis_roberta
UholoDala
2023-07-20T14:54:44Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T13:44:28Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: tweet_sentiments_analysis_roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tweet_sentiments_analysis_roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6039 - F1-score: 0.7454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7293 | 1.0 | 1000 | 0.7054 | 0.6857 | | 0.6175 | 2.0 | 2000 | 0.6039 | 0.7454 | | 0.5132 | 3.0 | 3000 | 0.6426 | 0.7662 | | 0.4113 | 4.0 | 4000 | 0.7244 | 0.7790 | | 0.3092 | 5.0 | 5000 | 0.9855 | 0.7734 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
aware-ai/roberta-large-squad-classification
aware-ai
2023-07-20T14:45:04Z
121
2
transformers
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "text-classification", "dataset:squad_v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- datasets: - squad_v2 --- # Roberta-LARGE finetuned on SQuADv2 This is roberta-large model finetuned on SQuADv2 dataset for question answering answerability classification ## Model details This model is simply an Sequenceclassification model with two inputs (context and question) in a list. The result is either [1] for answerable or [0] if it is not answerable. It was trained over 4 epochs on squadv2 dataset and can be used to filter out which context is good to give into the QA model to avoid bad answers. ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 4, 'num_train_epochs': 4, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 8, 'fp16_opt_level': 'O2', } ``` ## Results ```{"accuracy": 90.48%}``` ## Model in Action 🚀 ```python3 from simpletransformers.classification import ClassificationModel model = ClassificationModel('roberta', 'a-ware/roberta-large-squadv2', num_labels=2, args=train_args) predictions, raw_outputs = model.predict([["my dog is an year old. he loves to go into the rain", "how old is my dog ?"]]) print(predictions) ==> [1] ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
epsilonai/Dexter_Grif
epsilonai
2023-07-20T14:40:43Z
0
1
null
[ "redvsblue", "rvb", "fictional characters", "rooster teeth", "en", "region:us" ]
null
2023-07-20T14:34:26Z
--- language: - en tags: - redvsblue - rvb - fictional characters - rooster teeth ---
xian79/rl_course_vizdoom_health_gathering_supreme
xian79
2023-07-20T14:29:54Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T14:29:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.56 +/- 4.96 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r xian79/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
giovannidispoto/a2c-PandaReachDense-v2
giovannidispoto
2023-07-20T14:29:05Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T14:26:27Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.80 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chat-Error/LLama2-13B-easylm
Chat-Error
2023-07-20T14:28:22Z
5
0
transformers
[ "transformers", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-2", "en", "autotrain_compatible", "region:us" ]
text-generation
2023-07-20T13:56:45Z
--- inference: false language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Meta's Llama 2 13B fp16 These files are fp16 format model files for [Meta's Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf). They were produced by downloading the PTH files from Meta, and then converting to HF format using the latest Transformers 4.32.0.dev0, from Git, with the Llama 2 PR included: https://github.com/huggingface/transformers/pull/24891. Command to convert was: ``` python3 /workspace/venv/pytorch2/lib/python3.10/site-packages/transformers/models/llama/convert_llama_weights_to_hf.py --input_dir /workspace/git/llama/download --model_size 13B --output_dir /workspace/process/llama-2-13b/source ``` ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ) * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-13b-hf) * [My fp16 conversion of the unquantised PTH model files](https://huggingface.co/TheBloke/Llama-2-13B-fp16) ## Prompt template: None ``` {prompt} ``` <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz. **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Meta's Llama 2 13B # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 13B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
patebel/LunarLander
patebel
2023-07-20T14:25:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T13:58:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -70.75 +/- 91.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MHRDYN7/my_awesome_food_model
MHRDYN7
2023-07-20T14:23:01Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-20T14:12:28Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6130 - Accuracy: 0.889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7036 | 0.99 | 62 | 2.4963 | 0.839 | | 1.808 | 2.0 | 125 | 1.7523 | 0.875 | | 1.5765 | 2.98 | 186 | 1.6130 | 0.889 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Kerz/bbc
Kerz
2023-07-20T14:14:40Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T13:09:43Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: bbc results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: test args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.499 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bbc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1692 - Accuracy: 0.499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 1.4265 | 0.391 | | 1.4806 | 2.0 | 500 | 1.2233 | 0.458 | | 1.4806 | 3.0 | 750 | 1.1692 | 0.499 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Jungang/path_to_saved_model
Jungang
2023-07-20T14:07:37Z
29
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-20T13:13:32Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Jungang/path_to_saved_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
VFiona/opus-mt-it-en-finetuned_20000-it-to-en
VFiona
2023-07-20T13:55:52Z
104
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-20T12:41:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-it-en-finetuned_20000-it-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-it-en-finetuned_20000-it-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-it-en](https://huggingface.co/Helsinki-NLP/opus-mt-it-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3483 - Bleu: 75.7583 - Gen Len: 21.996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.3971 | 1.0 | 1125 | 0.3483 | 75.7583 | 21.996 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.11.0
HiTZ/A2T_RoBERTa_SMFA_WikiEvents-arg
HiTZ
2023-07-20T13:45:10Z
113
1
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "zero-shot-classification", "dataset:snli", "dataset:anli", "dataset:multi_nli", "dataset:multi_nli_mismatch", "dataset:fever", "arxiv:2104.14690", "arxiv:2203.13602", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-05-02T12:25:23Z
--- pipeline_tag: zero-shot-classification datasets: - snli - anli - multi_nli - multi_nli_mismatch - fever --- # A2T Entailment model **Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers). Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format. For more information please, take a look to the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library or the following published papers: - [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/) - [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]() ## About the model The model name describes the configuration used for training as follows: <!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ --> <h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3> - `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>. - `NLI_datasets`: The NLI datasets used for pivot training. - `S`: Standford Natural Language Inference (SNLI) dataset. - `M`: Multi Natural Language Inference (MNLI) dataset. - `F`: Fever-nli dataset. - `A`: Adversarial Natural Language Inference (ANLI) dataset. - `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg. Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results. ## Cite If you use this model, consider citing the following publications: ```bibtex @inproceedings{sainz-etal-2021-label, title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction", author = "Sainz, Oscar and Lopez de Lacalle, Oier and Labaka, Gorka and Barrena, Ander and Agirre, Eneko", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.92", doi = "10.18653/v1/2021.emnlp-main.92", pages = "1199--1212", } ```
casque/SuspendedCongressMS
casque
2023-07-20T13:41:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T13:39:55Z
--- license: creativeml-openrail-m ---
casque/grab_thight_sex
casque
2023-07-20T13:36:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T13:35:15Z
--- license: creativeml-openrail-m ---
NasimB/cbt-norm-rarity-log-rarity-end-p5k
NasimB
2023-07-20T13:29:04Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T11:19:04Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: cbt-norm-rarity-log-rarity-end-p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cbt-norm-rarity-log-rarity-end-p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3492 | 0.29 | 500 | 5.3375 | | 5.0257 | 0.58 | 1000 | 4.9206 | | 4.6972 | 0.88 | 1500 | 4.6826 | | 4.4476 | 1.17 | 2000 | 4.5485 | | 4.286 | 1.46 | 2500 | 4.4256 | | 4.1861 | 1.75 | 3000 | 4.3203 | | 4.073 | 2.04 | 3500 | 4.2493 | | 3.8835 | 2.34 | 4000 | 4.2070 | | 3.8576 | 2.63 | 4500 | 4.1491 | | 3.8247 | 2.92 | 5000 | 4.0994 | | 3.6292 | 3.21 | 5500 | 4.0973 | | 3.5811 | 3.5 | 6000 | 4.0662 | | 3.5613 | 3.8 | 6500 | 4.0335 | | 3.4739 | 4.09 | 7000 | 4.0307 | | 3.3065 | 4.38 | 7500 | 4.0279 | | 3.3108 | 4.67 | 8000 | 4.0149 | | 3.2959 | 4.96 | 8500 | 4.0015 | | 3.1501 | 5.26 | 9000 | 4.0147 | | 3.129 | 5.55 | 9500 | 4.0126 | | 3.1254 | 5.84 | 10000 | 4.0124 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
casque/Tits_fuck
casque
2023-07-20T13:28:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T13:25:13Z
--- license: creativeml-openrail-m ---
HalteroXHunter/distilbert-base-uncased-finetuned-emotion
HalteroXHunter
2023-07-20T13:22:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T06:57:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9335 - name: F1 type: f1 value: 0.9335622045808896 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - Accuracy: 0.9335 - F1: 0.9336 ## Model description Labels: - Label 0: sadness - Label 1: joy - Label 2: love - Label 3: anger - Label 4: fear - Label 5: surprise ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.206 | 1.0 | 250 | 0.1749 | 0.9235 | 0.9234 | | 0.1433 | 2.0 | 500 | 0.1623 | 0.9335 | 0.9336 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
casque/silly_fuck
casque
2023-07-20T13:21:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T13:19:41Z
--- license: creativeml-openrail-m ---
NasimB/cbt-norm-rarity-log-rarity-no-cut
NasimB
2023-07-20T13:11:28Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T11:00:27Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: cbt-norm-rarity-log-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cbt-norm-rarity-log-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3453 | 0.29 | 500 | 5.3315 | | 5.033 | 0.58 | 1000 | 4.9200 | | 4.6991 | 0.87 | 1500 | 4.6842 | | 4.4349 | 1.16 | 2000 | 4.5403 | | 4.2892 | 1.46 | 2500 | 4.4287 | | 4.1929 | 1.75 | 3000 | 4.3281 | | 4.0816 | 2.04 | 3500 | 4.2542 | | 3.8848 | 2.33 | 4000 | 4.2078 | | 3.8614 | 2.62 | 4500 | 4.1532 | | 3.8318 | 2.91 | 5000 | 4.1052 | | 3.6429 | 3.2 | 5500 | 4.0981 | | 3.58 | 3.49 | 6000 | 4.0665 | | 3.569 | 3.79 | 6500 | 4.0380 | | 3.4854 | 4.08 | 7000 | 4.0323 | | 3.3124 | 4.37 | 7500 | 4.0285 | | 3.3128 | 4.66 | 8000 | 4.0149 | | 3.2978 | 4.95 | 8500 | 4.0026 | | 3.1549 | 5.24 | 9000 | 4.0129 | | 3.1259 | 5.53 | 9500 | 4.0130 | | 3.132 | 5.82 | 10000 | 4.0115 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
casque/Breast_grab
casque
2023-07-20T13:07:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T13:02:46Z
--- license: creativeml-openrail-m ---
SmellyKat/Taxi-v3
SmellyKat
2023-07-20T13:05:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T13:05:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SmellyKat/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jinaai/falcon-7b-code-alpaca-lora
jinaai
2023-07-20T13:01:25Z
0
3
null
[ "text-generation", "en", "dataset:stanford_alpaca", "license:cc-by-nc-4.0", "region:us" ]
text-generation
2023-07-11T07:50:58Z
--- license: cc-by-nc-4.0 language: - en tags: - text-generation datasets: - stanford_alpaca pipeline_tag: text-generation --- <br><br> <p align="center"> <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>LLM Generation models trained by Jina AI, Finetuner team.</b> This repo contains the lora weights (8bit) for Falcon-7b fit on the [Code Alpaca](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) dataset. ## Reproduction This version of the weights was trained with the following hyperparameters: - Epochs: 6 - Batch size: 128 - Micro batch size: 8 - Learning rate: 3e-4 - Lora _r_: 8 - Lora target modules: query_key_value You can reproduce using this repository: https://github.com/jina-ai/jerboa Make sure you install requirements and finetune using this command using the following command: ``` python finetune.py \ --base-model tiiuae/falcon-7b --lora-target-modules query_key_value \ --data-path sahil2801/CodeAlpaca-20k --output-dir ./lora-alpaca-code \ --batch-size 128 --micro-batch-size 8 --eval-limit 45 \ --eval-file code_eval.jsonl --wandb-project jerboa --wandb-log-model \ --wandb-watch gradients --num-epochs 6 ``` ## Inference ```Python import torch from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM TOKENIZER_SOURCE = 'tiiuae/falcon-7b' BASE_MODEL = 'tiiuae/falcon-7b' LORA_REPO = 'jinaai/falcon-7b-code-alpaca-lora' DEVICE = "cuda" PROMPT = """ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Write a for loop in python ### Input: ### Response: """ model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path=BASE_MODEL, torch_dtype=torch.float16, trust_remote_code=True, device_map='auto', ) model = PeftModel.from_pretrained( model=model, model_id=LORA_REPO, ) model.eval() tokenizer = AutoTokenizer.from_pretrained( TOKENIZER_SOURCE, trust_remote_code=True, padding_side='left', ) tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(PROMPT, return_tensors="pt") input_ids = inputs["input_ids"].to(DEVICE) input_attention_mask = inputs["attention_mask"].to(DEVICE) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=input_attention_mask, return_dict_in_generate=True, max_new_tokens=32, eos_token_id=tokenizer.eos_token_id, ) generation_output = generation_output.sequences[0] output = tokenizer.decode(generation_output, skip_special_tokens=True) print(output) ``` ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
jinaai/falcon-40b-code-alpaca
jinaai
2023-07-20T13:01:11Z
17
3
transformers
[ "transformers", "pytorch", "RefinedWeb", "feature-extraction", "text-generation", "custom_code", "en", "dataset:stanford_alpaca", "license:cc-by-nc-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-11T15:05:46Z
--- license: cc-by-nc-4.0 language: - en tags: - text-generation datasets: - stanford_alpaca pipeline_tag: text-generation --- <br><br> <p align="center"> <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>LLM Generation models trained by Jina AI, Finetuner team.</b> This repo contains the full weights (16bit) for Falcon-40b fit on the [Code Alpaca](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) dataset. ## Reproduction This version of the weights was trained with the following hyperparameters: - Epochs: 2 - Batch size: 128 - Micro batch size: 4 - Learning rate: 3e-4 - Lora _r_: 8 - Lora target modules: query_key_value You can reproduce using this repository: https://github.com/jina-ai/jerboa Make sure you install requirements and finetune using this command using the following command: ``` python finetune.py \ --base-model tiiuae/falcon-40b --lora-target-modules query_key_value \ --data-path sahil2801/CodeAlpaca-20k --output-dir ./lora-alpaca-code \ --batch-size 128 --micro-batch-size 4 --eval-limit 45 \ --eval-file code_eval.jsonl --wandb-project jerboa --wandb-log-model \ --wandb-watch gradients --num-epochs 2 ``` ## Inference ```Python import torch from transformers import AutoTokenizer, AutoModelForCausalLM TOKENIZER_SOURCE = 'tiiuae/falcon-40b' BASE_MODEL = 'jinaai/falcon-40b-code-alpaca' DEVICE = "cuda" PROMPT = """ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Write a for loop in python ### Input: ### Response: """ model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path=BASE_MODEL, torch_dtype=torch.float16, trust_remote_code=True, device_map='auto', ) model.eval() tokenizer = AutoTokenizer.from_pretrained( TOKENIZER_SOURCE, trust_remote_code=True, padding_side='left', ) tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(PROMPT, return_tensors="pt") input_ids = inputs["input_ids"].to(DEVICE) input_attention_mask = inputs["attention_mask"].to(DEVICE) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=input_attention_mask, return_dict_in_generate=True, max_new_tokens=32, eos_token_id=tokenizer.eos_token_id, ) generation_output = generation_output.sequences[0] output = tokenizer.decode(generation_output, skip_special_tokens=True) print(output) ``` ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
jinaai/falcon-7b-code-alpaca
jinaai
2023-07-20T13:00:35Z
22
3
transformers
[ "transformers", "pytorch", "RefinedWebModel", "feature-extraction", "text-generation", "custom_code", "en", "dataset:stanford_alpaca", "license:cc-by-nc-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-11T14:09:52Z
--- license: cc-by-nc-4.0 language: - en tags: - text-generation datasets: - stanford_alpaca pipeline_tag: text-generation --- <br><br> <p align="center"> <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>LLM Generation models trained by Jina AI, Finetuner team.</b> </p> This repo contains the full weights (16bit) for Falcon-7b fit on the [Code Alpaca](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) dataset. ## Reproduction This version of the weights was trained with the following hyperparameters: - Epochs: 6 - Batch size: 128 - Micro batch size: 8 - Learning rate: 3e-4 - Lora _r_: 8 - Lora target modules: query_key_value You can reproduce using this repository: https://github.com/jina-ai/jerboa Make sure you install requirements and finetune using this command using the following command: ``` python finetune.py \ --base-model tiiuae/falcon-7b --lora-target-modules query_key_value \ --data-path sahil2801/CodeAlpaca-20k --output-dir ./lora-alpaca-code \ --batch-size 128 --micro-batch-size 8 --eval-limit 45 \ --eval-file code_eval.jsonl --wandb-project jerboa --wandb-log-model \ --wandb-watch gradients --num-epochs 6 ``` ## Inference ```Python import torch from transformers import AutoTokenizer, AutoModelForCausalLM TOKENIZER_SOURCE = 'tiiuae/falcon-7b' BASE_MODEL = 'jinaai/falcon-7b-code-alpaca' DEVICE = "cuda" PROMPT = """ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Write a for loop in python ### Input: ### Response: """ model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path=BASE_MODEL, torch_dtype=torch.float16, trust_remote_code=True, device_map='auto', ) model.eval() tokenizer = AutoTokenizer.from_pretrained( TOKENIZER_SOURCE, trust_remote_code=True, padding_side='left', ) tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(PROMPT, return_tensors="pt") input_ids = inputs["input_ids"].to(DEVICE) input_attention_mask = inputs["attention_mask"].to(DEVICE) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=input_attention_mask, return_dict_in_generate=True, max_new_tokens=32, eos_token_id=tokenizer.eos_token_id, ) generation_output = generation_output.sequences[0] output = tokenizer.decode(generation_output, skip_special_tokens=True) print(output) ``` ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
casque/The_Mating
casque
2023-07-20T13:00:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T12:58:38Z
--- license: creativeml-openrail-m ---
casque/MS_Real_POV_Blowjob
casque
2023-07-20T12:55:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T12:54:03Z
--- license: creativeml-openrail-m ---
casque/PSCowgirl
casque
2023-07-20T12:48:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T12:48:18Z
--- license: creativeml-openrail-m ---
PeterBrendan/Prebid_Module_GPT2
PeterBrendan
2023-07-20T12:42:06Z
152
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-19T23:43:57Z
--- license: mit widget: - text: gptPreAuction - text: price - text: OpenX --- **Model:** GPT-2 **Model name:** Prebid_Module_GPT2 **Model description:** This fine-tuned version of the GPT-2 model was trained on a dataset of 1100+ publisher domains' Prebid installed modules. The model aims to provide insights into what Prebid modules other publishers install with their Prebid set-up. Given a Prebid module, such as ***appnexusBidAdapter***, the model can generate a sample Prebid installed modules combination based on the collected data. This helps publishers gain an understanding of how different publishers use Prebid modules. **Intended uses:** This model is intended to assist publishers in understanding and exploring how other publishers use Prebid modules. It serves as a reference to gain insights into common configurations, best practices, and different approaches used by publishers across various domains. **Limitations:** It's important to note that the generated installed Prebid modules are based on the data from the training set and may not cover all possible combinations or reflect the specific requirements of a particular domain. Publishers should carefully review and adapt the generated installed Prebid modules to their specific needs and business rules. **How to use:** To use this model, provide a Prebid module, such as ***gptPreAuction***. The model will generate a sample Prebid installed modules combination related to that input based on the collected data from that point forward. To start from the beginning, use ***[*** as the input. **Training data:** This model was trained on a dataset consisting of over 1100+ publisher domains Prebid modules. The dataset was collected from a variety of publishers and represents a wide range of Prebid settings used in the industry. **Training procedure:** The model was fine-tuned using the GPT-2 base model with the aforementioned dataset. **Evaluation results:** The evaluation of this model focuses on its ability to generate coherent and valid Prebid configuration settings based on the provided Prebid config setting. Human evaluators reviewed the generated configurations for relevance and accuracy. **Safety and bias considerations:** The model is trained on data from actual Prebid config files and aims to provide accurate insights into publishers' configurations. However, it's important to note that biases may exist in the original data itself, as the training data is based on real-world configurations. Users should review and validate the generated configurations to ensure they align with their specific requirements and guidelines. Users are encouraged to exercise caution and use their expertise in interpreting and adapting the generated Prebid module combinations for their own use. The model should be seen as a helpful tool to gain inspiration and understanding of common Prebid settings but not as a substitute for thorough testing and manual review of the final configurations.
fedbor/settimo_modello
fedbor
2023-07-20T12:31:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-20T12:31:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
tobijen/distilgpt2_left_headings
tobijen
2023-07-20T12:25:00Z
61
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-19T15:06:25Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_keras_callback model-index: - name: tobijen/distilgpt2_left_headings results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tobijen/distilgpt2_left_headings This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.4455 - Validation Loss: 5.6434 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.0703 | 5.7752 | 0 | | 5.5228 | 5.5932 | 1 | | 5.1845 | 5.5286 | 2 | | 4.9123 | 5.5338 | 3 | | 4.6756 | 5.5673 | 4 | | 4.4455 | 5.6434 | 5 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
atiiisham988/finetune-lora-stable-diffusion
atiiisham988
2023-07-20T12:20:55Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-20T09:32:25Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - atiiisham988/finetune-lora-stable-diffusion These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
marianafmedeiros/a2c-AntBulletEnv-v0
marianafmedeiros
2023-07-20T12:20:04Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T03:03:24Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 846.46 +/- 66.62 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rafaym/DreamBoothAvatar
rafaym
2023-07-20T12:19:09Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-20T09:44:33Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: Rafay tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - rafaym/DreamBoothAvatar These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on Rafay using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
RaffKhan/alpaca7B-lora
RaffKhan
2023-07-20T12:19:08Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-20T00:30:30Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Xxmlala/dqn-SpaceInvadersNoFrameskip-v4
Xxmlala
2023-07-20T12:11:41Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T12:11:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 691.50 +/- 262.91 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Xxmlala -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Xxmlala -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Xxmlala ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
sciarrilli/xgen-7b-tuned-alpaca-l1
sciarrilli
2023-07-20T12:10:07Z
0
0
null
[ "generated_from_trainer", "base_model:Salesforce/xgen-7b-8k-base", "base_model:finetune:Salesforce/xgen-7b-8k-base", "license:apache-2.0", "region:us" ]
null
2023-07-20T09:45:57Z
--- license: apache-2.0 base_model: Salesforce/xgen-7b-8k-base tags: - generated_from_trainer model-index: - name: xgen-7b-tuned-alpaca-l1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xgen-7b-tuned-alpaca-l1 This model is a fine-tuned version of [Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
udon2301/opencalm3b
udon2301
2023-07-20T12:05:08Z
232
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neox", "text-generation", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T11:48:42Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: opencalm3b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opencalm3b This model is a fine-tuned version of [cyberagent/open-calm-3b](https://huggingface.co/cyberagent/open-calm-3b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
laurent255/octave
laurent255
2023-07-20T12:01:02Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-20T12:00:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
mattmdjaga/segformer_b0_clothes
mattmdjaga
2023-07-20T11:58:04Z
2,654
8
transformers
[ "transformers", "pytorch", "safetensors", "segformer", "vision", "image-segmentation", "dataset:mattmdjaga/human_parsing_dataset", "license:mit", "endpoints_compatible", "region:us" ]
image-segmentation
2023-04-20T13:37:29Z
--- license: mit tags: - vision - image-segmentation widget: - src: https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80 example_title: Person - src: https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg example_title: Person datasets: - mattmdjaga/human_parsing_dataset --- # Segformer B0 fine-tuned for clothes segmentation SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation. The dataset on hugging face is called "mattmdjaga/human_parsing_dataset". ```python from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation from PIL import Image import requests import matplotlib.pyplot as plt import torch.nn as nn extractor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b0_clothes") model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes") url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80" image = Image.open(requests.get(url, stream=True).raw) inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] plt.imshow(pred_seg) ```
Claaas/Reinforce-Cartpole
Claaas
2023-07-20T11:53:38Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T11:53:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
c72599/LunarLander-v2
c72599
2023-07-20T11:44:10Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T10:20:24Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 35.92 +/- 82.10 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'LunarLander-v2' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.00025 'num_envs': 8 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'c72599/LunarLander-v2' 'batch_size': 1024 'minibatch_size': 256} ```
photonmz/xlm-roberta-base-finetuned-panx-all
photonmz
2023-07-20T11:40:34Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-17T22:52:07Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1466 - F1: 0.8656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.233 | 1.0 | 715 | 0.1639 | 0.8234 | | 0.1016 | 2.0 | 1430 | 0.1435 | 0.8577 | | 0.0581 | 3.0 | 2145 | 0.1466 | 0.8656 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
qddwudan/unit2_taxi_hw
qddwudan
2023-07-20T11:30:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T11:30:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: unit2_taxi_hw results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="qddwudan/unit2_taxi_hw", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
suchetajjw47/llama2_finetuned
suchetajjw47
2023-07-20T11:20:50Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-20T11:20:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Shubham09/falcon_20072023_r16
Shubham09
2023-07-20T11:18:14Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-20T11:17:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
Epl1/my_awesome_food_model
Epl1
2023-07-20T11:13:22Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-20T11:00:31Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.892 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6141 - Accuracy: 0.892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7048 | 0.99 | 62 | 2.5361 | 0.823 | | 1.8279 | 2.0 | 125 | 1.7878 | 0.875 | | 1.5917 | 2.98 | 186 | 1.6141 | 0.892 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Jinouga/makima-chainsaw-manv1
Jinouga
2023-07-20T10:46:52Z
3
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-11T00:06:03Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### makima_chainsaw_manV1 Dreambooth model trained by Jinouga with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
GMW123/finetuning-classification-model-3000-samples
GMW123
2023-07-20T10:44:53Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T10:39:46Z
--- license: apache-2.0 base_model: sentence-transformers/all-MiniLM-L6-v2 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-classification-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.82 - name: F1 type: f1 value: 0.8211920529801323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-classification-model-3000-samples This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4086 - Accuracy: 0.82 - F1: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/guten-norm-rarity-log-rarity-no-cut
NasimB
2023-07-20T10:34:08Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T08:31:52Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-norm-rarity-log-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-norm-rarity-log-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3491 | 0.29 | 500 | 5.3474 | | 5.0344 | 0.58 | 1000 | 4.9307 | | 4.6986 | 0.87 | 1500 | 4.6846 | | 4.442 | 1.16 | 2000 | 4.5407 | | 4.29 | 1.46 | 2500 | 4.4289 | | 4.197 | 1.75 | 3000 | 4.3249 | | 4.0736 | 2.04 | 3500 | 4.2531 | | 3.8799 | 2.33 | 4000 | 4.2079 | | 3.8675 | 2.62 | 4500 | 4.1508 | | 3.8247 | 2.91 | 5000 | 4.1025 | | 3.6446 | 3.2 | 5500 | 4.0995 | | 3.5806 | 3.49 | 6000 | 4.0696 | | 3.5597 | 3.79 | 6500 | 4.0359 | | 3.4815 | 4.08 | 7000 | 4.0327 | | 3.3091 | 4.37 | 7500 | 4.0278 | | 3.3049 | 4.66 | 8000 | 4.0164 | | 3.2916 | 4.95 | 8500 | 4.0023 | | 3.1552 | 5.24 | 9000 | 4.0164 | | 3.1256 | 5.53 | 9500 | 4.0151 | | 3.1252 | 5.82 | 10000 | 4.0136 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
GMW123/finetuning-sentiment-model-3000-samples
GMW123
2023-07-20T10:27:43Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T10:21:25Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877076411960133 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Accuracy: 0.8767 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
neseudin/nhabb
neseudin
2023-07-20T10:05:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-20T10:03:19Z
--- license: creativeml-openrail-m ---
c72599/ppo-CartPole-v1
c72599
2023-07-20T10:05:43Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T10:05:36Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 213.40 +/- 62.92 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo-CartPole-v1' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'c72599/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
linkanjarad/PythiaChat-2.8B_v0.1
linkanjarad
2023-07-20T10:03:35Z
5
0
peft
[ "peft", "generated_from_trainer", "dataset:linkanjarad/baize-chat-data", "base_model:EleutherAI/pythia-2.8b-deduped", "base_model:adapter:EleutherAI/pythia-2.8b-deduped", "license:apache-2.0", "region:us" ]
null
2023-07-20T05:37:50Z
--- license: apache-2.0 base_model: EleutherAI/pythia-2.8b-deduped tags: - generated_from_trainer model-index: - name: PythiaChat-2.8B_v0.1 results: [] library_name: peft inference: false datasets: - linkanjarad/baize-chat-data --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PythiaChat-2.8B_v0.1 This model is a fine-tuned version of [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) on the [Baize dataset](https://huggingface.co/datasets/linkanjarad/baize-chat-data/viewer/linkanjarad--baize-chat-data) with LoRA, trained for only 200+ steps for testing. This model is trained for "chat" style instruction following capabilities. # Sample Use Remember to mark the human messages with `[|Human|]` and AI messages with `[|AI]` at the start. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig peft_model_id = "linkanjarad/PythiaChat-2.8B_v0.1" model_id = "EleutherAI/pythia-2.8b-deduped" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) # you can add `load_in_4bit=True` for faster inference model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) model = model.to('cuda') model.eval() input_text = """The conversation between human and AI assistant. [|Human|] How do I open a file with python? [|AI|]""" # Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors='pt').to('cuda') len_input = len(input_ids[0]) # Generate text using the model with torch.no_grad(): output = model.generate(input_ids=input_ids, max_length=len_input+120, temperature=0.9, do_sample=True) # Decode the generated output generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` Example Output ``` The conversation between human and AI assistant. [|Human|] How do I open a file with python? [|AI|] To open a file with python, you can use the open function as follows: >>> with open('filename.txt', 'w') as f: ... f.write(data) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 80 - num_epochs: 1 ### Framework versions - PEFT 0.4.0 - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3
lvwerra/test-gpt
lvwerra
2023-07-20T09:56:49Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "region:us" ]
null
2023-07-20T09:20:29Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: test-gpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-gpt This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
l3cube-pune/hing-gpt
l3cube-pune
2023-07-20T09:49:08Z
196
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "hi", "en", "codemix", "multilingual", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-15T17:32:29Z
--- language: - hi - en - multilingual license: cc-by-4.0 tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingGPT HingGPT is a Hindi-English code-mixed GPT model trained on roman text. It is a GPT2 model trained on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) Other models from HingBERT family: <br> <a href="https://huggingface.co/l3cube-pune/hing-bert"> HingBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert"> HingMBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed"> HingBERT-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed-v2"> HingBERT-Mixed-v2 </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta"> HingRoBERTa </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta-mixed"> HingRoBERTa-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt"> HingGPT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt-devanagari"> HingGPT-Devanagari </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-bert-lid"> HingBERT-LID </a> <br> ``` @inproceedings{nayak-joshi-2022-l3cube, title = "{L}3{C}ube-{H}ing{C}orpus and {H}ing{BERT}: A Code Mixed {H}indi-{E}nglish Dataset and {BERT} Language Models", author = "Nayak, Ravindra and Joshi, Raviraj", booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.wildre-1.2", pages = "7--12", } ```
l3cube-pune/hing-roberta
l3cube-pune
2023-07-20T09:48:36Z
310
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "hi", "en", "codemix", "multilingual", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-04T19:00:50Z
--- language: - hi - en - multilingual license: cc-by-4.0 tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingRoBERTa HingRoBERTa is a Hindi-English code-mixed RoBERTa model trained on roman text. It is an xlm-RoBERTa model fine-tuned on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) Other models from HingBERT family: <br> <a href="https://huggingface.co/l3cube-pune/hing-bert"> HingBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert"> HingMBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed"> HingBERT-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed-v2"> HingBERT-Mixed-v2 </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta"> HingRoBERTa </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta-mixed"> HingRoBERTa-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt"> HingGPT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt-devanagari"> HingGPT-Devanagari </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-bert-lid"> HingBERT-LID </a> <br> ``` @inproceedings{nayak-joshi-2022-l3cube, title = "{L}3{C}ube-{H}ing{C}orpus and {H}ing{BERT}: A Code Mixed {H}indi-{E}nglish Dataset and {BERT} Language Models", author = "Nayak, Ravindra and Joshi, Raviraj", booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.wildre-1.2", pages = "7--12", } ```
MredK/RyTiexv1
MredK
2023-07-20T09:47:58Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-20T09:45:38Z
--- license: openrail --- 5 Dklık Dataset İle Yapıldı\ Train Bana Aittir\ 150 Epoch\ Türkçe Model
l3cube-pune/hing-mbert
l3cube-pune
2023-07-20T09:47:51Z
188
2
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "hi", "en", "codemix", "multilingual", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-04T18:45:09Z
--- language: - hi - en - multilingual license: cc-by-4.0 tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingMBERT HingBERT is a Hindi-English code-mixed BERT model trained on roman text. It is a mBERT model fine-tuned on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398)<br> Other models from HingBERT family: <br> <a href="https://huggingface.co/l3cube-pune/hing-bert"> HingBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert"> HingMBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed"> HingBERT-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed-v2"> HingBERT-Mixed-v2 </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta"> HingRoBERTa </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta-mixed"> HingRoBERTa-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt"> HingGPT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt-devanagari"> HingGPT-Devanagari </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-bert-lid"> HingBERT-LID </a> <br> ``` @inproceedings{nayak-joshi-2022-l3cube, title = "{L}3{C}ube-{H}ing{C}orpus and {H}ing{BERT}: A Code Mixed {H}indi-{E}nglish Dataset and {BERT} Language Models", author = "Nayak, Ravindra and Joshi, Raviraj", booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.wildre-1.2", pages = "7--12", } ```
MredK/Akinv2
MredK
2023-07-20T09:47:16Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-17T17:57:44Z
--- license: openrail --- 4 Dklık Dataset İle Yapıldı\ Train Bana Aittir\ 200 Epoch\ Türkçe Model
MredK/Viper
MredK
2023-07-20T09:46:35Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-16T17:45:24Z
--- license: openrail --- 10 Dklık Dataset İle Yapıldı\ Train Bana Aittir\ 150 Epoch\ Türkçe Model
l3cube-pune/hing-mbert-mixed-v2
l3cube-pune
2023-07-20T09:46:22Z
126
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "hi", "en", "codemix", "multilingual", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-28T17:18:36Z
--- language: - hi - en - multilingual license: cc-by-4.0 tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingBERT-Mixed-v2 HingBERT-Mixed-v2 is a Hindi-English code-mixed BERT model trained on roman + devanagari text. It is a base MuRIL model fine-tuned on mixed script L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) Other models from HingBERT family: <br> <a href="https://huggingface.co/l3cube-pune/hing-bert"> HingBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert"> HingMBERT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed"> HingBERT-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-mbert-mixed-v2"> HingBERT-Mixed-v2 </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta"> HingRoBERTa </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-roberta-mixed"> HingRoBERTa-Mixed </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt"> HingGPT </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-gpt-devanagari"> HingGPT-Devanagari </a> <br> <a href="https://huggingface.co/l3cube-pune/hing-bert-lid"> HingBERT-LID </a> <br> ``` @inproceedings{nayak-joshi-2022-l3cube, title = "{L}3{C}ube-{H}ing{C}orpus and {H}ing{BERT}: A Code Mixed {H}indi-{E}nglish Dataset and {BERT} Language Models", author = "Nayak, Ravindra and Joshi, Raviraj", booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.wildre-1.2", pages = "7--12", } ```
kingabzpro/DialoGPT-small-Rick-Bot
kingabzpro
2023-07-20T09:28:15Z
164
4
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "gpt-2", "conversational", "en", "dataset:ysharma/rickandmorty", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- datasets: - ysharma/rickandmorty language: - en metrics: - perplexity library_name: transformers pipeline_tag: conversational tags: - gpt-2 --- # Source Code [<img src="https://api.flatworld.co/wp-content/uploads/2020/10/DAGsHub-Logo.png" alt="dagshub" width="150"/>](https://dagshub.com/kingabzpro/DailoGPT-RickBot) [![DAGsHub](https://img.shields.io/badge/github-DailoGPT_RickBot-ffbf00?logo=github&color=black&style=for-the-badge)](https://github.com/kingabzpro/DailoGPT-RickBot) # Testing ```python tokenizer = AutoTokenizer.from_pretrained('kingabzpro/DialoGPT-small-Rick-Bot') model = AutoModelWithLMHead.from_pretrained('kingabzpro/DialoGPT-small-Rick-Bot') # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("RickBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` **Result** perplexity : 8.53
au2a/whisper-base-zh-20230718-1
au2a
2023-07-20T09:25:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:-", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-18T12:22:30Z
--- language: - zh license: apache-2.0 tags: - whisper - generated_from_trainer datasets: - '-' model-index: - name: whisper-base-zh-20230718-1 - au2a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-zh-20230718-1 - au2a This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the some hakka audio dataset. It achieves the following results on the evaluation set: - Loss: 0.4142 - Cer: 84.7926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0499 | 2.59 | 1000 | 0.3377 | 153.9019 | | 0.0035 | 5.17 | 2000 | 0.3506 | 138.4528 | | 0.0015 | 7.76 | 3000 | 0.3651 | 128.2541 | | 0.001 | 10.35 | 4000 | 0.3754 | 105.1522 | | 0.0005 | 12.94 | 5000 | 0.3841 | 90.0846 | | 0.0004 | 15.52 | 6000 | 0.3925 | 92.5134 | | 0.0002 | 18.11 | 7000 | 0.4011 | 86.3035 | | 0.0002 | 20.7 | 8000 | 0.4070 | 80.0219 | | 0.0001 | 23.29 | 9000 | 0.4118 | 82.5451 | | 0.0001 | 25.87 | 10000 | 0.4142 | 84.7926 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
phatjk/bloomz-lora-vi-QA-NLLB-viquad_v4
phatjk
2023-07-20T09:14:32Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-20T09:14:25Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
NICFRU/bart-base-paraphrasing-story
NICFRU
2023-07-20T09:05:08Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T13:30:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-paraphrasing results: [] language: - en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-paraphrasing This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.135500 - Rouge1: 32.399800 - Rouge2: 25.275900 - Rougel: 30.322200 - Rougelsum: 31.459500 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.110900 | 1 | 20 | 0.649241 | 31.050300 | 23.973300 | 28.952200 | 30.114800 | 19.965200 | | 0.707200 | 1 | 40 | 0.604967 | 30.421600 | 22.941900 | 28.194500 | 29.408600 | 19.998300 | | 0.645800 | 1 | 60 | 0.577806 | 31.129700 | 24.142600 | 29.114900 | 30.237500 | 20.000000 | | 0.657500 | 1 | 80 | 0.542420 | 31.140900 | 24.045000 | 29.186100 | 30.225700 | 19.998300 | | 0.610200 | 1 | 100 | 0.555390 | 31.324400 | 24.399300 | 29.340700 | 30.487900 | 20.000000 | | 0.612400 | 1 | 120 | 0.533283 | 31.907300 | 25.085300 | 29.983400 | 31.090100 | 20.000000 | | 0.558100 | 1 | 140 | 0.503850 | 31.137500 | 24.259700 | 29.174700 | 30.297800 | 20.000000 | | 0.617000 | 1 | 160 | 0.512676 | 31.575500 | 24.508400 | 29.472900 | 30.697700 | 20.000000 | | 0.572100 | 1 | 180 | 0.470928 | 31.757700 | 24.963600 | 29.798800 | 30.949300 | 20.000000 | | 0.563600 | 1 | 200 | 0.477484 | 31.277800 | 24.694900 | 29.496900 | 30.546500 | 19.998300 | | 0.549000 | 1 | 220 | 0.464705 | 31.547900 | 24.783700 | 29.620100 | 30.717600 | 20.000000 | | 0.545100 | 1 | 240 | 0.456029 | 31.406500 | 24.418500 | 29.394600 | 30.539200 | 20.000000 | | 0.498000 | 1 | 260 | 0.420587 | 31.747000 | 24.919900 | 29.789400 | 30.891900 | 20.000000 | | 0.497900 | 1 | 280 | 0.437126 | 31.403000 | 24.407800 | 29.435800 | 30.529800 | 20.000000 | | 0.466600 | 2 | 300 | 0.416397 | 32.079200 | 25.387500 | 30.220300 | 31.262000 | 20.000000 | | 0.446200 | 2 | 320 | 0.419514 | 32.079500 | 25.261900 | 30.184600 | 31.261500 | 20.000000 | | 0.406300 | 2 | 340 | 0.417019 | 31.950400 | 25.306400 | 30.126200 | 31.165600 | 20.000000 | | 0.411200 | 2 | 360 | 0.410052 | 32.384900 | 25.795600 | 30.624500 | 31.649300 | 20.000000 | | 0.437800 | 2 | 380 | 0.412937 | 31.739100 | 24.850800 | 29.862100 | 30.982400 | 20.000000 | | 0.419600 | 2 | 400 | 0.406854 | 31.489600 | 24.432500 | 29.517200 | 30.632900 | 20.000000 | | 0.408400 | 2 | 420 | 0.404026 | 31.642200 | 24.846900 | 29.716100 | 30.829100 | 20.000000 | | 0.438100 | 2 | 440 | 0.398692 | 31.769900 | 25.074000 | 29.930400 | 31.024500 | 20.000000 | | 0.401300 | 2 | 460 | 0.400428 | 31.429500 | 24.790800 | 29.548700 | 30.704200 | 20.000000 | | 0.395300 | 2 | 480 | 0.397955 | 31.831100 | 24.881600 | 29.782700 | 30.952200 | 20.000000 | | 0.395500 | 2 | 500 | 0.400316 | 31.816000 | 25.031100 | 29.938200 | 31.070800 | 20.000000 | | 0.427800 | 2 | 520 | 0.398385 | 32.100200 | 25.320300 | 30.257200 | 31.350800 | 20.000000 | | 0.400900 | 2 | 540 | 0.397272 | 31.768100 | 24.850100 | 29.710100 | 30.932100 | 20.000000 | | 0.427600 | 2 | 560 | 0.392695 | 31.930100 | 25.084900 | 29.957200 | 31.102900 | 20.000000 | | 0.387900 | 3 | 580 | 0.399037 | 31.813900 | 24.913500 | 29.798900 | 31.021000 | 20.000000 | | 0.323500 | 3 | 600 | 0.389272 | 31.992600 | 25.169800 | 30.063600 | 31.153100 | 19.995700 | | 0.317300 | 3 | 620 | 0.386492 | 31.992100 | 25.154700 | 30.066900 | 31.195300 | 20.000000 | | 0.330400 | 3 | 640 | 0.402186 | 31.302900 | 24.220400 | 29.340700 | 30.436700 | 20.000000 | | 0.356700 | 3 | 660 | 0.389047 | 32.074300 | 25.118600 | 30.137500 | 31.212800 | 20.000000 | | 0.338600 | 3 | 680 | 0.401531 | 31.940100 | 25.027400 | 29.987200 | 31.038700 | 20.000000 | | 0.356700 | 3 | 700 | 0.376122 | 32.045000 | 25.249500 | 30.061100 | 31.190300 | 20.000000 | | 0.344300 | 3 | 720 | 0.397580 | 32.053800 | 25.201600 | 30.177200 | 31.191000 | 20.000000 | | 0.369000 | 3 | 740 | 0.382221 | 32.068400 | 25.105600 | 30.102400 | 31.223900 | 20.000000 | | 0.310400 | 3 | 760 | 0.393573 | 31.869500 | 24.907200 | 29.931600 | 31.043200 | 20.000000 | | 0.361200 | 3 | 780 | 0.383016 | 32.339000 | 25.427200 | 30.267200 | 31.476700 | 20.000000 | | 0.321500 | 3 | 800 | 0.381312 | 31.966800 | 25.008000 | 30.008400 | 31.071000 | 20.000000 | | 0.379600 | 3 | 820 | 0.389013 | 32.218900 | 25.378800 | 30.355500 | 31.413500 | 20.000000 | | 0.346900 | 3 | 840 | 0.388966 | 31.900700 | 25.074500 | 30.031500 | 31.071600 | 20.000000 | | 0.364500 | 3 | 860 | 0.382512 | 32.172200 | 25.309800 | 30.261900 | 31.279800 | 20.000000 | | 0.279100 | 4 | 880 | 0.393970 | 31.498000 | 24.603300 | 29.558700 | 30.643000 | 20.000000 | | 0.284700 | 4 | 900 | 0.391282 | 32.090000 | 25.168800 | 30.106400 | 31.227100 | 20.000000 | | 0.301900 | 4 | 920 | 0.387117 | 32.137600 | 25.320700 | 30.234000 | 31.315000 | 20.000000 | | 0.248700 | 4 | 940 | 0.393035 | 32.296800 | 25.379200 | 30.349900 | 31.486200 | 20.000000 | | 0.302800 | 4 | 960 | 0.389426 | 32.488300 | 25.542800 | 30.532100 | 31.676000 | 20.000000 | | 0.286500 | 4 | 980 | 0.405294 | 31.434500 | 24.362200 | 29.462400 | 30.605300 | 20.000000 | | 0.282600 | 4 | 1000 | 0.391225 | 31.207100 | 24.081500 | 29.202400 | 30.333900 | 20.000000 | | 0.258000 | 4 | 1020 | 0.392702 | 31.602000 | 24.586400 | 29.662000 | 30.753400 | 20.000000 | | 0.276800 | 4 | 1040 | 0.385929 | 32.025900 | 24.915800 | 29.943700 | 31.137700 | 20.000000 | | 0.280300 | 4 | 1060 | 0.395826 | 32.169600 | 25.301900 | 30.247000 | 31.350600 | 20.000000 | | 0.307300 | 4 | 1080 | 0.391523 | 31.888500 | 24.968000 | 29.943900 | 31.068700 | 20.000000 | | 0.290300 | 4 | 1100 | 0.378953 | 31.685000 | 24.868800 | 29.768200 | 30.838100 | 19.996500 | | 0.285200 | 4 | 1120 | 0.384716 | 32.416400 | 25.605600 | 30.512500 | 31.584200 | 20.000000 | | 0.280400 | 4 | 1140 | 0.383306 | 32.672600 | 25.866200 | 30.716700 | 31.826300 | 20.000000 | | 0.301000 | 5 | 1160 | 0.388244 | 32.197300 | 25.377200 | 30.273700 | 31.360300 | 20.000000 | | 0.259300 | 5 | 1180 | 0.394219 | 32.010500 | 24.821700 | 29.897100 | 31.045900 | 20.000000 | | 0.229200 | 5 | 1200 | 0.399910 | 32.214100 | 25.272800 | 30.251200 | 31.332200 | 20.000000 | | 0.265300 | 5 | 1220 | 0.399432 | 32.192400 | 25.345200 | 30.301100 | 31.364000 | 20.000000 | | 0.265700 | 5 | 1240 | 0.400144 | 32.580400 | 25.887700 | 30.779800 | 31.800300 | 20.000000 | | 0.235700 | 5 | 1260 | 0.389669 | 32.012300 | 25.066600 | 30.066500 | 31.202000 | 20.000000 | | 0.268700 | 5 | 1280 | 0.385898 | 32.177500 | 25.199600 | 30.209200 | 31.331900 | 20.000000 | | 0.240600 | 5 | 1300 | 0.384041 | 32.670000 | 25.872200 | 30.733200 | 31.822900 | 20.000000 | | 0.240700 | 5 | 1320 | 0.387255 | 32.621700 | 25.810900 | 30.683900 | 31.748300 | 20.000000 | | 0.242600 | 5 | 1340 | 0.393272 | 32.377200 | 25.487800 | 30.431500 | 31.525700 | 20.000000 | | 0.267400 | 5 | 1360 | 0.390408 | 32.208000 | 25.233600 | 30.202300 | 31.362000 | 20.000000 | | 0.241300 | 5 | 1380 | 0.387935 | 32.259800 | 25.131100 | 30.247800 | 31.354100 | 20.000000 | | 0.238400 | 5 | 1400 | 0.403618 | 32.174700 | 25.150600 | 30.093700 | 31.344200 | 20.000000 | | 0.259000 | 5 | 1420 | 0.396614 | 32.334800 | 25.372900 | 30.350300 | 31.511000 | 20.000000 | | 0.243700 | 5 | 1440 | 0.397254 | 31.815800 | 24.716500 | 29.728900 | 30.880300 | 20.000000 | | 0.201600 | 6 | 1460 | 0.395704 | 32.305900 | 25.363600 | 30.297500 | 31.433500 | 20.000000 | | 0.205100 | 6 | 1480 | 0.396571 | 32.182700 | 25.160200 | 30.121500 | 31.282700 | 20.000000 | | 0.224200 | 6 | 1500 | 0.398343 | 32.439600 | 25.334300 | 30.381300 | 31.509700 | 20.000000 | | 0.224900 | 6 | 1520 | 0.395585 | 32.333800 | 25.477100 | 30.410600 | 31.494400 | 20.000000 | | 0.216700 | 6 | 1540 | 0.404786 | 32.014500 | 25.052800 | 30.045800 | 31.203900 | 20.000000 | | 0.227300 | 6 | 1560 | 0.397305 | 32.342300 | 25.545600 | 30.468800 | 31.516000 | 20.000000 | | 0.211700 | 6 | 1580 | 0.401612 | 32.274000 | 25.443900 | 30.276200 | 31.440300 | 20.000000 | | 0.210700 | 6 | 1600 | 0.399011 | 32.389400 | 25.518800 | 30.492800 | 31.613000 | 20.000000 | | 0.230600 | 6 | 1620 | 0.393134 | 32.612400 | 25.817900 | 30.717100 | 31.801300 | 20.000000 | | 0.201000 | 6 | 1640 | 0.401414 | 32.349800 | 25.302800 | 30.293100 | 31.457500 | 20.000000 | | 0.211600 | 6 | 1660 | 0.391455 | 32.270900 | 25.483600 | 30.308200 | 31.460700 | 20.000000 | | 0.198700 | 6 | 1680 | 0.396596 | 32.233000 | 25.212400 | 30.236400 | 31.355600 | 20.000000 | | 0.226300 | 6 | 1700 | 0.401143 | 32.192100 | 25.220900 | 30.281400 | 31.391900 | 20.000000 | | 0.238600 | 6 | 1720 | 0.391453 | 32.439000 | 25.479100 | 30.479800 | 31.613700 | 20.000000 | | 0.200700 | 7 | 1740 | 0.398769 | 32.487600 | 25.642500 | 30.515500 | 31.662900 | 20.000000 | | 0.186400 | 7 | 1760 | 0.400294 | 32.287400 | 25.251000 | 30.308100 | 31.437800 | 20.000000 | | 0.176800 | 7 | 1780 | 0.406219 | 32.325100 | 25.401000 | 30.325000 | 31.505900 | 20.000000 | | 0.190600 | 7 | 1800 | 0.398379 | 32.165700 | 25.140900 | 30.198300 | 31.349800 | 20.000000 | | 0.177100 | 7 | 1820 | 0.406410 | 32.454800 | 25.475800 | 30.490200 | 31.540900 | 20.000000 | | 0.198700 | 7 | 1840 | 0.396886 | 32.274000 | 25.247900 | 30.223400 | 31.407500 | 20.000000 | | 0.196200 | 7 | 1860 | 0.407596 | 32.348300 | 25.156900 | 30.238300 | 31.413000 | 20.000000 | | 0.167400 | 7 | 1880 | 0.405560 | 32.382000 | 25.506300 | 30.377600 | 31.519900 | 20.000000 | | 0.198800 | 7 | 1900 | 0.409359 | 32.281700 | 25.331500 | 30.271900 | 31.423700 | 20.000000 | | 0.202900 | 7 | 1920 | 0.405715 | 32.192000 | 25.054400 | 30.103300 | 31.341200 | 20.000000 | | 0.210100 | 7 | 1940 | 0.402631 | 32.375500 | 25.331800 | 30.371700 | 31.527100 | 20.000000 | | 0.199200 | 7 | 1960 | 0.403153 | 32.261700 | 25.227800 | 30.275300 | 31.404700 | 20.000000 | | 0.192400 | 7 | 1980 | 0.406693 | 32.438400 | 25.486300 | 30.438700 | 31.580000 | 20.000000 | | 0.210000 | 7 | 2000 | 0.397093 | 32.487200 | 25.537200 | 30.542800 | 31.687500 | 20.000000 | | 0.186300 | 8 | 2020 | 0.403671 | 32.530700 | 25.529700 | 30.503900 | 31.651400 | 20.000000 | | 0.171200 | 8 | 2040 | 0.406167 | 32.297300 | 25.244400 | 30.216400 | 31.406900 | 20.000000 | | 0.159600 | 8 | 2060 | 0.413590 | 32.562300 | 25.551500 | 30.551000 | 31.677700 | 20.000000 | | 0.191000 | 8 | 2080 | 0.406790 | 32.380000 | 25.326200 | 30.374900 | 31.476300 | 20.000000 | | 0.149700 | 8 | 2100 | 0.419098 | 32.253200 | 25.283000 | 30.321300 | 31.422500 | 20.000000 | | 0.174500 | 8 | 2120 | 0.410545 | 32.492700 | 25.497000 | 30.516600 | 31.623100 | 20.000000 | | 0.178600 | 8 | 2140 | 0.405749 | 32.109100 | 25.057800 | 30.142800 | 31.178700 | 20.000000 | | 0.172400 | 8 | 2160 | 0.413341 | 32.336500 | 25.260200 | 30.329000 | 31.456300 | 20.000000 | | 0.199200 | 8 | 2180 | 0.402256 | 32.643900 | 25.630300 | 30.712600 | 31.744700 | 20.000000 | | 0.182100 | 8 | 2200 | 0.401074 | 32.437400 | 25.420100 | 30.451300 | 31.558200 | 20.000000 | | 0.165800 | 8 | 2220 | 0.408149 | 32.433600 | 25.306700 | 30.407500 | 31.537000 | 20.000000 | | 0.164100 | 8 | 2240 | 0.407869 | 32.282900 | 25.398100 | 30.395100 | 31.471400 | 20.000000 | | 0.174300 | 8 | 2260 | 0.412621 | 32.169700 | 25.171700 | 30.176700 | 31.304600 | 20.000000 | | 0.178600 | 8 | 2280 | 0.407604 | 32.385700 | 25.380600 | 30.372900 | 31.494000 | 20.000000 | | 0.160200 | 8 | 2300 | 0.408272 | 32.505100 | 25.568400 | 30.517300 | 31.657300 | 20.000000 | | 0.166700 | 9 | 2320 | 0.405484 | 32.621300 | 25.726500 | 30.674400 | 31.786200 | 20.000000 | | 0.148800 | 9 | 2340 | 0.413829 | 32.275700 | 25.185000 | 30.272300 | 31.355000 | 20.000000 | | 0.161400 | 9 | 2360 | 0.413913 | 32.372700 | 25.201000 | 30.301500 | 31.506300 | 20.000000 | | 0.155800 | 9 | 2380 | 0.414684 | 32.420600 | 25.395400 | 30.461500 | 31.533400 | 20.000000 | | 0.170600 | 9 | 2400 | 0.403257 | 32.243600 | 25.152100 | 30.174700 | 31.333500 | 20.000000 | | 0.162600 | 9 | 2420 | 0.408112 | 32.190200 | 25.136800 | 30.135900 | 31.295100 | 20.000000 | | 0.160200 | 9 | 2440 | 0.413158 | 32.240100 | 25.255300 | 30.259300 | 31.391600 | 20.000000 | | 0.165300 | 9 | 2460 | 0.408876 | 32.117800 | 24.999500 | 30.075400 | 31.187300 | 20.000000 | | 0.157700 | 9 | 2480 | 0.418658 | 32.182700 | 25.065800 | 30.117200 | 31.251900 | 20.000000 | | 0.152900 | 9 | 2500 | 0.412553 | 32.137700 | 25.021900 | 30.136700 | 31.234400 | 20.000000 | | 0.153500 | 9 | 2520 | 0.411657 | 31.994400 | 24.742300 | 29.874600 | 31.051900 | 20.000000 | | 0.152500 | 9 | 2540 | 0.404253 | 32.366500 | 25.086700 | 30.228600 | 31.393000 | 20.000000 | | 0.163500 | 9 | 2560 | 0.406488 | 32.474000 | 25.284700 | 30.419900 | 31.541900 | 20.000000 | | 0.175700 | 9 | 2580 | 0.406476 | 32.314300 | 25.101900 | 30.219300 | 31.342900 | 20.000000 | | 0.156500 | 10 | 2600 | 0.411366 | 32.325400 | 25.088200 | 30.230000 | 31.382600 | 20.000000 | | 0.147800 | 10 | 2620 | 0.411610 | 32.174600 | 24.935000 | 30.134600 | 31.225900 | 20.000000 | | 0.154600 | 10 | 2640 | 0.416763 | 32.064800 | 24.824400 | 30.005100 | 31.147300 | 20.000000 | | 0.147300 | 10 | 2660 | 0.413373 | 32.138200 | 24.856000 | 30.081100 | 31.209300 | 20.000000 | | 0.140600 | 10 | 2680 | 0.416898 | 32.196500 | 25.032400 | 30.171700 | 31.282600 | 20.000000 | | 0.146600 | 10 | 2700 | 0.414243 | 32.321500 | 25.131500 | 30.251500 | 31.376800 | 20.000000 | | 0.154300 | 10 | 2720 | 0.411708 | 32.302400 | 25.028000 | 30.196800 | 31.338300 | 20.000000 | | 0.146000 | 10 | 2740 | 0.412115 | 32.343600 | 25.191900 | 30.302900 | 31.403900 | 20.000000 | | 0.140000 | 10 | 2760 | 0.414298 | 32.244000 | 25.085400 | 30.180300 | 31.292300 | 20.000000 | | 0.150100 | 10 | 2780 | 0.416827 | 32.313100 | 25.206500 | 30.260700 | 31.390100 | 20.000000 | | 0.153400 | 10 | 2800 | 0.415130 | 32.392200 | 25.266000 | 30.320600 | 31.461100 | 20.000000 | | 0.143600 | 10 | 2820 | 0.414414 | 32.394300 | 25.249800 | 30.313800 | 31.445400 | 20.000000 | | 0.153400 | 10 | 2840 | 0.414328 | 32.427100 | 25.294400 | 30.359600 | 31.485100 | 20.000000 | | 0.145300 | 10 | 2860 | 0.414271 | 32.362800 | 25.219700 | 30.281900 | 31.420600 | 20.000000 | | 0.135500 | 10 | 2880 | 0.414513 | 32.399800 | 25.275900 | 30.322200 | 31.459500 | 20.000000 |
tgamstaetter/mult_tf
tgamstaetter
2023-07-20T09:01:57Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "base_model:finetune:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T08:27:11Z
--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: mult_tf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mult_tf This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5180 - Accuracy: 0.8364 - F1: 0.8358 - Precision: 0.8355 - Recall: 0.8364 - Roc Auc: 0.9896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 640 - eval_batch_size: 1280 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | No log | 1.0 | 357 | 0.5694 | 0.8249 | 0.8243 | 0.8245 | 0.8249 | 0.9875 | | 0.5397 | 2.0 | 714 | 0.5324 | 0.8324 | 0.8312 | 0.8313 | 0.8324 | 0.9890 | | 0.523 | 3.0 | 1071 | 0.5193 | 0.8354 | 0.8348 | 0.8346 | 0.8354 | 0.9895 | | 0.523 | 4.0 | 1428 | 0.5180 | 0.8364 | 0.8358 | 0.8355 | 0.8364 | 0.9896 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
junejae/pegasus-samsum
junejae
2023-07-20T09:00:31Z
100
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-20T07:56:56Z
--- base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6297 | 0.54 | 500 | 1.4858 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Oslaw/rl_course_vizdoom_health_gathering_supreme
Oslaw
2023-07-20T08:42:41Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T07:42:15Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.98 +/- 4.39 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Oslaw/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
jackswie/Hadise
jackswie
2023-07-20T08:41:37Z
0
0
null
[ "region:us" ]
null
2023-07-20T08:32:36Z
[![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Hadise AÇIKGÖZ - RVC V2 - Mangio Crepe - 330 Epoch **Şarkıcı Hadise AÇIKGÖZ'ÜN ses modelidir, Rvc V2 350 epoch olarak eğitilmiştir.** **30 Dakikalık Dataset Kullanılmıştır.** **Dataset içerisinde röpartaj ve şarkı söyleme ses örnekleri bulunmaktadır.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: jackswie - Reddit: u/jackk_m - YouTube: 𝖏𝖆𝖈𝖐𝖘𝖑𝖜𝖐 (https://www.youtube.com/channel/UCZSMJToEeMuqMFDL318v3Xw) - TikTok: jackss.aep (https://www.tiktok.com/@jackss.aep) - Instagram: jackslwk (https://www.instagram.com/jackslwk/) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
siciai/vicunaprodtype
siciai
2023-07-20T08:41:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-20T08:33:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
albagon/q-FrozenLake-v1-4x4-noSlippery
albagon
2023-07-20T08:34:07Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T08:33:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="albagon/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AlVrde/bloomz-560m_PROMPT_TUNING_CAUSAL_LM_0.001_0.04_30epochs
AlVrde
2023-07-20T08:29:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-20T08:28:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Zywald/GenerAd-AI
Zywald
2023-07-20T08:06:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-20T08:06:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
DiTo97/binarization-segformer-b3
DiTo97
2023-07-20T08:05:47Z
215
1
transformers
[ "transformers", "pytorch", "safetensors", "segformer", "generated_from_trainer", "document-image-binarization", "image-segmentation", "arxiv:2105.05521", "arxiv:1901.06081", "license:openrail", "endpoints_compatible", "region:us" ]
image-segmentation
2023-05-13T16:27:36Z
--- license: openrail tags: - generated_from_trainer - document-image-binarization - image-segmentation model-index: - name: binarization-segformer-b3 results: [] --- # binarization-segformer-b3 This model is a fine-tuned version of [nvidia/segformer-b3-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the same ensemble of 13 datasets as the [SauvolaNet](https://arxiv.org/pdf/2105.05521.pdf) work publicly available in their GitHub [repository](https://github.com/Leedeng/SauvolaNet#datasets). It achieves the following results on the evaluation set on DIBCO metrics: - loss: 0.0743 - DRD: 5.9548 - F-measure: 0.9840 - pseudo F-measure: 0.9740 - PSNR: 16.0119 with PSNR the peak signal-to-noise ratio and DRD the distance reciprocal distortion. For more information on the above DIBCO metrics, see the 2017 introductory [paper](https://ieeexplore.ieee.org/document/8270159). ## Model description This model is part of on-going research on pure semantic segmentation models as a formulation of document image binarization (DIBCO). This is in contrast to the late trend of adapting classical binarization algorithms with neural networks, such as [DeepOtsu](https://arxiv.org/abs/1901.06081) or [SauvolaNet](https://arxiv.org/pdf/2105.05521.pdf) as extensions of Otsu's method and Sauvola thresholding algorithm, respectively. ## Intended uses & limitations TBC ## Training and evaluation data TBC ## Training procedure ### Training hyperparameters TBC ### Training results | training loss | epoch | step | validation loss | DRD | F-measure | pseudo F-measure | PSNR | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:----------------:|:-------:| | 0.6983 | 0.26 | 10 | 0.7079 | 199.5096 | 0.5945 | 0.5801 | 3.4552 | | 0.6657 | 0.52 | 20 | 0.6755 | 149.2346 | 0.7006 | 0.6165 | 4.6752 | | 0.6145 | 0.77 | 30 | 0.6433 | 109.7298 | 0.7831 | 0.6520 | 5.5489 | | 0.5553 | 1.03 | 40 | 0.5443 | 53.7149 | 0.8952 | 0.8000 | 8.1736 | | 0.4627 | 1.29 | 50 | 0.4896 | 32.7649 | 0.9321 | 0.8603 | 9.8706 | | 0.3969 | 1.55 | 60 | 0.4327 | 21.5508 | 0.9526 | 0.8985 | 11.3400 | | 0.3414 | 1.81 | 70 | 0.3002 | 11.0094 | 0.9732 | 0.9462 | 13.5901 | | 0.2898 | 2.06 | 80 | 0.2839 | 10.1064 | 0.9748 | 0.9563 | 13.9796 | | 0.2292 | 2.32 | 90 | 0.2427 | 9.4437 | 0.9761 | 0.9584 | 14.2161 | | 0.2153 | 2.58 | 100 | 0.2095 | 8.8696 | 0.9771 | 0.9621 | 14.4319 | | 0.1767 | 2.84 | 110 | 0.1916 | 8.6152 | 0.9776 | 0.9646 | 14.5528 | | 0.1509 | 3.1 | 120 | 0.1704 | 8.0761 | 0.9791 | 0.9632 | 14.7961 | | 0.1265 | 3.35 | 130 | 0.1561 | 8.5627 | 0.9784 | 0.9655 | 14.7400 | | 0.132 | 3.61 | 140 | 0.1318 | 8.1849 | 0.9788 | 0.9670 | 14.8469 | | 0.1115 | 3.87 | 150 | 0.1317 | 7.8438 | 0.9790 | 0.9657 | 14.9072 | | 0.0983 | 4.13 | 160 | 0.1273 | 7.9405 | 0.9791 | 0.9673 | 14.9701 | | 0.1001 | 4.39 | 170 | 0.1234 | 8.4132 | 0.9788 | 0.9691 | 14.8573 | | 0.0862 | 4.65 | 180 | 0.1147 | 8.0838 | 0.9797 | 0.9678 | 15.0433 | | 0.0713 | 4.9 | 190 | 0.1134 | 7.6027 | 0.9806 | 0.9687 | 15.2235 | | 0.0905 | 5.16 | 200 | 0.1061 | 7.2973 | 0.9803 | 0.9699 | 15.1646 | | 0.0902 | 5.42 | 210 | 0.1061 | 8.4049 | 0.9787 | 0.9699 | 14.8460 | | 0.0759 | 5.68 | 220 | 0.1062 | 7.7147 | 0.9809 | 0.9695 | 15.2426 | | 0.0638 | 5.94 | 230 | 0.1019 | 7.7449 | 0.9806 | 0.9695 | 15.2195 | | 0.0852 | 6.19 | 240 | 0.0962 | 7.0221 | 0.9817 | 0.9693 | 15.4730 | | 0.0677 | 6.45 | 250 | 0.0961 | 7.2520 | 0.9814 | 0.9710 | 15.3878 | | 0.0668 | 6.71 | 260 | 0.0972 | 6.6658 | 0.9823 | 0.9689 | 15.6106 | | 0.0701 | 6.97 | 270 | 0.0909 | 6.9454 | 0.9820 | 0.9713 | 15.5458 | | 0.0567 | 7.23 | 280 | 0.0925 | 6.5498 | 0.9824 | 0.9718 | 15.5965 | | 0.0624 | 7.48 | 290 | 0.0899 | 7.3125 | 0.9813 | 0.9717 | 15.3255 | | 0.0649 | 7.74 | 300 | 0.0932 | 7.4915 | 0.9816 | 0.9684 | 15.5666 | | 0.0524 | 8.0 | 310 | 0.0905 | 7.1666 | 0.9815 | 0.9711 | 15.4526 | | 0.0693 | 8.26 | 320 | 0.0901 | 6.5627 | 0.9827 | 0.9704 | 15.7335 | | 0.0528 | 8.52 | 330 | 0.0845 | 6.6690 | 0.9826 | 0.9734 | 15.5950 | | 0.0632 | 8.77 | 340 | 0.0822 | 6.2661 | 0.9833 | 0.9723 | 15.8631 | | 0.0522 | 9.03 | 350 | 0.0844 | 6.0073 | 0.9836 | 0.9715 | 15.9393 | | 0.0568 | 9.29 | 360 | 0.0817 | 5.9460 | 0.9837 | 0.9721 | 15.9523 | | 0.057 | 9.55 | 370 | 0.0900 | 7.9726 | 0.9812 | 0.9730 | 15.1229 | | 0.052 | 9.81 | 380 | 0.0836 | 6.5444 | 0.9822 | 0.9712 | 15.6388 | | 0.0568 | 10.06 | 390 | 0.0810 | 6.0359 | 0.9836 | 0.9714 | 15.9796 | | 0.0481 | 10.32 | 400 | 0.0784 | 6.2110 | 0.9835 | 0.9724 | 15.9235 | | 0.0513 | 10.58 | 410 | 0.0803 | 6.0990 | 0.9835 | 0.9715 | 15.9502 | | 0.0595 | 10.84 | 420 | 0.0798 | 6.0829 | 0.9835 | 0.9720 | 15.9052 | | 0.047 | 11.1 | 430 | 0.0779 | 5.8847 | 0.9838 | 0.9725 | 16.0043 | | 0.0406 | 11.35 | 440 | 0.0802 | 5.7944 | 0.9838 | 0.9713 | 16.0620 | | 0.0493 | 11.61 | 450 | 0.0781 | 6.0947 | 0.9836 | 0.9731 | 15.9033 | | 0.064 | 11.87 | 460 | 0.0769 | 6.1257 | 0.9837 | 0.9736 | 15.9080 | | 0.0622 | 12.13 | 470 | 0.0765 | 6.2964 | 0.9835 | 0.9739 | 15.8188 | | 0.0457 | 12.39 | 480 | 0.0773 | 5.9826 | 0.9838 | 0.9728 | 16.0119 | | 0.0447 | 12.65 | 490 | 0.0761 | 5.7977 | 0.9841 | 0.9728 | 16.0900 | | 0.0515 | 12.9 | 500 | 0.0750 | 5.8569 | 0.9840 | 0.9729 | 16.0633 | | 0.0357 | 13.16 | 510 | 0.0796 | 5.7990 | 0.9837 | 0.9713 | 16.0818 | | 0.0503 | 13.42 | 520 | 0.0749 | 5.8323 | 0.9841 | 0.9736 | 16.0510 | | 0.0508 | 13.68 | 530 | 0.0746 | 6.0361 | 0.9839 | 0.9735 | 15.9709 | | 0.0533 | 13.94 | 540 | 0.0768 | 6.1596 | 0.9836 | 0.9740 | 15.9193 | | 0.0503 | 14.19 | 550 | 0.0739 | 5.5900 | 0.9843 | 0.9723 | 16.1883 | | 0.0515 | 14.45 | 560 | 0.0740 | 5.4660 | 0.9845 | 0.9727 | 16.2745 | | 0.0502 | 14.71 | 570 | 0.0740 | 5.5895 | 0.9844 | 0.9736 | 16.2054 | | 0.0401 | 14.97 | 580 | 0.0741 | 5.9694 | 0.9840 | 0.9747 | 15.9603 | | 0.0495 | 15.23 | 590 | 0.0745 | 5.9136 | 0.9841 | 0.9740 | 16.0458 | | 0.0413 | 15.48 | 600 | 0.0743 | 5.9548 | 0.9840 | 0.9740 | 16.0119 | ### Framework versions - transformers 4.31.0 - torch 2.0.0 - datasets 2.13.1 - tokenizers 0.13.3
lianlian123/ppo-LunarLander-v2
lianlian123
2023-07-20T07:50:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-20T07:50:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.36 +/- 13.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
4bit/Redmond-Puffin-13B
4bit
2023-07-20T07:47:15Z
5
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama-2", "sft", "eng", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T07:36:10Z
--- language: - eng tags: - llama-2 - sft license: [mit] --- ![puffin](https://i.imgur.com/R2xTHMb.png) ## **Redmond-Puffin-13b-V1.3** **The first commercially available language model released by Nous Research!** Redmond-Puffin-13B is one of the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha. Special thank you to Redmond AI for sponsoring the compute. Special thank you to Emozilla for assisting with training experimentations and many issues encountered during training. Notable mentions for assisting in some of the training issues goes to: Caseus and Teknium. ## Model Training Redmond-Puffin-13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4. Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math. ## Prompt Format The model follows the Vicuna ShareGPT prompt format: ``` ### human: ### gpt: ``` ## Improvements over previous version: The original Puffin model was loved by many, however it was quickly discovered to have dataset errors in a significant amount of the conversations. Puffin-V1.3 dataset solves this issue and the resulting fixed model has now fully finished training! ## Notable Features: - The first Llama-2 based fine-tuned model released by Nous Research. - Ability to recall information upto 2023 without internet (ChatGPT cut off date is in 2021) - Pretrained on 2 trillion tokens of text. (This is double the amount of most Open LLM's) - Pretrained with a context length of 4096 tokens, and fine-tuned on a significant amount of multi-turn conversations reaching that full token limit. - The first commercially available language model released by Nous Research. ## Current Limitations Some token mismatch problems and formatting issues have been idenitifed, these may very possibly effect the current output quality. We plan to have these solved in an updated Puffin model in the very near future, please stay tuned! ## Future Plans This is a relatively early build amongst the grand plans for the future of Puffin! Current limitations: Some token mismatch problems have been identified, these may effect the current output quality, we plan to have this solved in Puffin V2 along with other improvements. ## How you can help! In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations. If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact ldj on discord! ## Benchmarks coming soon benchmarks coming soon!
J3/speecht5_finetuned_voxpopuli_it
J3
2023-07-20T07:46:18Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-19T10:00:22Z
--- license: mit tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_it results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_it This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6707 | 1.0 | 108 | 0.5946 | | 0.6625 | 2.0 | 217 | 0.6029 | | 0.708 | 3.0 | 325 | 0.6118 | | 0.6588 | 4.0 | 434 | 0.7109 | | 0.6614 | 5.0 | 542 | 0.5799 | | 0.6375 | 6.0 | 651 | 0.5714 | | 0.619 | 7.0 | 759 | 0.5699 | | 0.5806 | 8.0 | 868 | 0.5538 | | 0.6024 | 9.0 | 976 | 0.5856 | | 0.5728 | 10.0 | 1085 | 0.5446 | | 0.5624 | 11.0 | 1193 | 0.5508 | | 0.5711 | 12.0 | 1302 | 0.5376 | | 0.5438 | 13.0 | 1410 | 0.5300 | | 0.5308 | 14.0 | 1519 | 0.5206 | | 0.5536 | 15.0 | 1627 | 0.5359 | | 0.5285 | 16.0 | 1736 | 0.5264 | | 0.525 | 17.0 | 1844 | 0.5108 | | 0.4961 | 18.0 | 1953 | 0.5116 | | 0.5111 | 19.0 | 2061 | 0.5042 | | 0.4869 | 20.0 | 2170 | 0.5050 | | 0.4864 | 21.0 | 2278 | 0.4994 | | 0.4794 | 22.0 | 2387 | 0.5039 | | 0.4787 | 23.0 | 2495 | 0.4975 | | 0.4692 | 24.0 | 2604 | 0.4961 | | 0.4656 | 24.88 | 2700 | 0.4968 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
EhsanElahi/pokemon-lora
EhsanElahi
2023-07-20T07:44:45Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-20T06:43:23Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - EhsanElahi/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
VFiona/opus-mt-it-en-finetuned_5000-it-to-en
VFiona
2023-07-20T07:42:25Z
107
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-19T22:30:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-it-en-finetuned_5000-it-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-it-en-finetuned_5000-it-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-it-en](https://huggingface.co/Helsinki-NLP/opus-mt-it-en) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 282 | 0.5054 | 71.2415 | 22.26 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.11.0
yancongwen/chatglm2-6b-pt-16-1e-2-20230720-2
yancongwen
2023-07-20T07:37:45Z
0
0
null
[ "tensorboard", "region:us" ]
null
2023-07-20T07:35:33Z
# ChatGLM2-6B 微调模型 参考:[ChatGLM2-6B-PT](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) ## 参数 ```sh PRE_SEQ_LEN=16 LR=1e-2 NUM_GPUS=1 torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \ --do_train \ --train_file train_data/train_100k.json \ --validation_file train_data/dev_1k.json \ --preprocessing_num_workers 10 \ --prompt_column question \ --response_column answer \ --overwrite_cache \ --model_name_or_path THUDM/chatglm2-6b \ --output_dir output/chatglm2-6b-pt-$PRE_SEQ_LEN-$LR-20230720-2 \ --overwrite_output_dir \ --max_source_length 256 \ --max_target_length 128 \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 8 \ --predict_with_generate \ --max_steps 1000 \ --logging_steps 10 \ --save_steps 1000 \ --learning_rate $LR \ --pre_seq_len $PRE_SEQ_LEN \ --quantization_bit 4 ``` ## train metrics ``` epoch = 0.2 train_loss = 0.1803 train_runtime = 1:44:48.92 train_samples = 78577 train_samples_per_second = 2.544 train_steps_per_second = 0.159 ``` --- license: unlicense ---