modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
nataliebhuerta/wav2vec2-base-finetuned-ks
nataliebhuerta
2022-05-27T14:46:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-05-27T14:35:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.10.3
esh/q-Taxi-v3
esh
2022-05-27T14:07:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T14:07:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: nan +/- nan name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="esh/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
esh/q-FrozenLake-v1-8x8-slippery
esh
2022-05-27T14:05:27Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-22T15:32:26Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: nan +/- nan name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="esh/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
skyfox/q-FrozenLake-v1-4x4-noSlippery
skyfox
2022-05-27T14:02:09Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T14:02:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
srini98/q-FrozenLake-v1-4x4-noSlippery
srini98
2022-05-27T13:21:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T13:21:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="srini98/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
onewithnickelcoins/roberta-base-stars
onewithnickelcoins
2022-05-27T13:15:43Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-27T12:33:44Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-stars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-stars This model is a fine-tuned version of [onewithnickelcoins/roberta-base-MLM](https://huggingface.co/onewithnickelcoins/roberta-base-MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2914 - Accuracy: 0.6857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
jkhan447/language-detection-Bert-base-uncased-additional
jkhan447
2022-05-27T13:02:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-27T09:28:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-Bert-base-uncased-additional results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-Bert-base-uncased-additional This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2330 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YaYaB/q-Taxi-v3
YaYaB
2022-05-27T12:49:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T12:49:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
YaYaB/q-FrozenLake-v1-4x4-noSlippery
YaYaB
2022-05-27T12:35:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T12:35:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="YaYaB/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
onewithnickelcoins/roberta-base-MLM
onewithnickelcoins
2022-05-27T11:57:24Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-27T11:40:10Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-MLM This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0265 - Accuracy: 0.6009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/mrbean
huggingtweets
2022-05-27T11:30:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:14:36Z
--- language: en thumbnail: http://www.huggingtweets.com/mrbean/1653651025192/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/521655203011899392/pxOndDc7_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mr Bean</div> <div style="text-align: center; font-size: 14px;">@mrbean</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mr Bean. | Data | Mr Bean | | --- | --- | | Tweets downloaded | 2324 | | Retweets | 156 | | Short tweets | 271 | | Tweets kept | 1897 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nqdk593/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrbean's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/27zl3ib7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/27zl3ib7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrbean') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/liwenliang
huggingtweets
2022-05-27T11:26:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:22:47Z
--- language: en thumbnail: http://www.huggingtweets.com/liwenliang/1653650598585/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1197224526175784968/7n8Q3j05_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kevin Li</div> <div style="text-align: center; font-size: 14px;">@liwenliang</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kevin Li. | Data | Kevin Li | | --- | --- | | Tweets downloaded | 108 | | Retweets | 21 | | Short tweets | 5 | | Tweets kept | 82 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/k8wvicoq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @liwenliang's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14q55e16) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14q55e16/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/liwenliang') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/emilythornberry
huggingtweets
2022-05-27T11:19:25Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:19:18Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446231256052731905/octqXaR9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Emily Thornberry</div> <div style="text-align: center; font-size: 14px;">@emilythornberry</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Emily Thornberry. | Data | Emily Thornberry | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 1153 | | Short tweets | 274 | | Tweets kept | 1807 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gag2yg4r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emilythornberry's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zsqk4sk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zsqk4sk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emilythornberry') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/alejodorowsky
huggingtweets
2022-05-27T11:13:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T11:11:07Z
--- language: en thumbnail: http://www.huggingtweets.com/alejodorowsky/1653650001771/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/784393032774873088/1x6o_3ws_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alejandro Jodorowsky</div> <div style="text-align: center; font-size: 14px;">@alejodorowsky</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alejandro Jodorowsky. | Data | Alejandro Jodorowsky | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 640 | | Short tweets | 175 | | Tweets kept | 2430 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vwsnx64/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alejodorowsky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j8ai679x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j8ai679x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alejodorowsky') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dlputin
huggingtweets
2022-05-27T10:48:58Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T10:48:51Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/535525386872832001/NQn2b8OA_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">普京</div> <div style="text-align: center; font-size: 14px;">@dlputin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 普京. | Data | 普京 | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 0 | | Short tweets | 586 | | Tweets kept | 2614 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t4wvbm9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dlputin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vcew5d1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vcew5d1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dlputin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/campbellclaret
huggingtweets
2022-05-27T10:33:36Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T10:32:38Z
--- language: en thumbnail: http://www.huggingtweets.com/campbellclaret/1653647611538/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1441638351052881920/13PTOAD0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ALASTAIR CAMPBELL</div> <div style="text-align: center; font-size: 14px;">@campbellclaret</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ALASTAIR CAMPBELL. | Data | ALASTAIR CAMPBELL | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 1921 | | Short tweets | 112 | | Tweets kept | 1206 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1psic63j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @campbellclaret's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bq64fuz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bq64fuz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/campbellclaret') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
YaYaB/PPO_v3_LunarLander-v2
YaYaB
2022-05-27T09:26:56Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T09:26:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.63 +/- 20.66 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Giseok/wav2vec2-base-STTTest
Giseok
2022-05-27T09:12:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-26T09:01:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-STTTest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-STTTest This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5198 - Wer: 0.3393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.231 | 1.0 | 500 | 0.4337 | 0.4100 | | 0.1845 | 2.01 | 1000 | 0.4296 | 0.3931 | | 0.1551 | 3.01 | 1500 | 0.4397 | 0.3770 | | 0.1479 | 4.02 | 2000 | 0.4524 | 0.3827 | | 0.1186 | 5.02 | 2500 | 0.5182 | 0.3795 | | 0.1079 | 6.02 | 3000 | 0.4799 | 0.3737 | | 0.0974 | 7.03 | 3500 | 0.4966 | 0.3860 | | 0.0878 | 8.03 | 4000 | 0.4993 | 0.3699 | | 0.0788 | 9.04 | 4500 | 0.5183 | 0.3678 | | 0.0732 | 10.04 | 5000 | 0.5064 | 0.3635 | | 0.0664 | 11.04 | 5500 | 0.5330 | 0.3663 | | 0.0596 | 12.05 | 6000 | 0.5147 | 0.3516 | | 0.0538 | 13.05 | 6500 | 0.5254 | 0.3581 | | 0.0535 | 14.06 | 7000 | 0.4902 | 0.3534 | | 0.0492 | 15.06 | 7500 | 0.5115 | 0.3488 | | 0.0455 | 16.06 | 8000 | 0.5250 | 0.3472 | | 0.0434 | 17.07 | 8500 | 0.5338 | 0.3515 | | 0.0351 | 18.07 | 9000 | 0.5365 | 0.3444 | | 0.0341 | 19.08 | 9500 | 0.4886 | 0.3439 | | 0.0332 | 20.08 | 10000 | 0.5234 | 0.3475 | | 0.0289 | 21.08 | 10500 | 0.5375 | 0.3464 | | 0.028 | 22.09 | 11000 | 0.5395 | 0.3478 | | 0.0225 | 23.09 | 11500 | 0.5236 | 0.3428 | | 0.0244 | 24.1 | 12000 | 0.5122 | 0.3402 | | 0.0246 | 25.1 | 12500 | 0.5212 | 0.3390 | | 0.0214 | 26.1 | 13000 | 0.5198 | 0.3393 | | 0.0179 | 27.11 | 13500 | 0.5198 | 0.3393 | | 0.0194 | 28.11 | 14000 | 0.5198 | 0.3393 | | 0.0193 | 29.12 | 14500 | 0.5198 | 0.3393 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.1+cu111 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingtweets/mit_istnews
huggingtweets
2022-05-27T09:11:24Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T09:10:02Z
--- language: en thumbnail: http://www.huggingtweets.com/mit_istnews/1653642679545/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/875463526583857156/mxYzB8tm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MIT IS&T</div> <div style="text-align: center; font-size: 14px;">@mit_istnews</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MIT IS&T. | Data | MIT IS&T | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 20 | | Short tweets | 132 | | Tweets kept | 3098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b2tikho/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mit_istnews's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15k3tyvf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15k3tyvf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mit_istnews') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/terrybroad
huggingtweets
2022-05-27T08:46:44Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T08:44:29Z
--- language: en thumbnail: http://www.huggingtweets.com/terrybroad/1653641199493/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445695092325380098/Zk0H0J37_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Terence Broad</div> <div style="text-align: center; font-size: 14px;">@terrybroad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Terence Broad. | Data | Terence Broad | | --- | --- | | Tweets downloaded | 2248 | | Retweets | 1230 | | Short tweets | 231 | | Tweets kept | 787 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2v3f7i92/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @terrybroad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fxvoi41) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fxvoi41/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/terrybroad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
auriolar/q-Taxi-v3
auriolar
2022-05-27T08:27:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T08:04:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="auriolar/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
auriolar/q-FrozenLake-v1-4x4-noSlippery
auriolar
2022-05-27T08:00:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T08:00:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="auriolar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Splend1dchan/t5small-squad-extractive
Splend1dchan
2022-05-27T07:48:00Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-05-27T07:32:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_squad This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset, using the extractive method by isolating the encoder only. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results { "epoch": 3.0, "eval_exact_match": 70.06622516556291, "eval_f1": 80.02993815400357, "eval_samples": 10659 } ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
kurapy/t5-small-finetuned-xsum
kurapy
2022-05-27T07:08:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-27T04:35:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.2621 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4782 - Rouge1: 28.2621 - Rouge2: 7.6583 - Rougel: 22.1971 - Rougelsum: 22.2 - Gen Len: 18.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7138 | 1.0 | 12753 | 2.4782 | 28.2621 | 7.6583 | 22.1971 | 22.2 | 18.8243 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tanviraumi/bert-base-uncased-issues-128
tanviraumi
2022-05-27T06:26:04Z
7
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-27T06:01:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3389 | 1.0 | 73 | 1.7400 | | 1.8014 | 2.0 | 146 | 1.4690 | | 1.634 | 3.0 | 219 | 1.4783 | | 1.5461 | 4.0 | 292 | 1.3912 | | 1.4706 | 5.0 | 365 | 1.3109 | | 1.4161 | 6.0 | 438 | 1.3405 | | 1.3664 | 7.0 | 511 | 1.3459 | | 1.332 | 8.0 | 584 | 1.2745 | | 1.3029 | 9.0 | 657 | 1.2633 | | 1.2871 | 10.0 | 730 | 1.2336 | | 1.2807 | 11.0 | 803 | 1.2966 | | 1.2569 | 12.0 | 876 | 1.1508 | | 1.2392 | 13.0 | 949 | 1.2530 | | 1.237 | 14.0 | 1022 | 1.2485 | | 1.2169 | 15.0 | 1095 | 1.2592 | | 1.2272 | 16.0 | 1168 | 1.2337 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.12.0.dev20220513+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
yilye/tapas_medi_flowsheet
yilye
2022-05-27T05:09:12Z
0
0
null
[ "tapas", "en", "license:apache-2.0", "region:us" ]
null
2022-04-25T00:35:00Z
--- language: en tags: - tapas license: apache-2.0 --- # Overview This model is based on [Tapas](https://huggingface.co/docs/transformers/model_doc/tapas), and I fine-tuned it on medical flowsheet dataset. This is for doctors and nurses who track patient's record by scrolling the mouse; instead, they can ask the question by natural language and the model will look through the table and find the answer for them.
geomos/distilbert-base-uncased-finetuned-imdb
geomos
2022-05-27T04:40:19Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-27T04:21:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4921 | 1.0 | 479 | 2.3047 | | 2.3893 | 2.0 | 958 | 2.2607 | | 2.3571 | 3.0 | 1437 | 2.2481 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 2.2.2 - Tokenizers 0.10.3
sabersol/bert-base-uncased-emotion
sabersol
2022-05-27T03:25:49Z
21
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-19T15:13:05Z
--- license: cc-by-nc-sa-4.0 --- # CITDA: Fine-tuned `bert-base-uncased` on the `emotions` dataset Demo Notebook: https://colab.research.google.com/drive/10ZCFvlf2UV3FjU4ymf4OoipQvqHbIItG?usp=sharing ## Packages - Install `torch` - Also, `pip install transformers datasets scikit-learn wandb seaborn python-dotenv` ## Train 1. Rename `.env.example` to `.env` and set an API key from [wandb](https://wandb.ai/authorize) 2. You can adjust model parameters in the `explainableai.py` file. 2. The model (`pytorch_model.bin`) is a based on the `bert-base-uncased` and already trained on the `emotions` dataset. To re-produce the training run `finetune-emotions.py`. You can change the base model, or the dataset by changing that file's code. ## Example Run `example.py` ## Train The model is already trained on `bert-base-uncased` with the [emotions dataset](https://huggingface.co/datasets/emotion). However, you can change parameters and re-fine-tune the model by running `finetune-emotions.py`.
cj-mills/q-Taxi-v3
cj-mills
2022-05-27T00:59:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T00:30:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="cj-mills/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
cj-mills/q-FrozenLake-v1-4x4-noSlippery
cj-mills
2022-05-27T00:58:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T23:43:50Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="cj-mills/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sdpetrides/ppe-LunarLander-v2
sdpetrides
2022-05-26T23:08:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T23:07:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 214.74 +/- 27.57 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alefarasin/q-FrozenLake-v1-4x4-noSlippery
alefarasin
2022-05-26T23:07:42Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T23:07:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="alefarasin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
castorini/mdpr-tied-pft-msmarco-ft-all
castorini
2022-05-26T21:14:21Z
204
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-26T21:05:47Z
The checkpoint is further fine-tuned based on the `castorini/mdpr-tied-pft-msmarco` checkpoint, on all the Mr. TyDi training data.
Aiyshwariya/bert-finetuned-squad
Aiyshwariya
2022-05-26T20:12:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-26T17:15:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
actionpace/pegasus-samsum
actionpace
2022-05-26T19:11:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-26T17:45:33Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7073 | 0.54 | 500 | 1.4841 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
UBC-NLP/AraT5-base-title-generation
UBC-NLP
2022-05-26T18:29:45Z
130
12
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "Arabic T5", "MSA", "Twitter", "Arabic Dialect", "Arabic Machine Translation", "Arabic Text Summarization", "Arabic News Title and Question Generation", "Arabic Paraphrasing and Transliteration", "Arabic Code-Switched Translation", "ar", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - ar tags: - Arabic T5 - MSA - Twitter - Arabic Dialect - Arabic Machine Translation - Arabic Text Summarization - Arabic News Title and Question Generation - Arabic Paraphrasing and Transliteration - Arabic Code-Switched Translation --- # AraT5-base-title-generation # AraT5: Text-to-Text Transformers for Arabic Language Generation <img src="https://huggingface.co/UBC-NLP/AraT5-base/resolve/main/AraT5_CR_new.png" alt="AraT5" width="45%" height="35%" align="right"/> This is the repository accompanying our paper [AraT5: Text-to-Text Transformers for Arabic Language Understanding and Generation](https://aclanthology.org/2022.acl-long.47/). In this is the repository we Introduce **AraT5<sub>MSA</sub>**, **AraT5<sub>Tweet</sub>**, and **AraT5**: three powerful Arabic-specific text-to-text Transformer based models; --- # How to use AraT5 models Below is an example for fine-tuning **AraT5-base** for News Title Generation on the Aranews dataset ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/AraT5-base-title-generation") model = AutoModelForSeq2SeqLM.from_pretrained("UBC-NLP/AraT5-base-title-generation") Document = "تحت رعاية صاحب السمو الملكي الأمير سعود بن نايف بن عبدالعزيز أمير المنطقة الشرقية اختتمت غرفة الشرقية مؤخرا، الثاني من مبادرتها لتأهيل وتدريب أبناء وبنات المملكة ضمن مبادرتها المجانية للعام 2019 حيث قدمت 6 برامج تدريبية نوعية. وثمن رئيس مجلس إدارة الغرفة، عبدالحكيم العمار الخالدي، رعاية سمو أمير المنطقة الشرقية للمبادرة، مؤكدا أن دعم سموه لجميع أنشطة ." encoding = tokenizer.encode_plus(Document,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=5 ) for id, output in enumerate(outputs): title = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) print("title#"+str(id), title) ``` **The input news document** <div style="white-space : pre-wrap !important;word-break: break-word; direction:rtl; text-align: right"> تحت رعاية صاحب السمو الملكي الأمير سعود بن نايف بن عبدالعزيز أمير المنطقة الشرقية اختتمت غرفة الشرقية مؤخرا، الثاني من مبادرتها لتأهيل وتدريب أبناء وبنات المملكة ضمن مبادرتها المجانية للعام 2019 حيث قدمت 6 برامج تدريبية نوعية. وثمن رئيس مجلس إدارة الغرفة، عبدالحكيم العمار الخالدي، رعاية سمو أمير المنطقة الشرقية للمبادرة، مؤكدا أن دعم سموه لجميع أنشطة . <br> </div> **The generated titles** ``` title#0 غرفة الشرقية تختتم المرحلة الثانية من مبادرتها لتأهيل وتدريب أبناء وبنات المملكة title#1 غرفة الشرقية تختتم الثاني من مبادرة تأهيل وتأهيل أبناء وبناتنا title#2 سعود بن نايف يختتم ثانى مبادراتها لتأهيل وتدريب أبناء وبنات المملكة title#3 أمير الشرقية يرعى اختتام برنامج برنامج تدريب أبناء وبنات المملكة title#4 سعود بن نايف يرعى اختتام مبادرة تأهيل وتدريب أبناء وبنات المملكة ``` # AraT5 Models Checkpoints AraT5 Pytorch and TensorFlow checkpoints are available on the Huggingface website for direct download and use ```exclusively for research```. ```For commercial use, please contact the authors via email @ (muhammad.mageed[at]ubc[dot]ca).``` | **Model** | **Link** | |---------|:------------------:| | **AraT5-base** | [https://huggingface.co/UBC-NLP/AraT5-base](https://huggingface.co/UBC-NLP/AraT5-base) | | **AraT5-msa-base** | [https://huggingface.co/UBC-NLP/AraT5-msa-base](https://huggingface.co/UBC-NLP/AraT5-msa-base) | | **AraT5-tweet-base** | [https://huggingface.co/UBC-NLP/AraT5-tweet-base](https://huggingface.co/UBC-NLP/AraT5-tweet-base) | | **AraT5-msa-small** | [https://huggingface.co/UBC-NLP/AraT5-msa-small](https://huggingface.co/UBC-NLP/AraT5-msa-small) | | **AraT5-tweet-small**| [https://huggingface.co/UBC-NLP/AraT5-tweet-small](https://huggingface.co/UBC-NLP/AraT5-tweet-small) | # BibTex If you use our models (Arat5-base, Arat5-msa-base, Arat5-tweet-base, Arat5-msa-small, or Arat5-tweet-small ) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ```bibtex @inproceedings{nagoudi-etal-2022-arat5, title = "{A}ra{T}5: Text-to-Text Transformers for {A}rabic Language Generation", author = "Nagoudi, El Moatez Billah and Elmadany, AbdelRahim and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.47", pages = "628--647", abstract = "Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects{--}Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with {\textasciitilde}49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5.", } ``` ## Acknowledgments We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We also thank the [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.
ericntay/distilbert-base-uncased-finetuned-emotion
ericntay
2022-05-26T16:51:22Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-26T13:53:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240722191505606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2055 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7795 | 1.0 | 250 | 0.2920 | 0.911 | 0.9079 | | 0.2373 | 2.0 | 500 | 0.2055 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Against61/q-Taxi-v3
Against61
2022-05-26T16:18:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T16:17:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Against61/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
thundaa/tape-fluorescence-prediction-RITA_s
thundaa
2022-05-26T15:37:58Z
4
0
transformers
[ "transformers", "pytorch", "rita", "text-classification", "protein language model", "generated_from_trainer", "custom_code", "dataset:train", "license:apache-2.0", "model-index", "autotrain_compatible", "region:us" ]
text-classification
2022-05-25T10:59:12Z
--- license: apache-2.0 tags: - protein language model - generated_from_trainer datasets: - train metrics: - spearmanr model-index: - name: tape-fluorescence-prediction-RITA_s results: - task: name: Text Classification type: text-classification dataset: name: cradle-bio/tape-fluorescence type: train metrics: - name: Spearmanr type: spearmanr value: 0.2955275250425323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tape-fluorescence-prediction-RITA_s This model is a fine-tuned version of [lightonai/RITA_s](https://huggingface.co/lightonai/RITA_s) on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set: - Loss: 0.5855 - Spearmanr: 0.2955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 4096 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 4.3595 | 0.85 | 4 | 0.7057 | 0.0940 | | 0.8654 | 1.85 | 8 | 0.6873 | 0.1280 | | 0.8292 | 2.85 | 12 | 0.6835 | 0.2290 | | 0.8212 | 3.85 | 16 | 0.6837 | 0.3110 | | 0.8191 | 4.85 | 20 | 0.6799 | 0.3281 | | 0.8137 | 5.85 | 24 | 0.6748 | 0.3277 | | 0.8057 | 6.85 | 28 | 0.6592 | 0.3162 | | 0.7769 | 7.85 | 32 | 0.6283 | 0.3065 | | 0.7382 | 8.85 | 36 | 0.6103 | 0.2795 | | 0.5991 | 9.85 | 40 | 0.5855 | 0.2955 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ryan1998/distilbert-base-uncased-finetuned-emotion
ryan1998
2022-05-26T14:32:56Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-26T08:09:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5280 - Accuracy: 0.2886 - F1: 0.2742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1316 | 2.6049 | 0.2682 | 0.2516 | | No log | 2.0 | 2632 | 2.5280 | 0.2886 | 0.2742 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingnft/azuki
huggingnft
2022-05-26T14:22:20Z
13
1
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/azuki", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-15T21:52:23Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/azuki license: mit --- # Hugging NFT: azuki ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/azuki). Dataset is available [here](https://huggingface.co/datasets/huggingnft/azuki). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/azuki). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
Fra96/my-awesome-model
Fra96
2022-05-26T14:12:52Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-26T13:28:56Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: my-awesome-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model This model is a fine-tuned version of [dbmdz/bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3847 - Validation Loss: 0.3267 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3847 | 0.3267 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.9.0 - Datasets 2.2.2 - Tokenizers 0.12.1
kz/mt5base-finetuned-ECC-japanese-small
kz
2022-05-26T13:50:56Z
7
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "ja", "arxiv:2201.11903", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: "ja" widget: - text: "吾輩をは猫である。を書いた作家は,夏目漱 <extra_id_0>" - text: "吾輩をは猫である。名前えはまだない。" - text: "translate japanese to english: 赤い花. => red flower. 青い花. => <extra_id_0>" license: "mit" --- Google's mt5-base fine-tuned in Japanese to solve error detection and correction task. # 日本語誤り訂正 - "吾輩をは猫である。名前えはまだない。"→"吾輩は猫である。名前はまだない。" - "-small" has been trained on 20,000 text pairs only. - dataset: [link](http://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9EWikipedia%E5%85%A5%E5%8A%9B%E8%AA%A4%E3%82%8A%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) *used only first 20,000 text pairs. - prefix: "correction: " (notice: single task trained.) - text-to-textのお気持ち体験版ぐらいの感覚でどうぞ. ## 参考 - "東北大学でMASKが研究をしています。"→"東北大学でMASKの研究をしています。" ジム・キャリーを主語とした唯一のガ格が消され、ジム・キャリーは研究対象となった。易読化のために用いられる主語と動詞を近づける記法は誤り扱い? - "東北大学でマスクが研究をしています。"→"東北大学でマスクの研究をしています。" - "東北大学でイーロン・マスクが研究をしています。"→"東北大学でイーロン・マスクが研究をしています。" - "東北大学で「イーロン・マスク」が研究をしています。"→"東北大学で「イーロン・マスク」の研究をしています。" 単語の意味も考慮されている? - "東北大学でイマスクが研究をしています。"→"東北大学でイマスクの研究をしています。" - "東北大学でクが研究をしています。"→"東北大学でコンピューターが研究をしています。" それはちょっと待って。 ## 参考 extra_idを用い探索 <>は半角に変更してください - "東北大学で <extra_id_0> の研究をしています。"→"東北大学で化学の研究をしています。" - "東北大学で <extra_id_0> が研究をしています。"→"東北大学で工学が研究をしています。" 工学さん。 - "吾輩は <extra_id_0> である。"→"吾輩は吾輩である。" - "答えは猫です。吾輩は <extra_id_0> である。"→"答えは猫です。吾輩は猫である。" - "答えは猫です。吾輩の <extra_id_0> である。"→"答えは猫です。吾輩の心は猫である。" - "私は猫です。私は <extra_id_0>"→"私は猫です。私は猫です。" - "私は猫です。N/A <extra_id_0>"→"猫です。" - "あなたは女性で猫です。彼は犬です。彼女は <extra_id_0>"→"あなたは女性で猫です。彼は犬です。彼女は猫です。" - "あなたは女性で猫です。彼は犬です。彼は <extra_id_0>"→"あなたは女性で猫です。彼は犬です。" - "あなたは女性で猫です。彼は犬です。彼は男性で <extra_id_0>"→"あなたは女性で猫です。彼は犬です。彼は男性で猫です。" - "あなたは女性で猫です。彼は犬です。ライオンは <extra_id_0>"→"あなたは女性で猫です。彼は犬です。ライオンは猫です。" - "あなたがは女性で猫です。彼はが犬です。ライオンが <extra_id_0>"→"あなたが女性で猫です。彼は犬です。ライオンが犬です。" - "Aは11、Bは9。Aは <extra_id_0> 。Bは <extra_id_1> 。"→"Aは11、Bは9。Aは11。Bは9。" - "彼の名前はallenです。彼のnameは <extra_id_0>"→"彼の名前はallenです。彼の名前は英語です。" - "translate japanease to english: 赤い花. => red flower. 青い花. => <extra_id_0>"→"赤い花. => red flower. 青い花. => blue flower" タスク比依存翻訳可能性の片鱗.japaneseをjapaneaseと間違えたことは秘密だ・・・と言うか間違えても動くのか ## Prompting参考 Chain of Thought Prompting Elicits Reasoning in Large Language Models https://arxiv.org/abs/2201.11903 **check in progress** ## Licenese - The MIT license
i8pxgd2s/ppo-LunarLander-v2-version3
i8pxgd2s
2022-05-26T13:29:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T13:29:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 234.71 +/- 71.44 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
krotima1/mbart-ht2a-cs
krotima1
2022-05-26T12:59:01Z
8
2
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "Summarization", "abstractive summarization", "mbart-cc25", "Czech", "cs", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-22T23:41:07Z
--- language: - cs - cs tags: - Summarization - abstractive summarization - mbart-cc25 - Czech license: apache-2.0 datasets: - private Czech News Center dataset news-based - SumeCzech dataset news-based metrics: - rouge - rougeraw --- # mBART fine-tuned model for Czech abstractive summarization (HT2A-CS) This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Czech news dataset to produce Czech abstractive summaries. ## Task The model deals with the task ``Headline + Text to Abstract`` (HT2A) which consists in generating a multi-sentence summary considered as an abstract from a Czech news text. ## Dataset The model has been trained on a large Czech news dataset developed by a concatenation of two datasets, the private CNC dataset provided by Czech News Center and [SumeCzech](https://ufal.mff.cuni.cz/sumeczech) dataset. The dataset includes around 1.75M Czech news-based documents consisting of a Headline, Abstract, and Full-text sections. Truncation and padding were set to 512 tokens for the encoder and 128 for the decoder. ## Training The model has been trained on 1x NVIDIA Tesla A100 40GB for 60 hours and 4x NVIDIA Tesla A100 40GB for 40 hours. During training, the model has seen 12896K documents corresponding to roughly 8.4 epochs. # Use Assuming that you are using the provided Summarizer.ipynb file. ```python def summ_config(): cfg = OrderedDict([ # summarization model - checkpoint from website ("model_name", "krotima1/mbart-ht2a-cs"), ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.89), ("repetition_penalty", 1.2), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 128), ("min_length", 10), ])), #texts to summarize ("text", [ "Input your Czech text", ] ), ]) return cfg cfg = summ_config() #load model model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"]) tokenizer = AutoTokenizer.from_pretrained(cfg["model_name"]) # init summarizer summarize = Summarizer(model, tokenizer, cfg["inference_cfg"]) summarize(cfg["text"]) ```
Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned
Finnish-NLP
2022-05-26T12:42:28Z
33
3
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_9_0", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-14T16:30:58Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: wav2vec2-base-fi-voxpopuli-v2-finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: fi metrics: - name: Test WER type: wer value: 5.93 - name: Test CER type: cer value: 1.40 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs args: fi_fi metrics: - name: Test WER type: wer value: 13.99 - name: Test CER type: cer value: 6.07 --- # Wav2Vec2-base-fi-voxpopuli-v2 for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-base-fi-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-fi-voxpopuli-v2) for Finnish ASR. The model has been fine-tuned with 276.7 hours of Finnish transcribed speech data. Wav2Vec2 was introduced in [this paper](https://arxiv.org/abs/2006.11477) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. ## Model description [Wav2vec2-base-fi-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-fi-voxpopuli-v2) is Facebook AI's pretrained model for Finnish speech. It is pretrained on 14.2k hours of unlabeled Finnish speech from [VoxPopuli V2 dataset](https://github.com/facebookresearch/voxpopuli/) with the wav2vec 2.0 objective. This model is fine-tuned version of the pretrained model for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 276.7 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 9.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) | 10.80 h | 3.90 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.94 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.73 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.40 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.94 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained on a Tesla V100 GPU, sponsored by Hugging Face & OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-base-fi-voxpopuli-v2` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.575 | 0.33 | 500 | 0.7454 | 0.7048 | | 0.5838 | 0.66 | 1000 | 0.2377 | 0.2608 | | 0.5692 | 1.0 | 1500 | 0.2014 | 0.2244 | | 0.5112 | 1.33 | 2000 | 0.1885 | 0.2013 | | 0.4857 | 1.66 | 2500 | 0.1881 | 0.2120 | | 0.4821 | 1.99 | 3000 | 0.1603 | 0.1894 | | 0.4531 | 2.32 | 3500 | 0.1594 | 0.1865 | | 0.4411 | 2.65 | 4000 | 0.1641 | 0.1874 | | 0.4437 | 2.99 | 4500 | 0.1545 | 0.1874 | | 0.4191 | 3.32 | 5000 | 0.1565 | 0.1770 | | 0.4158 | 3.65 | 5500 | 0.1696 | 0.1867 | | 0.4032 | 3.98 | 6000 | 0.1561 | 0.1746 | | 0.4003 | 4.31 | 6500 | 0.1432 | 0.1749 | | 0.4059 | 4.64 | 7000 | 0.1390 | 0.1690 | | 0.4019 | 4.98 | 7500 | 0.1291 | 0.1646 | | 0.3811 | 5.31 | 8000 | 0.1485 | 0.1755 | | 0.3955 | 5.64 | 8500 | 0.1351 | 0.1659 | | 0.3562 | 5.97 | 9000 | 0.1328 | 0.1614 | | 0.3646 | 6.3 | 9500 | 0.1329 | 0.1584 | | 0.351 | 6.64 | 10000 | 0.1342 | 0.1554 | | 0.3408 | 6.97 | 10500 | 0.1422 | 0.1509 | | 0.3562 | 7.3 | 11000 | 0.1309 | 0.1528 | | 0.3335 | 7.63 | 11500 | 0.1305 | 0.1506 | | 0.3491 | 7.96 | 12000 | 0.1365 | 0.1560 | | 0.3538 | 8.29 | 12500 | 0.1293 | 0.1512 | | 0.3338 | 8.63 | 13000 | 0.1328 | 0.1511 | | 0.3509 | 8.96 | 13500 | 0.1304 | 0.1520 | | 0.3431 | 9.29 | 14000 | 0.1360 | 0.1517 | | 0.3309 | 9.62 | 14500 | 0.1328 | 0.1514 | | 0.3252 | 9.95 | 15000 | 0.1316 | 0.1498 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [Common Voice 9.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) and with the [FLEURS ASR Finnish test split](https://huggingface.co/datasets/google/fleurs). This model's training data includes the training splits of Common Voice 9.0 but most of our previous models include the Common Voice 7.0 so we ran tests for both Common Voice versions. Note: Common Voice doesn't seem to fully preserve the test split as fixed between the dataset versions so it is possible that some of the training examples of Common Voice 9.0 are in the test split of the Common Voice 7.0 and vice versa. Thus, Common Voice test result comparisons are not fully accurate between the models trained with different Common Voice versions but the comparison should still be meaningful enough. ### Common Voice 7.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.85 |13.52 |1.35 |2.44 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |**9.66** |0.90 |1.66 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |8.16 |17.92 |1.97 |3.36 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.65 |13.11 |1.20 |2.23 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**4.09** |9.73 |**0.88** |**1.65** | ### Common Voice 9.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned --dataset mozilla-foundation/common_voice_9_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.93 |14.08 |1.40 |2.59 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |9.83 |0.92 |1.71 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |7.42 |16.45 |1.79 |3.07 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.35 |13.00 |1.14 |2.20 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**3.72** |**8.96** |**0.80** |**1.52** | ### FLEURS ASR testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned --dataset google/fleurs --config fi_fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |13.99 |17.16 |6.07 |6.61 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |12.44 |**14.63** |5.77 |6.22 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |17.72 |23.30 |6.78 |7.67 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |20.34 |16.67 |6.97 |6.35 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**12.11** |14.89 |**5.65** |**6.06** | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish
Finnish-NLP
2022-05-26T12:37:37Z
176
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_9_0", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-21T19:42:16Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: wav2vec2-large-uralic-voxpopuli-v2-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: fi metrics: - name: Test WER type: wer value: 4.13 - name: Test CER type: cer value: 0.92 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs args: fi_fi metrics: - name: Test WER type: wer value: 12.44 - name: Test CER type: cer value: 5.77 --- # Wav2vec2-large-uralic-voxpopuli-v2 for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-large-uralic-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2) for Finnish ASR. The model has been fine-tuned with 276.7 hours of Finnish transcribed speech data. Wav2Vec2 was introduced in [this paper](https://arxiv.org/abs/2006.11477) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. ## Model description [Wav2vec2-large-uralic-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2) is Facebook AI's pretrained model for uralic language family (Finnish, Estonian, Hungarian) speech. It is pretrained on 42.5k hours of unlabeled Finnish, Estonian and Hungarian speech from [VoxPopuli V2 dataset](https://github.com/facebookresearch/voxpopuli/) with the wav2vec 2.0 objective. This model is fine-tuned version of the pretrained model for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 276.7 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 9.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) | 10.80 h | 3.90 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.94 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.73 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.40 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.94 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained on a Tesla V100 GPU, sponsored by Hugging Face & OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-large-uralic-voxpopuli-v2` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9421 | 0.17 | 500 | 0.8633 | 0.8870 | | 0.572 | 0.33 | 1000 | 0.1650 | 0.1829 | | 0.5149 | 0.5 | 1500 | 0.1416 | 0.1711 | | 0.4884 | 0.66 | 2000 | 0.1265 | 0.1605 | | 0.4729 | 0.83 | 2500 | 0.1205 | 0.1485 | | 0.4723 | 1.0 | 3000 | 0.1108 | 0.1403 | | 0.443 | 1.16 | 3500 | 0.1175 | 0.1439 | | 0.4378 | 1.33 | 4000 | 0.1083 | 0.1482 | | 0.4313 | 1.49 | 4500 | 0.1110 | 0.1398 | | 0.4182 | 1.66 | 5000 | 0.1024 | 0.1418 | | 0.3884 | 1.83 | 5500 | 0.1032 | 0.1395 | | 0.4034 | 1.99 | 6000 | 0.0985 | 0.1318 | | 0.3735 | 2.16 | 6500 | 0.1008 | 0.1355 | | 0.4174 | 2.32 | 7000 | 0.0970 | 0.1361 | | 0.3581 | 2.49 | 7500 | 0.0968 | 0.1297 | | 0.3783 | 2.66 | 8000 | 0.0881 | 0.1284 | | 0.3827 | 2.82 | 8500 | 0.0921 | 0.1352 | | 0.3651 | 2.99 | 9000 | 0.0861 | 0.1298 | | 0.3684 | 3.15 | 9500 | 0.0844 | 0.1270 | | 0.3784 | 3.32 | 10000 | 0.0870 | 0.1248 | | 0.356 | 3.48 | 10500 | 0.0828 | 0.1214 | | 0.3524 | 3.65 | 11000 | 0.0878 | 0.1218 | | 0.3879 | 3.82 | 11500 | 0.0874 | 0.1216 | | 0.3521 | 3.98 | 12000 | 0.0860 | 0.1210 | | 0.3527 | 4.15 | 12500 | 0.0818 | 0.1184 | | 0.3529 | 4.31 | 13000 | 0.0787 | 0.1185 | | 0.3114 | 4.48 | 13500 | 0.0852 | 0.1202 | | 0.3495 | 4.65 | 14000 | 0.0807 | 0.1187 | | 0.34 | 4.81 | 14500 | 0.0796 | 0.1162 | | 0.3646 | 4.98 | 15000 | 0.0782 | 0.1149 | | 0.3004 | 5.14 | 15500 | 0.0799 | 0.1142 | | 0.3167 | 5.31 | 16000 | 0.0847 | 0.1123 | | 0.3249 | 5.48 | 16500 | 0.0837 | 0.1171 | | 0.3202 | 5.64 | 17000 | 0.0749 | 0.1109 | | 0.3104 | 5.81 | 17500 | 0.0798 | 0.1093 | | 0.3039 | 5.97 | 18000 | 0.0810 | 0.1132 | | 0.3157 | 6.14 | 18500 | 0.0847 | 0.1156 | | 0.3133 | 6.31 | 19000 | 0.0833 | 0.1140 | | 0.3203 | 6.47 | 19500 | 0.0838 | 0.1113 | | 0.3178 | 6.64 | 20000 | 0.0907 | 0.1141 | | 0.3182 | 6.8 | 20500 | 0.0938 | 0.1143 | | 0.3 | 6.97 | 21000 | 0.0854 | 0.1133 | | 0.3151 | 7.14 | 21500 | 0.0859 | 0.1109 | | 0.2963 | 7.3 | 22000 | 0.0832 | 0.1122 | | 0.3099 | 7.47 | 22500 | 0.0865 | 0.1103 | | 0.322 | 7.63 | 23000 | 0.0833 | 0.1105 | | 0.3064 | 7.8 | 23500 | 0.0865 | 0.1078 | | 0.2964 | 7.97 | 24000 | 0.0859 | 0.1096 | | 0.2869 | 8.13 | 24500 | 0.0872 | 0.1100 | | 0.315 | 8.3 | 25000 | 0.0869 | 0.1099 | | 0.3003 | 8.46 | 25500 | 0.0878 | 0.1105 | | 0.2947 | 8.63 | 26000 | 0.0884 | 0.1084 | | 0.297 | 8.8 | 26500 | 0.0891 | 0.1102 | | 0.3049 | 8.96 | 27000 | 0.0863 | 0.1081 | | 0.2957 | 9.13 | 27500 | 0.0846 | 0.1083 | | 0.2908 | 9.29 | 28000 | 0.0848 | 0.1059 | | 0.2955 | 9.46 | 28500 | 0.0846 | 0.1085 | | 0.2991 | 9.62 | 29000 | 0.0839 | 0.1081 | | 0.3112 | 9.79 | 29500 | 0.0832 | 0.1071 | | 0.29 | 9.96 | 30000 | 0.0828 | 0.1075 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [Common Voice 9.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) and with the [FLEURS ASR Finnish test split](https://huggingface.co/datasets/google/fleurs). This model's training data includes the training splits of Common Voice 9.0 but most of our previous models include the Common Voice 7.0 so we ran tests for both Common Voice versions. Note: Common Voice doesn't seem to fully preserve the test split as fixed between the dataset versions so it is possible that some of the training examples of Common Voice 9.0 are in the test split of the Common Voice 7.0 and vice versa. Thus, Common Voice test result comparisons are not fully accurate between the models trained with different Common Voice versions but the comparison should still be meaningful enough. ### Common Voice 7.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.85 |13.52 |1.35 |2.44 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |**9.66** |0.90 |1.66 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |8.16 |17.92 |1.97 |3.36 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.65 |13.11 |1.20 |2.23 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**4.09** |9.73 |**0.88** |**1.65** | ### Common Voice 9.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish --dataset mozilla-foundation/common_voice_9_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.93 |14.08 |1.40 |2.59 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |9.83 |0.92 |1.71 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |7.42 |16.45 |1.79 |3.07 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.35 |13.00 |1.14 |2.20 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**3.72** |**8.96** |**0.80** |**1.52** | ### FLEURS ASR testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish --dataset google/fleurs --config fi_fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |13.99 |17.16 |6.07 |6.61 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |12.44 |**14.63** |5.77 |6.22 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |17.72 |23.30 |6.78 |7.67 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |20.34 |16.67 |6.97 |6.35 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**12.11** |14.89 |**5.65** |**6.06** | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
redcy/FrasierBotv1
redcy
2022-05-26T12:25:09Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-26T12:15:45Z
--- tags: - conversational license: afl-3.0 ---
chrisvinsen/wav2vec2-base-timit-demo-colab
chrisvinsen
2022-05-26T12:14:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-16T01:37:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4617 - Wer: 0.3416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4272 | 4.0 | 500 | 1.3108 | 1.0214 | | 0.5997 | 8.0 | 1000 | 0.4324 | 0.4310 | | 0.219 | 12.0 | 1500 | 0.4512 | 0.3864 | | 0.1264 | 16.0 | 2000 | 0.5002 | 0.3721 | | 0.0834 | 20.0 | 2500 | 0.4934 | 0.3550 | | 0.0616 | 24.0 | 3000 | 0.4467 | 0.3475 | | 0.0477 | 28.0 | 3500 | 0.4617 | 0.3416 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Kashni/damontvd
Kashni
2022-05-26T11:43:34Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-26T11:24:49Z
--- tags: - conversation --- #Damon from TVD
sayanmandal/t5-small_6_3-hi_en-to-en
sayanmandal
2022-05-26T11:32:32Z
14
2
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:cmu_hinglish_dog", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-05-26T04:44:38Z
--- tags: - translation - generated_from_trainer datasets: - cmu_hinglish_dog metrics: - bleu model-index: - name: t5-small_6_3-hi_en-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cmu_hinglish_dog type: cmu_hinglish_dog args: hi_en-en metrics: - name: Bleu type: bleu value: 18.0863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_6_3-hi_en-to-en This model was trained from scratch on the cmu_hinglish_dog dataset. It achieves the following results on the evaluation set: - Loss: 2.3662 - Bleu: 18.0863 - Gen Len: 15.2708 ## Model description Model generated using:<br /> ```python make_student.py t5-small t5_small_6_3 6 3```<br /> Check this [link](https://discuss.huggingface.co/t/questions-on-distilling-from-t5/1193/9) for more information. ## Intended uses & limitations More information needed ## Training and evaluation data Used cmu_hinglish_dog dataset. Please check this [link](https://huggingface.co/datasets/cmu_hinglish_dog) for dataset description ## Translation: * Source: hi_en: The text in Hinglish * Target: en: The text in English ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 126 | 3.0601 | 4.7146 | 11.9904 | | No log | 2.0 | 252 | 2.8885 | 5.9584 | 12.3418 | | No log | 3.0 | 378 | 2.7914 | 6.649 | 12.3758 | | 3.4671 | 4.0 | 504 | 2.7347 | 7.3305 | 12.3854 | | 3.4671 | 5.0 | 630 | 2.6832 | 8.3132 | 12.4268 | | 3.4671 | 6.0 | 756 | 2.6485 | 8.339 | 12.3641 | | 3.4671 | 7.0 | 882 | 2.6096 | 8.7269 | 12.414 | | 3.0208 | 8.0 | 1008 | 2.5814 | 9.2163 | 12.2675 | | 3.0208 | 9.0 | 1134 | 2.5542 | 9.448 | 12.3875 | | 3.0208 | 10.0 | 1260 | 2.5339 | 9.9011 | 12.4321 | | 3.0208 | 11.0 | 1386 | 2.5043 | 9.7529 | 12.5149 | | 2.834 | 12.0 | 1512 | 2.4848 | 9.9606 | 12.4193 | | 2.834 | 13.0 | 1638 | 2.4737 | 9.9368 | 12.3673 | | 2.834 | 14.0 | 1764 | 2.4458 | 10.3182 | 12.4352 | | 2.834 | 15.0 | 1890 | 2.4332 | 10.486 | 12.4671 | | 2.7065 | 16.0 | 2016 | 2.4239 | 10.6921 | 12.414 | | 2.7065 | 17.0 | 2142 | 2.4064 | 10.7426 | 12.4607 | | 2.7065 | 18.0 | 2268 | 2.3941 | 11.0509 | 12.4087 | | 2.7065 | 19.0 | 2394 | 2.3826 | 11.2407 | 12.3386 | | 2.603 | 20.0 | 2520 | 2.3658 | 11.3711 | 12.3992 | | 2.603 | 21.0 | 2646 | 2.3537 | 11.42 | 12.5032 | | 2.603 | 22.0 | 2772 | 2.3475 | 12.0665 | 12.5074 | | 2.603 | 23.0 | 2898 | 2.3398 | 12.0343 | 12.4342 | | 2.5192 | 24.0 | 3024 | 2.3298 | 12.1011 | 12.5096 | | 2.5192 | 25.0 | 3150 | 2.3216 | 12.2562 | 12.4809 | | 2.5192 | 26.0 | 3276 | 2.3131 | 12.4585 | 12.4427 | | 2.5192 | 27.0 | 3402 | 2.3052 | 12.7094 | 12.534 | | 2.4445 | 28.0 | 3528 | 2.2984 | 12.7432 | 12.5053 | | 2.4445 | 29.0 | 3654 | 2.2920 | 12.8409 | 12.4501 | | 2.4445 | 30.0 | 3780 | 2.2869 | 12.6365 | 12.4936 | | 2.4445 | 31.0 | 3906 | 2.2777 | 12.8523 | 12.5234 | | 2.3844 | 32.0 | 4032 | 2.2788 | 12.9216 | 12.4204 | | 2.3844 | 33.0 | 4158 | 2.2710 | 12.9568 | 12.5064 | | 2.3844 | 34.0 | 4284 | 2.2643 | 12.9641 | 12.4299 | | 2.3844 | 35.0 | 4410 | 2.2621 | 12.9787 | 12.448 | | 2.3282 | 36.0 | 4536 | 2.2554 | 13.1264 | 12.4374 | | 2.3282 | 37.0 | 4662 | 2.2481 | 13.1853 | 12.4416 | | 2.3282 | 38.0 | 4788 | 2.2477 | 13.3259 | 12.4119 | | 2.3282 | 39.0 | 4914 | 2.2448 | 13.2017 | 12.4278 | | 2.2842 | 40.0 | 5040 | 2.2402 | 13.3772 | 12.4437 | | 2.2842 | 41.0 | 5166 | 2.2373 | 13.2184 | 12.414 | | 2.2842 | 42.0 | 5292 | 2.2357 | 13.5267 | 12.4342 | | 2.2842 | 43.0 | 5418 | 2.2310 | 13.5754 | 12.4087 | | 2.2388 | 44.0 | 5544 | 2.2244 | 13.653 | 12.4427 | | 2.2388 | 45.0 | 5670 | 2.2243 | 13.6028 | 12.431 | | 2.2388 | 46.0 | 5796 | 2.2216 | 13.7128 | 12.4151 | | 2.2388 | 47.0 | 5922 | 2.2231 | 13.749 | 12.4172 | | 2.2067 | 48.0 | 6048 | 2.2196 | 13.7256 | 12.4034 | | 2.2067 | 49.0 | 6174 | 2.2125 | 13.8237 | 12.396 | | 2.2067 | 50.0 | 6300 | 2.2131 | 13.6642 | 12.4416 | | 2.2067 | 51.0 | 6426 | 2.2115 | 13.8876 | 12.4119 | | 2.1688 | 52.0 | 6552 | 2.2091 | 14.0323 | 12.4639 | | 2.1688 | 53.0 | 6678 | 2.2082 | 13.916 | 12.3843 | | 2.1688 | 54.0 | 6804 | 2.2071 | 13.924 | 12.3758 | | 2.1688 | 55.0 | 6930 | 2.2046 | 13.9563 | 12.4416 | | 2.1401 | 56.0 | 7056 | 2.2020 | 14.0592 | 12.483 | | 2.1401 | 57.0 | 7182 | 2.2047 | 13.8879 | 12.4076 | | 2.1401 | 58.0 | 7308 | 2.2018 | 13.9267 | 12.3949 | | 2.1401 | 59.0 | 7434 | 2.1964 | 14.0518 | 12.4363 | | 2.1092 | 60.0 | 7560 | 2.1926 | 14.1518 | 12.4883 | | 2.1092 | 61.0 | 7686 | 2.1972 | 14.132 | 12.4034 | | 2.1092 | 62.0 | 7812 | 2.1939 | 14.2066 | 12.4151 | | 2.1092 | 63.0 | 7938 | 2.1905 | 14.2923 | 12.4459 | | 2.0932 | 64.0 | 8064 | 2.1932 | 14.2476 | 12.3418 | | 2.0932 | 65.0 | 8190 | 2.1925 | 14.2057 | 12.3907 | | 2.0932 | 66.0 | 8316 | 2.1906 | 14.2978 | 12.4055 | | 2.0932 | 67.0 | 8442 | 2.1903 | 14.3276 | 12.4427 | | 2.0706 | 68.0 | 8568 | 2.1918 | 14.4681 | 12.4034 | | 2.0706 | 69.0 | 8694 | 2.1882 | 14.3751 | 12.4225 | | 2.0706 | 70.0 | 8820 | 2.1870 | 14.5904 | 12.4204 | | 2.0706 | 71.0 | 8946 | 2.1865 | 14.6409 | 12.4512 | | 2.0517 | 72.0 | 9072 | 2.1831 | 14.6505 | 12.4352 | | 2.0517 | 73.0 | 9198 | 2.1835 | 14.7485 | 12.4363 | | 2.0517 | 74.0 | 9324 | 2.1824 | 14.7344 | 12.4586 | | 2.0517 | 75.0 | 9450 | 2.1829 | 14.8097 | 12.4575 | | 2.0388 | 76.0 | 9576 | 2.1822 | 14.6681 | 12.4108 | | 2.0388 | 77.0 | 9702 | 2.1823 | 14.6421 | 12.4342 | | 2.0388 | 78.0 | 9828 | 2.1816 | 14.7014 | 12.4459 | | 2.0388 | 79.0 | 9954 | 2.1810 | 14.744 | 12.4565 | | 2.0224 | 80.0 | 10080 | 2.1839 | 14.7889 | 12.4437 | | 2.0224 | 81.0 | 10206 | 2.1793 | 14.802 | 12.4565 | | 2.0224 | 82.0 | 10332 | 2.1776 | 14.7702 | 12.4214 | | 2.0224 | 83.0 | 10458 | 2.1809 | 14.6772 | 12.4236 | | 2.0115 | 84.0 | 10584 | 2.1786 | 14.709 | 12.4214 | | 2.0115 | 85.0 | 10710 | 2.1805 | 14.7693 | 12.3981 | | 2.0115 | 86.0 | 10836 | 2.1790 | 14.7628 | 12.4172 | | 2.0115 | 87.0 | 10962 | 2.1785 | 14.7538 | 12.3992 | | 2.0007 | 88.0 | 11088 | 2.1788 | 14.7493 | 12.3726 | | 2.0007 | 89.0 | 11214 | 2.1788 | 14.8793 | 12.4045 | | 2.0007 | 90.0 | 11340 | 2.1786 | 14.8318 | 12.3747 | | 2.0007 | 91.0 | 11466 | 2.1769 | 14.8061 | 12.4013 | | 1.9967 | 92.0 | 11592 | 2.1757 | 14.8108 | 12.3843 | | 1.9967 | 93.0 | 11718 | 2.1747 | 14.8036 | 12.379 | | 1.9967 | 94.0 | 11844 | 2.1764 | 14.7447 | 12.3737 | | 1.9967 | 95.0 | 11970 | 2.1759 | 14.7759 | 12.3875 | | 1.9924 | 96.0 | 12096 | 2.1760 | 14.7695 | 12.3875 | | 1.9924 | 97.0 | 12222 | 2.1762 | 14.8022 | 12.3769 | | 1.9924 | 98.0 | 12348 | 2.1763 | 14.7519 | 12.3822 | | 1.9924 | 99.0 | 12474 | 2.1760 | 14.7756 | 12.3832 | | 1.9903 | 100.0 | 12600 | 2.1761 | 14.7713 | 12.3822 | ### Evaluation results | Data Split | Bleu | |:----------:|:-------:| | Validation | 17.8061 | | Test | 18.0863 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
madatnlp/mbart
madatnlp
2022-05-26T11:25:18Z
3
0
transformers
[ "transformers", "tf", "mbart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-26T08:26:54Z
--- tags: - generated_from_keras_callback model-index: - name: mbart results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mbart This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5342 - Validation Loss: 0.5633 - Epoch: 35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'SGD', 'learning_rate': 0.01, 'decay': 0.0, 'momentum': 0.9, 'nesterov': False} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.5626 | 3.7843 | 0 | | 2.5836 | 1.9212 | 1 | | 1.6546 | 1.2552 | 2 | | 1.2499 | 1.0248 | 3 | | 1.0088 | 0.8457 | 4 | | 0.9100 | 0.7958 | 5 | | 0.8290 | 0.8421 | 6 | | 0.7999 | 0.7625 | 7 | | 0.7633 | 0.7202 | 8 | | 0.7439 | 0.7100 | 9 | | 0.7182 | 0.6787 | 10 | | 0.7092 | 0.6877 | 11 | | 0.6823 | 0.6684 | 12 | | 0.6738 | 0.6712 | 13 | | 0.6603 | 0.6858 | 14 | | 0.6462 | 0.6268 | 15 | | 0.6373 | 0.6208 | 16 | | 0.6424 | 0.6735 | 17 | | 0.6259 | 0.6423 | 18 | | 0.6249 | 0.6069 | 19 | | 0.6148 | 0.6510 | 20 | | 0.6063 | 0.6207 | 21 | | 0.5987 | 0.5977 | 22 | | 0.5917 | 0.6019 | 23 | | 0.5800 | 0.5828 | 24 | | 0.5779 | 0.5505 | 25 | | 0.5765 | 0.5887 | 26 | | 0.5667 | 0.5989 | 27 | | 0.5623 | 0.5859 | 28 | | 0.5564 | 0.5907 | 29 | | 0.5523 | 0.5928 | 30 | | 0.5478 | 0.5624 | 31 | | 0.5472 | 0.5563 | 32 | | 0.5462 | 0.5953 | 33 | | 0.5324 | 0.5593 | 34 | | 0.5342 | 0.5633 | 35 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
imohammad12/GRS-Constrained-Paraphrasing-Bart
imohammad12
2022-05-26T10:49:26Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "grs", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-19T00:14:51Z
--- language: en tags: grs --- ## Citation Please star the [GRS GitHub repo](https://github.com/imohammad12/GRS) and cite the paper if you found our model useful: ``` @inproceedings{dehghan-etal-2022-grs, title = "{GRS}: Combining Generation and Revision in Unsupervised Sentence Simplification", author = "Dehghan, Mohammad and Kumar, Dhruv and Golab, Lukasz", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.77", pages = "949--960", abstract = "We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.", } ```
imohammad12/GRS-complex-simple-classifier-DeBerta
imohammad12
2022-05-26T10:49:13Z
5
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "grs", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-18T22:37:49Z
--- language: en tags: grs --- ## Citation Please star the [GRS GitHub repo](https://github.com/imohammad12/GRS) and cite the paper if you found our model useful: ``` @inproceedings{dehghan-etal-2022-grs, title = "{GRS}: Combining Generation and Revision in Unsupervised Sentence Simplification", author = "Dehghan, Mohammad and Kumar, Dhruv and Golab, Lukasz", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.77", pages = "949--960", abstract = "We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.", } ```
imohammad12/GRS-Grammar-Checker-DeBerta
imohammad12
2022-05-26T10:48:39Z
6
1
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "grs", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-19T01:01:25Z
--- language: en tags: grs --- ## Citation Please star the [GRS GitHub repo](https://github.com/imohammad12/GRS) and cite the paper if you found our model useful: ``` @inproceedings{dehghan-etal-2022-grs, title = "{GRS}: Combining Generation and Revision in Unsupervised Sentence Simplification", author = "Dehghan, Mohammad and Kumar, Dhruv and Golab, Lukasz", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.77", pages = "949--960", abstract = "We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.", } ```
Obaid/Test1ppo-LunarLander-v2
Obaid
2022-05-26T09:04:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T09:03:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 238.77 +/- 14.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GRANTHE2761/swin-tiny-patch4-window7-224-finetuned-eurosat
GRANTHE2761
2022-05-26T09:00:52Z
71
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-26T08:44:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9688888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0866 - Accuracy: 0.9689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3046 | 1.0 | 95 | 0.1547 | 0.9452 | | 0.191 | 2.0 | 190 | 0.1161 | 0.9559 | | 0.1701 | 3.0 | 285 | 0.0866 | 0.9689 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
duclee9x/wav2vec2-voa-example
duclee9x
2022-05-26T08:32:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-25T22:33:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-voa-example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-voa-example This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.296 | 4.35 | 500 | 3.7226 | 1.0 | | 3.027 | 8.7 | 1000 | 3.7233 | 1.0 | | 3.0376 | 13.04 | 1500 | 3.7246 | 1.0 | | 3.0221 | 17.39 | 2000 | nan | 1.0 | | 0.0 | 21.74 | 2500 | nan | 1.0 | | 0.0 | 26.09 | 3000 | nan | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RuiqianLi/one-simple-finetune-test
RuiqianLi
2022-05-26T07:41:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:li_singlish", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-26T06:59:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - li_singlish model-index: - name: one-simple-finetune-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # one-simple-finetune-test This model is a fine-tuned version of [RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab](https://huggingface.co/RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab) on the li_singlish dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
SusBioRes-UBC/q-FrozenLake-v1-4x4-noSlippery
SusBioRes-UBC
2022-05-26T04:39:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-26T04:39:47Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SusBioRes-UBC/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Vkt/victor-hg-ptbr-2.0
Vkt
2022-05-26T04:10:53Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-24T13:07:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: victor-hg-ptbr-2.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # victor-hg-ptbr-2.0 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0240 - Wer: 0.0219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4069 | 0.21 | 400 | 1.1372 | 0.9140 | | 0.8079 | 0.43 | 800 | 0.5822 | 0.5339 | | 0.5821 | 0.64 | 1200 | 0.4226 | 0.4177 | | 0.5159 | 0.86 | 1600 | 0.4074 | 0.3970 | | 0.4484 | 1.07 | 2000 | 0.3144 | 0.3220 | | 0.3937 | 1.29 | 2400 | 0.3160 | 0.3264 | | 0.3911 | 1.5 | 2800 | 0.2863 | 0.2956 | | 0.3761 | 1.71 | 3200 | 0.3029 | 0.3128 | | 0.3722 | 1.93 | 3600 | 0.2771 | 0.2933 | | 0.3193 | 2.14 | 4000 | 0.2603 | 0.2795 | | 0.3013 | 2.36 | 4400 | 0.2682 | 0.2703 | | 0.3039 | 2.57 | 4800 | 0.2630 | 0.2618 | | 0.3133 | 2.79 | 5200 | 0.2578 | 0.2629 | | 0.3173 | 3.0 | 5600 | 0.2640 | 0.2746 | | 0.2521 | 3.22 | 6000 | 0.2797 | 0.2662 | | 0.2654 | 3.43 | 6400 | 0.2762 | 0.2640 | | 0.2586 | 3.64 | 6800 | 0.2642 | 0.2596 | | 0.265 | 3.86 | 7200 | 0.2656 | 0.2794 | | 0.2432 | 4.07 | 7600 | 0.2459 | 0.2497 | | 0.226 | 4.29 | 8000 | 0.2533 | 0.2509 | | 0.2385 | 4.5 | 8400 | 0.2332 | 0.2394 | | 0.2332 | 4.72 | 8800 | 0.2500 | 0.2569 | | 0.2358 | 4.93 | 9200 | 0.2384 | 0.2489 | | 0.2169 | 5.14 | 9600 | 0.2410 | 0.2380 | | 0.2038 | 5.36 | 10000 | 0.2426 | 0.2333 | | 0.2109 | 5.57 | 10400 | 0.2480 | 0.2473 | | 0.2147 | 5.79 | 10800 | 0.2341 | 0.2272 | | 0.2153 | 6.0 | 11200 | 0.2402 | 0.2424 | | 0.186 | 6.22 | 11600 | 0.2560 | 0.2489 | | 0.1854 | 6.43 | 12000 | 0.2444 | 0.2402 | | 0.1915 | 6.65 | 12400 | 0.2720 | 0.2531 | | 0.1929 | 6.86 | 12800 | 0.2516 | 0.2342 | | 0.1842 | 7.07 | 13200 | 0.2480 | 0.2304 | | 0.1682 | 7.29 | 13600 | 0.2393 | 0.2276 | | 0.1753 | 7.5 | 14000 | 0.2514 | 0.2263 | | 0.1798 | 7.72 | 14400 | 0.2191 | 0.2178 | | 0.1736 | 7.93 | 14800 | 0.2351 | 0.2197 | | 0.1668 | 8.15 | 15200 | 0.2315 | 0.2194 | | 0.1545 | 8.36 | 15600 | 0.2291 | 0.2079 | | 0.1508 | 8.57 | 16000 | 0.2351 | 0.2134 | | 0.1662 | 8.79 | 16400 | 0.2298 | 0.2197 | | 0.1621 | 9.0 | 16800 | 0.2314 | 0.2219 | | 0.1416 | 9.22 | 17200 | 0.2306 | 0.2192 | | 0.1455 | 9.43 | 17600 | 0.2466 | 0.2184 | | 0.1522 | 9.65 | 18000 | 0.2392 | 0.2255 | | 0.1434 | 9.86 | 18400 | 0.2464 | 0.2208 | | 0.1362 | 10.08 | 18800 | 0.2351 | 0.2095 | | 0.127 | 10.29 | 19200 | 0.2373 | 0.2110 | | 0.133 | 10.5 | 19600 | 0.2269 | 0.2031 | | 0.1308 | 10.72 | 20000 | 0.2400 | 0.2096 | | 0.1331 | 10.93 | 20400 | 0.2243 | 0.2083 | | 0.125 | 11.15 | 20800 | 0.2334 | 0.2063 | | 0.1236 | 11.36 | 21200 | 0.2195 | 0.2044 | | 0.1263 | 11.58 | 21600 | 0.2263 | 0.2050 | | 0.1235 | 11.79 | 22000 | 0.2217 | 0.2087 | | 0.1301 | 12.0 | 22400 | 0.2332 | 0.2094 | | 0.1123 | 12.22 | 22800 | 0.2195 | 0.2068 | | 0.117 | 12.43 | 23200 | 0.2266 | 0.2110 | | 0.1156 | 12.65 | 23600 | 0.2469 | 0.2063 | | 0.1117 | 12.86 | 24000 | 0.2379 | 0.2035 | | 0.1124 | 13.08 | 24400 | 0.2156 | 0.1963 | | 0.106 | 13.29 | 24800 | 0.2310 | 0.1988 | | 0.1066 | 13.5 | 25200 | 0.2334 | 0.1950 | | 0.1069 | 13.72 | 25600 | 0.2230 | 0.2011 | | 0.1089 | 13.93 | 26000 | 0.2233 | 0.2003 | | 0.0977 | 14.15 | 26400 | 0.2273 | 0.1895 | | 0.0972 | 14.36 | 26800 | 0.2265 | 0.1887 | | 0.1005 | 14.58 | 27200 | 0.2196 | 0.1934 | | 0.1058 | 14.79 | 27600 | 0.2213 | 0.1870 | | 0.1027 | 15.01 | 28000 | 0.2361 | 0.1916 | | 0.0886 | 15.22 | 28400 | 0.2275 | 0.1815 | | 0.0885 | 15.43 | 28800 | 0.2230 | 0.1891 | | 0.0911 | 15.65 | 29200 | 0.2237 | 0.1989 | | 0.0923 | 15.86 | 29600 | 0.2200 | 0.1857 | | 0.0868 | 16.08 | 30000 | 0.2248 | 0.1875 | | 0.0812 | 16.29 | 30400 | 0.2240 | 0.1874 | | 0.0829 | 16.51 | 30800 | 0.2198 | 0.1814 | | 0.0832 | 16.72 | 31200 | 0.2328 | 0.1892 | | 0.0822 | 16.93 | 31600 | 0.2283 | 0.1862 | | 0.0828 | 17.15 | 32000 | 0.2283 | 0.1806 | | 0.0791 | 17.36 | 32400 | 0.2197 | 0.1787 | | 0.0801 | 17.58 | 32800 | 0.2249 | 0.1815 | | 0.0804 | 17.79 | 33200 | 0.2304 | 0.1789 | | 0.0833 | 18.01 | 33600 | 0.2235 | 0.1832 | | 0.0762 | 18.22 | 34000 | 0.2358 | 0.1784 | | 0.0688 | 18.44 | 34400 | 0.2183 | 0.1758 | | 0.0751 | 18.65 | 34800 | 0.2169 | 0.1805 | | 0.0729 | 18.86 | 35200 | 0.2296 | 0.1770 | | 0.0681 | 19.08 | 35600 | 0.2380 | 0.1770 | | 0.067 | 19.29 | 36000 | 0.2153 | 0.1777 | | 0.0669 | 19.51 | 36400 | 0.2260 | 0.1742 | | 0.0824 | 19.72 | 36800 | 0.0289 | 0.0310 | | 0.0857 | 19.94 | 37200 | 0.0289 | 0.0322 | | 0.0799 | 20.15 | 37600 | 0.0264 | 0.0298 | | 0.0767 | 20.36 | 38000 | 0.0273 | 0.0318 | | 0.079 | 20.58 | 38400 | 0.0274 | 0.0320 | | 0.0791 | 20.79 | 38800 | 0.0279 | 0.0318 | | 0.0805 | 21.01 | 39200 | 0.0285 | 0.0330 | | 0.0622 | 21.22 | 39600 | 0.0263 | 0.0306 | | 0.0622 | 21.44 | 40000 | 0.0290 | 0.0318 | | 0.0672 | 21.65 | 40400 | 0.0278 | 0.0330 | | 0.0706 | 21.86 | 40800 | 0.0270 | 0.0297 | | 0.0619 | 22.08 | 41200 | 0.0288 | 0.0328 | | 0.0633 | 22.29 | 41600 | 0.0256 | 0.0303 | | 0.0618 | 22.51 | 42000 | 0.0263 | 0.0299 | | 0.0576 | 22.72 | 42400 | 0.0273 | 0.0301 | | 0.0583 | 22.94 | 42800 | 0.0282 | 0.0297 | | 0.0565 | 23.15 | 43200 | 0.0256 | 0.0280 | | 0.0557 | 23.37 | 43600 | 0.0268 | 0.0280 | | 0.0548 | 23.58 | 44000 | 0.0266 | 0.0291 | | 0.056 | 23.79 | 44400 | 0.0264 | 0.0290 | | 0.0546 | 24.01 | 44800 | 0.0273 | 0.0284 | | 0.0496 | 24.22 | 45200 | 0.0261 | 0.0279 | | 0.0512 | 24.44 | 45600 | 0.0256 | 0.0281 | | 0.0482 | 24.65 | 46000 | 0.0264 | 0.0285 | | 0.0503 | 24.87 | 46400 | 0.0256 | 0.0268 | | 0.0471 | 25.08 | 46800 | 0.0270 | 0.0282 | | 0.0453 | 25.29 | 47200 | 0.0255 | 0.0267 | | 0.0431 | 25.51 | 47600 | 0.0251 | 0.0264 | | 0.0464 | 25.72 | 48000 | 0.0262 | 0.0261 | | 0.0431 | 25.94 | 48400 | 0.0257 | 0.0265 | | 0.0405 | 26.15 | 48800 | 0.0260 | 0.0251 | | 0.0406 | 26.37 | 49200 | 0.0246 | 0.0250 | | 0.0397 | 26.58 | 49600 | 0.0252 | 0.0254 | | 0.0403 | 26.8 | 50000 | 0.0250 | 0.0256 | | 0.0385 | 27.01 | 50400 | 0.0254 | 0.0241 | | 0.0398 | 27.22 | 50800 | 0.0255 | 0.0242 | | 0.0363 | 27.44 | 51200 | 0.0250 | 0.0236 | | 0.0372 | 27.65 | 51600 | 0.0247 | 0.0232 | | 0.0362 | 27.87 | 52000 | 0.0240 | 0.0226 | | 0.0367 | 28.08 | 52400 | 0.0246 | 0.0224 | | 0.0347 | 28.3 | 52800 | 0.0247 | 0.0229 | | 0.0348 | 28.51 | 53200 | 0.0241 | 0.0229 | | 0.0331 | 28.72 | 53600 | 0.0242 | 0.0224 | | 0.0339 | 28.94 | 54000 | 0.0241 | 0.0220 | | 0.0336 | 29.15 | 54400 | 0.0244 | 0.0221 | | 0.0336 | 29.37 | 54800 | 0.0243 | 0.0215 | | 0.0349 | 29.58 | 55200 | 0.0239 | 0.0217 | | 0.0308 | 29.8 | 55600 | 0.0240 | 0.0219 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu111 - Datasets 2.2.1 - Tokenizers 0.12.1
sumedh/pegasus
sumedh
2022-05-26T03:41:29Z
0
0
null
[ "region:us" ]
null
2022-05-22T23:23:36Z
Work in progress <br> Finetuned model for abstractive summarization coming soon <br>
luisu0124/Amazon_review
luisu0124
2022-05-26T03:28:01Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Text Classification", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-24T05:44:24Z
--- language: - es tags: - Text Classification --- ## language: - es ## tags: - amazon_reviews_multi - Text Clasiffication ### Dataset ![alt text](https://github.com/LuisU0124/IImage-NLP/blob/main/tokenmiz.png?raw=true) ### Example structure review: | review_id (string) | product_id (string) | reviewer_id (string) | stars (int) | review_body (string) | review_title (string) | language (string) | product_category (string) | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | de_0203609|product_de_0865382|reviewer_de_0267719|1|Armband ist leider nach 1 Jahr kaputt gegangen|Leider nach 1 Jahr kaputt|de|sports| ### Model ![alt text](https://github.com/LuisU0124/IImage-NLP/blob/main/Model.png?raw=true) ### Model train ![alt text](https://github.com/LuisU0124/IImage-NLP/blob/main/model%20train.png?raw=true) | Text | Classification | | ------------- | ------------- | | review_body | stars | ### Model test ![alt text](https://github.com/LuisU0124/IImage-NLP/blob/main/test%20model.png?raw=true) ### Clasiffication reviews in Spanish Uses `POS`, `NEG` labels.
ENM/scibert_scivocab_cased-new-finetuned-breastcancer
ENM
2022-05-26T02:28:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-26T02:04:39Z
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_cased-new-finetuned-breastcancer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_cased-new-finetuned-breastcancer This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 3.1340 | | No log | 2.0 | 80 | 1.6044 | | No log | 3.0 | 120 | 1.2439 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
espejelomar/identify-my-cat
espejelomar
2022-05-26T02:08:56Z
0
1
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-05-05T19:42:30Z
--- tags: - fastai - image-classification --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
PontifexMaximus/ArabicTranslator
PontifexMaximus
2022-05-26T01:25:24Z
33
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus_infopankki", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T08:25:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_infopankki type: opus_infopankki args: ar-en metrics: - name: Bleu type: bleu value: 51.6508 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 0.7269 - Bleu: 51.6508 - Gen Len: 15.0812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.4974 | 1.0 | 1587 | 1.3365 | 36.9061 | 15.3385 | | 1.3768 | 2.0 | 3174 | 1.2139 | 39.5476 | 15.2079 | | 1.2887 | 3.0 | 4761 | 1.1265 | 41.2771 | 15.2034 | | 1.2076 | 4.0 | 6348 | 1.0556 | 42.6907 | 15.2687 | | 1.1512 | 5.0 | 7935 | 0.9975 | 43.9498 | 15.2072 | | 1.0797 | 6.0 | 9522 | 0.9491 | 45.224 | 15.2034 | | 1.0499 | 7.0 | 11109 | 0.9101 | 46.1387 | 15.1651 | | 1.0095 | 8.0 | 12696 | 0.8778 | 47.0586 | 15.1788 | | 0.9833 | 9.0 | 14283 | 0.8501 | 47.8083 | 15.162 | | 0.9601 | 10.0 | 15870 | 0.8267 | 48.5236 | 15.1784 | | 0.9457 | 11.0 | 17457 | 0.8059 | 49.1717 | 15.095 | | 0.9233 | 12.0 | 19044 | 0.7883 | 49.7742 | 15.1126 | | 0.8964 | 13.0 | 20631 | 0.7736 | 50.2168 | 15.0917 | | 0.8849 | 14.0 | 22218 | 0.7606 | 50.5583 | 15.0913 | | 0.8751 | 15.0 | 23805 | 0.7504 | 50.8481 | 15.1108 | | 0.858 | 16.0 | 25392 | 0.7417 | 51.1841 | 15.0989 | | 0.8673 | 17.0 | 26979 | 0.7353 | 51.4271 | 15.0939 | | 0.8548 | 18.0 | 28566 | 0.7306 | 51.535 | 15.0911 | | 0.8483 | 19.0 | 30153 | 0.7279 | 51.6102 | 15.078 | | 0.8614 | 20.0 | 31740 | 0.7269 | 51.6508 | 15.0812 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.7.1+cu110 - Datasets 2.2.2 - Tokenizers 0.12.1
fastai/fastbook_04_mnist_basics
fastai
2022-05-26T00:39:12Z
54
2
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - fastai - image-classification --- # Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
bhaswara/ppo-MountainCar-v0
bhaswara
2022-05-26T00:15:29Z
1
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T23:00:06Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Felix92/doctr-dummy-torch-crnn-vgg16-bn
Felix92
2022-05-25T21:34:04Z
166
0
transformers
[ "transformers", "pytorch", "image-to-text", "en", "endpoints_compatible", "region:us" ]
image-to-text
2022-04-14T09:24:21Z
--- language: en pipeline_tag: image-to-text --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-torch-crnn-mobilenet-v3-small
Felix92
2022-05-25T21:33:45Z
165
2
transformers
[ "transformers", "pytorch", "image-to-text", "en", "endpoints_compatible", "region:us" ]
image-to-text
2022-04-14T09:26:33Z
--- language: en pipeline_tag: image-to-text --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-crnn-vgg16-bn
Felix92
2022-05-25T21:33:21Z
5
1
transformers
[ "transformers", "image-to-text", "en", "endpoints_compatible", "region:us" ]
image-to-text
2022-04-14T11:42:26Z
--- language: en pipeline_tag: image-to-text --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e8
theojolliffe
2022-05-25T20:10:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T18:58:59Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e8 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8063 - Rouge1: 54.9922 - Rouge2: 38.7265 - Rougel: 41.9288 - Rougelsum: 52.8766 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.8651 | 53.3185 | 33.3722 | 35.8852 | 50.5929 | 142.0 | | 0.8268 | 2.0 | 796 | 0.8063 | 53.5267 | 34.3205 | 36.9783 | 51.0289 | 142.0 | | 0.5331 | 3.0 | 1194 | 0.8155 | 53.5409 | 34.9962 | 38.078 | 51.2038 | 142.0 | | 0.3588 | 4.0 | 1592 | 0.7883 | 53.7055 | 35.0869 | 38.1521 | 51.3094 | 141.4815 | | 0.3588 | 5.0 | 1990 | 0.7770 | 54.4542 | 37.5817 | 39.8734 | 52.1947 | 141.7778 | | 0.2447 | 6.0 | 2388 | 0.7929 | 55.1571 | 38.8425 | 41.4301 | 53.3049 | 141.4444 | | 0.1765 | 7.0 | 2786 | 0.7909 | 55.5838 | 38.6226 | 42.0453 | 53.543 | 142.0 | | 0.13 | 8.0 | 3184 | 0.8063 | 54.9922 | 38.7265 | 41.9288 | 52.8766 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
aakorolyova/reported_outcome_extraction
aakorolyova
2022-05-25T19:31:52Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-18T08:32:05Z
<h1>Model description</h1> This is a fine-tuned BioBERT model for extracting reported outcomes (i.e. those for which results are presented) from articles reporting clinical trials. This is the second version of the model; the original model development was reported in: Anna Koroleva, Sanjay Kamath, Patrick Paroubek. Extracting primary and reported outcomes from articles reporting randomized controlled trials using pre-trained deep language representations. Preprint: https://easychair.org/publications/preprint/qpml The original work was conducted within the scope of the Assisted authoring for avoiding inadequate claims in scientific reporting PhD project of the Methods for Research on Research (MiRoR, http://miror-ejd.eu/) program. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model is intended to be used for extracting reported outcomes from texts of clinical trials. The main limitation is that the model was trained on a fairly small sample of data annotated by a single annotator. Annotating more data or involvig more annotators was not possiblw within the PhD project. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` import numpy as np from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForTokenClassification.from_pretrained(r'aakorolyova/reported_outcome_extraction') text = """Compared with placebo plus chemotherapy, pembrolizumab plus chemotherapy improved overall survival in patients with previously untreated, advanced oesophageal squamous cell carcinoma and PD-L1 CPS of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients regardless of histology, and had a manageable safety profile in the total as-treated population.""" encoded_input = tokenizer(text, padding=True, truncation=True, max_length=2000, return_tensors='pt') output = model(**encoded_input)['logits'] output = np.argmax(output.detach().numpy(), axis=2) print(output) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Reported_Outcomes <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Precision: 65.57% Recall: 74.77% F1: 69.87%
aakorolyova/primary_and_secondary_outcome_extraction
aakorolyova
2022-05-25T19:30:56Z
14
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-18T08:04:32Z
<h1>Model description</h1> This is a fine-tuned BioBERT model for extracting primary and secondary outcomes from articles reporting clinical trials. This model is a version of https://huggingface.co/aakorolyova/primary_outcome_extraction. We have not annotated any secondary outcome during the related PhD project. To be able to extract secondary outcomes, we manually annotated secondary outcomes in the existing annotated sentences with primary outcomes (only a small percentage of sentences contains secondary outcomes) and performed automatic data augmentation by replacing "primary"/"main"/"principal" by "secondary" and changing tags from B/I-Prim to B/I-Sec in the primary outcomes data. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model is intended to be used for extracting primary and secondary outcomes from texts of clinical trials. The main limitation is that the model was trained on a mix of manually annotated and automatically augmented data, which might lead to inaccuracies in prediction. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` import numpy as np from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForTokenClassification.from_pretrained(r'aakorolyova/primary_and_secondary_outcome_extraction') text = 'Primary endpoint was overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more, secondary endpoints were overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients.' encoded_input = tokenizer(text, padding=True, truncation=True, max_length=2000, return_tensors='pt') output = model(**encoded_input)['logits'] output = np.argmax(output.detach().numpy(), axis=2) print(output) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Primary_Secondary_Outcomes <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Primary outcomes: Precision: 92.22 Recall: 94.86 F1: 93.52 Secondary outcomes: Precision: 91.43 Recall: 91.87 F1: 91.65 Overall precision: 91.79 Overall recall: 93.23 Overall F1: 92.51
tbosse/bert-base-german-cased-finetuned-subj_v6_7Epoch_v3
tbosse
2022-05-25T19:01:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-25T18:16:21Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v6_7Epoch_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v6_7Epoch_v3 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2732 - Precision: 0.7654 - Recall: 0.7829 - F1: 0.7740 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3281 | 0.6656 | 0.5914 | 0.6263 | 0.8623 | | No log | 2.0 | 66 | 0.2623 | 0.7440 | 0.7057 | 0.7243 | 0.8940 | | No log | 3.0 | 99 | 0.2460 | 0.7536 | 0.7514 | 0.7525 | 0.9067 | | No log | 4.0 | 132 | 0.2440 | 0.7778 | 0.76 | 0.7688 | 0.9124 | | No log | 5.0 | 165 | 0.2582 | 0.7723 | 0.7657 | 0.7690 | 0.9107 | | No log | 6.0 | 198 | 0.2681 | 0.7690 | 0.78 | 0.7745 | 0.9119 | | No log | 7.0 | 231 | 0.2732 | 0.7654 | 0.7829 | 0.7740 | 0.9119 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e2
theojolliffe
2022-05-25T18:51:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T17:53:40Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e2 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8604 - Rouge1: 53.7901 - Rouge2: 34.5052 - Rougel: 36.6399 - Rougelsum: 51.2331 - Gen Len: 141.7593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.8776 | 53.3731 | 34.1946 | 36.4438 | 50.7369 | 142.0 | | 0.8266 | 2.0 | 796 | 0.8604 | 53.7901 | 34.5052 | 36.6399 | 51.2331 | 141.7593 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
pritam18/swadeshi_bhojpuriwav2vec2asr
pritam18
2022-05-25T18:35:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-25T11:59:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: swadeshi_bhojpuriwav2vec2asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swadeshi_bhojpuriwav2vec2asr This model is a fine-tuned version of [theainerd/Wav2Vec2-large-xlsr-hindi](https://huggingface.co/theainerd/Wav2Vec2-large-xlsr-hindi) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Wer: 0.2931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6928 | 3.2 | 400 | 2.4820 | 0.9925 | | 1.6981 | 6.4 | 800 | 0.8053 | 0.6320 | | 0.975 | 9.6 | 1200 | 0.5420 | 0.4980 | | 0.7672 | 12.8 | 1600 | 0.4224 | 0.4233 | | 0.636 | 16.0 | 2000 | 0.3481 | 0.3774 | | 0.5562 | 19.2 | 2400 | 0.2861 | 0.3409 | | 0.4973 | 22.4 | 2800 | 0.2450 | 0.3211 | | 0.4616 | 25.6 | 3200 | 0.2230 | 0.3004 | | 0.4264 | 28.8 | 3600 | 0.2155 | 0.2931 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
arcAman07/distilbert-base-uncased-finetuned-emotion
arcAman07
2022-05-25T17:08:01Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-25T17:00:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240598378254522 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2222 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8294 | 1.0 | 250 | 0.3209 | 0.9025 | 0.9001 | | 0.2536 | 2.0 | 500 | 0.2222 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/sickziii
huggingtweets
2022-05-25T16:18:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-25T16:17:55Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/701052820754190336/OwxAZ9ES_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sickzee</div> <div style="text-align: center; font-size: 14px;">@sickziii</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sickzee. | Data | sickzee | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 2499 | | Short tweets | 224 | | Tweets kept | 491 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hmehe5f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sickziii's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/drajr5oy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/drajr5oy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sickziii') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mikeadimech/pegasus-qmsum-meeting-summarization
mikeadimech
2022-05-25T16:15:41Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:yawnick/QMSum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T17:05:40Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-qmsum-meeting-summarization results: [] datasets: - yawnick/QMSum --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-qmsum-meeting-summarization This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the QMSum dataset. It achieves the following results on the evaluation set: - Loss: 4.2331 - Rouge1: 32.7156 - Rouge2: 10.5699 - Rougel: 23.2759 - Rougelsum: 29.7903 - Gen Len: 61.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 300 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 5.5746 | 1.09 | 100 | 5.1739 | 9.4941 | 1.7868 | 7.2455 | 8.4302 | 29.825 | | 5.5784 | 2.17 | 200 | 5.0939 | 9.113 | 1.7887 | 6.9741 | 8.0457 | 26.85 | | 5.3777 | 3.26 | 300 | 4.9723 | 9.6387 | 1.9301 | 7.349 | 8.7941 | 25.325 | | 5.1884 | 4.35 | 400 | 4.8423 | 10.6045 | 2.4008 | 7.8423 | 9.4593 | 22.625 | | 5.0795 | 5.43 | 500 | 4.7313 | 13.7621 | 3.1231 | 9.6944 | 12.2204 | 32.175 | | 4.9369 | 6.52 | 600 | 4.6555 | 19.5696 | 4.9121 | 14.2603 | 16.9622 | 46.45 | | 4.8926 | 7.61 | 700 | 4.6038 | 22.8411 | 5.9791 | 17.2227 | 20.1173 | 51.825 | | 4.7502 | 8.7 | 800 | 4.5659 | 24.0555 | 6.1971 | 18.967 | 20.9143 | 54.25 | | 4.6876 | 9.78 | 900 | 4.5379 | 24.7066 | 6.0317 | 19.542 | 21.5774 | 57.575 | | 4.6266 | 10.87 | 1000 | 4.5160 | 26.128 | 6.5089 | 20.5573 | 22.5338 | 58.0 | | 4.6303 | 11.96 | 1100 | 4.4983 | 26.6639 | 7.1208 | 20.5222 | 23.5783 | 57.925 | | 4.6263 | 13.04 | 1200 | 4.4815 | 26.8262 | 7.1029 | 20.5172 | 23.6216 | 57.575 | | 4.577 | 14.13 | 1300 | 4.4667 | 27.7952 | 7.8331 | 21.1111 | 24.6086 | 56.95 | | 4.5797 | 15.22 | 1400 | 4.4559 | 27.728 | 7.8144 | 21.1519 | 24.4858 | 56.6 | | 4.4923 | 16.3 | 1500 | 4.4448 | 28.0998 | 8.1346 | 21.4004 | 25.3769 | 55.975 | | 4.4583 | 17.39 | 1600 | 4.4335 | 28.9003 | 8.6135 | 22.0139 | 26.0409 | 56.55 | | 4.5036 | 18.48 | 1700 | 4.4246 | 29.2187 | 8.8301 | 22.3569 | 26.1964 | 58.125 | | 4.4383 | 19.57 | 1800 | 4.4144 | 28.8424 | 8.9131 | 22.0398 | 25.9214 | 56.75 | | 4.4797 | 20.65 | 1900 | 4.4054 | 28.9285 | 8.9298 | 22.222 | 26.0316 | 56.225 | | 4.4264 | 21.74 | 2000 | 4.3989 | 29.7184 | 9.0477 | 22.2885 | 26.7439 | 56.225 | | 4.3615 | 22.83 | 2100 | 4.3902 | 29.1538 | 8.9529 | 22.0076 | 26.4925 | 57.175 | | 4.329 | 23.91 | 2200 | 4.3839 | 29.5186 | 9.2777 | 21.9025 | 26.3141 | 55.5 | | 4.3578 | 25.0 | 2300 | 4.3766 | 28.4309 | 8.9423 | 21.0945 | 25.8191 | 53.975 | | 4.3748 | 26.09 | 2400 | 4.3707 | 28.3 | 9.0625 | 21.4946 | 25.1966 | 53.0 | | 4.3233 | 27.17 | 2500 | 4.3639 | 28.2325 | 8.9889 | 21.6226 | 25.3677 | 54.6 | | 4.339 | 28.26 | 2600 | 4.3578 | 28.0744 | 8.774 | 21.2509 | 25.2901 | 54.1 | | 4.2798 | 29.35 | 2700 | 4.3532 | 27.772 | 8.7096 | 21.1687 | 25.3345 | 54.025 | | 4.2964 | 30.43 | 2800 | 4.3465 | 27.7827 | 8.1597 | 20.8139 | 25.0152 | 54.45 | | 4.3365 | 31.52 | 2900 | 4.3423 | 28.2039 | 8.4661 | 21.3546 | 25.6381 | 55.5 | | 4.2385 | 32.61 | 3000 | 4.3380 | 28.1098 | 8.6483 | 21.5279 | 25.2009 | 53.95 | | 4.2451 | 33.7 | 3100 | 4.3331 | 28.2745 | 8.5024 | 21.4456 | 25.3363 | 52.6 | | 4.2393 | 34.78 | 3200 | 4.3289 | 28.7597 | 9.0881 | 21.6532 | 25.8954 | 52.65 | | 4.2116 | 35.87 | 3300 | 4.3252 | 29.0463 | 9.1218 | 21.8026 | 26.2037 | 53.65 | | 4.2175 | 36.96 | 3400 | 4.3210 | 28.8009 | 9.0188 | 21.8368 | 25.8678 | 52.85 | | 4.2071 | 38.04 | 3500 | 4.3169 | 28.9313 | 8.9787 | 21.3554 | 26.0628 | 54.325 | | 4.1775 | 39.13 | 3600 | 4.3132 | 28.837 | 8.9621 | 21.6342 | 26.0569 | 54.025 | | 4.1962 | 40.22 | 3700 | 4.3086 | 28.9265 | 9.0701 | 21.588 | 26.0702 | 53.075 | | 4.1452 | 41.3 | 3800 | 4.3060 | 29.7968 | 9.366 | 22.1712 | 26.8461 | 54.925 | | 4.1912 | 42.39 | 3900 | 4.3018 | 29.1488 | 9.1631 | 21.6566 | 26.1476 | 54.25 | | 4.1356 | 43.48 | 4000 | 4.2984 | 30.0138 | 9.2456 | 22.2547 | 27.2714 | 54.85 | | 4.1272 | 44.57 | 4100 | 4.2949 | 29.8858 | 9.1498 | 22.1221 | 27.0798 | 55.65 | | 4.1174 | 45.65 | 4200 | 4.2895 | 30.0427 | 9.2297 | 22.2602 | 27.4219 | 56.175 | | 4.1029 | 46.74 | 4300 | 4.2885 | 29.9443 | 9.4293 | 22.1229 | 27.3496 | 56.45 | | 4.157 | 47.83 | 4400 | 4.2851 | 30.3693 | 9.406 | 22.471 | 27.7511 | 56.775 | | 4.1105 | 48.91 | 4500 | 4.2827 | 30.6193 | 9.7082 | 22.6169 | 27.8044 | 57.225 | | 4.083 | 50.0 | 4600 | 4.2796 | 30.8083 | 9.9211 | 22.5228 | 28.1236 | 57.575 | | 4.0891 | 51.09 | 4700 | 4.2764 | 30.4201 | 9.6192 | 22.4747 | 27.7514 | 57.475 | | 4.0603 | 52.17 | 4800 | 4.2741 | 30.7777 | 9.7432 | 22.6705 | 27.5956 | 57.1 | | 4.0472 | 53.26 | 4900 | 4.2731 | 30.8093 | 9.7916 | 22.5533 | 27.7858 | 56.15 | | 4.0712 | 54.35 | 5000 | 4.2703 | 29.9667 | 9.5645 | 22.113 | 26.647 | 56.525 | | 4.0658 | 55.43 | 5100 | 4.2674 | 29.5415 | 9.4291 | 21.6862 | 26.7816 | 56.55 | | 4.059 | 56.52 | 5200 | 4.2659 | 30.2032 | 9.8875 | 22.2539 | 27.1801 | 56.925 | | 4.0257 | 57.61 | 5300 | 4.2629 | 30.3181 | 9.8187 | 22.4266 | 27.4318 | 56.925 | | 4.0002 | 58.7 | 5400 | 4.2608 | 29.6641 | 9.9252 | 22.1725 | 27.0764 | 56.6 | | 4.0978 | 59.78 | 5500 | 4.2591 | 30.653 | 10.087 | 22.6956 | 27.7481 | 56.25 | | 3.9978 | 60.87 | 5600 | 4.2568 | 29.5473 | 9.5653 | 21.6367 | 26.391 | 55.825 | | 3.9832 | 61.96 | 5700 | 4.2552 | 30.6368 | 10.1624 | 22.7204 | 27.5866 | 57.425 | | 3.9841 | 63.04 | 5800 | 4.2525 | 30.3045 | 9.7966 | 22.2939 | 27.0978 | 57.725 | | 4.002 | 64.13 | 5900 | 4.2507 | 30.4468 | 9.9323 | 22.6572 | 27.0761 | 57.5 | | 3.9705 | 65.22 | 6000 | 4.2491 | 30.1218 | 9.6921 | 22.465 | 26.3835 | 57.55 | | 3.9863 | 66.3 | 6100 | 4.2477 | 31.3982 | 9.9901 | 22.8762 | 27.6169 | 58.975 | | 3.9308 | 67.39 | 6200 | 4.2454 | 30.2673 | 9.5804 | 22.4474 | 26.6111 | 59.2 | | 3.9794 | 68.48 | 6300 | 4.2449 | 30.8612 | 9.8254 | 22.8444 | 27.4979 | 58.075 | | 3.9499 | 69.57 | 6400 | 4.2412 | 30.8366 | 9.7 | 22.4469 | 27.1621 | 59.025 | | 3.9722 | 70.65 | 6500 | 4.2414 | 30.9625 | 9.8251 | 22.4089 | 27.4342 | 59.1 | | 3.9125 | 71.74 | 6600 | 4.2394 | 30.5777 | 9.5514 | 22.1581 | 26.8665 | 58.75 | | 3.9184 | 72.83 | 6700 | 4.2396 | 30.8306 | 9.5469 | 22.6571 | 27.4302 | 59.725 | | 3.9337 | 73.91 | 6800 | 4.2377 | 30.8688 | 9.6733 | 22.3073 | 27.2943 | 58.975 | | 3.9145 | 75.0 | 6900 | 4.2358 | 30.467 | 9.6393 | 22.225 | 27.0127 | 58.45 | | 3.9038 | 76.09 | 7000 | 4.2353 | 30.6344 | 9.3676 | 22.1945 | 27.1871 | 59.275 | | 3.893 | 77.17 | 7100 | 4.2335 | 31.4486 | 9.8839 | 22.735 | 27.7854 | 59.025 | | 3.885 | 78.26 | 7200 | 4.2318 | 30.7118 | 9.8568 | 22.2546 | 27.3983 | 58.5 | | 3.9266 | 79.35 | 7300 | 4.2304 | 31.6171 | 9.8817 | 22.6145 | 27.6888 | 59.25 | | 3.8826 | 80.43 | 7400 | 4.2299 | 31.0976 | 9.4662 | 22.2285 | 27.817 | 58.95 | | 3.8775 | 81.52 | 7500 | 4.2286 | 31.1379 | 10.0975 | 22.5686 | 27.883 | 59.8 | | 3.8455 | 82.61 | 7600 | 4.2292 | 32.076 | 10.0214 | 22.8866 | 28.3828 | 59.15 | | 3.8838 | 83.7 | 7700 | 4.2269 | 31.5696 | 9.7812 | 22.7619 | 28.2236 | 58.6 | | 3.8425 | 84.78 | 7800 | 4.2266 | 31.1731 | 9.97 | 22.4203 | 27.4956 | 59.1 | | 3.8766 | 85.87 | 7900 | 4.2260 | 32.3221 | 10.6243 | 23.079 | 28.9008 | 58.45 | | 3.8217 | 86.96 | 8000 | 4.2258 | 31.9956 | 10.4201 | 23.083 | 28.4945 | 58.5 | | 3.8319 | 88.04 | 8100 | 4.2245 | 32.0272 | 10.4673 | 23.3471 | 28.9845 | 58.35 | | 3.8283 | 89.13 | 8200 | 4.2231 | 32.2943 | 10.2594 | 23.1819 | 29.1345 | 60.5 | | 3.8394 | 90.22 | 8300 | 4.2221 | 31.3976 | 10.3085 | 22.6581 | 28.2494 | 59.25 | | 3.8258 | 91.3 | 8400 | 4.2203 | 31.4433 | 10.1184 | 22.672 | 28.1236 | 58.85 | | 3.7981 | 92.39 | 8500 | 4.2205 | 31.1313 | 10.0056 | 22.677 | 27.7409 | 59.075 | | 3.8349 | 93.48 | 8600 | 4.2215 | 31.5779 | 10.0303 | 22.6155 | 28.0566 | 59.2 | | 3.8225 | 94.57 | 8700 | 4.2201 | 31.9646 | 10.0643 | 22.7808 | 28.67 | 58.925 | | 3.8145 | 95.65 | 8800 | 4.2193 | 32.0347 | 10.5103 | 23.095 | 28.6056 | 57.225 | | 3.7771 | 96.74 | 8900 | 4.2180 | 30.8138 | 9.602 | 22.2649 | 27.7948 | 57.875 | | 3.823 | 97.83 | 9000 | 4.2168 | 31.3785 | 9.7046 | 22.3877 | 28.2578 | 58.675 | | 3.7701 | 98.91 | 9100 | 4.2169 | 31.4511 | 9.9183 | 22.6645 | 28.1932 | 59.0 | | 3.773 | 100.0 | 9200 | 4.2169 | 31.7392 | 9.9669 | 22.5894 | 28.218 | 58.15 | | 3.7661 | 101.09 | 9300 | 4.2161 | 31.5507 | 9.8992 | 22.4602 | 28.3357 | 58.375 | | 3.7875 | 102.17 | 9400 | 4.2163 | 31.5145 | 9.5173 | 22.321 | 27.8613 | 58.375 | | 3.7659 | 103.26 | 9500 | 4.2152 | 31.2967 | 9.8797 | 22.6247 | 28.0317 | 57.925 | | 3.7576 | 104.35 | 9600 | 4.2139 | 31.5739 | 9.8376 | 22.7561 | 28.2318 | 58.4 | | 3.7784 | 105.43 | 9700 | 4.2144 | 32.2269 | 10.2299 | 22.6582 | 28.6249 | 58.425 | | 3.7356 | 106.52 | 9800 | 4.2139 | 32.3031 | 10.1505 | 22.7079 | 28.9052 | 58.475 | | 3.7799 | 107.61 | 9900 | 4.2124 | 31.1334 | 9.1481 | 22.1297 | 27.5951 | 58.6 | | 3.7269 | 108.7 | 10000 | 4.2122 | 31.6957 | 9.2874 | 22.4867 | 28.225 | 58.4 | | 3.719 | 109.78 | 10100 | 4.2108 | 31.477 | 10.0245 | 22.4703 | 28.1316 | 58.075 | | 3.7411 | 110.87 | 10200 | 4.2112 | 31.4165 | 9.9791 | 22.4396 | 28.3068 | 58.275 | | 3.7135 | 111.96 | 10300 | 4.2122 | 31.4924 | 9.9864 | 22.496 | 28.2414 | 57.8 | | 3.7317 | 113.04 | 10400 | 4.2120 | 31.6599 | 10.1605 | 22.5322 | 28.3045 | 59.075 | | 3.7113 | 114.13 | 10500 | 4.2127 | 31.6814 | 10.106 | 22.4311 | 28.5808 | 59.5 | | 3.7063 | 115.22 | 10600 | 4.2132 | 31.2448 | 10.0006 | 22.5549 | 28.4686 | 57.775 | | 3.681 | 116.3 | 10700 | 4.2123 | 31.1739 | 10.0533 | 22.2954 | 28.0822 | 58.35 | | 3.7369 | 117.39 | 10800 | 4.2118 | 31.8541 | 10.1452 | 22.7607 | 28.9501 | 58.8 | | 3.6645 | 118.48 | 10900 | 4.2122 | 31.7128 | 9.8554 | 22.4464 | 28.5888 | 58.375 | | 3.6766 | 119.57 | 11000 | 4.2118 | 31.1492 | 9.8058 | 22.0978 | 28.1827 | 58.725 | | 3.6915 | 120.65 | 11100 | 4.2110 | 31.1679 | 9.5755 | 22.1391 | 28.0886 | 58.375 | | 3.6702 | 121.74 | 11200 | 4.2129 | 31.0682 | 9.7375 | 22.0118 | 28.2189 | 59.15 | | 3.6946 | 122.83 | 11300 | 4.2118 | 31.6134 | 9.5918 | 22.2506 | 28.5343 | 59.175 | | 3.6713 | 123.91 | 11400 | 4.2110 | 31.3585 | 9.4211 | 22.1884 | 27.8744 | 59.05 | | 3.6694 | 125.0 | 11500 | 4.2126 | 32.0058 | 9.6453 | 22.3911 | 28.6928 | 59.55 | | 3.6585 | 126.09 | 11600 | 4.2123 | 31.7679 | 9.7101 | 22.2378 | 28.4985 | 59.2 | | 3.6857 | 127.17 | 11700 | 4.2118 | 31.7766 | 10.0375 | 22.5097 | 28.8104 | 59.6 | | 3.6338 | 128.26 | 11800 | 4.2126 | 32.2508 | 10.2617 | 22.6745 | 29.0714 | 59.075 | | 3.6412 | 129.35 | 11900 | 4.2135 | 32.0515 | 10.0905 | 22.7015 | 29.0028 | 58.9 | | 3.6594 | 130.43 | 12000 | 4.2122 | 32.7784 | 10.351 | 23.0969 | 29.6672 | 59.525 | | 3.6571 | 131.52 | 12100 | 4.2120 | 32.3165 | 10.329 | 22.8445 | 29.2886 | 59.5 | | 3.6002 | 132.61 | 12200 | 4.2120 | 32.5553 | 10.0875 | 22.6064 | 29.1046 | 59.425 | | 3.6621 | 133.7 | 12300 | 4.2126 | 31.7637 | 9.9785 | 22.5716 | 28.7173 | 59.275 | | 3.6651 | 134.78 | 12400 | 4.2122 | 31.7568 | 9.7503 | 22.3876 | 28.6015 | 59.6 | | 3.6127 | 135.87 | 12500 | 4.2123 | 31.5708 | 9.5203 | 21.9951 | 28.2082 | 58.75 | | 3.6544 | 136.96 | 12600 | 4.2124 | 32.0767 | 9.8955 | 22.2724 | 28.4755 | 59.5 | | 3.5994 | 138.04 | 12700 | 4.2125 | 31.8523 | 9.9159 | 22.2978 | 28.8159 | 59.175 | | 3.6174 | 139.13 | 12800 | 4.2114 | 32.2165 | 9.784 | 22.4377 | 28.5603 | 59.1 | | 3.6122 | 140.22 | 12900 | 4.2115 | 32.0247 | 9.6881 | 22.3116 | 28.61 | 58.9 | | 3.6174 | 141.3 | 13000 | 4.2116 | 31.9549 | 9.5924 | 22.3997 | 28.9145 | 59.15 | | 3.5965 | 142.39 | 13100 | 4.2113 | 32.6173 | 10.4241 | 22.8644 | 29.3928 | 60.9 | | 3.6076 | 143.48 | 13200 | 4.2112 | 33.0058 | 10.6417 | 23.0297 | 29.8375 | 61.0 | | 3.6013 | 144.57 | 13300 | 4.2105 | 33.005 | 10.5398 | 22.9758 | 29.7266 | 60.325 | | 3.6181 | 145.65 | 13400 | 4.2117 | 31.0558 | 9.4714 | 21.9025 | 27.9627 | 60.025 | | 3.6288 | 146.74 | 13500 | 4.2107 | 32.7196 | 10.4991 | 22.9182 | 29.6586 | 60.25 | | 3.5879 | 147.83 | 13600 | 4.2091 | 32.6755 | 10.3936 | 22.9559 | 29.5314 | 60.425 | | 3.591 | 148.91 | 13700 | 4.2101 | 33.2956 | 10.6616 | 22.8509 | 29.5237 | 60.4 | | 3.5658 | 150.0 | 13800 | 4.2116 | 33.4712 | 10.3725 | 23.1449 | 30.0987 | 60.2 | | 3.574 | 151.09 | 13900 | 4.2115 | 33.5427 | 10.5852 | 22.9671 | 29.8456 | 60.175 | | 3.5795 | 152.17 | 14000 | 4.2115 | 33.4387 | 10.5744 | 23.4785 | 30.0494 | 60.15 | | 3.5728 | 153.26 | 14100 | 4.2119 | 33.1244 | 10.0308 | 22.8377 | 29.7725 | 60.775 | | 3.5441 | 154.35 | 14200 | 4.2121 | 32.9226 | 9.9625 | 22.9013 | 29.6004 | 59.7 | | 3.5236 | 155.43 | 14300 | 4.2114 | 32.3717 | 9.9122 | 22.78 | 28.8305 | 59.725 | | 3.5679 | 156.52 | 14400 | 4.2120 | 33.6347 | 10.7457 | 23.5191 | 30.1966 | 60.65 | | 3.5574 | 157.61 | 14500 | 4.2119 | 33.4821 | 10.986 | 23.3567 | 30.1972 | 60.1 | | 3.5935 | 158.7 | 14600 | 4.2115 | 32.7255 | 10.2639 | 23.1617 | 29.8065 | 60.35 | | 3.5316 | 159.78 | 14700 | 4.2118 | 32.8033 | 10.0216 | 22.7099 | 29.3968 | 60.525 | | 3.5618 | 160.87 | 14800 | 4.2118 | 32.6244 | 10.7228 | 22.8601 | 29.3613 | 60.8 | | 3.545 | 161.96 | 14900 | 4.2132 | 32.6231 | 10.0711 | 22.4686 | 29.5341 | 59.675 | | 3.5466 | 163.04 | 15000 | 4.2129 | 32.7601 | 10.3376 | 22.2373 | 29.3588 | 59.4 | | 3.5594 | 164.13 | 15100 | 4.2127 | 32.4645 | 10.5106 | 22.6804 | 29.6229 | 60.375 | | 3.4839 | 165.22 | 15200 | 4.2130 | 32.1799 | 10.0462 | 22.5474 | 29.1419 | 59.75 | | 3.5492 | 166.3 | 15300 | 4.2133 | 32.6831 | 10.5307 | 22.8539 | 29.6406 | 59.875 | | 3.5053 | 167.39 | 15400 | 4.2133 | 32.8614 | 10.0344 | 23.0577 | 29.5848 | 60.975 | | 3.5427 | 168.48 | 15500 | 4.2140 | 32.7897 | 10.178 | 22.6287 | 29.4839 | 60.1 | | 3.5495 | 169.57 | 15600 | 4.2126 | 33.1428 | 10.2866 | 22.9377 | 29.6883 | 60.525 | | 3.5245 | 170.65 | 15700 | 4.2116 | 32.9892 | 10.1082 | 23.1528 | 29.576 | 60.675 | | 3.5121 | 171.74 | 15800 | 4.2131 | 33.2677 | 10.5916 | 23.3002 | 29.8222 | 59.975 | | 3.5559 | 172.83 | 15900 | 4.2126 | 32.5155 | 9.9557 | 22.6846 | 29.1171 | 60.85 | | 3.4758 | 173.91 | 16000 | 4.2133 | 32.374 | 9.9127 | 22.4816 | 29.2839 | 60.9 | | 3.5148 | 175.0 | 16100 | 4.2125 | 32.5611 | 9.8266 | 22.5993 | 28.9821 | 61.1 | | 3.5093 | 176.09 | 16200 | 4.2132 | 32.1092 | 9.6761 | 22.3612 | 28.7771 | 60.05 | | 3.5248 | 177.17 | 16300 | 4.2143 | 32.2696 | 9.6471 | 22.2791 | 28.9759 | 60.925 | | 3.4807 | 178.26 | 16400 | 4.2139 | 31.9593 | 9.3878 | 22.0643 | 28.5392 | 61.3 | | 3.5138 | 179.35 | 16500 | 4.2144 | 32.0284 | 9.8303 | 22.5724 | 29.0168 | 59.95 | | 3.4834 | 180.43 | 16600 | 4.2153 | 32.3203 | 9.5741 | 22.4998 | 28.8014 | 60.5 | | 3.4701 | 181.52 | 16700 | 4.2156 | 31.7243 | 9.544 | 22.1355 | 28.2238 | 61.275 | | 3.5501 | 182.61 | 16800 | 4.2152 | 32.519 | 9.9372 | 22.3881 | 28.8347 | 61.45 | | 3.4789 | 183.7 | 16900 | 4.2148 | 32.3324 | 9.7556 | 22.2474 | 28.7559 | 61.575 | | 3.5172 | 184.78 | 17000 | 4.2156 | 32.161 | 9.4847 | 22.2358 | 28.8895 | 60.95 | | 3.4681 | 185.87 | 17100 | 4.2167 | 32.6524 | 9.7116 | 22.8415 | 29.0798 | 60.575 | | 3.4936 | 186.96 | 17200 | 4.2173 | 32.533 | 9.9478 | 22.7379 | 29.1301 | 61.575 | | 3.4664 | 188.04 | 17300 | 4.2165 | 32.4549 | 10.1094 | 22.7097 | 28.7992 | 61.4 | | 3.4599 | 189.13 | 17400 | 4.2164 | 32.6665 | 10.3463 | 22.7678 | 29.308 | 61.575 | | 3.4724 | 190.22 | 17500 | 4.2175 | 32.4146 | 10.1782 | 22.7414 | 29.3546 | 60.75 | | 3.4923 | 191.3 | 17600 | 4.2163 | 32.3624 | 9.8306 | 22.7311 | 28.7497 | 59.825 | | 3.4771 | 192.39 | 17700 | 4.2161 | 33.1427 | 10.429 | 23.462 | 29.6967 | 60.35 | | 3.4737 | 193.48 | 17800 | 4.2168 | 31.6894 | 9.7073 | 22.527 | 28.3711 | 60.65 | | 3.4307 | 194.57 | 17900 | 4.2182 | 32.4769 | 10.1673 | 22.8356 | 29.4565 | 60.75 | | 3.4843 | 195.65 | 18000 | 4.2168 | 32.5461 | 10.2855 | 22.8587 | 29.1242 | 60.825 | | 3.4479 | 196.74 | 18100 | 4.2170 | 32.9284 | 10.2293 | 23.2679 | 29.8067 | 61.075 | | 3.489 | 197.83 | 18200 | 4.2180 | 32.9561 | 10.481 | 23.2807 | 29.5499 | 61.25 | | 3.4596 | 198.91 | 18300 | 4.2179 | 33.1418 | 10.2768 | 22.8762 | 30.0241 | 61.2 | | 3.4552 | 200.0 | 18400 | 4.2171 | 33.5524 | 10.5969 | 23.5734 | 30.1587 | 61.525 | | 3.4699 | 201.09 | 18500 | 4.2176 | 33.1941 | 10.3296 | 23.1962 | 30.1624 | 61.45 | | 3.4281 | 202.17 | 18600 | 4.2187 | 33.3715 | 10.1919 | 23.1843 | 30.3192 | 61.55 | | 3.4561 | 203.26 | 18700 | 4.2186 | 32.5288 | 9.9299 | 22.6515 | 29.2853 | 61.575 | | 3.446 | 204.35 | 18800 | 4.2188 | 33.4268 | 10.7152 | 23.6525 | 30.4668 | 61.575 | | 3.4259 | 205.43 | 18900 | 4.2189 | 33.1715 | 10.198 | 22.9264 | 29.8387 | 61.25 | | 3.4497 | 206.52 | 19000 | 4.2192 | 33.3472 | 10.5372 | 23.0833 | 30.2925 | 61.25 | | 3.4674 | 207.61 | 19100 | 4.2192 | 32.7581 | 10.2502 | 23.0554 | 29.6639 | 61.175 | | 3.4521 | 208.7 | 19200 | 4.2186 | 33.7883 | 10.8639 | 23.4038 | 30.6114 | 61.475 | | 3.443 | 209.78 | 19300 | 4.2194 | 33.029 | 10.6622 | 22.9009 | 29.9762 | 61.675 | | 3.4356 | 210.87 | 19400 | 4.2199 | 32.7229 | 9.9204 | 22.5445 | 29.5517 | 61.3 | | 3.4198 | 211.96 | 19500 | 4.2208 | 33.5216 | 10.3836 | 22.9423 | 29.9006 | 61.625 | | 3.4417 | 213.04 | 19600 | 4.2210 | 32.7772 | 10.3206 | 22.9031 | 29.3774 | 61.625 | | 3.4348 | 214.13 | 19700 | 4.2214 | 31.9959 | 10.0821 | 22.2012 | 28.6722 | 61.375 | | 3.4528 | 215.22 | 19800 | 4.2213 | 32.5434 | 10.2807 | 22.6512 | 29.1705 | 61.65 | | 3.3955 | 216.3 | 19900 | 4.2220 | 32.9148 | 10.5869 | 22.8107 | 29.4975 | 61.675 | | 3.4437 | 217.39 | 20000 | 4.2227 | 32.8879 | 10.4334 | 22.6863 | 29.6794 | 61.125 | | 3.4374 | 218.48 | 20100 | 4.2225 | 32.1453 | 9.9115 | 22.2936 | 28.9428 | 61.1 | | 3.429 | 219.57 | 20200 | 4.2230 | 33.0805 | 10.5792 | 22.9417 | 29.9572 | 61.55 | | 3.4089 | 220.65 | 20300 | 4.2239 | 32.0499 | 10.1613 | 22.6264 | 28.9217 | 61.65 | | 3.418 | 221.74 | 20400 | 4.2237 | 32.6069 | 10.5032 | 22.8024 | 29.5804 | 61.275 | | 3.4274 | 222.83 | 20500 | 4.2235 | 31.8624 | 10.2513 | 22.2816 | 28.8234 | 61.2 | | 3.4156 | 223.91 | 20600 | 4.2242 | 32.2666 | 10.4604 | 22.5607 | 29.0666 | 61.025 | | 3.4135 | 225.0 | 20700 | 4.2247 | 31.3445 | 10.0898 | 22.0664 | 28.5988 | 60.5 | | 3.4283 | 226.09 | 20800 | 4.2245 | 31.47 | 10.0171 | 21.9423 | 28.4329 | 61.175 | | 3.4048 | 227.17 | 20900 | 4.2242 | 31.93 | 10.4874 | 22.5287 | 29.1292 | 60.7 | | 3.3925 | 228.26 | 21000 | 4.2243 | 32.3618 | 10.0902 | 22.6176 | 29.2689 | 60.775 | | 3.4371 | 229.35 | 21100 | 4.2245 | 32.174 | 10.0424 | 22.516 | 28.9855 | 60.775 | | 3.3789 | 230.43 | 21200 | 4.2239 | 33.0237 | 10.8644 | 23.3016 | 29.916 | 61.275 | | 3.4109 | 231.52 | 21300 | 4.2248 | 32.88 | 10.6969 | 22.8426 | 30.0468 | 60.8 | | 3.4128 | 232.61 | 21400 | 4.2257 | 32.6551 | 10.6032 | 22.6787 | 29.5307 | 60.725 | | 3.3941 | 233.7 | 21500 | 4.2266 | 31.9296 | 10.0718 | 22.5 | 28.9451 | 60.75 | | 3.3734 | 234.78 | 21600 | 4.2266 | 32.4862 | 10.0754 | 22.9705 | 29.2087 | 61.225 | | 3.4144 | 235.87 | 21700 | 4.2269 | 32.1757 | 10.1225 | 22.6842 | 29.1731 | 60.75 | | 3.3986 | 236.96 | 21800 | 4.2273 | 32.3403 | 10.481 | 22.7186 | 29.3236 | 60.725 | | 3.3898 | 238.04 | 21900 | 4.2275 | 32.4957 | 10.4595 | 22.8682 | 29.6414 | 60.8 | | 3.4031 | 239.13 | 22000 | 4.2275 | 32.4625 | 10.3807 | 22.7121 | 29.5187 | 60.725 | | 3.3836 | 240.22 | 22100 | 4.2274 | 31.8107 | 10.2075 | 22.4437 | 28.9719 | 60.725 | | 3.4084 | 241.3 | 22200 | 4.2272 | 32.3374 | 10.1027 | 22.5784 | 29.2192 | 61.2 | | 3.3805 | 242.39 | 22300 | 4.2276 | 32.2783 | 10.375 | 22.7825 | 29.3762 | 61.2 | | 3.3815 | 243.48 | 22400 | 4.2277 | 32.3337 | 10.3561 | 22.8489 | 29.4485 | 61.15 | | 3.418 | 244.57 | 22500 | 4.2273 | 32.333 | 10.2841 | 22.8481 | 29.403 | 61.125 | | 3.369 | 245.65 | 22600 | 4.2277 | 32.038 | 10.3555 | 22.6939 | 29.242 | 60.7 | | 3.4305 | 246.74 | 22700 | 4.2276 | 32.7594 | 10.6867 | 23.0632 | 29.5852 | 61.575 | | 3.3928 | 247.83 | 22800 | 4.2282 | 32.4979 | 10.5013 | 22.7875 | 29.4793 | 61.55 | | 3.3676 | 248.91 | 22900 | 4.2286 | 32.6014 | 10.5697 | 22.8526 | 29.7876 | 61.6 | | 3.3918 | 250.0 | 23000 | 4.2288 | 32.4746 | 10.6321 | 22.586 | 29.6323 | 60.675 | | 3.395 | 251.09 | 23100 | 4.2294 | 32.4704 | 10.5456 | 22.6785 | 29.5769 | 60.725 | | 3.363 | 252.17 | 23200 | 4.2296 | 32.2721 | 10.2554 | 22.5303 | 29.4554 | 60.725 | | 3.3884 | 253.26 | 23300 | 4.2298 | 32.2746 | 10.434 | 22.6686 | 29.4486 | 60.725 | | 3.3891 | 254.35 | 23400 | 4.2296 | 32.5382 | 10.5112 | 23.0243 | 29.8106 | 61.125 | | 3.3679 | 255.43 | 23500 | 4.2296 | 32.4656 | 10.5631 | 22.9952 | 29.6832 | 61.125 | | 3.4078 | 256.52 | 23600 | 4.2297 | 32.3377 | 10.4791 | 22.8362 | 29.6212 | 60.7 | | 3.3642 | 257.61 | 23700 | 4.2302 | 32.2519 | 10.5551 | 22.6957 | 29.3763 | 61.075 | | 3.3745 | 258.7 | 23800 | 4.2300 | 31.9413 | 10.4752 | 22.7447 | 29.1 | 61.175 | | 3.3844 | 259.78 | 23900 | 4.2305 | 32.237 | 10.5492 | 23.0342 | 29.4079 | 61.65 | | 3.3501 | 260.87 | 24000 | 4.2302 | 31.9797 | 10.4631 | 22.9089 | 29.332 | 61.65 | | 3.4259 | 261.96 | 24100 | 4.2304 | 31.7515 | 10.3564 | 22.5923 | 29.1275 | 61.175 | | 3.3578 | 263.04 | 24200 | 4.2309 | 32.0462 | 10.3883 | 22.9083 | 29.3591 | 61.65 | | 3.39 | 264.13 | 24300 | 4.2308 | 31.9307 | 10.3057 | 22.8501 | 29.2547 | 61.65 | | 3.3805 | 265.22 | 24400 | 4.2312 | 32.1836 | 10.3577 | 23.1293 | 29.4325 | 61.65 | | 3.3667 | 266.3 | 24500 | 4.2309 | 32.1545 | 10.301 | 23.0613 | 29.343 | 61.65 | | 3.3977 | 267.39 | 24600 | 4.2313 | 31.9549 | 10.2824 | 23.0397 | 29.2684 | 61.65 | | 3.3434 | 268.48 | 24700 | 4.2314 | 31.9432 | 10.167 | 23.098 | 29.2669 | 61.65 | | 3.3577 | 269.57 | 24800 | 4.2316 | 31.9679 | 10.3075 | 23.0715 | 29.3077 | 61.65 | | 3.3781 | 270.65 | 24900 | 4.2317 | 32.2292 | 10.2988 | 23.0879 | 29.4171 | 61.65 | | 3.3514 | 271.74 | 25000 | 4.2321 | 32.1653 | 10.4198 | 23.0554 | 29.3574 | 61.65 | | 3.3935 | 272.83 | 25100 | 4.2320 | 32.134 | 10.2884 | 22.9444 | 29.2272 | 61.65 | | 3.3447 | 273.91 | 25200 | 4.2324 | 32.3498 | 10.4505 | 23.0734 | 29.4438 | 61.65 | | 3.3872 | 275.0 | 25300 | 4.2323 | 32.1743 | 10.4152 | 22.9462 | 29.3187 | 61.65 | | 3.3755 | 276.09 | 25400 | 4.2324 | 32.2311 | 10.372 | 22.9563 | 29.3285 | 61.65 | | 3.3832 | 277.17 | 25500 | 4.2323 | 32.0289 | 10.2105 | 22.9636 | 29.1449 | 61.65 | | 3.3367 | 278.26 | 25600 | 4.2321 | 32.3053 | 10.2512 | 23.0834 | 29.4111 | 61.65 | | 3.3767 | 279.35 | 25700 | 4.2323 | 32.4099 | 10.2793 | 23.0137 | 29.4049 | 61.65 | | 3.3989 | 280.43 | 25800 | 4.2324 | 32.3471 | 10.4356 | 23.0179 | 29.4453 | 61.65 | | 3.3625 | 281.52 | 25900 | 4.2325 | 32.2213 | 10.4363 | 22.9573 | 29.2886 | 61.65 | | 3.3352 | 282.61 | 26000 | 4.2328 | 32.713 | 10.7489 | 23.2367 | 29.8725 | 61.65 | | 3.3899 | 283.7 | 26100 | 4.2328 | 32.2145 | 10.2347 | 22.7896 | 29.2107 | 61.65 | | 3.359 | 284.78 | 26200 | 4.2327 | 32.2466 | 10.4236 | 22.916 | 29.4227 | 61.65 | | 3.3866 | 285.87 | 26300 | 4.2327 | 32.2466 | 10.4236 | 22.916 | 29.4227 | 61.65 | | 3.3845 | 286.96 | 26400 | 4.2328 | 32.2466 | 10.4236 | 22.916 | 29.4227 | 61.65 | | 3.3486 | 288.04 | 26500 | 4.2328 | 32.595 | 10.5041 | 23.1214 | 29.69 | 61.65 | | 3.3807 | 289.13 | 26600 | 4.2328 | 32.759 | 10.566 | 23.3108 | 29.8555 | 61.65 | | 3.3676 | 290.22 | 26700 | 4.2330 | 32.759 | 10.566 | 23.3108 | 29.8555 | 61.65 | | 3.3361 | 291.3 | 26800 | 4.2332 | 32.759 | 10.566 | 23.3108 | 29.8555 | 61.65 | | 3.3897 | 292.39 | 26900 | 4.2331 | 32.7251 | 10.566 | 23.3108 | 29.7958 | 61.65 | | 3.3579 | 293.48 | 27000 | 4.2331 | 32.759 | 10.566 | 23.3108 | 29.8555 | 61.65 | | 3.3809 | 294.57 | 27100 | 4.2331 | 32.759 | 10.566 | 23.3108 | 29.8555 | 61.65 | | 3.3885 | 295.65 | 27200 | 4.2331 | 32.759 | 10.566 | 23.3108 | 29.8555 | 61.65 | | 3.3173 | 296.74 | 27300 | 4.2331 | 32.7156 | 10.5699 | 23.2759 | 29.7903 | 61.65 | | 3.3648 | 297.83 | 27400 | 4.2331 | 32.7156 | 10.5699 | 23.2759 | 29.7903 | 61.65 | | 3.3793 | 298.91 | 27500 | 4.2331 | 32.7156 | 10.5699 | 23.2759 | 29.7903 | 61.65 | | 3.3604 | 300.0 | 27600 | 4.2331 | 32.7156 | 10.5699 | 23.2759 | 29.7903 | 61.65 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
vai6hav/wav2vec2-large-xls-r-300m-turkish-colab
vai6hav
2022-05-25T16:14:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-06T18:30:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
mikeadimech/bart-qmsum-meeting-summarization
mikeadimech
2022-05-25T16:14:18Z
6
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:yawnick/QMSum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T11:54:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-qmsum-meeting-summarization results: [] datasets: - yawnick/QMSum --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-qmsum-meeting-summarization This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the QMSum dataset. It achieves the following results on the evaluation set: - Loss: 4.3354 - Rouge1: 39.5539 - Rouge2: 12.1134 - Rougel: 23.9163 - Rougelsum: 36.0299 - Gen Len: 117.225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 5.5573 | 2.17 | 100 | 5.4074 | 23.6282 | 4.1122 | 14.584 | 21.2263 | 84.75 | | 5.4721 | 4.35 | 200 | 5.2899 | 24.61 | 4.272 | 15.2096 | 22.2997 | 87.2 | | 5.3407 | 6.52 | 300 | 5.1360 | 25.8272 | 4.3314 | 15.9926 | 23.3416 | 87.95 | | 5.1527 | 8.7 | 400 | 4.9751 | 27.7207 | 5.31 | 16.7055 | 24.8357 | 88.35 | | 5.0058 | 10.87 | 500 | 4.8372 | 30.1847 | 6.8615 | 18.934 | 27.2424 | 89.95 | | 4.8807 | 13.04 | 600 | 4.7488 | 33.1208 | 9.1784 | 20.655 | 30.1198 | 101.3 | | 4.7931 | 15.22 | 700 | 4.6891 | 33.2266 | 8.4253 | 20.0334 | 30.4093 | 108.925 | | 4.7272 | 17.39 | 800 | 4.6467 | 35.0475 | 9.326 | 21.0655 | 31.8413 | 111.7 | | 4.6904 | 19.57 | 900 | 4.6102 | 34.869 | 9.6046 | 21.395 | 32.4346 | 115.05 | | 4.6547 | 21.74 | 1000 | 4.5829 | 36.3392 | 10.9936 | 22.1524 | 33.6863 | 119.875 | | 4.594 | 23.91 | 1100 | 4.5602 | 35.9717 | 10.3827 | 21.6118 | 32.8302 | 119.5 | | 4.5714 | 26.09 | 1200 | 4.5424 | 36.3656 | 10.6282 | 22.2187 | 33.6494 | 118.0 | | 4.542 | 28.26 | 1300 | 4.5256 | 36.7386 | 10.615 | 22.2487 | 34.1927 | 115.675 | | 4.5092 | 30.43 | 1400 | 4.5116 | 37.1597 | 10.7751 | 22.6747 | 34.396 | 118.55 | | 4.5031 | 32.61 | 1500 | 4.4981 | 37.6108 | 10.9732 | 22.8342 | 34.6833 | 117.125 | | 4.4682 | 34.78 | 1600 | 4.4875 | 37.5057 | 11.1328 | 22.8973 | 34.7114 | 117.65 | | 4.4387 | 36.96 | 1700 | 4.4775 | 38.1278 | 11.3597 | 23.1307 | 35.1869 | 115.65 | | 4.4085 | 39.13 | 1800 | 4.4682 | 37.9578 | 11.4355 | 23.1149 | 35.4961 | 119.6 | | 4.4166 | 41.3 | 1900 | 4.4592 | 38.1467 | 11.3208 | 23.045 | 35.0824 | 120.05 | | 4.3971 | 43.48 | 2000 | 4.4517 | 37.9922 | 11.5071 | 23.3983 | 34.6918 | 114.425 | | 4.3638 | 45.65 | 2100 | 4.4438 | 38.1666 | 11.4985 | 23.5518 | 35.1484 | 117.2 | | 4.3522 | 47.83 | 2200 | 4.4377 | 37.7572 | 11.3984 | 23.4437 | 35.0453 | 113.725 | | 4.3398 | 50.0 | 2300 | 4.4320 | 38.5833 | 11.4575 | 23.6411 | 35.3437 | 116.125 | | 4.3341 | 52.17 | 2400 | 4.4247 | 38.2705 | 12.0374 | 23.5807 | 34.9985 | 110.8 | | 4.3024 | 54.35 | 2500 | 4.4201 | 39.0206 | 12.2041 | 23.4394 | 35.6291 | 114.5 | | 4.3117 | 56.52 | 2600 | 4.4147 | 38.6555 | 12.1079 | 23.5655 | 35.5287 | 111.325 | | 4.2659 | 58.7 | 2700 | 4.4107 | 39.2235 | 12.025 | 23.934 | 36.2243 | 113.3 | | 4.2946 | 60.87 | 2800 | 4.4055 | 39.0301 | 12.1833 | 23.8999 | 36.0487 | 110.325 | | 4.2431 | 63.04 | 2900 | 4.4009 | 39.0498 | 12.3215 | 23.9686 | 36.0277 | 112.775 | | 4.2439 | 65.22 | 3000 | 4.3968 | 38.8786 | 12.0985 | 23.8308 | 35.8575 | 115.175 | | 4.2244 | 67.39 | 3100 | 4.3922 | 38.7614 | 12.1721 | 23.7736 | 35.6744 | 113.55 | | 4.235 | 69.57 | 3200 | 4.3895 | 38.6858 | 11.3994 | 23.6392 | 35.3456 | 114.125 | | 4.2064 | 71.74 | 3300 | 4.3859 | 39.0258 | 12.0435 | 24.2528 | 35.8378 | 113.5 | | 4.1934 | 73.91 | 3400 | 4.3835 | 39.0467 | 11.5556 | 23.6704 | 35.5643 | 111.5 | | 4.1859 | 76.09 | 3500 | 4.3800 | 38.776 | 11.729 | 24.1254 | 35.3894 | 112.9 | | 4.1762 | 78.26 | 3600 | 4.3775 | 38.9465 | 11.9112 | 23.8123 | 35.5453 | 114.125 | | 4.1848 | 80.43 | 3700 | 4.3744 | 39.2783 | 11.6539 | 23.8236 | 35.8465 | 110.225 | | 4.1386 | 82.61 | 3800 | 4.3730 | 38.8894 | 11.4784 | 23.7534 | 35.5464 | 113.15 | | 4.1483 | 84.78 | 3900 | 4.3710 | 39.2734 | 12.0285 | 23.8171 | 35.6884 | 115.95 | | 4.1428 | 86.96 | 4000 | 4.3688 | 39.6134 | 12.0616 | 23.7454 | 36.0363 | 113.375 | | 4.133 | 89.13 | 4100 | 4.3663 | 38.935 | 11.4781 | 23.8766 | 35.4061 | 114.15 | | 4.1211 | 91.3 | 4200 | 4.3648 | 39.1488 | 11.8399 | 23.9935 | 35.3107 | 113.975 | | 4.1076 | 93.48 | 4300 | 4.3650 | 38.9764 | 11.9963 | 23.4994 | 35.7214 | 116.25 | | 4.121 | 95.65 | 4400 | 4.3597 | 38.9418 | 11.8416 | 24.0272 | 35.6597 | 111.325 | | 4.0936 | 97.83 | 4500 | 4.3602 | 39.266 | 12.5616 | 24.2046 | 36.1883 | 114.275 | | 4.0841 | 100.0 | 4600 | 4.3588 | 39.4659 | 12.2132 | 24.0521 | 36.249 | 115.475 | | 4.0768 | 102.17 | 4700 | 4.3578 | 39.4167 | 12.0587 | 24.025 | 35.9668 | 114.375 | | 4.0711 | 104.35 | 4800 | 4.3541 | 39.6943 | 12.1095 | 24.0925 | 36.3496 | 115.65 | | 4.072 | 106.52 | 4900 | 4.3539 | 40.2024 | 12.4618 | 24.2863 | 36.8844 | 113.475 | | 4.0646 | 108.7 | 5000 | 4.3540 | 39.4299 | 11.8085 | 23.686 | 36.0454 | 113.975 | | 4.0508 | 110.87 | 5100 | 4.3517 | 39.9217 | 11.9379 | 24.2299 | 36.6362 | 115.5 | | 4.0549 | 113.04 | 5200 | 4.3498 | 40.3496 | 12.2558 | 24.0271 | 36.9715 | 112.5 | | 4.0428 | 115.22 | 5300 | 4.3497 | 40.1349 | 12.0628 | 24.0622 | 36.9169 | 113.95 | | 4.0391 | 117.39 | 5400 | 4.3480 | 40.1209 | 12.3587 | 24.3456 | 36.8411 | 116.025 | | 4.0195 | 119.57 | 5500 | 4.3474 | 39.5209 | 12.1325 | 24.2622 | 36.4357 | 111.975 | | 4.0054 | 121.74 | 5600 | 4.3468 | 40.2885 | 12.4453 | 24.2373 | 36.932 | 117.375 | | 4.0286 | 123.91 | 5700 | 4.3465 | 39.3943 | 11.8399 | 23.9786 | 35.991 | 116.475 | | 4.005 | 126.09 | 5800 | 4.3459 | 38.7442 | 11.7408 | 23.8948 | 35.3673 | 117.625 | | 3.991 | 128.26 | 5900 | 4.3444 | 39.6276 | 12.1549 | 23.9542 | 36.3832 | 115.675 | | 4.0137 | 130.43 | 6000 | 4.3427 | 39.8331 | 12.2687 | 24.187 | 36.6144 | 115.475 | | 3.9755 | 132.61 | 6100 | 4.3438 | 39.1907 | 12.1033 | 24.2339 | 35.9126 | 114.525 | | 4.0134 | 134.78 | 6200 | 4.3422 | 39.4298 | 11.862 | 24.0847 | 35.5744 | 115.025 | | 3.9935 | 136.96 | 6300 | 4.3416 | 39.4158 | 11.6968 | 23.9636 | 35.8155 | 114.35 | | 3.9606 | 139.13 | 6400 | 4.3409 | 39.1239 | 11.7046 | 23.6846 | 36.0431 | 114.775 | | 3.9834 | 141.3 | 6500 | 4.3404 | 39.6375 | 12.2746 | 24.2636 | 36.1425 | 116.175 | | 3.9687 | 143.48 | 6600 | 4.3409 | 39.1494 | 12.1404 | 24.0778 | 35.4932 | 118.05 | | 3.9861 | 145.65 | 6700 | 4.3394 | 39.6258 | 12.2497 | 23.9662 | 36.4054 | 116.8 | | 3.9755 | 147.83 | 6800 | 4.3400 | 39.3121 | 11.7831 | 23.6584 | 35.9636 | 118.125 | | 3.9591 | 150.0 | 6900 | 4.3390 | 39.6957 | 11.9406 | 24.0599 | 36.3021 | 114.9 | | 3.9599 | 152.17 | 7000 | 4.3389 | 39.4271 | 11.4159 | 24.1437 | 35.9056 | 115.8 | | 3.9456 | 154.35 | 7100 | 4.3384 | 39.4862 | 11.726 | 23.883 | 35.9839 | 116.375 | | 3.9341 | 156.52 | 7200 | 4.3386 | 39.6915 | 11.8028 | 24.346 | 36.406 | 116.425 | | 3.9648 | 158.7 | 7300 | 4.3383 | 39.9311 | 11.7135 | 23.985 | 36.2617 | 118.075 | | 3.9486 | 160.87 | 7400 | 4.3372 | 39.8375 | 12.0014 | 24.0969 | 36.5902 | 118.8 | | 3.9533 | 163.04 | 7500 | 4.3371 | 40.2678 | 12.3137 | 24.1916 | 37.1632 | 118.075 | | 3.9344 | 165.22 | 7600 | 4.3369 | 39.5588 | 11.6805 | 24.1474 | 36.2021 | 114.875 | | 3.9314 | 167.39 | 7700 | 4.3368 | 39.8649 | 11.9824 | 24.5459 | 36.3921 | 113.65 | | 3.9558 | 169.57 | 7800 | 4.3363 | 39.8428 | 12.0892 | 24.0175 | 36.67 | 112.7 | | 3.928 | 171.74 | 7900 | 4.3364 | 39.2281 | 11.8456 | 23.7212 | 36.2005 | 113.95 | | 3.9351 | 173.91 | 8000 | 4.3363 | 39.9798 | 12.4387 | 23.7687 | 36.6472 | 115.45 | | 3.9326 | 176.09 | 8100 | 4.3363 | 39.9772 | 12.1193 | 24.1518 | 36.5791 | 117.4 | | 3.9387 | 178.26 | 8200 | 4.3363 | 39.8629 | 12.1719 | 23.9446 | 36.345 | 115.075 | | 3.9204 | 180.43 | 8300 | 4.3358 | 39.9738 | 12.3072 | 23.8641 | 36.4802 | 116.3 | | 3.9418 | 182.61 | 8400 | 4.3357 | 40.1451 | 12.4144 | 24.1553 | 36.4251 | 116.025 | | 3.9289 | 184.78 | 8500 | 4.3357 | 39.7241 | 12.0543 | 24.0752 | 36.0847 | 115.8 | | 3.9176 | 186.96 | 8600 | 4.3358 | 39.7969 | 12.0967 | 24.123 | 36.2664 | 118.6 | | 3.9097 | 189.13 | 8700 | 4.3356 | 39.4096 | 11.9872 | 24.0609 | 35.8662 | 117.2 | | 3.938 | 191.3 | 8800 | 4.3354 | 39.4695 | 11.9343 | 24.0295 | 35.9372 | 117.025 | | 3.9239 | 193.48 | 8900 | 4.3352 | 39.3231 | 12.0965 | 23.9131 | 35.9555 | 117.275 | | 3.91 | 195.65 | 9000 | 4.3354 | 39.5932 | 12.1808 | 23.9233 | 36.0864 | 116.925 | | 3.9234 | 197.83 | 9100 | 4.3354 | 39.5539 | 12.1134 | 23.9163 | 36.0299 | 117.225 | | 3.9263 | 200.0 | 9200 | 4.3354 | 39.5539 | 12.1134 | 23.9163 | 36.0299 | 117.225 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
castorini/monot5-small-msmarco-100k
castorini
2022-05-25T15:08:56Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T15:04:22Z
This model is a T5-small reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 1 epoch). For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
vai6hav/wav2vec2-large-xls-r-300m-hindi-colab
vai6hav
2022-05-25T15:01:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-25T13:59:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
DuboiJ/finetuning-sentiment-model-3000-samples
DuboiJ
2022-05-25T13:48:07Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-23T13:20:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8637873754152824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3211 - Accuracy: 0.8633 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Monsia/afrilang-bci-tts
Monsia
2022-05-25T12:46:34Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "bci", "dataset:afrilang-bci", "arxiv:1804.00015", "license:apache-2.0", "region:us" ]
text-to-speech
2022-05-24T12:40:18Z
--- tags: - espnet - audio - text-to-speech language: - bci datasets: - afrilang-bci license: apache-2.0 metrics: - mos --- ## ESPnet2 TTS model ### `` This model was trained by using recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/afrilang-bci/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model ``` ## TTS config <details><summary>expand</summary> ``` config: ./conf/train_vits.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/44k/tts_train_vits_raw_char_tacotron ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 20 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 2 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 5 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 20 batch_size: 20 valid_batch_size: null batch_bins: 500 valid_batch_bins: null train_shape_file: - exp/44k/tts_stats_raw_linear_spectrogram_char_tacotron/train/text_shape.char - exp/44k/tts_stats_raw_linear_spectrogram_char_tacotron/train/speech_shape valid_shape_file: - exp/44k/tts_stats_raw_linear_spectrogram_char_tacotron/valid/text_shape.char - exp/44k/tts_stats_raw_linear_spectrogram_char_tacotron/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/org/train/text - text - text - - dump/raw/org/train/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/raw/org/test/text - text - text - - dump/raw/org/test/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: false token_list: - <blank> - <unk> - <space> - N - E - A - I - O - U - L - K - M - S - B - W - T - F - R - Y - Z - D - G - J - P - C - V - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en feats_extract: linear_spectrogram feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null normalize: null normalize_conf: {} tts: vits tts_conf: generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 2 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 4 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 vocabs: 27 aux_channels: 513 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 44100 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 1.0 lambda_kl: 1.0 sampling_rate: 44100 cache_generator_outputs: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
comodoro/ppo-CartPole-v1
comodoro
2022-05-25T12:10:46Z
4
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T12:10:20Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jimypbr/t5-base-test
jimypbr
2022-05-25T12:02:55Z
7
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-23T09:03:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-base-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-summarization This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the cnn_dailymail 3.0.0 dataset. ## Model description More information needed ## Intended uses & limitations This is a work in progress. Please don't use these weights. :) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 256 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 5.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
arimboux/q-Taxi-v4
arimboux
2022-05-25T11:56:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T11:50:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v4 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="arimboux/q-Taxi-v4", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
arimboux/q-Taxi-v3
arimboux
2022-05-25T11:41:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T11:40:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="arimboux/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
arimboux/q-FrozenLake-v1-4x4-noSlippery
arimboux
2022-05-25T11:37:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T11:37:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="arimboux/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dsavich/LunarLander-v2
dsavich
2022-05-25T11:05:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T10:44:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 279.89 +/- 20.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
morahil/wav2vec2-hindi-new-3
morahil
2022-05-25T11:00:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-25T08:37:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-hindi-new-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hindi-new-3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.1206 - eval_wer: 0.8949 - eval_runtime: 20.2358 - eval_samples_per_second: 19.767 - eval_steps_per_second: 2.471 - epoch: 25.8 - step: 1600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16
theojolliffe
2022-05-25T10:47:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T08:50:11Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8960 - Rouge1: 57.7198 - Rouge2: 44.5711 - Rougel: 47.6281 - Rougelsum: 56.2372 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 398 | 0.8634 | 53.7416 | 34.3731 | 37.1193 | 51.3075 | 142.0 | | 0.8276 | 2.0 | 796 | 0.8001 | 53.9975 | 35.1019 | 38.2722 | 51.7878 | 142.0 | | 0.5311 | 3.0 | 1194 | 0.7988 | 53.409 | 34.3201 | 37.5443 | 50.738 | 142.0 | | 0.3538 | 4.0 | 1592 | 0.7698 | 53.679 | 34.7209 | 37.7895 | 51.2497 | 142.0 | | 0.3538 | 5.0 | 1990 | 0.7863 | 54.2493 | 36.0643 | 39.1249 | 51.9758 | 142.0 | | 0.2367 | 6.0 | 2388 | 0.7810 | 54.4042 | 37.4276 | 41.529 | 52.1544 | 142.0 | | 0.164 | 7.0 | 2786 | 0.8055 | 56.0408 | 39.6744 | 42.8323 | 54.163 | 142.0 | | 0.1146 | 8.0 | 3184 | 0.8098 | 55.2046 | 38.5399 | 41.9178 | 53.0001 | 142.0 | | 0.089 | 9.0 | 3582 | 0.8199 | 57.1523 | 41.7614 | 44.5914 | 55.1602 | 142.0 | | 0.089 | 10.0 | 3980 | 0.8644 | 56.943 | 41.5063 | 44.4929 | 54.9515 | 142.0 | | 0.0647 | 11.0 | 4378 | 0.8413 | 57.0321 | 41.964 | 45.3971 | 55.0957 | 142.0 | | 0.0485 | 12.0 | 4776 | 0.8735 | 56.7275 | 41.8577 | 44.3911 | 54.9824 | 142.0 | | 0.0365 | 13.0 | 5174 | 0.8858 | 57.6103 | 43.8831 | 47.0374 | 56.0675 | 142.0 | | 0.0271 | 14.0 | 5572 | 0.8974 | 57.39 | 42.8693 | 45.9344 | 55.7404 | 142.0 | | 0.0271 | 15.0 | 5970 | 0.8990 | 57.9433 | 44.7301 | 47.843 | 56.5407 | 142.0 | | 0.0232 | 16.0 | 6368 | 0.8960 | 57.7198 | 44.5711 | 47.6281 | 56.2372 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ksmcg/q-Taxi-v3
ksmcg
2022-05-25T10:43:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T10:43:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ksmcg/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ksmcg/q-FrozenLake-v1-4x4-noSlippery
ksmcg
2022-05-25T10:39:53Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T10:39:45Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ksmcg/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dinalzein/xlm-roberta-base-finetuned-language-identification
dinalzein
2022-05-25T09:52:27Z
8
3
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-24T19:22:24Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-base-finetuned-language-identification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-language-detection-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [Language Identification dataset](https://huggingface.co/datasets/papluca/language-identification). It achieves the following results on the evaluation set: - Loss: 0.0436 - Accuracy: 0.9959 ## Model description The model used in this task is XLM-RoBERTa, a transformer model with a classification head on top. ## Intended uses & limitations It identifies the language a document is written in and it supports 20 different langauges: Arabic (ar), Bulgarian (bg), German (de), Modern greek (el), English (en), Spanish (es), French (fr), Hindi (hi), Italian (it), Japanese (ja), Dutch (nl), Polish (pl), Portuguese (pt), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnamese (vi), Chinese (zh) ## Training and evaluation data The model is fine-tuned on the [Language Identification dataset](https://huggingface.co/datasets/papluca/language-identification), a corpus consists of text from 20 different languages. The dataset is split with 7000 sentences for training, 1000 for validating, and 1000 for testing. The accuracy on the test set is 99.5%. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0493 | 1.0 | 35000 | 0.0407 | 0.9955 | | 0.018 | 2.0 | 70000 | 0.0436 | 0.9959 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
XGBooster/q-Taxi-v3
XGBooster
2022-05-25T09:14:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T09:14:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="XGBooster/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AswiN037/sentence-t-roberta-large-wechsel-tamil
AswiN037
2022-05-25T08:55:45Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-24T11:00:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sent-Roberta-wechsel-tamil This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
XGBooster/q-FrozenLake-v1-8x8-noSlippery
XGBooster
2022-05-25T08:43:46Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-25T08:43:38Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="XGBooster/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```