modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
Mofe/speech-sprint-test
Mofe
2022-02-08T18:32:00Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 207.6065 - Wer: 1.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug
espnet
2022-02-08T18:13:51Z
2
1
espnet
[ "espnet", "audio", "speech-translation", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - espnet - audio - speech-translation language: noinfo datasets: - iwslt22_dialect license: cc-by-4.0 --- ## ESPnet2 ST model ### `espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/st1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug ``` <!-- Generated by scripts/utils/show_st_results.sh --> # RESULTS ## Environments - date: `Tue Feb 8 12:54:12 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1` - Git hash: `77fce65312877a132bbae01917ad26b74f6e2e14` - Commit date: `Tue Feb 8 10:48:10 2022 -0500` ## st_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe_tc1000_sp ### BLEU |dataset|bleu_score|verbose_score| |---|---|---| pen2_st_model_valid.acc.ave|13.9|44.0/21.8/11.4/6.2 (BP = 0.859 ratio = 0.868 hyp_len = 36614 ref_len = 42181) ## ST config <details><summary>expand</summary> ``` config: conf/tuning/train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/st_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe_tc1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 80 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: true freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/st_stats_raw_bpe1000_sp/train/speech_shape - exp/st_stats_raw_bpe1000_sp/train/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/train/src_text_shape.bpe valid_shape_file: - exp/st_stats_raw_bpe1000_sp/valid/speech_shape - exp/st_stats_raw_bpe1000_sp/valid/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text.tc.en - text - text - - dump/raw/train_sp/text.tc.rm.ta - src_text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text.tc.en - text - text - - dump/raw/dev/text.tc.rm.ta - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁ - apo - '&' - ; - ▁i - ▁you - t - ▁it - ▁the - ▁and - ▁to - ▁that - ▁a - n - a - ▁he - ▁me - m - d - ▁yes - ▁she - ▁no - ▁in - ▁what - ▁for - ▁we - ing - ll - ▁they - re - ▁are - ▁did - ▁god - ▁is - e - ed - ▁so - ▁her - ▁do - ▁have - ▁of - ▁with - ▁go - ▁know - ▁not - ▁was - ▁on - ▁don - y - ▁him - ▁one - ▁like - ▁there - '%' - ▁pw - ▁be - ▁at - ▁told - ▁good - ▁will - ▁my - ▁all - ▁or - c - er - p - ▁how - ▁ah - r - ▁but - ▁them - ▁see - ▁get - ▁can - i - ▁when - ▁going - ▁about - ▁mean - ▁this - k - ▁your - ▁by - ▁if - u - ▁come - ▁up - ▁tell - g - ▁said - ▁then - ▁now - ▁yeah - o - ▁out - al - ra - ▁because - ▁time - ▁well - ▁would - ▁p - ▁from - h - ar - f - ▁swear - ▁went - b - ▁really - or - ▁want - ri - ▁home - ▁work - ve - ▁take - ▁got - ▁just - l - ▁uh - ▁why - en - ▁even - ▁am - ▁who - ▁make - ▁day - '-' - in - ▁something - ▁some - ou - ▁us - ▁okay - ▁where - ▁does - ▁has - ▁thank - ▁c - ▁his - th - ▁back - ▁fine - ▁today - ly - ▁b - ▁oh - ▁doing - ▁everything - ▁here - le - ▁thing - ▁two - ▁anyway - li - ▁had - ▁still - ▁say - ro - ▁after - ce - ▁hello - ▁ma - ▁call - w - ▁listen - il - ▁should - ▁girl - ▁f - z - ▁too - ▁let - ▁understand - ▁may - ▁much - ▁think - ch - ir - ha - ▁other - ▁tomorrow - ▁were - ▁people - es - ▁year - di - ba - ▁right - el - ▁things - ▁house - v - ▁actually - un - ▁an - ▁give - ▁only - ▁better - pe - ▁need - ▁buy - ▁de - ne - ▁ha - ur - ion - ▁made - la - ▁willing - ▁nothing - ▁called - ▁night - ▁yesterday - se - ▁came - ▁lot - ter - ▁g - po - ▁find - ry - ▁car - ▁over - ic - ▁stay - ▁eat - ent - ▁always - ▁very - 'on' - ▁put - ▁ramadan - ▁those - ▁hear - is - ▁talk - ▁three - ▁anything - ▁mo - ▁little - ▁been - ▁already - fi - ation - ke - ▁first - ▁look - it - ▁won - ▁mom - ▁way - ▁before - ▁ok - ▁last - fa - ▁cook - vi - ▁hi - ▁same - ▁thought - ▁also - um - ate - ▁money - ▁start - ▁place - us - ▁morning - ▁could - ▁ask - ▁bring - ▁bit - ▁lo - ▁leave - ▁man - ▁left - ine - ▁days - ge - ▁la - ▁week - ▁friend - ▁problem - ▁sister - ▁allah - ▁feel - ▁every - ▁more - fe - ▁long - ▁hundred - ▁j - ▁eh - ho - ca - em - ▁talking - ▁exam - ▁next - ▁new - ▁fun - ▁took - ▁alright - co - ▁w - ▁um - ▁eid - ▁brother - ▁our - gh - ow - ▁o - ▁four - ni - wa - ▁else - ▁finish - bo - ▁sleep - ▁bless - ▁dear - ▁since - ▁play - ▁name - hi - ▁coming - ▁many - et - ▁usual - ▁con - ▁maybe - ▁off - bi - ▁than - ▁any - ▁mother - ▁son - om - ▁their - ▁keep - ▁dinner - ▁ten - ▁half - ▁help - ▁bad - and - ▁pass - ▁hot - ▁guy - ▁least - ▁down - ▁bought - ▁dinars - ▁working - ▁around - ▁normal - ▁poor - ▁stuff - ▁hope - ▁used - ▁again - ▁bro - ul - ▁phone - ▁ex - ▁done - ▁six - ▁na - ▁month - ▁tired - ▁check - ▁show - ▁together - oo - ▁later - ▁past - ▁five - ▁watch - ya - ▁coffee - ment - ut - ▁plan - ▁great - ▁daughter - j - ▁another - side - ▁change - ▁yet - ting - ▁until - ▁honestly - ▁whole - ol - ▁care - ▁sure - able - id - ▁big - ▁spend - ▁exactly - ▁boy - ▁course - ▁end - ▁please - ▁started - he - up - ▁found - ▁saw - ▁family - ▁asked - ▁enough - ▁during - ▁rest - ▁which - ▁gave - ▁true - ▁while - ▁job - ▁el - ▁each - ▁away - ▁kids - ▁goes - less - ▁twenty - ▁eight - ▁someone - ▁cha - ▁clothes - ah - ▁myself - ▁nice - ▁late - ▁old - ▁real - age - ant - ▁fast - ▁add - ▁hard - ▁these - ful - im - ▁close - ive - ▁dad - ▁pay - ies - ▁dude - ▁alone - ▁far - ance - ▁dis - ▁seven - ▁isn - ▁pro - our - ▁thousand - ▁break - ▁hour - ▁wait - ▁brought - ▁open - ▁un - ▁wedding - ▁walk - ▁father - ▁ka - ▁second - x - ▁saturday - ▁salad - ▁win - ▁everyone - ▁water - ▁tunis - ▁remember - ity - ▁wake - ▁minute - ▁school - ▁sunday - ▁own - ▁shop - ▁cold - ▁meet - ▁wear - ever - ▁send - ▁early - ▁gra - tic - ▁short - ▁use - ▁sometimes - hou - ▁love - ▁prepare - ▁sea - ▁study - ure - ▁com - qui - ▁hand - ▁both - ja - ▁summer - ▁wrong - ▁wanted - che - ▁miss - ▁try - ▁iftar - ▁yourself - q - ▁live - war - ▁expensive - ▁getting - ▁waiting - ▁once - ▁kh - ▁forgot - ▁nine - ▁anymore - ▁soup - ▁uncle - ▁beach - ▁saying - ▁into - ▁having - ▁brik - ▁room - ▁food - ▁visit - ▁matter - ▁thirty - ▁taking - ▁rain - ▁aunt - ▁never - ▁pick - ▁tunisia - ▁health - ▁head - ▁cut - ▁fasting - ▁sick - ▁friday - ▁forget - ▁monday - ▁become - ▁dress - ated - ▁most - wi - ▁hang - ▁life - ▁fish - ▁happy - ▁delicious - ▁deal - ▁finished - ble - ▁studying - ▁weather - ▁making - ▁cost - ▁bl - ▁stayed - ▁guess - ▁teach - ▁stop - ▁near - ▁watching - ▁without - ▁imagine - ▁seriously - fl - ▁speak - ▁idea - ▁must - ▁normally - ▁turn - ize - ▁clean - ▁tv - ▁meat - ▁woke - ▁example - ▁easy - ▁sent - ▁sell - over - ▁fifty - ▁amazing - ▁beautiful - ▁whatever - ▁enjoy - ▁talked - ▁believe - ▁thinking - ▁count - ▁almost - ▁longer - ▁afternoon - ▁hair - ▁front - ▁earlier - ▁mind - ▁kind - ▁tea - ▁best - ▁rent - ▁picture - ▁cooked - ▁price - ight - ▁soon - ▁woman - ▁otherwise - ▁happened - ▁story - ▁luck - ▁high - ▁happen - ▁arrive - ▁paper - ga - ▁quickly - ▁looking - ub - ▁number - ▁staying - ▁sit - man - ack - ▁important - ▁either - ▁person - ▁small - ▁free - ▁crazy - ▁playing - ▁kept - ▁part - ▁game - law - ▁till - uck - ▁ready - ▁might - ▁gone - ▁full - ▁fix - ▁subject - ▁laugh - ▁doctor - ▁welcome - ▁eleven - ▁sleeping - ▁heat - ▁probably - ▁such - ▁café - ▁fat - ▁sweet - ▁married - ▁drink - ▁move - ▁outside - ▁especially - ▁group - ji - ▁market - ▁through - ▁train - ▁protect - ▁turned - ▁red - ▁busy - ▁light - ▁noise - ▁street - ▁manage - ▁piece - ▁sitting - gue - ▁sake - ▁party - ish - ▁young - ▁case - ▁cool - huh - ▁marwa - ▁drive - ▁pray - clock - ▁couscous - ▁spent - ▁felt - ▁hopefully - ▁everybody - ▁living - ▁pain - line - ▁between - ▁match - ▁prayer - que - ian - ▁facebook - ▁spi - ▁eye - ▁children - ▁tonight - ▁mohamed - ▁understood - ▁black - ▁husband - ▁rid - ▁kitchen - ▁face - ▁swim - ▁kid - ▁invite - ▁cup - ▁grilled - ▁wife - ▁cousin - ▁drop - ▁wow - ▁table - ▁du - ▁bored - ▁neighborhood - ▁agree - ▁bread - ▁hamma - ▁straight - ▁tuesday - ▁anyone - ▁lunch - ade - ▁himself - ▁gather - ▁wish - ▁fifteen - ▁wednesday - ▁die - ▁thursday - ▁color - ▁asleep - ▁different - ▁whether - ▁ago - ▁middle - ▁class - ▁cake - shirt - ▁fight - ▁clear - ▁test - ▁plus - ▁sousse - ▁beginning - ▁result - ▁learn - ▁crowded - ▁slept - ▁shoes - ▁august - ▁pretty - ▁white - ▁apparently - ▁reach - ▁mariem - ▁return - ▁road - ▁million - ▁stand - ▁paid - ▁word - ious - ▁few - ▁breakfast - ▁post - ▁kilo - ▁chicken - ▁grade - ▁read - ▁accept - ▁birthday - ▁exhaust - ▁point - ▁july - ▁patience - ▁studies - ▁trouble - ▁along - ▁worry - ▁follow - ▁hurt - ▁afraid - ▁trip - ▁ahmed - ▁remain - ▁succeed - ▁mercy - ▁difficult - ▁weekend - ▁answer - ▁cheap - ▁repeat - ▁auntie - ▁sign - ▁hold - ▁under - ▁olive - ▁mahdi - ▁sfax - ▁annoy - ▁dishes - ▁message - ▁business - ▁french - ▁serious - ▁travel - ▁office - ▁wonder - ▁student - ▁internship - ▁pepper - ▁knew - ▁kill - ▁sauce - ▁herself - ▁hammamet - ▁damn - ▁mix - ▁suit - ▁medicine - ▁remove - ▁gonna - ▁company - ▁quarter - ▁shopping - ▁correct - ▁throw - ▁grow - ▁voice - ▁series - gotten - ▁taste - ▁driving - ▁hospital - ▁sorry - ▁aziz - ▁milk - ▁green - ▁baccalaureate - ▁running - ▁lord - ▁explain - ▁angry - ▁build - ▁fruit - ▁photo - é - ▁crying - ▁baby - ▁store - ▁project - ▁france - ▁twelve - ▁decide - ▁swimming - ▁world - ▁preparing - ▁special - ▁session - ▁behind - ▁vegetable - ▁strong - ▁fatma - ▁treat - ▁cream - ▁situation - ▁settle - ▁totally - ▁stopped - ▁book - ▁honest - ▁solution - ▁vacation - ▁cheese - ▁ahead - ▁sami - ▁focus - ▁scared - ▁club - ▁consider - ▁final - ▁naturally - ▁barely - ▁issue - ▁floor - ▁birth - ▁almighty - ▁engagement - ▁blue - ▁empty - ▁soccer - ▁prophet - ▁ticket - ▁indeed - ▁write - ▁present - ▁patient - ▁available - ▁holiday - ▁leaving - ▁became - ▁reason - ▁apart - ▁impossible - ▁shame - ▁worried - ▁body - ▁continue - ▁program - ▁stress - ▁arabic - ▁round - ▁taxi - ▁transport - ▁third - ▁certain - ▁downstairs - ▁neighbor - ▁directly - ▁giving - ▁june - ▁mini - ▁upstairs - ▁mistake - ▁period - ▁catch - ▁buddy - ▁success - ▁tajine - ▁excuse - ▁organize - ▁question - ▁suffer - ▁remind - ▁university - ▁downtown - ▁sugar - ▁twice - ▁women - ▁couple - ▁everyday - ▁condition - ▁obvious - ▁nobody - ▁complete - ▁stomach - ▁account - ▁september - ▁choose - ▁bottle - ▁figure - ▁instead - ▁salary - '0' - '1' - '3' - '2' - '5' - '7' - '4' - '9' - '8' - / - ° - '6' - è - $ - ï - <sos/eos> src_token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: asr_weight: 0.3 mt_weight: 0.0 mtlalpha: 1.0 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe src_token_type: bpe bpemodel: data/token_list/tgt_bpe_unigram1000/bpe.model src_bpemodel: data/token_list/src_bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/st_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 extra_asr_decoder: transformer extra_asr_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 extra_mt_decoder: transformer extra_mt_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - src_token_list - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/brianyan918_iwslt22_dialect_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug
espnet
2022-02-08T16:35:06Z
2
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - iwslt22_dialect license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/brianyan918_iwslt22_dialect_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Feb 2 05:32:30 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1` - Git hash: `99581e0f5af3ad68851d556645e7292771436df9` - Commit date: `Sat Jan 29 11:32:38 2022 -0500` ## asr_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe1000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|27370|54.7|39.5|5.8|8.8|54.2|87.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|145852|84.1|7.1|8.8|11.5|27.4|87.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|64424|63.8|22.8|13.4|12.2|48.3|87.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 55101 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 80 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe1000_sp/train/speech_shape - exp/asr_stats_raw_bpe1000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe1000_sp/valid/speech_shape - exp/asr_stats_raw_bpe1000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /scratch/iwslt22asrdump/raw/train_sp/wav.scp - speech - kaldi_ark - - /scratch/iwslt22asrdump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - /scratch/iwslt22asrdump/raw/dev/wav.scp - speech - kaldi_ark - - /scratch/iwslt22asrdump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.6a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
arredondos/my_sentence_transformer
arredondos
2022-02-08T13:10:36Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
tesemnikov-av/rubert-ner-toxicity
tesemnikov-av
2022-02-08T12:52:32Z
80
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- widget: - text: "Ну ты и придурок!!" --- NER Toxic models Fine-tuning [cointegrated/rubert-tiny-toxicity](https://huggingface.co/cointegrated/rubert-tiny-toxicity) model on data from [toxic_dataset_ner](https://huggingface.co/datasets/tesemnikov-av/toxic_dataset_ner) language: RU ```python !pip install transformers > /dev/null from transformers import ( AutoModelForTokenClassification, AutoTokenizer, pipeline ) model = AutoModelForTokenClassification.from_pretrained('tesemnikov-av/rubert-ner-toxicity') tokenizer = AutoTokenizer.from_pretrained('tesemnikov-av/rubert-ner-toxicity') pipe = pipeline(model=model, tokenizer=tokenizer, task='ner', aggregation_strategy='average') text = "Они охриневшие там все придурки!!" print(text) print(pipe(text)) ```
imfiba1991/gpt2-wikitext2
imfiba1991
2022-02-08T10:53:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.2082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 13 | 8.1476 | | No log | 2.0 | 26 | 7.4435 | | No log | 3.0 | 39 | 7.2082 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
edugp/wav2vec2-xls-r-300m-cv8-es
edugp
2022-02-08T08:57:24Z
14
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-cv8-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-cv8-es This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2115 - eval_wer: 0.1931 - eval_runtime: 859.964 - eval_samples_per_second: 17.954 - eval_steps_per_second: 2.244 - epoch: 6.97 - step: 50000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
hgharibi/wav2vec2-xls-r-300m-fa-colab
hgharibi
2022-02-08T05:54:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-fa-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-fa-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4404 - Wer: 0.4402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.083 | 0.75 | 300 | 3.0037 | 1.0 | | 1.5795 | 1.5 | 600 | 0.9167 | 0.7638 | | 0.658 | 2.25 | 900 | 0.5737 | 0.5595 | | 0.4213 | 3.0 | 1200 | 0.4404 | 0.4402 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
LegolasTheElf/Wav2Vec2_xls_r_300m_hi_final
LegolasTheElf
2022-02-08T04:27:18Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "Openslr Multilingual", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - Openslr Multilingual - mozilla-foundation/common_voice_7_0 - generated_from_trainer model-index: - name: Wav2Vec2_xls_r_300m_hi_final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2_xls_r_300m_hi_final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - Wer: 0.3137 - Cer: 0.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | | 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | | 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | | 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | | 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | | 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | | 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | | 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | | 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | | 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | | 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | | 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
hyesunyun/NonsenseUpdateDiffStringBart
hyesunyun
2022-02-08T04:10:12Z
13
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "diff generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - summarization - diff generation datasets: - nonsense corpus metrics: - rouge --- hello! this is the pretrained BART. The dataset used for pretraining is nonsense summary corpus with output as diff.
jgammack/SAE-distilbert-base-uncased-squad
jgammack
2022-02-08T04:03:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: SAE-distilbert-base-uncased-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAE-distilbert-base-uncased-squad This model is a fine-tuned version of [jgammack/SAE-distilbert-base-uncased](https://huggingface.co/jgammack/SAE-distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
gagan3012/ViTGPT2I2A
gagan3012
2022-02-08T03:27:44Z
6
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "image-captioning", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-captioning - generated_from_trainer model-index: - name: ViTGPT2I2A results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2I2A This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the vizwiz dataset. It achieves the following results on the evaluation set: - Loss: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1528 | 0.17 | 1000 | 0.0869 | | 0.0899 | 0.34 | 2000 | 0.0817 | | 0.084 | 0.51 | 3000 | 0.0790 | | 0.0814 | 0.68 | 4000 | 0.0773 | | 0.0803 | 0.85 | 5000 | 0.0757 | | 0.077 | 1.02 | 6000 | 0.0745 | | 0.0739 | 1.19 | 7000 | 0.0740 | | 0.0719 | 1.37 | 8000 | 0.0737 | | 0.0717 | 1.54 | 9000 | 0.0730 | | 0.0731 | 1.71 | 10000 | 0.0727 | | 0.0708 | 1.88 | 11000 | 0.0720 | | 0.0697 | 2.05 | 12000 | 0.0717 | | 0.0655 | 2.22 | 13000 | 0.0719 | | 0.0653 | 2.39 | 14000 | 0.0719 | | 0.0657 | 2.56 | 15000 | 0.0712 | | 0.0663 | 2.73 | 16000 | 0.0710 | | 0.0654 | 2.9 | 17000 | 0.0708 | | 0.0645 | 3.07 | 18000 | 0.0716 | | 0.0616 | 3.24 | 19000 | 0.0712 | | 0.0607 | 3.41 | 20000 | 0.0712 | | 0.0611 | 3.58 | 21000 | 0.0711 | | 0.0615 | 3.76 | 22000 | 0.0711 | | 0.0614 | 3.93 | 23000 | 0.0710 | | 0.0594 | 4.1 | 24000 | 0.0716 | | 0.0587 | 4.27 | 25000 | 0.0715 | | 0.0574 | 4.44 | 26000 | 0.0715 | | 0.0579 | 4.61 | 27000 | 0.0715 | | 0.0581 | 4.78 | 28000 | 0.0715 | | 0.0579 | 4.95 | 29000 | 0.0715 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
softcatala/wav2vec2-large-100k-voxpopuli-catala
softcatala
2022-02-08T02:20:32Z
4
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "speech-to-text", "ca", "dataset:common_voice", "dataset:parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - speech-to-text license: apache-2.0 model-index: - name: Catalan VoxPopuli Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 5.98 - name: Google Crowsourced Corpus WER type: wer value: 12.14 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 12.02 --- # Wav2Vec2-Large-100k-VoxPopuli-Català Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv)) | 5.98% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.14% | | Audiobook “La llegenda de Sant Jordi” | 12.02% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
jgammack/MTL-distilbert-base-uncased
jgammack
2022-02-07T23:23:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MTL-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5593 | 1.0 | 99 | 2.3163 | | 2.4346 | 2.0 | 198 | 2.2918 | | 2.3377 | 3.0 | 297 | 2.2345 | | 2.2953 | 4.0 | 396 | 2.1463 | | 2.2296 | 5.0 | 495 | 2.1761 | | 2.2235 | 6.0 | 594 | 2.0721 | | 2.1878 | 7.0 | 693 | 2.1460 | | 2.1569 | 8.0 | 792 | 2.0856 | | 2.1455 | 9.0 | 891 | 2.1039 | | 2.1391 | 10.0 | 990 | 2.1112 | | 2.1056 | 11.0 | 1089 | 2.0694 | | 2.1076 | 12.0 | 1188 | 2.0501 | | 2.0919 | 13.0 | 1287 | 2.0484 | | 2.0669 | 14.0 | 1386 | 2.0342 | | 2.0595 | 15.0 | 1485 | 2.0802 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/MTL-bert-base-uncased
jgammack
2022-02-07T23:09:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MTL-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4409 | 1.0 | 99 | 2.1982 | | 2.2905 | 2.0 | 198 | 2.1643 | | 2.1974 | 3.0 | 297 | 2.1168 | | 2.15 | 4.0 | 396 | 2.0023 | | 2.0823 | 5.0 | 495 | 2.0199 | | 2.0752 | 6.0 | 594 | 1.9061 | | 2.0408 | 7.0 | 693 | 1.9770 | | 1.9984 | 8.0 | 792 | 1.9322 | | 1.9933 | 9.0 | 891 | 1.9167 | | 1.9806 | 10.0 | 990 | 1.9652 | | 1.9436 | 11.0 | 1089 | 1.9308 | | 1.9491 | 12.0 | 1188 | 1.9064 | | 1.929 | 13.0 | 1287 | 1.8831 | | 1.9096 | 14.0 | 1386 | 1.8927 | | 1.9032 | 15.0 | 1485 | 1.9117 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/MTL-roberta-base
jgammack
2022-02-07T22:45:49Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: MTL-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8338 | 1.0 | 98 | 1.6750 | | 1.7732 | 2.0 | 196 | 1.6229 | | 1.7208 | 3.0 | 294 | 1.6131 | | 1.6917 | 4.0 | 392 | 1.5936 | | 1.6579 | 5.0 | 490 | 1.6183 | | 1.6246 | 6.0 | 588 | 1.6015 | | 1.6215 | 7.0 | 686 | 1.5248 | | 1.5743 | 8.0 | 784 | 1.5454 | | 1.5621 | 9.0 | 882 | 1.5925 | | 1.5652 | 10.0 | 980 | 1.5213 | | 1.5615 | 11.0 | 1078 | 1.4845 | | 1.5349 | 12.0 | 1176 | 1.5443 | | 1.5165 | 13.0 | 1274 | 1.5304 | | 1.5164 | 14.0 | 1372 | 1.4773 | | 1.5293 | 15.0 | 1470 | 1.5537 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/SAE-roberta-base
jgammack
2022-02-07T22:14:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: SAE-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAE-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9847 | 1.0 | 79 | 1.8238 | | 1.9142 | 2.0 | 158 | 1.8299 | | 1.8613 | 3.0 | 237 | 1.7636 | | 1.8384 | 4.0 | 316 | 1.8048 | | 1.8193 | 5.0 | 395 | 1.7734 | | 1.7985 | 6.0 | 474 | 1.7271 | | 1.7758 | 7.0 | 553 | 1.8525 | | 1.7611 | 8.0 | 632 | 1.7716 | | 1.7599 | 9.0 | 711 | 1.7913 | | 1.7118 | 10.0 | 790 | 1.7578 | | 1.7003 | 11.0 | 869 | 1.7598 | | 1.7072 | 12.0 | 948 | 1.6942 | | 1.6511 | 13.0 | 1027 | 1.6955 | | 1.6802 | 14.0 | 1106 | 1.7837 | | 1.7048 | 15.0 | 1185 | 1.7377 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
robot-test/old-clip-tokenizer
robot-test
2022-02-07T21:44:19Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Old version of the CLIP fast tokenizer cf [this issue](https://github.com/huggingface/transformers/issues/12648) on transformers
nateraw/codecarbon-text-classification
nateraw
2022-02-07T20:30:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: codecarbon-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codecarbon-text-classification This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jiobiala24/wav2vec2-base-checkpoint-11.1
jiobiala24
2022-02-07T19:33:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-11.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-11.1 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-10](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-10) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0173 - Wer: 0.3350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2788 | 1.52 | 1000 | 0.5776 | 0.3410 | | 0.2277 | 3.04 | 2000 | 0.6148 | 0.3465 | | 0.1772 | 4.56 | 3000 | 0.6497 | 0.3497 | | 0.1528 | 6.08 | 4000 | 0.6786 | 0.3430 | | 0.1285 | 7.6 | 5000 | 0.6779 | 0.3489 | | 0.1104 | 9.12 | 6000 | 0.7417 | 0.3528 | | 0.0965 | 10.64 | 7000 | 0.7956 | 0.3477 | | 0.0914 | 12.16 | 8000 | 0.7994 | 0.3570 | | 0.082 | 13.68 | 9000 | 0.8690 | 0.3510 | | 0.0788 | 15.2 | 10000 | 0.8569 | 0.3526 | | 0.0727 | 16.72 | 11000 | 0.8885 | 0.3440 | | 0.0656 | 18.24 | 12000 | 0.9586 | 0.3476 | | 0.0608 | 19.76 | 13000 | 0.9317 | 0.3495 | | 0.0588 | 21.28 | 14000 | 0.9809 | 0.3449 | | 0.0547 | 22.8 | 15000 | 0.9552 | 0.3421 | | 0.0519 | 24.32 | 16000 | 0.9782 | 0.3380 | | 0.0474 | 25.84 | 17000 | 0.9923 | 0.3386 | | 0.046 | 27.36 | 18000 | 0.9984 | 0.3347 | | 0.045 | 28.88 | 19000 | 1.0173 | 0.3350 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
elozano/tweet_offensive_eval
elozano
2022-02-07T17:59:03Z
10
3
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit datasets: - tweet_eval language: en widget: - text: "You're a complete idiot!" example_title: "Offensive" - text: "I am tired of studying for tomorrow's exam" example_title: "Non-Offensive" ---
elozano/tweet_sentiment_eval
elozano
2022-02-07T17:50:59Z
11
4
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit datasets: - tweet_eval language: en widget: - text: "I love summer!" example_title: "Positive" - text: "Does anyone want to play?" example_title: "Neutral" - text: "This movie is just awful! 😫" example_title: "Negative" ---
sukhendrasingh/finetuning-sentiment-model-3000-samples
sukhendrasingh
2022-02-07T17:20:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.879746835443038 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3323 - Accuracy: 0.8733 - F1: 0.8797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/cu_coquin
huggingtweets
2022-02-07T16:16:12Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/cu_coquin/1644250567283/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442129295477035013/15LSPrJo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Manu’</div> <div style="text-align: center; font-size: 14px;">@cu_coquin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Manu’. | Data | Manu’ | | --- | --- | | Tweets downloaded | 1982 | | Retweets | 63 | | Short tweets | 291 | | Tweets kept | 1628 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jyazmuh8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cu_coquin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29a5jk2r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29a5jk2r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cu_coquin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shahukareem/wav2vec2-xls-r-300m-dv
shahukareem
2022-02-07T15:55:39Z
10
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 24.72 - name: Test CER type: cer value: 4.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Wer: 0.2451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.9623 | 0.66 | 400 | 3.3010 | 1.0 | | 3.2238 | 1.33 | 800 | 2.8950 | 1.0 | | 1.1988 | 1.99 | 1200 | 0.5277 | 0.6681 | | 0.6084 | 2.65 | 1600 | 0.4113 | 0.5831 | | 0.4973 | 3.32 | 2000 | 0.3538 | 0.5333 | | 0.4476 | 3.98 | 2400 | 0.3201 | 0.5081 | | 0.3999 | 4.64 | 2800 | 0.2917 | 0.4759 | | 0.3779 | 5.31 | 3200 | 0.2788 | 0.4672 | | 0.3457 | 5.97 | 3600 | 0.2667 | 0.4557 | | 0.3222 | 6.63 | 4000 | 0.2549 | 0.4452 | | 0.3129 | 7.3 | 4400 | 0.2491 | 0.4266 | | 0.2927 | 7.96 | 4800 | 0.2488 | 0.4246 | | 0.2786 | 8.62 | 5200 | 0.2429 | 0.4145 | | 0.2756 | 9.29 | 5600 | 0.2453 | 0.4150 | | 0.258 | 9.95 | 6000 | 0.2282 | 0.4109 | | 0.251 | 10.61 | 6400 | 0.2307 | 0.4012 | | 0.2397 | 11.28 | 6800 | 0.2275 | 0.4 | | 0.2312 | 11.94 | 7200 | 0.2244 | 0.3889 | | 0.2323 | 12.6 | 7600 | 0.2247 | 0.3983 | | 0.216 | 13.27 | 8000 | 0.2301 | 0.3863 | | 0.2169 | 13.93 | 8400 | 0.2224 | 0.3782 | | 0.2089 | 14.59 | 8800 | 0.2276 | 0.3771 | | 0.2042 | 15.26 | 9200 | 0.2286 | 0.3784 | | 0.1953 | 15.92 | 9600 | 0.2235 | 0.3822 | | 0.1876 | 16.58 | 10000 | 0.2267 | 0.3674 | | 0.186 | 17.25 | 10400 | 0.2295 | 0.3676 | | 0.1847 | 17.91 | 10800 | 0.2244 | 0.3608 | | 0.178 | 18.57 | 11200 | 0.2229 | 0.3526 | | 0.1751 | 19.24 | 11600 | 0.2219 | 0.3483 | | 0.17 | 19.9 | 12000 | 0.2241 | 0.3503 | | 0.1641 | 20.56 | 12400 | 0.2187 | 0.3403 | | 0.1629 | 21.23 | 12800 | 0.2135 | 0.3433 | | 0.1568 | 21.89 | 13200 | 0.2117 | 0.3358 | | 0.1585 | 22.55 | 13600 | 0.2151 | 0.3332 | | 0.1512 | 23.22 | 14000 | 0.2097 | 0.3344 | | 0.1427 | 23.88 | 14400 | 0.2119 | 0.3255 | | 0.1458 | 24.54 | 14800 | 0.2209 | 0.3213 | | 0.1413 | 25.21 | 15200 | 0.2228 | 0.3202 | | 0.1363 | 25.87 | 15600 | 0.2071 | 0.3207 | | 0.1302 | 26.53 | 16000 | 0.2094 | 0.3138 | | 0.1283 | 27.2 | 16400 | 0.2193 | 0.3132 | | 0.1278 | 27.86 | 16800 | 0.2197 | 0.3103 | | 0.1271 | 28.52 | 17200 | 0.2133 | 0.3009 | | 0.1243 | 29.19 | 17600 | 0.2202 | 0.3026 | | 0.1182 | 29.85 | 18000 | 0.2092 | 0.3046 | | 0.1171 | 30.51 | 18400 | 0.2142 | 0.2947 | | 0.1156 | 31.18 | 18800 | 0.2219 | 0.2926 | | 0.1129 | 31.84 | 19200 | 0.2194 | 0.2848 | | 0.1099 | 32.5 | 19600 | 0.2218 | 0.2869 | | 0.1045 | 33.17 | 20000 | 0.2183 | 0.2803 | | 0.1057 | 33.83 | 20400 | 0.2242 | 0.2896 | | 0.1056 | 34.49 | 20800 | 0.2189 | 0.2838 | | 0.1039 | 35.16 | 21200 | 0.2256 | 0.2819 | | 0.1007 | 35.82 | 21600 | 0.2196 | 0.2743 | | 0.1012 | 36.48 | 22000 | 0.2218 | 0.2752 | | 0.098 | 37.15 | 22400 | 0.2181 | 0.2721 | | 0.0963 | 37.81 | 22800 | 0.2162 | 0.2691 | | 0.0943 | 38.47 | 23200 | 0.2148 | 0.2686 | | 0.0959 | 39.14 | 23600 | 0.2194 | 0.2658 | | 0.0904 | 39.8 | 24000 | 0.2170 | 0.2641 | | 0.0898 | 40.46 | 24400 | 0.2129 | 0.2585 | | 0.0886 | 41.13 | 24800 | 0.2199 | 0.2606 | | 0.088 | 41.79 | 25200 | 0.2155 | 0.2595 | | 0.0863 | 42.45 | 25600 | 0.2169 | 0.2564 | | 0.0876 | 43.12 | 26000 | 0.2178 | 0.2529 | | 0.0827 | 43.78 | 26400 | 0.2171 | 0.2559 | | 0.087 | 44.44 | 26800 | 0.2192 | 0.2530 | | 0.0818 | 45.11 | 27200 | 0.2180 | 0.2496 | | 0.0811 | 45.77 | 27600 | 0.2207 | 0.2502 | | 0.0828 | 46.43 | 28000 | 0.2186 | 0.2502 | | 0.0796 | 47.1 | 28400 | 0.2203 | 0.2468 | | 0.0804 | 47.76 | 28800 | 0.2201 | 0.2453 | | 0.0791 | 48.42 | 29200 | 0.2204 | 0.2477 | | 0.0777 | 49.09 | 29600 | 0.2197 | 0.2466 | | 0.0775 | 49.75 | 30000 | 0.2206 | 0.2451 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
willemjan/indo2
willemjan
2022-02-07T09:17:20Z
7
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:cc-by-nc-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: cc-by-nc-3.0 ---
Llamacha/QuBERTa
Llamacha
2022-02-07T09:14:51Z
52
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "Llamacha", "qu", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - qu tags: - Llamacha --- # QuBERTa QuBERTa es un modelo de lenguaje basado en RoBERTa para el quechua. Nuestro modelo de lenguaje fue pre-entrenado con 5M de tokens del quechua sureño (Collao y Chanka). El modelo utiliza un tokenizador Byte-level BPE con un vocabulario de 52000 tokens de subpalabras. ## Usabilidad Una vez descargado los pesos y el tokenizador es necesario adjuntarlo en un sola carpeta, en este caso fue `QuBERTa `. ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="./QuBERTa", tokenizer="./QuBERTa" ) ``` Se hace la prueba, la cual esta en fases de mejoras. ```python fill_mask("allinllachu <mask> allinlla huk wasipita.") ``` [{'score': 0.23992203176021576, 'sequence': 'allinllachu nisqaqa allinlla huk wasipita.', 'token': 334, 'token_str': ' nisqaqa'}, {'score': 0.061005301773548126, 'sequence': 'allinllachu, allinlla huk wasipita.', 'token': 16, 'token_str': ','}, {'score': 0.028720015659928322, 'sequence': "allinllachu' allinlla huk wasipita.", 'token': 11, 'token_str': "'"}, {'score': 0.012927944771945477, 'sequence': 'allinllachu kay allinlla huk wasipita.', 'token': 377, 'token_str': ' kay'}, {'score': 0.01230092253535986, 'sequence': 'allinllachu. allinlla huk wasipita.', 'token': 18, 'token_str': '.'}]
willemjan/indo1
willemjan
2022-02-07T09:14:26Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:cc-by-nc-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: cc-by-nc-3.0 ---
ayameRushia/wav2vec2-large-xls-r-300m-ar
ayameRushia
2022-02-07T09:03:17Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4819 - Wer: 0.4244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 11.0435 | 0.67 | 400 | 4.3104 | 1.0 | | 3.4451 | 1.34 | 800 | 3.1566 | 1.0 | | 3.1399 | 2.01 | 1200 | 3.0532 | 0.9990 | | 2.8538 | 2.68 | 1600 | 1.6994 | 0.9238 | | 1.7195 | 3.35 | 2000 | 0.8867 | 0.6727 | | 1.326 | 4.02 | 2400 | 0.6603 | 0.5834 | | 1.1561 | 4.69 | 2800 | 0.5809 | 0.5479 | | 1.0764 | 5.36 | 3200 | 0.5943 | 0.5495 | | 1.0144 | 6.03 | 3600 | 0.5344 | 0.5251 | | 0.965 | 6.7 | 4000 | 0.4844 | 0.4936 | | 0.927 | 7.37 | 4400 | 0.5048 | 0.5019 | | 0.8985 | 8.04 | 4800 | 0.5809 | 0.5267 | | 0.8684 | 8.71 | 5200 | 0.4740 | 0.4753 | | 0.8581 | 9.38 | 5600 | 0.4813 | 0.4834 | | 0.8334 | 10.05 | 6000 | 0.4515 | 0.4545 | | 0.8134 | 10.72 | 6400 | 0.4370 | 0.4543 | | 0.8002 | 11.39 | 6800 | 0.4225 | 0.4384 | | 0.7884 | 12.06 | 7200 | 0.4593 | 0.4565 | | 0.7675 | 12.73 | 7600 | 0.4752 | 0.4680 | | 0.7607 | 13.4 | 8000 | 0.4950 | 0.4771 | | 0.7475 | 14.07 | 8400 | 0.4373 | 0.4391 | | 0.7397 | 14.74 | 8800 | 0.4506 | 0.4541 | | 0.7289 | 15.41 | 9200 | 0.4840 | 0.4691 | | 0.722 | 16.08 | 9600 | 0.4701 | 0.4571 | | 0.7067 | 16.75 | 10000 | 0.4561 | 0.4461 | | 0.7033 | 17.42 | 10400 | 0.4384 | 0.4347 | | 0.6915 | 18.09 | 10800 | 0.4424 | 0.4290 | | 0.6854 | 18.76 | 11200 | 0.4635 | 0.4360 | | 0.6813 | 19.43 | 11600 | 0.4280 | 0.4147 | | 0.6776 | 20.1 | 12000 | 0.4610 | 0.4344 | | 0.67 | 20.77 | 12400 | 0.4540 | 0.4367 | | 0.6653 | 21.44 | 12800 | 0.4509 | 0.4234 | | 0.6609 | 22.11 | 13200 | 0.4874 | 0.4444 | | 0.6541 | 22.78 | 13600 | 0.4542 | 0.4230 | | 0.6528 | 23.45 | 14000 | 0.4732 | 0.4373 | | 0.6463 | 24.12 | 14400 | 0.4483 | 0.4188 | | 0.6399 | 24.79 | 14800 | 0.4731 | 0.4341 | | 0.6353 | 25.46 | 15200 | 0.5031 | 0.4412 | | 0.6358 | 26.13 | 15600 | 0.4986 | 0.4397 | | 0.6317 | 26.8 | 16000 | 0.5000 | 0.4360 | | 0.6262 | 27.47 | 16400 | 0.4958 | 0.4318 | | 0.6317 | 28.14 | 16800 | 0.4738 | 0.4234 | | 0.6205 | 28.81 | 17200 | 0.4853 | 0.4262 | | 0.6205 | 29.48 | 17600 | 0.4819 | 0.4244 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
bespin-global/klue-sentence-roberta-base-kornlu
bespin-global
2022-02-07T07:14:21Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:kor_nlu", "license:cc-by-nc-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - kor_nlu license: cc-by-nc-4.0 --- # bespin-global/klue-sentence-roberta-kornlu This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bespin-global/klue-sentence-roberta-kornlu') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bespin-global/klue-sentence-roberta-kornlu') model = AutoModel.from_pretrained('bespin-global/klue-sentence-roberta-kornlu') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 72, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> [Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/)
bespin-global/klue-sentence-roberta-base
bespin-global
2022-02-07T07:14:05Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:klue", "license:cc-by-nc-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - klue license: cc-by-nc-4.0 --- # bespin-global/klue-sentence-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bespin-global/klue-sentence-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bespin-global/klue-sentence-roberta-base') model = AutoModel.from_pretrained('bespin-global/klue-sentence-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bespin-global/klue-sentence-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 219, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> [Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/)
gagan3012/ViTGPT2_vizwiz
gagan3012
2022-02-07T05:54:26Z
31
1
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "image-to-text", "endpoints_compatible", "region:us" ]
image-to-text
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer - image-to-text model-index: - name: ViTGPT2_vizwiz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2_vizwiz This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1207 | 0.07 | 1000 | 0.0906 | | 0.0916 | 0.14 | 2000 | 0.0861 | | 0.0879 | 0.2 | 3000 | 0.0840 | | 0.0856 | 0.27 | 4000 | 0.0822 | | 0.0834 | 0.34 | 5000 | 0.0806 | | 0.0817 | 0.41 | 6000 | 0.0795 | | 0.0812 | 0.48 | 7000 | 0.0785 | | 0.0808 | 0.55 | 8000 | 0.0779 | | 0.0796 | 0.61 | 9000 | 0.0771 | | 0.0786 | 0.68 | 10000 | 0.0767 | | 0.0774 | 0.75 | 11000 | 0.0762 | | 0.0772 | 0.82 | 12000 | 0.0758 | | 0.0756 | 0.89 | 13000 | 0.0754 | | 0.0759 | 0.96 | 14000 | 0.0750 | | 0.0756 | 1.02 | 15000 | 0.0748 | | 0.0726 | 1.09 | 16000 | 0.0745 | | 0.0727 | 1.16 | 17000 | 0.0745 | | 0.0715 | 1.23 | 18000 | 0.0742 | | 0.0726 | 1.3 | 19000 | 0.0741 | | 0.072 | 1.37 | 20000 | 0.0738 | | 0.0723 | 1.43 | 21000 | 0.0735 | | 0.0715 | 1.5 | 22000 | 0.0734 | | 0.0724 | 1.57 | 23000 | 0.0732 | | 0.0723 | 1.64 | 24000 | 0.0730 | | 0.0718 | 1.71 | 25000 | 0.0729 | | 0.07 | 1.78 | 26000 | 0.0728 | | 0.0702 | 1.84 | 27000 | 0.0726 | | 0.0704 | 1.91 | 28000 | 0.0725 | | 0.0703 | 1.98 | 29000 | 0.0725 | | 0.0686 | 2.05 | 30000 | 0.0726 | | 0.0687 | 2.12 | 31000 | 0.0726 | | 0.0688 | 2.19 | 32000 | 0.0724 | | 0.0677 | 2.25 | 33000 | 0.0724 | | 0.0665 | 2.32 | 34000 | 0.0725 | | 0.0684 | 2.39 | 35000 | 0.0723 | | 0.0678 | 2.46 | 36000 | 0.0722 | | 0.0686 | 2.53 | 37000 | 0.0722 | | 0.067 | 2.59 | 38000 | 0.0721 | | 0.0669 | 2.66 | 39000 | 0.0721 | | 0.0673 | 2.73 | 40000 | 0.0721 | | 0.0673 | 2.8 | 41000 | 0.0720 | | 0.0662 | 2.87 | 42000 | 0.0720 | | 0.0681 | 2.94 | 43000 | 0.0719 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
jerrychatz/wav2vec2-large-xls-r-300m-greek
jerrychatz
2022-02-07T03:06:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-greek results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-greek This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4823 - Wer: 0.3338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0106 | 1.72 | 200 | 0.5519 | 0.3537 | | 0.0249 | 3.45 | 400 | 0.5174 | 0.3465 | | 0.0206 | 5.17 | 600 | 0.4721 | 0.3323 | | 0.0221 | 6.89 | 800 | 0.4652 | 0.3373 | | 0.0204 | 8.62 | 1000 | 0.4883 | 0.3389 | | 0.0192 | 10.34 | 1200 | 0.4785 | 0.3389 | | 0.0186 | 12.07 | 1400 | 0.4789 | 0.3378 | | 0.0172 | 13.79 | 1600 | 0.4915 | 0.3347 | | 0.0184 | 15.52 | 1800 | 0.4759 | 0.3440 | | 0.0168 | 17.24 | 2000 | 0.4891 | 0.3371 | | 0.0155 | 18.96 | 2200 | 0.4928 | 0.3394 | | 0.0146 | 20.69 | 2400 | 0.4834 | 0.3357 | | 0.0146 | 22.41 | 2600 | 0.4814 | 0.3362 | | 0.0151 | 24.14 | 2800 | 0.4791 | 0.3345 | | 0.0136 | 25.86 | 3000 | 0.4825 | 0.3356 | | 0.0136 | 27.58 | 3200 | 0.4850 | 0.3351 | | 0.0127 | 29.31 | 3400 | 0.4823 | 0.3338 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
lvargas/distilbert-base-uncased-finetuned-emotion2
lvargas
2022-02-07T01:36:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion2 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.903 - name: F1 type: f1 value: 0.9003235459489749 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3623 - Accuracy: 0.903 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5960 | 0.8025 | 0.7750 | | 0.7853 | 2.0 | 250 | 0.3623 | 0.903 | 0.9003 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
BigSalmon/Points2
BigSalmon
2022-02-07T00:27:54Z
13
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Converting Points or Headlines to Paragraphs Example Prompts: ``` ### - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. ### - with 2,000,000 individual articles on everything - wikipedia is the #8 site on the world wide web - created by anyone with access to a computer - growing at fast rate - proof that collaborative community-based projects are the future Text: encompassing a staggering 2,000,000 articles on every subject conceivable, wikipedia is the 8th most visited website in the world. borne of the collective efforts of anyone with an internet connection, its contents are increasing exponentially. most compellingly, however, this effort is an affirmation that community-based initiatives is the future. ### - ``` ``` Essay Intro (Sega Centers Classics): unyielding in its insistence on consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. this is a task that not even the most devoted fan could have foreseen. *** Essay Intro (Blizzard Shows Video Games Are An Art): universally adored, video games have come to be revered not only as interactive diversions, but as artworks. a firm believer in this doctrine, blizzard actively works to further the craft of storytelling in their respective titles. *** Essay Intro (What Happened To Linux): chancing upon a linux user is a rare occurrence in the present day. once a mainstay, the brand has come to only be seen in the hands of the most ardent of its followers. ```
fractalego/personal-speech-to-text-model
fractalego
2022-02-06T22:32:50Z
52
6
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
# Personal speech to text model s2t models often do not understand my accent, so I fine tuned this one from "facebook/wav2vec2-large-robust-ft-swbd-300h" using about 1000 recordings of my voice. Do not download unless you have exactly my accent.
StevenLimcorn/wav2vec2-xls-r-300m-zh-TW
StevenLimcorn
2022-02-06T21:57:14Z
26
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - zh-TW license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - ZH-TW dataset. It achieves the following results on the evaluation set: - Loss: 1.1786 - Wer: 0.8594 - Cer: 0.2964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 64.6189 | 2.51 | 500 | 63.8077 | 1.0 | 1.0 | | 8.0561 | 5.03 | 1000 | 6.8014 | 1.0 | 1.0 | | 6.0427 | 7.54 | 1500 | 6.0745 | 1.0 | 1.0 | | 5.9357 | 10.05 | 2000 | 5.8682 | 1.0 | 1.0 | | 5.0489 | 12.56 | 2500 | 4.4032 | 0.9990 | 0.7750 | | 4.6184 | 15.08 | 3000 | 3.8383 | 0.9983 | 0.6768 | | 4.365 | 17.59 | 3500 | 3.4633 | 0.9959 | 0.6299 | | 4.1026 | 20.1 | 4000 | 3.0732 | 0.9902 | 0.5814 | | 3.8655 | 22.61 | 4500 | 2.7638 | 0.9868 | 0.5465 | | 3.6991 | 25.13 | 5000 | 2.4759 | 0.9811 | 0.5088 | | 3.4894 | 27.64 | 5500 | 2.2937 | 0.9746 | 0.4852 | | 3.3983 | 30.15 | 6000 | 2.1684 | 0.9733 | 0.4674 | | 3.2736 | 32.66 | 6500 | 2.0372 | 0.9659 | 0.4458 | | 3.1884 | 35.18 | 7000 | 1.9267 | 0.9648 | 0.4329 | | 3.1248 | 37.69 | 7500 | 1.8408 | 0.9591 | 0.4217 | | 3.0381 | 40.2 | 8000 | 1.7531 | 0.9503 | 0.4074 | | 2.9515 | 42.71 | 8500 | 1.6880 | 0.9459 | 0.3967 | | 2.8704 | 45.23 | 9000 | 1.6264 | 0.9378 | 0.3884 | | 2.8128 | 47.74 | 9500 | 1.5621 | 0.9341 | 0.3782 | | 2.7386 | 50.25 | 10000 | 1.5011 | 0.9243 | 0.3664 | | 2.6646 | 52.76 | 10500 | 1.4608 | 0.9192 | 0.3575 | | 2.6072 | 55.28 | 11000 | 1.4251 | 0.9148 | 0.3501 | | 2.569 | 57.79 | 11500 | 1.3837 | 0.9060 | 0.3462 | | 2.5091 | 60.3 | 12000 | 1.3589 | 0.9070 | 0.3392 | | 2.4588 | 62.81 | 12500 | 1.3261 | 0.8966 | 0.3284 | | 2.4083 | 65.33 | 13000 | 1.3052 | 0.8982 | 0.3265 | | 2.3787 | 67.84 | 13500 | 1.2997 | 0.8908 | 0.3243 | | 2.3457 | 70.35 | 14000 | 1.2778 | 0.8898 | 0.3187 | | 2.3099 | 72.86 | 14500 | 1.2661 | 0.8830 | 0.3172 | | 2.2559 | 75.38 | 15000 | 1.2475 | 0.8851 | 0.3143 | | 2.2264 | 77.89 | 15500 | 1.2319 | 0.8739 | 0.3085 | | 2.196 | 80.4 | 16000 | 1.2218 | 0.8722 | 0.3049 | | 2.1613 | 82.91 | 16500 | 1.2093 | 0.8719 | 0.3051 | | 2.1455 | 85.43 | 17000 | 1.2055 | 0.8624 | 0.3005 | | 2.1193 | 87.94 | 17500 | 1.1975 | 0.8600 | 0.2982 | | 2.0911 | 90.45 | 18000 | 1.1960 | 0.8648 | 0.3003 | | 2.0884 | 92.96 | 18500 | 1.1871 | 0.8638 | 0.2971 | | 2.0766 | 95.48 | 19000 | 1.1814 | 0.8617 | 0.2967 | | 2.0735 | 97.99 | 19500 | 1.1801 | 0.8621 | 0.2969 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-mr-cv8-with-lm
anuragshas
2022-02-06T16:11:16Z
29
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.6693 - Wer: 0.5921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.9504 | 18.18 | 400 | 4.6730 | 1.0 | | 3.3766 | 36.36 | 800 | 3.3464 | 1.0 | | 3.1128 | 54.55 | 1200 | 3.0177 | 0.9980 | | 1.7966 | 72.73 | 1600 | 0.8733 | 0.8039 | | 1.4085 | 90.91 | 2000 | 0.5555 | 0.6458 | | 1.1731 | 109.09 | 2400 | 0.4930 | 0.6438 | | 1.0271 | 127.27 | 2800 | 0.4780 | 0.6093 | | 0.9045 | 145.45 | 3200 | 0.4647 | 0.6578 | | 0.807 | 163.64 | 3600 | 0.4505 | 0.5925 | | 0.741 | 181.82 | 4000 | 0.4746 | 0.6025 | | 0.6706 | 200.0 | 4400 | 0.5004 | 0.5844 | | 0.6186 | 218.18 | 4800 | 0.4984 | 0.5997 | | 0.5508 | 236.36 | 5200 | 0.5298 | 0.5636 | | 0.5123 | 254.55 | 5600 | 0.5410 | 0.5110 | | 0.4623 | 272.73 | 6000 | 0.5591 | 0.5383 | | 0.4281 | 290.91 | 6400 | 0.5775 | 0.5600 | | 0.4045 | 309.09 | 6800 | 0.5924 | 0.5580 | | 0.3651 | 327.27 | 7200 | 0.5671 | 0.5684 | | 0.343 | 345.45 | 7600 | 0.6083 | 0.5945 | | 0.3085 | 363.64 | 8000 | 0.6243 | 0.5728 | | 0.2941 | 381.82 | 8400 | 0.6245 | 0.5580 | | 0.2735 | 400.0 | 8800 | 0.6458 | 0.5804 | | 0.262 | 418.18 | 9200 | 0.6566 | 0.5824 | | 0.2578 | 436.36 | 9600 | 0.6558 | 0.5965 | | 0.2388 | 454.55 | 10000 | 0.6598 | 0.5993 | | 0.2328 | 472.73 | 10400 | 0.6700 | 0.6041 | | 0.2286 | 490.91 | 10800 | 0.6684 | 0.5957 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
asalics/distilbert-base-uncased-finetuned-emotion
asalics
2022-02-06T14:29:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9244145121183605 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy: 0.924 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7914 | 1.0 | 250 | 0.3032 | 0.905 | 0.9030 | | 0.2379 | 2.0 | 500 | 0.2207 | 0.924 | 0.9244 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Mahalakshmi/wav2vec2-xls-r-300m-demo-colab
Mahalakshmi
2022-02-06T13:51:42Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9475 - eval_wer: 1.0377 - eval_runtime: 70.5646 - eval_samples_per_second: 25.239 - eval_steps_per_second: 3.16 - epoch: 21.05 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 300 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
jejomi/xls-r-ta
jejomi
2022-02-06T11:34:32Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ta", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ta license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - TA dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Jeevesh8/feather_berts1
Jeevesh8
2022-02-06T04:52:40Z
0
0
null
[ "arxiv:1911.02969", "region:us" ]
null
2022-03-02T23:29:04Z
Second 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading first 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts/).
DrishtiSharma/wav2vec2-xls-r-pa-IN-a1
DrishtiSharma
2022-02-05T21:58:25Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.1508 - Wer: 0.4908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5841 | 9.26 | 500 | 3.2514 | 0.9941 | | 0.3992 | 18.52 | 1000 | 0.8790 | 0.6107 | | 0.2409 | 27.78 | 1500 | 1.0012 | 0.6366 | | 0.1447 | 37.04 | 2000 | 1.0167 | 0.6276 | | 0.1109 | 46.3 | 2500 | 1.0638 | 0.5653 | | 0.0797 | 55.56 | 3000 | 1.1447 | 0.5715 | | 0.0636 | 64.81 | 3500 | 1.1503 | 0.5316 | | 0.0466 | 74.07 | 4000 | 1.2227 | 0.5386 | | 0.0372 | 83.33 | 4500 | 1.1214 | 0.5225 | | 0.0239 | 92.59 | 5000 | 1.1375 | 0.4998 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
pritamdeka/PubMedBert-fulltext-cord19
pritamdeka
2022-02-05T20:56:37Z
6
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:pritamdeka/cord-19-fulltext", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - pritamdeka/cord-19-fulltext metrics: - accuracy model-index: - name: pubmedbert-fulltext-cord19 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: pritamdeka/cord-19-fulltext type: pritamdeka/cord-19-fulltext args: fulltext metrics: - name: Accuracy type: accuracy value: 0.7175316733550737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pubmedbert-fulltext-cord19 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the pritamdeka/cord-19-fulltext dataset. It achieves the following results on the evaluation set: - Loss: 1.2667 - Accuracy: 0.7175 ## Model description The model has been trained using a maximum train sample size of 300K and evaluation size of 25K due to GPU limitations ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7985 | 0.27 | 5000 | 1.2710 | 0.7176 | | 1.7542 | 0.53 | 10000 | 1.3359 | 0.7070 | | 1.7462 | 0.8 | 15000 | 1.3489 | 0.7034 | | 1.8371 | 1.07 | 20000 | 1.4361 | 0.6891 | | 1.7102 | 1.33 | 25000 | 1.3502 | 0.7039 | | 1.6596 | 1.6 | 30000 | 1.3341 | 0.7065 | | 1.6265 | 1.87 | 35000 | 1.3228 | 0.7087 | | 1.605 | 2.13 | 40000 | 1.3079 | 0.7099 | | 1.5731 | 2.4 | 45000 | 1.2986 | 0.7121 | | 1.5602 | 2.67 | 50000 | 1.2929 | 0.7136 | | 1.5447 | 2.93 | 55000 | 1.2875 | 0.7143 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/bouncemanautumn
huggingtweets
2022-02-05T20:35:09Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/bouncemanautumn/1644093304436/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466500150759763979/_SP07dAh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">autumn wants to hold ty’s hand</div> <div style="text-align: center; font-size: 14px;">@bouncemanautumn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from autumn wants to hold ty’s hand. | Data | autumn wants to hold ty’s hand | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 195 | | Short tweets | 434 | | Tweets kept | 2616 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16mq5may/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bouncemanautumn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vlqrfex) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vlqrfex/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bouncemanautumn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
infinitejoy/wav2vec2-large-xls-r-300m-odia-cv8
infinitejoy
2022-02-05T18:24:20Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "or", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-odia-cv8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-odia-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - OR dataset. It achieves the following results on the evaluation set: - Loss: 0.8176 - Wer: 0.5818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3957 | 20.83 | 500 | 1.0925 | 0.8111 | | 1.0351 | 41.67 | 1000 | 0.7837 | 0.6574 | | 0.7396 | 62.5 | 1500 | 0.7674 | 0.6083 | | 0.5385 | 83.33 | 2000 | 0.8015 | 0.5812 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
transformersbook/xlm-roberta-base-finetuned-panx-de
transformersbook
2022-02-05T17:07:41Z
9
2
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8645910410381922 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.1388 - F1: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2652 | 1.0 | 525 | 0.1602 | 0.8230 | | 0.1314 | 2.0 | 1050 | 0.1372 | 0.8527 | | 0.0806 | 3.0 | 1575 | 0.1388 | 0.8646 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
transformersbook/xlm-roberta-base-finetuned-panx-it
transformersbook
2022-02-05T17:07:26Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8215158924205379 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.2445 - F1: 0.8215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7594 | 1.0 | 70 | 0.3402 | 0.7467 | | 0.2942 | 2.0 | 140 | 0.2555 | 0.7971 | | 0.1814 | 3.0 | 210 | 0.2445 | 0.8215 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
transformersbook/codeparrot-small-vocabulary
transformersbook
2022-02-05T17:00:28Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# CodeParrot This is a small version of the CodeParrot tokenizer trained on the [CodeParrot Python code dataset](https://huggingface.co/datasets/transformersbook/codeparrot). The tokenizer is trained in Chapter 10: Training Transformers from Scratch in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/10_transformers-from-scratch.ipynb).
transformersbook/distilbert-base-uncased-distilled-clinc
transformersbook
2022-02-05T16:47:39Z
199
3
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9393548387096774 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned with knowledge distillation version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb). It achieves the following results on the evaluation set: - Loss: 0.1005 - Accuracy: 0.9394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9031 | 1.0 | 318 | 0.5745 | 0.7365 | | 0.4481 | 2.0 | 636 | 0.2856 | 0.8748 | | 0.2528 | 3.0 | 954 | 0.1798 | 0.9187 | | 0.176 | 4.0 | 1272 | 0.1398 | 0.9294 | | 0.1416 | 5.0 | 1590 | 0.1211 | 0.9348 | | 0.1243 | 6.0 | 1908 | 0.1116 | 0.9348 | | 0.1133 | 7.0 | 2226 | 0.1062 | 0.9377 | | 0.1075 | 8.0 | 2544 | 0.1035 | 0.9387 | | 0.1039 | 9.0 | 2862 | 0.1014 | 0.9381 | | 0.1018 | 10.0 | 3180 | 0.1005 | 0.9394 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3
transformersbook/distilbert-base-uncased-finetuned-clinc
transformersbook
2022-02-05T16:46:21Z
100
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb). It achieves the following results on the evaluation set: - Loss: 0.7773 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2923 | 1.0 | 318 | 3.2893 | 0.7423 | | 2.6307 | 2.0 | 636 | 1.8837 | 0.8281 | | 1.5483 | 3.0 | 954 | 1.1583 | 0.8968 | | 1.0153 | 4.0 | 1272 | 0.8618 | 0.9094 | | 0.7958 | 5.0 | 1590 | 0.7773 | 0.9174 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3
transformersbook/bert-base-uncased-finetuned-clinc
transformersbook
2022-02-05T16:38:54Z
922
3
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "arxiv:1909.02027", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Intent Detection with BERT This model was trained on the [CLINC150](https://arxiv.org/abs/1909.02027) dataset for customer intent detection. The dataset can be found on the [Hub](https://huggingface.co/datasets/clinc_oos). The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb).
transformersbook/codeparrot-small
transformersbook
2022-02-05T16:28:36Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# CodeParrot CodeParrot (small) is a 110M parameter GPT-2 model trained on the [CodeParrot Python code dataset](https://huggingface.co/datasets/transformersbook/codeparrot). The model is trained in Chapter 10: Training Transformers from Scratch in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/10_transformers-from-scratch.ipynb).
Ayham/distilbert_distilgpt2_summarization_cnn_dailymail
Ayham
2022-02-05T11:39:58Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: distilbert_distilgpt2_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_distilgpt2_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
HarrisDePerceptron/xls-r-300m-ur-cv7
HarrisDePerceptron
2022-02-05T11:21:29Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ur", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.2924 - Wer: 0.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.2783 | 4.17 | 100 | 4.6409 | 1.0 | | 3.5578 | 8.33 | 200 | 3.1649 | 1.0 | | 3.1279 | 12.5 | 300 | 3.0335 | 1.0 | | 2.9944 | 16.67 | 400 | 2.9526 | 0.9983 | | 2.9275 | 20.83 | 500 | 2.9291 | 1.0009 | | 2.8077 | 25.0 | 600 | 2.5633 | 0.9895 | | 2.4438 | 29.17 | 700 | 1.9045 | 0.9564 | | 1.9659 | 33.33 | 800 | 1.4114 | 0.7960 | | 1.7092 | 37.5 | 900 | 1.2584 | 0.7637 | | 1.517 | 41.67 | 1000 | 1.2040 | 0.7507 | | 1.3966 | 45.83 | 1100 | 1.1273 | 0.7463 | | 1.3197 | 50.0 | 1200 | 1.1054 | 0.6957 | | 1.2476 | 54.17 | 1300 | 1.1035 | 0.7001 | | 1.1796 | 58.33 | 1400 | 1.0890 | 0.7097 | | 1.1237 | 62.5 | 1500 | 1.0883 | 0.7167 | | 1.0777 | 66.67 | 1600 | 1.1067 | 0.7219 | | 1.0051 | 70.83 | 1700 | 1.1115 | 0.7236 | | 0.9521 | 75.0 | 1800 | 1.0867 | 0.7132 | | 0.9147 | 79.17 | 1900 | 1.0852 | 0.7210 | | 0.8798 | 83.33 | 2000 | 1.1411 | 0.7097 | | 0.8317 | 87.5 | 2100 | 1.1634 | 0.7018 | | 0.7946 | 91.67 | 2200 | 1.1621 | 0.7201 | | 0.7594 | 95.83 | 2300 | 1.1482 | 0.7036 | | 0.729 | 100.0 | 2400 | 1.1493 | 0.7062 | | 0.7055 | 104.17 | 2500 | 1.1726 | 0.6931 | | 0.6622 | 108.33 | 2600 | 1.1938 | 0.7001 | | 0.6583 | 112.5 | 2700 | 1.1832 | 0.7149 | | 0.6299 | 116.67 | 2800 | 1.1996 | 0.7175 | | 0.5903 | 120.83 | 2900 | 1.1986 | 0.7132 | | 0.5816 | 125.0 | 3000 | 1.1909 | 0.7010 | | 0.5583 | 129.17 | 3100 | 1.2079 | 0.6870 | | 0.5392 | 133.33 | 3200 | 1.2109 | 0.7228 | | 0.5412 | 137.5 | 3300 | 1.2353 | 0.7245 | | 0.5136 | 141.67 | 3400 | 1.2390 | 0.7254 | | 0.5007 | 145.83 | 3500 | 1.2273 | 0.7123 | | 0.4883 | 150.0 | 3600 | 1.2773 | 0.7289 | | 0.4835 | 154.17 | 3700 | 1.2678 | 0.7289 | | 0.4568 | 158.33 | 3800 | 1.2592 | 0.7350 | | 0.4525 | 162.5 | 3900 | 1.2705 | 0.7254 | | 0.4379 | 166.67 | 4000 | 1.2717 | 0.7306 | | 0.4198 | 170.83 | 4100 | 1.2618 | 0.7219 | | 0.4216 | 175.0 | 4200 | 1.2909 | 0.7158 | | 0.4305 | 179.17 | 4300 | 1.2808 | 0.7167 | | 0.399 | 183.33 | 4400 | 1.2750 | 0.7193 | | 0.3937 | 187.5 | 4500 | 1.2719 | 0.7149 | | 0.3905 | 191.67 | 4600 | 1.2816 | 0.7158 | | 0.3892 | 195.83 | 4700 | 1.2951 | 0.7210 | | 0.3932 | 200.0 | 4800 | 1.2924 | 0.7201 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
omoekan/opus-tatoeba-eng-yor
omoekan
2022-02-05T10:15:11Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## OPUS Tatoeba English-Yoruba This model was obtained by running the script convert_marian_to_pytorch.py with the flag -m eng-yor. The original models were trained by Jörg Tiedemann using the MarianNMT library. See all available MarianMTModel models on the profile of the Helsinki NLP group. --- - tags: translation - source language: English - target language: Yoruba - dataset: opus+bt -model: transformer-align -pre-processing: normalization + SentencePiece (spm12k,spm12k) -download original weights: [opus+bt-2021-04-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-yor/opus+bt-2021-04-10.zip) -test set translations: [opus+bt-2021-04-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-yor/opus+bt-2021-04-10.test.txt) -test set scores: [opus+bt-2021-04-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-yor/opus+bt-2021-04-10.eval.txt) -Benchmarks |test set|BLEU|chr-F| |:---|:---|:---| |Tatoeba-test.eng-yor|13.0|0.333| ---
jinlmsft/t5-large-multiwoz
jinlmsft
2022-02-04T23:08:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-large-multiwoz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-multiwoz This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0064 - Acc: 1.0 - True Num: 56671 - Num: 56776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | True Num | Num | |:-------------:|:-----:|:----:|:---------------:|:----:|:--------:|:-----:| | 0.1261 | 1.13 | 1000 | 0.0933 | 0.98 | 55574 | 56776 | | 0.0951 | 2.25 | 2000 | 0.0655 | 0.98 | 55867 | 56776 | | 0.0774 | 3.38 | 3000 | 0.0480 | 0.99 | 56047 | 56776 | | 0.0584 | 4.51 | 4000 | 0.0334 | 0.99 | 56252 | 56776 | | 0.042 | 5.64 | 5000 | 0.0222 | 0.99 | 56411 | 56776 | | 0.0329 | 6.76 | 6000 | 0.0139 | 1.0 | 56502 | 56776 | | 0.0254 | 7.89 | 7000 | 0.0094 | 1.0 | 56626 | 56776 | | 0.0214 | 9.02 | 8000 | 0.0070 | 1.0 | 56659 | 56776 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
mrm8488/roberta-base-bne-finetuned-sqac-retriever
mrm8488
2022-02-04T17:59:07Z
4
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 939 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 93, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/loverachelle2
huggingtweets
2022-02-04T17:51:57Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/loverachelle2/1643997109994/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1371211513323749377/ABF4NRhC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LoveRachelle2</div> <div style="text-align: center; font-size: 14px;">@loverachelle2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LoveRachelle2. | Data | LoveRachelle2 | | --- | --- | | Tweets downloaded | 1440 | | Retweets | 102 | | Short tweets | 92 | | Tweets kept | 1246 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1liqzipo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @loverachelle2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/284b8u8q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/284b8u8q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/loverachelle2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
samx18/demo
samx18
2022-02-04T17:23:34Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Dummy This is a dummy model for testing - do not use
dkurt/wav2vec2-base-ft-keyword-spotting-int8
dkurt
2022-02-04T16:40:37Z
7
2
transformers
[ "transformers", "wav2vec2", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
[anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) model quantized with [Optimum OpenVINO](https://github.com/dkurt/optimum-openvino/). | Accuracy on eval (baseline) | Accuracy on eval (quantized) | |-----------------------------|----------------------------------------| | 0.9828 | 0.9553 (-0.0274) |
Rolv-Arild/xls-r-300m-npsc-4
Rolv-Arild
2022-02-04T16:36:33Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "NbAiLab/NPSC", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NBAILAB/NPSC - 16K_MP3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1957 - Wer: 0.1697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4527 | 0.28 | 250 | 4.0144 | 1.0 | | 3.1828 | 0.56 | 500 | 3.1369 | 1.0 | | 2.9927 | 0.85 | 750 | 3.0183 | 1.0 | | 2.9591 | 1.13 | 1000 | 2.9991 | 1.0 | | 2.8989 | 1.41 | 1250 | 2.9000 | 1.0000 | | 2.4286 | 1.69 | 1500 | 1.7688 | 0.9550 | | 1.6765 | 1.98 | 1750 | 0.6842 | 0.4855 | | 1.4521 | 2.26 | 2000 | 0.5096 | 0.3736 | | 1.3589 | 2.54 | 2250 | 0.4479 | 0.3335 | | 1.3136 | 2.82 | 2500 | 0.4056 | 0.3123 | | 1.2856 | 3.11 | 2750 | 0.3870 | 0.2987 | | 1.2283 | 3.39 | 3000 | 0.3646 | 0.2828 | | 1.2053 | 3.67 | 3250 | 0.3499 | 0.2748 | | 1.2087 | 3.95 | 3500 | 0.3345 | 0.2603 | | 1.2002 | 4.24 | 3750 | 0.3320 | 0.2523 | | 1.1383 | 4.52 | 4000 | 0.3117 | 0.2439 | | 1.1364 | 4.8 | 4250 | 0.3198 | 0.2383 | | 1.158 | 5.08 | 4500 | 0.3071 | 0.2342 | | 1.108 | 5.37 | 4750 | 0.3011 | 0.2314 | | 1.1025 | 5.65 | 5000 | 0.2875 | 0.2289 | | 1.0697 | 5.93 | 5250 | 0.2926 | 0.2256 | | 1.0904 | 6.21 | 5500 | 0.2695 | 0.2245 | | 1.0802 | 6.5 | 5750 | 0.2602 | 0.2189 | | 1.0882 | 6.78 | 6000 | 0.2603 | 0.2168 | | 1.0881 | 7.06 | 6250 | 0.2540 | 0.2293 | | 1.0378 | 7.34 | 6500 | 0.2614 | 0.2193 | | 1.0397 | 7.63 | 6750 | 0.2707 | 0.2104 | | 1.0296 | 7.91 | 7000 | 0.2483 | 0.2119 | | 1.0249 | 8.19 | 7250 | 0.2483 | 0.2047 | | 1.013 | 8.47 | 7500 | 0.2487 | 0.2042 | | 1.0064 | 8.76 | 7750 | 0.2456 | 0.2016 | | 1.0668 | 9.04 | 8000 | 0.2397 | 0.1995 | | 1.0129 | 9.32 | 8250 | 0.2374 | 0.1994 | | 1.0164 | 9.6 | 8500 | 0.2206 | 0.1992 | | 0.975 | 9.89 | 8750 | 0.2247 | 0.1973 | | 0.9849 | 10.17 | 9000 | 0.2325 | 0.1953 | | 0.9826 | 10.45 | 9250 | 0.2301 | 0.1934 | | 0.9835 | 10.73 | 9500 | 0.2192 | 0.1942 | | 0.9676 | 11.02 | 9750 | 0.2266 | 0.1913 | | 0.9627 | 11.3 | 10000 | 0.2193 | 0.1921 | | 0.976 | 11.58 | 10250 | 0.2309 | 0.1882 | | 0.969 | 11.86 | 10500 | 0.2268 | 0.1886 | | 0.9611 | 12.15 | 10750 | 0.2322 | 0.1863 | | 0.9397 | 12.43 | 11000 | 0.2197 | 0.1844 | | 0.9601 | 12.71 | 11250 | 0.2211 | 0.1871 | | 0.9718 | 12.99 | 11500 | 0.2079 | 0.1898 | | 0.9347 | 13.28 | 11750 | 0.2054 | 0.1843 | | 0.9377 | 13.56 | 12000 | 0.2031 | 0.1842 | | 0.934 | 13.84 | 12250 | 0.2059 | 0.1806 | | 0.9295 | 14.12 | 12500 | 0.2122 | 0.1861 | | 0.935 | 14.41 | 12750 | 0.2072 | 0.1787 | | 0.9021 | 14.69 | 13000 | 0.2105 | 0.1781 | | 0.9193 | 14.97 | 13250 | 0.2035 | 0.1786 | | 0.9214 | 15.25 | 13500 | 0.2035 | 0.1766 | | 0.9048 | 15.54 | 13750 | 0.1964 | 0.1758 | | 0.9006 | 15.82 | 14000 | 0.1984 | 0.1757 | | 0.9027 | 16.1 | 14250 | 0.2022 | 0.1743 | | 0.9083 | 16.38 | 14500 | 0.1969 | 0.1744 | | 0.9761 | 16.67 | 14750 | 0.1963 | 0.1728 | | 0.9311 | 16.95 | 15000 | 0.1960 | 0.1737 | | 0.886 | 17.23 | 15250 | 0.1929 | 0.1726 | | 0.8969 | 17.51 | 15500 | 0.1928 | 0.1734 | | 0.9084 | 17.8 | 15750 | 0.1937 | 0.1713 | | 0.8795 | 18.08 | 16000 | 0.1978 | 0.1709 | | 0.8883 | 18.36 | 16250 | 0.1956 | 0.1703 | | 0.8901 | 18.64 | 16500 | 0.1933 | 0.1705 | | 0.8922 | 18.93 | 16750 | 0.1962 | 0.1711 | | 0.8765 | 19.21 | 17000 | 0.1962 | 0.1711 | | 0.8992 | 19.49 | 17250 | 0.1965 | 0.1703 | | 0.8778 | 19.77 | 17500 | 0.1957 | 0.1699 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.1 - Tokenizers 0.11.0
shreyasgite/wav2vec2-large-xls-r-300m-dm32
shreyasgite
2022-02-04T14:53:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xls-r-300m-dm32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dm32 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5688 - Accuracy: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 22 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 2.41 | 34 | 0.6769 | 0.6458 | | No log | 4.83 | 68 | 0.6864 | 0.5208 | | No log | 7.28 | 102 | 0.6596 | 0.6042 | | 0.7106 | 9.69 | 136 | 0.6208 | 0.6875 | | 0.7106 | 12.14 | 170 | 0.6152 | 0.6875 | | 0.7106 | 14.55 | 204 | 0.6167 | 0.6875 | | 0.6464 | 16.97 | 238 | 0.5782 | 0.7708 | | 0.6464 | 19.41 | 272 | 0.6011 | 0.7292 | | 0.6464 | 21.83 | 306 | 0.5688 | 0.7917 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
cahya/wav2vec2-base-turkish-cv8
cahya
2022-02-04T14:30:19Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "tr", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-1000](https://huggingface.co/./checkpoint-1000) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3282 - Wer: 0.2836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0671 | 2.04 | 200 | 0.3079 | 0.2752 | | 0.6433 | 4.08 | 400 | 0.2728 | 0.2848 | | 0.5687 | 6.12 | 600 | 0.2882 | 0.3036 | | 0.5355 | 8.16 | 800 | 0.2778 | 0.2920 | | 0.5116 | 10.2 | 1000 | 0.2906 | 0.3014 | | 0.5313 | 9.16 | 1200 | 0.2984 | 0.3273 | | 0.4996 | 10.69 | 1400 | 0.3170 | 0.3344 | | 0.4845 | 12.21 | 1600 | 0.3202 | 0.3634 | | 0.5092 | 13.74 | 1800 | 0.3167 | 0.3373 | | 0.4777 | 15.27 | 2000 | 0.3292 | 0.3386 | | 0.4651 | 16.79 | 2200 | 0.3070 | 0.3427 | | 0.461 | 18.32 | 2400 | 0.3149 | 0.3561 | | 0.4481 | 19.85 | 2600 | 0.3292 | 0.3441 | | 0.4479 | 21.37 | 2800 | 0.3142 | 0.3209 | | 0.4305 | 22.9 | 3000 | 0.3525 | 0.3547 | | 0.4254 | 24.43 | 3200 | 0.3414 | 0.3400 | | 0.4066 | 25.95 | 3400 | 0.3118 | 0.3207 | | 0.4043 | 27.48 | 3600 | 0.3418 | 0.3483 | | 0.3985 | 29.01 | 3800 | 0.3254 | 0.3166 | | 0.3982 | 30.53 | 4000 | 0.3306 | 0.3453 | | 0.3929 | 32.06 | 4200 | 0.3262 | 0.3229 | | 0.378 | 33.59 | 4400 | 0.3546 | 0.3336 | | 0.4062 | 35.11 | 4600 | 0.3174 | 0.3457 | | 0.3648 | 36.64 | 4800 | 0.3377 | 0.3357 | | 0.3609 | 38.17 | 5000 | 0.3346 | 0.3520 | | 0.3483 | 39.69 | 5200 | 0.3350 | 0.3526 | | 0.3548 | 41.22 | 5400 | 0.3330 | 0.3406 | | 0.3446 | 42.75 | 5600 | 0.3398 | 0.3372 | | 0.3346 | 44.27 | 5800 | 0.3449 | 0.3288 | | 0.3309 | 45.8 | 6000 | 0.3320 | 0.3144 | | 0.326 | 47.33 | 6200 | 0.3400 | 0.3279 | | 0.3189 | 48.85 | 6400 | 0.3400 | 0.3150 | | 0.3165 | 50.38 | 6600 | 0.3359 | 0.2995 | | 0.3132 | 51.91 | 6800 | 0.3343 | 0.3096 | | 0.3092 | 53.44 | 7000 | 0.3224 | 0.3029 | | 0.2995 | 54.96 | 7200 | 0.3205 | 0.2985 | | 0.304 | 56.49 | 7400 | 0.3523 | 0.3034 | | 0.2952 | 58.02 | 7600 | 0.3289 | 0.2934 | | 0.2875 | 59.54 | 7800 | 0.3350 | 0.3008 | | 0.2868 | 61.07 | 8000 | 0.3537 | 0.3227 | | 0.2875 | 62.6 | 8200 | 0.3389 | 0.2970 | | 0.2778 | 64.12 | 8400 | 0.3370 | 0.2960 | | 0.2706 | 65.65 | 8600 | 0.3250 | 0.2802 | | 0.2669 | 67.18 | 8800 | 0.3351 | 0.2903 | | 0.2615 | 68.7 | 9000 | 0.3382 | 0.2989 | | 0.2563 | 70.23 | 9200 | 0.3312 | 0.2975 | | 0.2546 | 71.76 | 9400 | 0.3212 | 0.3003 | | 0.2482 | 73.28 | 9600 | 0.3337 | 0.3091 | | 0.2504 | 74.81 | 9800 | 0.3308 | 0.3110 | | 0.2456 | 76.34 | 10000 | 0.3157 | 0.3118 | | 0.2363 | 77.86 | 10200 | 0.3251 | 0.3144 | | 0.2319 | 79.39 | 10400 | 0.3253 | 0.3038 | | 0.2266 | 80.92 | 10600 | 0.3374 | 0.3038 | | 0.2279 | 82.44 | 10800 | 0.3268 | 0.2964 | | 0.2231 | 83.97 | 11000 | 0.3278 | 0.2950 | | 0.2185 | 85.5 | 11200 | 0.3462 | 0.2981 | | 0.2245 | 87.02 | 11400 | 0.3311 | 0.2895 | | 0.223 | 88.55 | 11600 | 0.3325 | 0.2877 | | 0.2121 | 90.08 | 11800 | 0.3337 | 0.2828 | | 0.2126 | 91.6 | 12000 | 0.3325 | 0.2808 | | 0.2027 | 93.13 | 12200 | 0.3277 | 0.2820 | | 0.2058 | 94.66 | 12400 | 0.3308 | 0.2827 | | 0.1991 | 96.18 | 12600 | 0.3279 | 0.2820 | | 0.1991 | 97.71 | 12800 | 0.3300 | 0.2822 | | 0.1986 | 99.24 | 13000 | 0.3285 | 0.2835 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Language-Media-Lab/mt5-small-ain-jpn-mt
Language-Media-Lab
2022-02-04T13:20:55Z
5
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "translation", "jpn", "ain", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - jpn - ain tags: - translation --- mt5-small-ain-jpn-mt is a machine translation model pretrained with [Google's mT5-small](https://huggingface.co/google/mt5-small) and fine-tuned on bilingual datasets crawled from the Web. It translates Ainu language to Japanese.
Language-Media-Lab/byt5-small-ain-jpn-mt
Language-Media-Lab
2022-02-04T13:03:14Z
7
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "translation", "ain", "ja", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - ain - ja tags: - translation --- Byt5-small-ain-jpn-mt is a machine translation model pretrained with [Google's ByT5-small](https://huggingface.co/google/byt5-small) and fine-tuned on bilingual datasets crawled from the Web. It translates Ainu language to Japanese.
Plim/xls-r-1b-fr
Plim
2022-02-04T11:45:21Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "fr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.2464 - Wer: 0.2220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0326 | 0.32 | 1000 | 0.3092 | 0.2718 | | 1.0828 | 0.65 | 2000 | 0.2843 | 0.2606 | | 1.0771 | 0.97 | 3000 | 0.2774 | 0.2488 | | 1.0306 | 1.3 | 4000 | 0.2588 | 0.2351 | | 1.0052 | 1.62 | 5000 | 0.2483 | 0.2284 | | 0.9865 | 1.94 | 6000 | 0.2464 | 0.2220 | | 0.978 | 2.27 | 7000 | 0.2514 | 0.2172 | | 1.7438 | 2.59 | 8000 | 0.7983 | 0.5072 | | 2.3309 | 2.92 | 9000 | 1.8917 | 0.9416 | | 2.1834 | 3.24 | 10000 | 1.7496 | 0.9030 | | 2.3047 | 3.56 | 11000 | 1.5377 | 0.8747 | | 2.1378 | 3.89 | 12000 | 1.3501 | 0.7923 | | 1.9812 | 4.21 | 13000 | 1.2662 | 0.7697 | | 2.6855 | 4.54 | 14000 | 2.4120 | 0.9902 | | 2.7482 | 4.86 | 15000 | 2.5341 | 0.9874 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Yanzhu/bertweetfr_offensiveness
Yanzhu
2022-02-04T11:42:54Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
French roBERTa-base model fine-tuned for Offensive Language Identification on COVID-19 tweets.
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab-new1
Subhashini17
2022-02-04T11:14:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ta-colab-new1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ta-colab-new1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6642 - eval_wer: 0.7611 - eval_runtime: 152.4412 - eval_samples_per_second: 11.683 - eval_steps_per_second: 1.463 - epoch: 10.11 - step: 960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
ai-forever/bert-base-NER-reptile-5-datasets
ai-forever
2022-02-04T10:51:07Z
38
3
transformers
[ "transformers", "pytorch", "bert", "token-classification", "PyTorch", "en", "dataset:conll2003", "dataset:wnut_17", "dataset:jnlpba", "dataset:conll2012", "dataset:BTC", "dataset:dfki-nlp/few-nerd", "arxiv:2010.02405", "model-index", "autotrain_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en inference: false pipeline_tag: false datasets: - conll2003 - wnut_17 - jnlpba - conll2012 - BTC - dfki-nlp/few-nerd tags: - PyTorch model-index: - name: "bert-base-NER-reptile-5-datasets" results: - task: name: few-shot-ner type: named-entity-recognition dataset: name: few-nerd-inter type: named-entity-recognition metrics: - name: 5 way 1~2 shot type: f1 value: 56.12 - name: 5-way 5~10-shot type: f1 value: 62.7 - name: 10-way 1~2-shot type: f1 value: 50.3 - name: 10-way 5~10-shot type: f1 value: 58.82 --- # BERT base uncased model pre-trained on 5 NER datasets Model was trained by _SberIDP_. The pretraining process and technical details are described [in this article](https://habr.com/ru/company/sberbank/blog/649609/). * Task: Named Entity Recognition * Base model: [bert-base-uncased](https://huggingface.co/bert-base-uncased) * Training Data is 5 datasets: [CoNLL-2003](https://aclanthology.org/W03-0419.pdf), [WNUT17](http://noisy-text.github.io/2017/emerging-rare-entities.html), [JNLPBA](http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004), [CoNLL-2012 (OntoNotes)](https://aclanthology.org/W12-4501.pdf), [BTC](https://www.derczynski.com/papers/btc.pdf) * Testing was made in Few-Shot scenario on [Few-NERD dataset](https://github.com/thunlp/Few-NERD) using the model as a backbone for [StructShot](https://arxiv.org/abs/2010.02405) The model is pretrained for NER task using [Reptile](https://openai.com/blog/reptile/) and can be finetuned for new entities with only a small amount of samples.
yohida/yoshida_gpt
yohida
2022-02-04T10:13:45Z
4
0
transformers
[ "transformers", "gpt2", "text-generation", "ja", "japanese", "gpt", "lm", "nlp", "dataset:cc100", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ja thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png tags: - ja - japanese - gpt - text-generation - lm - nlp license: mit datasets: - cc100 - wikipedia widget: - text: "西田幾多郎は、" --- # japanese-gpt-1b ![rinna-icon](./rinna.png) This repository provides a 1.3B-parameter Japanese GPT model. The model was trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. ~~~~ import torch from transformers import T5Tokenizer, AutoModelForCausalLM tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt-1b") model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b") if torch.cuda.is_available(): model = model.to("cuda") text = "西田幾多郎は、" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_length=100, min_length=100, do_sample=True, top_k=500, top_p=0.95, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, bad_word_ids=[[tokenizer.unk_token_id]] ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) # sample output: 西田幾多郎は、その主著の「善の研究」などで、人間の内面に自然とその根源があると指摘し、その根源的な性格は、この西田哲学を象徴しているとして、カントの「純粋理性批判」と「判断力批判」を対比して捉えます。それは、「人が理性的存在であるかぎりにおいて、人はその当人に固有な道徳的に自覚された善悪の基準を持っている」とするもので、この理性的な善悪の観念を否定するのがカントの ~~~~ # Model architecture A 24-layer, 2048-hidden-size transformer-based language model. # Training The model was trained on [Japanese C4](https://huggingface.co/datasets/allenai/c4), [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective. It reaches around 14 perplexity on a chosen validation set from the same data. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script, and then augmented with emojis and symbols. # Licenese [The MIT license](https://opensource.org/licenses/MIT)
huggingtweets/dril-drilbot_neo-jril_bot
huggingtweets
2022-02-04T09:52:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dril-drilbot_neo-jril_bot/1643968320729/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468502340634296326/gbl8-ltv_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Jril & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@dril-drilbot_neo-jril_bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Jril & wintbot_neo. | Data | wint | Jril | wintbot_neo | | --- | --- | --- | --- | | Tweets downloaded | 3228 | 113 | 3241 | | Retweets | 475 | 0 | 315 | | Short tweets | 305 | 0 | 453 | | Tweets kept | 2448 | 113 | 2473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27nmrlyy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-drilbot_neo-jril_bot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i64hq9wb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i64hq9wb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-drilbot_neo-jril_bot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MaggieXM/deberta-base-finetuned-squad
MaggieXM
2022-02-04T09:41:38Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: deberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-squad This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.0001 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.0 | 2 | 5.3843 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/dril-heroicvillain95
huggingtweets
2022-02-04T08:49:44Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402535431523217411/h07KN7VS_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & casually Jesse</div> <div style="text-align: center; font-size: 14px;">@dril-heroicvillain95</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & casually Jesse. | Data | wint | casually Jesse | | --- | --- | --- | | Tweets downloaded | 3228 | 2663 | | Retweets | 475 | 133 | | Short tweets | 305 | 353 | | Tweets kept | 2448 | 2177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u36b2x8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-heroicvillain95's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3c8ft6vl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3c8ft6vl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-heroicvillain95') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Mapcar/pegasus-samsum
Mapcar
2022-02-04T03:27:33Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6936 | 0.54 | 500 | 1.4844 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
SkelterLabsInc/bert-base-japanese-jaquad
SkelterLabsInc
2022-02-04T02:39:25Z
87
2
transformers
[ "transformers", "pytorch", "bert", "question-answering", "extractive-qa", "ja", "dataset:SkelterLabsInc/JaQuAD", "arxiv:2202.01764", "license:cc-by-sa-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: cc-by-sa-3.0 language: ja tags: - question-answering - extractive-qa pipeline_tag: - None datasets: - SkelterLabsInc/JaQuAD metrics: - Exact match - F1 score --- # BERT base Japanese - JaQuAD ## Description A Japanese Question Answering model fine-tuned on [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD). Please refer [BERT base Japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) for details about the pre-training model. The codes for the fine-tuning are available at [SkelterLabsInc/JaQuAD](https://github.com/SkelterLabsInc/JaQuAD) ## Evaluation results On the development set. ```shell {"f1": 77.35, "exact_match": 61.01} ``` On the test set. ```shell {"f1": 78.92, "exact_match": 63.38} ``` ## Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?' context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。' model = AutoModelForQuestionAnswering.from_pretrained( 'SkelterLabsInc/bert-base-japanese-jaquad') tokenizer = AutoTokenizer.from_pretrained( 'SkelterLabsInc/bert-base-japanese-jaquad') inputs = tokenizer( question, context, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] outputs = model(**inputs) answer_start_scores = outputs.start_logits answer_end_scores = outputs.end_logits # Get the most likely beginning of answer with the argmax of the score. answer_start = torch.argmax(answer_start_scores) # Get the most likely end of answer with the argmax of the score. # 1 is added to `answer_end` because the index pointed by score is inclusive. answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) # answer = 'スコットランド' ``` ## License The fine-tuned model is licensed under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license. ## Citation ```bibtex @misc{so2022jaquad, title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}}, author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho}, year={2022}, eprint={2202.01764}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ghofrani/common7
ghofrani
2022-02-04T01:32:24Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "fa", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fa tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: common7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common7 This model is a fine-tuned version of [common7/checkpoint-18500](https://huggingface.co/common7/checkpoint-18500) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3448 - Wer: 0.3478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.957 | 3.29 | 500 | 2.9503 | 1.0 | | 1.7225 | 6.58 | 1000 | 0.8860 | 0.7703 | | 1.4907 | 9.86 | 1500 | 0.6555 | 0.6673 | | 1.4177 | 13.16 | 2000 | 0.5784 | 0.6076 | | 1.3425 | 16.45 | 2500 | 0.5379 | 0.5718 | | 1.33 | 19.73 | 3000 | 0.4962 | 0.5245 | | 1.4378 | 23.03 | 3500 | 0.4699 | 0.5098 | | 1.1894 | 26.31 | 4000 | 0.4527 | 0.4848 | | 1.1844 | 29.6 | 4500 | 0.4309 | 0.4651 | | 1.1795 | 32.89 | 5000 | 0.4131 | 0.4524 | | 1.1471 | 36.18 | 5500 | 0.4052 | 0.4435 | | 1.1337 | 39.47 | 6000 | 0.3927 | 0.4363 | | 1.1896 | 42.76 | 6500 | 0.3811 | 0.4254 | | 1.1847 | 46.05 | 7000 | 0.3855 | 0.4129 | | 0.9954 | 49.34 | 7500 | 0.3729 | 0.3981 | | 1.0293 | 52.63 | 8000 | 0.3637 | 0.4014 | | 1.0224 | 55.92 | 8500 | 0.3578 | 0.3885 | | 1.012 | 59.21 | 9000 | 0.3629 | 0.3930 | | 1.0772 | 62.5 | 9500 | 0.3635 | 0.3906 | | 1.0344 | 65.79 | 10000 | 0.3469 | 0.3771 | | 0.9457 | 69.08 | 10500 | 0.3435 | 0.3735 | | 0.9307 | 72.37 | 11000 | 0.3519 | 0.3762 | | 0.9523 | 75.65 | 11500 | 0.3443 | 0.3666 | | 0.9523 | 78.94 | 12000 | 0.3502 | 0.3757 | | 0.9475 | 82.24 | 12500 | 0.3509 | 0.3643 | | 0.9971 | 85.52 | 13000 | 0.3502 | 0.3626 | | 0.9058 | 88.81 | 13500 | 0.3472 | 0.3605 | | 0.8922 | 92.1 | 14000 | 0.3530 | 0.3618 | | 0.9 | 95.39 | 14500 | 0.3500 | 0.3574 | | 0.9051 | 98.68 | 15000 | 0.3456 | 0.3535 | | 0.9304 | 101.97 | 15500 | 0.3438 | 0.3578 | | 0.9433 | 105.26 | 16000 | 0.3396 | 0.3530 | | 0.8988 | 108.55 | 16500 | 0.3436 | 0.3539 | | 0.8789 | 111.84 | 17000 | 0.3426 | 0.3516 | | 0.8667 | 115.13 | 17500 | 0.3438 | 0.3506 | | 0.8895 | 118.42 | 18000 | 0.3434 | 0.3503 | | 0.8888 | 121.71 | 18500 | 0.3425 | 0.3494 | | 0.9453 | 125.0 | 19000 | 0.3415 | 0.3480 | | 0.9267 | 128.29 | 19500 | 0.3477 | 0.3503 | | 0.8315 | 131.58 | 20000 | 0.3476 | 0.3505 | | 0.8542 | 134.86 | 20500 | 0.3475 | 0.3506 | | 0.8478 | 138.16 | 21000 | 0.3430 | 0.3481 | | 0.8643 | 141.45 | 21500 | 0.3451 | 0.3485 | | 0.8705 | 144.73 | 22000 | 0.3444 | 0.3474 | | 0.9869 | 148.03 | 22500 | 0.3441 | 0.3493 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
am-shb/bert-base-multilingual-cased-finetuned
am-shb
2022-02-03T21:59:27Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: '57426955' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 57426955 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
hyesunyun/NonsenseUpdateDiffIntBart
hyesunyun
2022-02-03T17:14:33Z
15
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "diff generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - summarization - diff generation datasets: - nonsense corpus metrics: - rouge --- hello! this is the pretrained BART. The dataset used for pretraining is nonsense summary corpus with output as diff.
tomascufaro/wav2vec2-large-xls-r-300m-spanish-small-v3
tomascufaro
2022-02-03T15:57:54Z
22
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "robust-speech-event", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - "es" - "robust-speech-event" - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-small-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-small-v3 This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3986 - Wer: 0.1980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2372 | 0.26 | 400 | 0.3011 | 0.2660 | | 0.3413 | 0.53 | 800 | 0.3559 | 0.3228 | | 0.3598 | 0.79 | 1200 | 0.3753 | 0.3400 | | 0.3529 | 1.05 | 1600 | 0.3385 | 0.2979 | | 0.3133 | 1.32 | 2000 | 0.3559 | 0.3056 | | 0.3158 | 1.58 | 2400 | 0.3364 | 0.2994 | | 0.3092 | 1.85 | 2800 | 0.3210 | 0.2876 | | 0.2919 | 2.11 | 3200 | 0.3460 | 0.3010 | | 0.2666 | 2.37 | 3600 | 0.3543 | 0.3036 | | 0.2819 | 2.64 | 4000 | 0.3477 | 0.2959 | | 0.283 | 2.9 | 4400 | 0.3492 | 0.2968 | | 0.2484 | 3.16 | 4800 | 0.3647 | 0.2993 | | 0.2371 | 3.43 | 5200 | 0.3601 | 0.2942 | | 0.2382 | 3.69 | 5600 | 0.3656 | 0.3019 | | 0.2425 | 3.96 | 6000 | 0.3379 | 0.2873 | | 0.2092 | 4.22 | 6400 | 0.3385 | 0.2736 | | 0.2171 | 4.48 | 6800 | 0.3503 | 0.2889 | | 0.2185 | 4.75 | 7200 | 0.3289 | 0.2727 | | 0.2236 | 5.01 | 7600 | 0.3447 | 0.2771 | | 0.1882 | 5.27 | 8000 | 0.3586 | 0.2860 | | 0.1986 | 5.54 | 8400 | 0.3404 | 0.2829 | | 0.2055 | 5.8 | 8800 | 0.3561 | 0.2869 | | 0.196 | 6.06 | 9200 | 0.3633 | 0.2811 | | 0.1748 | 6.33 | 9600 | 0.3703 | 0.2818 | | 0.1758 | 6.59 | 10000 | 0.3525 | 0.2816 | | 0.1819 | 6.86 | 10400 | 0.3581 | 0.2765 | | 0.1715 | 7.12 | 10800 | 0.3480 | 0.2628 | | 0.1606 | 7.38 | 11200 | 0.3490 | 0.2703 | | 0.1632 | 7.65 | 11600 | 0.3461 | 0.2706 | | 0.1638 | 7.91 | 12000 | 0.3458 | 0.2673 | | 0.1552 | 8.17 | 12400 | 0.3646 | 0.2732 | | 0.154 | 8.44 | 12800 | 0.3706 | 0.2726 | | 0.1512 | 8.7 | 13200 | 0.3609 | 0.2683 | | 0.149 | 8.97 | 13600 | 0.3610 | 0.2668 | | 0.1357 | 9.23 | 14000 | 0.3693 | 0.2740 | | 0.1375 | 9.49 | 14400 | 0.3677 | 0.2625 | | 0.1391 | 9.76 | 14800 | 0.3795 | 0.2762 | | 0.1378 | 10.02 | 15200 | 0.3541 | 0.2592 | | 0.1197 | 10.28 | 15600 | 0.3562 | 0.2507 | | 0.1259 | 10.55 | 16000 | 0.3612 | 0.2584 | | 0.1266 | 10.81 | 16400 | 0.3470 | 0.2527 | | 0.1199 | 11.07 | 16800 | 0.3721 | 0.2571 | | 0.1157 | 11.34 | 17200 | 0.3734 | 0.2571 | | 0.1107 | 11.6 | 17600 | 0.3730 | 0.2589 | | 0.1148 | 11.87 | 18000 | 0.3648 | 0.2536 | | 0.1095 | 12.13 | 18400 | 0.3746 | 0.2521 | | 0.1047 | 12.39 | 18800 | 0.3566 | 0.2530 | | 0.1043 | 12.66 | 19200 | 0.3794 | 0.2545 | | 0.1066 | 12.92 | 19600 | 0.3548 | 0.2439 | | 0.0974 | 13.18 | 20000 | 0.3702 | 0.2461 | | 0.0978 | 13.45 | 20400 | 0.3721 | 0.2492 | | 0.095 | 13.71 | 20800 | 0.3599 | 0.2467 | | 0.0963 | 13.97 | 21200 | 0.3650 | 0.2402 | | 0.0902 | 14.24 | 21600 | 0.3689 | 0.2459 | | 0.0898 | 14.5 | 22000 | 0.3832 | 0.2452 | | 0.0865 | 14.77 | 22400 | 0.3982 | 0.2436 | | 0.0911 | 15.03 | 22800 | 0.3785 | 0.2398 | | 0.0793 | 15.29 | 23200 | 0.3731 | 0.2396 | | 0.0806 | 15.56 | 23600 | 0.3626 | 0.2372 | | 0.0789 | 15.82 | 24000 | 0.3707 | 0.2356 | | 0.0779 | 16.08 | 24400 | 0.3850 | 0.2368 | | 0.078 | 16.35 | 24800 | 0.3831 | 0.2363 | | 0.0732 | 16.61 | 25200 | 0.3947 | 0.2287 | | 0.0733 | 16.88 | 25600 | 0.3928 | 0.2374 | | 0.0721 | 17.14 | 26000 | 0.3943 | 0.2324 | | 0.0676 | 17.4 | 26400 | 0.3793 | 0.2311 | | 0.0682 | 17.67 | 26800 | 0.3958 | 0.2257 | | 0.0714 | 17.93 | 27200 | 0.3890 | 0.2322 | | 0.0673 | 18.19 | 27600 | 0.3872 | 0.2229 | | 0.0613 | 18.46 | 28000 | 0.3828 | 0.2226 | | 0.0621 | 18.72 | 28400 | 0.3812 | 0.2214 | | 0.0622 | 18.98 | 28800 | 0.3919 | 0.2212 | | 0.0576 | 19.25 | 29200 | 0.4000 | 0.2205 | | 0.0581 | 19.51 | 29600 | 0.3953 | 0.2203 | | 0.0573 | 19.78 | 30000 | 0.3947 | 0.2190 | | 0.0576 | 20.04 | 30400 | 0.3909 | 0.2156 | | 0.0551 | 20.3 | 30800 | 0.4178 | 0.2153 | | 0.0525 | 20.57 | 31200 | 0.3935 | 0.2152 | | 0.0522 | 20.83 | 31600 | 0.4054 | 0.2151 | | 0.0519 | 21.09 | 32000 | 0.3877 | 0.2135 | | 0.0479 | 21.36 | 32400 | 0.4119 | 0.2107 | | 0.0472 | 21.62 | 32800 | 0.3967 | 0.2091 | | 0.048 | 21.89 | 33200 | 0.3812 | 0.2057 | | 0.0458 | 22.15 | 33600 | 0.3931 | 0.2043 | | 0.0459 | 22.41 | 34000 | 0.3937 | 0.2049 | | 0.0448 | 22.68 | 34400 | 0.3900 | 0.2056 | | 0.0432 | 22.94 | 34800 | 0.4050 | 0.2049 | | 0.0425 | 23.2 | 35200 | 0.3985 | 0.2014 | | 0.0415 | 23.47 | 35600 | 0.3976 | 0.2013 | | 0.0403 | 23.73 | 36000 | 0.4031 | 0.2018 | | 0.04 | 23.99 | 36400 | 0.3996 | 0.2000 | | 0.039 | 24.26 | 36800 | 0.3977 | 0.1993 | | 0.0406 | 24.52 | 37200 | 0.3967 | 0.2000 | | 0.0391 | 24.79 | 37600 | 0.3986 | 0.1980 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Ayham/bert_distilgpt2_summarization_cnn_dailymail
Ayham
2022-02-03T13:33:41Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bert_distilgpt2_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_distilgpt2_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-pa-IN-cv8-with-lm
anuragshas
2022-02-03T12:28:34Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.6864 - Wer: 0.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.3322 | 14.81 | 400 | 3.7450 | 1.0 | | 3.2662 | 29.63 | 800 | 3.2571 | 0.9996 | | 1.6408 | 44.44 | 1200 | 0.9098 | 0.8162 | | 1.2289 | 59.26 | 1600 | 0.6757 | 0.7099 | | 1.0551 | 74.07 | 2000 | 0.6417 | 0.7044 | | 0.966 | 88.89 | 2400 | 0.6365 | 0.6789 | | 0.8713 | 103.7 | 2800 | 0.6617 | 0.6954 | | 0.8055 | 118.52 | 3200 | 0.6371 | 0.6762 | | 0.7489 | 133.33 | 3600 | 0.6798 | 0.6911 | | 0.7073 | 148.15 | 4000 | 0.6567 | 0.6731 | | 0.6609 | 162.96 | 4400 | 0.6742 | 0.6840 | | 0.6435 | 177.78 | 4800 | 0.6862 | 0.6633 | | 0.6282 | 192.59 | 5200 | 0.6865 | 0.6731 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
Baybars/wav2vec2-xls-r-1b-turkish
Baybars
2022-02-03T10:09:31Z
17
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-10500](https://huggingface.co/./checkpoint-10500) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.7540 - Wer: 0.4647 - Cer: 0.1318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.999,0.9999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:------:| | 1.0779 | 4.59 | 500 | 0.2354 | 0.8260 | 0.7395 | | 0.7573 | 9.17 | 1000 | 0.2100 | 0.7544 | 0.6960 | | 0.8225 | 13.76 | 1500 | 0.2021 | 0.6867 | 0.6672 | | 0.621 | 18.35 | 2000 | 0.1874 | 0.6824 | 0.6209 | | 0.6362 | 22.94 | 2500 | 0.1904 | 0.6712 | 0.6286 | | 0.624 | 27.52 | 3000 | 0.1820 | 0.6940 | 0.6116 | | 0.4781 | 32.11 | 3500 | 0.1735 | 0.6966 | 0.5989 | | 0.5685 | 36.7 | 4000 | 0.1769 | 0.6742 | 0.5971 | | 0.4384 | 41.28 | 4500 | 0.1767 | 0.6904 | 0.5999 | | 0.5509 | 45.87 | 5000 | 0.1692 | 0.6734 | 0.5641 | | 0.3665 | 50.46 | 5500 | 0.1680 | 0.7018 | 0.5662 | | 0.3914 | 55.05 | 6000 | 0.1631 | 0.7121 | 0.5552 | | 0.2467 | 59.63 | 6500 | 0.1563 | 0.6657 | 0.5374 | | 0.2576 | 64.22 | 7000 | 0.1554 | 0.6920 | 0.5316 | | 0.2711 | 68.81 | 7500 | 0.1495 | 0.6900 | 0.5176 | | 0.2626 | 73.39 | 8000 | 0.1454 | 0.6843 | 0.5043 | | 0.1377 | 77.98 | 8500 | 0.1470 | 0.7383 | 0.5101 | | 0.2005 | 82.57 | 9000 | 0.1430 | 0.7228 | 0.5045 | | 0.1355 | 87.16 | 9500 | 0.1375 | 0.7231 | 0.4869 | | 0.0431 | 91.74 | 10000 | 0.1350 | 0.7397 | 0.4749 | | 0.0586 | 96.33 | 10500 | 0.1339 | 0.7360 | 0.4754 | | 0.0896 | 100.92 | 11000 | 0.7187 | 0.4885 | 0.1398 | | 0.183 | 105.5 | 11500 | 0.7310 | 0.4838 | 0.1392 | | 0.0963 | 110.09 | 12000 | 0.7643 | 0.4759 | 0.1362 | | 0.0437 | 114.68 | 12500 | 0.7525 | 0.4641 | 0.1328 | | 0.1122 | 119.27 | 13000 | 0.7535 | 0.4651 | 0.1317 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Atiqah/Atiqah
Atiqah
2022-02-03T07:04:44Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- license: artistic-2.0 ---
pritoms/distilroberta-base-YTTranscript23
pritoms
2022-02-03T05:52:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-YTTranscript23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-YTTranscript23 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 70 | 2.9007 | | No log | 2.0 | 140 | 2.9651 | | No log | 3.0 | 210 | 2.9374 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
testimonial/wav2vec2-base-timit-demo-colab
testimonial
2022-02-03T03:07:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4688 - Wer: 0.3417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4156 | 4.0 | 500 | 1.2721 | 0.8882 | | 0.6145 | 8.0 | 1000 | 0.4712 | 0.4510 | | 0.229 | 12.0 | 1500 | 0.4459 | 0.3847 | | 0.1312 | 16.0 | 2000 | 0.4739 | 0.3786 | | 0.0897 | 20.0 | 2500 | 0.4483 | 0.3562 | | 0.0608 | 24.0 | 3000 | 0.4450 | 0.3502 | | 0.0456 | 28.0 | 3500 | 0.4688 | 0.3417 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Ayham/albert_distilgpt2_summarization_cnn_dailymail
Ayham
2022-02-02T23:15:10Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: albert_distilgpt2_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert_distilgpt2_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
dropout05/t5-tiny
dropout05
2022-02-02T19:11:43Z
8
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 ---
jonfd/convbert-base-igc-is
jonfd
2022-02-02T17:10:34Z
13
0
transformers
[ "transformers", "pytorch", "tf", "convbert", "feature-extraction", "is", "dataset:igc", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ConvBERT-Base This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
cahya/wav2vec2-base-turkish-artificial
cahya
2022-02-02T15:44:36Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Base Turkish with Artificial Voices by Cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 57.60 --- # Wav2Vec2-Large-XLSR-Turkish Fine-tuned [ceyda/wav2vec2-base-760](https://huggingface.co/ceyda/wav2vec2-base-760) on the [Turkish Artificial Common Voice dataset](https://cloud.uncool.ai/index.php/f/2165181). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.60 % ## Training The Artificial Common Voice `train`, `validation` is used to fine tune the model The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
arjuntheprogrammer/distilbert-base-multilingual-cased-sentiment-2
arjuntheprogrammer
2022-02-02T15:16:39Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 model-index: - name: distilbert-base-multilingual-cased-sentiment-2 results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Accuracy type: accuracy value: 0.7614 - name: F1 type: f1 value: 0.7614 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-sentiment-2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5882 - Accuracy: 0.7614 - F1: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
NbAiLab/wav2vec2-xlsr-300M-NPSC-OH
NbAiLab
2022-02-02T06:10:42Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "NbAiLab/NPSC", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - generated_from_trainer model-index: - name: wav2vec2-xlsr-300M-NPSC-OH results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-300M-NPSC-OH This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NBAILAB/NPSC - 16K_MP3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1692 - Wer: 0.1663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.1638 | 0.66 | 500 | 3.0686 | 1.0 | | 2.9311 | 1.31 | 1000 | 2.9208 | 1.0 | | 2.4175 | 1.97 | 1500 | 1.5009 | 0.9049 | | 1.4442 | 2.63 | 2000 | 0.4426 | 0.3783 | | 1.2624 | 3.28 | 2500 | 0.3193 | 0.2998 | | 1.1889 | 3.94 | 3000 | 0.2867 | 0.2630 | | 1.1315 | 4.6 | 3500 | 0.2566 | 0.2444 | | 1.0864 | 5.26 | 4000 | 0.2368 | 0.2294 | | 1.093 | 5.91 | 4500 | 0.2240 | 0.2151 | | 1.0368 | 6.57 | 5000 | 0.2117 | 0.2056 | | 1.0178 | 7.23 | 5500 | 0.2020 | 0.1954 | | 1.0035 | 7.88 | 6000 | 0.2005 | 0.1924 | | 0.9759 | 8.54 | 6500 | 0.1971 | 0.1863 | | 0.9795 | 9.2 | 7000 | 0.1892 | 0.1812 | | 0.9601 | 9.85 | 7500 | 0.1863 | 0.1795 | | 0.9673 | 10.51 | 8000 | 0.1809 | 0.1761 | | 0.9233 | 11.17 | 8500 | 0.1818 | 0.1755 | | 0.9382 | 11.83 | 9000 | 0.1767 | 0.1741 | | 0.9242 | 12.48 | 9500 | 0.1743 | 0.1703 | | 0.9703 | 13.14 | 10000 | 0.1711 | 0.1711 | | 0.9139 | 13.8 | 10500 | 0.1718 | 0.1672 | | 0.9073 | 14.45 | 11000 | 0.1700 | 0.1665 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
tal-yifat/bert-injury-classifier
tal-yifat
2022-02-02T04:35:44Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-injury-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-injury-classifier This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.5298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6676 | 1.0 | 19026 | 0.6635 | 0.6216 | | 0.6915 | 2.0 | 38052 | 0.6915 | 0.5298 | | 0.6924 | 3.0 | 57078 | 0.6915 | 0.5298 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
CalvinHuang/mt5-small-finetuned-amazon-en-es
CalvinHuang
2022-02-02T03:50:37Z
18
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0393 - Rouge1: 17.2936 - Rouge2: 8.0678 - Rougel: 16.8129 - Rougelsum: 16.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.6665 | 1.0 | 1209 | 3.2917 | 13.912 | 5.595 | 13.2984 | 13.4171 | | 3.8961 | 2.0 | 2418 | 3.1711 | 16.2845 | 8.6033 | 15.5509 | 15.7383 | | 3.5801 | 3.0 | 3627 | 3.0917 | 17.316 | 8.122 | 16.697 | 16.773 | | 3.4258 | 4.0 | 4836 | 3.0583 | 16.1347 | 7.7829 | 15.6475 | 15.7804 | | 3.3154 | 5.0 | 6045 | 3.0573 | 17.5918 | 8.7349 | 17.0537 | 17.2216 | | 3.2438 | 6.0 | 7254 | 3.0479 | 17.2294 | 8.0383 | 16.8141 | 16.9858 | | 3.2024 | 7.0 | 8463 | 3.0377 | 17.2918 | 8.139 | 16.8178 | 16.9671 | | 3.1745 | 8.0 | 9672 | 3.0393 | 17.2936 | 8.0678 | 16.8129 | 16.9991 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
pdroberts/distilbert-base-uncased-finetuned-emotion
pdroberts
2022-02-01T23:48:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/cosmonolan
huggingtweets
2022-02-01T21:59:33Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/cosmonolan/1643752768713/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1436186613667622920/PQrOPSrV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nolan Koblischke</div> <div style="text-align: center; font-size: 14px;">@cosmonolan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nolan Koblischke. | Data | Nolan Koblischke | | --- | --- | | Tweets downloaded | 154 | | Retweets | 5 | | Short tweets | 6 | | Tweets kept | 143 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13msto5g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosmonolan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25mhxfie) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25mhxfie/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cosmonolan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mattmcclean/distilbert-base-uncased-finetuned-emotion
mattmcclean
2022-02-01T19:48:01Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9252235175634111 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2173 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.825 | 1.0 | 250 | 0.2925 | 0.915 | 0.9134 | | 0.2444 | 2.0 | 500 | 0.2173 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
conjuring92/distilroberta-base-finetuned-toxic
conjuring92
2022-02-01T18:24:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-toxic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-toxic This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5338 | 1.0 | 313 | 2.3127 | | 2.4482 | 2.0 | 626 | 2.2985 | | 2.4312 | 3.0 | 939 | 2.2411 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0 - Datasets 1.18.1 - Tokenizers 0.10.3
naleraphael/rasr_sample
naleraphael
2022-02-01T18:18:16Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: rasr_sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rasr_sample This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3147 - Wer: 0.2676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3332 | 1.45 | 500 | 3.3031 | 1.0 | | 2.9272 | 2.91 | 1000 | 2.9353 | 0.9970 | | 2.0736 | 4.36 | 1500 | 1.1565 | 0.8714 | | 1.7339 | 5.81 | 2000 | 0.7156 | 0.6688 | | 1.5989 | 7.27 | 2500 | 0.5791 | 0.5519 | | 1.4916 | 8.72 | 3000 | 0.5038 | 0.5169 | | 1.4562 | 10.17 | 3500 | 0.4861 | 0.4805 | | 1.3893 | 11.63 | 4000 | 0.4584 | 0.4761 | | 1.3797 | 13.08 | 4500 | 0.4298 | 0.4686 | | 1.3508 | 14.53 | 5000 | 0.4138 | 0.3744 | | 1.3165 | 15.99 | 5500 | 0.4015 | 0.3578 | | 1.281 | 17.44 | 6000 | 0.3883 | 0.3472 | | 1.2682 | 18.89 | 6500 | 0.3904 | 0.3434 | | 1.2477 | 20.35 | 7000 | 0.3726 | 0.3321 | | 1.2364 | 21.8 | 7500 | 0.3685 | 0.3281 | | 1.2041 | 23.26 | 8000 | 0.3597 | 0.3194 | | 1.1901 | 24.71 | 8500 | 0.3542 | 0.3203 | | 1.1903 | 26.16 | 9000 | 0.3500 | 0.3138 | | 1.1677 | 27.61 | 9500 | 0.3458 | 0.3067 | | 1.1718 | 29.07 | 10000 | 0.3595 | 0.3112 | | 1.1562 | 30.52 | 10500 | 0.3433 | 0.3022 | | 1.1392 | 31.97 | 11000 | 0.3440 | 0.2936 | | 1.1258 | 33.43 | 11500 | 0.3396 | 0.2950 | | 1.1067 | 34.88 | 12000 | 0.3379 | 0.2939 | | 1.0953 | 36.34 | 12500 | 0.3370 | 0.2868 | | 1.0835 | 37.79 | 13000 | 0.3317 | 0.2860 | | 1.0772 | 39.24 | 13500 | 0.3302 | 0.2854 | | 1.0853 | 40.7 | 14000 | 0.3265 | 0.2783 | | 1.0689 | 42.15 | 14500 | 0.3306 | 0.2770 | | 1.0394 | 43.6 | 15000 | 0.3233 | 0.2757 | | 1.0581 | 45.06 | 15500 | 0.3199 | 0.2713 | | 1.0362 | 46.51 | 16000 | 0.3154 | 0.2683 | | 1.0406 | 47.96 | 16500 | 0.3176 | 0.2688 | | 1.0082 | 49.42 | 17000 | 0.3149 | 0.2679 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
patrickvonplaten/wav2vec2-common_voice-tamil
patrickvonplaten
2022-02-01T14:17:40Z
14
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "ta", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ta license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tamil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tamil This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TA dataset. It achieves the following results on the evaluation set: - Loss: 1.1172 - Wer: 1.0070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.84 | 100 | 4.0148 | 1.0 | | No log | 1.69 | 200 | 3.1738 | 1.0 | | No log | 2.54 | 300 | 2.5980 | 1.0236 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.10.3