modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_64_64_0.05_16_0.0002
ferrazzipietro
2024-03-08T04:10:11Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-08T04:08:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cxhoang/blip2-flickr8k-finetune
cxhoang
2024-03-08T04:05:50Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:ybelkada/blip2-opt-2.7b-fp16-sharded", "base_model:adapter:ybelkada/blip2-opt-2.7b-fp16-sharded", "region:us" ]
null
2024-02-14T00:09:37Z
--- library_name: peft base_model: ybelkada/blip2-opt-2.7b-fp16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
frankenmerger/delta-4b-notso-base
frankenmerger
2024-03-08T04:04:06Z
66
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T18:41:10Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - conversational --- ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "gmonsoon/Delta-4B-notso-base" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
InnerI/InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp
InnerI
2024-03-08T04:01:27Z
52
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "NousResearch/Yarn-Mistral-7b-128k", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:merge:NousResearch/Yarn-Mistral-7b-128k", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:merge:OpenPipe/mistral-ft-optimized-1218", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-13T03:31:40Z
--- tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - NousResearch/Yarn-Mistral-7b-128k base_model: - OpenPipe/mistral-ft-optimized-1218 - NousResearch/Yarn-Mistral-7b-128k license: apache-2.0 --- # InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: NousResearch/Yarn-Mistral-7b-128k layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "InnerI/InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
OwOOwO/eacc_contTrain_m6_2
OwOOwO
2024-03-08T03:52:45Z
89
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-08T03:50:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
salmaafifi98/t5-small-finetuned-xsum
salmaafifi98
2024-03-08T03:46:12Z
46
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:Rocketknight1/t5-small-finetuned-xsum", "base_model:finetune:Rocketknight1/t5-small-finetuned-xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-03T02:06:33Z
--- license: apache-2.0 base_model: Rocketknight1/t5-small-finetuned-xsum tags: - generated_from_keras_callback model-index: - name: salmaafifi98/t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # salmaafifi98/t5-small-finetuned-xsum This model is a fine-tuned version of [Rocketknight1/t5-small-finetuned-xsum](https://huggingface.co/Rocketknight1/t5-small-finetuned-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5775 - Validation Loss: 2.3341 - Train Rouge1: 30.2930 - Train Rouge2: 9.1969 - Train Rougel: 24.0331 - Train Rougelsum: 24.0378 - Train Gen Len: 18.7949 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.5775 | 2.3341 | 30.2930 | 9.1969 | 24.0331 | 24.0378 | 18.7949 | 0 | ### Framework versions - Transformers 4.38.2 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2
humung/komt-mistral-7b-v1-vlending-cs-v0.1
humung
2024-03-08T03:40:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-08T03:40:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
debasishdas/llama2-7b-chat-finetuned-legal
debasishdas
2024-03-08T03:36:52Z
0
0
null
[ "safetensors", "generated_from_trainer", "region:us" ]
null
2024-03-07T08:55:42Z
--- tags: - generated_from_trainer model-index: - name: llama2-7b-chat-finetuned-legal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b-chat-finetuned-legal This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_64_64_0.05_4_0.0002
ferrazzipietro
2024-03-08T03:30:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-08T03:29:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KhangSimple/output
KhangSimple
2024-03-08T03:27:55Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-08T02:29:51Z
--- license: apache-2.0 base_model: sentence-transformers/all-MiniLM-L6-v2 tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
migtissera/Tess-10.7B-v1.5b
migtissera
2024-03-08T03:13:32Z
179
13
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-28T06:34:30Z
--- license: apache-2.0 --- <br> ![Tesoro](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png) <br> Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-10.7B-v1.5b was trained on the SOLAR-10.7B base. # Prompt Format: ``` SYSTEM: <ANY SYSTEM CONTEXT> USER: ASSISTANT: ```
OwOOwO/eacc_contTrain_m2_55_rt
OwOOwO
2024-03-08T03:08:04Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-08T03:05:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
OwOOwO/eacc_contTrain_c1
OwOOwO
2024-03-08T02:41:46Z
89
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-08T02:39:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_64_32_0.01_4_0.0002
ferrazzipietro
2024-03-08T02:31:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-08T02:30:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AyeSee/roberta-large-lora-token-classification_v1
AyeSee
2024-03-08T01:35:39Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T13:48:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
daze-unlv/axolotl-medmcqa-2-epoch
daze-unlv
2024-03-08T01:28:30Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-03-07T22:54:28Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: lora-out/medmcqa-2-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: daze-unlv/medmcqa_axolotl type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./lora-out/medmcqa-2-epoch eval_sample_packing: false adapter: lora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false sdp_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # lora-out/medmcqa-2-epoch This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.9.1.dev0 - Transformers 4.39.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0
ahmedbaig/DataMeshGroup_ML_Practice
ahmedbaig
2024-03-08T01:25:29Z
0
0
null
[ "region:us" ]
null
2024-03-07T06:02:58Z
# AI Development ## Getting started To make it easy for you to get started with GitLab, here's a list of recommended next steps. Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)! ## Add your files - [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files - [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command: ``` cd existing_repo git remote add origin https://code.dmgsecure.io/Ahmed_Baig/ai-development.git git branch -M main git push -uf origin main ``` ## Integrate with your tools - [ ] [Set up project integrations](https://code.dmgsecure.io/Ahmed_Baig/ai-development/-/settings/integrations) ## Collaborate with your team - [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/) - [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html) - [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically) - [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/) - [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html) ## Test and Deploy Use the built-in continuous integration in GitLab. - [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html) - [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing (SAST)](https://docs.gitlab.com/ee/user/application_security/sast/) - [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html) - [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/) - [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html) *** # Editing this README When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thanks to [makeareadme.com](https://www.makeareadme.com/) for this template. ## Suggestions for a good README Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information. ## Name Choose a self-explaining name for your project. ## Description Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors. ## Badges On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge. ## Visuals Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method. ## Installation Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection. ## Usage Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README. ## Support Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc. ## Roadmap If you have ideas for releases in the future, it is a good idea to list them in the README. ## Contributing State if you are open to contributions and what your requirements are for accepting them. For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self. You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser. ## Authors and acknowledgment Show your appreciation to those who have contributed to the project. ## License For open source projects, say how it is licensed. ## Project status If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
lilsomnus/SatAI-ft
lilsomnus
2024-03-08T01:21:48Z
6
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-03-08T01:21:45Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ model-index: - name: SatAI-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SatAI-ft This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2
CreitinGameplays/elisa-chan-phi-2-super
CreitinGameplays
2024-03-08T01:20:13Z
7
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "custom_code", "en", "dataset:CreitinGameplays/elisa-chan-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T18:07:06Z
--- datasets: - CreitinGameplays/elisa-chan-v2 language: - en widget: - text: Hello, who are you? example_title: Identity - text: What can you do? example_title: Capabilities - text: How does a human brain work? example_title: Question --- This is the "abacaj/phi-2-super" model fine-tuned using my own dataset. Prompt example: ``` prompt = "<|endoftext|>[INST] Hello there! [/INST]" ```
daze-unlv/medmcqa-alignment-lora-7b-2-epoch
daze-unlv
2024-03-08T01:18:13Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-03-06T18:56:58Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-v0.1 model-index: - name: medmcqa-alignment-lora-7b-2-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medmcqa-alignment-lora-7b-2-epoch This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 2601 | nan | | 0.0 | 2.0 | 5202 | nan | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2
sumedhuv/bert-relext
sumedhuv
2024-03-08T01:13:37Z
4
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-08T01:04:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
daze-unlv/medmcqa-alignment-lora-7b-4-epoch
daze-unlv
2024-03-08T01:05:47Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-03-07T07:49:03Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-v0.1 model-index: - name: medmcqa-alignment-lora-7b-4-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medmcqa-alignment-lora-7b-4-epoch This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0 | 1.0 | 2601 | nan | | 0.0 | 2.0 | 5203 | nan | | 0.0 | 3.0 | 7804 | nan | | 0.0 | 4.0 | 10404 | nan | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2
dolainu/Nyanners_lora_Vtuber
dolainu
2024-03-08T00:59:52Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stablediffusionapi/anylora-checkpoint", "base_model:adapter:stablediffusionapi/anylora-checkpoint", "license:apache-2.0", "region:us" ]
text-to-image
2024-03-08T00:59:41Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: <lora:NyanV0.1:0.8>, nyanners1st, medium hair, purple eyes, 1girl, sitting parameters: negative_prompt: ' easynegative' output: url: images/09210-3549732032.png - text: >- <lora:NyanV0.1:0.8>, nyanners2st, long hair, purple eyes, 1girl, sitting, nude, bed, <lora:Smooth belly_v1.3.2:0.8>, petite, nsfw parameters: negative_prompt: ' easynegative' output: url: images/09218-3924406483.png - text: >- <lora:NyanV0.1:0.87>, nyanners2st, long hair, purple eyes, 1girl, sitting, bed, <lora:Smooth belly_v1.3.2:0.8>, petite parameters: negative_prompt: ' easynegative' output: url: images/09222-462619498.png - text: >- <lora:NyanV0.1:0.87>, nyanners1st, medium hair, purple eyes, 1girl, sitting, bed, <lora:Smooth belly_v1.3.2:0.8>, petite parameters: negative_prompt: ' easynegative' output: url: images/09226-797583566.png base_model: stablediffusionapi/anylora-checkpoint instance_prompt: null license: apache-2.0 --- # Nyanners <Gallery /> ## Model description TESTED AT 0.87 STRENGTH Prompts: short hair ver.: &quot;nyanners1st, medium hair, purple eyes&quot; long hair ver.: &quot;nyanners2st, long hair, purple eyes&quot; ## Download model Weights for this model are available in Safetensors format. [Download](/dolainu/Nyanners_lora_Vtuber/tree/main) them in the Files & versions tab.
keanurefresh/73981
keanurefresh
2024-03-08T00:44:46Z
0
0
null
[ "region:us" ]
null
2024-03-08T00:00:03Z
Include in your prompt <lora:facialized:1>, cum, facial.You might want to include in your negative prompt cum on breasts, cum on body. The model works best with low steps and CFG, I get good results with 10 steps and a CFG of 3 or 4.
zabir735/clip-seed-vit-4
zabir735
2024-03-08T00:41:07Z
6
0
transformers
[ "transformers", "safetensors", "clip", "zero-shot-image-classification", "generated_from_trainer", "base_model:openai/clip-vit-base-patch16", "base_model:finetune:openai/clip-vit-base-patch16", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2024-03-07T23:36:17Z
--- base_model: openai/clip-vit-base-patch16 tags: - generated_from_trainer model-index: - name: clip-seed-vit-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-seed-vit-4 This model is a fine-tuned version of [openai/clip-vit-base-patch16](https://huggingface.co/openai/clip-vit-base-patch16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cpu - Datasets 2.16.1 - Tokenizers 0.15.1
mfidabel/Modelo_3_Whisper_Tiny
mfidabel
2024-03-08T00:35:21Z
3
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:openai/whisper-tiny", "base_model:adapter:openai/whisper-tiny", "license:apache-2.0", "region:us" ]
null
2024-03-07T20:36:38Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-tiny model-index: - name: Modelo_3_Whisper_Tiny results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Modelo_3_Whisper_Tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9233 | 1.0 | 1295 | 0.7396 | | 0.8323 | 2.0 | 2590 | 0.6168 | | 0.6931 | 3.0 | 3885 | 0.5398 | | 0.5671 | 4.0 | 5180 | 0.4955 | | 0.489 | 5.0 | 6475 | 0.4710 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.2
farid1088/RoBERTa-legal-de-cased_German_legal_SQuAD_100
farid1088
2024-03-08T00:30:54Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-05T20:49:10Z
--- tags: - generated_from_trainer model-index: - name: RoBERTa-legal-de-cased_German_legal_SQuAD_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-legal-de-cased_German_legal_SQuAD_100 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 6.2702 | | No log | 2.0 | 4 | 6.2057 | | No log | 3.0 | 6 | 6.0590 | | No log | 4.0 | 8 | 5.8979 | | No log | 5.0 | 10 | 5.4639 | | No log | 6.0 | 12 | 5.3637 | | No log | 7.0 | 14 | 5.1792 | | No log | 8.0 | 16 | 4.9258 | | No log | 9.0 | 18 | 4.7628 | | No log | 10.0 | 20 | 4.5534 | | No log | 11.0 | 22 | 4.3370 | | No log | 12.0 | 24 | 4.1347 | | No log | 13.0 | 26 | 3.9543 | | No log | 14.0 | 28 | 3.7819 | | No log | 15.0 | 30 | 3.6555 | | No log | 16.0 | 32 | 3.5673 | | No log | 17.0 | 34 | 3.4768 | | No log | 18.0 | 36 | 3.3835 | | No log | 19.0 | 38 | 3.3112 | | No log | 20.0 | 40 | 3.2279 | | No log | 21.0 | 42 | 3.1581 | | No log | 22.0 | 44 | 3.0989 | | No log | 23.0 | 46 | 3.0178 | | No log | 24.0 | 48 | 2.9702 | | No log | 25.0 | 50 | 2.9084 | | No log | 26.0 | 52 | 2.8226 | | No log | 27.0 | 54 | 2.8405 | | No log | 28.0 | 56 | 2.8029 | | No log | 29.0 | 58 | 2.6979 | | No log | 30.0 | 60 | 2.7140 | | No log | 31.0 | 62 | 2.6985 | | No log | 32.0 | 64 | 2.6223 | | No log | 33.0 | 66 | 2.6349 | | No log | 34.0 | 68 | 2.5541 | | No log | 35.0 | 70 | 2.4758 | | No log | 36.0 | 72 | 2.4601 | | No log | 37.0 | 74 | 2.4836 | | No log | 38.0 | 76 | 2.3613 | | No log | 39.0 | 78 | 2.2917 | | No log | 40.0 | 80 | 2.3154 | | No log | 41.0 | 82 | 2.2682 | | No log | 42.0 | 84 | 2.2784 | | No log | 43.0 | 86 | 2.2534 | | No log | 44.0 | 88 | 2.1457 | | No log | 45.0 | 90 | 2.1808 | | No log | 46.0 | 92 | 2.2528 | | No log | 47.0 | 94 | 2.1585 | | No log | 48.0 | 96 | 2.0309 | | No log | 49.0 | 98 | 2.0622 | | No log | 50.0 | 100 | 2.0533 | | No log | 51.0 | 102 | 1.9610 | | No log | 52.0 | 104 | 1.9597 | | No log | 53.0 | 106 | 1.8926 | | No log | 54.0 | 108 | 1.8149 | | No log | 55.0 | 110 | 1.7849 | | No log | 56.0 | 112 | 1.8135 | | No log | 57.0 | 114 | 1.8190 | | No log | 58.0 | 116 | 1.8126 | | No log | 59.0 | 118 | 1.8007 | | No log | 60.0 | 120 | 1.7200 | | No log | 61.0 | 122 | 1.6408 | | No log | 62.0 | 124 | 1.6524 | | No log | 63.0 | 126 | 1.6697 | | No log | 64.0 | 128 | 1.6660 | | No log | 65.0 | 130 | 1.5907 | | No log | 66.0 | 132 | 1.5765 | | No log | 67.0 | 134 | 1.5575 | | No log | 68.0 | 136 | 1.5455 | | No log | 69.0 | 138 | 1.5267 | | No log | 70.0 | 140 | 1.4875 | | No log | 71.0 | 142 | 1.4474 | | No log | 72.0 | 144 | 1.4436 | | No log | 73.0 | 146 | 1.4609 | | No log | 74.0 | 148 | 1.4983 | | No log | 75.0 | 150 | 1.4903 | | No log | 76.0 | 152 | 1.4506 | | No log | 77.0 | 154 | 1.3982 | | No log | 78.0 | 156 | 1.3735 | | No log | 79.0 | 158 | 1.3670 | | No log | 80.0 | 160 | 1.3977 | | No log | 81.0 | 162 | 1.4478 | | No log | 82.0 | 164 | 1.4565 | | No log | 83.0 | 166 | 1.4186 | | No log | 84.0 | 168 | 1.3839 | | No log | 85.0 | 170 | 1.3633 | | No log | 86.0 | 172 | 1.3686 | | No log | 87.0 | 174 | 1.3873 | | No log | 88.0 | 176 | 1.3998 | | No log | 89.0 | 178 | 1.4084 | | No log | 90.0 | 180 | 1.4076 | | No log | 91.0 | 182 | 1.3899 | | No log | 92.0 | 184 | 1.3820 | | No log | 93.0 | 186 | 1.3821 | | No log | 94.0 | 188 | 1.3837 | | No log | 95.0 | 190 | 1.3902 | | No log | 96.0 | 192 | 1.3930 | | No log | 97.0 | 194 | 1.3938 | | No log | 98.0 | 196 | 1.3954 | | No log | 99.0 | 198 | 1.3950 | | No log | 100.0 | 200 | 1.3939 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
farid1088/RoBERTa-legal-de-cased_German_legal_SQuAD_17
farid1088
2024-03-08T00:24:34Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-05T20:47:41Z
--- tags: - generated_from_trainer model-index: - name: RoBERTa-legal-de-cased_German_legal_SQuAD_17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-legal-de-cased_German_legal_SQuAD_17 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 17 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 6.2537 | | No log | 2.0 | 4 | 6.3434 | | No log | 3.0 | 6 | 6.2256 | | No log | 4.0 | 8 | 6.0253 | | No log | 5.0 | 10 | 5.8198 | | No log | 6.0 | 12 | 5.5768 | | No log | 7.0 | 14 | 5.4665 | | No log | 8.0 | 16 | 5.4053 | | No log | 9.0 | 18 | 5.3656 | | No log | 10.0 | 20 | 5.3181 | | No log | 11.0 | 22 | 5.2573 | | No log | 12.0 | 24 | 5.1785 | | No log | 13.0 | 26 | 5.1147 | | No log | 14.0 | 28 | 5.0536 | | No log | 15.0 | 30 | 5.0101 | | No log | 16.0 | 32 | 4.9799 | | No log | 17.0 | 34 | 4.9667 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
ColeD0/Claud.ai-2
ColeD0
2024-03-08T00:19:56Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-03-07T19:53:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ktm379/code-llama-7b-train_epoch3
ktm379
2024-03-08T00:19:26Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-03-07T17:33:19Z
--- library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: TinyPixel/Llama-2-7B-bf16-sharded model-index: - name: code-llama-7b-train_epoch3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # code-llama-7b-train_epoch3 This model is a fine-tuned version of [TinyPixel/Llama-2-7B-bf16-sharded](https://huggingface.co/TinyPixel/Llama-2-7B-bf16-sharded) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2
shleeeee/mistral-ko-tech-science-v1
shleeeee
2024-03-08T00:18:13Z
2,267
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "ko", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-10T05:02:38Z
--- license: other language: - ko pipeline_tag: text-generation --- # Model Card for mistral-ko-tech-science-v1 It is a fine-tuned model using Korean in the mistral-7b model ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee) , oopsung(Sungwoo Park)
OwOOwO/eacc_contTrain_m2_25
OwOOwO
2024-03-08T00:16:21Z
89
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-08T00:13:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shleeeee/mistral-7b-ko-dpo-v1
shleeeee
2024-03-08T00:15:53Z
103
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "ko", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T07:08:11Z
--- license: other language: - ko pipeline_tag: text-generation --- # Model Card for mistral-7b-ko-dpo-v1 It is a fine-tuned model using Korean in the mistral-7b model ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee) , oopsung(Sungwoo Park) Input Models input text only. Output Models generate text only. Base Model mistralai/mistral-7B-v1 use SFT and DPO to train model
shleeeee/mistral-ko-7b-tech
shleeeee
2024-03-08T00:14:25Z
104
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "finetune", "ko", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T15:35:30Z
--- language: - ko pipeline_tag: text-generation tags: - finetune license: other --- # Model Card for mistral-ko-7b-tech It is a fine-tuned model using Korean in the mistral-7b model. ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee), oopsung(Sungwoo Park) * **Repository** : To be added * **Model Architecture** : The mistral-ko-7b-wiki-neft is is a fine-tuned version of the Mistral-7B-v0.1. * **Lora target modules** : q_proj, k_proj, v_proj, o_proj,gate_proj * **train_batch** : 4 * **Max_step** : 500 ## Dataset Korean Custom Dataset(2000) ## Prompt template: Mistral ``` <s>[INST]{['instruction']}[/INST]{['output']}</s> ``` ## Usage ``` # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("shleeeee/mistral-ko-7b-tech") model = AutoModelForCausalLM.from_pretrained("shleeeee/mistral-ko-7b-tech") # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="shleeeee/mistral-ko-7b-tech") ``` ## Evaluation ![image/png](https://cdn-uploads.huggingface.co/production/uploads/654495fa893aec5da96e9134/6z75dYa8TdTy4Y7EIl0CK.png)
shleeeee/mistral-ko-OpenOrca-2000
shleeeee
2024-03-08T00:11:32Z
95
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "finetune", "ko", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-04T13:17:54Z
--- language: - ko pipeline_tag: text-generation tags: - finetune --- # Model Card for mistral-ko-OpenOrca-2000 It is a fine-tuned model using Korean in the mistral-7b model ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee), oopsung(Sungwoo Park) * **Repository** : To be added * **Model Architecture** : The shleeeee/mistral-ko-OpenOrca-2000 is is a fine-tuned version of the Mistral-7B-v0.1. * **Lora target modules** : q_proj, k_proj, v_proj, o_proj,gate_proj * **train_batch** : 4 * **epochs** : 2 ## Dataset 2000 ko-OpenOrca datasets ## Prompt template: Mistral ``` <s>[INST]{['instruction']}[/INST]{['output']}</s> ``` ## Usage ``` # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("shleeeee/mistral-ko-OpenOrca-2000") model = AutoModelForCausalLM.from_pretrained("shleeeee/mistral-ko-OpenOrca-2000") # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="shleeeee/mistral-ko-OpenOrca-2000") ``` ## Evaluation To be added
shleeeee/mistral-ko-7b-wiki-neft
shleeeee
2024-03-08T00:11:04Z
2,286
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "finetune", "ko", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T04:46:44Z
--- language: - ko pipeline_tag: text-generation tags: - finetune --- # Model Card for mistral-ko-7b-wiki-neft It is a fine-tuned model using Korean and NEFT in the mistral-7b model. ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee), oopsung(Sungwoo Park) * **Repository** : To be added * **Model Architecture** : The mistral-ko-7b-wiki-neft is is a fine-tuned version of the Mistral-7B-v0.1. * **Lora target modules** : q_proj, k_proj, v_proj, o_proj,gate_proj * **train_batch** : 4 * **neftune_noise_alpha** : 5 * **Max_step** : 1000 ## Dataset Korean Custom Dataset ## Prompt template: Mistral ``` <s>[INST]{['instruction']}[/INST]{['output']}</s> ``` ## Usage ``` # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("shleeeee/mistral-7b-wiki") model = AutoModelForCausalLM.from_pretrained("shleeeee/mistral-7b-wiki") # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="shleeeee/mistral-7b-wiki") ``` ## Evaluation ![image/png](https://cdn-uploads.huggingface.co/production/uploads/654495fa893aec5da96e9134/p1aJ4YMdP_E9YzhTcuaFx.png)
shleeeee/mistral-7b-wiki
shleeeee
2024-03-08T00:10:36Z
2,270
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "finetune", "ko", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-28T13:00:50Z
--- language: - ko pipeline_tag: text-generation tags: - finetune --- # Model Card for mistral-7b-wiki It is a fine-tuned model using Korean in the mistral-7b model ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee) , oopsung(Sungwoo Park) * **Repository** : To be added * **Model Architecture** : The mistral-7b-wiki is is a fine-tuned version of the Mistral-7B-v0.1. * **Lora target modules** : q_proj, k_proj, v_proj, o_proj,gate_proj * **train_batch** : 2 * **Max_step** : 500 ## Dataset Korean Custom Dataset ## Prompt template: Mistral ``` <s>[INST]{['instruction']}[/INST]{['output']}</s> ``` ## Usage ``` # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("shleeeee/mistral-7b-wiki") model = AutoModelForCausalLM.from_pretrained("shleeeee/mistral-7b-wiki") # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="shleeeee/mistral-7b-wiki") ``` ## Evaluation ![image/png](https://cdn-uploads.huggingface.co/production/uploads/654495fa893aec5da96e9134/s_Jiv78QB7vM2qBQdDSF1.png)
Ai-Marshal/Sentiment_Classification_2024-03-07
Ai-Marshal
2024-03-08T00:08:39Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-03-07T23:24:46Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 datasets: - generator model-index: - name: Sentiment_Classification_2024-03-07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment_Classification_2024-03-07 This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.5049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5879 | 1.0 | 559 | 0.5304 | | 0.5272 | 2.0 | 1118 | 0.5142 | | 0.5564 | 3.0 | 1677 | 0.5083 | | 0.5207 | 4.0 | 2236 | 0.5057 | | 0.5123 | 5.0 | 2795 | 0.5049 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Holarissun/phi2-airl_sft-tldr-seqsampler
Holarissun
2024-03-08T00:06:49Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-03-08T00:06:42Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi2-airl_sft-tldr-seqsampler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi2-airl_sft-tldr-seqsampler This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
somskat/distilbert-base-uncased-finetuned-ner
somskat
2024-03-08T00:04:43Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:Jing1113/distilbert-base-uncased-finetuned-srl", "base_model:finetune:Jing1113/distilbert-base-uncased-finetuned-srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-03-07T23:55:19Z
--- license: apache-2.0 base_model: Jing1113/distilbert-base-uncased-finetuned-srl tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [Jing1113/distilbert-base-uncased-finetuned-srl](https://huggingface.co/Jing1113/distilbert-base-uncased-finetuned-srl) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0986 - Precision: 0.8664 - Recall: 0.8732 - F1: 0.8698 - Accuracy: 0.9737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0566 | 1.0 | 2531 | 0.0963 | 0.8531 | 0.8727 | 0.8628 | 0.9720 | | 0.0464 | 2.0 | 5062 | 0.0956 | 0.8591 | 0.8735 | 0.8662 | 0.9729 | | 0.0389 | 3.0 | 7593 | 0.0986 | 0.8664 | 0.8732 | 0.8698 | 0.9737 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1
OwOOwO/eacc_contTrain_m2_55_orig
OwOOwO
2024-03-08T00:01:33Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T23:59:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
imsarfaroz/fine-tuned-albert-tweets
imsarfaroz
2024-03-07T23:58:52Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T23:47:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: albert-base-v2 model-index: - name: fine-tuned-albert-tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-albert-tweets This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6212 - Accuracy: 0.6785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 179 | 0.6264 | 0.6377 | | No log | 2.0 | 358 | 0.6212 | 0.6785 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_32_64_0.05_8_0.0002
ferrazzipietro
2024-03-07T23:56:11Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T23:55:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
s14pe/poca-SoccerTwos
s14pe
2024-03-07T23:54:13Z
21
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-03-07T23:53:39Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: s14pe/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
adityahrudayam/T5_qa_model
adityahrudayam
2024-03-07T23:52:21Z
32
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "question-answering", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2024-03-07T23:42:04Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer model-index: - name: T5_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5_qa_model This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | nan | | No log | 2.0 | 2 | nan | | No log | 3.0 | 3 | nan | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
andysalerno/openchat-nectar-0.1
andysalerno
2024-03-07T23:45:02Z
13
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:berkeley-nest/Nectar", "base_model:openchat/openchat-3.5-0106", "base_model:finetune:openchat/openchat-3.5-0106", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T08:02:43Z
--- license: apache-2.0 datasets: - berkeley-nest/Nectar base_model: openchat/openchat-3.5-0106 model-index: - name: openchat-nectar-0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/openchat-nectar-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/openchat-nectar-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/openchat-nectar-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.22 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/openchat-nectar-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/openchat-nectar-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/openchat-nectar-0.1 name: Open LLM Leaderboard --- This is openchat/openchat-3.5-0106, tuned with DPO on a tiny subset Nectar. Only 200 steps, so nowhere close to a full epoch. Careful attention was paid to make sure the chat template was followed properly. Summary of versions: **[openchat-nectar-0.1](https://huggingface.co/andysalerno/openchat-nectar-0.1)** - 200 steps, no filtering on Nectar dataset, 5e-5 learning rate **[openchat-nectar-0.2](https://huggingface.co/andysalerno/openchat-nectar-0.2)** - empty repo, failed training. ignore it **[openchat-nectar-0.3](https://huggingface.co/andysalerno/openchat-nectar-0.3)** - 500 steps, no filtering on Nectar dataset, 5e-5 learning rate (same as 1 but with more steps) **[openchat-nectar-0.4](https://huggingface.co/andysalerno/openchat-nectar-0.4)** - 500 steps, filtered dataset to only include multi-chat-turn examples, used 4th ranking response as the "rejected" instead of 3rd, filtered out "good_natured=False", 5e-5 learning rate **[openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5)** - 5000 steps (over a full epoch), filtered dataset to only include multi-chat-turn examples, used 4th ranking response as the "rejected" instead of 3rd, filtered out "good_natured=False", 5e-6 learning rate. Same as 0.4 but with 10x the steps, and 1/10th the learning rate **[openchat-nectar-0.6](https://huggingface.co/andysalerno/openchat-nectar-0.6)** - 500 steps, filtered dataset to only include multi-chat-turn examples, used 4th ranking response as the "rejected" instead of 3rd, filtered out "good_natured=False", 5e-5 learning rate. Same as 0.5 but with 1/10th the steps, and 10x the learning rate # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_andysalerno__openchat-nectar-0.1) | Metric |Value| |---------------------------------|----:| |Avg. |69.94| |AI2 Reasoning Challenge (25-Shot)|66.21| |HellaSwag (10-Shot) |82.99| |MMLU (5-Shot) |65.17| |TruthfulQA (0-shot) |54.22| |Winogrande (5-shot) |81.37| |GSM8k (5-shot) |69.67|
OwOOwO/eacc_contTrain_m1
OwOOwO
2024-03-07T23:38:01Z
89
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T23:35:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_32_64_0.05_4_0.0002
ferrazzipietro
2024-03-07T23:36:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T23:36:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
farid1088/GQA_RoBERTa_legal_SQuAD_complete_augmented_2000
farid1088
2024-03-07T23:29:54Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-07T21:28:30Z
--- tags: - generated_from_trainer model-index: - name: GQA_RoBERTa_legal_SQuAD_complete_augmented_2000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_RoBERTa_legal_SQuAD_complete_augmented_2000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 4 | 3.7756 | | No log | 2.0 | 8 | 3.1205 | | No log | 3.0 | 12 | 2.7419 | | No log | 4.0 | 16 | 2.3978 | | No log | 5.0 | 20 | 2.0572 | | No log | 6.0 | 24 | 1.9690 | | No log | 7.0 | 28 | 1.6922 | | No log | 8.0 | 32 | 1.4999 | | No log | 9.0 | 36 | 1.4624 | | No log | 10.0 | 40 | 1.1915 | | No log | 11.0 | 44 | 1.1501 | | No log | 12.0 | 48 | 0.9852 | | No log | 13.0 | 52 | 0.9573 | | No log | 14.0 | 56 | 0.9131 | | No log | 15.0 | 60 | 0.8843 | | No log | 16.0 | 64 | 0.7765 | | No log | 17.0 | 68 | 0.7787 | | No log | 18.0 | 72 | 0.7613 | | No log | 19.0 | 76 | 0.7610 | | No log | 20.0 | 80 | 0.7447 | | No log | 21.0 | 84 | 0.7049 | | No log | 22.0 | 88 | 0.7030 | | No log | 23.0 | 92 | 0.7066 | | No log | 24.0 | 96 | 0.7073 | | No log | 25.0 | 100 | 0.7238 | | No log | 26.0 | 104 | 0.7560 | | No log | 27.0 | 108 | 0.7350 | | No log | 28.0 | 112 | 0.7325 | | No log | 29.0 | 116 | 0.7513 | | No log | 30.0 | 120 | 0.7656 | | No log | 31.0 | 124 | 0.7594 | | No log | 32.0 | 128 | 0.7744 | | No log | 33.0 | 132 | 0.7835 | | No log | 34.0 | 136 | 0.7608 | | No log | 35.0 | 140 | 0.7423 | | No log | 36.0 | 144 | 0.7543 | | No log | 37.0 | 148 | 0.7305 | | No log | 38.0 | 152 | 0.7398 | | No log | 39.0 | 156 | 0.7364 | | No log | 40.0 | 160 | 0.7313 | | No log | 41.0 | 164 | 0.7163 | | No log | 42.0 | 168 | 0.7181 | | No log | 43.0 | 172 | 0.7243 | | No log | 44.0 | 176 | 0.7259 | | No log | 45.0 | 180 | 0.7980 | | No log | 46.0 | 184 | 0.7784 | | No log | 47.0 | 188 | 0.7271 | | No log | 48.0 | 192 | 0.7014 | | No log | 49.0 | 196 | 0.7110 | | No log | 50.0 | 200 | 0.7621 | | No log | 51.0 | 204 | 0.7851 | | No log | 52.0 | 208 | 0.7917 | | No log | 53.0 | 212 | 0.7877 | | No log | 54.0 | 216 | 0.8123 | | No log | 55.0 | 220 | 0.8462 | | No log | 56.0 | 224 | 0.8405 | | No log | 57.0 | 228 | 0.8330 | | No log | 58.0 | 232 | 0.8115 | | No log | 59.0 | 236 | 0.8067 | | No log | 60.0 | 240 | 0.8457 | | No log | 61.0 | 244 | 0.9419 | | No log | 62.0 | 248 | 0.9387 | | No log | 63.0 | 252 | 0.9612 | | No log | 64.0 | 256 | 0.9213 | | No log | 65.0 | 260 | 0.9035 | | No log | 66.0 | 264 | 0.8863 | | No log | 67.0 | 268 | 0.8914 | | No log | 68.0 | 272 | 0.9060 | | No log | 69.0 | 276 | 0.9424 | | No log | 70.0 | 280 | 0.9367 | | No log | 71.0 | 284 | 0.9201 | | No log | 72.0 | 288 | 0.9070 | | No log | 73.0 | 292 | 0.9037 | | No log | 74.0 | 296 | 0.9116 | | No log | 75.0 | 300 | 0.9108 | | No log | 76.0 | 304 | 0.9139 | | No log | 77.0 | 308 | 0.9506 | | No log | 78.0 | 312 | 0.9703 | | No log | 79.0 | 316 | 0.9848 | | No log | 80.0 | 320 | 0.9586 | | No log | 81.0 | 324 | 0.9591 | | No log | 82.0 | 328 | 0.9678 | | No log | 83.0 | 332 | 0.9951 | | No log | 84.0 | 336 | 0.9788 | | No log | 85.0 | 340 | 0.9374 | | No log | 86.0 | 344 | 0.9085 | | No log | 87.0 | 348 | 0.8789 | | No log | 88.0 | 352 | 0.8838 | | No log | 89.0 | 356 | 0.8711 | | No log | 90.0 | 360 | 0.8792 | | No log | 91.0 | 364 | 0.8904 | | No log | 92.0 | 368 | 0.9014 | | No log | 93.0 | 372 | 0.9518 | | No log | 94.0 | 376 | 0.9872 | | No log | 95.0 | 380 | 0.9193 | | No log | 96.0 | 384 | 0.8909 | | No log | 97.0 | 388 | 0.8989 | | No log | 98.0 | 392 | 0.9064 | | No log | 99.0 | 396 | 0.9341 | | No log | 100.0 | 400 | 0.9550 | | No log | 101.0 | 404 | 0.9706 | | No log | 102.0 | 408 | 1.0495 | | No log | 103.0 | 412 | 1.0350 | | No log | 104.0 | 416 | 0.9688 | | No log | 105.0 | 420 | 0.9610 | | No log | 106.0 | 424 | 0.9537 | | No log | 107.0 | 428 | 0.9579 | | No log | 108.0 | 432 | 0.9877 | | No log | 109.0 | 436 | 1.0223 | | No log | 110.0 | 440 | 1.0488 | | No log | 111.0 | 444 | 1.0673 | | No log | 112.0 | 448 | 0.9968 | | No log | 113.0 | 452 | 1.0307 | | No log | 114.0 | 456 | 1.0888 | | No log | 115.0 | 460 | 1.0773 | | No log | 116.0 | 464 | 1.0990 | | No log | 117.0 | 468 | 1.1120 | | No log | 118.0 | 472 | 1.0821 | | No log | 119.0 | 476 | 1.0407 | | No log | 120.0 | 480 | 1.0365 | | No log | 121.0 | 484 | 1.0269 | | No log | 122.0 | 488 | 0.9804 | | No log | 123.0 | 492 | 0.9752 | | No log | 124.0 | 496 | 0.9785 | | 0.9513 | 125.0 | 500 | 0.9739 | | 0.9513 | 126.0 | 504 | 0.9894 | | 0.9513 | 127.0 | 508 | 1.0625 | | 0.9513 | 128.0 | 512 | 1.0423 | | 0.9513 | 129.0 | 516 | 1.0479 | | 0.9513 | 130.0 | 520 | 1.0725 | | 0.9513 | 131.0 | 524 | 1.1035 | | 0.9513 | 132.0 | 528 | 1.0921 | | 0.9513 | 133.0 | 532 | 0.9806 | | 0.9513 | 134.0 | 536 | 0.9012 | | 0.9513 | 135.0 | 540 | 0.9527 | | 0.9513 | 136.0 | 544 | 1.0029 | | 0.9513 | 137.0 | 548 | 1.0212 | | 0.9513 | 138.0 | 552 | 1.0392 | | 0.9513 | 139.0 | 556 | 0.9753 | | 0.9513 | 140.0 | 560 | 0.9817 | | 0.9513 | 141.0 | 564 | 0.9755 | | 0.9513 | 142.0 | 568 | 0.9933 | | 0.9513 | 143.0 | 572 | 1.0276 | | 0.9513 | 144.0 | 576 | 1.0285 | | 0.9513 | 145.0 | 580 | 1.0276 | | 0.9513 | 146.0 | 584 | 1.0582 | | 0.9513 | 147.0 | 588 | 1.0810 | | 0.9513 | 148.0 | 592 | 1.0618 | | 0.9513 | 149.0 | 596 | 1.0152 | | 0.9513 | 150.0 | 600 | 1.0553 | | 0.9513 | 151.0 | 604 | 1.0921 | | 0.9513 | 152.0 | 608 | 1.0401 | | 0.9513 | 153.0 | 612 | 0.9760 | | 0.9513 | 154.0 | 616 | 0.9576 | | 0.9513 | 155.0 | 620 | 0.9523 | | 0.9513 | 156.0 | 624 | 0.9901 | | 0.9513 | 157.0 | 628 | 0.9793 | | 0.9513 | 158.0 | 632 | 0.9726 | | 0.9513 | 159.0 | 636 | 0.9676 | | 0.9513 | 160.0 | 640 | 1.0070 | | 0.9513 | 161.0 | 644 | 1.0107 | | 0.9513 | 162.0 | 648 | 1.0067 | | 0.9513 | 163.0 | 652 | 1.0042 | | 0.9513 | 164.0 | 656 | 0.9888 | | 0.9513 | 165.0 | 660 | 0.9758 | | 0.9513 | 166.0 | 664 | 0.9983 | | 0.9513 | 167.0 | 668 | 1.0273 | | 0.9513 | 168.0 | 672 | 1.0220 | | 0.9513 | 169.0 | 676 | 1.0063 | | 0.9513 | 170.0 | 680 | 0.9852 | | 0.9513 | 171.0 | 684 | 1.0590 | | 0.9513 | 172.0 | 688 | 1.1016 | | 0.9513 | 173.0 | 692 | 1.0622 | | 0.9513 | 174.0 | 696 | 1.0408 | | 0.9513 | 175.0 | 700 | 1.0156 | | 0.9513 | 176.0 | 704 | 1.0073 | | 0.9513 | 177.0 | 708 | 1.0284 | | 0.9513 | 178.0 | 712 | 1.0398 | | 0.9513 | 179.0 | 716 | 0.9925 | | 0.9513 | 180.0 | 720 | 1.0192 | | 0.9513 | 181.0 | 724 | 1.0434 | | 0.9513 | 182.0 | 728 | 1.0429 | | 0.9513 | 183.0 | 732 | 1.0614 | | 0.9513 | 184.0 | 736 | 1.0663 | | 0.9513 | 185.0 | 740 | 1.0529 | | 0.9513 | 186.0 | 744 | 1.0479 | | 0.9513 | 187.0 | 748 | 1.0352 | | 0.9513 | 188.0 | 752 | 1.0374 | | 0.9513 | 189.0 | 756 | 1.0061 | | 0.9513 | 190.0 | 760 | 0.9905 | | 0.9513 | 191.0 | 764 | 0.9959 | | 0.9513 | 192.0 | 768 | 1.0204 | | 0.9513 | 193.0 | 772 | 1.0509 | | 0.9513 | 194.0 | 776 | 1.0616 | | 0.9513 | 195.0 | 780 | 1.0709 | | 0.9513 | 196.0 | 784 | 1.0794 | | 0.9513 | 197.0 | 788 | 1.0797 | | 0.9513 | 198.0 | 792 | 1.0722 | | 0.9513 | 199.0 | 796 | 1.0697 | | 0.9513 | 200.0 | 800 | 1.0759 | | 0.9513 | 201.0 | 804 | 1.0787 | | 0.9513 | 202.0 | 808 | 1.1036 | | 0.9513 | 203.0 | 812 | 1.1021 | | 0.9513 | 204.0 | 816 | 1.1088 | | 0.9513 | 205.0 | 820 | 1.1201 | | 0.9513 | 206.0 | 824 | 1.1168 | | 0.9513 | 207.0 | 828 | 1.1030 | | 0.9513 | 208.0 | 832 | 1.0986 | | 0.9513 | 209.0 | 836 | 1.0953 | | 0.9513 | 210.0 | 840 | 1.0708 | | 0.9513 | 211.0 | 844 | 1.0704 | | 0.9513 | 212.0 | 848 | 1.0681 | | 0.9513 | 213.0 | 852 | 1.0676 | | 0.9513 | 214.0 | 856 | 1.0789 | | 0.9513 | 215.0 | 860 | 1.1193 | | 0.9513 | 216.0 | 864 | 1.1378 | | 0.9513 | 217.0 | 868 | 1.1566 | | 0.9513 | 218.0 | 872 | 1.1650 | | 0.9513 | 219.0 | 876 | 1.1268 | | 0.9513 | 220.0 | 880 | 1.1152 | | 0.9513 | 221.0 | 884 | 1.0909 | | 0.9513 | 222.0 | 888 | 1.0778 | | 0.9513 | 223.0 | 892 | 1.0819 | | 0.9513 | 224.0 | 896 | 1.1042 | | 0.9513 | 225.0 | 900 | 1.1532 | | 0.9513 | 226.0 | 904 | 1.1695 | | 0.9513 | 227.0 | 908 | 1.1730 | | 0.9513 | 228.0 | 912 | 1.1549 | | 0.9513 | 229.0 | 916 | 1.1318 | | 0.9513 | 230.0 | 920 | 1.1319 | | 0.9513 | 231.0 | 924 | 1.1306 | | 0.9513 | 232.0 | 928 | 1.1583 | | 0.9513 | 233.0 | 932 | 1.1915 | | 0.9513 | 234.0 | 936 | 1.2038 | | 0.9513 | 235.0 | 940 | 1.1877 | | 0.9513 | 236.0 | 944 | 1.1775 | | 0.9513 | 237.0 | 948 | 1.1820 | | 0.9513 | 238.0 | 952 | 1.1885 | | 0.9513 | 239.0 | 956 | 1.2012 | | 0.9513 | 240.0 | 960 | 1.2013 | | 0.9513 | 241.0 | 964 | 1.1876 | | 0.9513 | 242.0 | 968 | 1.1801 | | 0.9513 | 243.0 | 972 | 1.1799 | | 0.9513 | 244.0 | 976 | 1.1711 | | 0.9513 | 245.0 | 980 | 1.1550 | | 0.9513 | 246.0 | 984 | 1.1499 | | 0.9513 | 247.0 | 988 | 1.1303 | | 0.9513 | 248.0 | 992 | 1.1138 | | 0.9513 | 249.0 | 996 | 1.1351 | | 0.4059 | 250.0 | 1000 | 1.1635 | | 0.4059 | 251.0 | 1004 | 1.1975 | | 0.4059 | 252.0 | 1008 | 1.2352 | | 0.4059 | 253.0 | 1012 | 1.2442 | | 0.4059 | 254.0 | 1016 | 1.2108 | | 0.4059 | 255.0 | 1020 | 1.1813 | | 0.4059 | 256.0 | 1024 | 1.1469 | | 0.4059 | 257.0 | 1028 | 1.0936 | | 0.4059 | 258.0 | 1032 | 1.0322 | | 0.4059 | 259.0 | 1036 | 1.0076 | | 0.4059 | 260.0 | 1040 | 1.0304 | | 0.4059 | 261.0 | 1044 | 1.0946 | | 0.4059 | 262.0 | 1048 | 1.1132 | | 0.4059 | 263.0 | 1052 | 1.1231 | | 0.4059 | 264.0 | 1056 | 1.1268 | | 0.4059 | 265.0 | 1060 | 1.1290 | | 0.4059 | 266.0 | 1064 | 1.1261 | | 0.4059 | 267.0 | 1068 | 1.1095 | | 0.4059 | 268.0 | 1072 | 1.0643 | | 0.4059 | 269.0 | 1076 | 1.0283 | | 0.4059 | 270.0 | 1080 | 1.0181 | | 0.4059 | 271.0 | 1084 | 1.0670 | | 0.4059 | 272.0 | 1088 | 1.1049 | | 0.4059 | 273.0 | 1092 | 1.1309 | | 0.4059 | 274.0 | 1096 | 1.1533 | | 0.4059 | 275.0 | 1100 | 1.1767 | | 0.4059 | 276.0 | 1104 | 1.1846 | | 0.4059 | 277.0 | 1108 | 1.1899 | | 0.4059 | 278.0 | 1112 | 1.1834 | | 0.4059 | 279.0 | 1116 | 1.2054 | | 0.4059 | 280.0 | 1120 | 1.1807 | | 0.4059 | 281.0 | 1124 | 1.1238 | | 0.4059 | 282.0 | 1128 | 1.0955 | | 0.4059 | 283.0 | 1132 | 1.0557 | | 0.4059 | 284.0 | 1136 | 1.0615 | | 0.4059 | 285.0 | 1140 | 1.0758 | | 0.4059 | 286.0 | 1144 | 1.1007 | | 0.4059 | 287.0 | 1148 | 1.1431 | | 0.4059 | 288.0 | 1152 | 1.1335 | | 0.4059 | 289.0 | 1156 | 1.0713 | | 0.4059 | 290.0 | 1160 | 1.0302 | | 0.4059 | 291.0 | 1164 | 1.0070 | | 0.4059 | 292.0 | 1168 | 1.0587 | | 0.4059 | 293.0 | 1172 | 1.1093 | | 0.4059 | 294.0 | 1176 | 1.1549 | | 0.4059 | 295.0 | 1180 | 1.1744 | | 0.4059 | 296.0 | 1184 | 1.1590 | | 0.4059 | 297.0 | 1188 | 1.0999 | | 0.4059 | 298.0 | 1192 | 1.0508 | | 0.4059 | 299.0 | 1196 | 1.0082 | | 0.4059 | 300.0 | 1200 | 1.0266 | | 0.4059 | 301.0 | 1204 | 1.0897 | | 0.4059 | 302.0 | 1208 | 1.2008 | | 0.4059 | 303.0 | 1212 | 1.2833 | | 0.4059 | 304.0 | 1216 | 1.2775 | | 0.4059 | 305.0 | 1220 | 1.2754 | | 0.4059 | 306.0 | 1224 | 1.2059 | | 0.4059 | 307.0 | 1228 | 1.1187 | | 0.4059 | 308.0 | 1232 | 1.1612 | | 0.4059 | 309.0 | 1236 | 1.1794 | | 0.4059 | 310.0 | 1240 | 1.1969 | | 0.4059 | 311.0 | 1244 | 1.1991 | | 0.4059 | 312.0 | 1248 | 1.1921 | | 0.4059 | 313.0 | 1252 | 1.2148 | | 0.4059 | 314.0 | 1256 | 1.2524 | | 0.4059 | 315.0 | 1260 | 1.2606 | | 0.4059 | 316.0 | 1264 | 1.2423 | | 0.4059 | 317.0 | 1268 | 1.1989 | | 0.4059 | 318.0 | 1272 | 1.1552 | | 0.4059 | 319.0 | 1276 | 1.1222 | | 0.4059 | 320.0 | 1280 | 1.1219 | | 0.4059 | 321.0 | 1284 | 1.1678 | | 0.4059 | 322.0 | 1288 | 1.1853 | | 0.4059 | 323.0 | 1292 | 1.1274 | | 0.4059 | 324.0 | 1296 | 1.0615 | | 0.4059 | 325.0 | 1300 | 1.1044 | | 0.4059 | 326.0 | 1304 | 1.1874 | | 0.4059 | 327.0 | 1308 | 1.1911 | | 0.4059 | 328.0 | 1312 | 1.1513 | | 0.4059 | 329.0 | 1316 | 1.0682 | | 0.4059 | 330.0 | 1320 | 1.0366 | | 0.4059 | 331.0 | 1324 | 1.0736 | | 0.4059 | 332.0 | 1328 | 1.1319 | | 0.4059 | 333.0 | 1332 | 1.1256 | | 0.4059 | 334.0 | 1336 | 1.0977 | | 0.4059 | 335.0 | 1340 | 1.0509 | | 0.4059 | 336.0 | 1344 | 1.0081 | | 0.4059 | 337.0 | 1348 | 1.0239 | | 0.4059 | 338.0 | 1352 | 1.0681 | | 0.4059 | 339.0 | 1356 | 1.1298 | | 0.4059 | 340.0 | 1360 | 1.1369 | | 0.4059 | 341.0 | 1364 | 1.0729 | | 0.4059 | 342.0 | 1368 | 0.9855 | | 0.4059 | 343.0 | 1372 | 0.9409 | | 0.4059 | 344.0 | 1376 | 0.9527 | | 0.4059 | 345.0 | 1380 | 1.0270 | | 0.4059 | 346.0 | 1384 | 1.0781 | | 0.4059 | 347.0 | 1388 | 1.1151 | | 0.4059 | 348.0 | 1392 | 1.1403 | | 0.4059 | 349.0 | 1396 | 1.1603 | | 0.4059 | 350.0 | 1400 | 1.1856 | | 0.4059 | 351.0 | 1404 | 1.1898 | | 0.4059 | 352.0 | 1408 | 1.1933 | | 0.4059 | 353.0 | 1412 | 1.2285 | | 0.4059 | 354.0 | 1416 | 1.2589 | | 0.4059 | 355.0 | 1420 | 1.2458 | | 0.4059 | 356.0 | 1424 | 1.2131 | | 0.4059 | 357.0 | 1428 | 1.2127 | | 0.4059 | 358.0 | 1432 | 1.2372 | | 0.4059 | 359.0 | 1436 | 1.2434 | | 0.4059 | 360.0 | 1440 | 1.2399 | | 0.4059 | 361.0 | 1444 | 1.2213 | | 0.4059 | 362.0 | 1448 | 1.1881 | | 0.4059 | 363.0 | 1452 | 1.1636 | | 0.4059 | 364.0 | 1456 | 1.1456 | | 0.4059 | 365.0 | 1460 | 1.1520 | | 0.4059 | 366.0 | 1464 | 1.1635 | | 0.4059 | 367.0 | 1468 | 1.1836 | | 0.4059 | 368.0 | 1472 | 1.1956 | | 0.4059 | 369.0 | 1476 | 1.2053 | | 0.4059 | 370.0 | 1480 | 1.2042 | | 0.4059 | 371.0 | 1484 | 1.1728 | | 0.4059 | 372.0 | 1488 | 1.1536 | | 0.4059 | 373.0 | 1492 | 1.1376 | | 0.4059 | 374.0 | 1496 | 1.1239 | | 0.4026 | 375.0 | 1500 | 1.1201 | | 0.4026 | 376.0 | 1504 | 1.1128 | | 0.4026 | 377.0 | 1508 | 1.1067 | | 0.4026 | 378.0 | 1512 | 1.1073 | | 0.4026 | 379.0 | 1516 | 1.1112 | | 0.4026 | 380.0 | 1520 | 1.1212 | | 0.4026 | 381.0 | 1524 | 1.1387 | | 0.4026 | 382.0 | 1528 | 1.1460 | | 0.4026 | 383.0 | 1532 | 1.1238 | | 0.4026 | 384.0 | 1536 | 1.1028 | | 0.4026 | 385.0 | 1540 | 1.1051 | | 0.4026 | 386.0 | 1544 | 1.1086 | | 0.4026 | 387.0 | 1548 | 1.0921 | | 0.4026 | 388.0 | 1552 | 1.0765 | | 0.4026 | 389.0 | 1556 | 1.0831 | | 0.4026 | 390.0 | 1560 | 1.0897 | | 0.4026 | 391.0 | 1564 | 1.0915 | | 0.4026 | 392.0 | 1568 | 1.0901 | | 0.4026 | 393.0 | 1572 | 1.0891 | | 0.4026 | 394.0 | 1576 | 1.0918 | | 0.4026 | 395.0 | 1580 | 1.0979 | | 0.4026 | 396.0 | 1584 | 1.0970 | | 0.4026 | 397.0 | 1588 | 1.0804 | | 0.4026 | 398.0 | 1592 | 1.0838 | | 0.4026 | 399.0 | 1596 | 1.0858 | | 0.4026 | 400.0 | 1600 | 1.0962 | | 0.4026 | 401.0 | 1604 | 1.1256 | | 0.4026 | 402.0 | 1608 | 1.1424 | | 0.4026 | 403.0 | 1612 | 1.1586 | | 0.4026 | 404.0 | 1616 | 1.1724 | | 0.4026 | 405.0 | 1620 | 1.1751 | | 0.4026 | 406.0 | 1624 | 1.1961 | | 0.4026 | 407.0 | 1628 | 1.2155 | | 0.4026 | 408.0 | 1632 | 1.2273 | | 0.4026 | 409.0 | 1636 | 1.2307 | | 0.4026 | 410.0 | 1640 | 1.2315 | | 0.4026 | 411.0 | 1644 | 1.2128 | | 0.4026 | 412.0 | 1648 | 1.1893 | | 0.4026 | 413.0 | 1652 | 1.1579 | | 0.4026 | 414.0 | 1656 | 1.1366 | | 0.4026 | 415.0 | 1660 | 1.1357 | | 0.4026 | 416.0 | 1664 | 1.1407 | | 0.4026 | 417.0 | 1668 | 1.1430 | | 0.4026 | 418.0 | 1672 | 1.1448 | | 0.4026 | 419.0 | 1676 | 1.1484 | | 0.4026 | 420.0 | 1680 | 1.1536 | | 0.4026 | 421.0 | 1684 | 1.1489 | | 0.4026 | 422.0 | 1688 | 1.1727 | | 0.4026 | 423.0 | 1692 | 1.1906 | | 0.4026 | 424.0 | 1696 | 1.1960 | | 0.4026 | 425.0 | 1700 | 1.1939 | | 0.4026 | 426.0 | 1704 | 1.1789 | | 0.4026 | 427.0 | 1708 | 1.1635 | | 0.4026 | 428.0 | 1712 | 1.1499 | | 0.4026 | 429.0 | 1716 | 1.1432 | | 0.4026 | 430.0 | 1720 | 1.1382 | | 0.4026 | 431.0 | 1724 | 1.1275 | | 0.4026 | 432.0 | 1728 | 1.1173 | | 0.4026 | 433.0 | 1732 | 1.1088 | | 0.4026 | 434.0 | 1736 | 1.0911 | | 0.4026 | 435.0 | 1740 | 1.0853 | | 0.4026 | 436.0 | 1744 | 1.0861 | | 0.4026 | 437.0 | 1748 | 1.1100 | | 0.4026 | 438.0 | 1752 | 1.1545 | | 0.4026 | 439.0 | 1756 | 1.1714 | | 0.4026 | 440.0 | 1760 | 1.1520 | | 0.4026 | 441.0 | 1764 | 1.1242 | | 0.4026 | 442.0 | 1768 | 1.1029 | | 0.4026 | 443.0 | 1772 | 1.0844 | | 0.4026 | 444.0 | 1776 | 1.0676 | | 0.4026 | 445.0 | 1780 | 1.0830 | | 0.4026 | 446.0 | 1784 | 1.0936 | | 0.4026 | 447.0 | 1788 | 1.0992 | | 0.4026 | 448.0 | 1792 | 1.1024 | | 0.4026 | 449.0 | 1796 | 1.1005 | | 0.4026 | 450.0 | 1800 | 1.0968 | | 0.4026 | 451.0 | 1804 | 1.0915 | | 0.4026 | 452.0 | 1808 | 1.0914 | | 0.4026 | 453.0 | 1812 | 1.0897 | | 0.4026 | 454.0 | 1816 | 1.0799 | | 0.4026 | 455.0 | 1820 | 1.1148 | | 0.4026 | 456.0 | 1824 | 1.1440 | | 0.4026 | 457.0 | 1828 | 1.1571 | | 0.4026 | 458.0 | 1832 | 1.1594 | | 0.4026 | 459.0 | 1836 | 1.1520 | | 0.4026 | 460.0 | 1840 | 1.1392 | | 0.4026 | 461.0 | 1844 | 1.1145 | | 0.4026 | 462.0 | 1848 | 1.1045 | | 0.4026 | 463.0 | 1852 | 1.0923 | | 0.4026 | 464.0 | 1856 | 1.0772 | | 0.4026 | 465.0 | 1860 | 1.0652 | | 0.4026 | 466.0 | 1864 | 1.0405 | | 0.4026 | 467.0 | 1868 | 1.0121 | | 0.4026 | 468.0 | 1872 | 1.0254 | | 0.4026 | 469.0 | 1876 | 1.1054 | | 0.4026 | 470.0 | 1880 | 1.1700 | | 0.4026 | 471.0 | 1884 | 1.1976 | | 0.4026 | 472.0 | 1888 | 1.1985 | | 0.4026 | 473.0 | 1892 | 1.2013 | | 0.4026 | 474.0 | 1896 | 1.1945 | | 0.4026 | 475.0 | 1900 | 1.1819 | | 0.4026 | 476.0 | 1904 | 1.1745 | | 0.4026 | 477.0 | 1908 | 1.1637 | | 0.4026 | 478.0 | 1912 | 1.1613 | | 0.4026 | 479.0 | 1916 | 1.2205 | | 0.4026 | 480.0 | 1920 | 1.3217 | | 0.4026 | 481.0 | 1924 | 1.3495 | | 0.4026 | 482.0 | 1928 | 1.3611 | | 0.4026 | 483.0 | 1932 | 1.3540 | | 0.4026 | 484.0 | 1936 | 1.3446 | | 0.4026 | 485.0 | 1940 | 1.3276 | | 0.4026 | 486.0 | 1944 | 1.2940 | | 0.4026 | 487.0 | 1948 | 1.2593 | | 0.4026 | 488.0 | 1952 | 1.2319 | | 0.4026 | 489.0 | 1956 | 1.2247 | | 0.4026 | 490.0 | 1960 | 1.2264 | | 0.4026 | 491.0 | 1964 | 1.2378 | | 0.4026 | 492.0 | 1968 | 1.2434 | | 0.4026 | 493.0 | 1972 | 1.2530 | | 0.4026 | 494.0 | 1976 | 1.2621 | | 0.4026 | 495.0 | 1980 | 1.2628 | | 0.4026 | 496.0 | 1984 | 1.2380 | | 0.4026 | 497.0 | 1988 | 1.2284 | | 0.4026 | 498.0 | 1992 | 1.2583 | | 0.4026 | 499.0 | 1996 | 1.2241 | | 0.4132 | 500.0 | 2000 | 1.2637 | | 0.4132 | 501.0 | 2004 | 1.2356 | | 0.4132 | 502.0 | 2008 | 1.1919 | | 0.4132 | 503.0 | 2012 | 1.1615 | | 0.4132 | 504.0 | 2016 | 1.1739 | | 0.4132 | 505.0 | 2020 | 1.1578 | | 0.4132 | 506.0 | 2024 | 1.1376 | | 0.4132 | 507.0 | 2028 | 1.1027 | | 0.4132 | 508.0 | 2032 | 1.0491 | | 0.4132 | 509.0 | 2036 | 1.0300 | | 0.4132 | 510.0 | 2040 | 1.0555 | | 0.4132 | 511.0 | 2044 | 1.0936 | | 0.4132 | 512.0 | 2048 | 1.1107 | | 0.4132 | 513.0 | 2052 | 1.1290 | | 0.4132 | 514.0 | 2056 | 1.1403 | | 0.4132 | 515.0 | 2060 | 1.1134 | | 0.4132 | 516.0 | 2064 | 1.0623 | | 0.4132 | 517.0 | 2068 | 1.1057 | | 0.4132 | 518.0 | 2072 | 1.0797 | | 0.4132 | 519.0 | 2076 | 1.1629 | | 0.4132 | 520.0 | 2080 | 1.2167 | | 0.4132 | 521.0 | 2084 | 1.2047 | | 0.4132 | 522.0 | 2088 | 1.1083 | | 0.4132 | 523.0 | 2092 | 1.0418 | | 0.4132 | 524.0 | 2096 | 1.0102 | | 0.4132 | 525.0 | 2100 | 1.0244 | | 0.4132 | 526.0 | 2104 | 1.1072 | | 0.4132 | 527.0 | 2108 | 1.1927 | | 0.4132 | 528.0 | 2112 | 1.2431 | | 0.4132 | 529.0 | 2116 | 1.2620 | | 0.4132 | 530.0 | 2120 | 1.2626 | | 0.4132 | 531.0 | 2124 | 1.2374 | | 0.4132 | 532.0 | 2128 | 1.2128 | | 0.4132 | 533.0 | 2132 | 1.1929 | | 0.4132 | 534.0 | 2136 | 1.1825 | | 0.4132 | 535.0 | 2140 | 1.1820 | | 0.4132 | 536.0 | 2144 | 1.1747 | | 0.4132 | 537.0 | 2148 | 1.1500 | | 0.4132 | 538.0 | 2152 | 1.1300 | | 0.4132 | 539.0 | 2156 | 1.1154 | | 0.4132 | 540.0 | 2160 | 1.1131 | | 0.4132 | 541.0 | 2164 | 1.2039 | | 0.4132 | 542.0 | 2168 | 1.2969 | | 0.4132 | 543.0 | 2172 | 1.3467 | | 0.4132 | 544.0 | 2176 | 1.3269 | | 0.4132 | 545.0 | 2180 | 1.2708 | | 0.4132 | 546.0 | 2184 | 1.2328 | | 0.4132 | 547.0 | 2188 | 1.2018 | | 0.4132 | 548.0 | 2192 | 1.2414 | | 0.4132 | 549.0 | 2196 | 1.3077 | | 0.4132 | 550.0 | 2200 | 1.3456 | | 0.4132 | 551.0 | 2204 | 1.3697 | | 0.4132 | 552.0 | 2208 | 1.3549 | | 0.4132 | 553.0 | 2212 | 1.3114 | | 0.4132 | 554.0 | 2216 | 1.2546 | | 0.4132 | 555.0 | 2220 | 1.1885 | | 0.4132 | 556.0 | 2224 | 1.1551 | | 0.4132 | 557.0 | 2228 | 1.1560 | | 0.4132 | 558.0 | 2232 | 1.1636 | | 0.4132 | 559.0 | 2236 | 1.1683 | | 0.4132 | 560.0 | 2240 | 1.1802 | | 0.4132 | 561.0 | 2244 | 1.1915 | | 0.4132 | 562.0 | 2248 | 1.2013 | | 0.4132 | 563.0 | 2252 | 1.2959 | | 0.4132 | 564.0 | 2256 | 1.3462 | | 0.4132 | 565.0 | 2260 | 1.3304 | | 0.4132 | 566.0 | 2264 | 1.2797 | | 0.4132 | 567.0 | 2268 | 1.2271 | | 0.4132 | 568.0 | 2272 | 1.1545 | | 0.4132 | 569.0 | 2276 | 1.0932 | | 0.4132 | 570.0 | 2280 | 1.0846 | | 0.4132 | 571.0 | 2284 | 1.1062 | | 0.4132 | 572.0 | 2288 | 1.1248 | | 0.4132 | 573.0 | 2292 | 1.1334 | | 0.4132 | 574.0 | 2296 | 1.1361 | | 0.4132 | 575.0 | 2300 | 1.1488 | | 0.4132 | 576.0 | 2304 | 1.1842 | | 0.4132 | 577.0 | 2308 | 1.2073 | | 0.4132 | 578.0 | 2312 | 1.2114 | | 0.4132 | 579.0 | 2316 | 1.2072 | | 0.4132 | 580.0 | 2320 | 1.2062 | | 0.4132 | 581.0 | 2324 | 1.2102 | | 0.4132 | 582.0 | 2328 | 1.1919 | | 0.4132 | 583.0 | 2332 | 1.1725 | | 0.4132 | 584.0 | 2336 | 1.1534 | | 0.4132 | 585.0 | 2340 | 1.1383 | | 0.4132 | 586.0 | 2344 | 1.1390 | | 0.4132 | 587.0 | 2348 | 1.1535 | | 0.4132 | 588.0 | 2352 | 1.1533 | | 0.4132 | 589.0 | 2356 | 1.1464 | | 0.4132 | 590.0 | 2360 | 1.1425 | | 0.4132 | 591.0 | 2364 | 1.1457 | | 0.4132 | 592.0 | 2368 | 1.1446 | | 0.4132 | 593.0 | 2372 | 1.1400 | | 0.4132 | 594.0 | 2376 | 1.1323 | | 0.4132 | 595.0 | 2380 | 1.1214 | | 0.4132 | 596.0 | 2384 | 1.1196 | | 0.4132 | 597.0 | 2388 | 1.1202 | | 0.4132 | 598.0 | 2392 | 1.1111 | | 0.4132 | 599.0 | 2396 | 1.1033 | | 0.4132 | 600.0 | 2400 | 1.0880 | | 0.4132 | 601.0 | 2404 | 1.0803 | | 0.4132 | 602.0 | 2408 | 1.1013 | | 0.4132 | 603.0 | 2412 | 1.1340 | | 0.4132 | 604.0 | 2416 | 1.1478 | | 0.4132 | 605.0 | 2420 | 1.1489 | | 0.4132 | 606.0 | 2424 | 1.1421 | | 0.4132 | 607.0 | 2428 | 1.1339 | | 0.4132 | 608.0 | 2432 | 1.1218 | | 0.4132 | 609.0 | 2436 | 1.1091 | | 0.4132 | 610.0 | 2440 | 1.1061 | | 0.4132 | 611.0 | 2444 | 1.0998 | | 0.4132 | 612.0 | 2448 | 1.1126 | | 0.4132 | 613.0 | 2452 | 1.1213 | | 0.4132 | 614.0 | 2456 | 1.1272 | | 0.4132 | 615.0 | 2460 | 1.1455 | | 0.4132 | 616.0 | 2464 | 1.1578 | | 0.4132 | 617.0 | 2468 | 1.1805 | | 0.4132 | 618.0 | 2472 | 1.2011 | | 0.4132 | 619.0 | 2476 | 1.2163 | | 0.4132 | 620.0 | 2480 | 1.2338 | | 0.4132 | 621.0 | 2484 | 1.2324 | | 0.4132 | 622.0 | 2488 | 1.2222 | | 0.4132 | 623.0 | 2492 | 1.1981 | | 0.4132 | 624.0 | 2496 | 1.1771 | | 0.4061 | 625.0 | 2500 | 1.1522 | | 0.4061 | 626.0 | 2504 | 1.1489 | | 0.4061 | 627.0 | 2508 | 1.1523 | | 0.4061 | 628.0 | 2512 | 1.1616 | | 0.4061 | 629.0 | 2516 | 1.1826 | | 0.4061 | 630.0 | 2520 | 1.2340 | | 0.4061 | 631.0 | 2524 | 1.2748 | | 0.4061 | 632.0 | 2528 | 1.2921 | | 0.4061 | 633.0 | 2532 | 1.2943 | | 0.4061 | 634.0 | 2536 | 1.2903 | | 0.4061 | 635.0 | 2540 | 1.2727 | | 0.4061 | 636.0 | 2544 | 1.2437 | | 0.4061 | 637.0 | 2548 | 1.2215 | | 0.4061 | 638.0 | 2552 | 1.2745 | | 0.4061 | 639.0 | 2556 | 1.3062 | | 0.4061 | 640.0 | 2560 | 1.3212 | | 0.4061 | 641.0 | 2564 | 1.3231 | | 0.4061 | 642.0 | 2568 | 1.3165 | | 0.4061 | 643.0 | 2572 | 1.2992 | | 0.4061 | 644.0 | 2576 | 1.2758 | | 0.4061 | 645.0 | 2580 | 1.2506 | | 0.4061 | 646.0 | 2584 | 1.2508 | | 0.4061 | 647.0 | 2588 | 1.2453 | | 0.4061 | 648.0 | 2592 | 1.2296 | | 0.4061 | 649.0 | 2596 | 1.2141 | | 0.4061 | 650.0 | 2600 | 1.2024 | | 0.4061 | 651.0 | 2604 | 1.1930 | | 0.4061 | 652.0 | 2608 | 1.2219 | | 0.4061 | 653.0 | 2612 | 1.2306 | | 0.4061 | 654.0 | 2616 | 1.2269 | | 0.4061 | 655.0 | 2620 | 1.2037 | | 0.4061 | 656.0 | 2624 | 1.1795 | | 0.4061 | 657.0 | 2628 | 1.1435 | | 0.4061 | 658.0 | 2632 | 1.1146 | | 0.4061 | 659.0 | 2636 | 1.0946 | | 0.4061 | 660.0 | 2640 | 1.0931 | | 0.4061 | 661.0 | 2644 | 1.1798 | | 0.4061 | 662.0 | 2648 | 1.1944 | | 0.4061 | 663.0 | 2652 | 1.1942 | | 0.4061 | 664.0 | 2656 | 1.2285 | | 0.4061 | 665.0 | 2660 | 1.3122 | | 0.4061 | 666.0 | 2664 | 1.3508 | | 0.4061 | 667.0 | 2668 | 1.3625 | | 0.4061 | 668.0 | 2672 | 1.3328 | | 0.4061 | 669.0 | 2676 | 1.2849 | | 0.4061 | 670.0 | 2680 | 1.2284 | | 0.4061 | 671.0 | 2684 | 1.1931 | | 0.4061 | 672.0 | 2688 | 1.1913 | | 0.4061 | 673.0 | 2692 | 1.2059 | | 0.4061 | 674.0 | 2696 | 1.2328 | | 0.4061 | 675.0 | 2700 | 1.2668 | | 0.4061 | 676.0 | 2704 | 1.2732 | | 0.4061 | 677.0 | 2708 | 1.2647 | | 0.4061 | 678.0 | 2712 | 1.2574 | | 0.4061 | 679.0 | 2716 | 1.2319 | | 0.4061 | 680.0 | 2720 | 1.2031 | | 0.4061 | 681.0 | 2724 | 1.2425 | | 0.4061 | 682.0 | 2728 | 1.2883 | | 0.4061 | 683.0 | 2732 | 1.3076 | | 0.4061 | 684.0 | 2736 | 1.3102 | | 0.4061 | 685.0 | 2740 | 1.3046 | | 0.4061 | 686.0 | 2744 | 1.2982 | | 0.4061 | 687.0 | 2748 | 1.2846 | | 0.4061 | 688.0 | 2752 | 1.2751 | | 0.4061 | 689.0 | 2756 | 1.2671 | | 0.4061 | 690.0 | 2760 | 1.2551 | | 0.4061 | 691.0 | 2764 | 1.2444 | | 0.4061 | 692.0 | 2768 | 1.2144 | | 0.4061 | 693.0 | 2772 | 1.1945 | | 0.4061 | 694.0 | 2776 | 1.1846 | | 0.4061 | 695.0 | 2780 | 1.1939 | | 0.4061 | 696.0 | 2784 | 1.1949 | | 0.4061 | 697.0 | 2788 | 1.2070 | | 0.4061 | 698.0 | 2792 | 1.2194 | | 0.4061 | 699.0 | 2796 | 1.2330 | | 0.4061 | 700.0 | 2800 | 1.2461 | | 0.4061 | 701.0 | 2804 | 1.2499 | | 0.4061 | 702.0 | 2808 | 1.2419 | | 0.4061 | 703.0 | 2812 | 1.2619 | | 0.4061 | 704.0 | 2816 | 1.2295 | | 0.4061 | 705.0 | 2820 | 1.2170 | | 0.4061 | 706.0 | 2824 | 1.2960 | | 0.4061 | 707.0 | 2828 | 1.3246 | | 0.4061 | 708.0 | 2832 | 1.3304 | | 0.4061 | 709.0 | 2836 | 1.3395 | | 0.4061 | 710.0 | 2840 | 1.3449 | | 0.4061 | 711.0 | 2844 | 1.3399 | | 0.4061 | 712.0 | 2848 | 1.3301 | | 0.4061 | 713.0 | 2852 | 1.3168 | | 0.4061 | 714.0 | 2856 | 1.3108 | | 0.4061 | 715.0 | 2860 | 1.3146 | | 0.4061 | 716.0 | 2864 | 1.3229 | | 0.4061 | 717.0 | 2868 | 1.3482 | | 0.4061 | 718.0 | 2872 | 1.3742 | | 0.4061 | 719.0 | 2876 | 1.3829 | | 0.4061 | 720.0 | 2880 | 1.3847 | | 0.4061 | 721.0 | 2884 | 1.3867 | | 0.4061 | 722.0 | 2888 | 1.3857 | | 0.4061 | 723.0 | 2892 | 1.3810 | | 0.4061 | 724.0 | 2896 | 1.3730 | | 0.4061 | 725.0 | 2900 | 1.3631 | | 0.4061 | 726.0 | 2904 | 1.3527 | | 0.4061 | 727.0 | 2908 | 1.3418 | | 0.4061 | 728.0 | 2912 | 1.3186 | | 0.4061 | 729.0 | 2916 | 1.3084 | | 0.4061 | 730.0 | 2920 | 1.3000 | | 0.4061 | 731.0 | 2924 | 1.2873 | | 0.4061 | 732.0 | 2928 | 1.2775 | | 0.4061 | 733.0 | 2932 | 1.2699 | | 0.4061 | 734.0 | 2936 | 1.2703 | | 0.4061 | 735.0 | 2940 | 1.2799 | | 0.4061 | 736.0 | 2944 | 1.2905 | | 0.4061 | 737.0 | 2948 | 1.3006 | | 0.4061 | 738.0 | 2952 | 1.3002 | | 0.4061 | 739.0 | 2956 | 1.2978 | | 0.4061 | 740.0 | 2960 | 1.2848 | | 0.4061 | 741.0 | 2964 | 1.2631 | | 0.4061 | 742.0 | 2968 | 1.2506 | | 0.4061 | 743.0 | 2972 | 1.2557 | | 0.4061 | 744.0 | 2976 | 1.2643 | | 0.4061 | 745.0 | 2980 | 1.2719 | | 0.4061 | 746.0 | 2984 | 1.2731 | | 0.4061 | 747.0 | 2988 | 1.3278 | | 0.4061 | 748.0 | 2992 | 1.3545 | | 0.4061 | 749.0 | 2996 | 1.3598 | | 0.4016 | 750.0 | 3000 | 1.3552 | | 0.4016 | 751.0 | 3004 | 1.3679 | | 0.4016 | 752.0 | 3008 | 1.3758 | | 0.4016 | 753.0 | 3012 | 1.3602 | | 0.4016 | 754.0 | 3016 | 1.3482 | | 0.4016 | 755.0 | 3020 | 1.3237 | | 0.4016 | 756.0 | 3024 | 1.3004 | | 0.4016 | 757.0 | 3028 | 1.2859 | | 0.4016 | 758.0 | 3032 | 1.2923 | | 0.4016 | 759.0 | 3036 | 1.3164 | | 0.4016 | 760.0 | 3040 | 1.3224 | | 0.4016 | 761.0 | 3044 | 1.3039 | | 0.4016 | 762.0 | 3048 | 1.2589 | | 0.4016 | 763.0 | 3052 | 1.1517 | | 0.4016 | 764.0 | 3056 | 1.0966 | | 0.4016 | 765.0 | 3060 | 1.1509 | | 0.4016 | 766.0 | 3064 | 1.2219 | | 0.4016 | 767.0 | 3068 | 1.2252 | | 0.4016 | 768.0 | 3072 | 1.2120 | | 0.4016 | 769.0 | 3076 | 1.1997 | | 0.4016 | 770.0 | 3080 | 1.1788 | | 0.4016 | 771.0 | 3084 | 1.1522 | | 0.4016 | 772.0 | 3088 | 1.1402 | | 0.4016 | 773.0 | 3092 | 1.1456 | | 0.4016 | 774.0 | 3096 | 1.1622 | | 0.4016 | 775.0 | 3100 | 1.1761 | | 0.4016 | 776.0 | 3104 | 1.1781 | | 0.4016 | 777.0 | 3108 | 1.1733 | | 0.4016 | 778.0 | 3112 | 1.1608 | | 0.4016 | 779.0 | 3116 | 1.1462 | | 0.4016 | 780.0 | 3120 | 1.1350 | | 0.4016 | 781.0 | 3124 | 1.1381 | | 0.4016 | 782.0 | 3128 | 1.1442 | | 0.4016 | 783.0 | 3132 | 1.1534 | | 0.4016 | 784.0 | 3136 | 1.1221 | | 0.4016 | 785.0 | 3140 | 1.1822 | | 0.4016 | 786.0 | 3144 | 1.2308 | | 0.4016 | 787.0 | 3148 | 1.2633 | | 0.4016 | 788.0 | 3152 | 1.2659 | | 0.4016 | 789.0 | 3156 | 1.2471 | | 0.4016 | 790.0 | 3160 | 1.1818 | | 0.4016 | 791.0 | 3164 | 1.1384 | | 0.4016 | 792.0 | 3168 | 1.1248 | | 0.4016 | 793.0 | 3172 | 1.1100 | | 0.4016 | 794.0 | 3176 | 1.1004 | | 0.4016 | 795.0 | 3180 | 1.1016 | | 0.4016 | 796.0 | 3184 | 1.1277 | | 0.4016 | 797.0 | 3188 | 1.1689 | | 0.4016 | 798.0 | 3192 | 1.1946 | | 0.4016 | 799.0 | 3196 | 1.2127 | | 0.4016 | 800.0 | 3200 | 1.2245 | | 0.4016 | 801.0 | 3204 | 1.2228 | | 0.4016 | 802.0 | 3208 | 1.2164 | | 0.4016 | 803.0 | 3212 | 1.2172 | | 0.4016 | 804.0 | 3216 | 1.2180 | | 0.4016 | 805.0 | 3220 | 1.2165 | | 0.4016 | 806.0 | 3224 | 1.2123 | | 0.4016 | 807.0 | 3228 | 1.2098 | | 0.4016 | 808.0 | 3232 | 1.2090 | | 0.4016 | 809.0 | 3236 | 1.2058 | | 0.4016 | 810.0 | 3240 | 1.2009 | | 0.4016 | 811.0 | 3244 | 1.2007 | | 0.4016 | 812.0 | 3248 | 1.2076 | | 0.4016 | 813.0 | 3252 | 1.2389 | | 0.4016 | 814.0 | 3256 | 1.2485 | | 0.4016 | 815.0 | 3260 | 1.2495 | | 0.4016 | 816.0 | 3264 | 1.2480 | | 0.4016 | 817.0 | 3268 | 1.2444 | | 0.4016 | 818.0 | 3272 | 1.2378 | | 0.4016 | 819.0 | 3276 | 1.2285 | | 0.4016 | 820.0 | 3280 | 1.2135 | | 0.4016 | 821.0 | 3284 | 1.1896 | | 0.4016 | 822.0 | 3288 | 1.1637 | | 0.4016 | 823.0 | 3292 | 1.1443 | | 0.4016 | 824.0 | 3296 | 1.1267 | | 0.4016 | 825.0 | 3300 | 1.1119 | | 0.4016 | 826.0 | 3304 | 1.1052 | | 0.4016 | 827.0 | 3308 | 1.1026 | | 0.4016 | 828.0 | 3312 | 1.1021 | | 0.4016 | 829.0 | 3316 | 1.1042 | | 0.4016 | 830.0 | 3320 | 1.1077 | | 0.4016 | 831.0 | 3324 | 1.1123 | | 0.4016 | 832.0 | 3328 | 1.1195 | | 0.4016 | 833.0 | 3332 | 1.1204 | | 0.4016 | 834.0 | 3336 | 1.1215 | | 0.4016 | 835.0 | 3340 | 1.1350 | | 0.4016 | 836.0 | 3344 | 1.1476 | | 0.4016 | 837.0 | 3348 | 1.1558 | | 0.4016 | 838.0 | 3352 | 1.1687 | | 0.4016 | 839.0 | 3356 | 1.1715 | | 0.4016 | 840.0 | 3360 | 1.1797 | | 0.4016 | 841.0 | 3364 | 1.2209 | | 0.4016 | 842.0 | 3368 | 1.2569 | | 0.4016 | 843.0 | 3372 | 1.2802 | | 0.4016 | 844.0 | 3376 | 1.3029 | | 0.4016 | 845.0 | 3380 | 1.2870 | | 0.4016 | 846.0 | 3384 | 1.1964 | | 0.4016 | 847.0 | 3388 | 1.1334 | | 0.4016 | 848.0 | 3392 | 1.1218 | | 0.4016 | 849.0 | 3396 | 1.1278 | | 0.4016 | 850.0 | 3400 | 1.1315 | | 0.4016 | 851.0 | 3404 | 1.1784 | | 0.4016 | 852.0 | 3408 | 1.2120 | | 0.4016 | 853.0 | 3412 | 1.2280 | | 0.4016 | 854.0 | 3416 | 1.2320 | | 0.4016 | 855.0 | 3420 | 1.1869 | | 0.4016 | 856.0 | 3424 | 1.1227 | | 0.4016 | 857.0 | 3428 | 1.0755 | | 0.4016 | 858.0 | 3432 | 1.0452 | | 0.4016 | 859.0 | 3436 | 1.0299 | | 0.4016 | 860.0 | 3440 | 1.0241 | | 0.4016 | 861.0 | 3444 | 1.0236 | | 0.4016 | 862.0 | 3448 | 1.0262 | | 0.4016 | 863.0 | 3452 | 1.0287 | | 0.4016 | 864.0 | 3456 | 1.0308 | | 0.4016 | 865.0 | 3460 | 1.0330 | | 0.4016 | 866.0 | 3464 | 1.0352 | | 0.4016 | 867.0 | 3468 | 1.0370 | | 0.4016 | 868.0 | 3472 | 1.0386 | | 0.4016 | 869.0 | 3476 | 1.0386 | | 0.4016 | 870.0 | 3480 | 1.0296 | | 0.4016 | 871.0 | 3484 | 1.0207 | | 0.4016 | 872.0 | 3488 | 1.0171 | | 0.4016 | 873.0 | 3492 | 1.0158 | | 0.4016 | 874.0 | 3496 | 1.0149 | | 0.4014 | 875.0 | 3500 | 1.0150 | | 0.4014 | 876.0 | 3504 | 1.0162 | | 0.4014 | 877.0 | 3508 | 1.0176 | | 0.4014 | 878.0 | 3512 | 1.0295 | | 0.4014 | 879.0 | 3516 | 1.0410 | | 0.4014 | 880.0 | 3520 | 1.0489 | | 0.4014 | 881.0 | 3524 | 1.0540 | | 0.4014 | 882.0 | 3528 | 1.0578 | | 0.4014 | 883.0 | 3532 | 1.0607 | | 0.4014 | 884.0 | 3536 | 1.0630 | | 0.4014 | 885.0 | 3540 | 1.0675 | | 0.4014 | 886.0 | 3544 | 1.0700 | | 0.4014 | 887.0 | 3548 | 1.0726 | | 0.4014 | 888.0 | 3552 | 1.0851 | | 0.4014 | 889.0 | 3556 | 1.0946 | | 0.4014 | 890.0 | 3560 | 1.1003 | | 0.4014 | 891.0 | 3564 | 1.0967 | | 0.4014 | 892.0 | 3568 | 1.0899 | | 0.4014 | 893.0 | 3572 | 1.0831 | | 0.4014 | 894.0 | 3576 | 1.0767 | | 0.4014 | 895.0 | 3580 | 1.0696 | | 0.4014 | 896.0 | 3584 | 1.0664 | | 0.4014 | 897.0 | 3588 | 1.0691 | | 0.4014 | 898.0 | 3592 | 1.0772 | | 0.4014 | 899.0 | 3596 | 1.0807 | | 0.4014 | 900.0 | 3600 | 1.0831 | | 0.4014 | 901.0 | 3604 | 1.0822 | | 0.4014 | 902.0 | 3608 | 1.0792 | | 0.4014 | 903.0 | 3612 | 1.0659 | | 0.4014 | 904.0 | 3616 | 1.0539 | | 0.4014 | 905.0 | 3620 | 1.0426 | | 0.4014 | 906.0 | 3624 | 1.0392 | | 0.4014 | 907.0 | 3628 | 1.0473 | | 0.4014 | 908.0 | 3632 | 1.0532 | | 0.4014 | 909.0 | 3636 | 1.0545 | | 0.4014 | 910.0 | 3640 | 1.0536 | | 0.4014 | 911.0 | 3644 | 1.0540 | | 0.4014 | 912.0 | 3648 | 1.0546 | | 0.4014 | 913.0 | 3652 | 1.0587 | | 0.4014 | 914.0 | 3656 | 1.0701 | | 0.4014 | 915.0 | 3660 | 1.0807 | | 0.4014 | 916.0 | 3664 | 1.0884 | | 0.4014 | 917.0 | 3668 | 1.0956 | | 0.4014 | 918.0 | 3672 | 1.1019 | | 0.4014 | 919.0 | 3676 | 1.1053 | | 0.4014 | 920.0 | 3680 | 1.1067 | | 0.4014 | 921.0 | 3684 | 1.1044 | | 0.4014 | 922.0 | 3688 | 1.1030 | | 0.4014 | 923.0 | 3692 | 1.1033 | | 0.4014 | 924.0 | 3696 | 1.1041 | | 0.4014 | 925.0 | 3700 | 1.1068 | | 0.4014 | 926.0 | 3704 | 1.1116 | | 0.4014 | 927.0 | 3708 | 1.1157 | | 0.4014 | 928.0 | 3712 | 1.1195 | | 0.4014 | 929.0 | 3716 | 1.1245 | | 0.4014 | 930.0 | 3720 | 1.1271 | | 0.4014 | 931.0 | 3724 | 1.1289 | | 0.4014 | 932.0 | 3728 | 1.1316 | | 0.4014 | 933.0 | 3732 | 1.1340 | | 0.4014 | 934.0 | 3736 | 1.1367 | | 0.4014 | 935.0 | 3740 | 1.1425 | | 0.4014 | 936.0 | 3744 | 1.1488 | | 0.4014 | 937.0 | 3748 | 1.1515 | | 0.4014 | 938.0 | 3752 | 1.1503 | | 0.4014 | 939.0 | 3756 | 1.1478 | | 0.4014 | 940.0 | 3760 | 1.1487 | | 0.4014 | 941.0 | 3764 | 1.1488 | | 0.4014 | 942.0 | 3768 | 1.1488 | | 0.4014 | 943.0 | 3772 | 1.1493 | | 0.4014 | 944.0 | 3776 | 1.1358 | | 0.4014 | 945.0 | 3780 | 1.0983 | | 0.4014 | 946.0 | 3784 | 1.0740 | | 0.4014 | 947.0 | 3788 | 1.0641 | | 0.4014 | 948.0 | 3792 | 1.0617 | | 0.4014 | 949.0 | 3796 | 1.0639 | | 0.4014 | 950.0 | 3800 | 1.0667 | | 0.4014 | 951.0 | 3804 | 1.0778 | | 0.4014 | 952.0 | 3808 | 1.0883 | | 0.4014 | 953.0 | 3812 | 1.1023 | | 0.4014 | 954.0 | 3816 | 1.1139 | | 0.4014 | 955.0 | 3820 | 1.1205 | | 0.4014 | 956.0 | 3824 | 1.1238 | | 0.4014 | 957.0 | 3828 | 1.1264 | | 0.4014 | 958.0 | 3832 | 1.1328 | | 0.4014 | 959.0 | 3836 | 1.1374 | | 0.4014 | 960.0 | 3840 | 1.1400 | | 0.4014 | 961.0 | 3844 | 1.1397 | | 0.4014 | 962.0 | 3848 | 1.1388 | | 0.4014 | 963.0 | 3852 | 1.1385 | | 0.4014 | 964.0 | 3856 | 1.1390 | | 0.4014 | 965.0 | 3860 | 1.1397 | | 0.4014 | 966.0 | 3864 | 1.1413 | | 0.4014 | 967.0 | 3868 | 1.1471 | | 0.4014 | 968.0 | 3872 | 1.1519 | | 0.4014 | 969.0 | 3876 | 1.1541 | | 0.4014 | 970.0 | 3880 | 1.1526 | | 0.4014 | 971.0 | 3884 | 1.1506 | | 0.4014 | 972.0 | 3888 | 1.1494 | | 0.4014 | 973.0 | 3892 | 1.1484 | | 0.4014 | 974.0 | 3896 | 1.1436 | | 0.4014 | 975.0 | 3900 | 1.1406 | | 0.4014 | 976.0 | 3904 | 1.1369 | | 0.4014 | 977.0 | 3908 | 1.1329 | | 0.4014 | 978.0 | 3912 | 1.1309 | | 0.4014 | 979.0 | 3916 | 1.1291 | | 0.4014 | 980.0 | 3920 | 1.1285 | | 0.4014 | 981.0 | 3924 | 1.1298 | | 0.4014 | 982.0 | 3928 | 1.1328 | | 0.4014 | 983.0 | 3932 | 1.1266 | | 0.4014 | 984.0 | 3936 | 1.1233 | | 0.4014 | 985.0 | 3940 | 1.1279 | | 0.4014 | 986.0 | 3944 | 1.1331 | | 0.4014 | 987.0 | 3948 | 1.1367 | | 0.4014 | 988.0 | 3952 | 1.1336 | | 0.4014 | 989.0 | 3956 | 1.1305 | | 0.4014 | 990.0 | 3960 | 1.1284 | | 0.4014 | 991.0 | 3964 | 1.1270 | | 0.4014 | 992.0 | 3968 | 1.1256 | | 0.4014 | 993.0 | 3972 | 1.1231 | | 0.4014 | 994.0 | 3976 | 1.1220 | | 0.4014 | 995.0 | 3980 | 1.1229 | | 0.4014 | 996.0 | 3984 | 1.1074 | | 0.4014 | 997.0 | 3988 | 1.1741 | | 0.4014 | 998.0 | 3992 | 1.2255 | | 0.4014 | 999.0 | 3996 | 1.2600 | | 0.4025 | 1000.0 | 4000 | 1.2943 | | 0.4025 | 1001.0 | 4004 | 1.3115 | | 0.4025 | 1002.0 | 4008 | 1.3149 | | 0.4025 | 1003.0 | 4012 | 1.2950 | | 0.4025 | 1004.0 | 4016 | 1.2578 | | 0.4025 | 1005.0 | 4020 | 1.2230 | | 0.4025 | 1006.0 | 4024 | 1.1886 | | 0.4025 | 1007.0 | 4028 | 1.1686 | | 0.4025 | 1008.0 | 4032 | 1.1784 | | 0.4025 | 1009.0 | 4036 | 1.1909 | | 0.4025 | 1010.0 | 4040 | 1.1984 | | 0.4025 | 1011.0 | 4044 | 1.2013 | | 0.4025 | 1012.0 | 4048 | 1.2029 | | 0.4025 | 1013.0 | 4052 | 1.2016 | | 0.4025 | 1014.0 | 4056 | 1.1755 | | 0.4025 | 1015.0 | 4060 | 1.0993 | | 0.4025 | 1016.0 | 4064 | 1.0576 | | 0.4025 | 1017.0 | 4068 | 1.0620 | | 0.4025 | 1018.0 | 4072 | 1.0791 | | 0.4025 | 1019.0 | 4076 | 1.0938 | | 0.4025 | 1020.0 | 4080 | 1.1000 | | 0.4025 | 1021.0 | 4084 | 1.1049 | | 0.4025 | 1022.0 | 4088 | 1.1093 | | 0.4025 | 1023.0 | 4092 | 1.1115 | | 0.4025 | 1024.0 | 4096 | 1.1253 | | 0.4025 | 1025.0 | 4100 | 1.1377 | | 0.4025 | 1026.0 | 4104 | 1.1378 | | 0.4025 | 1027.0 | 4108 | 1.1303 | | 0.4025 | 1028.0 | 4112 | 1.1133 | | 0.4025 | 1029.0 | 4116 | 1.0965 | | 0.4025 | 1030.0 | 4120 | 1.0833 | | 0.4025 | 1031.0 | 4124 | 1.0750 | | 0.4025 | 1032.0 | 4128 | 1.0715 | | 0.4025 | 1033.0 | 4132 | 1.0742 | | 0.4025 | 1034.0 | 4136 | 1.0822 | | 0.4025 | 1035.0 | 4140 | 1.0887 | | 0.4025 | 1036.0 | 4144 | 1.0935 | | 0.4025 | 1037.0 | 4148 | 1.0960 | | 0.4025 | 1038.0 | 4152 | 1.0993 | | 0.4025 | 1039.0 | 4156 | 1.1041 | | 0.4025 | 1040.0 | 4160 | 1.1087 | | 0.4025 | 1041.0 | 4164 | 1.1171 | | 0.4025 | 1042.0 | 4168 | 1.1270 | | 0.4025 | 1043.0 | 4172 | 1.1340 | | 0.4025 | 1044.0 | 4176 | 1.1404 | | 0.4025 | 1045.0 | 4180 | 1.1455 | | 0.4025 | 1046.0 | 4184 | 1.1466 | | 0.4025 | 1047.0 | 4188 | 1.1479 | | 0.4025 | 1048.0 | 4192 | 1.1482 | | 0.4025 | 1049.0 | 4196 | 1.1489 | | 0.4025 | 1050.0 | 4200 | 1.1486 | | 0.4025 | 1051.0 | 4204 | 1.1477 | | 0.4025 | 1052.0 | 4208 | 1.1471 | | 0.4025 | 1053.0 | 4212 | 1.1478 | | 0.4025 | 1054.0 | 4216 | 1.1483 | | 0.4025 | 1055.0 | 4220 | 1.1424 | | 0.4025 | 1056.0 | 4224 | 1.1357 | | 0.4025 | 1057.0 | 4228 | 1.1308 | | 0.4025 | 1058.0 | 4232 | 1.1275 | | 0.4025 | 1059.0 | 4236 | 1.1346 | | 0.4025 | 1060.0 | 4240 | 1.1628 | | 0.4025 | 1061.0 | 4244 | 1.1450 | | 0.4025 | 1062.0 | 4248 | 1.1331 | | 0.4025 | 1063.0 | 4252 | 1.1271 | | 0.4025 | 1064.0 | 4256 | 1.1263 | | 0.4025 | 1065.0 | 4260 | 1.1266 | | 0.4025 | 1066.0 | 4264 | 1.1259 | | 0.4025 | 1067.0 | 4268 | 1.1255 | | 0.4025 | 1068.0 | 4272 | 1.1248 | | 0.4025 | 1069.0 | 4276 | 1.1228 | | 0.4025 | 1070.0 | 4280 | 1.1207 | | 0.4025 | 1071.0 | 4284 | 1.1215 | | 0.4025 | 1072.0 | 4288 | 1.1191 | | 0.4025 | 1073.0 | 4292 | 1.1177 | | 0.4025 | 1074.0 | 4296 | 1.1179 | | 0.4025 | 1075.0 | 4300 | 1.1181 | | 0.4025 | 1076.0 | 4304 | 1.1181 | | 0.4025 | 1077.0 | 4308 | 1.1172 | | 0.4025 | 1078.0 | 4312 | 1.1154 | | 0.4025 | 1079.0 | 4316 | 1.1134 | | 0.4025 | 1080.0 | 4320 | 1.1121 | | 0.4025 | 1081.0 | 4324 | 1.1111 | | 0.4025 | 1082.0 | 4328 | 1.1102 | | 0.4025 | 1083.0 | 4332 | 1.1102 | | 0.4025 | 1084.0 | 4336 | 1.1109 | | 0.4025 | 1085.0 | 4340 | 1.1119 | | 0.4025 | 1086.0 | 4344 | 1.1126 | | 0.4025 | 1087.0 | 4348 | 1.1129 | | 0.4025 | 1088.0 | 4352 | 1.1131 | | 0.4025 | 1089.0 | 4356 | 1.1131 | | 0.4025 | 1090.0 | 4360 | 1.1129 | | 0.4025 | 1091.0 | 4364 | 1.1130 | | 0.4025 | 1092.0 | 4368 | 1.0967 | | 0.4025 | 1093.0 | 4372 | 1.0824 | | 0.4025 | 1094.0 | 4376 | 1.0799 | | 0.4025 | 1095.0 | 4380 | 1.0830 | | 0.4025 | 1096.0 | 4384 | 1.0894 | | 0.4025 | 1097.0 | 4388 | 1.0983 | | 0.4025 | 1098.0 | 4392 | 1.1050 | | 0.4025 | 1099.0 | 4396 | 1.1161 | | 0.4025 | 1100.0 | 4400 | 1.1332 | | 0.4025 | 1101.0 | 4404 | 1.1434 | | 0.4025 | 1102.0 | 4408 | 1.1527 | | 0.4025 | 1103.0 | 4412 | 1.1581 | | 0.4025 | 1104.0 | 4416 | 1.1606 | | 0.4025 | 1105.0 | 4420 | 1.1648 | | 0.4025 | 1106.0 | 4424 | 1.1656 | | 0.4025 | 1107.0 | 4428 | 1.1644 | | 0.4025 | 1108.0 | 4432 | 1.1646 | | 0.4025 | 1109.0 | 4436 | 1.1654 | | 0.4025 | 1110.0 | 4440 | 1.1610 | | 0.4025 | 1111.0 | 4444 | 1.1545 | | 0.4025 | 1112.0 | 4448 | 1.1492 | | 0.4025 | 1113.0 | 4452 | 1.1442 | | 0.4025 | 1114.0 | 4456 | 1.1438 | | 0.4025 | 1115.0 | 4460 | 1.1538 | | 0.4025 | 1116.0 | 4464 | 1.1623 | | 0.4025 | 1117.0 | 4468 | 1.1693 | | 0.4025 | 1118.0 | 4472 | 1.1743 | | 0.4025 | 1119.0 | 4476 | 1.1749 | | 0.4025 | 1120.0 | 4480 | 1.1382 | | 0.4025 | 1121.0 | 4484 | 1.1209 | | 0.4025 | 1122.0 | 4488 | 1.1680 | | 0.4025 | 1123.0 | 4492 | 1.2175 | | 0.4025 | 1124.0 | 4496 | 1.2453 | | 0.4015 | 1125.0 | 4500 | 1.2393 | | 0.4015 | 1126.0 | 4504 | 1.2185 | | 0.4015 | 1127.0 | 4508 | 1.1926 | | 0.4015 | 1128.0 | 4512 | 1.1660 | | 0.4015 | 1129.0 | 4516 | 1.1457 | | 0.4015 | 1130.0 | 4520 | 1.1286 | | 0.4015 | 1131.0 | 4524 | 1.1176 | | 0.4015 | 1132.0 | 4528 | 1.1100 | | 0.4015 | 1133.0 | 4532 | 1.1023 | | 0.4015 | 1134.0 | 4536 | 1.0997 | | 0.4015 | 1135.0 | 4540 | 1.0973 | | 0.4015 | 1136.0 | 4544 | 1.0962 | | 0.4015 | 1137.0 | 4548 | 1.0984 | | 0.4015 | 1138.0 | 4552 | 1.1027 | | 0.4015 | 1139.0 | 4556 | 1.1081 | | 0.4015 | 1140.0 | 4560 | 1.1123 | | 0.4015 | 1141.0 | 4564 | 1.1148 | | 0.4015 | 1142.0 | 4568 | 1.1128 | | 0.4015 | 1143.0 | 4572 | 1.1084 | | 0.4015 | 1144.0 | 4576 | 1.1048 | | 0.4015 | 1145.0 | 4580 | 1.0997 | | 0.4015 | 1146.0 | 4584 | 1.1051 | | 0.4015 | 1147.0 | 4588 | 1.1135 | | 0.4015 | 1148.0 | 4592 | 1.1169 | | 0.4015 | 1149.0 | 4596 | 1.1196 | | 0.4015 | 1150.0 | 4600 | 1.1214 | | 0.4015 | 1151.0 | 4604 | 1.1132 | | 0.4015 | 1152.0 | 4608 | 1.1172 | | 0.4015 | 1153.0 | 4612 | 1.1228 | | 0.4015 | 1154.0 | 4616 | 1.1291 | | 0.4015 | 1155.0 | 4620 | 1.1335 | | 0.4015 | 1156.0 | 4624 | 1.1364 | | 0.4015 | 1157.0 | 4628 | 1.1378 | | 0.4015 | 1158.0 | 4632 | 1.1378 | | 0.4015 | 1159.0 | 4636 | 1.1380 | | 0.4015 | 1160.0 | 4640 | 1.1300 | | 0.4015 | 1161.0 | 4644 | 1.1238 | | 0.4015 | 1162.0 | 4648 | 1.1207 | | 0.4015 | 1163.0 | 4652 | 1.1203 | | 0.4015 | 1164.0 | 4656 | 1.1198 | | 0.4015 | 1165.0 | 4660 | 1.1092 | | 0.4015 | 1166.0 | 4664 | 1.1052 | | 0.4015 | 1167.0 | 4668 | 1.1309 | | 0.4015 | 1168.0 | 4672 | 1.1826 | | 0.4015 | 1169.0 | 4676 | 1.1280 | | 0.4015 | 1170.0 | 4680 | 1.1234 | | 0.4015 | 1171.0 | 4684 | 1.1804 | | 0.4015 | 1172.0 | 4688 | 1.2199 | | 0.4015 | 1173.0 | 4692 | 1.2259 | | 0.4015 | 1174.0 | 4696 | 1.2267 | | 0.4015 | 1175.0 | 4700 | 1.2261 | | 0.4015 | 1176.0 | 4704 | 1.2248 | | 0.4015 | 1177.0 | 4708 | 1.2086 | | 0.4015 | 1178.0 | 4712 | 1.1969 | | 0.4015 | 1179.0 | 4716 | 1.1937 | | 0.4015 | 1180.0 | 4720 | 1.1915 | | 0.4015 | 1181.0 | 4724 | 1.1917 | | 0.4015 | 1182.0 | 4728 | 1.1925 | | 0.4015 | 1183.0 | 4732 | 1.2010 | | 0.4015 | 1184.0 | 4736 | 1.2017 | | 0.4015 | 1185.0 | 4740 | 1.1974 | | 0.4015 | 1186.0 | 4744 | 1.1934 | | 0.4015 | 1187.0 | 4748 | 1.1915 | | 0.4015 | 1188.0 | 4752 | 1.1902 | | 0.4015 | 1189.0 | 4756 | 1.1896 | | 0.4015 | 1190.0 | 4760 | 1.1888 | | 0.4015 | 1191.0 | 4764 | 1.1806 | | 0.4015 | 1192.0 | 4768 | 1.1684 | | 0.4015 | 1193.0 | 4772 | 1.1584 | | 0.4015 | 1194.0 | 4776 | 1.1505 | | 0.4015 | 1195.0 | 4780 | 1.1480 | | 0.4015 | 1196.0 | 4784 | 1.1483 | | 0.4015 | 1197.0 | 4788 | 1.1506 | | 0.4015 | 1198.0 | 4792 | 1.1532 | | 0.4015 | 1199.0 | 4796 | 1.1542 | | 0.4015 | 1200.0 | 4800 | 1.1539 | | 0.4015 | 1201.0 | 4804 | 1.1521 | | 0.4015 | 1202.0 | 4808 | 1.1509 | | 0.4015 | 1203.0 | 4812 | 1.1495 | | 0.4015 | 1204.0 | 4816 | 1.1499 | | 0.4015 | 1205.0 | 4820 | 1.1519 | | 0.4015 | 1206.0 | 4824 | 1.1538 | | 0.4015 | 1207.0 | 4828 | 1.1569 | | 0.4015 | 1208.0 | 4832 | 1.1558 | | 0.4015 | 1209.0 | 4836 | 1.1562 | | 0.4015 | 1210.0 | 4840 | 1.1556 | | 0.4015 | 1211.0 | 4844 | 1.1548 | | 0.4015 | 1212.0 | 4848 | 1.1574 | | 0.4015 | 1213.0 | 4852 | 1.1591 | | 0.4015 | 1214.0 | 4856 | 1.1590 | | 0.4015 | 1215.0 | 4860 | 1.1575 | | 0.4015 | 1216.0 | 4864 | 1.1385 | | 0.4015 | 1217.0 | 4868 | 1.1270 | | 0.4015 | 1218.0 | 4872 | 1.1209 | | 0.4015 | 1219.0 | 4876 | 1.1201 | | 0.4015 | 1220.0 | 4880 | 1.1297 | | 0.4015 | 1221.0 | 4884 | 1.1371 | | 0.4015 | 1222.0 | 4888 | 1.1426 | | 0.4015 | 1223.0 | 4892 | 1.1456 | | 0.4015 | 1224.0 | 4896 | 1.1458 | | 0.4015 | 1225.0 | 4900 | 1.1463 | | 0.4015 | 1226.0 | 4904 | 1.1458 | | 0.4015 | 1227.0 | 4908 | 1.1445 | | 0.4015 | 1228.0 | 4912 | 1.1438 | | 0.4015 | 1229.0 | 4916 | 1.1434 | | 0.4015 | 1230.0 | 4920 | 1.1434 | | 0.4015 | 1231.0 | 4924 | 1.1420 | | 0.4015 | 1232.0 | 4928 | 1.1431 | | 0.4015 | 1233.0 | 4932 | 1.1469 | | 0.4015 | 1234.0 | 4936 | 1.1481 | | 0.4015 | 1235.0 | 4940 | 1.1464 | | 0.4015 | 1236.0 | 4944 | 1.1433 | | 0.4015 | 1237.0 | 4948 | 1.1392 | | 0.4015 | 1238.0 | 4952 | 1.1353 | | 0.4015 | 1239.0 | 4956 | 1.1318 | | 0.4015 | 1240.0 | 4960 | 1.1300 | | 0.4015 | 1241.0 | 4964 | 1.1287 | | 0.4015 | 1242.0 | 4968 | 1.1837 | | 0.4015 | 1243.0 | 4972 | 1.2690 | | 0.4015 | 1244.0 | 4976 | 1.3062 | | 0.4015 | 1245.0 | 4980 | 1.3034 | | 0.4015 | 1246.0 | 4984 | 1.2571 | | 0.4015 | 1247.0 | 4988 | 1.2178 | | 0.4015 | 1248.0 | 4992 | 1.1835 | | 0.4015 | 1249.0 | 4996 | 1.1600 | | 0.4008 | 1250.0 | 5000 | 1.1461 | | 0.4008 | 1251.0 | 5004 | 1.1375 | | 0.4008 | 1252.0 | 5008 | 1.1322 | | 0.4008 | 1253.0 | 5012 | 1.1299 | | 0.4008 | 1254.0 | 5016 | 1.1389 | | 0.4008 | 1255.0 | 5020 | 1.1511 | | 0.4008 | 1256.0 | 5024 | 1.1566 | | 0.4008 | 1257.0 | 5028 | 1.1594 | | 0.4008 | 1258.0 | 5032 | 1.1602 | | 0.4008 | 1259.0 | 5036 | 1.1609 | | 0.4008 | 1260.0 | 5040 | 1.1610 | | 0.4008 | 1261.0 | 5044 | 1.1608 | | 0.4008 | 1262.0 | 5048 | 1.1597 | | 0.4008 | 1263.0 | 5052 | 1.1590 | | 0.4008 | 1264.0 | 5056 | 1.1597 | | 0.4008 | 1265.0 | 5060 | 1.1603 | | 0.4008 | 1266.0 | 5064 | 1.1604 | | 0.4008 | 1267.0 | 5068 | 1.1602 | | 0.4008 | 1268.0 | 5072 | 1.1598 | | 0.4008 | 1269.0 | 5076 | 1.1579 | | 0.4008 | 1270.0 | 5080 | 1.1565 | | 0.4008 | 1271.0 | 5084 | 1.1558 | | 0.4008 | 1272.0 | 5088 | 1.1548 | | 0.4008 | 1273.0 | 5092 | 1.1559 | | 0.4008 | 1274.0 | 5096 | 1.1588 | | 0.4008 | 1275.0 | 5100 | 1.1622 | | 0.4008 | 1276.0 | 5104 | 1.1649 | | 0.4008 | 1277.0 | 5108 | 1.1670 | | 0.4008 | 1278.0 | 5112 | 1.1698 | | 0.4008 | 1279.0 | 5116 | 1.1725 | | 0.4008 | 1280.0 | 5120 | 1.1868 | | 0.4008 | 1281.0 | 5124 | 1.2203 | | 0.4008 | 1282.0 | 5128 | 1.2401 | | 0.4008 | 1283.0 | 5132 | 1.2493 | | 0.4008 | 1284.0 | 5136 | 1.2511 | | 0.4008 | 1285.0 | 5140 | 1.2476 | | 0.4008 | 1286.0 | 5144 | 1.2440 | | 0.4008 | 1287.0 | 5148 | 1.2408 | | 0.4008 | 1288.0 | 5152 | 1.2389 | | 0.4008 | 1289.0 | 5156 | 1.2452 | | 0.4008 | 1290.0 | 5160 | 1.2512 | | 0.4008 | 1291.0 | 5164 | 1.2502 | | 0.4008 | 1292.0 | 5168 | 1.2396 | | 0.4008 | 1293.0 | 5172 | 1.2263 | | 0.4008 | 1294.0 | 5176 | 1.2149 | | 0.4008 | 1295.0 | 5180 | 1.2061 | | 0.4008 | 1296.0 | 5184 | 1.1999 | | 0.4008 | 1297.0 | 5188 | 1.1953 | | 0.4008 | 1298.0 | 5192 | 1.1914 | | 0.4008 | 1299.0 | 5196 | 1.1855 | | 0.4008 | 1300.0 | 5200 | 1.1795 | | 0.4008 | 1301.0 | 5204 | 1.1830 | | 0.4008 | 1302.0 | 5208 | 1.1923 | | 0.4008 | 1303.0 | 5212 | 1.2020 | | 0.4008 | 1304.0 | 5216 | 1.2060 | | 0.4008 | 1305.0 | 5220 | 1.2277 | | 0.4008 | 1306.0 | 5224 | 1.2438 | | 0.4008 | 1307.0 | 5228 | 1.2499 | | 0.4008 | 1308.0 | 5232 | 1.2500 | | 0.4008 | 1309.0 | 5236 | 1.2497 | | 0.4008 | 1310.0 | 5240 | 1.2522 | | 0.4008 | 1311.0 | 5244 | 1.2541 | | 0.4008 | 1312.0 | 5248 | 1.2537 | | 0.4008 | 1313.0 | 5252 | 1.2522 | | 0.4008 | 1314.0 | 5256 | 1.2485 | | 0.4008 | 1315.0 | 5260 | 1.2415 | | 0.4008 | 1316.0 | 5264 | 1.2388 | | 0.4008 | 1317.0 | 5268 | 1.2365 | | 0.4008 | 1318.0 | 5272 | 1.2348 | | 0.4008 | 1319.0 | 5276 | 1.2331 | | 0.4008 | 1320.0 | 5280 | 1.2321 | | 0.4008 | 1321.0 | 5284 | 1.2298 | | 0.4008 | 1322.0 | 5288 | 1.2291 | | 0.4008 | 1323.0 | 5292 | 1.2288 | | 0.4008 | 1324.0 | 5296 | 1.2259 | | 0.4008 | 1325.0 | 5300 | 1.2227 | | 0.4008 | 1326.0 | 5304 | 1.2183 | | 0.4008 | 1327.0 | 5308 | 1.2139 | | 0.4008 | 1328.0 | 5312 | 1.2110 | | 0.4008 | 1329.0 | 5316 | 1.2143 | | 0.4008 | 1330.0 | 5320 | 1.2166 | | 0.4008 | 1331.0 | 5324 | 1.2170 | | 0.4008 | 1332.0 | 5328 | 1.2170 | | 0.4008 | 1333.0 | 5332 | 1.2179 | | 0.4008 | 1334.0 | 5336 | 1.2179 | | 0.4008 | 1335.0 | 5340 | 1.2162 | | 0.4008 | 1336.0 | 5344 | 1.2154 | | 0.4008 | 1337.0 | 5348 | 1.2187 | | 0.4008 | 1338.0 | 5352 | 1.2213 | | 0.4008 | 1339.0 | 5356 | 1.2225 | | 0.4008 | 1340.0 | 5360 | 1.2231 | | 0.4008 | 1341.0 | 5364 | 1.2304 | | 0.4008 | 1342.0 | 5368 | 1.2316 | | 0.4008 | 1343.0 | 5372 | 1.2299 | | 0.4008 | 1344.0 | 5376 | 1.2254 | | 0.4008 | 1345.0 | 5380 | 1.2162 | | 0.4008 | 1346.0 | 5384 | 1.2209 | | 0.4008 | 1347.0 | 5388 | 1.2183 | | 0.4008 | 1348.0 | 5392 | 1.2093 | | 0.4008 | 1349.0 | 5396 | 1.1974 | | 0.4008 | 1350.0 | 5400 | 1.1941 | | 0.4008 | 1351.0 | 5404 | 1.1966 | | 0.4008 | 1352.0 | 5408 | 1.2073 | | 0.4008 | 1353.0 | 5412 | 1.2096 | | 0.4008 | 1354.0 | 5416 | 1.2137 | | 0.4008 | 1355.0 | 5420 | 1.2198 | | 0.4008 | 1356.0 | 5424 | 1.2200 | | 0.4008 | 1357.0 | 5428 | 1.2225 | | 0.4008 | 1358.0 | 5432 | 1.2242 | | 0.4008 | 1359.0 | 5436 | 1.2235 | | 0.4008 | 1360.0 | 5440 | 1.2221 | | 0.4008 | 1361.0 | 5444 | 1.2212 | | 0.4008 | 1362.0 | 5448 | 1.2151 | | 0.4008 | 1363.0 | 5452 | 1.2104 | | 0.4008 | 1364.0 | 5456 | 1.2369 | | 0.4008 | 1365.0 | 5460 | 1.2581 | | 0.4008 | 1366.0 | 5464 | 1.2742 | | 0.4008 | 1367.0 | 5468 | 1.2864 | | 0.4008 | 1368.0 | 5472 | 1.2911 | | 0.4008 | 1369.0 | 5476 | 1.2839 | | 0.4008 | 1370.0 | 5480 | 1.2776 | | 0.4008 | 1371.0 | 5484 | 1.2769 | | 0.4008 | 1372.0 | 5488 | 1.2795 | | 0.4008 | 1373.0 | 5492 | 1.2875 | | 0.4008 | 1374.0 | 5496 | 1.2917 | | 0.4015 | 1375.0 | 5500 | 1.2912 | | 0.4015 | 1376.0 | 5504 | 1.2882 | | 0.4015 | 1377.0 | 5508 | 1.2835 | | 0.4015 | 1378.0 | 5512 | 1.2786 | | 0.4015 | 1379.0 | 5516 | 1.2770 | | 0.4015 | 1380.0 | 5520 | 1.2903 | | 0.4015 | 1381.0 | 5524 | 1.2977 | | 0.4015 | 1382.0 | 5528 | 1.3009 | | 0.4015 | 1383.0 | 5532 | 1.3018 | | 0.4015 | 1384.0 | 5536 | 1.3013 | | 0.4015 | 1385.0 | 5540 | 1.2998 | | 0.4015 | 1386.0 | 5544 | 1.2951 | | 0.4015 | 1387.0 | 5548 | 1.2918 | | 0.4015 | 1388.0 | 5552 | 1.2899 | | 0.4015 | 1389.0 | 5556 | 1.2895 | | 0.4015 | 1390.0 | 5560 | 1.2881 | | 0.4015 | 1391.0 | 5564 | 1.2862 | | 0.4015 | 1392.0 | 5568 | 1.2841 | | 0.4015 | 1393.0 | 5572 | 1.2819 | | 0.4015 | 1394.0 | 5576 | 1.2798 | | 0.4015 | 1395.0 | 5580 | 1.2772 | | 0.4015 | 1396.0 | 5584 | 1.2705 | | 0.4015 | 1397.0 | 5588 | 1.2660 | | 0.4015 | 1398.0 | 5592 | 1.2614 | | 0.4015 | 1399.0 | 5596 | 1.2573 | | 0.4015 | 1400.0 | 5600 | 1.2546 | | 0.4015 | 1401.0 | 5604 | 1.2531 | | 0.4015 | 1402.0 | 5608 | 1.2521 | | 0.4015 | 1403.0 | 5612 | 1.2500 | | 0.4015 | 1404.0 | 5616 | 1.2508 | | 0.4015 | 1405.0 | 5620 | 1.2504 | | 0.4015 | 1406.0 | 5624 | 1.2504 | | 0.4015 | 1407.0 | 5628 | 1.2498 | | 0.4015 | 1408.0 | 5632 | 1.2506 | | 0.4015 | 1409.0 | 5636 | 1.2501 | | 0.4015 | 1410.0 | 5640 | 1.2494 | | 0.4015 | 1411.0 | 5644 | 1.2472 | | 0.4015 | 1412.0 | 5648 | 1.2456 | | 0.4015 | 1413.0 | 5652 | 1.2446 | | 0.4015 | 1414.0 | 5656 | 1.2436 | | 0.4015 | 1415.0 | 5660 | 1.2433 | | 0.4015 | 1416.0 | 5664 | 1.2426 | | 0.4015 | 1417.0 | 5668 | 1.2430 | | 0.4015 | 1418.0 | 5672 | 1.2423 | | 0.4015 | 1419.0 | 5676 | 1.2421 | | 0.4015 | 1420.0 | 5680 | 1.2426 | | 0.4015 | 1421.0 | 5684 | 1.2434 | | 0.4015 | 1422.0 | 5688 | 1.2442 | | 0.4015 | 1423.0 | 5692 | 1.2458 | | 0.4015 | 1424.0 | 5696 | 1.2465 | | 0.4015 | 1425.0 | 5700 | 1.2464 | | 0.4015 | 1426.0 | 5704 | 1.2464 | | 0.4015 | 1427.0 | 5708 | 1.2456 | | 0.4015 | 1428.0 | 5712 | 1.2452 | | 0.4015 | 1429.0 | 5716 | 1.2433 | | 0.4015 | 1430.0 | 5720 | 1.2398 | | 0.4015 | 1431.0 | 5724 | 1.2345 | | 0.4015 | 1432.0 | 5728 | 1.2310 | | 0.4015 | 1433.0 | 5732 | 1.2283 | | 0.4015 | 1434.0 | 5736 | 1.2254 | | 0.4015 | 1435.0 | 5740 | 1.2245 | | 0.4015 | 1436.0 | 5744 | 1.2243 | | 0.4015 | 1437.0 | 5748 | 1.2281 | | 0.4015 | 1438.0 | 5752 | 1.2306 | | 0.4015 | 1439.0 | 5756 | 1.2311 | | 0.4015 | 1440.0 | 5760 | 1.2309 | | 0.4015 | 1441.0 | 5764 | 1.2304 | | 0.4015 | 1442.0 | 5768 | 1.2311 | | 0.4015 | 1443.0 | 5772 | 1.2319 | | 0.4015 | 1444.0 | 5776 | 1.2317 | | 0.4015 | 1445.0 | 5780 | 1.2316 | | 0.4015 | 1446.0 | 5784 | 1.2310 | | 0.4015 | 1447.0 | 5788 | 1.2289 | | 0.4015 | 1448.0 | 5792 | 1.2265 | | 0.4015 | 1449.0 | 5796 | 1.2239 | | 0.4015 | 1450.0 | 5800 | 1.2194 | | 0.4015 | 1451.0 | 5804 | 1.2156 | | 0.4015 | 1452.0 | 5808 | 1.2129 | | 0.4015 | 1453.0 | 5812 | 1.2106 | | 0.4015 | 1454.0 | 5816 | 1.2093 | | 0.4015 | 1455.0 | 5820 | 1.2084 | | 0.4015 | 1456.0 | 5824 | 1.2084 | | 0.4015 | 1457.0 | 5828 | 1.2071 | | 0.4015 | 1458.0 | 5832 | 1.2051 | | 0.4015 | 1459.0 | 5836 | 1.2022 | | 0.4015 | 1460.0 | 5840 | 1.2007 | | 0.4015 | 1461.0 | 5844 | 1.1995 | | 0.4015 | 1462.0 | 5848 | 1.2008 | | 0.4015 | 1463.0 | 5852 | 1.2019 | | 0.4015 | 1464.0 | 5856 | 1.2022 | | 0.4015 | 1465.0 | 5860 | 1.2017 | | 0.4015 | 1466.0 | 5864 | 1.2005 | | 0.4015 | 1467.0 | 5868 | 1.1990 | | 0.4015 | 1468.0 | 5872 | 1.1974 | | 0.4015 | 1469.0 | 5876 | 1.1966 | | 0.4015 | 1470.0 | 5880 | 1.1973 | | 0.4015 | 1471.0 | 5884 | 1.1988 | | 0.4015 | 1472.0 | 5888 | 1.1995 | | 0.4015 | 1473.0 | 5892 | 1.1972 | | 0.4015 | 1474.0 | 5896 | 1.1946 | | 0.4015 | 1475.0 | 5900 | 1.1937 | | 0.4015 | 1476.0 | 5904 | 1.1935 | | 0.4015 | 1477.0 | 5908 | 1.1945 | | 0.4015 | 1478.0 | 5912 | 1.1963 | | 0.4015 | 1479.0 | 5916 | 1.1971 | | 0.4015 | 1480.0 | 5920 | 1.1973 | | 0.4015 | 1481.0 | 5924 | 1.1968 | | 0.4015 | 1482.0 | 5928 | 1.1970 | | 0.4015 | 1483.0 | 5932 | 1.1981 | | 0.4015 | 1484.0 | 5936 | 1.2011 | | 0.4015 | 1485.0 | 5940 | 1.2031 | | 0.4015 | 1486.0 | 5944 | 1.2038 | | 0.4015 | 1487.0 | 5948 | 1.2041 | | 0.4015 | 1488.0 | 5952 | 1.2046 | | 0.4015 | 1489.0 | 5956 | 1.2054 | | 0.4015 | 1490.0 | 5960 | 1.2053 | | 0.4015 | 1491.0 | 5964 | 1.2047 | | 0.4015 | 1492.0 | 5968 | 1.2043 | | 0.4015 | 1493.0 | 5972 | 1.2037 | | 0.4015 | 1494.0 | 5976 | 1.2039 | | 0.4015 | 1495.0 | 5980 | 1.2042 | | 0.4015 | 1496.0 | 5984 | 1.2033 | | 0.4015 | 1497.0 | 5988 | 1.2028 | | 0.4015 | 1498.0 | 5992 | 1.2025 | | 0.4015 | 1499.0 | 5996 | 1.2027 | | 0.4005 | 1500.0 | 6000 | 1.2024 | | 0.4005 | 1501.0 | 6004 | 1.2017 | | 0.4005 | 1502.0 | 6008 | 1.2016 | | 0.4005 | 1503.0 | 6012 | 1.2028 | | 0.4005 | 1504.0 | 6016 | 1.2034 | | 0.4005 | 1505.0 | 6020 | 1.2017 | | 0.4005 | 1506.0 | 6024 | 1.2009 | | 0.4005 | 1507.0 | 6028 | 1.2023 | | 0.4005 | 1508.0 | 6032 | 1.2039 | | 0.4005 | 1509.0 | 6036 | 1.2052 | | 0.4005 | 1510.0 | 6040 | 1.2066 | | 0.4005 | 1511.0 | 6044 | 1.2072 | | 0.4005 | 1512.0 | 6048 | 1.2076 | | 0.4005 | 1513.0 | 6052 | 1.2075 | | 0.4005 | 1514.0 | 6056 | 1.2071 | | 0.4005 | 1515.0 | 6060 | 1.2070 | | 0.4005 | 1516.0 | 6064 | 1.2072 | | 0.4005 | 1517.0 | 6068 | 1.2076 | | 0.4005 | 1518.0 | 6072 | 1.2063 | | 0.4005 | 1519.0 | 6076 | 1.2048 | | 0.4005 | 1520.0 | 6080 | 1.2035 | | 0.4005 | 1521.0 | 6084 | 1.2034 | | 0.4005 | 1522.0 | 6088 | 1.2024 | | 0.4005 | 1523.0 | 6092 | 1.2014 | | 0.4005 | 1524.0 | 6096 | 1.2002 | | 0.4005 | 1525.0 | 6100 | 1.2007 | | 0.4005 | 1526.0 | 6104 | 1.2013 | | 0.4005 | 1527.0 | 6108 | 1.2028 | | 0.4005 | 1528.0 | 6112 | 1.2047 | | 0.4005 | 1529.0 | 6116 | 1.2052 | | 0.4005 | 1530.0 | 6120 | 1.2029 | | 0.4005 | 1531.0 | 6124 | 1.1988 | | 0.4005 | 1532.0 | 6128 | 1.1963 | | 0.4005 | 1533.0 | 6132 | 1.1948 | | 0.4005 | 1534.0 | 6136 | 1.2572 | | 0.4005 | 1535.0 | 6140 | 1.3083 | | 0.4005 | 1536.0 | 6144 | 1.3353 | | 0.4005 | 1537.0 | 6148 | 1.3495 | | 0.4005 | 1538.0 | 6152 | 1.3553 | | 0.4005 | 1539.0 | 6156 | 1.3575 | | 0.4005 | 1540.0 | 6160 | 1.3562 | | 0.4005 | 1541.0 | 6164 | 1.3531 | | 0.4005 | 1542.0 | 6168 | 1.3512 | | 0.4005 | 1543.0 | 6172 | 1.3500 | | 0.4005 | 1544.0 | 6176 | 1.3490 | | 0.4005 | 1545.0 | 6180 | 1.3482 | | 0.4005 | 1546.0 | 6184 | 1.3469 | | 0.4005 | 1547.0 | 6188 | 1.3453 | | 0.4005 | 1548.0 | 6192 | 1.3416 | | 0.4005 | 1549.0 | 6196 | 1.3357 | | 0.4005 | 1550.0 | 6200 | 1.3297 | | 0.4005 | 1551.0 | 6204 | 1.3243 | | 0.4005 | 1552.0 | 6208 | 1.3198 | | 0.4005 | 1553.0 | 6212 | 1.3167 | | 0.4005 | 1554.0 | 6216 | 1.3153 | | 0.4005 | 1555.0 | 6220 | 1.3178 | | 0.4005 | 1556.0 | 6224 | 1.3195 | | 0.4005 | 1557.0 | 6228 | 1.3196 | | 0.4005 | 1558.0 | 6232 | 1.3191 | | 0.4005 | 1559.0 | 6236 | 1.3161 | | 0.4005 | 1560.0 | 6240 | 1.3133 | | 0.4005 | 1561.0 | 6244 | 1.3188 | | 0.4005 | 1562.0 | 6248 | 1.3219 | | 0.4005 | 1563.0 | 6252 | 1.3229 | | 0.4005 | 1564.0 | 6256 | 1.3212 | | 0.4005 | 1565.0 | 6260 | 1.3197 | | 0.4005 | 1566.0 | 6264 | 1.3178 | | 0.4005 | 1567.0 | 6268 | 1.3158 | | 0.4005 | 1568.0 | 6272 | 1.3133 | | 0.4005 | 1569.0 | 6276 | 1.2699 | | 0.4005 | 1570.0 | 6280 | 1.2334 | | 0.4005 | 1571.0 | 6284 | 1.2064 | | 0.4005 | 1572.0 | 6288 | 1.1874 | | 0.4005 | 1573.0 | 6292 | 1.1745 | | 0.4005 | 1574.0 | 6296 | 1.1676 | | 0.4005 | 1575.0 | 6300 | 1.1638 | | 0.4005 | 1576.0 | 6304 | 1.1626 | | 0.4005 | 1577.0 | 6308 | 1.1644 | | 0.4005 | 1578.0 | 6312 | 1.1544 | | 0.4005 | 1579.0 | 6316 | 1.1388 | | 0.4005 | 1580.0 | 6320 | 1.1285 | | 0.4005 | 1581.0 | 6324 | 1.1222 | | 0.4005 | 1582.0 | 6328 | 1.1200 | | 0.4005 | 1583.0 | 6332 | 1.1229 | | 0.4005 | 1584.0 | 6336 | 1.1250 | | 0.4005 | 1585.0 | 6340 | 1.1318 | | 0.4005 | 1586.0 | 6344 | 1.1341 | | 0.4005 | 1587.0 | 6348 | 1.1354 | | 0.4005 | 1588.0 | 6352 | 1.1353 | | 0.4005 | 1589.0 | 6356 | 1.1354 | | 0.4005 | 1590.0 | 6360 | 1.1357 | | 0.4005 | 1591.0 | 6364 | 1.1355 | | 0.4005 | 1592.0 | 6368 | 1.1338 | | 0.4005 | 1593.0 | 6372 | 1.1318 | | 0.4005 | 1594.0 | 6376 | 1.1298 | | 0.4005 | 1595.0 | 6380 | 1.1265 | | 0.4005 | 1596.0 | 6384 | 1.1231 | | 0.4005 | 1597.0 | 6388 | 1.1209 | | 0.4005 | 1598.0 | 6392 | 1.1193 | | 0.4005 | 1599.0 | 6396 | 1.1188 | | 0.4005 | 1600.0 | 6400 | 1.1357 | | 0.4005 | 1601.0 | 6404 | 1.1445 | | 0.4005 | 1602.0 | 6408 | 1.1491 | | 0.4005 | 1603.0 | 6412 | 1.1495 | | 0.4005 | 1604.0 | 6416 | 1.1489 | | 0.4005 | 1605.0 | 6420 | 1.1499 | | 0.4005 | 1606.0 | 6424 | 1.1537 | | 0.4005 | 1607.0 | 6428 | 1.1544 | | 0.4005 | 1608.0 | 6432 | 1.1567 | | 0.4005 | 1609.0 | 6436 | 1.1581 | | 0.4005 | 1610.0 | 6440 | 1.1583 | | 0.4005 | 1611.0 | 6444 | 1.1580 | | 0.4005 | 1612.0 | 6448 | 1.1578 | | 0.4005 | 1613.0 | 6452 | 1.1684 | | 0.4005 | 1614.0 | 6456 | 1.1755 | | 0.4005 | 1615.0 | 6460 | 1.1773 | | 0.4005 | 1616.0 | 6464 | 1.1752 | | 0.4005 | 1617.0 | 6468 | 1.1739 | | 0.4005 | 1618.0 | 6472 | 1.1721 | | 0.4005 | 1619.0 | 6476 | 1.1710 | | 0.4005 | 1620.0 | 6480 | 1.1708 | | 0.4005 | 1621.0 | 6484 | 1.1690 | | 0.4005 | 1622.0 | 6488 | 1.1667 | | 0.4005 | 1623.0 | 6492 | 1.1625 | | 0.4005 | 1624.0 | 6496 | 1.1594 | | 0.4004 | 1625.0 | 6500 | 1.1572 | | 0.4004 | 1626.0 | 6504 | 1.1549 | | 0.4004 | 1627.0 | 6508 | 1.1524 | | 0.4004 | 1628.0 | 6512 | 1.1513 | | 0.4004 | 1629.0 | 6516 | 1.1508 | | 0.4004 | 1630.0 | 6520 | 1.1507 | | 0.4004 | 1631.0 | 6524 | 1.1514 | | 0.4004 | 1632.0 | 6528 | 1.1496 | | 0.4004 | 1633.0 | 6532 | 1.1472 | | 0.4004 | 1634.0 | 6536 | 1.1463 | | 0.4004 | 1635.0 | 6540 | 1.1457 | | 0.4004 | 1636.0 | 6544 | 1.1459 | | 0.4004 | 1637.0 | 6548 | 1.1460 | | 0.4004 | 1638.0 | 6552 | 1.1470 | | 0.4004 | 1639.0 | 6556 | 1.1465 | | 0.4004 | 1640.0 | 6560 | 1.1463 | | 0.4004 | 1641.0 | 6564 | 1.1468 | | 0.4004 | 1642.0 | 6568 | 1.1471 | | 0.4004 | 1643.0 | 6572 | 1.1464 | | 0.4004 | 1644.0 | 6576 | 1.1461 | | 0.4004 | 1645.0 | 6580 | 1.1466 | | 0.4004 | 1646.0 | 6584 | 1.1476 | | 0.4004 | 1647.0 | 6588 | 1.1477 | | 0.4004 | 1648.0 | 6592 | 1.1476 | | 0.4004 | 1649.0 | 6596 | 1.1481 | | 0.4004 | 1650.0 | 6600 | 1.1645 | | 0.4004 | 1651.0 | 6604 | 1.1910 | | 0.4004 | 1652.0 | 6608 | 1.2079 | | 0.4004 | 1653.0 | 6612 | 1.2180 | | 0.4004 | 1654.0 | 6616 | 1.2234 | | 0.4004 | 1655.0 | 6620 | 1.2256 | | 0.4004 | 1656.0 | 6624 | 1.2252 | | 0.4004 | 1657.0 | 6628 | 1.2233 | | 0.4004 | 1658.0 | 6632 | 1.2203 | | 0.4004 | 1659.0 | 6636 | 1.2179 | | 0.4004 | 1660.0 | 6640 | 1.2146 | | 0.4004 | 1661.0 | 6644 | 1.2111 | | 0.4004 | 1662.0 | 6648 | 1.2098 | | 0.4004 | 1663.0 | 6652 | 1.2081 | | 0.4004 | 1664.0 | 6656 | 1.2055 | | 0.4004 | 1665.0 | 6660 | 1.1987 | | 0.4004 | 1666.0 | 6664 | 1.1908 | | 0.4004 | 1667.0 | 6668 | 1.1863 | | 0.4004 | 1668.0 | 6672 | 1.1831 | | 0.4004 | 1669.0 | 6676 | 1.1824 | | 0.4004 | 1670.0 | 6680 | 1.1804 | | 0.4004 | 1671.0 | 6684 | 1.1798 | | 0.4004 | 1672.0 | 6688 | 1.1807 | | 0.4004 | 1673.0 | 6692 | 1.1830 | | 0.4004 | 1674.0 | 6696 | 1.1838 | | 0.4004 | 1675.0 | 6700 | 1.1842 | | 0.4004 | 1676.0 | 6704 | 1.1839 | | 0.4004 | 1677.0 | 6708 | 1.1832 | | 0.4004 | 1678.0 | 6712 | 1.1821 | | 0.4004 | 1679.0 | 6716 | 1.1809 | | 0.4004 | 1680.0 | 6720 | 1.1799 | | 0.4004 | 1681.0 | 6724 | 1.1793 | | 0.4004 | 1682.0 | 6728 | 1.1780 | | 0.4004 | 1683.0 | 6732 | 1.1765 | | 0.4004 | 1684.0 | 6736 | 1.1746 | | 0.4004 | 1685.0 | 6740 | 1.1736 | | 0.4004 | 1686.0 | 6744 | 1.1737 | | 0.4004 | 1687.0 | 6748 | 1.1750 | | 0.4004 | 1688.0 | 6752 | 1.1762 | | 0.4004 | 1689.0 | 6756 | 1.1767 | | 0.4004 | 1690.0 | 6760 | 1.1776 | | 0.4004 | 1691.0 | 6764 | 1.1783 | | 0.4004 | 1692.0 | 6768 | 1.1797 | | 0.4004 | 1693.0 | 6772 | 1.1809 | | 0.4004 | 1694.0 | 6776 | 1.1814 | | 0.4004 | 1695.0 | 6780 | 1.1826 | | 0.4004 | 1696.0 | 6784 | 1.1843 | | 0.4004 | 1697.0 | 6788 | 1.1839 | | 0.4004 | 1698.0 | 6792 | 1.1827 | | 0.4004 | 1699.0 | 6796 | 1.1809 | | 0.4004 | 1700.0 | 6800 | 1.1802 | | 0.4004 | 1701.0 | 6804 | 1.1792 | | 0.4004 | 1702.0 | 6808 | 1.1789 | | 0.4004 | 1703.0 | 6812 | 1.1785 | | 0.4004 | 1704.0 | 6816 | 1.1786 | | 0.4004 | 1705.0 | 6820 | 1.1774 | | 0.4004 | 1706.0 | 6824 | 1.1759 | | 0.4004 | 1707.0 | 6828 | 1.1745 | | 0.4004 | 1708.0 | 6832 | 1.1737 | | 0.4004 | 1709.0 | 6836 | 1.1730 | | 0.4004 | 1710.0 | 6840 | 1.1725 | | 0.4004 | 1711.0 | 6844 | 1.1828 | | 0.4004 | 1712.0 | 6848 | 1.1921 | | 0.4004 | 1713.0 | 6852 | 1.1985 | | 0.4004 | 1714.0 | 6856 | 1.2017 | | 0.4004 | 1715.0 | 6860 | 1.2036 | | 0.4004 | 1716.0 | 6864 | 1.2047 | | 0.4004 | 1717.0 | 6868 | 1.2047 | | 0.4004 | 1718.0 | 6872 | 1.2048 | | 0.4004 | 1719.0 | 6876 | 1.2044 | | 0.4004 | 1720.0 | 6880 | 1.2031 | | 0.4004 | 1721.0 | 6884 | 1.2019 | | 0.4004 | 1722.0 | 6888 | 1.2012 | | 0.4004 | 1723.0 | 6892 | 1.2003 | | 0.4004 | 1724.0 | 6896 | 1.1991 | | 0.4004 | 1725.0 | 6900 | 1.1993 | | 0.4004 | 1726.0 | 6904 | 1.1991 | | 0.4004 | 1727.0 | 6908 | 1.1984 | | 0.4004 | 1728.0 | 6912 | 1.1980 | | 0.4004 | 1729.0 | 6916 | 1.1972 | | 0.4004 | 1730.0 | 6920 | 1.1966 | | 0.4004 | 1731.0 | 6924 | 1.1963 | | 0.4004 | 1732.0 | 6928 | 1.1960 | | 0.4004 | 1733.0 | 6932 | 1.1964 | | 0.4004 | 1734.0 | 6936 | 1.1965 | | 0.4004 | 1735.0 | 6940 | 1.1961 | | 0.4004 | 1736.0 | 6944 | 1.1961 | | 0.4004 | 1737.0 | 6948 | 1.1961 | | 0.4004 | 1738.0 | 6952 | 1.1952 | | 0.4004 | 1739.0 | 6956 | 1.1941 | | 0.4004 | 1740.0 | 6960 | 1.1927 | | 0.4004 | 1741.0 | 6964 | 1.1918 | | 0.4004 | 1742.0 | 6968 | 1.1915 | | 0.4004 | 1743.0 | 6972 | 1.1917 | | 0.4004 | 1744.0 | 6976 | 1.1916 | | 0.4004 | 1745.0 | 6980 | 1.1904 | | 0.4004 | 1746.0 | 6984 | 1.1885 | | 0.4004 | 1747.0 | 6988 | 1.1858 | | 0.4004 | 1748.0 | 6992 | 1.1834 | | 0.4004 | 1749.0 | 6996 | 1.1813 | | 0.401 | 1750.0 | 7000 | 1.1793 | | 0.401 | 1751.0 | 7004 | 1.1773 | | 0.401 | 1752.0 | 7008 | 1.1912 | | 0.401 | 1753.0 | 7012 | 1.1996 | | 0.401 | 1754.0 | 7016 | 1.2069 | | 0.401 | 1755.0 | 7020 | 1.2124 | | 0.401 | 1756.0 | 7024 | 1.2148 | | 0.401 | 1757.0 | 7028 | 1.2169 | | 0.401 | 1758.0 | 7032 | 1.2179 | | 0.401 | 1759.0 | 7036 | 1.2280 | | 0.401 | 1760.0 | 7040 | 1.2425 | | 0.401 | 1761.0 | 7044 | 1.2519 | | 0.401 | 1762.0 | 7048 | 1.2579 | | 0.401 | 1763.0 | 7052 | 1.2617 | | 0.401 | 1764.0 | 7056 | 1.2642 | | 0.401 | 1765.0 | 7060 | 1.2660 | | 0.401 | 1766.0 | 7064 | 1.2669 | | 0.401 | 1767.0 | 7068 | 1.2672 | | 0.401 | 1768.0 | 7072 | 1.2671 | | 0.401 | 1769.0 | 7076 | 1.2670 | | 0.401 | 1770.0 | 7080 | 1.2663 | | 0.401 | 1771.0 | 7084 | 1.2653 | | 0.401 | 1772.0 | 7088 | 1.2647 | | 0.401 | 1773.0 | 7092 | 1.2646 | | 0.401 | 1774.0 | 7096 | 1.2632 | | 0.401 | 1775.0 | 7100 | 1.2631 | | 0.401 | 1776.0 | 7104 | 1.2633 | | 0.401 | 1777.0 | 7108 | 1.2632 | | 0.401 | 1778.0 | 7112 | 1.2627 | | 0.401 | 1779.0 | 7116 | 1.2621 | | 0.401 | 1780.0 | 7120 | 1.2621 | | 0.401 | 1781.0 | 7124 | 1.2613 | | 0.401 | 1782.0 | 7128 | 1.2605 | | 0.401 | 1783.0 | 7132 | 1.2607 | | 0.401 | 1784.0 | 7136 | 1.2611 | | 0.401 | 1785.0 | 7140 | 1.2613 | | 0.401 | 1786.0 | 7144 | 1.2615 | | 0.401 | 1787.0 | 7148 | 1.2603 | | 0.401 | 1788.0 | 7152 | 1.2549 | | 0.401 | 1789.0 | 7156 | 1.2472 | | 0.401 | 1790.0 | 7160 | 1.2418 | | 0.401 | 1791.0 | 7164 | 1.2381 | | 0.401 | 1792.0 | 7168 | 1.2356 | | 0.401 | 1793.0 | 7172 | 1.2338 | | 0.401 | 1794.0 | 7176 | 1.2328 | | 0.401 | 1795.0 | 7180 | 1.2314 | | 0.401 | 1796.0 | 7184 | 1.2304 | | 0.401 | 1797.0 | 7188 | 1.2291 | | 0.401 | 1798.0 | 7192 | 1.2275 | | 0.401 | 1799.0 | 7196 | 1.2232 | | 0.401 | 1800.0 | 7200 | 1.2205 | | 0.401 | 1801.0 | 7204 | 1.2190 | | 0.401 | 1802.0 | 7208 | 1.2192 | | 0.401 | 1803.0 | 7212 | 1.2199 | | 0.401 | 1804.0 | 7216 | 1.2199 | | 0.401 | 1805.0 | 7220 | 1.2201 | | 0.401 | 1806.0 | 7224 | 1.2204 | | 0.401 | 1807.0 | 7228 | 1.2204 | | 0.401 | 1808.0 | 7232 | 1.2202 | | 0.401 | 1809.0 | 7236 | 1.2199 | | 0.401 | 1810.0 | 7240 | 1.2195 | | 0.401 | 1811.0 | 7244 | 1.2194 | | 0.401 | 1812.0 | 7248 | 1.2195 | | 0.401 | 1813.0 | 7252 | 1.2191 | | 0.401 | 1814.0 | 7256 | 1.2185 | | 0.401 | 1815.0 | 7260 | 1.2183 | | 0.401 | 1816.0 | 7264 | 1.2184 | | 0.401 | 1817.0 | 7268 | 1.2186 | | 0.401 | 1818.0 | 7272 | 1.2190 | | 0.401 | 1819.0 | 7276 | 1.2189 | | 0.401 | 1820.0 | 7280 | 1.2186 | | 0.401 | 1821.0 | 7284 | 1.2183 | | 0.401 | 1822.0 | 7288 | 1.2191 | | 0.401 | 1823.0 | 7292 | 1.2202 | | 0.401 | 1824.0 | 7296 | 1.2214 | | 0.401 | 1825.0 | 7300 | 1.2223 | | 0.401 | 1826.0 | 7304 | 1.2224 | | 0.401 | 1827.0 | 7308 | 1.2203 | | 0.401 | 1828.0 | 7312 | 1.2192 | | 0.401 | 1829.0 | 7316 | 1.2193 | | 0.401 | 1830.0 | 7320 | 1.2190 | | 0.401 | 1831.0 | 7324 | 1.2184 | | 0.401 | 1832.0 | 7328 | 1.2176 | | 0.401 | 1833.0 | 7332 | 1.2078 | | 0.401 | 1834.0 | 7336 | 1.2013 | | 0.401 | 1835.0 | 7340 | 1.1970 | | 0.401 | 1836.0 | 7344 | 1.1946 | | 0.401 | 1837.0 | 7348 | 1.1931 | | 0.401 | 1838.0 | 7352 | 1.1918 | | 0.401 | 1839.0 | 7356 | 1.1913 | | 0.401 | 1840.0 | 7360 | 1.1914 | | 0.401 | 1841.0 | 7364 | 1.1920 | | 0.401 | 1842.0 | 7368 | 1.1927 | | 0.401 | 1843.0 | 7372 | 1.1929 | | 0.401 | 1844.0 | 7376 | 1.1928 | | 0.401 | 1845.0 | 7380 | 1.1923 | | 0.401 | 1846.0 | 7384 | 1.1920 | | 0.401 | 1847.0 | 7388 | 1.1924 | | 0.401 | 1848.0 | 7392 | 1.1927 | | 0.401 | 1849.0 | 7396 | 1.1930 | | 0.401 | 1850.0 | 7400 | 1.1929 | | 0.401 | 1851.0 | 7404 | 1.1927 | | 0.401 | 1852.0 | 7408 | 1.1921 | | 0.401 | 1853.0 | 7412 | 1.1916 | | 0.401 | 1854.0 | 7416 | 1.1914 | | 0.401 | 1855.0 | 7420 | 1.1913 | | 0.401 | 1856.0 | 7424 | 1.1914 | | 0.401 | 1857.0 | 7428 | 1.1913 | | 0.401 | 1858.0 | 7432 | 1.1909 | | 0.401 | 1859.0 | 7436 | 1.1907 | | 0.401 | 1860.0 | 7440 | 1.1907 | | 0.401 | 1861.0 | 7444 | 1.1906 | | 0.401 | 1862.0 | 7448 | 1.1903 | | 0.401 | 1863.0 | 7452 | 1.1902 | | 0.401 | 1864.0 | 7456 | 1.1926 | | 0.401 | 1865.0 | 7460 | 1.1959 | | 0.401 | 1866.0 | 7464 | 1.1985 | | 0.401 | 1867.0 | 7468 | 1.2005 | | 0.401 | 1868.0 | 7472 | 1.2018 | | 0.401 | 1869.0 | 7476 | 1.2014 | | 0.401 | 1870.0 | 7480 | 1.2009 | | 0.401 | 1871.0 | 7484 | 1.2010 | | 0.401 | 1872.0 | 7488 | 1.2009 | | 0.401 | 1873.0 | 7492 | 1.2003 | | 0.401 | 1874.0 | 7496 | 1.1998 | | 0.4005 | 1875.0 | 7500 | 1.1991 | | 0.4005 | 1876.0 | 7504 | 1.1985 | | 0.4005 | 1877.0 | 7508 | 1.1982 | | 0.4005 | 1878.0 | 7512 | 1.1978 | | 0.4005 | 1879.0 | 7516 | 1.1976 | | 0.4005 | 1880.0 | 7520 | 1.1963 | | 0.4005 | 1881.0 | 7524 | 1.1952 | | 0.4005 | 1882.0 | 7528 | 1.1948 | | 0.4005 | 1883.0 | 7532 | 1.1940 | | 0.4005 | 1884.0 | 7536 | 1.1932 | | 0.4005 | 1885.0 | 7540 | 1.1927 | | 0.4005 | 1886.0 | 7544 | 1.1924 | | 0.4005 | 1887.0 | 7548 | 1.1916 | | 0.4005 | 1888.0 | 7552 | 1.1905 | | 0.4005 | 1889.0 | 7556 | 1.1893 | | 0.4005 | 1890.0 | 7560 | 1.1883 | | 0.4005 | 1891.0 | 7564 | 1.1873 | | 0.4005 | 1892.0 | 7568 | 1.1865 | | 0.4005 | 1893.0 | 7572 | 1.1862 | | 0.4005 | 1894.0 | 7576 | 1.1853 | | 0.4005 | 1895.0 | 7580 | 1.1847 | | 0.4005 | 1896.0 | 7584 | 1.1843 | | 0.4005 | 1897.0 | 7588 | 1.1842 | | 0.4005 | 1898.0 | 7592 | 1.1848 | | 0.4005 | 1899.0 | 7596 | 1.1855 | | 0.4005 | 1900.0 | 7600 | 1.1866 | | 0.4005 | 1901.0 | 7604 | 1.1875 | | 0.4005 | 1902.0 | 7608 | 1.1883 | | 0.4005 | 1903.0 | 7612 | 1.1892 | | 0.4005 | 1904.0 | 7616 | 1.1896 | | 0.4005 | 1905.0 | 7620 | 1.1896 | | 0.4005 | 1906.0 | 7624 | 1.1895 | | 0.4005 | 1907.0 | 7628 | 1.1892 | | 0.4005 | 1908.0 | 7632 | 1.1890 | | 0.4005 | 1909.0 | 7636 | 1.1892 | | 0.4005 | 1910.0 | 7640 | 1.1892 | | 0.4005 | 1911.0 | 7644 | 1.1888 | | 0.4005 | 1912.0 | 7648 | 1.1884 | | 0.4005 | 1913.0 | 7652 | 1.1881 | | 0.4005 | 1914.0 | 7656 | 1.1876 | | 0.4005 | 1915.0 | 7660 | 1.1870 | | 0.4005 | 1916.0 | 7664 | 1.1866 | | 0.4005 | 1917.0 | 7668 | 1.1865 | | 0.4005 | 1918.0 | 7672 | 1.1863 | | 0.4005 | 1919.0 | 7676 | 1.1863 | | 0.4005 | 1920.0 | 7680 | 1.1848 | | 0.4005 | 1921.0 | 7684 | 1.1799 | | 0.4005 | 1922.0 | 7688 | 1.1758 | | 0.4005 | 1923.0 | 7692 | 1.1711 | | 0.4005 | 1924.0 | 7696 | 1.1681 | | 0.4005 | 1925.0 | 7700 | 1.1661 | | 0.4005 | 1926.0 | 7704 | 1.1651 | | 0.4005 | 1927.0 | 7708 | 1.1649 | | 0.4005 | 1928.0 | 7712 | 1.1646 | | 0.4005 | 1929.0 | 7716 | 1.1639 | | 0.4005 | 1930.0 | 7720 | 1.1634 | | 0.4005 | 1931.0 | 7724 | 1.1628 | | 0.4005 | 1932.0 | 7728 | 1.1627 | | 0.4005 | 1933.0 | 7732 | 1.1624 | | 0.4005 | 1934.0 | 7736 | 1.1620 | | 0.4005 | 1935.0 | 7740 | 1.1619 | | 0.4005 | 1936.0 | 7744 | 1.1618 | | 0.4005 | 1937.0 | 7748 | 1.1618 | | 0.4005 | 1938.0 | 7752 | 1.1618 | | 0.4005 | 1939.0 | 7756 | 1.1632 | | 0.4005 | 1940.0 | 7760 | 1.1642 | | 0.4005 | 1941.0 | 7764 | 1.1649 | | 0.4005 | 1942.0 | 7768 | 1.1653 | | 0.4005 | 1943.0 | 7772 | 1.1657 | | 0.4005 | 1944.0 | 7776 | 1.1660 | | 0.4005 | 1945.0 | 7780 | 1.1657 | | 0.4005 | 1946.0 | 7784 | 1.1653 | | 0.4005 | 1947.0 | 7788 | 1.1650 | | 0.4005 | 1948.0 | 7792 | 1.1648 | | 0.4005 | 1949.0 | 7796 | 1.1646 | | 0.4005 | 1950.0 | 7800 | 1.1644 | | 0.4005 | 1951.0 | 7804 | 1.1642 | | 0.4005 | 1952.0 | 7808 | 1.1637 | | 0.4005 | 1953.0 | 7812 | 1.1635 | | 0.4005 | 1954.0 | 7816 | 1.1633 | | 0.4005 | 1955.0 | 7820 | 1.1631 | | 0.4005 | 1956.0 | 7824 | 1.1629 | | 0.4005 | 1957.0 | 7828 | 1.1628 | | 0.4005 | 1958.0 | 7832 | 1.1628 | | 0.4005 | 1959.0 | 7836 | 1.1628 | | 0.4005 | 1960.0 | 7840 | 1.1629 | | 0.4005 | 1961.0 | 7844 | 1.1631 | | 0.4005 | 1962.0 | 7848 | 1.1633 | | 0.4005 | 1963.0 | 7852 | 1.1634 | | 0.4005 | 1964.0 | 7856 | 1.1634 | | 0.4005 | 1965.0 | 7860 | 1.1666 | | 0.4005 | 1966.0 | 7864 | 1.1694 | | 0.4005 | 1967.0 | 7868 | 1.1712 | | 0.4005 | 1968.0 | 7872 | 1.1723 | | 0.4005 | 1969.0 | 7876 | 1.1733 | | 0.4005 | 1970.0 | 7880 | 1.1740 | | 0.4005 | 1971.0 | 7884 | 1.1742 | | 0.4005 | 1972.0 | 7888 | 1.1745 | | 0.4005 | 1973.0 | 7892 | 1.1747 | | 0.4005 | 1974.0 | 7896 | 1.1752 | | 0.4005 | 1975.0 | 7900 | 1.1760 | | 0.4005 | 1976.0 | 7904 | 1.1766 | | 0.4005 | 1977.0 | 7908 | 1.1769 | | 0.4005 | 1978.0 | 7912 | 1.1771 | | 0.4005 | 1979.0 | 7916 | 1.1773 | | 0.4005 | 1980.0 | 7920 | 1.1774 | | 0.4005 | 1981.0 | 7924 | 1.1773 | | 0.4005 | 1982.0 | 7928 | 1.1773 | | 0.4005 | 1983.0 | 7932 | 1.1771 | | 0.4005 | 1984.0 | 7936 | 1.1768 | | 0.4005 | 1985.0 | 7940 | 1.1762 | | 0.4005 | 1986.0 | 7944 | 1.1758 | | 0.4005 | 1987.0 | 7948 | 1.1756 | | 0.4005 | 1988.0 | 7952 | 1.1754 | | 0.4005 | 1989.0 | 7956 | 1.1753 | | 0.4005 | 1990.0 | 7960 | 1.1754 | | 0.4005 | 1991.0 | 7964 | 1.1757 | | 0.4005 | 1992.0 | 7968 | 1.1759 | | 0.4005 | 1993.0 | 7972 | 1.1760 | | 0.4005 | 1994.0 | 7976 | 1.1761 | | 0.4005 | 1995.0 | 7980 | 1.1761 | | 0.4005 | 1996.0 | 7984 | 1.1761 | | 0.4005 | 1997.0 | 7988 | 1.1761 | | 0.4005 | 1998.0 | 7992 | 1.1761 | | 0.4005 | 1999.0 | 7996 | 1.1761 | | 0.4011 | 2000.0 | 8000 | 1.1761 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
timothy-geiger/distilhubert-finetuned-gtzan
timothy-geiger
2024-03-07T23:25:42Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2024-03-06T17:44:21Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0924 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7495 | 1.0 | 450 | 1.7168 | 0.52 | | 1.1633 | 2.0 | 900 | 1.0515 | 0.66 | | 0.3792 | 3.0 | 1350 | 0.7312 | 0.73 | | 0.5365 | 4.0 | 1800 | 0.9707 | 0.75 | | 0.0234 | 5.0 | 2250 | 1.1124 | 0.75 | | 0.0039 | 6.0 | 2700 | 0.9717 | 0.82 | | 0.1781 | 7.0 | 3150 | 1.0491 | 0.82 | | 0.0009 | 8.0 | 3600 | 1.1946 | 0.83 | | 0.0007 | 9.0 | 4050 | 1.1116 | 0.84 | | 0.0004 | 10.0 | 4500 | 1.0814 | 0.85 | | 0.0004 | 11.0 | 4950 | 1.1160 | 0.85 | | 0.0003 | 12.0 | 5400 | 1.1082 | 0.85 | | 0.0003 | 13.0 | 5850 | 1.1311 | 0.86 | | 0.0002 | 14.0 | 6300 | 1.1159 | 0.86 | | 0.0003 | 15.0 | 6750 | 1.0924 | 0.87 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Alpaca69B/phi2-2b-absa
Alpaca69B
2024-03-07T23:21:02Z
4
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-30T02:56:41Z
--- library_name: transformers tags: [] --- --- # phi2-2b-absa: Fine-Tuned Aspect-Based Sentiment Analysis Model ## Model Description The **phi2-2b-absa** model is a fine-tuned aspect-based sentiment analysis (ABSA) model based on the Microsoft Phi-2 model. It has been trained on the **semeval2016-full-absa-reviews-english-translated-resampled** dataset. The model predicts sentiments towards different aspects mentioned in a given sentence. ## Fine-Tuning Details The fine tuning can be revisited on [Google Colab](https://colab.research.google.com/drive/1n3ykETLpHQPXwPhUcOe-z9cG3ThrDkSi?usp=sharing). ### Dataset - **Name:** semeval2016-full-absa-reviews-english-translated-resampled - **Description:** Annotated dataset for ABSA containing sentences, aspects, sentiments, and additional contextual text. It is split into train and test sets. ### Model Architecture - **Base Model:** Microsoft Phi-2 - **Fine-Tuned Model:** phi2-2b-absa ### Fine-Tuning Parameters - **LoRA Attention Dimension (lora_r):** 64 - **LoRA Scaling Parameter (lora_alpha):** 16 - **LoRA Dropout Probability (lora_dropout):** 0.1 ### BitsAndBytes Quantization - **Activate 4-bit Precision:** True - **Compute Dtype for 4-bit Models:** float16 - **Quantization Type:** nf4 ### Training Parameters - **Number of Training Epochs:** 1 - **Batch Size per GPU for Training:** 4 - **Batch Size per GPU for Evaluation:** 4 - **Gradient Accumulation Steps:** 1 - **Learning Rate:** 2e-4 - **Weight Decay:** 0.001 - **Optimizer:** PagedAdamW (32-bit) - **Learning Rate Scheduler:** Cosine ### SFT Parameters - **Maximum Sequence Length:** None - **Packing:** False ## How to Use ``` from transformers import AutoTokenizer, pipeline import torch model = "Alpaca69B/llama-2-7b-absa-semeval-2016" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device="auto", ) input_sentence = "the first thing that attracts attention is the warm reception and the smiling receptionists." sequences = pipeline( f'### Human: {input_sentence} ### Assistant: aspect:', do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) sequences[0]['generated_text'] ``` Testing can be seen on [Google Colab](https://colab.research.google.com/drive/1eKdZYYWiivyeCQDsocGBstVODMLZyT-_?usp=sharing) ## Acknowledgments - The fine-tuning process and model development were performed by Ben Kampmann. ---
sarak7/H4_39_769_v1
sarak7
2024-03-07T23:19:46Z
175
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T23:18:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
imsarfaroz/fine-tuned-albert-emotion
imsarfaroz
2024-03-07T23:19:19Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "albert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T14:58:37Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: fine-tuned-albert-tweets results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9305 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-albert-tweets This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1757 - Accuracy: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3202 | 1.0 | 1000 | 0.2518 | 0.912 | | 0.1537 | 2.0 | 2000 | 0.1757 | 0.9305 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
dolainu/Nyanners_loraXL_Vtuber
dolainu
2024-03-07T23:15:36Z
4
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "license:apache-2.0", "region:us" ]
text-to-image
2024-03-07T22:36:54Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- <lora:NyanXL_V1_50se:0.87>, nyanners1st, purple eyes, petite, closed mouth, smug parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, realistic output: url: images/09104-3065517054.png - text: >- <lora:NyanXL_V1_50se:0.87>, nyanners1st, purple eyes, petite, closed mouth, smug, shirt lift, bed, legs up, pussy, hugging own legs parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, realistic output: url: images/09101-2699702684.png - text: >- <lora:NyanXL_V1_50se:0.87>, nyanners1st, purple eyes, petite, closed mouth, smug, shirt lift, bed, masturbating, pussy parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, realistic output: url: images/09094-3843125815.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners1st, purple eyes, petite, closed mouth, smug, sitting, table, drink, hand on cheek, looking at viewer, resting head parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers output: url: images/09082-3207580297.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners1st, medium hair, purple eyes, petite, closed mouth, smug, sitting, table, drink, hand on cheek, looking at viewer, resting head parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers output: url: images/00028-4212975261.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners1st, medium hair, purple eyes, petite, closed mouth, smug, sitting, table, drink, hand on cheek, looking at viewer, resting head parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers output: url: images/09078-3444304162.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners1st, purple eyes, petite, closed mouth, smug, kneeling, shirt lift parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers output: url: images/09085-1394382796.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:1>, nyanners2st, long hair, kneeling, closed mouth, shirt lift parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, realistic, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, motion lines output: url: images/09018-3981033982.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners2st, long hair, closed mouth, shirt lift, smug, petite, lying, bed parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, realistic, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, motion lines output: url: images/09035-1317649319.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners2st, long hair, kneeling, closed mouth, shirt lift, smug, petite parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, realistic, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, motion lines output: url: images/09026-560715627.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners2st, long hair, kneeling, closed mouth, shirt lift, smug, petite parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, realistic, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers, motion lines output: url: images/09024-4125556276.png - text: >- score_9, score_8_up, score_7_up, <lora:NyanXL_V1_50se:0.87>, nyanners2st, long hair, purple eyes, petite, closed mouth, smug, sitting, table, drink, hand on cheek, looking at viewer, resting head parameters: negative_prompt: >- censored, unfinished, sketch, messy drawing, amateur drawing, thick thighs, muscular female, bad anatomy, bad proportions, deformed, deformed anatomy, deformed fingers output: url: images/09077-834539960.png base_model: stablediffusionapi/pony-diffusion-v6-xl instance_prompt: null license: apache-2.0 --- # Nyanners <Gallery /> ## Model description Works best with Ponydiffusion V6 XL TESTED AT 0.87 STRENGTH Prompts: short hair ver.: &quot;nyanners1st, purple eyes&quot;---optional: &quot;medium hair&quot; long hair ver.: &quot;nyanners2st, long hair, purple eyes&quot; ## Download model Weights for this model are available in Safetensors format. [Download](/dolainu/Nyanners_lora_Vtuber/tree/main) them in the Files & versions tab.
ArtMindia/artmindia3k
ArtMindia
2024-03-07T23:07:06Z
0
0
adapter-transformers
[ "adapter-transformers", "pytorch", "mistral", "question-answering", "en", "license:apache-2.0", "region:us" ]
question-answering
2023-10-28T00:43:48Z
--- license: apache-2.0 language: - en library_name: adapter-transformers metrics: - accuracy pipeline_tag: question-answering --- --- license: apache-2.0 language: - en This is just a test card with a few thousand rows of data. I wish I had more to add but that is all. How much do you need. Here it is. fsdf asdf sdf dsafs fsd fad sfs f sadf dafs dfs fa sf asf sf s afs fsdf f s f sf sdf sf sf s This model is not too short
AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0
AIdenU
2024-03-07T23:05:28Z
216
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-19T00:55:41Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation tags: - llama2 --- ### BaseModel - [AIdenU/LLAMA-2-13b-ko-Y24_v2.0](https://huggingface.co/AIdenU/LLAMA-2-13b-ko-Y24_v2.0) ### Model Generation ``` from transforemrs import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24-DPO_v2.0", use_fast=True) systemPrompt = "당신은 유능한 AI입니다." prompt = "지렁이도 밟으면 꿈틀하나요?" outputs = model.generate( **tokenizer( f"[INST] <<SYS>>\n{systemPrompt}\n<</SYS>>\n\n{prompt} [/INST] ", return_tensors='pt' ).to('cuda'), max_new_tokens=256, temperature=0.2, top_p=1, do_sample=True ) print(tokenizer.decode(outputs[0])) ```
iestynmullinor/roberta-reranker-fever-better
iestynmullinor
2024-03-07T23:05:15Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T23:04:56Z
--- license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer model-index: - name: roberta-reranker-fever-better results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-reranker-fever-better This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0444 | 1.0 | 12500 | 0.0209 | | 0.0001 | 2.0 | 25000 | 0.0278 | | 0.0 | 3.0 | 37500 | 0.0266 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.1
dolainu/Pipkin_Pippa_lora_Vtuber
dolainu
2024-03-07T23:05:07Z
4
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:apache-2.0", "region:us" ]
text-to-image
2024-03-07T23:04:57Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- <lora:PippaV0.15E:0.7>, pipkin_pippa, pink eyes, <lora:hyperrefiner_v090:1>, sitting parameters: negative_prompt: easynegative, bad-hands-5 output: url: images/03865-278470680.png - text: >- <lora:PippaV0.15E:0.7>, pipkin_pippa, pink eyes, <lora:hyperrefiner_v090:1>, (nude), petite, shiny skin, <lora:Smooth belly_v1.3.2:0.6> parameters: negative_prompt: easynegative, bad-hands-5 output: url: images/03859-2653556988.png - text: >- <lora:PippaV0.15E:0.7>, pipkin_pippa, pink eyes, <lora:hyperrefiner_v090:1>, (nude), petite, shiny skin, embarrassed parameters: negative_prompt: easynegative, bad-hands-5 output: url: images/03856-508608459.png - text: >- <lora:PippaV0.15E:0.7>, pipkin_pippa, pink eyes, <lora:hyperrefiner_v090:1>, 1girl, sitting, [pregnant] parameters: negative_prompt: easynegative output: url: images/03729-1697240416.png base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null license: apache-2.0 --- # Pippkin Pippa <Gallery /> ## Model description Tested at 0.7-0.8 strength. Trigger Worlds: pipkin_pippa, pink eyes For NSFW i recomend including &quot;petite&quot; in your prompt, otherwise the proportions may be slightly off. ## Download model Weights for this model are available in Safetensors format. [Download](/dolainu/Pippkin_Pippa_lora_Vtuber/tree/main) them in the Files & versions tab.
AIdenU/Gemma-7b-ko-Y24_v2.0
AIdenU
2024-03-07T23:04:05Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T00:12:43Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation tags: - gemma --- ### BaseModel - [google/gemma-7b](https://huggingface.co/google/gemma-7b) ### Model Generation ``` from transforemrs import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("AIdenU/Gemma-7b-ko-Y24_v2.0", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("AIdenU/Gemma-7b-ko-Y24_v2.0", use_fast=True) systemPrompt = "당신은 유능한 AI입니다." prompt = "지렁이도 밟으면 꿈틀하나요?" outputs = model.generate( **tokenizer( f"### instruction: {system}\n{prompt} \n### output: ", return_tensors='pt' ).to('cuda'), max_new_tokens=256, temperature=0.2, top_p=1, do_sample=True ) print(tokenizer.decode(outputs[0])) ```
AIdenU/LLAMA-2-13b-ko-Y24_v2.0
AIdenU
2024-03-07T23:01:30Z
239
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T23:18:08Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation tags: - llama2 --- ### BaseModel - [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) ### Model Generation ``` from transforemrs import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24_v2.0", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24_v2.0", use_fast=True) systemPrompt = "당신은 유능한 AI입니다." prompt = "지렁이도 밟으면 꿈틀하나요?" outputs = model.generate( **tokenizer( f"[INST] <<SYS>>\n{systemPrompt}\n<</SYS>>\n\n{prompt} [/INST] ", return_tensors='pt' ).to('cuda'), max_new_tokens=256, temperature=0.2, top_p=1, do_sample=True ) print(tokenizer.decode(outputs[0])) ```
dagbs/gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual-GGUF
dagbs
2024-03-07T22:46:21Z
366
2
null
[ "gguf", "bg", "ca", "cs", "da", "de", "en", "es", "fr", "hr", "hu", "it", "nl", "pl", "pt", "ro", "ru", "sl", "sr", "sv", "uk", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-07T21:33:13Z
--- license: apache-2.0 language: - bg - ca - cs - da - de - en - es - fr - hr - hu - it - nl - pl - pt - ro - ru - sl - sr - sv - uk --- # gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual - GGUF Original Model: [NickyNicky/gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual](https://huggingface.co/NickyNicky/gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/YXqUXFjX8uIJT-mdOnM1h.png)
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_32_32_0.01_4_0.0002
ferrazzipietro
2024-03-07T22:39:42Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T22:39:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF
MaziyarPanahi
2024-03-07T22:33:24Z
54
2
transformers
[ "transformers", "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "tensorboard", "safetensors", "gemma", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/deita-10k-v0-sft", "base_model:google/gemma-7b", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "base_model:HuggingFaceH4/zephyr-7b-gemma-sft-v0.1", "base_model:quantized:HuggingFaceH4/zephyr-7b-gemma-sft-v0.1" ]
text-generation
2024-03-07T22:03:29Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - transformers - tensorboard - safetensors - gemma - text-generation - alignment-handbook - trl - sft - generated_from_trainer - conversational - en - dataset:HuggingFaceH4/deita-10k-v0-sft - base_model:google/gemma-7b - license:other - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - text-generation model_name: zephyr-7b-gemma-sft-v0.1-GGUF base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1 inference: false model_creator: HuggingFaceH4 pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF) - Model creator: [HuggingFaceH4](https://huggingface.co/HuggingFaceH4) - Original model: [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) ## Description [MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF) contains GGUF format model files for [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1). ## How to use Thanks to [TheBloke](https://huggingface.co/TheBloke) for preparing an amazing README on how to use GGUF models: ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ### Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: [MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF) and below it, a specific filename to download, such as: zephyr-7b-gemma-sft-v0.1-GGUF.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF zephyr-7b-gemma-sft-v0.1-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` </details> <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download [MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF) --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MaziyarPanahi/zephyr-7b-gemma-sft-v0.1-GGUF zephyr-7b-gemma-sft-v0.1-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m zephyr-7b-gemma-sft-v0.1-GGUF.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./zephyr-7b-gemma-sft-v0.1-GGUF.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./zephyr-7b-gemma-sft-v0.1-GGUF.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
Maqqq/OpenHermes-2.5-Mistral-7B-15
Maqqq
2024-03-07T22:26:33Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T21:55:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
babakroshanikhiavi/q-FrozenLake-v1-4x4-noSlippery
babakroshanikhiavi
2024-03-07T22:23:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T22:20:59Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="babakroshanikhiavi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_32_32_0.05_16_0.0002
ferrazzipietro
2024-03-07T22:20:09Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T17:23:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nisten/smaugzilla-77b
nisten
2024-03-07T22:19:39Z
50
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "base_model:abacusai/Smaug-72B-v0.1", "base_model:finetune:abacusai/Smaug-72B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T01:17:55Z
--- base_model: - abacusai/Smaug-72B-v0.1 library_name: transformers tags: - mergekit - merge license: mit --- # SMAUGZILLA-77B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/jdfROcB46SaQZkjNRb8ea.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). The base model was [Smaug-72](https://huggingface.co/abacusai/Smaug-72B-v0.1). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * /home/ubuntu/nvm/smaug * /home/ubuntu/nvm/minismaug
Arczisan/christy-doa
Arczisan
2024-03-07T22:17:25Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "region:us" ]
text-to-image
2024-03-07T22:17:21Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/chisty.png base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null --- # Dead or Alive - Christy <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Arczisan/christy-doa/tree/main) them in the Files & versions tab.
Arczisan/royal-gown
Arczisan
2024-03-07T22:05:54Z
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "region:us" ]
text-to-image
2024-03-07T22:05:50Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: "UNICODE\0\0(\0(\0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0e\0d\0g\0Q\0u\0a\0l\0i\0t\0y\0)\0)\0,\0s\0m\0i\0l\0e\0,\01\0g\0i\0r\0l\0,\0s\0o\0l\0o\0,\0s\0t\0a\0n\0d\0i\0n\0g\0,\0p\0o\0s\0i\0n\0g\0,\0" output: url: >- images/18489-484510326-((masterpiece,best quality,edgQuality)),smile,1girl,solo,standing,posing,_ballgown, edgPetal, a woman wearing a ballgown made of.jpeg base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null --- # Royal Gown <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Arczisan/royal-gown/tree/main) them in the Files & versions tab.
HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
HuggingFaceM4
2024-03-07T22:05:47Z
8,619
43
transformers
[ "transformers", "safetensors", "siglip", "zero-shot-image-classification", "custom_code", "arxiv:2307.06304", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2024-01-30T19:31:08Z
--- license: apache-2.0 --- Same as https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 with two changes: - increase max resolution to 980 x 980 (instead of 384 x 384) by interpolating the position embeddings - implement the strategy in [NaViT](https://arxiv.org/abs/2307.06304) to allow a/ variable resoltion images, b/ aspect ratio preserved images These changes only apply to the vision tower. No changes to the text tower. Implementation is fully backward compatible to `https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2` -> just don't specify the `patch_attention_mask` Usage: ```python import torch from modeling_siglip import SiglipVisionModel DEVICE = torch.device("cuda:0") PATCH_SIZE = 14 pixel_values = torch.randn(2, 3, 28, 42, dtype=torch.bfloat16, device=DEVICE) pixel_attention_mask = [ [ [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, ], [ [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, ], ] pixel_attention_mask = torch.tensor(pixel_attention_mask, dtype=torch.bool, device=DEVICE) patches_subgrid = pixel_attention_mask.unfold( dimension=1, size=PATCH_SIZE, step=PATCH_SIZE ).unfold(dimension=2, size=PATCH_SIZE, step=PATCH_SIZE) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() model = SiglipVisionModel.from_pretrained("HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit", _flash_attn_2_enabled=True) model.train() model.vision_model.to(DEVICE, dtype=torch.bfloat16) output = model.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) ```
6001k1d/ppo-Huggy
6001k1d
2024-03-07T22:00:21Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-03-06T18:19:18Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 6001k1d/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Maqqq/OpenHermes-2.5-Mistral-7B-14
Maqqq
2024-03-07T21:58:58Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T19:57:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
twhoool02/Llama-2-7b-hf-AWQ
twhoool02
2024-03-07T21:58:42Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "AWQ", "llama-2", "en", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:quantized:meta-llama/Llama-2-7b-hf", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-03-03T21:37:40Z
--- language: en license: other tags: - facebook - meta - AWQ - llama-2 - llama base_model: meta-llama/Llama-2-7b-hf model_name: Llama-2-7b-hf-AWQ library: - Transformers - AWQ arxiv: https://arxiv.org/abs/2306.00978 model_type: llama pipeline_tag: text-generation qunatized_by: twhoool02 --- # Model Card for Llama-2-7b-hf-AWQ <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model is a quantized version of the meta-llama/Llama-2-7b-hf model. The model was quantized using AWQ. - **Developed by:** Ted Whooley - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** llama - **Language(s) (NLP):** en - **License:** other - **Finetuned from model [optional]:** meta-llama/Llama-2-7b-hf ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
farid1088/GQA_BERT_legal_SQuAD_complete_augmented_1000
farid1088
2024-03-07T21:47:44Z
35
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-05T19:45:34Z
--- tags: - generated_from_trainer model-index: - name: GQA_BERT_legal_SQuAD_complete_augmented_1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_BERT_legal_SQuAD_complete_augmented_1000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 3 | 5.1193 | | No log | 2.0 | 6 | 4.5799 | | No log | 3.0 | 9 | 3.9567 | | No log | 4.0 | 12 | 3.6237 | | No log | 5.0 | 15 | 3.1782 | | No log | 6.0 | 18 | 2.8046 | | No log | 7.0 | 21 | 2.5128 | | No log | 8.0 | 24 | 2.2374 | | No log | 9.0 | 27 | 2.0316 | | No log | 10.0 | 30 | 1.8078 | | No log | 11.0 | 33 | 1.6466 | | No log | 12.0 | 36 | 1.4863 | | No log | 13.0 | 39 | 1.3314 | | No log | 14.0 | 42 | 1.2554 | | No log | 15.0 | 45 | 1.1996 | | No log | 16.0 | 48 | 1.1472 | | No log | 17.0 | 51 | 1.1241 | | No log | 18.0 | 54 | 1.1021 | | No log | 19.0 | 57 | 1.0756 | | No log | 20.0 | 60 | 1.0455 | | No log | 21.0 | 63 | 1.0384 | | No log | 22.0 | 66 | 1.0371 | | No log | 23.0 | 69 | 1.0400 | | No log | 24.0 | 72 | 1.0343 | | No log | 25.0 | 75 | 1.0282 | | No log | 26.0 | 78 | 1.0215 | | No log | 27.0 | 81 | 1.0235 | | No log | 28.0 | 84 | 1.0281 | | No log | 29.0 | 87 | 1.0335 | | No log | 30.0 | 90 | 1.0226 | | No log | 31.0 | 93 | 1.0375 | | No log | 32.0 | 96 | 1.0567 | | No log | 33.0 | 99 | 1.0612 | | No log | 34.0 | 102 | 1.0516 | | No log | 35.0 | 105 | 1.0574 | | No log | 36.0 | 108 | 1.0527 | | No log | 37.0 | 111 | 1.0364 | | No log | 38.0 | 114 | 1.0571 | | No log | 39.0 | 117 | 1.0338 | | No log | 40.0 | 120 | 1.0056 | | No log | 41.0 | 123 | 1.0375 | | No log | 42.0 | 126 | 1.0606 | | No log | 43.0 | 129 | 1.0335 | | No log | 44.0 | 132 | 1.0536 | | No log | 45.0 | 135 | 1.0963 | | No log | 46.0 | 138 | 1.0876 | | No log | 47.0 | 141 | 1.0824 | | No log | 48.0 | 144 | 1.0867 | | No log | 49.0 | 147 | 1.0898 | | No log | 50.0 | 150 | 1.0947 | | No log | 51.0 | 153 | 1.0833 | | No log | 52.0 | 156 | 1.0795 | | No log | 53.0 | 159 | 1.0890 | | No log | 54.0 | 162 | 1.1027 | | No log | 55.0 | 165 | 1.0710 | | No log | 56.0 | 168 | 1.1119 | | No log | 57.0 | 171 | 1.1167 | | No log | 58.0 | 174 | 1.1019 | | No log | 59.0 | 177 | 1.1102 | | No log | 60.0 | 180 | 1.1040 | | No log | 61.0 | 183 | 1.0985 | | No log | 62.0 | 186 | 1.1447 | | No log | 63.0 | 189 | 1.1205 | | No log | 64.0 | 192 | 1.1286 | | No log | 65.0 | 195 | 1.1538 | | No log | 66.0 | 198 | 1.1575 | | No log | 67.0 | 201 | 1.1532 | | No log | 68.0 | 204 | 1.1379 | | No log | 69.0 | 207 | 1.1971 | | No log | 70.0 | 210 | 1.1726 | | No log | 71.0 | 213 | 1.1800 | | No log | 72.0 | 216 | 1.1861 | | No log | 73.0 | 219 | 1.1463 | | No log | 74.0 | 222 | 1.1704 | | No log | 75.0 | 225 | 1.1275 | | No log | 76.0 | 228 | 1.0847 | | No log | 77.0 | 231 | 1.1109 | | No log | 78.0 | 234 | 1.1514 | | No log | 79.0 | 237 | 1.1237 | | No log | 80.0 | 240 | 1.1396 | | No log | 81.0 | 243 | 1.1494 | | No log | 82.0 | 246 | 1.0609 | | No log | 83.0 | 249 | 1.1209 | | No log | 84.0 | 252 | 1.1821 | | No log | 85.0 | 255 | 1.0816 | | No log | 86.0 | 258 | 1.1173 | | No log | 87.0 | 261 | 1.1777 | | No log | 88.0 | 264 | 1.1400 | | No log | 89.0 | 267 | 1.2374 | | No log | 90.0 | 270 | 1.2227 | | No log | 91.0 | 273 | 1.1647 | | No log | 92.0 | 276 | 1.3076 | | No log | 93.0 | 279 | 1.2866 | | No log | 94.0 | 282 | 1.1507 | | No log | 95.0 | 285 | 1.1742 | | No log | 96.0 | 288 | 1.2750 | | No log | 97.0 | 291 | 1.1480 | | No log | 98.0 | 294 | 1.0779 | | No log | 99.0 | 297 | 1.1850 | | No log | 100.0 | 300 | 1.1745 | | No log | 101.0 | 303 | 1.0987 | | No log | 102.0 | 306 | 1.1721 | | No log | 103.0 | 309 | 1.1679 | | No log | 104.0 | 312 | 1.1257 | | No log | 105.0 | 315 | 1.1888 | | No log | 106.0 | 318 | 1.2515 | | No log | 107.0 | 321 | 1.1134 | | No log | 108.0 | 324 | 1.0962 | | No log | 109.0 | 327 | 1.1823 | | No log | 110.0 | 330 | 1.2550 | | No log | 111.0 | 333 | 1.1812 | | No log | 112.0 | 336 | 1.1463 | | No log | 113.0 | 339 | 1.2233 | | No log | 114.0 | 342 | 1.2499 | | No log | 115.0 | 345 | 1.1986 | | No log | 116.0 | 348 | 1.2197 | | No log | 117.0 | 351 | 1.1806 | | No log | 118.0 | 354 | 1.2562 | | No log | 119.0 | 357 | 1.1836 | | No log | 120.0 | 360 | 1.1398 | | No log | 121.0 | 363 | 1.1737 | | No log | 122.0 | 366 | 1.1796 | | No log | 123.0 | 369 | 1.1494 | | No log | 124.0 | 372 | 1.1725 | | No log | 125.0 | 375 | 1.1785 | | No log | 126.0 | 378 | 1.1925 | | No log | 127.0 | 381 | 1.2297 | | No log | 128.0 | 384 | 1.1730 | | No log | 129.0 | 387 | 1.2427 | | No log | 130.0 | 390 | 1.3419 | | No log | 131.0 | 393 | 1.2353 | | No log | 132.0 | 396 | 1.1667 | | No log | 133.0 | 399 | 1.2442 | | No log | 134.0 | 402 | 1.3210 | | No log | 135.0 | 405 | 1.3273 | | No log | 136.0 | 408 | 1.2971 | | No log | 137.0 | 411 | 1.3059 | | No log | 138.0 | 414 | 1.2881 | | No log | 139.0 | 417 | 1.2596 | | No log | 140.0 | 420 | 1.2907 | | No log | 141.0 | 423 | 1.4198 | | No log | 142.0 | 426 | 1.2816 | | No log | 143.0 | 429 | 1.2489 | | No log | 144.0 | 432 | 1.2540 | | No log | 145.0 | 435 | 1.2669 | | No log | 146.0 | 438 | 1.1884 | | No log | 147.0 | 441 | 1.1789 | | No log | 148.0 | 444 | 1.1828 | | No log | 149.0 | 447 | 1.2189 | | No log | 150.0 | 450 | 1.2064 | | No log | 151.0 | 453 | 1.1665 | | No log | 152.0 | 456 | 1.1841 | | No log | 153.0 | 459 | 1.2595 | | No log | 154.0 | 462 | 1.2757 | | No log | 155.0 | 465 | 1.2431 | | No log | 156.0 | 468 | 1.2333 | | No log | 157.0 | 471 | 1.2409 | | No log | 158.0 | 474 | 1.2384 | | No log | 159.0 | 477 | 1.1822 | | No log | 160.0 | 480 | 1.1944 | | No log | 161.0 | 483 | 1.1245 | | No log | 162.0 | 486 | 1.1272 | | No log | 163.0 | 489 | 1.1473 | | No log | 164.0 | 492 | 1.1434 | | No log | 165.0 | 495 | 1.2481 | | No log | 166.0 | 498 | 1.2696 | | 1.011 | 167.0 | 501 | 1.1787 | | 1.011 | 168.0 | 504 | 1.1010 | | 1.011 | 169.0 | 507 | 1.2381 | | 1.011 | 170.0 | 510 | 1.3548 | | 1.011 | 171.0 | 513 | 1.2571 | | 1.011 | 172.0 | 516 | 1.1513 | | 1.011 | 173.0 | 519 | 1.2023 | | 1.011 | 174.0 | 522 | 1.3151 | | 1.011 | 175.0 | 525 | 1.2439 | | 1.011 | 176.0 | 528 | 1.1787 | | 1.011 | 177.0 | 531 | 1.2082 | | 1.011 | 178.0 | 534 | 1.1628 | | 1.011 | 179.0 | 537 | 1.1537 | | 1.011 | 180.0 | 540 | 1.1693 | | 1.011 | 181.0 | 543 | 1.2020 | | 1.011 | 182.0 | 546 | 1.2659 | | 1.011 | 183.0 | 549 | 1.2523 | | 1.011 | 184.0 | 552 | 1.2889 | | 1.011 | 185.0 | 555 | 1.2769 | | 1.011 | 186.0 | 558 | 1.1812 | | 1.011 | 187.0 | 561 | 1.2795 | | 1.011 | 188.0 | 564 | 1.3695 | | 1.011 | 189.0 | 567 | 1.2992 | | 1.011 | 190.0 | 570 | 1.1889 | | 1.011 | 191.0 | 573 | 1.2498 | | 1.011 | 192.0 | 576 | 1.3926 | | 1.011 | 193.0 | 579 | 1.3189 | | 1.011 | 194.0 | 582 | 1.2336 | | 1.011 | 195.0 | 585 | 1.2429 | | 1.011 | 196.0 | 588 | 1.3424 | | 1.011 | 197.0 | 591 | 1.2656 | | 1.011 | 198.0 | 594 | 1.1868 | | 1.011 | 199.0 | 597 | 1.2422 | | 1.011 | 200.0 | 600 | 1.3169 | | 1.011 | 201.0 | 603 | 1.2882 | | 1.011 | 202.0 | 606 | 1.2062 | | 1.011 | 203.0 | 609 | 1.2312 | | 1.011 | 204.0 | 612 | 1.2377 | | 1.011 | 205.0 | 615 | 1.1899 | | 1.011 | 206.0 | 618 | 1.2552 | | 1.011 | 207.0 | 621 | 1.2026 | | 1.011 | 208.0 | 624 | 1.1862 | | 1.011 | 209.0 | 627 | 1.1977 | | 1.011 | 210.0 | 630 | 1.1801 | | 1.011 | 211.0 | 633 | 1.1900 | | 1.011 | 212.0 | 636 | 1.3119 | | 1.011 | 213.0 | 639 | 1.3340 | | 1.011 | 214.0 | 642 | 1.2406 | | 1.011 | 215.0 | 645 | 1.2233 | | 1.011 | 216.0 | 648 | 1.2326 | | 1.011 | 217.0 | 651 | 1.2835 | | 1.011 | 218.0 | 654 | 1.2755 | | 1.011 | 219.0 | 657 | 1.2479 | | 1.011 | 220.0 | 660 | 1.2538 | | 1.011 | 221.0 | 663 | 1.3152 | | 1.011 | 222.0 | 666 | 1.2363 | | 1.011 | 223.0 | 669 | 1.1776 | | 1.011 | 224.0 | 672 | 1.2833 | | 1.011 | 225.0 | 675 | 1.3166 | | 1.011 | 226.0 | 678 | 1.1878 | | 1.011 | 227.0 | 681 | 1.1190 | | 1.011 | 228.0 | 684 | 1.2481 | | 1.011 | 229.0 | 687 | 1.3140 | | 1.011 | 230.0 | 690 | 1.1750 | | 1.011 | 231.0 | 693 | 1.1255 | | 1.011 | 232.0 | 696 | 1.1758 | | 1.011 | 233.0 | 699 | 1.2614 | | 1.011 | 234.0 | 702 | 1.2244 | | 1.011 | 235.0 | 705 | 1.2471 | | 1.011 | 236.0 | 708 | 1.2735 | | 1.011 | 237.0 | 711 | 1.2557 | | 1.011 | 238.0 | 714 | 1.1484 | | 1.011 | 239.0 | 717 | 1.1619 | | 1.011 | 240.0 | 720 | 1.2471 | | 1.011 | 241.0 | 723 | 1.2403 | | 1.011 | 242.0 | 726 | 1.2039 | | 1.011 | 243.0 | 729 | 1.2126 | | 1.011 | 244.0 | 732 | 1.2413 | | 1.011 | 245.0 | 735 | 1.2021 | | 1.011 | 246.0 | 738 | 1.1651 | | 1.011 | 247.0 | 741 | 1.1945 | | 1.011 | 248.0 | 744 | 1.1920 | | 1.011 | 249.0 | 747 | 1.1741 | | 1.011 | 250.0 | 750 | 1.1544 | | 1.011 | 251.0 | 753 | 1.1757 | | 1.011 | 252.0 | 756 | 1.2283 | | 1.011 | 253.0 | 759 | 1.1520 | | 1.011 | 254.0 | 762 | 1.1001 | | 1.011 | 255.0 | 765 | 1.1319 | | 1.011 | 256.0 | 768 | 1.2306 | | 1.011 | 257.0 | 771 | 1.2233 | | 1.011 | 258.0 | 774 | 1.1541 | | 1.011 | 259.0 | 777 | 1.2105 | | 1.011 | 260.0 | 780 | 1.2084 | | 1.011 | 261.0 | 783 | 1.1656 | | 1.011 | 262.0 | 786 | 1.1414 | | 1.011 | 263.0 | 789 | 1.1738 | | 1.011 | 264.0 | 792 | 1.2153 | | 1.011 | 265.0 | 795 | 1.2846 | | 1.011 | 266.0 | 798 | 1.2991 | | 1.011 | 267.0 | 801 | 1.2698 | | 1.011 | 268.0 | 804 | 1.2488 | | 1.011 | 269.0 | 807 | 1.3379 | | 1.011 | 270.0 | 810 | 1.3777 | | 1.011 | 271.0 | 813 | 1.3034 | | 1.011 | 272.0 | 816 | 1.2925 | | 1.011 | 273.0 | 819 | 1.3598 | | 1.011 | 274.0 | 822 | 1.3181 | | 1.011 | 275.0 | 825 | 1.1246 | | 1.011 | 276.0 | 828 | 1.0685 | | 1.011 | 277.0 | 831 | 1.1546 | | 1.011 | 278.0 | 834 | 1.2029 | | 1.011 | 279.0 | 837 | 1.2433 | | 1.011 | 280.0 | 840 | 1.3051 | | 1.011 | 281.0 | 843 | 1.3124 | | 1.011 | 282.0 | 846 | 1.2468 | | 1.011 | 283.0 | 849 | 1.2155 | | 1.011 | 284.0 | 852 | 1.2340 | | 1.011 | 285.0 | 855 | 1.2815 | | 1.011 | 286.0 | 858 | 1.3270 | | 1.011 | 287.0 | 861 | 1.3363 | | 1.011 | 288.0 | 864 | 1.3316 | | 1.011 | 289.0 | 867 | 1.3048 | | 1.011 | 290.0 | 870 | 1.2741 | | 1.011 | 291.0 | 873 | 1.2994 | | 1.011 | 292.0 | 876 | 1.3124 | | 1.011 | 293.0 | 879 | 1.2510 | | 1.011 | 294.0 | 882 | 1.2051 | | 1.011 | 295.0 | 885 | 1.2394 | | 1.011 | 296.0 | 888 | 1.2530 | | 1.011 | 297.0 | 891 | 1.2104 | | 1.011 | 298.0 | 894 | 1.1540 | | 1.011 | 299.0 | 897 | 1.1353 | | 1.011 | 300.0 | 900 | 1.1786 | | 1.011 | 301.0 | 903 | 1.2086 | | 1.011 | 302.0 | 906 | 1.2456 | | 1.011 | 303.0 | 909 | 1.2706 | | 1.011 | 304.0 | 912 | 1.3325 | | 1.011 | 305.0 | 915 | 1.2892 | | 1.011 | 306.0 | 918 | 1.2357 | | 1.011 | 307.0 | 921 | 1.2447 | | 1.011 | 308.0 | 924 | 1.3212 | | 1.011 | 309.0 | 927 | 1.2885 | | 1.011 | 310.0 | 930 | 1.2718 | | 1.011 | 311.0 | 933 | 1.3002 | | 1.011 | 312.0 | 936 | 1.2508 | | 1.011 | 313.0 | 939 | 1.3075 | | 1.011 | 314.0 | 942 | 1.3327 | | 1.011 | 315.0 | 945 | 1.2802 | | 1.011 | 316.0 | 948 | 1.1862 | | 1.011 | 317.0 | 951 | 1.2011 | | 1.011 | 318.0 | 954 | 1.2118 | | 1.011 | 319.0 | 957 | 1.2621 | | 1.011 | 320.0 | 960 | 1.3194 | | 1.011 | 321.0 | 963 | 1.3178 | | 1.011 | 322.0 | 966 | 1.3375 | | 1.011 | 323.0 | 969 | 1.2784 | | 1.011 | 324.0 | 972 | 1.2132 | | 1.011 | 325.0 | 975 | 1.1895 | | 1.011 | 326.0 | 978 | 1.2521 | | 1.011 | 327.0 | 981 | 1.3398 | | 1.011 | 328.0 | 984 | 1.2295 | | 1.011 | 329.0 | 987 | 1.1417 | | 1.011 | 330.0 | 990 | 1.1594 | | 1.011 | 331.0 | 993 | 1.3099 | | 1.011 | 332.0 | 996 | 1.3461 | | 1.011 | 333.0 | 999 | 1.1772 | | 0.5949 | 334.0 | 1002 | 1.0855 | | 0.5949 | 335.0 | 1005 | 1.1587 | | 0.5949 | 336.0 | 1008 | 1.2964 | | 0.5949 | 337.0 | 1011 | 1.2694 | | 0.5949 | 338.0 | 1014 | 1.2127 | | 0.5949 | 339.0 | 1017 | 1.1815 | | 0.5949 | 340.0 | 1020 | 1.1907 | | 0.5949 | 341.0 | 1023 | 1.2233 | | 0.5949 | 342.0 | 1026 | 1.1774 | | 0.5949 | 343.0 | 1029 | 1.1496 | | 0.5949 | 344.0 | 1032 | 1.1266 | | 0.5949 | 345.0 | 1035 | 1.1182 | | 0.5949 | 346.0 | 1038 | 1.1806 | | 0.5949 | 347.0 | 1041 | 1.1528 | | 0.5949 | 348.0 | 1044 | 1.1292 | | 0.5949 | 349.0 | 1047 | 1.1044 | | 0.5949 | 350.0 | 1050 | 1.1721 | | 0.5949 | 351.0 | 1053 | 1.2474 | | 0.5949 | 352.0 | 1056 | 1.2158 | | 0.5949 | 353.0 | 1059 | 1.1859 | | 0.5949 | 354.0 | 1062 | 1.1686 | | 0.5949 | 355.0 | 1065 | 1.1558 | | 0.5949 | 356.0 | 1068 | 1.1703 | | 0.5949 | 357.0 | 1071 | 1.1504 | | 0.5949 | 358.0 | 1074 | 1.1182 | | 0.5949 | 359.0 | 1077 | 1.1441 | | 0.5949 | 360.0 | 1080 | 1.1833 | | 0.5949 | 361.0 | 1083 | 1.2068 | | 0.5949 | 362.0 | 1086 | 1.1335 | | 0.5949 | 363.0 | 1089 | 1.0419 | | 0.5949 | 364.0 | 1092 | 1.0862 | | 0.5949 | 365.0 | 1095 | 1.2001 | | 0.5949 | 366.0 | 1098 | 1.2415 | | 0.5949 | 367.0 | 1101 | 1.1930 | | 0.5949 | 368.0 | 1104 | 1.1220 | | 0.5949 | 369.0 | 1107 | 1.0307 | | 0.5949 | 370.0 | 1110 | 1.0519 | | 0.5949 | 371.0 | 1113 | 1.0704 | | 0.5949 | 372.0 | 1116 | 1.0365 | | 0.5949 | 373.0 | 1119 | 1.0087 | | 0.5949 | 374.0 | 1122 | 0.9999 | | 0.5949 | 375.0 | 1125 | 1.1072 | | 0.5949 | 376.0 | 1128 | 1.1944 | | 0.5949 | 377.0 | 1131 | 1.1771 | | 0.5949 | 378.0 | 1134 | 1.1325 | | 0.5949 | 379.0 | 1137 | 1.0533 | | 0.5949 | 380.0 | 1140 | 1.0384 | | 0.5949 | 381.0 | 1143 | 1.0943 | | 0.5949 | 382.0 | 1146 | 1.2307 | | 0.5949 | 383.0 | 1149 | 1.2407 | | 0.5949 | 384.0 | 1152 | 1.1655 | | 0.5949 | 385.0 | 1155 | 1.0630 | | 0.5949 | 386.0 | 1158 | 1.0247 | | 0.5949 | 387.0 | 1161 | 1.1115 | | 0.5949 | 388.0 | 1164 | 1.1942 | | 0.5949 | 389.0 | 1167 | 1.2013 | | 0.5949 | 390.0 | 1170 | 1.1971 | | 0.5949 | 391.0 | 1173 | 1.1855 | | 0.5949 | 392.0 | 1176 | 1.1868 | | 0.5949 | 393.0 | 1179 | 1.1613 | | 0.5949 | 394.0 | 1182 | 1.1488 | | 0.5949 | 395.0 | 1185 | 1.1648 | | 0.5949 | 396.0 | 1188 | 1.1688 | | 0.5949 | 397.0 | 1191 | 1.1526 | | 0.5949 | 398.0 | 1194 | 1.1241 | | 0.5949 | 399.0 | 1197 | 1.0765 | | 0.5949 | 400.0 | 1200 | 1.0983 | | 0.5949 | 401.0 | 1203 | 1.1407 | | 0.5949 | 402.0 | 1206 | 1.1459 | | 0.5949 | 403.0 | 1209 | 1.1184 | | 0.5949 | 404.0 | 1212 | 1.0951 | | 0.5949 | 405.0 | 1215 | 1.0853 | | 0.5949 | 406.0 | 1218 | 1.0962 | | 0.5949 | 407.0 | 1221 | 1.1022 | | 0.5949 | 408.0 | 1224 | 1.0818 | | 0.5949 | 409.0 | 1227 | 1.0528 | | 0.5949 | 410.0 | 1230 | 1.0500 | | 0.5949 | 411.0 | 1233 | 1.0918 | | 0.5949 | 412.0 | 1236 | 1.0624 | | 0.5949 | 413.0 | 1239 | 1.0452 | | 0.5949 | 414.0 | 1242 | 1.0485 | | 0.5949 | 415.0 | 1245 | 1.0624 | | 0.5949 | 416.0 | 1248 | 1.1062 | | 0.5949 | 417.0 | 1251 | 1.1095 | | 0.5949 | 418.0 | 1254 | 1.0988 | | 0.5949 | 419.0 | 1257 | 1.0867 | | 0.5949 | 420.0 | 1260 | 1.0873 | | 0.5949 | 421.0 | 1263 | 1.0577 | | 0.5949 | 422.0 | 1266 | 1.0998 | | 0.5949 | 423.0 | 1269 | 1.1579 | | 0.5949 | 424.0 | 1272 | 1.1373 | | 0.5949 | 425.0 | 1275 | 1.1138 | | 0.5949 | 426.0 | 1278 | 1.0807 | | 0.5949 | 427.0 | 1281 | 1.0137 | | 0.5949 | 428.0 | 1284 | 1.0083 | | 0.5949 | 429.0 | 1287 | 1.0493 | | 0.5949 | 430.0 | 1290 | 1.1223 | | 0.5949 | 431.0 | 1293 | 1.1817 | | 0.5949 | 432.0 | 1296 | 1.1060 | | 0.5949 | 433.0 | 1299 | 1.0584 | | 0.5949 | 434.0 | 1302 | 1.0634 | | 0.5949 | 435.0 | 1305 | 1.1070 | | 0.5949 | 436.0 | 1308 | 1.1183 | | 0.5949 | 437.0 | 1311 | 1.0928 | | 0.5949 | 438.0 | 1314 | 1.0754 | | 0.5949 | 439.0 | 1317 | 1.0556 | | 0.5949 | 440.0 | 1320 | 1.0317 | | 0.5949 | 441.0 | 1323 | 1.0036 | | 0.5949 | 442.0 | 1326 | 1.0292 | | 0.5949 | 443.0 | 1329 | 1.1790 | | 0.5949 | 444.0 | 1332 | 1.2675 | | 0.5949 | 445.0 | 1335 | 1.2144 | | 0.5949 | 446.0 | 1338 | 1.0888 | | 0.5949 | 447.0 | 1341 | 1.0147 | | 0.5949 | 448.0 | 1344 | 1.0074 | | 0.5949 | 449.0 | 1347 | 1.0412 | | 0.5949 | 450.0 | 1350 | 1.0851 | | 0.5949 | 451.0 | 1353 | 1.1087 | | 0.5949 | 452.0 | 1356 | 1.1293 | | 0.5949 | 453.0 | 1359 | 1.1286 | | 0.5949 | 454.0 | 1362 | 1.0910 | | 0.5949 | 455.0 | 1365 | 1.0787 | | 0.5949 | 456.0 | 1368 | 1.1053 | | 0.5949 | 457.0 | 1371 | 1.1651 | | 0.5949 | 458.0 | 1374 | 1.2237 | | 0.5949 | 459.0 | 1377 | 1.2137 | | 0.5949 | 460.0 | 1380 | 1.1833 | | 0.5949 | 461.0 | 1383 | 1.1378 | | 0.5949 | 462.0 | 1386 | 1.0625 | | 0.5949 | 463.0 | 1389 | 1.0437 | | 0.5949 | 464.0 | 1392 | 1.0432 | | 0.5949 | 465.0 | 1395 | 1.1278 | | 0.5949 | 466.0 | 1398 | 1.2145 | | 0.5949 | 467.0 | 1401 | 1.2425 | | 0.5949 | 468.0 | 1404 | 1.2570 | | 0.5949 | 469.0 | 1407 | 1.2285 | | 0.5949 | 470.0 | 1410 | 1.2091 | | 0.5949 | 471.0 | 1413 | 1.1901 | | 0.5949 | 472.0 | 1416 | 1.2086 | | 0.5949 | 473.0 | 1419 | 1.2434 | | 0.5949 | 474.0 | 1422 | 1.2743 | | 0.5949 | 475.0 | 1425 | 1.2743 | | 0.5949 | 476.0 | 1428 | 1.2380 | | 0.5949 | 477.0 | 1431 | 1.1984 | | 0.5949 | 478.0 | 1434 | 1.1687 | | 0.5949 | 479.0 | 1437 | 1.1170 | | 0.5949 | 480.0 | 1440 | 1.1537 | | 0.5949 | 481.0 | 1443 | 1.1691 | | 0.5949 | 482.0 | 1446 | 1.1855 | | 0.5949 | 483.0 | 1449 | 1.2248 | | 0.5949 | 484.0 | 1452 | 1.2351 | | 0.5949 | 485.0 | 1455 | 1.2162 | | 0.5949 | 486.0 | 1458 | 1.1853 | | 0.5949 | 487.0 | 1461 | 1.1756 | | 0.5949 | 488.0 | 1464 | 1.1743 | | 0.5949 | 489.0 | 1467 | 1.1563 | | 0.5949 | 490.0 | 1470 | 1.1135 | | 0.5949 | 491.0 | 1473 | 1.1080 | | 0.5949 | 492.0 | 1476 | 1.1491 | | 0.5949 | 493.0 | 1479 | 1.2150 | | 0.5949 | 494.0 | 1482 | 1.2236 | | 0.5949 | 495.0 | 1485 | 1.1843 | | 0.5949 | 496.0 | 1488 | 1.1380 | | 0.5949 | 497.0 | 1491 | 1.1301 | | 0.5949 | 498.0 | 1494 | 1.1271 | | 0.5949 | 499.0 | 1497 | 1.1288 | | 0.571 | 500.0 | 1500 | 1.1521 | | 0.571 | 501.0 | 1503 | 1.1695 | | 0.571 | 502.0 | 1506 | 1.1846 | | 0.571 | 503.0 | 1509 | 1.1920 | | 0.571 | 504.0 | 1512 | 1.2064 | | 0.571 | 505.0 | 1515 | 1.1979 | | 0.571 | 506.0 | 1518 | 1.1894 | | 0.571 | 507.0 | 1521 | 1.1961 | | 0.571 | 508.0 | 1524 | 1.1673 | | 0.571 | 509.0 | 1527 | 1.1427 | | 0.571 | 510.0 | 1530 | 1.0826 | | 0.571 | 511.0 | 1533 | 1.0712 | | 0.571 | 512.0 | 1536 | 1.0924 | | 0.571 | 513.0 | 1539 | 1.1014 | | 0.571 | 514.0 | 1542 | 1.0983 | | 0.571 | 515.0 | 1545 | 1.1061 | | 0.571 | 516.0 | 1548 | 1.1573 | | 0.571 | 517.0 | 1551 | 1.1913 | | 0.571 | 518.0 | 1554 | 1.2075 | | 0.571 | 519.0 | 1557 | 1.2028 | | 0.571 | 520.0 | 1560 | 1.1595 | | 0.571 | 521.0 | 1563 | 1.1596 | | 0.571 | 522.0 | 1566 | 1.1658 | | 0.571 | 523.0 | 1569 | 1.1231 | | 0.571 | 524.0 | 1572 | 1.0694 | | 0.571 | 525.0 | 1575 | 1.0454 | | 0.571 | 526.0 | 1578 | 1.0508 | | 0.571 | 527.0 | 1581 | 1.0686 | | 0.571 | 528.0 | 1584 | 1.0965 | | 0.571 | 529.0 | 1587 | 1.1343 | | 0.571 | 530.0 | 1590 | 1.1618 | | 0.571 | 531.0 | 1593 | 1.1807 | | 0.571 | 532.0 | 1596 | 1.1774 | | 0.571 | 533.0 | 1599 | 1.1541 | | 0.571 | 534.0 | 1602 | 1.1005 | | 0.571 | 535.0 | 1605 | 1.0268 | | 0.571 | 536.0 | 1608 | 0.9818 | | 0.571 | 537.0 | 1611 | 0.9613 | | 0.571 | 538.0 | 1614 | 0.9870 | | 0.571 | 539.0 | 1617 | 1.0816 | | 0.571 | 540.0 | 1620 | 1.1666 | | 0.571 | 541.0 | 1623 | 1.2139 | | 0.571 | 542.0 | 1626 | 1.2001 | | 0.571 | 543.0 | 1629 | 1.1493 | | 0.571 | 544.0 | 1632 | 1.1064 | | 0.571 | 545.0 | 1635 | 1.0677 | | 0.571 | 546.0 | 1638 | 1.0399 | | 0.571 | 547.0 | 1641 | 1.0606 | | 0.571 | 548.0 | 1644 | 1.0844 | | 0.571 | 549.0 | 1647 | 1.0929 | | 0.571 | 550.0 | 1650 | 1.1143 | | 0.571 | 551.0 | 1653 | 1.1430 | | 0.571 | 552.0 | 1656 | 1.1389 | | 0.571 | 553.0 | 1659 | 1.1146 | | 0.571 | 554.0 | 1662 | 1.0844 | | 0.571 | 555.0 | 1665 | 1.0515 | | 0.571 | 556.0 | 1668 | 0.9798 | | 0.571 | 557.0 | 1671 | 0.9584 | | 0.571 | 558.0 | 1674 | 0.9507 | | 0.571 | 559.0 | 1677 | 0.9697 | | 0.571 | 560.0 | 1680 | 1.0111 | | 0.571 | 561.0 | 1683 | 1.1366 | | 0.571 | 562.0 | 1686 | 1.1931 | | 0.571 | 563.0 | 1689 | 1.2054 | | 0.571 | 564.0 | 1692 | 1.1996 | | 0.571 | 565.0 | 1695 | 1.1912 | | 0.571 | 566.0 | 1698 | 1.1710 | | 0.571 | 567.0 | 1701 | 1.1521 | | 0.571 | 568.0 | 1704 | 1.1221 | | 0.571 | 569.0 | 1707 | 1.0651 | | 0.571 | 570.0 | 1710 | 1.0452 | | 0.571 | 571.0 | 1713 | 1.0838 | | 0.571 | 572.0 | 1716 | 1.1103 | | 0.571 | 573.0 | 1719 | 1.1390 | | 0.571 | 574.0 | 1722 | 1.1774 | | 0.571 | 575.0 | 1725 | 1.1868 | | 0.571 | 576.0 | 1728 | 1.1772 | | 0.571 | 577.0 | 1731 | 1.1650 | | 0.571 | 578.0 | 1734 | 1.1581 | | 0.571 | 579.0 | 1737 | 1.1599 | | 0.571 | 580.0 | 1740 | 1.1636 | | 0.571 | 581.0 | 1743 | 1.1610 | | 0.571 | 582.0 | 1746 | 1.1555 | | 0.571 | 583.0 | 1749 | 1.1448 | | 0.571 | 584.0 | 1752 | 1.1494 | | 0.571 | 585.0 | 1755 | 1.1522 | | 0.571 | 586.0 | 1758 | 1.1509 | | 0.571 | 587.0 | 1761 | 1.1568 | | 0.571 | 588.0 | 1764 | 1.1691 | | 0.571 | 589.0 | 1767 | 1.1693 | | 0.571 | 590.0 | 1770 | 1.1546 | | 0.571 | 591.0 | 1773 | 1.1497 | | 0.571 | 592.0 | 1776 | 1.1415 | | 0.571 | 593.0 | 1779 | 1.1379 | | 0.571 | 594.0 | 1782 | 1.1385 | | 0.571 | 595.0 | 1785 | 1.1376 | | 0.571 | 596.0 | 1788 | 1.1376 | | 0.571 | 597.0 | 1791 | 1.1265 | | 0.571 | 598.0 | 1794 | 1.1118 | | 0.571 | 599.0 | 1797 | 1.1027 | | 0.571 | 600.0 | 1800 | 1.0991 | | 0.571 | 601.0 | 1803 | 1.1160 | | 0.571 | 602.0 | 1806 | 1.1335 | | 0.571 | 603.0 | 1809 | 1.1405 | | 0.571 | 604.0 | 1812 | 1.1459 | | 0.571 | 605.0 | 1815 | 1.1514 | | 0.571 | 606.0 | 1818 | 1.1628 | | 0.571 | 607.0 | 1821 | 1.1777 | | 0.571 | 608.0 | 1824 | 1.1711 | | 0.571 | 609.0 | 1827 | 1.1633 | | 0.571 | 610.0 | 1830 | 1.1522 | | 0.571 | 611.0 | 1833 | 1.1396 | | 0.571 | 612.0 | 1836 | 1.1313 | | 0.571 | 613.0 | 1839 | 1.1266 | | 0.571 | 614.0 | 1842 | 1.1233 | | 0.571 | 615.0 | 1845 | 1.1166 | | 0.571 | 616.0 | 1848 | 1.1213 | | 0.571 | 617.0 | 1851 | 1.1258 | | 0.571 | 618.0 | 1854 | 1.1342 | | 0.571 | 619.0 | 1857 | 1.1537 | | 0.571 | 620.0 | 1860 | 1.1591 | | 0.571 | 621.0 | 1863 | 1.1463 | | 0.571 | 622.0 | 1866 | 1.1240 | | 0.571 | 623.0 | 1869 | 1.1186 | | 0.571 | 624.0 | 1872 | 1.1201 | | 0.571 | 625.0 | 1875 | 1.1328 | | 0.571 | 626.0 | 1878 | 1.1401 | | 0.571 | 627.0 | 1881 | 1.1478 | | 0.571 | 628.0 | 1884 | 1.1560 | | 0.571 | 629.0 | 1887 | 1.1570 | | 0.571 | 630.0 | 1890 | 1.1550 | | 0.571 | 631.0 | 1893 | 1.1539 | | 0.571 | 632.0 | 1896 | 1.1528 | | 0.571 | 633.0 | 1899 | 1.1419 | | 0.571 | 634.0 | 1902 | 1.1359 | | 0.571 | 635.0 | 1905 | 1.1231 | | 0.571 | 636.0 | 1908 | 1.1170 | | 0.571 | 637.0 | 1911 | 1.1108 | | 0.571 | 638.0 | 1914 | 1.1065 | | 0.571 | 639.0 | 1917 | 1.1016 | | 0.571 | 640.0 | 1920 | 1.1157 | | 0.571 | 641.0 | 1923 | 1.1263 | | 0.571 | 642.0 | 1926 | 1.1291 | | 0.571 | 643.0 | 1929 | 1.1231 | | 0.571 | 644.0 | 1932 | 1.1157 | | 0.571 | 645.0 | 1935 | 1.1399 | | 0.571 | 646.0 | 1938 | 1.1908 | | 0.571 | 647.0 | 1941 | 1.2225 | | 0.571 | 648.0 | 1944 | 1.2391 | | 0.571 | 649.0 | 1947 | 1.2375 | | 0.571 | 650.0 | 1950 | 1.2170 | | 0.571 | 651.0 | 1953 | 1.1856 | | 0.571 | 652.0 | 1956 | 1.1502 | | 0.571 | 653.0 | 1959 | 1.1326 | | 0.571 | 654.0 | 1962 | 1.1034 | | 0.571 | 655.0 | 1965 | 1.0623 | | 0.571 | 656.0 | 1968 | 1.0506 | | 0.571 | 657.0 | 1971 | 1.0749 | | 0.571 | 658.0 | 1974 | 1.2005 | | 0.571 | 659.0 | 1977 | 1.2534 | | 0.571 | 660.0 | 1980 | 1.2685 | | 0.571 | 661.0 | 1983 | 1.2609 | | 0.571 | 662.0 | 1986 | 1.2400 | | 0.571 | 663.0 | 1989 | 1.2247 | | 0.571 | 664.0 | 1992 | 1.2150 | | 0.571 | 665.0 | 1995 | 1.2068 | | 0.571 | 666.0 | 1998 | 1.1900 | | 0.5609 | 667.0 | 2001 | 1.1792 | | 0.5609 | 668.0 | 2004 | 1.1798 | | 0.5609 | 669.0 | 2007 | 1.1843 | | 0.5609 | 670.0 | 2010 | 1.1988 | | 0.5609 | 671.0 | 2013 | 1.2119 | | 0.5609 | 672.0 | 2016 | 1.2242 | | 0.5609 | 673.0 | 2019 | 1.2244 | | 0.5609 | 674.0 | 2022 | 1.2116 | | 0.5609 | 675.0 | 2025 | 1.1945 | | 0.5609 | 676.0 | 2028 | 1.1792 | | 0.5609 | 677.0 | 2031 | 1.1733 | | 0.5609 | 678.0 | 2034 | 1.1772 | | 0.5609 | 679.0 | 2037 | 1.1895 | | 0.5609 | 680.0 | 2040 | 1.2009 | | 0.5609 | 681.0 | 2043 | 1.2075 | | 0.5609 | 682.0 | 2046 | 1.2042 | | 0.5609 | 683.0 | 2049 | 1.2065 | | 0.5609 | 684.0 | 2052 | 1.2109 | | 0.5609 | 685.0 | 2055 | 1.2103 | | 0.5609 | 686.0 | 2058 | 1.2022 | | 0.5609 | 687.0 | 2061 | 1.1938 | | 0.5609 | 688.0 | 2064 | 1.1807 | | 0.5609 | 689.0 | 2067 | 1.1710 | | 0.5609 | 690.0 | 2070 | 1.1687 | | 0.5609 | 691.0 | 2073 | 1.1635 | | 0.5609 | 692.0 | 2076 | 1.1547 | | 0.5609 | 693.0 | 2079 | 1.1375 | | 0.5609 | 694.0 | 2082 | 1.1281 | | 0.5609 | 695.0 | 2085 | 1.1188 | | 0.5609 | 696.0 | 2088 | 1.1105 | | 0.5609 | 697.0 | 2091 | 1.1131 | | 0.5609 | 698.0 | 2094 | 1.1272 | | 0.5609 | 699.0 | 2097 | 1.1351 | | 0.5609 | 700.0 | 2100 | 1.1479 | | 0.5609 | 701.0 | 2103 | 1.1571 | | 0.5609 | 702.0 | 2106 | 1.1723 | | 0.5609 | 703.0 | 2109 | 1.1871 | | 0.5609 | 704.0 | 2112 | 1.1956 | | 0.5609 | 705.0 | 2115 | 1.1998 | | 0.5609 | 706.0 | 2118 | 1.2008 | | 0.5609 | 707.0 | 2121 | 1.1992 | | 0.5609 | 708.0 | 2124 | 1.1948 | | 0.5609 | 709.0 | 2127 | 1.1771 | | 0.5609 | 710.0 | 2130 | 1.1540 | | 0.5609 | 711.0 | 2133 | 1.1320 | | 0.5609 | 712.0 | 2136 | 1.1108 | | 0.5609 | 713.0 | 2139 | 1.0930 | | 0.5609 | 714.0 | 2142 | 1.0885 | | 0.5609 | 715.0 | 2145 | 1.1121 | | 0.5609 | 716.0 | 2148 | 1.1600 | | 0.5609 | 717.0 | 2151 | 1.1982 | | 0.5609 | 718.0 | 2154 | 1.2199 | | 0.5609 | 719.0 | 2157 | 1.2274 | | 0.5609 | 720.0 | 2160 | 1.2191 | | 0.5609 | 721.0 | 2163 | 1.2108 | | 0.5609 | 722.0 | 2166 | 1.2185 | | 0.5609 | 723.0 | 2169 | 1.2203 | | 0.5609 | 724.0 | 2172 | 1.2209 | | 0.5609 | 725.0 | 2175 | 1.2235 | | 0.5609 | 726.0 | 2178 | 1.2229 | | 0.5609 | 727.0 | 2181 | 1.2314 | | 0.5609 | 728.0 | 2184 | 1.2341 | | 0.5609 | 729.0 | 2187 | 1.2352 | | 0.5609 | 730.0 | 2190 | 1.2300 | | 0.5609 | 731.0 | 2193 | 1.2216 | | 0.5609 | 732.0 | 2196 | 1.2104 | | 0.5609 | 733.0 | 2199 | 1.1965 | | 0.5609 | 734.0 | 2202 | 1.1908 | | 0.5609 | 735.0 | 2205 | 1.1752 | | 0.5609 | 736.0 | 2208 | 1.1486 | | 0.5609 | 737.0 | 2211 | 1.1308 | | 0.5609 | 738.0 | 2214 | 1.1216 | | 0.5609 | 739.0 | 2217 | 1.1571 | | 0.5609 | 740.0 | 2220 | 1.1847 | | 0.5609 | 741.0 | 2223 | 1.2001 | | 0.5609 | 742.0 | 2226 | 1.1996 | | 0.5609 | 743.0 | 2229 | 1.1964 | | 0.5609 | 744.0 | 2232 | 1.1955 | | 0.5609 | 745.0 | 2235 | 1.1885 | | 0.5609 | 746.0 | 2238 | 1.1838 | | 0.5609 | 747.0 | 2241 | 1.1820 | | 0.5609 | 748.0 | 2244 | 1.1838 | | 0.5609 | 749.0 | 2247 | 1.1891 | | 0.5609 | 750.0 | 2250 | 1.1866 | | 0.5609 | 751.0 | 2253 | 1.1797 | | 0.5609 | 752.0 | 2256 | 1.1721 | | 0.5609 | 753.0 | 2259 | 1.1611 | | 0.5609 | 754.0 | 2262 | 1.1519 | | 0.5609 | 755.0 | 2265 | 1.1407 | | 0.5609 | 756.0 | 2268 | 1.1216 | | 0.5609 | 757.0 | 2271 | 1.0963 | | 0.5609 | 758.0 | 2274 | 1.0794 | | 0.5609 | 759.0 | 2277 | 1.0741 | | 0.5609 | 760.0 | 2280 | 1.0928 | | 0.5609 | 761.0 | 2283 | 1.1165 | | 0.5609 | 762.0 | 2286 | 1.1480 | | 0.5609 | 763.0 | 2289 | 1.1834 | | 0.5609 | 764.0 | 2292 | 1.2018 | | 0.5609 | 765.0 | 2295 | 1.2098 | | 0.5609 | 766.0 | 2298 | 1.2140 | | 0.5609 | 767.0 | 2301 | 1.2204 | | 0.5609 | 768.0 | 2304 | 1.2251 | | 0.5609 | 769.0 | 2307 | 1.2276 | | 0.5609 | 770.0 | 2310 | 1.2279 | | 0.5609 | 771.0 | 2313 | 1.2264 | | 0.5609 | 772.0 | 2316 | 1.2230 | | 0.5609 | 773.0 | 2319 | 1.2169 | | 0.5609 | 774.0 | 2322 | 1.1973 | | 0.5609 | 775.0 | 2325 | 1.1658 | | 0.5609 | 776.0 | 2328 | 1.1314 | | 0.5609 | 777.0 | 2331 | 1.0967 | | 0.5609 | 778.0 | 2334 | 1.0720 | | 0.5609 | 779.0 | 2337 | 1.0603 | | 0.5609 | 780.0 | 2340 | 1.0603 | | 0.5609 | 781.0 | 2343 | 1.0969 | | 0.5609 | 782.0 | 2346 | 1.1418 | | 0.5609 | 783.0 | 2349 | 1.1850 | | 0.5609 | 784.0 | 2352 | 1.2089 | | 0.5609 | 785.0 | 2355 | 1.2210 | | 0.5609 | 786.0 | 2358 | 1.2242 | | 0.5609 | 787.0 | 2361 | 1.2232 | | 0.5609 | 788.0 | 2364 | 1.2249 | | 0.5609 | 789.0 | 2367 | 1.2262 | | 0.5609 | 790.0 | 2370 | 1.2225 | | 0.5609 | 791.0 | 2373 | 1.2153 | | 0.5609 | 792.0 | 2376 | 1.2055 | | 0.5609 | 793.0 | 2379 | 1.2109 | | 0.5609 | 794.0 | 2382 | 1.2173 | | 0.5609 | 795.0 | 2385 | 1.2182 | | 0.5609 | 796.0 | 2388 | 1.2156 | | 0.5609 | 797.0 | 2391 | 1.2170 | | 0.5609 | 798.0 | 2394 | 1.2110 | | 0.5609 | 799.0 | 2397 | 1.1985 | | 0.5609 | 800.0 | 2400 | 1.1834 | | 0.5609 | 801.0 | 2403 | 1.1597 | | 0.5609 | 802.0 | 2406 | 1.1457 | | 0.5609 | 803.0 | 2409 | 1.1432 | | 0.5609 | 804.0 | 2412 | 1.1409 | | 0.5609 | 805.0 | 2415 | 1.1360 | | 0.5609 | 806.0 | 2418 | 1.1461 | | 0.5609 | 807.0 | 2421 | 1.1626 | | 0.5609 | 808.0 | 2424 | 1.1707 | | 0.5609 | 809.0 | 2427 | 1.1774 | | 0.5609 | 810.0 | 2430 | 1.1812 | | 0.5609 | 811.0 | 2433 | 1.1855 | | 0.5609 | 812.0 | 2436 | 1.1865 | | 0.5609 | 813.0 | 2439 | 1.1843 | | 0.5609 | 814.0 | 2442 | 1.1849 | | 0.5609 | 815.0 | 2445 | 1.1902 | | 0.5609 | 816.0 | 2448 | 1.1900 | | 0.5609 | 817.0 | 2451 | 1.1887 | | 0.5609 | 818.0 | 2454 | 1.1885 | | 0.5609 | 819.0 | 2457 | 1.1884 | | 0.5609 | 820.0 | 2460 | 1.1831 | | 0.5609 | 821.0 | 2463 | 1.1759 | | 0.5609 | 822.0 | 2466 | 1.1766 | | 0.5609 | 823.0 | 2469 | 1.1818 | | 0.5609 | 824.0 | 2472 | 1.1898 | | 0.5609 | 825.0 | 2475 | 1.1949 | | 0.5609 | 826.0 | 2478 | 1.1970 | | 0.5609 | 827.0 | 2481 | 1.2047 | | 0.5609 | 828.0 | 2484 | 1.2086 | | 0.5609 | 829.0 | 2487 | 1.2049 | | 0.5609 | 830.0 | 2490 | 1.1998 | | 0.5609 | 831.0 | 2493 | 1.1987 | | 0.5609 | 832.0 | 2496 | 1.2038 | | 0.5609 | 833.0 | 2499 | 1.2137 | | 0.5599 | 834.0 | 2502 | 1.2197 | | 0.5599 | 835.0 | 2505 | 1.2264 | | 0.5599 | 836.0 | 2508 | 1.2293 | | 0.5599 | 837.0 | 2511 | 1.2281 | | 0.5599 | 838.0 | 2514 | 1.2262 | | 0.5599 | 839.0 | 2517 | 1.2209 | | 0.5599 | 840.0 | 2520 | 1.2126 | | 0.5599 | 841.0 | 2523 | 1.2055 | | 0.5599 | 842.0 | 2526 | 1.1972 | | 0.5599 | 843.0 | 2529 | 1.1880 | | 0.5599 | 844.0 | 2532 | 1.1799 | | 0.5599 | 845.0 | 2535 | 1.1767 | | 0.5599 | 846.0 | 2538 | 1.1792 | | 0.5599 | 847.0 | 2541 | 1.1769 | | 0.5599 | 848.0 | 2544 | 1.1715 | | 0.5599 | 849.0 | 2547 | 1.1668 | | 0.5599 | 850.0 | 2550 | 1.1641 | | 0.5599 | 851.0 | 2553 | 1.1639 | | 0.5599 | 852.0 | 2556 | 1.1642 | | 0.5599 | 853.0 | 2559 | 1.1589 | | 0.5599 | 854.0 | 2562 | 1.1554 | | 0.5599 | 855.0 | 2565 | 1.1556 | | 0.5599 | 856.0 | 2568 | 1.1517 | | 0.5599 | 857.0 | 2571 | 1.1528 | | 0.5599 | 858.0 | 2574 | 1.1559 | | 0.5599 | 859.0 | 2577 | 1.1622 | | 0.5599 | 860.0 | 2580 | 1.1635 | | 0.5599 | 861.0 | 2583 | 1.1649 | | 0.5599 | 862.0 | 2586 | 1.1650 | | 0.5599 | 863.0 | 2589 | 1.1639 | | 0.5599 | 864.0 | 2592 | 1.1631 | | 0.5599 | 865.0 | 2595 | 1.1627 | | 0.5599 | 866.0 | 2598 | 1.1555 | | 0.5599 | 867.0 | 2601 | 1.1510 | | 0.5599 | 868.0 | 2604 | 1.1513 | | 0.5599 | 869.0 | 2607 | 1.1551 | | 0.5599 | 870.0 | 2610 | 1.1630 | | 0.5599 | 871.0 | 2613 | 1.1689 | | 0.5599 | 872.0 | 2616 | 1.1722 | | 0.5599 | 873.0 | 2619 | 1.1720 | | 0.5599 | 874.0 | 2622 | 1.1710 | | 0.5599 | 875.0 | 2625 | 1.1698 | | 0.5599 | 876.0 | 2628 | 1.1643 | | 0.5599 | 877.0 | 2631 | 1.1576 | | 0.5599 | 878.0 | 2634 | 1.1508 | | 0.5599 | 879.0 | 2637 | 1.1444 | | 0.5599 | 880.0 | 2640 | 1.1430 | | 0.5599 | 881.0 | 2643 | 1.1444 | | 0.5599 | 882.0 | 2646 | 1.1451 | | 0.5599 | 883.0 | 2649 | 1.1463 | | 0.5599 | 884.0 | 2652 | 1.1518 | | 0.5599 | 885.0 | 2655 | 1.1551 | | 0.5599 | 886.0 | 2658 | 1.1562 | | 0.5599 | 887.0 | 2661 | 1.1597 | | 0.5599 | 888.0 | 2664 | 1.1637 | | 0.5599 | 889.0 | 2667 | 1.1693 | | 0.5599 | 890.0 | 2670 | 1.1743 | | 0.5599 | 891.0 | 2673 | 1.1783 | | 0.5599 | 892.0 | 2676 | 1.1831 | | 0.5599 | 893.0 | 2679 | 1.1885 | | 0.5599 | 894.0 | 2682 | 1.1921 | | 0.5599 | 895.0 | 2685 | 1.1906 | | 0.5599 | 896.0 | 2688 | 1.1873 | | 0.5599 | 897.0 | 2691 | 1.1866 | | 0.5599 | 898.0 | 2694 | 1.1871 | | 0.5599 | 899.0 | 2697 | 1.1870 | | 0.5599 | 900.0 | 2700 | 1.1876 | | 0.5599 | 901.0 | 2703 | 1.1920 | | 0.5599 | 902.0 | 2706 | 1.1956 | | 0.5599 | 903.0 | 2709 | 1.1966 | | 0.5599 | 904.0 | 2712 | 1.1961 | | 0.5599 | 905.0 | 2715 | 1.1954 | | 0.5599 | 906.0 | 2718 | 1.1927 | | 0.5599 | 907.0 | 2721 | 1.1884 | | 0.5599 | 908.0 | 2724 | 1.1816 | | 0.5599 | 909.0 | 2727 | 1.1754 | | 0.5599 | 910.0 | 2730 | 1.1705 | | 0.5599 | 911.0 | 2733 | 1.1666 | | 0.5599 | 912.0 | 2736 | 1.1652 | | 0.5599 | 913.0 | 2739 | 1.1631 | | 0.5599 | 914.0 | 2742 | 1.1676 | | 0.5599 | 915.0 | 2745 | 1.1710 | | 0.5599 | 916.0 | 2748 | 1.1729 | | 0.5599 | 917.0 | 2751 | 1.1759 | | 0.5599 | 918.0 | 2754 | 1.1776 | | 0.5599 | 919.0 | 2757 | 1.1790 | | 0.5599 | 920.0 | 2760 | 1.1799 | | 0.5599 | 921.0 | 2763 | 1.1785 | | 0.5599 | 922.0 | 2766 | 1.1753 | | 0.5599 | 923.0 | 2769 | 1.1689 | | 0.5599 | 924.0 | 2772 | 1.1657 | | 0.5599 | 925.0 | 2775 | 1.1680 | | 0.5599 | 926.0 | 2778 | 1.1640 | | 0.5599 | 927.0 | 2781 | 1.1617 | | 0.5599 | 928.0 | 2784 | 1.1589 | | 0.5599 | 929.0 | 2787 | 1.1561 | | 0.5599 | 930.0 | 2790 | 1.1537 | | 0.5599 | 931.0 | 2793 | 1.1529 | | 0.5599 | 932.0 | 2796 | 1.1534 | | 0.5599 | 933.0 | 2799 | 1.1594 | | 0.5599 | 934.0 | 2802 | 1.1654 | | 0.5599 | 935.0 | 2805 | 1.1697 | | 0.5599 | 936.0 | 2808 | 1.1726 | | 0.5599 | 937.0 | 2811 | 1.1753 | | 0.5599 | 938.0 | 2814 | 1.1780 | | 0.5599 | 939.0 | 2817 | 1.1814 | | 0.5599 | 940.0 | 2820 | 1.1828 | | 0.5599 | 941.0 | 2823 | 1.1848 | | 0.5599 | 942.0 | 2826 | 1.1851 | | 0.5599 | 943.0 | 2829 | 1.1853 | | 0.5599 | 944.0 | 2832 | 1.1857 | | 0.5599 | 945.0 | 2835 | 1.1850 | | 0.5599 | 946.0 | 2838 | 1.1836 | | 0.5599 | 947.0 | 2841 | 1.1799 | | 0.5599 | 948.0 | 2844 | 1.1758 | | 0.5599 | 949.0 | 2847 | 1.1722 | | 0.5599 | 950.0 | 2850 | 1.1687 | | 0.5599 | 951.0 | 2853 | 1.1677 | | 0.5599 | 952.0 | 2856 | 1.1661 | | 0.5599 | 953.0 | 2859 | 1.1668 | | 0.5599 | 954.0 | 2862 | 1.1685 | | 0.5599 | 955.0 | 2865 | 1.1672 | | 0.5599 | 956.0 | 2868 | 1.1631 | | 0.5599 | 957.0 | 2871 | 1.1587 | | 0.5599 | 958.0 | 2874 | 1.1575 | | 0.5599 | 959.0 | 2877 | 1.1557 | | 0.5599 | 960.0 | 2880 | 1.1551 | | 0.5599 | 961.0 | 2883 | 1.1556 | | 0.5599 | 962.0 | 2886 | 1.1539 | | 0.5599 | 963.0 | 2889 | 1.1509 | | 0.5599 | 964.0 | 2892 | 1.1482 | | 0.5599 | 965.0 | 2895 | 1.1465 | | 0.5599 | 966.0 | 2898 | 1.1474 | | 0.5599 | 967.0 | 2901 | 1.1487 | | 0.5599 | 968.0 | 2904 | 1.1494 | | 0.5599 | 969.0 | 2907 | 1.1508 | | 0.5599 | 970.0 | 2910 | 1.1519 | | 0.5599 | 971.0 | 2913 | 1.1508 | | 0.5599 | 972.0 | 2916 | 1.1490 | | 0.5599 | 973.0 | 2919 | 1.1471 | | 0.5599 | 974.0 | 2922 | 1.1463 | | 0.5599 | 975.0 | 2925 | 1.1459 | | 0.5599 | 976.0 | 2928 | 1.1457 | | 0.5599 | 977.0 | 2931 | 1.1460 | | 0.5599 | 978.0 | 2934 | 1.1469 | | 0.5599 | 979.0 | 2937 | 1.1485 | | 0.5599 | 980.0 | 2940 | 1.1500 | | 0.5599 | 981.0 | 2943 | 1.1509 | | 0.5599 | 982.0 | 2946 | 1.1515 | | 0.5599 | 983.0 | 2949 | 1.1516 | | 0.5599 | 984.0 | 2952 | 1.1520 | | 0.5599 | 985.0 | 2955 | 1.1524 | | 0.5599 | 986.0 | 2958 | 1.1517 | | 0.5599 | 987.0 | 2961 | 1.1524 | | 0.5599 | 988.0 | 2964 | 1.1530 | | 0.5599 | 989.0 | 2967 | 1.1537 | | 0.5599 | 990.0 | 2970 | 1.1542 | | 0.5599 | 991.0 | 2973 | 1.1550 | | 0.5599 | 992.0 | 2976 | 1.1558 | | 0.5599 | 993.0 | 2979 | 1.1566 | | 0.5599 | 994.0 | 2982 | 1.1573 | | 0.5599 | 995.0 | 2985 | 1.1580 | | 0.5599 | 996.0 | 2988 | 1.1585 | | 0.5599 | 997.0 | 2991 | 1.1589 | | 0.5599 | 998.0 | 2994 | 1.1589 | | 0.5599 | 999.0 | 2997 | 1.1590 | | 0.5597 | 1000.0 | 3000 | 1.1590 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
Nusrat1234/Mistral-7B-User-Profile
Nusrat1234
2024-03-07T21:44:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T21:43:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_32_32_0.05_4_0.0002
ferrazzipietro
2024-03-07T21:43:23Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T16:45:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gotzmann/v0.8-adapter
gotzmann
2024-03-07T21:39:56Z
1
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:gotzmann/uni", "base_model:adapter:gotzmann/uni", "license:other", "region:us" ]
null
2024-03-07T21:38:22Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: gotzmann/uni model-index: - name: exported results: [] --- The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
sharukat/so_mpnet-base_question_classifier
sharukat
2024-03-07T21:35:42Z
46
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:flax-sentence-embeddings/stackoverflow_mpnet-base", "base_model:finetune:flax-sentence-embeddings/stackoverflow_mpnet-base", "model-index", "region:us" ]
text-classification
2024-03-03T05:22:06Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - precision - recall - f1 widget: - text: 'I''m trying to take a dataframe and convert them to tensors to train a model in keras. I think it''s being triggered when I am converting my Y label to a tensor: I''m getting the following error when casting y_train to tensor from slices: In the tutorials this seems to work but I think those tutorials are doing multiclass classifications whereas I''m doing a regression so y_train is a series not multiple columns. Any suggestions of what I can do?' - text: My weights are defined as I want to use the weights decay so I add, for example, the argument to the tf.get_variable. Now I'm wondering if during the evaluation phase this is still correct or maybe I have to set the regularizer factor to 0. There is also another argument trainable. The documentation says If True also add the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES. which is not clear to me. Should I use it? Can someone explain to me if the weights decay effects in a sort of wrong way the evaluation step? How can I solve in that case? - text: 'Maybe I''m confused about what "inner" and "outer" tensor dimensions are, but the documentation for tf.matmul puzzles me: Isn''t it the case that R-rank arguments need to have matching (or no) R-2 outer dimensions, and that (as in normal matrix multiplication) the Rth, inner dimension of the first argument must match the R-1st dimension of the second. That is, in The outer dimensions a, ..., z must be identical to a'', ..., z'' (or not exist), and x and x'' must match (while p and q can be anything). Or put another way, shouldn''t the docs say:' - text: 'I am using tf.data with reinitializable iterator to handle training and dev set data. For each epoch, I initialize the training data set. The official documentation has similar structure. I think this is not efficient especially if the training set is large. Some of the resources I found online has sess.run(train_init_op, feed_dict={X: X_train, Y: Y_train}) before the for loop to avoid this issue. But then we can''t process the dev set after each epoch; we can only process it after we are done iterating over epochs epochs. Is there a way to efficiently process the dev set after each epoch?' - text: 'Why is the pred variable being calculated before any of the training iterations occur? I would expect that a pred would be generated (through the RNN() function) during each pass through of the data for every iteration? There must be something I am missing. Is pred something like a function object? I have looked at the docs for tf.matmul() and that returns a tensor, not a function. Full source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py Here is the code:' pipeline_tag: text-classification inference: true base_model: flax-sentence-embeddings/stackoverflow_mpnet-base model-index: - name: SetFit with flax-sentence-embeddings/stackoverflow_mpnet-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.81875 name: Accuracy - type: precision value: 0.8248924988055423 name: Precision - type: recall value: 0.81875 name: Recall - type: f1 value: 0.8178892421209625 name: F1 --- # SetFit with flax-sentence-embeddings/stackoverflow_mpnet-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [flax-sentence-embeddings/stackoverflow_mpnet-base](https://huggingface.co/flax-sentence-embeddings/stackoverflow_mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [flax-sentence-embeddings/stackoverflow_mpnet-base](https://huggingface.co/flax-sentence-embeddings/stackoverflow_mpnet-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | <ul><li>'In tf.gradients, there is a keyword argument grad_ys Why is grads_ys needed here? The docs here is implicit. Could you please give some specific purpose and code? And my example code for tf.gradients is'</li><li>'I am coding a Convolutional Neural Network to classify images in TensorFlow but there is a problem: When I try to feed my NumPy array of flattened images (3 channels with RGB values from 0 to 255) to a tf.estimator.inputs.numpy_input_fn I get the following error: My numpy_imput_fn looks like this: In the documentation for the function it is said that x should be a dict of NumPy array:'</li><li>'I am trying to use tf.pad. Here is my attempt to pad the tensor to length 20, with values 10. I get this error message I am looking at the documentation https://www.tensorflow.org/api_docs/python/tf/pad But I am unable to figure out how to shape the pad value'</li></ul> | | 0 | <ul><li>"I am trying to use tf.train.shuffle_batch to consume batches of data from a TFRecord file using TensorFlow 1.0. The relevant functions are: The code enters through examine_batches(), having been handed the output of batch_generator(). batch_generator() calls tfrecord_to_graph_ops() and the problem is in that function, I believe. I am calling on a file with 1,000 bytes (numbers 0-9). If I call eval() on this in a Session, it shows me all 1,000 elements. But if I try to put it in a batch generator, it crashes. If I don't reshape targets, I get an error like ValueError: All shapes must be fully defined when tf.train.shuffle_batch is called. If I call targets.set_shape([1]), reminiscent of Google's CIFAR-10 example code, I get an error like Invalid argument: Shape mismatch in tuple component 0. Expected [1], got [1000] in tf.train.shuffle_batch. I also tried using tf.strided_slice to cut a chunk of the raw data - this doesn't crash but it results in just getting the first event over and over again. What is the right way to do this? To pull batches from a TFRecord file? Note, I could manually write a function that chopped up the raw byte data and did some sort of batching - especially easy if I am using the feed_dict approach to getting data into the graph - but I am trying to learn how to use TensorFlow's TFRecord files and how to use their built in batching functions. Thanks!"</li><li>"I am fairly new to TF and ML in general, so I have relied heavily on the documentation and tutorials provided by TF. I have been following along with the Tensorflow 2.0 Objection Detection API tutorial to the letter and have encountered an issue while training: everytime I run the training script model_main_tf2.py, it always hangs after the output: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2) after a number of depreciation warnings. I have tried many different ways of fixing this, including modifying the train script and pipeline.config files. My dataset isn't very large, less than 100 images with a max of 15 labels per image. useful info: Python 3.8.0 Tensorflow 2.4.4 (Non GPU) Windows 10 Pro Any and all help is appreciated!"</li><li>'I found two solutions to calculate FLOPS of Keras models (TF 2.x): [1] https://github.com/tensorflow/tensorflow/issues/32809#issuecomment-849439287 [2] https://github.com/tensorflow/tensorflow/issues/32809#issuecomment-841975359 At first glance, both seem to work perfectly when testing with tf.keras.applications.ResNet50(). The resulting FLOPS are identical and correspond to the FLOPS of the ResNet paper. But then I built a small GRU model and found different FLOPS for the two methods: This results in the following numbers: 13206 for method [1] and 18306 for method [2]. That is really confusing... Does anyone know how to correctly calculate FLOPS of recurrent Keras models in TF 2.x? EDIT I found another information: [3] https://github.com/tensorflow/tensorflow/issues/36391#issuecomment-596055100 When adding this argument to convert_variables_to_constants_v2, the outputs of [1] and [2] are the same when using my GRU example. The tensorflow documentation explains this argument as follows (https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/convert_to_constants.py): Can someone try to explain this?'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.8187 | 0.8249 | 0.8187 | 0.8179 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("sharukat/so_mpnet-base_question_classifier") # Run inference preds = model("I'm trying to take a dataframe and convert them to tensors to train a model in keras. I think it's being triggered when I am converting my Y label to a tensor: I'm getting the following error when casting y_train to tensor from slices: In the tutorials this seems to work but I think those tutorials are doing multiclass classifications whereas I'm doing a regression so y_train is a series not multiple columns. Any suggestions of what I can do?") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:----| | Word count | 12 | 128.0219 | 907 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 320 | | 1 | 320 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: unique - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - max_length: 256 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:---------:|:-------------:|:---------------:| | 0.0000 | 1 | 0.3266 | - | | **1.0** | **25640** | **0.0** | **0.2863** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.2 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
cmu-lti/sotopia-pi-mistral-7b-SR
cmu-lti
2024-03-07T21:32:29Z
90
0
peft
[ "peft", "region:us" ]
null
2024-03-07T21:26:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
pypy/VGMShield
pypy
2024-03-07T21:32:06Z
0
3
null
[ "Fake Video Detection", "Fake Video Source Tracing", "video-classification", "dataset:OpenGVLab/InternVid", "dataset:TempoFunk/webvid-10M", "arxiv:2402.13126", "license:apache-2.0", "region:us" ]
video-classification
2024-02-21T20:23:29Z
--- license: apache-2.0 datasets: - OpenGVLab/InternVid - TempoFunk/webvid-10M pipeline_tag: video-classification tags: - Fake Video Detection - Fake Video Source Tracing --- <div style="text-align: center;"> <img src="./symbol.png" alt="symbol" style="height: 100px;"/> </div> # VGMShield: Mitigating Misuse of Video Generative Models This repository pre-trained checkpoints to evaluate our detection and source tracing models. Our paper can be found at [here](https://arxiv.org/abs/2402.13126). **Detection Model**: [I3D](./detect/i3d/invid_i3d_i2v_i2v_best_model.pth) (0 True 1 False) [MAE](./detect/mae/invid_mae_i2v_i2v_best_model.pth) (0 True 1 False) [XCLIP](./detect/xclip/invid_xclip_i2v_i2v_best_model.pth) (0 True 1 False) [MAE-sora](./detect/mae/detection_ft_sora.pt) (0 True 1 False) **Source Tracing Model** > 0 Hotshot-xl 1 i2vgen-xl(i2v) 2 i2vgen-xl(t2v) 3 LaVie 4 SEINE 5 Show-1 6 Stable Video Diffusion 7 VideoCrafter(i2v) 8 VideoCrafter(t2v) [I3D](./source_tracing/i3d/invid_i3d_st_best_model.pth)-based source tracing model [MAE](./source_tracing/mae/invid_mae_st_best_model.pth)-based source tracing model [XCLIP](./source_tracing/xclip/invid_xclip_st_best_model.pth)-based source tracing model [MAE](./source_tracing/mae/source_tracing_ft_sora.pt)-based(sora) source tracing model sora is label 9.
cmu-lti/sotopia-pi-mistral-7b-BC
cmu-lti
2024-03-07T21:30:09Z
4
0
peft
[ "peft", "region:us" ]
null
2024-03-07T21:24:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
farid1088/GQA_RoBERTa_legal_SQuAD_complete_augmented_1000
farid1088
2024-03-07T21:28:15Z
27
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-06T02:07:37Z
--- tags: - generated_from_trainer model-index: - name: GQA_RoBERTa_legal_SQuAD_complete_augmented_1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_RoBERTa_legal_SQuAD_complete_augmented_1000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 4 | 3.7757 | | No log | 2.0 | 8 | 3.1210 | | No log | 3.0 | 12 | 2.7424 | | No log | 4.0 | 16 | 2.3990 | | No log | 5.0 | 20 | 2.0583 | | No log | 6.0 | 24 | 1.9699 | | No log | 7.0 | 28 | 1.6942 | | No log | 8.0 | 32 | 1.5022 | | No log | 9.0 | 36 | 1.4585 | | No log | 10.0 | 40 | 1.1937 | | No log | 11.0 | 44 | 1.1496 | | No log | 12.0 | 48 | 0.9856 | | No log | 13.0 | 52 | 0.9389 | | No log | 14.0 | 56 | 0.9621 | | No log | 15.0 | 60 | 0.8580 | | No log | 16.0 | 64 | 0.8093 | | No log | 17.0 | 68 | 0.7783 | | No log | 18.0 | 72 | 0.7656 | | No log | 19.0 | 76 | 0.7793 | | No log | 20.0 | 80 | 0.7327 | | No log | 21.0 | 84 | 0.7109 | | No log | 22.0 | 88 | 0.7120 | | No log | 23.0 | 92 | 0.7099 | | No log | 24.0 | 96 | 0.7191 | | No log | 25.0 | 100 | 0.7350 | | No log | 26.0 | 104 | 0.7634 | | No log | 27.0 | 108 | 0.7498 | | No log | 28.0 | 112 | 0.7353 | | No log | 29.0 | 116 | 0.7319 | | No log | 30.0 | 120 | 0.7603 | | No log | 31.0 | 124 | 0.7701 | | No log | 32.0 | 128 | 0.7818 | | No log | 33.0 | 132 | 0.7904 | | No log | 34.0 | 136 | 0.7580 | | No log | 35.0 | 140 | 0.7640 | | No log | 36.0 | 144 | 0.7558 | | No log | 37.0 | 148 | 0.7470 | | No log | 38.0 | 152 | 0.7730 | | No log | 39.0 | 156 | 0.7450 | | No log | 40.0 | 160 | 0.7516 | | No log | 41.0 | 164 | 0.7475 | | No log | 42.0 | 168 | 0.7306 | | No log | 43.0 | 172 | 0.7488 | | No log | 44.0 | 176 | 0.7604 | | No log | 45.0 | 180 | 0.8035 | | No log | 46.0 | 184 | 0.7837 | | No log | 47.0 | 188 | 0.7307 | | No log | 48.0 | 192 | 0.6987 | | No log | 49.0 | 196 | 0.7281 | | No log | 50.0 | 200 | 0.7453 | | No log | 51.0 | 204 | 0.7811 | | No log | 52.0 | 208 | 0.7951 | | No log | 53.0 | 212 | 0.7833 | | No log | 54.0 | 216 | 0.7961 | | No log | 55.0 | 220 | 0.8255 | | No log | 56.0 | 224 | 0.8038 | | No log | 57.0 | 228 | 0.8384 | | No log | 58.0 | 232 | 0.8412 | | No log | 59.0 | 236 | 0.8206 | | No log | 60.0 | 240 | 0.8224 | | No log | 61.0 | 244 | 0.8638 | | No log | 62.0 | 248 | 0.9014 | | No log | 63.0 | 252 | 0.9255 | | No log | 64.0 | 256 | 0.9019 | | No log | 65.0 | 260 | 0.8741 | | No log | 66.0 | 264 | 0.8442 | | No log | 67.0 | 268 | 0.8526 | | No log | 68.0 | 272 | 0.8702 | | No log | 69.0 | 276 | 0.9321 | | No log | 70.0 | 280 | 0.9450 | | No log | 71.0 | 284 | 0.8868 | | No log | 72.0 | 288 | 0.8622 | | No log | 73.0 | 292 | 0.8586 | | No log | 74.0 | 296 | 0.8935 | | No log | 75.0 | 300 | 0.9010 | | No log | 76.0 | 304 | 0.8703 | | No log | 77.0 | 308 | 0.8726 | | No log | 78.0 | 312 | 0.9113 | | No log | 79.0 | 316 | 0.9175 | | No log | 80.0 | 320 | 0.9173 | | No log | 81.0 | 324 | 0.9550 | | No log | 82.0 | 328 | 0.9649 | | No log | 83.0 | 332 | 0.9917 | | No log | 84.0 | 336 | 0.9783 | | No log | 85.0 | 340 | 0.9558 | | No log | 86.0 | 344 | 0.9425 | | No log | 87.0 | 348 | 0.9323 | | No log | 88.0 | 352 | 0.9471 | | No log | 89.0 | 356 | 0.9749 | | No log | 90.0 | 360 | 0.9638 | | No log | 91.0 | 364 | 0.9881 | | No log | 92.0 | 368 | 0.9697 | | No log | 93.0 | 372 | 0.9189 | | No log | 94.0 | 376 | 0.9036 | | No log | 95.0 | 380 | 0.8745 | | No log | 96.0 | 384 | 0.8811 | | No log | 97.0 | 388 | 0.8967 | | No log | 98.0 | 392 | 0.9032 | | No log | 99.0 | 396 | 0.9201 | | No log | 100.0 | 400 | 0.9524 | | No log | 101.0 | 404 | 0.9983 | | No log | 102.0 | 408 | 0.9742 | | No log | 103.0 | 412 | 0.9834 | | No log | 104.0 | 416 | 0.9480 | | No log | 105.0 | 420 | 0.9367 | | No log | 106.0 | 424 | 0.9340 | | No log | 107.0 | 428 | 0.9454 | | No log | 108.0 | 432 | 0.9553 | | No log | 109.0 | 436 | 0.9694 | | No log | 110.0 | 440 | 0.9696 | | No log | 111.0 | 444 | 0.9280 | | No log | 112.0 | 448 | 0.9166 | | No log | 113.0 | 452 | 0.9406 | | No log | 114.0 | 456 | 0.9372 | | No log | 115.0 | 460 | 0.9147 | | No log | 116.0 | 464 | 0.9267 | | No log | 117.0 | 468 | 0.9665 | | No log | 118.0 | 472 | 1.0231 | | No log | 119.0 | 476 | 1.0291 | | No log | 120.0 | 480 | 0.9973 | | No log | 121.0 | 484 | 0.9516 | | No log | 122.0 | 488 | 0.9134 | | No log | 123.0 | 492 | 0.8852 | | No log | 124.0 | 496 | 0.8535 | | 0.9595 | 125.0 | 500 | 0.9003 | | 0.9595 | 126.0 | 504 | 0.9523 | | 0.9595 | 127.0 | 508 | 0.9925 | | 0.9595 | 128.0 | 512 | 0.9736 | | 0.9595 | 129.0 | 516 | 0.9584 | | 0.9595 | 130.0 | 520 | 0.9625 | | 0.9595 | 131.0 | 524 | 0.9533 | | 0.9595 | 132.0 | 528 | 0.9774 | | 0.9595 | 133.0 | 532 | 0.9898 | | 0.9595 | 134.0 | 536 | 0.9657 | | 0.9595 | 135.0 | 540 | 0.9627 | | 0.9595 | 136.0 | 544 | 1.0049 | | 0.9595 | 137.0 | 548 | 1.0241 | | 0.9595 | 138.0 | 552 | 1.0184 | | 0.9595 | 139.0 | 556 | 1.0387 | | 0.9595 | 140.0 | 560 | 1.0528 | | 0.9595 | 141.0 | 564 | 1.0510 | | 0.9595 | 142.0 | 568 | 1.0153 | | 0.9595 | 143.0 | 572 | 0.9628 | | 0.9595 | 144.0 | 576 | 0.9999 | | 0.9595 | 145.0 | 580 | 1.0139 | | 0.9595 | 146.0 | 584 | 1.0149 | | 0.9595 | 147.0 | 588 | 1.0016 | | 0.9595 | 148.0 | 592 | 0.9516 | | 0.9595 | 149.0 | 596 | 0.9290 | | 0.9595 | 150.0 | 600 | 0.9084 | | 0.9595 | 151.0 | 604 | 0.8736 | | 0.9595 | 152.0 | 608 | 0.8832 | | 0.9595 | 153.0 | 612 | 0.9093 | | 0.9595 | 154.0 | 616 | 0.9489 | | 0.9595 | 155.0 | 620 | 0.9548 | | 0.9595 | 156.0 | 624 | 0.8944 | | 0.9595 | 157.0 | 628 | 0.8681 | | 0.9595 | 158.0 | 632 | 0.8733 | | 0.9595 | 159.0 | 636 | 0.8852 | | 0.9595 | 160.0 | 640 | 0.9133 | | 0.9595 | 161.0 | 644 | 0.8900 | | 0.9595 | 162.0 | 648 | 0.8863 | | 0.9595 | 163.0 | 652 | 0.8928 | | 0.9595 | 164.0 | 656 | 0.8959 | | 0.9595 | 165.0 | 660 | 0.9163 | | 0.9595 | 166.0 | 664 | 0.9739 | | 0.9595 | 167.0 | 668 | 1.0204 | | 0.9595 | 168.0 | 672 | 1.0059 | | 0.9595 | 169.0 | 676 | 0.9578 | | 0.9595 | 170.0 | 680 | 0.9313 | | 0.9595 | 171.0 | 684 | 0.9084 | | 0.9595 | 172.0 | 688 | 0.9836 | | 0.9595 | 173.0 | 692 | 1.0601 | | 0.9595 | 174.0 | 696 | 1.0884 | | 0.9595 | 175.0 | 700 | 1.0779 | | 0.9595 | 176.0 | 704 | 1.0599 | | 0.9595 | 177.0 | 708 | 1.0422 | | 0.9595 | 178.0 | 712 | 1.0271 | | 0.9595 | 179.0 | 716 | 1.0100 | | 0.9595 | 180.0 | 720 | 0.9945 | | 0.9595 | 181.0 | 724 | 1.0018 | | 0.9595 | 182.0 | 728 | 1.0234 | | 0.9595 | 183.0 | 732 | 1.0380 | | 0.9595 | 184.0 | 736 | 1.0525 | | 0.9595 | 185.0 | 740 | 1.0420 | | 0.9595 | 186.0 | 744 | 1.0325 | | 0.9595 | 187.0 | 748 | 1.0125 | | 0.9595 | 188.0 | 752 | 0.9891 | | 0.9595 | 189.0 | 756 | 0.9515 | | 0.9595 | 190.0 | 760 | 0.9495 | | 0.9595 | 191.0 | 764 | 0.9642 | | 0.9595 | 192.0 | 768 | 0.9876 | | 0.9595 | 193.0 | 772 | 0.9985 | | 0.9595 | 194.0 | 776 | 1.0227 | | 0.9595 | 195.0 | 780 | 1.0730 | | 0.9595 | 196.0 | 784 | 1.0871 | | 0.9595 | 197.0 | 788 | 1.0918 | | 0.9595 | 198.0 | 792 | 1.1092 | | 0.9595 | 199.0 | 796 | 1.0989 | | 0.9595 | 200.0 | 800 | 1.0992 | | 0.9595 | 201.0 | 804 | 1.1034 | | 0.9595 | 202.0 | 808 | 1.0881 | | 0.9595 | 203.0 | 812 | 1.0707 | | 0.9595 | 204.0 | 816 | 1.0777 | | 0.9595 | 205.0 | 820 | 1.0758 | | 0.9595 | 206.0 | 824 | 1.0684 | | 0.9595 | 207.0 | 828 | 1.0629 | | 0.9595 | 208.0 | 832 | 1.0659 | | 0.9595 | 209.0 | 836 | 1.0585 | | 0.9595 | 210.0 | 840 | 1.0132 | | 0.9595 | 211.0 | 844 | 0.9791 | | 0.9595 | 212.0 | 848 | 0.9761 | | 0.9595 | 213.0 | 852 | 1.0348 | | 0.9595 | 214.0 | 856 | 1.0910 | | 0.9595 | 215.0 | 860 | 1.1354 | | 0.9595 | 216.0 | 864 | 1.1348 | | 0.9595 | 217.0 | 868 | 1.0884 | | 0.9595 | 218.0 | 872 | 1.0430 | | 0.9595 | 219.0 | 876 | 1.0202 | | 0.9595 | 220.0 | 880 | 1.0097 | | 0.9595 | 221.0 | 884 | 1.0151 | | 0.9595 | 222.0 | 888 | 1.0096 | | 0.9595 | 223.0 | 892 | 1.0302 | | 0.9595 | 224.0 | 896 | 1.0635 | | 0.9595 | 225.0 | 900 | 1.0611 | | 0.9595 | 226.0 | 904 | 1.0548 | | 0.9595 | 227.0 | 908 | 1.1173 | | 0.9595 | 228.0 | 912 | 1.1561 | | 0.9595 | 229.0 | 916 | 1.1550 | | 0.9595 | 230.0 | 920 | 1.0254 | | 0.9595 | 231.0 | 924 | 0.9364 | | 0.9595 | 232.0 | 928 | 0.9316 | | 0.9595 | 233.0 | 932 | 0.9717 | | 0.9595 | 234.0 | 936 | 1.0406 | | 0.9595 | 235.0 | 940 | 1.0643 | | 0.9595 | 236.0 | 944 | 1.1092 | | 0.9595 | 237.0 | 948 | 1.1197 | | 0.9595 | 238.0 | 952 | 1.1270 | | 0.9595 | 239.0 | 956 | 1.1300 | | 0.9595 | 240.0 | 960 | 1.0921 | | 0.9595 | 241.0 | 964 | 1.0446 | | 0.9595 | 242.0 | 968 | 1.0234 | | 0.9595 | 243.0 | 972 | 1.0067 | | 0.9595 | 244.0 | 976 | 1.0324 | | 0.9595 | 245.0 | 980 | 1.0434 | | 0.9595 | 246.0 | 984 | 1.0502 | | 0.9595 | 247.0 | 988 | 1.0618 | | 0.9595 | 248.0 | 992 | 1.1352 | | 0.9595 | 249.0 | 996 | 1.1672 | | 0.4061 | 250.0 | 1000 | 1.1700 | | 0.4061 | 251.0 | 1004 | 1.1416 | | 0.4061 | 252.0 | 1008 | 1.1198 | | 0.4061 | 253.0 | 1012 | 1.1226 | | 0.4061 | 254.0 | 1016 | 1.1220 | | 0.4061 | 255.0 | 1020 | 1.1317 | | 0.4061 | 256.0 | 1024 | 1.1390 | | 0.4061 | 257.0 | 1028 | 1.1069 | | 0.4061 | 258.0 | 1032 | 1.0700 | | 0.4061 | 259.0 | 1036 | 1.0657 | | 0.4061 | 260.0 | 1040 | 1.0839 | | 0.4061 | 261.0 | 1044 | 1.1030 | | 0.4061 | 262.0 | 1048 | 1.1005 | | 0.4061 | 263.0 | 1052 | 1.0882 | | 0.4061 | 264.0 | 1056 | 1.0740 | | 0.4061 | 265.0 | 1060 | 1.0710 | | 0.4061 | 266.0 | 1064 | 1.0775 | | 0.4061 | 267.0 | 1068 | 1.0908 | | 0.4061 | 268.0 | 1072 | 1.1077 | | 0.4061 | 269.0 | 1076 | 1.1204 | | 0.4061 | 270.0 | 1080 | 1.1259 | | 0.4061 | 271.0 | 1084 | 1.1208 | | 0.4061 | 272.0 | 1088 | 1.1004 | | 0.4061 | 273.0 | 1092 | 1.0761 | | 0.4061 | 274.0 | 1096 | 1.0683 | | 0.4061 | 275.0 | 1100 | 1.0663 | | 0.4061 | 276.0 | 1104 | 1.0627 | | 0.4061 | 277.0 | 1108 | 1.1069 | | 0.4061 | 278.0 | 1112 | 1.1032 | | 0.4061 | 279.0 | 1116 | 1.0401 | | 0.4061 | 280.0 | 1120 | 1.0408 | | 0.4061 | 281.0 | 1124 | 1.1004 | | 0.4061 | 282.0 | 1128 | 1.1623 | | 0.4061 | 283.0 | 1132 | 1.1512 | | 0.4061 | 284.0 | 1136 | 1.1242 | | 0.4061 | 285.0 | 1140 | 1.0919 | | 0.4061 | 286.0 | 1144 | 1.0818 | | 0.4061 | 287.0 | 1148 | 1.0703 | | 0.4061 | 288.0 | 1152 | 1.0501 | | 0.4061 | 289.0 | 1156 | 1.0347 | | 0.4061 | 290.0 | 1160 | 1.0299 | | 0.4061 | 291.0 | 1164 | 1.0641 | | 0.4061 | 292.0 | 1168 | 1.0679 | | 0.4061 | 293.0 | 1172 | 1.0680 | | 0.4061 | 294.0 | 1176 | 1.1041 | | 0.4061 | 295.0 | 1180 | 1.1802 | | 0.4061 | 296.0 | 1184 | 1.1971 | | 0.4061 | 297.0 | 1188 | 1.1793 | | 0.4061 | 298.0 | 1192 | 1.1459 | | 0.4061 | 299.0 | 1196 | 1.1035 | | 0.4061 | 300.0 | 1200 | 1.0577 | | 0.4061 | 301.0 | 1204 | 1.0544 | | 0.4061 | 302.0 | 1208 | 1.0737 | | 0.4061 | 303.0 | 1212 | 1.0819 | | 0.4061 | 304.0 | 1216 | 1.0899 | | 0.4061 | 305.0 | 1220 | 1.0885 | | 0.4061 | 306.0 | 1224 | 1.0755 | | 0.4061 | 307.0 | 1228 | 1.0139 | | 0.4061 | 308.0 | 1232 | 0.9849 | | 0.4061 | 309.0 | 1236 | 0.9781 | | 0.4061 | 310.0 | 1240 | 0.9953 | | 0.4061 | 311.0 | 1244 | 1.0138 | | 0.4061 | 312.0 | 1248 | 1.0119 | | 0.4061 | 313.0 | 1252 | 1.0704 | | 0.4061 | 314.0 | 1256 | 1.1161 | | 0.4061 | 315.0 | 1260 | 1.1500 | | 0.4061 | 316.0 | 1264 | 1.1862 | | 0.4061 | 317.0 | 1268 | 1.1833 | | 0.4061 | 318.0 | 1272 | 1.1706 | | 0.4061 | 319.0 | 1276 | 1.1517 | | 0.4061 | 320.0 | 1280 | 1.1309 | | 0.4061 | 321.0 | 1284 | 1.0936 | | 0.4061 | 322.0 | 1288 | 1.0957 | | 0.4061 | 323.0 | 1292 | 1.1080 | | 0.4061 | 324.0 | 1296 | 1.1087 | | 0.4061 | 325.0 | 1300 | 1.1314 | | 0.4061 | 326.0 | 1304 | 1.1757 | | 0.4061 | 327.0 | 1308 | 1.1896 | | 0.4061 | 328.0 | 1312 | 1.1742 | | 0.4061 | 329.0 | 1316 | 1.1661 | | 0.4061 | 330.0 | 1320 | 1.1675 | | 0.4061 | 331.0 | 1324 | 1.1691 | | 0.4061 | 332.0 | 1328 | 1.1715 | | 0.4061 | 333.0 | 1332 | 1.1513 | | 0.4061 | 334.0 | 1336 | 1.1347 | | 0.4061 | 335.0 | 1340 | 1.1386 | | 0.4061 | 336.0 | 1344 | 1.1587 | | 0.4061 | 337.0 | 1348 | 1.1739 | | 0.4061 | 338.0 | 1352 | 1.1790 | | 0.4061 | 339.0 | 1356 | 1.1615 | | 0.4061 | 340.0 | 1360 | 1.1484 | | 0.4061 | 341.0 | 1364 | 1.1376 | | 0.4061 | 342.0 | 1368 | 1.1258 | | 0.4061 | 343.0 | 1372 | 1.1142 | | 0.4061 | 344.0 | 1376 | 1.1062 | | 0.4061 | 345.0 | 1380 | 1.0986 | | 0.4061 | 346.0 | 1384 | 1.0905 | | 0.4061 | 347.0 | 1388 | 1.0776 | | 0.4061 | 348.0 | 1392 | 1.0687 | | 0.4061 | 349.0 | 1396 | 1.0865 | | 0.4061 | 350.0 | 1400 | 1.0822 | | 0.4061 | 351.0 | 1404 | 1.0831 | | 0.4061 | 352.0 | 1408 | 1.0914 | | 0.4061 | 353.0 | 1412 | 1.1018 | | 0.4061 | 354.0 | 1416 | 1.1078 | | 0.4061 | 355.0 | 1420 | 1.1190 | | 0.4061 | 356.0 | 1424 | 1.1374 | | 0.4061 | 357.0 | 1428 | 1.1534 | | 0.4061 | 358.0 | 1432 | 1.2011 | | 0.4061 | 359.0 | 1436 | 1.2166 | | 0.4061 | 360.0 | 1440 | 1.2168 | | 0.4061 | 361.0 | 1444 | 1.2144 | | 0.4061 | 362.0 | 1448 | 1.1989 | | 0.4061 | 363.0 | 1452 | 1.1832 | | 0.4061 | 364.0 | 1456 | 1.1531 | | 0.4061 | 365.0 | 1460 | 1.1422 | | 0.4061 | 366.0 | 1464 | 1.1279 | | 0.4061 | 367.0 | 1468 | 1.1210 | | 0.4061 | 368.0 | 1472 | 1.1114 | | 0.4061 | 369.0 | 1476 | 1.1034 | | 0.4061 | 370.0 | 1480 | 1.0998 | | 0.4061 | 371.0 | 1484 | 1.1009 | | 0.4061 | 372.0 | 1488 | 1.1048 | | 0.4061 | 373.0 | 1492 | 1.1002 | | 0.4061 | 374.0 | 1496 | 1.0920 | | 0.4027 | 375.0 | 1500 | 1.0851 | | 0.4027 | 376.0 | 1504 | 1.0787 | | 0.4027 | 377.0 | 1508 | 1.0733 | | 0.4027 | 378.0 | 1512 | 1.0695 | | 0.4027 | 379.0 | 1516 | 1.0686 | | 0.4027 | 380.0 | 1520 | 1.0687 | | 0.4027 | 381.0 | 1524 | 1.0757 | | 0.4027 | 382.0 | 1528 | 1.1245 | | 0.4027 | 383.0 | 1532 | 1.1659 | | 0.4027 | 384.0 | 1536 | 1.1729 | | 0.4027 | 385.0 | 1540 | 1.1401 | | 0.4027 | 386.0 | 1544 | 1.1316 | | 0.4027 | 387.0 | 1548 | 1.1445 | | 0.4027 | 388.0 | 1552 | 1.1504 | | 0.4027 | 389.0 | 1556 | 1.1461 | | 0.4027 | 390.0 | 1560 | 1.1450 | | 0.4027 | 391.0 | 1564 | 1.1428 | | 0.4027 | 392.0 | 1568 | 1.1392 | | 0.4027 | 393.0 | 1572 | 1.1304 | | 0.4027 | 394.0 | 1576 | 1.1038 | | 0.4027 | 395.0 | 1580 | 1.0931 | | 0.4027 | 396.0 | 1584 | 1.0837 | | 0.4027 | 397.0 | 1588 | 1.0824 | | 0.4027 | 398.0 | 1592 | 1.0808 | | 0.4027 | 399.0 | 1596 | 1.0819 | | 0.4027 | 400.0 | 1600 | 1.0794 | | 0.4027 | 401.0 | 1604 | 1.0887 | | 0.4027 | 402.0 | 1608 | 1.0771 | | 0.4027 | 403.0 | 1612 | 1.1094 | | 0.4027 | 404.0 | 1616 | 1.1436 | | 0.4027 | 405.0 | 1620 | 1.1654 | | 0.4027 | 406.0 | 1624 | 1.1661 | | 0.4027 | 407.0 | 1628 | 1.1561 | | 0.4027 | 408.0 | 1632 | 1.1425 | | 0.4027 | 409.0 | 1636 | 1.1329 | | 0.4027 | 410.0 | 1640 | 1.1031 | | 0.4027 | 411.0 | 1644 | 1.0969 | | 0.4027 | 412.0 | 1648 | 1.1374 | | 0.4027 | 413.0 | 1652 | 1.2151 | | 0.4027 | 414.0 | 1656 | 1.2531 | | 0.4027 | 415.0 | 1660 | 1.2576 | | 0.4027 | 416.0 | 1664 | 1.2520 | | 0.4027 | 417.0 | 1668 | 1.2261 | | 0.4027 | 418.0 | 1672 | 1.1952 | | 0.4027 | 419.0 | 1676 | 1.1627 | | 0.4027 | 420.0 | 1680 | 1.1412 | | 0.4027 | 421.0 | 1684 | 1.1316 | | 0.4027 | 422.0 | 1688 | 1.1335 | | 0.4027 | 423.0 | 1692 | 1.1366 | | 0.4027 | 424.0 | 1696 | 1.1405 | | 0.4027 | 425.0 | 1700 | 1.1503 | | 0.4027 | 426.0 | 1704 | 1.1579 | | 0.4027 | 427.0 | 1708 | 1.1629 | | 0.4027 | 428.0 | 1712 | 1.1647 | | 0.4027 | 429.0 | 1716 | 1.1752 | | 0.4027 | 430.0 | 1720 | 1.2149 | | 0.4027 | 431.0 | 1724 | 1.2361 | | 0.4027 | 432.0 | 1728 | 1.2406 | | 0.4027 | 433.0 | 1732 | 1.2271 | | 0.4027 | 434.0 | 1736 | 1.2130 | | 0.4027 | 435.0 | 1740 | 1.2011 | | 0.4027 | 436.0 | 1744 | 1.1930 | | 0.4027 | 437.0 | 1748 | 1.1895 | | 0.4027 | 438.0 | 1752 | 1.1903 | | 0.4027 | 439.0 | 1756 | 1.1907 | | 0.4027 | 440.0 | 1760 | 1.1871 | | 0.4027 | 441.0 | 1764 | 1.1850 | | 0.4027 | 442.0 | 1768 | 1.1835 | | 0.4027 | 443.0 | 1772 | 1.1841 | | 0.4027 | 444.0 | 1776 | 1.1790 | | 0.4027 | 445.0 | 1780 | 1.1860 | | 0.4027 | 446.0 | 1784 | 1.1998 | | 0.4027 | 447.0 | 1788 | 1.2106 | | 0.4027 | 448.0 | 1792 | 1.2091 | | 0.4027 | 449.0 | 1796 | 1.2059 | | 0.4027 | 450.0 | 1800 | 1.2032 | | 0.4027 | 451.0 | 1804 | 1.2225 | | 0.4027 | 452.0 | 1808 | 1.2336 | | 0.4027 | 453.0 | 1812 | 1.2409 | | 0.4027 | 454.0 | 1816 | 1.2450 | | 0.4027 | 455.0 | 1820 | 1.2479 | | 0.4027 | 456.0 | 1824 | 1.2373 | | 0.4027 | 457.0 | 1828 | 1.2258 | | 0.4027 | 458.0 | 1832 | 1.2178 | | 0.4027 | 459.0 | 1836 | 1.2142 | | 0.4027 | 460.0 | 1840 | 1.2237 | | 0.4027 | 461.0 | 1844 | 1.2365 | | 0.4027 | 462.0 | 1848 | 1.2448 | | 0.4027 | 463.0 | 1852 | 1.2462 | | 0.4027 | 464.0 | 1856 | 1.2458 | | 0.4027 | 465.0 | 1860 | 1.2426 | | 0.4027 | 466.0 | 1864 | 1.2366 | | 0.4027 | 467.0 | 1868 | 1.2280 | | 0.4027 | 468.0 | 1872 | 1.2097 | | 0.4027 | 469.0 | 1876 | 1.1996 | | 0.4027 | 470.0 | 1880 | 1.1970 | | 0.4027 | 471.0 | 1884 | 1.1946 | | 0.4027 | 472.0 | 1888 | 1.1921 | | 0.4027 | 473.0 | 1892 | 1.1885 | | 0.4027 | 474.0 | 1896 | 1.1959 | | 0.4027 | 475.0 | 1900 | 1.2028 | | 0.4027 | 476.0 | 1904 | 1.2091 | | 0.4027 | 477.0 | 1908 | 1.2131 | | 0.4027 | 478.0 | 1912 | 1.2149 | | 0.4027 | 479.0 | 1916 | 1.2142 | | 0.4027 | 480.0 | 1920 | 1.2106 | | 0.4027 | 481.0 | 1924 | 1.2185 | | 0.4027 | 482.0 | 1928 | 1.2249 | | 0.4027 | 483.0 | 1932 | 1.2221 | | 0.4027 | 484.0 | 1936 | 1.2240 | | 0.4027 | 485.0 | 1940 | 1.2291 | | 0.4027 | 486.0 | 1944 | 1.2215 | | 0.4027 | 487.0 | 1948 | 1.2306 | | 0.4027 | 488.0 | 1952 | 1.2364 | | 0.4027 | 489.0 | 1956 | 1.2394 | | 0.4027 | 490.0 | 1960 | 1.2425 | | 0.4027 | 491.0 | 1964 | 1.2441 | | 0.4027 | 492.0 | 1968 | 1.2484 | | 0.4027 | 493.0 | 1972 | 1.2533 | | 0.4027 | 494.0 | 1976 | 1.2587 | | 0.4027 | 495.0 | 1980 | 1.2861 | | 0.4027 | 496.0 | 1984 | 1.3230 | | 0.4027 | 497.0 | 1988 | 1.3310 | | 0.4027 | 498.0 | 1992 | 1.3040 | | 0.4027 | 499.0 | 1996 | 1.2828 | | 0.4015 | 500.0 | 2000 | 1.2658 | | 0.4015 | 501.0 | 2004 | 1.2563 | | 0.4015 | 502.0 | 2008 | 1.2468 | | 0.4015 | 503.0 | 2012 | 1.2381 | | 0.4015 | 504.0 | 2016 | 1.2305 | | 0.4015 | 505.0 | 2020 | 1.2271 | | 0.4015 | 506.0 | 2024 | 1.2447 | | 0.4015 | 507.0 | 2028 | 1.2642 | | 0.4015 | 508.0 | 2032 | 1.2743 | | 0.4015 | 509.0 | 2036 | 1.2797 | | 0.4015 | 510.0 | 2040 | 1.2839 | | 0.4015 | 511.0 | 2044 | 1.2645 | | 0.4015 | 512.0 | 2048 | 1.2411 | | 0.4015 | 513.0 | 2052 | 1.2261 | | 0.4015 | 514.0 | 2056 | 1.2141 | | 0.4015 | 515.0 | 2060 | 1.2026 | | 0.4015 | 516.0 | 2064 | 1.1991 | | 0.4015 | 517.0 | 2068 | 1.2004 | | 0.4015 | 518.0 | 2072 | 1.1927 | | 0.4015 | 519.0 | 2076 | 1.2065 | | 0.4015 | 520.0 | 2080 | 1.1876 | | 0.4015 | 521.0 | 2084 | 1.1670 | | 0.4015 | 522.0 | 2088 | 1.2298 | | 0.4015 | 523.0 | 2092 | 1.2412 | | 0.4015 | 524.0 | 2096 | 1.2469 | | 0.4015 | 525.0 | 2100 | 1.2639 | | 0.4015 | 526.0 | 2104 | 1.2845 | | 0.4015 | 527.0 | 2108 | 1.2928 | | 0.4015 | 528.0 | 2112 | 1.2928 | | 0.4015 | 529.0 | 2116 | 1.2901 | | 0.4015 | 530.0 | 2120 | 1.2863 | | 0.4015 | 531.0 | 2124 | 1.2819 | | 0.4015 | 532.0 | 2128 | 1.2756 | | 0.4015 | 533.0 | 2132 | 1.2602 | | 0.4015 | 534.0 | 2136 | 1.2220 | | 0.4015 | 535.0 | 2140 | 1.1909 | | 0.4015 | 536.0 | 2144 | 1.1784 | | 0.4015 | 537.0 | 2148 | 1.1824 | | 0.4015 | 538.0 | 2152 | 1.1839 | | 0.4015 | 539.0 | 2156 | 1.1836 | | 0.4015 | 540.0 | 2160 | 1.1816 | | 0.4015 | 541.0 | 2164 | 1.1767 | | 0.4015 | 542.0 | 2168 | 1.1693 | | 0.4015 | 543.0 | 2172 | 1.1573 | | 0.4015 | 544.0 | 2176 | 1.1424 | | 0.4015 | 545.0 | 2180 | 1.1312 | | 0.4015 | 546.0 | 2184 | 1.1262 | | 0.4015 | 547.0 | 2188 | 1.1330 | | 0.4015 | 548.0 | 2192 | 1.1370 | | 0.4015 | 549.0 | 2196 | 1.1386 | | 0.4015 | 550.0 | 2200 | 1.1450 | | 0.4015 | 551.0 | 2204 | 1.1489 | | 0.4015 | 552.0 | 2208 | 1.1465 | | 0.4015 | 553.0 | 2212 | 1.1458 | | 0.4015 | 554.0 | 2216 | 1.1438 | | 0.4015 | 555.0 | 2220 | 1.1405 | | 0.4015 | 556.0 | 2224 | 1.1413 | | 0.4015 | 557.0 | 2228 | 1.1443 | | 0.4015 | 558.0 | 2232 | 1.1478 | | 0.4015 | 559.0 | 2236 | 1.1519 | | 0.4015 | 560.0 | 2240 | 1.1579 | | 0.4015 | 561.0 | 2244 | 1.1543 | | 0.4015 | 562.0 | 2248 | 1.1479 | | 0.4015 | 563.0 | 2252 | 1.1474 | | 0.4015 | 564.0 | 2256 | 1.1388 | | 0.4015 | 565.0 | 2260 | 1.1312 | | 0.4015 | 566.0 | 2264 | 1.1319 | | 0.4015 | 567.0 | 2268 | 1.1345 | | 0.4015 | 568.0 | 2272 | 1.1379 | | 0.4015 | 569.0 | 2276 | 1.1343 | | 0.4015 | 570.0 | 2280 | 1.1312 | | 0.4015 | 571.0 | 2284 | 1.1294 | | 0.4015 | 572.0 | 2288 | 1.1286 | | 0.4015 | 573.0 | 2292 | 1.1313 | | 0.4015 | 574.0 | 2296 | 1.1344 | | 0.4015 | 575.0 | 2300 | 1.1408 | | 0.4015 | 576.0 | 2304 | 1.1502 | | 0.4015 | 577.0 | 2308 | 1.1605 | | 0.4015 | 578.0 | 2312 | 1.1661 | | 0.4015 | 579.0 | 2316 | 1.1772 | | 0.4015 | 580.0 | 2320 | 1.1835 | | 0.4015 | 581.0 | 2324 | 1.1882 | | 0.4015 | 582.0 | 2328 | 1.1931 | | 0.4015 | 583.0 | 2332 | 1.1966 | | 0.4015 | 584.0 | 2336 | 1.1995 | | 0.4015 | 585.0 | 2340 | 1.1999 | | 0.4015 | 586.0 | 2344 | 1.1976 | | 0.4015 | 587.0 | 2348 | 1.2158 | | 0.4015 | 588.0 | 2352 | 1.2351 | | 0.4015 | 589.0 | 2356 | 1.2386 | | 0.4015 | 590.0 | 2360 | 1.2322 | | 0.4015 | 591.0 | 2364 | 1.2268 | | 0.4015 | 592.0 | 2368 | 1.2168 | | 0.4015 | 593.0 | 2372 | 1.2058 | | 0.4015 | 594.0 | 2376 | 1.1940 | | 0.4015 | 595.0 | 2380 | 1.1846 | | 0.4015 | 596.0 | 2384 | 1.1756 | | 0.4015 | 597.0 | 2388 | 1.1728 | | 0.4015 | 598.0 | 2392 | 1.1731 | | 0.4015 | 599.0 | 2396 | 1.1747 | | 0.4015 | 600.0 | 2400 | 1.1754 | | 0.4015 | 601.0 | 2404 | 1.1738 | | 0.4015 | 602.0 | 2408 | 1.1766 | | 0.4015 | 603.0 | 2412 | 1.1779 | | 0.4015 | 604.0 | 2416 | 1.1781 | | 0.4015 | 605.0 | 2420 | 1.1755 | | 0.4015 | 606.0 | 2424 | 1.1726 | | 0.4015 | 607.0 | 2428 | 1.1691 | | 0.4015 | 608.0 | 2432 | 1.1652 | | 0.4015 | 609.0 | 2436 | 1.1594 | | 0.4015 | 610.0 | 2440 | 1.1497 | | 0.4015 | 611.0 | 2444 | 1.1450 | | 0.4015 | 612.0 | 2448 | 1.1467 | | 0.4015 | 613.0 | 2452 | 1.1463 | | 0.4015 | 614.0 | 2456 | 1.1456 | | 0.4015 | 615.0 | 2460 | 1.1613 | | 0.4015 | 616.0 | 2464 | 1.1746 | | 0.4015 | 617.0 | 2468 | 1.1846 | | 0.4015 | 618.0 | 2472 | 1.1864 | | 0.4015 | 619.0 | 2476 | 1.1849 | | 0.4015 | 620.0 | 2480 | 1.1839 | | 0.4015 | 621.0 | 2484 | 1.1802 | | 0.4015 | 622.0 | 2488 | 1.1759 | | 0.4015 | 623.0 | 2492 | 1.1711 | | 0.4015 | 624.0 | 2496 | 1.1654 | | 0.4009 | 625.0 | 2500 | 1.1607 | | 0.4009 | 626.0 | 2504 | 1.1558 | | 0.4009 | 627.0 | 2508 | 1.1530 | | 0.4009 | 628.0 | 2512 | 1.1523 | | 0.4009 | 629.0 | 2516 | 1.1515 | | 0.4009 | 630.0 | 2520 | 1.1477 | | 0.4009 | 631.0 | 2524 | 1.1447 | | 0.4009 | 632.0 | 2528 | 1.1449 | | 0.4009 | 633.0 | 2532 | 1.1450 | | 0.4009 | 634.0 | 2536 | 1.1520 | | 0.4009 | 635.0 | 2540 | 1.1594 | | 0.4009 | 636.0 | 2544 | 1.1627 | | 0.4009 | 637.0 | 2548 | 1.1648 | | 0.4009 | 638.0 | 2552 | 1.1668 | | 0.4009 | 639.0 | 2556 | 1.1679 | | 0.4009 | 640.0 | 2560 | 1.1674 | | 0.4009 | 641.0 | 2564 | 1.1629 | | 0.4009 | 642.0 | 2568 | 1.1590 | | 0.4009 | 643.0 | 2572 | 1.1572 | | 0.4009 | 644.0 | 2576 | 1.1574 | | 0.4009 | 645.0 | 2580 | 1.1560 | | 0.4009 | 646.0 | 2584 | 1.1547 | | 0.4009 | 647.0 | 2588 | 1.1626 | | 0.4009 | 648.0 | 2592 | 1.1698 | | 0.4009 | 649.0 | 2596 | 1.1810 | | 0.4009 | 650.0 | 2600 | 1.1890 | | 0.4009 | 651.0 | 2604 | 1.1906 | | 0.4009 | 652.0 | 2608 | 1.1845 | | 0.4009 | 653.0 | 2612 | 1.1802 | | 0.4009 | 654.0 | 2616 | 1.1777 | | 0.4009 | 655.0 | 2620 | 1.1755 | | 0.4009 | 656.0 | 2624 | 1.1743 | | 0.4009 | 657.0 | 2628 | 1.1838 | | 0.4009 | 658.0 | 2632 | 1.1907 | | 0.4009 | 659.0 | 2636 | 1.1953 | | 0.4009 | 660.0 | 2640 | 1.2169 | | 0.4009 | 661.0 | 2644 | 1.2343 | | 0.4009 | 662.0 | 2648 | 1.2517 | | 0.4009 | 663.0 | 2652 | 1.2641 | | 0.4009 | 664.0 | 2656 | 1.2559 | | 0.4009 | 665.0 | 2660 | 1.2292 | | 0.4009 | 666.0 | 2664 | 1.2040 | | 0.4009 | 667.0 | 2668 | 1.1851 | | 0.4009 | 668.0 | 2672 | 1.1710 | | 0.4009 | 669.0 | 2676 | 1.1577 | | 0.4009 | 670.0 | 2680 | 1.1502 | | 0.4009 | 671.0 | 2684 | 1.1591 | | 0.4009 | 672.0 | 2688 | 1.1709 | | 0.4009 | 673.0 | 2692 | 1.1813 | | 0.4009 | 674.0 | 2696 | 1.1893 | | 0.4009 | 675.0 | 2700 | 1.1942 | | 0.4009 | 676.0 | 2704 | 1.1949 | | 0.4009 | 677.0 | 2708 | 1.1814 | | 0.4009 | 678.0 | 2712 | 1.1825 | | 0.4009 | 679.0 | 2716 | 1.1880 | | 0.4009 | 680.0 | 2720 | 1.1829 | | 0.4009 | 681.0 | 2724 | 1.1667 | | 0.4009 | 682.0 | 2728 | 1.1637 | | 0.4009 | 683.0 | 2732 | 1.1631 | | 0.4009 | 684.0 | 2736 | 1.1605 | | 0.4009 | 685.0 | 2740 | 1.1599 | | 0.4009 | 686.0 | 2744 | 1.1571 | | 0.4009 | 687.0 | 2748 | 1.1528 | | 0.4009 | 688.0 | 2752 | 1.1541 | | 0.4009 | 689.0 | 2756 | 1.1628 | | 0.4009 | 690.0 | 2760 | 1.1750 | | 0.4009 | 691.0 | 2764 | 1.1855 | | 0.4009 | 692.0 | 2768 | 1.1928 | | 0.4009 | 693.0 | 2772 | 1.1962 | | 0.4009 | 694.0 | 2776 | 1.1970 | | 0.4009 | 695.0 | 2780 | 1.1976 | | 0.4009 | 696.0 | 2784 | 1.1929 | | 0.4009 | 697.0 | 2788 | 1.1959 | | 0.4009 | 698.0 | 2792 | 1.2003 | | 0.4009 | 699.0 | 2796 | 1.2046 | | 0.4009 | 700.0 | 2800 | 1.2084 | | 0.4009 | 701.0 | 2804 | 1.2097 | | 0.4009 | 702.0 | 2808 | 1.2109 | | 0.4009 | 703.0 | 2812 | 1.2124 | | 0.4009 | 704.0 | 2816 | 1.2159 | | 0.4009 | 705.0 | 2820 | 1.2190 | | 0.4009 | 706.0 | 2824 | 1.2203 | | 0.4009 | 707.0 | 2828 | 1.2186 | | 0.4009 | 708.0 | 2832 | 1.2156 | | 0.4009 | 709.0 | 2836 | 1.2086 | | 0.4009 | 710.0 | 2840 | 1.2024 | | 0.4009 | 711.0 | 2844 | 1.1998 | | 0.4009 | 712.0 | 2848 | 1.1986 | | 0.4009 | 713.0 | 2852 | 1.1981 | | 0.4009 | 714.0 | 2856 | 1.2001 | | 0.4009 | 715.0 | 2860 | 1.2019 | | 0.4009 | 716.0 | 2864 | 1.2038 | | 0.4009 | 717.0 | 2868 | 1.2051 | | 0.4009 | 718.0 | 2872 | 1.1869 | | 0.4009 | 719.0 | 2876 | 1.1780 | | 0.4009 | 720.0 | 2880 | 1.1821 | | 0.4009 | 721.0 | 2884 | 1.1875 | | 0.4009 | 722.0 | 2888 | 1.1881 | | 0.4009 | 723.0 | 2892 | 1.1867 | | 0.4009 | 724.0 | 2896 | 1.1862 | | 0.4009 | 725.0 | 2900 | 1.1858 | | 0.4009 | 726.0 | 2904 | 1.1841 | | 0.4009 | 727.0 | 2908 | 1.1803 | | 0.4009 | 728.0 | 2912 | 1.1781 | | 0.4009 | 729.0 | 2916 | 1.1751 | | 0.4009 | 730.0 | 2920 | 1.1735 | | 0.4009 | 731.0 | 2924 | 1.1709 | | 0.4009 | 732.0 | 2928 | 1.1676 | | 0.4009 | 733.0 | 2932 | 1.1643 | | 0.4009 | 734.0 | 2936 | 1.1640 | | 0.4009 | 735.0 | 2940 | 1.1636 | | 0.4009 | 736.0 | 2944 | 1.1596 | | 0.4009 | 737.0 | 2948 | 1.1704 | | 0.4009 | 738.0 | 2952 | 1.1773 | | 0.4009 | 739.0 | 2956 | 1.1814 | | 0.4009 | 740.0 | 2960 | 1.1891 | | 0.4009 | 741.0 | 2964 | 1.1954 | | 0.4009 | 742.0 | 2968 | 1.2006 | | 0.4009 | 743.0 | 2972 | 1.1996 | | 0.4009 | 744.0 | 2976 | 1.1986 | | 0.4009 | 745.0 | 2980 | 1.1979 | | 0.4009 | 746.0 | 2984 | 1.1958 | | 0.4009 | 747.0 | 2988 | 1.1947 | | 0.4009 | 748.0 | 2992 | 1.1930 | | 0.4009 | 749.0 | 2996 | 1.1894 | | 0.4006 | 750.0 | 3000 | 1.1871 | | 0.4006 | 751.0 | 3004 | 1.1853 | | 0.4006 | 752.0 | 3008 | 1.1854 | | 0.4006 | 753.0 | 3012 | 1.1866 | | 0.4006 | 754.0 | 3016 | 1.1901 | | 0.4006 | 755.0 | 3020 | 1.1924 | | 0.4006 | 756.0 | 3024 | 1.1946 | | 0.4006 | 757.0 | 3028 | 1.2176 | | 0.4006 | 758.0 | 3032 | 1.2392 | | 0.4006 | 759.0 | 3036 | 1.2502 | | 0.4006 | 760.0 | 3040 | 1.2617 | | 0.4006 | 761.0 | 3044 | 1.2924 | | 0.4006 | 762.0 | 3048 | 1.3111 | | 0.4006 | 763.0 | 3052 | 1.3042 | | 0.4006 | 764.0 | 3056 | 1.2828 | | 0.4006 | 765.0 | 3060 | 1.2628 | | 0.4006 | 766.0 | 3064 | 1.2553 | | 0.4006 | 767.0 | 3068 | 1.2600 | | 0.4006 | 768.0 | 3072 | 1.2645 | | 0.4006 | 769.0 | 3076 | 1.2678 | | 0.4006 | 770.0 | 3080 | 1.2706 | | 0.4006 | 771.0 | 3084 | 1.2620 | | 0.4006 | 772.0 | 3088 | 1.2547 | | 0.4006 | 773.0 | 3092 | 1.2503 | | 0.4006 | 774.0 | 3096 | 1.2459 | | 0.4006 | 775.0 | 3100 | 1.2452 | | 0.4006 | 776.0 | 3104 | 1.2442 | | 0.4006 | 777.0 | 3108 | 1.2393 | | 0.4006 | 778.0 | 3112 | 1.2328 | | 0.4006 | 779.0 | 3116 | 1.2249 | | 0.4006 | 780.0 | 3120 | 1.2223 | | 0.4006 | 781.0 | 3124 | 1.2302 | | 0.4006 | 782.0 | 3128 | 1.2334 | | 0.4006 | 783.0 | 3132 | 1.2332 | | 0.4006 | 784.0 | 3136 | 1.2326 | | 0.4006 | 785.0 | 3140 | 1.2330 | | 0.4006 | 786.0 | 3144 | 1.2281 | | 0.4006 | 787.0 | 3148 | 1.2294 | | 0.4006 | 788.0 | 3152 | 1.2327 | | 0.4006 | 789.0 | 3156 | 1.2408 | | 0.4006 | 790.0 | 3160 | 1.2459 | | 0.4006 | 791.0 | 3164 | 1.2488 | | 0.4006 | 792.0 | 3168 | 1.2509 | | 0.4006 | 793.0 | 3172 | 1.2510 | | 0.4006 | 794.0 | 3176 | 1.2514 | | 0.4006 | 795.0 | 3180 | 1.2491 | | 0.4006 | 796.0 | 3184 | 1.2476 | | 0.4006 | 797.0 | 3188 | 1.2470 | | 0.4006 | 798.0 | 3192 | 1.2470 | | 0.4006 | 799.0 | 3196 | 1.2464 | | 0.4006 | 800.0 | 3200 | 1.2468 | | 0.4006 | 801.0 | 3204 | 1.2460 | | 0.4006 | 802.0 | 3208 | 1.2425 | | 0.4006 | 803.0 | 3212 | 1.2415 | | 0.4006 | 804.0 | 3216 | 1.2416 | | 0.4006 | 805.0 | 3220 | 1.2420 | | 0.4006 | 806.0 | 3224 | 1.2442 | | 0.4006 | 807.0 | 3228 | 1.2465 | | 0.4006 | 808.0 | 3232 | 1.2481 | | 0.4006 | 809.0 | 3236 | 1.2477 | | 0.4006 | 810.0 | 3240 | 1.2468 | | 0.4006 | 811.0 | 3244 | 1.2467 | | 0.4006 | 812.0 | 3248 | 1.2471 | | 0.4006 | 813.0 | 3252 | 1.2486 | | 0.4006 | 814.0 | 3256 | 1.2484 | | 0.4006 | 815.0 | 3260 | 1.2484 | | 0.4006 | 816.0 | 3264 | 1.2477 | | 0.4006 | 817.0 | 3268 | 1.2545 | | 0.4006 | 818.0 | 3272 | 1.2622 | | 0.4006 | 819.0 | 3276 | 1.2672 | | 0.4006 | 820.0 | 3280 | 1.2704 | | 0.4006 | 821.0 | 3284 | 1.2719 | | 0.4006 | 822.0 | 3288 | 1.2710 | | 0.4006 | 823.0 | 3292 | 1.2697 | | 0.4006 | 824.0 | 3296 | 1.2671 | | 0.4006 | 825.0 | 3300 | 1.2717 | | 0.4006 | 826.0 | 3304 | 1.2763 | | 0.4006 | 827.0 | 3308 | 1.2774 | | 0.4006 | 828.0 | 3312 | 1.2773 | | 0.4006 | 829.0 | 3316 | 1.2765 | | 0.4006 | 830.0 | 3320 | 1.2767 | | 0.4006 | 831.0 | 3324 | 1.2760 | | 0.4006 | 832.0 | 3328 | 1.2755 | | 0.4006 | 833.0 | 3332 | 1.2742 | | 0.4006 | 834.0 | 3336 | 1.2732 | | 0.4006 | 835.0 | 3340 | 1.2681 | | 0.4006 | 836.0 | 3344 | 1.2624 | | 0.4006 | 837.0 | 3348 | 1.2577 | | 0.4006 | 838.0 | 3352 | 1.2530 | | 0.4006 | 839.0 | 3356 | 1.2488 | | 0.4006 | 840.0 | 3360 | 1.2455 | | 0.4006 | 841.0 | 3364 | 1.2440 | | 0.4006 | 842.0 | 3368 | 1.2459 | | 0.4006 | 843.0 | 3372 | 1.2487 | | 0.4006 | 844.0 | 3376 | 1.2498 | | 0.4006 | 845.0 | 3380 | 1.2504 | | 0.4006 | 846.0 | 3384 | 1.2476 | | 0.4006 | 847.0 | 3388 | 1.2446 | | 0.4006 | 848.0 | 3392 | 1.2400 | | 0.4006 | 849.0 | 3396 | 1.2353 | | 0.4006 | 850.0 | 3400 | 1.2298 | | 0.4006 | 851.0 | 3404 | 1.2246 | | 0.4006 | 852.0 | 3408 | 1.2207 | | 0.4006 | 853.0 | 3412 | 1.2129 | | 0.4006 | 854.0 | 3416 | 1.2030 | | 0.4006 | 855.0 | 3420 | 1.1937 | | 0.4006 | 856.0 | 3424 | 1.1898 | | 0.4006 | 857.0 | 3428 | 1.1907 | | 0.4006 | 858.0 | 3432 | 1.1910 | | 0.4006 | 859.0 | 3436 | 1.1919 | | 0.4006 | 860.0 | 3440 | 1.1920 | | 0.4006 | 861.0 | 3444 | 1.1923 | | 0.4006 | 862.0 | 3448 | 1.1927 | | 0.4006 | 863.0 | 3452 | 1.1933 | | 0.4006 | 864.0 | 3456 | 1.1934 | | 0.4006 | 865.0 | 3460 | 1.1937 | | 0.4006 | 866.0 | 3464 | 1.1936 | | 0.4006 | 867.0 | 3468 | 1.1932 | | 0.4006 | 868.0 | 3472 | 1.1926 | | 0.4006 | 869.0 | 3476 | 1.1917 | | 0.4006 | 870.0 | 3480 | 1.1899 | | 0.4006 | 871.0 | 3484 | 1.1884 | | 0.4006 | 872.0 | 3488 | 1.1858 | | 0.4006 | 873.0 | 3492 | 1.1842 | | 0.4006 | 874.0 | 3496 | 1.1835 | | 0.4 | 875.0 | 3500 | 1.1836 | | 0.4 | 876.0 | 3504 | 1.1845 | | 0.4 | 877.0 | 3508 | 1.1867 | | 0.4 | 878.0 | 3512 | 1.1902 | | 0.4 | 879.0 | 3516 | 1.1945 | | 0.4 | 880.0 | 3520 | 1.1972 | | 0.4 | 881.0 | 3524 | 1.1996 | | 0.4 | 882.0 | 3528 | 1.2025 | | 0.4 | 883.0 | 3532 | 1.2048 | | 0.4 | 884.0 | 3536 | 1.2061 | | 0.4 | 885.0 | 3540 | 1.2076 | | 0.4 | 886.0 | 3544 | 1.2078 | | 0.4 | 887.0 | 3548 | 1.2093 | | 0.4 | 888.0 | 3552 | 1.2160 | | 0.4 | 889.0 | 3556 | 1.2185 | | 0.4 | 890.0 | 3560 | 1.2167 | | 0.4 | 891.0 | 3564 | 1.2196 | | 0.4 | 892.0 | 3568 | 1.2207 | | 0.4 | 893.0 | 3572 | 1.2203 | | 0.4 | 894.0 | 3576 | 1.2191 | | 0.4 | 895.0 | 3580 | 1.2181 | | 0.4 | 896.0 | 3584 | 1.2176 | | 0.4 | 897.0 | 3588 | 1.2169 | | 0.4 | 898.0 | 3592 | 1.2157 | | 0.4 | 899.0 | 3596 | 1.2177 | | 0.4 | 900.0 | 3600 | 1.2208 | | 0.4 | 901.0 | 3604 | 1.2232 | | 0.4 | 902.0 | 3608 | 1.2245 | | 0.4 | 903.0 | 3612 | 1.2242 | | 0.4 | 904.0 | 3616 | 1.2231 | | 0.4 | 905.0 | 3620 | 1.2219 | | 0.4 | 906.0 | 3624 | 1.2211 | | 0.4 | 907.0 | 3628 | 1.2215 | | 0.4 | 908.0 | 3632 | 1.2216 | | 0.4 | 909.0 | 3636 | 1.2204 | | 0.4 | 910.0 | 3640 | 1.2193 | | 0.4 | 911.0 | 3644 | 1.2182 | | 0.4 | 912.0 | 3648 | 1.2165 | | 0.4 | 913.0 | 3652 | 1.2148 | | 0.4 | 914.0 | 3656 | 1.2128 | | 0.4 | 915.0 | 3660 | 1.2120 | | 0.4 | 916.0 | 3664 | 1.2113 | | 0.4 | 917.0 | 3668 | 1.2111 | | 0.4 | 918.0 | 3672 | 1.2114 | | 0.4 | 919.0 | 3676 | 1.2117 | | 0.4 | 920.0 | 3680 | 1.2108 | | 0.4 | 921.0 | 3684 | 1.2107 | | 0.4 | 922.0 | 3688 | 1.2097 | | 0.4 | 923.0 | 3692 | 1.2084 | | 0.4 | 924.0 | 3696 | 1.2072 | | 0.4 | 925.0 | 3700 | 1.2063 | | 0.4 | 926.0 | 3704 | 1.2060 | | 0.4 | 927.0 | 3708 | 1.2055 | | 0.4 | 928.0 | 3712 | 1.2053 | | 0.4 | 929.0 | 3716 | 1.2053 | | 0.4 | 930.0 | 3720 | 1.2055 | | 0.4 | 931.0 | 3724 | 1.2061 | | 0.4 | 932.0 | 3728 | 1.2091 | | 0.4 | 933.0 | 3732 | 1.2121 | | 0.4 | 934.0 | 3736 | 1.2141 | | 0.4 | 935.0 | 3740 | 1.2150 | | 0.4 | 936.0 | 3744 | 1.2152 | | 0.4 | 937.0 | 3748 | 1.2153 | | 0.4 | 938.0 | 3752 | 1.2153 | | 0.4 | 939.0 | 3756 | 1.2150 | | 0.4 | 940.0 | 3760 | 1.2153 | | 0.4 | 941.0 | 3764 | 1.2154 | | 0.4 | 942.0 | 3768 | 1.2156 | | 0.4 | 943.0 | 3772 | 1.2156 | | 0.4 | 944.0 | 3776 | 1.2144 | | 0.4 | 945.0 | 3780 | 1.2107 | | 0.4 | 946.0 | 3784 | 1.2078 | | 0.4 | 947.0 | 3788 | 1.2060 | | 0.4 | 948.0 | 3792 | 1.2047 | | 0.4 | 949.0 | 3796 | 1.2026 | | 0.4 | 950.0 | 3800 | 1.2003 | | 0.4 | 951.0 | 3804 | 1.1986 | | 0.4 | 952.0 | 3808 | 1.1975 | | 0.4 | 953.0 | 3812 | 1.1969 | | 0.4 | 954.0 | 3816 | 1.1958 | | 0.4 | 955.0 | 3820 | 1.1946 | | 0.4 | 956.0 | 3824 | 1.1937 | | 0.4 | 957.0 | 3828 | 1.1928 | | 0.4 | 958.0 | 3832 | 1.1928 | | 0.4 | 959.0 | 3836 | 1.1928 | | 0.4 | 960.0 | 3840 | 1.1933 | | 0.4 | 961.0 | 3844 | 1.1939 | | 0.4 | 962.0 | 3848 | 1.1942 | | 0.4 | 963.0 | 3852 | 1.1947 | | 0.4 | 964.0 | 3856 | 1.1954 | | 0.4 | 965.0 | 3860 | 1.1961 | | 0.4 | 966.0 | 3864 | 1.1966 | | 0.4 | 967.0 | 3868 | 1.1985 | | 0.4 | 968.0 | 3872 | 1.2002 | | 0.4 | 969.0 | 3876 | 1.2015 | | 0.4 | 970.0 | 3880 | 1.2035 | | 0.4 | 971.0 | 3884 | 1.2047 | | 0.4 | 972.0 | 3888 | 1.2050 | | 0.4 | 973.0 | 3892 | 1.2057 | | 0.4 | 974.0 | 3896 | 1.2064 | | 0.4 | 975.0 | 3900 | 1.2068 | | 0.4 | 976.0 | 3904 | 1.2067 | | 0.4 | 977.0 | 3908 | 1.2067 | | 0.4 | 978.0 | 3912 | 1.2065 | | 0.4 | 979.0 | 3916 | 1.2063 | | 0.4 | 980.0 | 3920 | 1.2060 | | 0.4 | 981.0 | 3924 | 1.2059 | | 0.4 | 982.0 | 3928 | 1.2059 | | 0.4 | 983.0 | 3932 | 1.2059 | | 0.4 | 984.0 | 3936 | 1.2060 | | 0.4 | 985.0 | 3940 | 1.2060 | | 0.4 | 986.0 | 3944 | 1.2059 | | 0.4 | 987.0 | 3948 | 1.2059 | | 0.4 | 988.0 | 3952 | 1.2059 | | 0.4 | 989.0 | 3956 | 1.2059 | | 0.4 | 990.0 | 3960 | 1.2059 | | 0.4 | 991.0 | 3964 | 1.2060 | | 0.4 | 992.0 | 3968 | 1.2060 | | 0.4 | 993.0 | 3972 | 1.2060 | | 0.4 | 994.0 | 3976 | 1.2054 | | 0.4 | 995.0 | 3980 | 1.2047 | | 0.4 | 996.0 | 3984 | 1.2043 | | 0.4 | 997.0 | 3988 | 1.2041 | | 0.4 | 998.0 | 3992 | 1.2040 | | 0.4 | 999.0 | 3996 | 1.2039 | | 0.4009 | 1000.0 | 4000 | 1.2040 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_16_64_0.01_16_0.0002
ferrazzipietro
2024-03-07T21:24:30Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T16:26:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shawt/Shawt
Shawt
2024-03-07T21:23:17Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/sdxl-turbo", "base_model:finetune:stabilityai/sdxl-turbo", "region:us" ]
text-to-image
2023-07-11T04:45:40Z
--- base_model: stabilityai/sdxl-turbo instance_prompt: <shawt> tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Mitsubachi/Voices_in_Latin_Spanish
Mitsubachi
2024-03-07T21:23:00Z
0
0
null
[ "audio-to-audio", "es", "ja", "license:openrail", "region:us" ]
audio-to-audio
2023-07-02T00:55:03Z
--- license: openrail language: - es - ja pipeline_tag: audio-to-audio --- # Native voices of Latin Spanish Models of Latin Spanish dubbing or speaking voices made by me. --- **Voice model:** **Trunks Future "Mexican Voice" (Dragon Ball Z)**: RVC v2 5k, 360 epochs, 6 minutes of data **Optimus Prime "Mexican Voice" (Live Action Movies 2007-2023)**: RVC v2, 200 epochs, 8 minutes of data + crepe hop 64
mehdirafiei/SQLCODER16L
mehdirafiei
2024-03-07T21:18:40Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T21:10:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KamielK/distilbert-base-uncased-finetuned-cola
KamielK
2024-03-07T21:16:35Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T21:09:37Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9605 - Matthews Correlation: 0.5435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.3362 | 1.0 | 535 | 0.4862 | 0.4884 | | 0.2249 | 2.0 | 1070 | 0.5900 | 0.5375 | | 0.1667 | 3.0 | 1605 | 0.7921 | 0.5193 | | 0.1279 | 4.0 | 2140 | 0.9516 | 0.5393 | | 0.0837 | 5.0 | 2675 | 0.9605 | 0.5435 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
abrocadabro/dqn-SpaceInvadersNoFrameskip-v4
abrocadabro
2024-03-07T21:13:37Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T21:12:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 672.50 +/- 253.60 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abrocadabro -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abrocadabro -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga abrocadabro ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
luna-code/langchain-codegen-350M-mono-prefix
luna-code
2024-03-07T21:02:23Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T21:02:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
erikbritto/ppo-LunarLander-v2
erikbritto
2024-03-07T20:50:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T20:50:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 235.80 +/- 25.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
happybusinessperson/distilroberta-base-finetuned-leftarticles-mlm
happybusinessperson
2024-03-07T20:48:39Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-07T05:15:45Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-leftarticles-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-leftarticles-mlm This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a dataset of left wing news articles, [happybusinessperson/leftarticles](https://huggingface.co/datasets/happybusinessperson/leftarticles), adapted from https://www.kaggle.com/datasets/mhoali/right-and-left-wing-news-articles-with-nlp. It achieves the following results on the evaluation set: - Loss: 1.7207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9373 | 1.0 | 2239 | 1.7868 | | 1.8676 | 2.0 | 4478 | 1.7572 | | 1.8194 | 3.0 | 6717 | 1.7297 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
happybusinessperson/distilroberta-base-finetuned-rightarticles-mlm
happybusinessperson
2024-03-07T20:47:30Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-07T20:34:57Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-rightarticles-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-rightarticles-mlm This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a dataset of right wing news articles, [happybusinessperson/rightarticles](https://huggingface.co/datasets/happybusinessperson/rightarticles), adapted from https://www.kaggle.com/datasets/mhoali/right-and-left-wing-news-articles-with-nlp. It achieves the following results on the evaluation set: It achieves the following results on the evaluation set: - Loss: 1.7292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9611 | 1.0 | 806 | 1.7669 | | 1.8516 | 2.0 | 1612 | 1.7297 | | 1.798 | 3.0 | 2418 | 1.7239 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
completelyboofyblitzed/neural-chat-7b-v3-3lr_1.25e-05_lora_alpha_8_r_16_wd_0.001_warmup_ratio_0.3
completelyboofyblitzed
2024-03-07T20:40:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T20:40:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RefalMachine/ruadapt_solar_10.7_part2_v3_as2_rsg_lora
RefalMachine
2024-03-07T20:40:05Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:msu-rcc-lair/ruadapt_solar_10.7_darulm_unigram_proj_init_twostage_v1", "base_model:finetune:msu-rcc-lair/ruadapt_solar_10.7_darulm_unigram_proj_init_twostage_v1", "region:us" ]
null
2024-03-07T16:42:02Z
--- base_model: RefalMachine/ruadapt_solar_10.7_darulm_unigram_proj_init_part2_v3_alpha_scale_2 tags: - generated_from_trainer model-index: - name: ruadapt_solar_10.7_part2_v3_as2_rsg_lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruadapt_solar_10.7_part2_v3_as2_rsg_lora This model is a fine-tuned version of [RefalMachine/ruadapt_solar_10.7_darulm_unigram_proj_init_part2_v3_alpha_scale_2](https://huggingface.co/RefalMachine/ruadapt_solar_10.7_darulm_unigram_proj_init_part2_v3_alpha_scale_2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1 | 0.45 | 100 | 0.0669 | | 0.0837 | 0.9 | 200 | 0.0682 | | 0.0511 | 1.35 | 300 | 0.0762 | | 0.0473 | 1.8 | 400 | 0.0662 | | 0.0188 | 2.24 | 500 | 0.0841 | | 0.0268 | 2.69 | 600 | 0.0744 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.2 - Datasets 2.14.4 - Tokenizers 0.14.1
tsavage68/mistralit2_200_STEPS_5e7_SFT
tsavage68
2024-03-07T20:39:57Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T20:31:23Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: mistralit2_200_STEPS_SFT_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistralit2_200_STEPS_SFT_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.498 | 0.1 | 50 | 0.3952 | | 0.3309 | 0.2 | 100 | 0.3213 | | 0.3236 | 0.29 | 150 | 0.3108 | | 0.3 | 0.39 | 200 | 0.3095 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2
ramixpe/Llama-2-7b-chat-hf-sft-test-push-adapters
ramixpe
2024-03-07T20:30:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-21T22:47:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
farid1088/GQA_BERT_legal_SQuAD_complete_augmented_100
farid1088
2024-03-07T20:28:20Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-05T19:38:45Z
--- tags: - generated_from_trainer model-index: - name: GQA_BERT_legal_SQuAD_complete_augmented_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_BERT_legal_SQuAD_complete_augmented_100 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 5.1190 | | No log | 2.0 | 6 | 4.5892 | | No log | 3.0 | 9 | 3.9684 | | No log | 4.0 | 12 | 3.6427 | | No log | 5.0 | 15 | 3.2081 | | No log | 6.0 | 18 | 2.8413 | | No log | 7.0 | 21 | 2.5487 | | No log | 8.0 | 24 | 2.2830 | | No log | 9.0 | 27 | 2.0807 | | No log | 10.0 | 30 | 1.8644 | | No log | 11.0 | 33 | 1.7166 | | No log | 12.0 | 36 | 1.5672 | | No log | 13.0 | 39 | 1.3949 | | No log | 14.0 | 42 | 1.3109 | | No log | 15.0 | 45 | 1.2622 | | No log | 16.0 | 48 | 1.1875 | | No log | 17.0 | 51 | 1.1579 | | No log | 18.0 | 54 | 1.1329 | | No log | 19.0 | 57 | 1.1090 | | No log | 20.0 | 60 | 1.0811 | | No log | 21.0 | 63 | 1.0542 | | No log | 22.0 | 66 | 1.0481 | | No log | 23.0 | 69 | 1.0355 | | No log | 24.0 | 72 | 1.0304 | | No log | 25.0 | 75 | 1.0276 | | No log | 26.0 | 78 | 1.0277 | | No log | 27.0 | 81 | 1.0329 | | No log | 28.0 | 84 | 1.0356 | | No log | 29.0 | 87 | 1.0410 | | No log | 30.0 | 90 | 1.0267 | | No log | 31.0 | 93 | 1.0280 | | No log | 32.0 | 96 | 1.0453 | | No log | 33.0 | 99 | 1.0520 | | No log | 34.0 | 102 | 1.0430 | | No log | 35.0 | 105 | 1.0393 | | No log | 36.0 | 108 | 1.0370 | | No log | 37.0 | 111 | 1.0284 | | No log | 38.0 | 114 | 1.0313 | | No log | 39.0 | 117 | 1.0376 | | No log | 40.0 | 120 | 1.0312 | | No log | 41.0 | 123 | 1.0218 | | No log | 42.0 | 126 | 1.0348 | | No log | 43.0 | 129 | 1.0426 | | No log | 44.0 | 132 | 1.0411 | | No log | 45.0 | 135 | 1.0463 | | No log | 46.0 | 138 | 1.0661 | | No log | 47.0 | 141 | 1.0733 | | No log | 48.0 | 144 | 1.0609 | | No log | 49.0 | 147 | 1.0578 | | No log | 50.0 | 150 | 1.0639 | | No log | 51.0 | 153 | 1.0490 | | No log | 52.0 | 156 | 1.0507 | | No log | 53.0 | 159 | 1.0460 | | No log | 54.0 | 162 | 1.0534 | | No log | 55.0 | 165 | 1.0530 | | No log | 56.0 | 168 | 1.0521 | | No log | 57.0 | 171 | 1.0470 | | No log | 58.0 | 174 | 1.0462 | | No log | 59.0 | 177 | 1.0547 | | No log | 60.0 | 180 | 1.0628 | | No log | 61.0 | 183 | 1.0550 | | No log | 62.0 | 186 | 1.0474 | | No log | 63.0 | 189 | 1.0536 | | No log | 64.0 | 192 | 1.0711 | | No log | 65.0 | 195 | 1.0832 | | No log | 66.0 | 198 | 1.0855 | | No log | 67.0 | 201 | 1.0901 | | No log | 68.0 | 204 | 1.0912 | | No log | 69.0 | 207 | 1.0888 | | No log | 70.0 | 210 | 1.0882 | | No log | 71.0 | 213 | 1.0985 | | No log | 72.0 | 216 | 1.1056 | | No log | 73.0 | 219 | 1.0876 | | No log | 74.0 | 222 | 1.0781 | | No log | 75.0 | 225 | 1.0894 | | No log | 76.0 | 228 | 1.0906 | | No log | 77.0 | 231 | 1.0848 | | No log | 78.0 | 234 | 1.0851 | | No log | 79.0 | 237 | 1.0949 | | No log | 80.0 | 240 | 1.0982 | | No log | 81.0 | 243 | 1.0932 | | No log | 82.0 | 246 | 1.0825 | | No log | 83.0 | 249 | 1.0791 | | No log | 84.0 | 252 | 1.0821 | | No log | 85.0 | 255 | 1.0819 | | No log | 86.0 | 258 | 1.0808 | | No log | 87.0 | 261 | 1.0794 | | No log | 88.0 | 264 | 1.0815 | | No log | 89.0 | 267 | 1.0859 | | No log | 90.0 | 270 | 1.0883 | | No log | 91.0 | 273 | 1.0890 | | No log | 92.0 | 276 | 1.0935 | | No log | 93.0 | 279 | 1.0982 | | No log | 94.0 | 282 | 1.1007 | | No log | 95.0 | 285 | 1.0994 | | No log | 96.0 | 288 | 1.0997 | | No log | 97.0 | 291 | 1.0998 | | No log | 98.0 | 294 | 1.0978 | | No log | 99.0 | 297 | 1.0970 | | No log | 100.0 | 300 | 1.0964 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
RodMed0709/Modelo_Resumen
RodMed0709
2024-03-07T20:21:45Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:stevhliu/my_awesome_billsum_model", "base_model:finetune:stevhliu/my_awesome_billsum_model", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-07T20:01:57Z
--- license: apache-2.0 base_model: stevhliu/my_awesome_billsum_model tags: - generated_from_trainer metrics: - rouge model-index: - name: Modelo_Resumen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Modelo_Resumen Éste modelo fue creado para la clase del Dr. Gendry - Loss: 2.2007 - Rouge1: 0.1957 - Rouge2: 0.095 - Rougel: 0.1645 - Rougelsum: 0.1645 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.3594 | 0.1957 | 0.0921 | 0.1645 | 0.1645 | 19.0 | | No log | 2.0 | 124 | 2.3268 | 0.194 | 0.0898 | 0.1631 | 0.1631 | 19.0 | | No log | 3.0 | 186 | 2.3013 | 0.194 | 0.0923 | 0.1649 | 0.1648 | 19.0 | | No log | 4.0 | 248 | 2.2776 | 0.195 | 0.0932 | 0.166 | 0.1659 | 19.0 | | No log | 5.0 | 310 | 2.2620 | 0.1944 | 0.0925 | 0.165 | 0.1649 | 19.0 | | No log | 6.0 | 372 | 2.2474 | 0.1935 | 0.0917 | 0.1648 | 0.1646 | 19.0 | | No log | 7.0 | 434 | 2.2362 | 0.1931 | 0.0929 | 0.1642 | 0.1642 | 19.0 | | No log | 8.0 | 496 | 2.2276 | 0.1937 | 0.0935 | 0.1642 | 0.1644 | 19.0 | | 2.4678 | 9.0 | 558 | 2.2203 | 0.1941 | 0.0938 | 0.164 | 0.164 | 19.0 | | 2.4678 | 10.0 | 620 | 2.2141 | 0.195 | 0.0954 | 0.1648 | 0.1648 | 19.0 | | 2.4678 | 11.0 | 682 | 2.2095 | 0.1956 | 0.096 | 0.1649 | 0.1649 | 19.0 | | 2.4678 | 12.0 | 744 | 2.2055 | 0.1952 | 0.0955 | 0.1645 | 0.1645 | 19.0 | | 2.4678 | 13.0 | 806 | 2.2030 | 0.1945 | 0.0947 | 0.1639 | 0.1638 | 19.0 | | 2.4678 | 14.0 | 868 | 2.2014 | 0.1956 | 0.095 | 0.1644 | 0.1644 | 19.0 | | 2.4678 | 15.0 | 930 | 2.2007 | 0.1957 | 0.095 | 0.1645 | 0.1645 | 19.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
farid1088/GQA_RoBERTa_legal_SQuAD_complete_augmented_17
farid1088
2024-03-07T20:20:59Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-06T01:58:58Z
--- tags: - generated_from_trainer model-index: - name: GQA_RoBERTa_legal_SQuAD_complete_augmented_17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_RoBERTa_legal_SQuAD_complete_augmented_17 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 17 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 3.7900 | | No log | 2.0 | 8 | 3.1774 | | No log | 3.0 | 12 | 2.8018 | | No log | 4.0 | 16 | 2.5378 | | No log | 5.0 | 20 | 2.2274 | | No log | 6.0 | 24 | 2.0786 | | No log | 7.0 | 28 | 1.9560 | | No log | 8.0 | 32 | 1.7749 | | No log | 9.0 | 36 | 1.6928 | | No log | 10.0 | 40 | 1.5814 | | No log | 11.0 | 44 | 1.4800 | | No log | 12.0 | 48 | 1.4188 | | No log | 13.0 | 52 | 1.3761 | | No log | 14.0 | 56 | 1.3139 | | No log | 15.0 | 60 | 1.2892 | | No log | 16.0 | 64 | 1.2752 | | No log | 17.0 | 68 | 1.2674 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
farid1088/GQA_RoBERTa_German_legal_SQuAD_part_augmented_2000
farid1088
2024-03-07T20:19:30Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-07T15:06:57Z
--- tags: - generated_from_trainer model-index: - name: GQA_RoBERTa_German_legal_SQuAD_part_augmented_2000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_RoBERTa_German_legal_SQuAD_part_augmented_2000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 4 | 3.7756 | | No log | 2.0 | 8 | 3.1205 | | No log | 3.0 | 12 | 2.7419 | | No log | 4.0 | 16 | 2.3978 | | No log | 5.0 | 20 | 2.0572 | | No log | 6.0 | 24 | 1.9690 | | No log | 7.0 | 28 | 1.6922 | | No log | 8.0 | 32 | 1.4999 | | No log | 9.0 | 36 | 1.4624 | | No log | 10.0 | 40 | 1.1915 | | No log | 11.0 | 44 | 1.1501 | | No log | 12.0 | 48 | 0.9852 | | No log | 13.0 | 52 | 0.9573 | | No log | 14.0 | 56 | 0.9131 | | No log | 15.0 | 60 | 0.8843 | | No log | 16.0 | 64 | 0.7765 | | No log | 17.0 | 68 | 0.7787 | | No log | 18.0 | 72 | 0.7613 | | No log | 19.0 | 76 | 0.7610 | | No log | 20.0 | 80 | 0.7447 | | No log | 21.0 | 84 | 0.7049 | | No log | 22.0 | 88 | 0.7030 | | No log | 23.0 | 92 | 0.7066 | | No log | 24.0 | 96 | 0.7073 | | No log | 25.0 | 100 | 0.7238 | | No log | 26.0 | 104 | 0.7560 | | No log | 27.0 | 108 | 0.7350 | | No log | 28.0 | 112 | 0.7325 | | No log | 29.0 | 116 | 0.7513 | | No log | 30.0 | 120 | 0.7656 | | No log | 31.0 | 124 | 0.7594 | | No log | 32.0 | 128 | 0.7744 | | No log | 33.0 | 132 | 0.7835 | | No log | 34.0 | 136 | 0.7608 | | No log | 35.0 | 140 | 0.7423 | | No log | 36.0 | 144 | 0.7543 | | No log | 37.0 | 148 | 0.7305 | | No log | 38.0 | 152 | 0.7398 | | No log | 39.0 | 156 | 0.7364 | | No log | 40.0 | 160 | 0.7313 | | No log | 41.0 | 164 | 0.7163 | | No log | 42.0 | 168 | 0.7181 | | No log | 43.0 | 172 | 0.7243 | | No log | 44.0 | 176 | 0.7259 | | No log | 45.0 | 180 | 0.7980 | | No log | 46.0 | 184 | 0.7784 | | No log | 47.0 | 188 | 0.7271 | | No log | 48.0 | 192 | 0.7014 | | No log | 49.0 | 196 | 0.7110 | | No log | 50.0 | 200 | 0.7621 | | No log | 51.0 | 204 | 0.7851 | | No log | 52.0 | 208 | 0.7917 | | No log | 53.0 | 212 | 0.7877 | | No log | 54.0 | 216 | 0.8123 | | No log | 55.0 | 220 | 0.8462 | | No log | 56.0 | 224 | 0.8405 | | No log | 57.0 | 228 | 0.8330 | | No log | 58.0 | 232 | 0.8115 | | No log | 59.0 | 236 | 0.8067 | | No log | 60.0 | 240 | 0.8457 | | No log | 61.0 | 244 | 0.9419 | | No log | 62.0 | 248 | 0.9387 | | No log | 63.0 | 252 | 0.9612 | | No log | 64.0 | 256 | 0.9213 | | No log | 65.0 | 260 | 0.9035 | | No log | 66.0 | 264 | 0.8863 | | No log | 67.0 | 268 | 0.8914 | | No log | 68.0 | 272 | 0.9060 | | No log | 69.0 | 276 | 0.9424 | | No log | 70.0 | 280 | 0.9367 | | No log | 71.0 | 284 | 0.9201 | | No log | 72.0 | 288 | 0.9070 | | No log | 73.0 | 292 | 0.9037 | | No log | 74.0 | 296 | 0.9116 | | No log | 75.0 | 300 | 0.9108 | | No log | 76.0 | 304 | 0.9139 | | No log | 77.0 | 308 | 0.9506 | | No log | 78.0 | 312 | 0.9703 | | No log | 79.0 | 316 | 0.9848 | | No log | 80.0 | 320 | 0.9586 | | No log | 81.0 | 324 | 0.9591 | | No log | 82.0 | 328 | 0.9678 | | No log | 83.0 | 332 | 0.9951 | | No log | 84.0 | 336 | 0.9788 | | No log | 85.0 | 340 | 0.9374 | | No log | 86.0 | 344 | 0.9085 | | No log | 87.0 | 348 | 0.8789 | | No log | 88.0 | 352 | 0.8838 | | No log | 89.0 | 356 | 0.8711 | | No log | 90.0 | 360 | 0.8792 | | No log | 91.0 | 364 | 0.8904 | | No log | 92.0 | 368 | 0.9014 | | No log | 93.0 | 372 | 0.9518 | | No log | 94.0 | 376 | 0.9872 | | No log | 95.0 | 380 | 0.9193 | | No log | 96.0 | 384 | 0.8909 | | No log | 97.0 | 388 | 0.8989 | | No log | 98.0 | 392 | 0.9064 | | No log | 99.0 | 396 | 0.9341 | | No log | 100.0 | 400 | 0.9550 | | No log | 101.0 | 404 | 0.9706 | | No log | 102.0 | 408 | 1.0495 | | No log | 103.0 | 412 | 1.0350 | | No log | 104.0 | 416 | 0.9688 | | No log | 105.0 | 420 | 0.9610 | | No log | 106.0 | 424 | 0.9537 | | No log | 107.0 | 428 | 0.9579 | | No log | 108.0 | 432 | 0.9877 | | No log | 109.0 | 436 | 1.0223 | | No log | 110.0 | 440 | 1.0488 | | No log | 111.0 | 444 | 1.0673 | | No log | 112.0 | 448 | 0.9968 | | No log | 113.0 | 452 | 1.0307 | | No log | 114.0 | 456 | 1.0888 | | No log | 115.0 | 460 | 1.0773 | | No log | 116.0 | 464 | 1.0990 | | No log | 117.0 | 468 | 1.1120 | | No log | 118.0 | 472 | 1.0821 | | No log | 119.0 | 476 | 1.0407 | | No log | 120.0 | 480 | 1.0365 | | No log | 121.0 | 484 | 1.0269 | | No log | 122.0 | 488 | 0.9804 | | No log | 123.0 | 492 | 0.9752 | | No log | 124.0 | 496 | 0.9785 | | 0.9513 | 125.0 | 500 | 0.9739 | | 0.9513 | 126.0 | 504 | 0.9894 | | 0.9513 | 127.0 | 508 | 1.0625 | | 0.9513 | 128.0 | 512 | 1.0423 | | 0.9513 | 129.0 | 516 | 1.0479 | | 0.9513 | 130.0 | 520 | 1.0725 | | 0.9513 | 131.0 | 524 | 1.1035 | | 0.9513 | 132.0 | 528 | 1.0921 | | 0.9513 | 133.0 | 532 | 0.9806 | | 0.9513 | 134.0 | 536 | 0.9012 | | 0.9513 | 135.0 | 540 | 0.9527 | | 0.9513 | 136.0 | 544 | 1.0029 | | 0.9513 | 137.0 | 548 | 1.0212 | | 0.9513 | 138.0 | 552 | 1.0392 | | 0.9513 | 139.0 | 556 | 0.9753 | | 0.9513 | 140.0 | 560 | 0.9817 | | 0.9513 | 141.0 | 564 | 0.9755 | | 0.9513 | 142.0 | 568 | 0.9933 | | 0.9513 | 143.0 | 572 | 1.0276 | | 0.9513 | 144.0 | 576 | 1.0285 | | 0.9513 | 145.0 | 580 | 1.0276 | | 0.9513 | 146.0 | 584 | 1.0582 | | 0.9513 | 147.0 | 588 | 1.0810 | | 0.9513 | 148.0 | 592 | 1.0618 | | 0.9513 | 149.0 | 596 | 1.0152 | | 0.9513 | 150.0 | 600 | 1.0553 | | 0.9513 | 151.0 | 604 | 1.0921 | | 0.9513 | 152.0 | 608 | 1.0401 | | 0.9513 | 153.0 | 612 | 0.9760 | | 0.9513 | 154.0 | 616 | 0.9576 | | 0.9513 | 155.0 | 620 | 0.9523 | | 0.9513 | 156.0 | 624 | 0.9901 | | 0.9513 | 157.0 | 628 | 0.9793 | | 0.9513 | 158.0 | 632 | 0.9726 | | 0.9513 | 159.0 | 636 | 0.9676 | | 0.9513 | 160.0 | 640 | 1.0070 | | 0.9513 | 161.0 | 644 | 1.0107 | | 0.9513 | 162.0 | 648 | 1.0067 | | 0.9513 | 163.0 | 652 | 1.0042 | | 0.9513 | 164.0 | 656 | 0.9888 | | 0.9513 | 165.0 | 660 | 0.9758 | | 0.9513 | 166.0 | 664 | 0.9983 | | 0.9513 | 167.0 | 668 | 1.0273 | | 0.9513 | 168.0 | 672 | 1.0220 | | 0.9513 | 169.0 | 676 | 1.0063 | | 0.9513 | 170.0 | 680 | 0.9852 | | 0.9513 | 171.0 | 684 | 1.0590 | | 0.9513 | 172.0 | 688 | 1.1016 | | 0.9513 | 173.0 | 692 | 1.0622 | | 0.9513 | 174.0 | 696 | 1.0408 | | 0.9513 | 175.0 | 700 | 1.0156 | | 0.9513 | 176.0 | 704 | 1.0073 | | 0.9513 | 177.0 | 708 | 1.0284 | | 0.9513 | 178.0 | 712 | 1.0398 | | 0.9513 | 179.0 | 716 | 0.9925 | | 0.9513 | 180.0 | 720 | 1.0192 | | 0.9513 | 181.0 | 724 | 1.0434 | | 0.9513 | 182.0 | 728 | 1.0429 | | 0.9513 | 183.0 | 732 | 1.0614 | | 0.9513 | 184.0 | 736 | 1.0663 | | 0.9513 | 185.0 | 740 | 1.0529 | | 0.9513 | 186.0 | 744 | 1.0479 | | 0.9513 | 187.0 | 748 | 1.0352 | | 0.9513 | 188.0 | 752 | 1.0374 | | 0.9513 | 189.0 | 756 | 1.0061 | | 0.9513 | 190.0 | 760 | 0.9905 | | 0.9513 | 191.0 | 764 | 0.9959 | | 0.9513 | 192.0 | 768 | 1.0204 | | 0.9513 | 193.0 | 772 | 1.0509 | | 0.9513 | 194.0 | 776 | 1.0616 | | 0.9513 | 195.0 | 780 | 1.0709 | | 0.9513 | 196.0 | 784 | 1.0794 | | 0.9513 | 197.0 | 788 | 1.0797 | | 0.9513 | 198.0 | 792 | 1.0722 | | 0.9513 | 199.0 | 796 | 1.0697 | | 0.9513 | 200.0 | 800 | 1.0759 | | 0.9513 | 201.0 | 804 | 1.0787 | | 0.9513 | 202.0 | 808 | 1.1036 | | 0.9513 | 203.0 | 812 | 1.1021 | | 0.9513 | 204.0 | 816 | 1.1088 | | 0.9513 | 205.0 | 820 | 1.1201 | | 0.9513 | 206.0 | 824 | 1.1168 | | 0.9513 | 207.0 | 828 | 1.1030 | | 0.9513 | 208.0 | 832 | 1.0986 | | 0.9513 | 209.0 | 836 | 1.0953 | | 0.9513 | 210.0 | 840 | 1.0708 | | 0.9513 | 211.0 | 844 | 1.0704 | | 0.9513 | 212.0 | 848 | 1.0681 | | 0.9513 | 213.0 | 852 | 1.0676 | | 0.9513 | 214.0 | 856 | 1.0789 | | 0.9513 | 215.0 | 860 | 1.1193 | | 0.9513 | 216.0 | 864 | 1.1378 | | 0.9513 | 217.0 | 868 | 1.1566 | | 0.9513 | 218.0 | 872 | 1.1650 | | 0.9513 | 219.0 | 876 | 1.1268 | | 0.9513 | 220.0 | 880 | 1.1152 | | 0.9513 | 221.0 | 884 | 1.0909 | | 0.9513 | 222.0 | 888 | 1.0778 | | 0.9513 | 223.0 | 892 | 1.0819 | | 0.9513 | 224.0 | 896 | 1.1042 | | 0.9513 | 225.0 | 900 | 1.1532 | | 0.9513 | 226.0 | 904 | 1.1695 | | 0.9513 | 227.0 | 908 | 1.1730 | | 0.9513 | 228.0 | 912 | 1.1549 | | 0.9513 | 229.0 | 916 | 1.1318 | | 0.9513 | 230.0 | 920 | 1.1319 | | 0.9513 | 231.0 | 924 | 1.1306 | | 0.9513 | 232.0 | 928 | 1.1583 | | 0.9513 | 233.0 | 932 | 1.1915 | | 0.9513 | 234.0 | 936 | 1.2038 | | 0.9513 | 235.0 | 940 | 1.1877 | | 0.9513 | 236.0 | 944 | 1.1775 | | 0.9513 | 237.0 | 948 | 1.1820 | | 0.9513 | 238.0 | 952 | 1.1885 | | 0.9513 | 239.0 | 956 | 1.2012 | | 0.9513 | 240.0 | 960 | 1.2013 | | 0.9513 | 241.0 | 964 | 1.1876 | | 0.9513 | 242.0 | 968 | 1.1801 | | 0.9513 | 243.0 | 972 | 1.1799 | | 0.9513 | 244.0 | 976 | 1.1711 | | 0.9513 | 245.0 | 980 | 1.1550 | | 0.9513 | 246.0 | 984 | 1.1499 | | 0.9513 | 247.0 | 988 | 1.1303 | | 0.9513 | 248.0 | 992 | 1.1138 | | 0.9513 | 249.0 | 996 | 1.1351 | | 0.4059 | 250.0 | 1000 | 1.1635 | | 0.4059 | 251.0 | 1004 | 1.1975 | | 0.4059 | 252.0 | 1008 | 1.2352 | | 0.4059 | 253.0 | 1012 | 1.2442 | | 0.4059 | 254.0 | 1016 | 1.2108 | | 0.4059 | 255.0 | 1020 | 1.1813 | | 0.4059 | 256.0 | 1024 | 1.1469 | | 0.4059 | 257.0 | 1028 | 1.0936 | | 0.4059 | 258.0 | 1032 | 1.0322 | | 0.4059 | 259.0 | 1036 | 1.0076 | | 0.4059 | 260.0 | 1040 | 1.0304 | | 0.4059 | 261.0 | 1044 | 1.0946 | | 0.4059 | 262.0 | 1048 | 1.1132 | | 0.4059 | 263.0 | 1052 | 1.1231 | | 0.4059 | 264.0 | 1056 | 1.1268 | | 0.4059 | 265.0 | 1060 | 1.1290 | | 0.4059 | 266.0 | 1064 | 1.1261 | | 0.4059 | 267.0 | 1068 | 1.1095 | | 0.4059 | 268.0 | 1072 | 1.0643 | | 0.4059 | 269.0 | 1076 | 1.0283 | | 0.4059 | 270.0 | 1080 | 1.0181 | | 0.4059 | 271.0 | 1084 | 1.0670 | | 0.4059 | 272.0 | 1088 | 1.1049 | | 0.4059 | 273.0 | 1092 | 1.1309 | | 0.4059 | 274.0 | 1096 | 1.1533 | | 0.4059 | 275.0 | 1100 | 1.1767 | | 0.4059 | 276.0 | 1104 | 1.1846 | | 0.4059 | 277.0 | 1108 | 1.1899 | | 0.4059 | 278.0 | 1112 | 1.1834 | | 0.4059 | 279.0 | 1116 | 1.2054 | | 0.4059 | 280.0 | 1120 | 1.1807 | | 0.4059 | 281.0 | 1124 | 1.1238 | | 0.4059 | 282.0 | 1128 | 1.0955 | | 0.4059 | 283.0 | 1132 | 1.0557 | | 0.4059 | 284.0 | 1136 | 1.0615 | | 0.4059 | 285.0 | 1140 | 1.0758 | | 0.4059 | 286.0 | 1144 | 1.1007 | | 0.4059 | 287.0 | 1148 | 1.1431 | | 0.4059 | 288.0 | 1152 | 1.1335 | | 0.4059 | 289.0 | 1156 | 1.0713 | | 0.4059 | 290.0 | 1160 | 1.0302 | | 0.4059 | 291.0 | 1164 | 1.0070 | | 0.4059 | 292.0 | 1168 | 1.0587 | | 0.4059 | 293.0 | 1172 | 1.1093 | | 0.4059 | 294.0 | 1176 | 1.1549 | | 0.4059 | 295.0 | 1180 | 1.1744 | | 0.4059 | 296.0 | 1184 | 1.1590 | | 0.4059 | 297.0 | 1188 | 1.0999 | | 0.4059 | 298.0 | 1192 | 1.0508 | | 0.4059 | 299.0 | 1196 | 1.0082 | | 0.4059 | 300.0 | 1200 | 1.0266 | | 0.4059 | 301.0 | 1204 | 1.0897 | | 0.4059 | 302.0 | 1208 | 1.2008 | | 0.4059 | 303.0 | 1212 | 1.2833 | | 0.4059 | 304.0 | 1216 | 1.2775 | | 0.4059 | 305.0 | 1220 | 1.2754 | | 0.4059 | 306.0 | 1224 | 1.2059 | | 0.4059 | 307.0 | 1228 | 1.1187 | | 0.4059 | 308.0 | 1232 | 1.1612 | | 0.4059 | 309.0 | 1236 | 1.1794 | | 0.4059 | 310.0 | 1240 | 1.1969 | | 0.4059 | 311.0 | 1244 | 1.1991 | | 0.4059 | 312.0 | 1248 | 1.1921 | | 0.4059 | 313.0 | 1252 | 1.2148 | | 0.4059 | 314.0 | 1256 | 1.2524 | | 0.4059 | 315.0 | 1260 | 1.2606 | | 0.4059 | 316.0 | 1264 | 1.2423 | | 0.4059 | 317.0 | 1268 | 1.1989 | | 0.4059 | 318.0 | 1272 | 1.1552 | | 0.4059 | 319.0 | 1276 | 1.1222 | | 0.4059 | 320.0 | 1280 | 1.1219 | | 0.4059 | 321.0 | 1284 | 1.1678 | | 0.4059 | 322.0 | 1288 | 1.1853 | | 0.4059 | 323.0 | 1292 | 1.1274 | | 0.4059 | 324.0 | 1296 | 1.0615 | | 0.4059 | 325.0 | 1300 | 1.1044 | | 0.4059 | 326.0 | 1304 | 1.1874 | | 0.4059 | 327.0 | 1308 | 1.1911 | | 0.4059 | 328.0 | 1312 | 1.1513 | | 0.4059 | 329.0 | 1316 | 1.0682 | | 0.4059 | 330.0 | 1320 | 1.0366 | | 0.4059 | 331.0 | 1324 | 1.0736 | | 0.4059 | 332.0 | 1328 | 1.1319 | | 0.4059 | 333.0 | 1332 | 1.1256 | | 0.4059 | 334.0 | 1336 | 1.0977 | | 0.4059 | 335.0 | 1340 | 1.0509 | | 0.4059 | 336.0 | 1344 | 1.0081 | | 0.4059 | 337.0 | 1348 | 1.0239 | | 0.4059 | 338.0 | 1352 | 1.0681 | | 0.4059 | 339.0 | 1356 | 1.1298 | | 0.4059 | 340.0 | 1360 | 1.1369 | | 0.4059 | 341.0 | 1364 | 1.0729 | | 0.4059 | 342.0 | 1368 | 0.9855 | | 0.4059 | 343.0 | 1372 | 0.9409 | | 0.4059 | 344.0 | 1376 | 0.9527 | | 0.4059 | 345.0 | 1380 | 1.0270 | | 0.4059 | 346.0 | 1384 | 1.0781 | | 0.4059 | 347.0 | 1388 | 1.1151 | | 0.4059 | 348.0 | 1392 | 1.1403 | | 0.4059 | 349.0 | 1396 | 1.1603 | | 0.4059 | 350.0 | 1400 | 1.1856 | | 0.4059 | 351.0 | 1404 | 1.1898 | | 0.4059 | 352.0 | 1408 | 1.1933 | | 0.4059 | 353.0 | 1412 | 1.2285 | | 0.4059 | 354.0 | 1416 | 1.2589 | | 0.4059 | 355.0 | 1420 | 1.2458 | | 0.4059 | 356.0 | 1424 | 1.2131 | | 0.4059 | 357.0 | 1428 | 1.2127 | | 0.4059 | 358.0 | 1432 | 1.2372 | | 0.4059 | 359.0 | 1436 | 1.2434 | | 0.4059 | 360.0 | 1440 | 1.2399 | | 0.4059 | 361.0 | 1444 | 1.2213 | | 0.4059 | 362.0 | 1448 | 1.1881 | | 0.4059 | 363.0 | 1452 | 1.1636 | | 0.4059 | 364.0 | 1456 | 1.1456 | | 0.4059 | 365.0 | 1460 | 1.1520 | | 0.4059 | 366.0 | 1464 | 1.1635 | | 0.4059 | 367.0 | 1468 | 1.1836 | | 0.4059 | 368.0 | 1472 | 1.1956 | | 0.4059 | 369.0 | 1476 | 1.2053 | | 0.4059 | 370.0 | 1480 | 1.2042 | | 0.4059 | 371.0 | 1484 | 1.1728 | | 0.4059 | 372.0 | 1488 | 1.1536 | | 0.4059 | 373.0 | 1492 | 1.1376 | | 0.4059 | 374.0 | 1496 | 1.1239 | | 0.4026 | 375.0 | 1500 | 1.1201 | | 0.4026 | 376.0 | 1504 | 1.1128 | | 0.4026 | 377.0 | 1508 | 1.1067 | | 0.4026 | 378.0 | 1512 | 1.1073 | | 0.4026 | 379.0 | 1516 | 1.1112 | | 0.4026 | 380.0 | 1520 | 1.1212 | | 0.4026 | 381.0 | 1524 | 1.1387 | | 0.4026 | 382.0 | 1528 | 1.1460 | | 0.4026 | 383.0 | 1532 | 1.1238 | | 0.4026 | 384.0 | 1536 | 1.1028 | | 0.4026 | 385.0 | 1540 | 1.1051 | | 0.4026 | 386.0 | 1544 | 1.1086 | | 0.4026 | 387.0 | 1548 | 1.0921 | | 0.4026 | 388.0 | 1552 | 1.0765 | | 0.4026 | 389.0 | 1556 | 1.0831 | | 0.4026 | 390.0 | 1560 | 1.0897 | | 0.4026 | 391.0 | 1564 | 1.0915 | | 0.4026 | 392.0 | 1568 | 1.0901 | | 0.4026 | 393.0 | 1572 | 1.0891 | | 0.4026 | 394.0 | 1576 | 1.0918 | | 0.4026 | 395.0 | 1580 | 1.0979 | | 0.4026 | 396.0 | 1584 | 1.0970 | | 0.4026 | 397.0 | 1588 | 1.0804 | | 0.4026 | 398.0 | 1592 | 1.0838 | | 0.4026 | 399.0 | 1596 | 1.0858 | | 0.4026 | 400.0 | 1600 | 1.0962 | | 0.4026 | 401.0 | 1604 | 1.1256 | | 0.4026 | 402.0 | 1608 | 1.1424 | | 0.4026 | 403.0 | 1612 | 1.1586 | | 0.4026 | 404.0 | 1616 | 1.1724 | | 0.4026 | 405.0 | 1620 | 1.1751 | | 0.4026 | 406.0 | 1624 | 1.1961 | | 0.4026 | 407.0 | 1628 | 1.2155 | | 0.4026 | 408.0 | 1632 | 1.2273 | | 0.4026 | 409.0 | 1636 | 1.2307 | | 0.4026 | 410.0 | 1640 | 1.2315 | | 0.4026 | 411.0 | 1644 | 1.2128 | | 0.4026 | 412.0 | 1648 | 1.1893 | | 0.4026 | 413.0 | 1652 | 1.1579 | | 0.4026 | 414.0 | 1656 | 1.1366 | | 0.4026 | 415.0 | 1660 | 1.1357 | | 0.4026 | 416.0 | 1664 | 1.1407 | | 0.4026 | 417.0 | 1668 | 1.1430 | | 0.4026 | 418.0 | 1672 | 1.1448 | | 0.4026 | 419.0 | 1676 | 1.1484 | | 0.4026 | 420.0 | 1680 | 1.1536 | | 0.4026 | 421.0 | 1684 | 1.1489 | | 0.4026 | 422.0 | 1688 | 1.1727 | | 0.4026 | 423.0 | 1692 | 1.1906 | | 0.4026 | 424.0 | 1696 | 1.1960 | | 0.4026 | 425.0 | 1700 | 1.1939 | | 0.4026 | 426.0 | 1704 | 1.1789 | | 0.4026 | 427.0 | 1708 | 1.1635 | | 0.4026 | 428.0 | 1712 | 1.1499 | | 0.4026 | 429.0 | 1716 | 1.1432 | | 0.4026 | 430.0 | 1720 | 1.1382 | | 0.4026 | 431.0 | 1724 | 1.1275 | | 0.4026 | 432.0 | 1728 | 1.1173 | | 0.4026 | 433.0 | 1732 | 1.1088 | | 0.4026 | 434.0 | 1736 | 1.0911 | | 0.4026 | 435.0 | 1740 | 1.0853 | | 0.4026 | 436.0 | 1744 | 1.0861 | | 0.4026 | 437.0 | 1748 | 1.1100 | | 0.4026 | 438.0 | 1752 | 1.1545 | | 0.4026 | 439.0 | 1756 | 1.1714 | | 0.4026 | 440.0 | 1760 | 1.1520 | | 0.4026 | 441.0 | 1764 | 1.1242 | | 0.4026 | 442.0 | 1768 | 1.1029 | | 0.4026 | 443.0 | 1772 | 1.0844 | | 0.4026 | 444.0 | 1776 | 1.0676 | | 0.4026 | 445.0 | 1780 | 1.0830 | | 0.4026 | 446.0 | 1784 | 1.0936 | | 0.4026 | 447.0 | 1788 | 1.0992 | | 0.4026 | 448.0 | 1792 | 1.1024 | | 0.4026 | 449.0 | 1796 | 1.1005 | | 0.4026 | 450.0 | 1800 | 1.0968 | | 0.4026 | 451.0 | 1804 | 1.0915 | | 0.4026 | 452.0 | 1808 | 1.0914 | | 0.4026 | 453.0 | 1812 | 1.0897 | | 0.4026 | 454.0 | 1816 | 1.0799 | | 0.4026 | 455.0 | 1820 | 1.1148 | | 0.4026 | 456.0 | 1824 | 1.1440 | | 0.4026 | 457.0 | 1828 | 1.1571 | | 0.4026 | 458.0 | 1832 | 1.1594 | | 0.4026 | 459.0 | 1836 | 1.1520 | | 0.4026 | 460.0 | 1840 | 1.1392 | | 0.4026 | 461.0 | 1844 | 1.1145 | | 0.4026 | 462.0 | 1848 | 1.1045 | | 0.4026 | 463.0 | 1852 | 1.0923 | | 0.4026 | 464.0 | 1856 | 1.0772 | | 0.4026 | 465.0 | 1860 | 1.0652 | | 0.4026 | 466.0 | 1864 | 1.0405 | | 0.4026 | 467.0 | 1868 | 1.0121 | | 0.4026 | 468.0 | 1872 | 1.0254 | | 0.4026 | 469.0 | 1876 | 1.1054 | | 0.4026 | 470.0 | 1880 | 1.1700 | | 0.4026 | 471.0 | 1884 | 1.1976 | | 0.4026 | 472.0 | 1888 | 1.1985 | | 0.4026 | 473.0 | 1892 | 1.2013 | | 0.4026 | 474.0 | 1896 | 1.1945 | | 0.4026 | 475.0 | 1900 | 1.1819 | | 0.4026 | 476.0 | 1904 | 1.1745 | | 0.4026 | 477.0 | 1908 | 1.1637 | | 0.4026 | 478.0 | 1912 | 1.1613 | | 0.4026 | 479.0 | 1916 | 1.2205 | | 0.4026 | 480.0 | 1920 | 1.3217 | | 0.4026 | 481.0 | 1924 | 1.3495 | | 0.4026 | 482.0 | 1928 | 1.3611 | | 0.4026 | 483.0 | 1932 | 1.3540 | | 0.4026 | 484.0 | 1936 | 1.3446 | | 0.4026 | 485.0 | 1940 | 1.3276 | | 0.4026 | 486.0 | 1944 | 1.2940 | | 0.4026 | 487.0 | 1948 | 1.2593 | | 0.4026 | 488.0 | 1952 | 1.2319 | | 0.4026 | 489.0 | 1956 | 1.2247 | | 0.4026 | 490.0 | 1960 | 1.2264 | | 0.4026 | 491.0 | 1964 | 1.2378 | | 0.4026 | 492.0 | 1968 | 1.2434 | | 0.4026 | 493.0 | 1972 | 1.2530 | | 0.4026 | 494.0 | 1976 | 1.2621 | | 0.4026 | 495.0 | 1980 | 1.2628 | | 0.4026 | 496.0 | 1984 | 1.2380 | | 0.4026 | 497.0 | 1988 | 1.2284 | | 0.4026 | 498.0 | 1992 | 1.2583 | | 0.4026 | 499.0 | 1996 | 1.2241 | | 0.4132 | 500.0 | 2000 | 1.2637 | | 0.4132 | 501.0 | 2004 | 1.2356 | | 0.4132 | 502.0 | 2008 | 1.1919 | | 0.4132 | 503.0 | 2012 | 1.1615 | | 0.4132 | 504.0 | 2016 | 1.1739 | | 0.4132 | 505.0 | 2020 | 1.1578 | | 0.4132 | 506.0 | 2024 | 1.1376 | | 0.4132 | 507.0 | 2028 | 1.1027 | | 0.4132 | 508.0 | 2032 | 1.0491 | | 0.4132 | 509.0 | 2036 | 1.0300 | | 0.4132 | 510.0 | 2040 | 1.0555 | | 0.4132 | 511.0 | 2044 | 1.0936 | | 0.4132 | 512.0 | 2048 | 1.1107 | | 0.4132 | 513.0 | 2052 | 1.1290 | | 0.4132 | 514.0 | 2056 | 1.1403 | | 0.4132 | 515.0 | 2060 | 1.1134 | | 0.4132 | 516.0 | 2064 | 1.0623 | | 0.4132 | 517.0 | 2068 | 1.1057 | | 0.4132 | 518.0 | 2072 | 1.0797 | | 0.4132 | 519.0 | 2076 | 1.1629 | | 0.4132 | 520.0 | 2080 | 1.2167 | | 0.4132 | 521.0 | 2084 | 1.2047 | | 0.4132 | 522.0 | 2088 | 1.1083 | | 0.4132 | 523.0 | 2092 | 1.0418 | | 0.4132 | 524.0 | 2096 | 1.0102 | | 0.4132 | 525.0 | 2100 | 1.0244 | | 0.4132 | 526.0 | 2104 | 1.1072 | | 0.4132 | 527.0 | 2108 | 1.1927 | | 0.4132 | 528.0 | 2112 | 1.2431 | | 0.4132 | 529.0 | 2116 | 1.2620 | | 0.4132 | 530.0 | 2120 | 1.2626 | | 0.4132 | 531.0 | 2124 | 1.2374 | | 0.4132 | 532.0 | 2128 | 1.2128 | | 0.4132 | 533.0 | 2132 | 1.1929 | | 0.4132 | 534.0 | 2136 | 1.1825 | | 0.4132 | 535.0 | 2140 | 1.1820 | | 0.4132 | 536.0 | 2144 | 1.1747 | | 0.4132 | 537.0 | 2148 | 1.1500 | | 0.4132 | 538.0 | 2152 | 1.1300 | | 0.4132 | 539.0 | 2156 | 1.1154 | | 0.4132 | 540.0 | 2160 | 1.1131 | | 0.4132 | 541.0 | 2164 | 1.2039 | | 0.4132 | 542.0 | 2168 | 1.2969 | | 0.4132 | 543.0 | 2172 | 1.3467 | | 0.4132 | 544.0 | 2176 | 1.3269 | | 0.4132 | 545.0 | 2180 | 1.2708 | | 0.4132 | 546.0 | 2184 | 1.2328 | | 0.4132 | 547.0 | 2188 | 1.2018 | | 0.4132 | 548.0 | 2192 | 1.2414 | | 0.4132 | 549.0 | 2196 | 1.3077 | | 0.4132 | 550.0 | 2200 | 1.3456 | | 0.4132 | 551.0 | 2204 | 1.3697 | | 0.4132 | 552.0 | 2208 | 1.3549 | | 0.4132 | 553.0 | 2212 | 1.3114 | | 0.4132 | 554.0 | 2216 | 1.2546 | | 0.4132 | 555.0 | 2220 | 1.1885 | | 0.4132 | 556.0 | 2224 | 1.1551 | | 0.4132 | 557.0 | 2228 | 1.1560 | | 0.4132 | 558.0 | 2232 | 1.1636 | | 0.4132 | 559.0 | 2236 | 1.1683 | | 0.4132 | 560.0 | 2240 | 1.1802 | | 0.4132 | 561.0 | 2244 | 1.1915 | | 0.4132 | 562.0 | 2248 | 1.2013 | | 0.4132 | 563.0 | 2252 | 1.2959 | | 0.4132 | 564.0 | 2256 | 1.3462 | | 0.4132 | 565.0 | 2260 | 1.3304 | | 0.4132 | 566.0 | 2264 | 1.2797 | | 0.4132 | 567.0 | 2268 | 1.2271 | | 0.4132 | 568.0 | 2272 | 1.1545 | | 0.4132 | 569.0 | 2276 | 1.0932 | | 0.4132 | 570.0 | 2280 | 1.0846 | | 0.4132 | 571.0 | 2284 | 1.1062 | | 0.4132 | 572.0 | 2288 | 1.1248 | | 0.4132 | 573.0 | 2292 | 1.1334 | | 0.4132 | 574.0 | 2296 | 1.1361 | | 0.4132 | 575.0 | 2300 | 1.1488 | | 0.4132 | 576.0 | 2304 | 1.1842 | | 0.4132 | 577.0 | 2308 | 1.2073 | | 0.4132 | 578.0 | 2312 | 1.2114 | | 0.4132 | 579.0 | 2316 | 1.2072 | | 0.4132 | 580.0 | 2320 | 1.2062 | | 0.4132 | 581.0 | 2324 | 1.2102 | | 0.4132 | 582.0 | 2328 | 1.1919 | | 0.4132 | 583.0 | 2332 | 1.1725 | | 0.4132 | 584.0 | 2336 | 1.1534 | | 0.4132 | 585.0 | 2340 | 1.1383 | | 0.4132 | 586.0 | 2344 | 1.1390 | | 0.4132 | 587.0 | 2348 | 1.1535 | | 0.4132 | 588.0 | 2352 | 1.1533 | | 0.4132 | 589.0 | 2356 | 1.1464 | | 0.4132 | 590.0 | 2360 | 1.1425 | | 0.4132 | 591.0 | 2364 | 1.1457 | | 0.4132 | 592.0 | 2368 | 1.1446 | | 0.4132 | 593.0 | 2372 | 1.1400 | | 0.4132 | 594.0 | 2376 | 1.1323 | | 0.4132 | 595.0 | 2380 | 1.1214 | | 0.4132 | 596.0 | 2384 | 1.1196 | | 0.4132 | 597.0 | 2388 | 1.1202 | | 0.4132 | 598.0 | 2392 | 1.1111 | | 0.4132 | 599.0 | 2396 | 1.1033 | | 0.4132 | 600.0 | 2400 | 1.0880 | | 0.4132 | 601.0 | 2404 | 1.0803 | | 0.4132 | 602.0 | 2408 | 1.1013 | | 0.4132 | 603.0 | 2412 | 1.1340 | | 0.4132 | 604.0 | 2416 | 1.1478 | | 0.4132 | 605.0 | 2420 | 1.1489 | | 0.4132 | 606.0 | 2424 | 1.1421 | | 0.4132 | 607.0 | 2428 | 1.1339 | | 0.4132 | 608.0 | 2432 | 1.1218 | | 0.4132 | 609.0 | 2436 | 1.1091 | | 0.4132 | 610.0 | 2440 | 1.1061 | | 0.4132 | 611.0 | 2444 | 1.0998 | | 0.4132 | 612.0 | 2448 | 1.1126 | | 0.4132 | 613.0 | 2452 | 1.1213 | | 0.4132 | 614.0 | 2456 | 1.1272 | | 0.4132 | 615.0 | 2460 | 1.1455 | | 0.4132 | 616.0 | 2464 | 1.1578 | | 0.4132 | 617.0 | 2468 | 1.1805 | | 0.4132 | 618.0 | 2472 | 1.2011 | | 0.4132 | 619.0 | 2476 | 1.2163 | | 0.4132 | 620.0 | 2480 | 1.2338 | | 0.4132 | 621.0 | 2484 | 1.2324 | | 0.4132 | 622.0 | 2488 | 1.2222 | | 0.4132 | 623.0 | 2492 | 1.1981 | | 0.4132 | 624.0 | 2496 | 1.1771 | | 0.4061 | 625.0 | 2500 | 1.1522 | | 0.4061 | 626.0 | 2504 | 1.1489 | | 0.4061 | 627.0 | 2508 | 1.1523 | | 0.4061 | 628.0 | 2512 | 1.1616 | | 0.4061 | 629.0 | 2516 | 1.1826 | | 0.4061 | 630.0 | 2520 | 1.2340 | | 0.4061 | 631.0 | 2524 | 1.2748 | | 0.4061 | 632.0 | 2528 | 1.2921 | | 0.4061 | 633.0 | 2532 | 1.2943 | | 0.4061 | 634.0 | 2536 | 1.2903 | | 0.4061 | 635.0 | 2540 | 1.2727 | | 0.4061 | 636.0 | 2544 | 1.2437 | | 0.4061 | 637.0 | 2548 | 1.2215 | | 0.4061 | 638.0 | 2552 | 1.2745 | | 0.4061 | 639.0 | 2556 | 1.3062 | | 0.4061 | 640.0 | 2560 | 1.3212 | | 0.4061 | 641.0 | 2564 | 1.3231 | | 0.4061 | 642.0 | 2568 | 1.3165 | | 0.4061 | 643.0 | 2572 | 1.2992 | | 0.4061 | 644.0 | 2576 | 1.2758 | | 0.4061 | 645.0 | 2580 | 1.2506 | | 0.4061 | 646.0 | 2584 | 1.2508 | | 0.4061 | 647.0 | 2588 | 1.2453 | | 0.4061 | 648.0 | 2592 | 1.2296 | | 0.4061 | 649.0 | 2596 | 1.2141 | | 0.4061 | 650.0 | 2600 | 1.2024 | | 0.4061 | 651.0 | 2604 | 1.1930 | | 0.4061 | 652.0 | 2608 | 1.2219 | | 0.4061 | 653.0 | 2612 | 1.2306 | | 0.4061 | 654.0 | 2616 | 1.2269 | | 0.4061 | 655.0 | 2620 | 1.2037 | | 0.4061 | 656.0 | 2624 | 1.1795 | | 0.4061 | 657.0 | 2628 | 1.1435 | | 0.4061 | 658.0 | 2632 | 1.1146 | | 0.4061 | 659.0 | 2636 | 1.0946 | | 0.4061 | 660.0 | 2640 | 1.0931 | | 0.4061 | 661.0 | 2644 | 1.1798 | | 0.4061 | 662.0 | 2648 | 1.1944 | | 0.4061 | 663.0 | 2652 | 1.1942 | | 0.4061 | 664.0 | 2656 | 1.2285 | | 0.4061 | 665.0 | 2660 | 1.3122 | | 0.4061 | 666.0 | 2664 | 1.3508 | | 0.4061 | 667.0 | 2668 | 1.3625 | | 0.4061 | 668.0 | 2672 | 1.3328 | | 0.4061 | 669.0 | 2676 | 1.2849 | | 0.4061 | 670.0 | 2680 | 1.2284 | | 0.4061 | 671.0 | 2684 | 1.1931 | | 0.4061 | 672.0 | 2688 | 1.1913 | | 0.4061 | 673.0 | 2692 | 1.2059 | | 0.4061 | 674.0 | 2696 | 1.2328 | | 0.4061 | 675.0 | 2700 | 1.2668 | | 0.4061 | 676.0 | 2704 | 1.2732 | | 0.4061 | 677.0 | 2708 | 1.2647 | | 0.4061 | 678.0 | 2712 | 1.2574 | | 0.4061 | 679.0 | 2716 | 1.2319 | | 0.4061 | 680.0 | 2720 | 1.2031 | | 0.4061 | 681.0 | 2724 | 1.2425 | | 0.4061 | 682.0 | 2728 | 1.2883 | | 0.4061 | 683.0 | 2732 | 1.3076 | | 0.4061 | 684.0 | 2736 | 1.3102 | | 0.4061 | 685.0 | 2740 | 1.3046 | | 0.4061 | 686.0 | 2744 | 1.2982 | | 0.4061 | 687.0 | 2748 | 1.2846 | | 0.4061 | 688.0 | 2752 | 1.2751 | | 0.4061 | 689.0 | 2756 | 1.2671 | | 0.4061 | 690.0 | 2760 | 1.2551 | | 0.4061 | 691.0 | 2764 | 1.2444 | | 0.4061 | 692.0 | 2768 | 1.2144 | | 0.4061 | 693.0 | 2772 | 1.1945 | | 0.4061 | 694.0 | 2776 | 1.1846 | | 0.4061 | 695.0 | 2780 | 1.1939 | | 0.4061 | 696.0 | 2784 | 1.1949 | | 0.4061 | 697.0 | 2788 | 1.2070 | | 0.4061 | 698.0 | 2792 | 1.2194 | | 0.4061 | 699.0 | 2796 | 1.2330 | | 0.4061 | 700.0 | 2800 | 1.2461 | | 0.4061 | 701.0 | 2804 | 1.2499 | | 0.4061 | 702.0 | 2808 | 1.2419 | | 0.4061 | 703.0 | 2812 | 1.2619 | | 0.4061 | 704.0 | 2816 | 1.2295 | | 0.4061 | 705.0 | 2820 | 1.2170 | | 0.4061 | 706.0 | 2824 | 1.2960 | | 0.4061 | 707.0 | 2828 | 1.3246 | | 0.4061 | 708.0 | 2832 | 1.3304 | | 0.4061 | 709.0 | 2836 | 1.3395 | | 0.4061 | 710.0 | 2840 | 1.3449 | | 0.4061 | 711.0 | 2844 | 1.3399 | | 0.4061 | 712.0 | 2848 | 1.3301 | | 0.4061 | 713.0 | 2852 | 1.3168 | | 0.4061 | 714.0 | 2856 | 1.3108 | | 0.4061 | 715.0 | 2860 | 1.3146 | | 0.4061 | 716.0 | 2864 | 1.3229 | | 0.4061 | 717.0 | 2868 | 1.3482 | | 0.4061 | 718.0 | 2872 | 1.3742 | | 0.4061 | 719.0 | 2876 | 1.3829 | | 0.4061 | 720.0 | 2880 | 1.3847 | | 0.4061 | 721.0 | 2884 | 1.3867 | | 0.4061 | 722.0 | 2888 | 1.3857 | | 0.4061 | 723.0 | 2892 | 1.3810 | | 0.4061 | 724.0 | 2896 | 1.3730 | | 0.4061 | 725.0 | 2900 | 1.3631 | | 0.4061 | 726.0 | 2904 | 1.3527 | | 0.4061 | 727.0 | 2908 | 1.3418 | | 0.4061 | 728.0 | 2912 | 1.3186 | | 0.4061 | 729.0 | 2916 | 1.3084 | | 0.4061 | 730.0 | 2920 | 1.3000 | | 0.4061 | 731.0 | 2924 | 1.2873 | | 0.4061 | 732.0 | 2928 | 1.2775 | | 0.4061 | 733.0 | 2932 | 1.2699 | | 0.4061 | 734.0 | 2936 | 1.2703 | | 0.4061 | 735.0 | 2940 | 1.2799 | | 0.4061 | 736.0 | 2944 | 1.2905 | | 0.4061 | 737.0 | 2948 | 1.3006 | | 0.4061 | 738.0 | 2952 | 1.3002 | | 0.4061 | 739.0 | 2956 | 1.2978 | | 0.4061 | 740.0 | 2960 | 1.2848 | | 0.4061 | 741.0 | 2964 | 1.2631 | | 0.4061 | 742.0 | 2968 | 1.2506 | | 0.4061 | 743.0 | 2972 | 1.2557 | | 0.4061 | 744.0 | 2976 | 1.2643 | | 0.4061 | 745.0 | 2980 | 1.2719 | | 0.4061 | 746.0 | 2984 | 1.2731 | | 0.4061 | 747.0 | 2988 | 1.3278 | | 0.4061 | 748.0 | 2992 | 1.3545 | | 0.4061 | 749.0 | 2996 | 1.3598 | | 0.4016 | 750.0 | 3000 | 1.3552 | | 0.4016 | 751.0 | 3004 | 1.3679 | | 0.4016 | 752.0 | 3008 | 1.3758 | | 0.4016 | 753.0 | 3012 | 1.3602 | | 0.4016 | 754.0 | 3016 | 1.3482 | | 0.4016 | 755.0 | 3020 | 1.3237 | | 0.4016 | 756.0 | 3024 | 1.3004 | | 0.4016 | 757.0 | 3028 | 1.2859 | | 0.4016 | 758.0 | 3032 | 1.2923 | | 0.4016 | 759.0 | 3036 | 1.3164 | | 0.4016 | 760.0 | 3040 | 1.3224 | | 0.4016 | 761.0 | 3044 | 1.3039 | | 0.4016 | 762.0 | 3048 | 1.2589 | | 0.4016 | 763.0 | 3052 | 1.1517 | | 0.4016 | 764.0 | 3056 | 1.0966 | | 0.4016 | 765.0 | 3060 | 1.1509 | | 0.4016 | 766.0 | 3064 | 1.2219 | | 0.4016 | 767.0 | 3068 | 1.2252 | | 0.4016 | 768.0 | 3072 | 1.2120 | | 0.4016 | 769.0 | 3076 | 1.1997 | | 0.4016 | 770.0 | 3080 | 1.1788 | | 0.4016 | 771.0 | 3084 | 1.1522 | | 0.4016 | 772.0 | 3088 | 1.1402 | | 0.4016 | 773.0 | 3092 | 1.1456 | | 0.4016 | 774.0 | 3096 | 1.1622 | | 0.4016 | 775.0 | 3100 | 1.1761 | | 0.4016 | 776.0 | 3104 | 1.1781 | | 0.4016 | 777.0 | 3108 | 1.1733 | | 0.4016 | 778.0 | 3112 | 1.1608 | | 0.4016 | 779.0 | 3116 | 1.1462 | | 0.4016 | 780.0 | 3120 | 1.1350 | | 0.4016 | 781.0 | 3124 | 1.1381 | | 0.4016 | 782.0 | 3128 | 1.1442 | | 0.4016 | 783.0 | 3132 | 1.1534 | | 0.4016 | 784.0 | 3136 | 1.1221 | | 0.4016 | 785.0 | 3140 | 1.1822 | | 0.4016 | 786.0 | 3144 | 1.2308 | | 0.4016 | 787.0 | 3148 | 1.2633 | | 0.4016 | 788.0 | 3152 | 1.2659 | | 0.4016 | 789.0 | 3156 | 1.2471 | | 0.4016 | 790.0 | 3160 | 1.1818 | | 0.4016 | 791.0 | 3164 | 1.1384 | | 0.4016 | 792.0 | 3168 | 1.1248 | | 0.4016 | 793.0 | 3172 | 1.1100 | | 0.4016 | 794.0 | 3176 | 1.1004 | | 0.4016 | 795.0 | 3180 | 1.1016 | | 0.4016 | 796.0 | 3184 | 1.1277 | | 0.4016 | 797.0 | 3188 | 1.1689 | | 0.4016 | 798.0 | 3192 | 1.1946 | | 0.4016 | 799.0 | 3196 | 1.2127 | | 0.4016 | 800.0 | 3200 | 1.2245 | | 0.4016 | 801.0 | 3204 | 1.2228 | | 0.4016 | 802.0 | 3208 | 1.2164 | | 0.4016 | 803.0 | 3212 | 1.2172 | | 0.4016 | 804.0 | 3216 | 1.2180 | | 0.4016 | 805.0 | 3220 | 1.2165 | | 0.4016 | 806.0 | 3224 | 1.2123 | | 0.4016 | 807.0 | 3228 | 1.2098 | | 0.4016 | 808.0 | 3232 | 1.2090 | | 0.4016 | 809.0 | 3236 | 1.2058 | | 0.4016 | 810.0 | 3240 | 1.2009 | | 0.4016 | 811.0 | 3244 | 1.2007 | | 0.4016 | 812.0 | 3248 | 1.2076 | | 0.4016 | 813.0 | 3252 | 1.2389 | | 0.4016 | 814.0 | 3256 | 1.2485 | | 0.4016 | 815.0 | 3260 | 1.2495 | | 0.4016 | 816.0 | 3264 | 1.2480 | | 0.4016 | 817.0 | 3268 | 1.2444 | | 0.4016 | 818.0 | 3272 | 1.2378 | | 0.4016 | 819.0 | 3276 | 1.2285 | | 0.4016 | 820.0 | 3280 | 1.2135 | | 0.4016 | 821.0 | 3284 | 1.1896 | | 0.4016 | 822.0 | 3288 | 1.1637 | | 0.4016 | 823.0 | 3292 | 1.1443 | | 0.4016 | 824.0 | 3296 | 1.1267 | | 0.4016 | 825.0 | 3300 | 1.1119 | | 0.4016 | 826.0 | 3304 | 1.1052 | | 0.4016 | 827.0 | 3308 | 1.1026 | | 0.4016 | 828.0 | 3312 | 1.1021 | | 0.4016 | 829.0 | 3316 | 1.1042 | | 0.4016 | 830.0 | 3320 | 1.1077 | | 0.4016 | 831.0 | 3324 | 1.1123 | | 0.4016 | 832.0 | 3328 | 1.1195 | | 0.4016 | 833.0 | 3332 | 1.1204 | | 0.4016 | 834.0 | 3336 | 1.1215 | | 0.4016 | 835.0 | 3340 | 1.1350 | | 0.4016 | 836.0 | 3344 | 1.1476 | | 0.4016 | 837.0 | 3348 | 1.1558 | | 0.4016 | 838.0 | 3352 | 1.1687 | | 0.4016 | 839.0 | 3356 | 1.1715 | | 0.4016 | 840.0 | 3360 | 1.1797 | | 0.4016 | 841.0 | 3364 | 1.2209 | | 0.4016 | 842.0 | 3368 | 1.2569 | | 0.4016 | 843.0 | 3372 | 1.2802 | | 0.4016 | 844.0 | 3376 | 1.3029 | | 0.4016 | 845.0 | 3380 | 1.2870 | | 0.4016 | 846.0 | 3384 | 1.1964 | | 0.4016 | 847.0 | 3388 | 1.1334 | | 0.4016 | 848.0 | 3392 | 1.1218 | | 0.4016 | 849.0 | 3396 | 1.1278 | | 0.4016 | 850.0 | 3400 | 1.1315 | | 0.4016 | 851.0 | 3404 | 1.1784 | | 0.4016 | 852.0 | 3408 | 1.2120 | | 0.4016 | 853.0 | 3412 | 1.2280 | | 0.4016 | 854.0 | 3416 | 1.2320 | | 0.4016 | 855.0 | 3420 | 1.1869 | | 0.4016 | 856.0 | 3424 | 1.1227 | | 0.4016 | 857.0 | 3428 | 1.0755 | | 0.4016 | 858.0 | 3432 | 1.0452 | | 0.4016 | 859.0 | 3436 | 1.0299 | | 0.4016 | 860.0 | 3440 | 1.0241 | | 0.4016 | 861.0 | 3444 | 1.0236 | | 0.4016 | 862.0 | 3448 | 1.0262 | | 0.4016 | 863.0 | 3452 | 1.0287 | | 0.4016 | 864.0 | 3456 | 1.0308 | | 0.4016 | 865.0 | 3460 | 1.0330 | | 0.4016 | 866.0 | 3464 | 1.0352 | | 0.4016 | 867.0 | 3468 | 1.0370 | | 0.4016 | 868.0 | 3472 | 1.0386 | | 0.4016 | 869.0 | 3476 | 1.0386 | | 0.4016 | 870.0 | 3480 | 1.0296 | | 0.4016 | 871.0 | 3484 | 1.0207 | | 0.4016 | 872.0 | 3488 | 1.0171 | | 0.4016 | 873.0 | 3492 | 1.0158 | | 0.4016 | 874.0 | 3496 | 1.0149 | | 0.4014 | 875.0 | 3500 | 1.0150 | | 0.4014 | 876.0 | 3504 | 1.0162 | | 0.4014 | 877.0 | 3508 | 1.0176 | | 0.4014 | 878.0 | 3512 | 1.0295 | | 0.4014 | 879.0 | 3516 | 1.0410 | | 0.4014 | 880.0 | 3520 | 1.0489 | | 0.4014 | 881.0 | 3524 | 1.0540 | | 0.4014 | 882.0 | 3528 | 1.0578 | | 0.4014 | 883.0 | 3532 | 1.0607 | | 0.4014 | 884.0 | 3536 | 1.0630 | | 0.4014 | 885.0 | 3540 | 1.0675 | | 0.4014 | 886.0 | 3544 | 1.0700 | | 0.4014 | 887.0 | 3548 | 1.0726 | | 0.4014 | 888.0 | 3552 | 1.0851 | | 0.4014 | 889.0 | 3556 | 1.0946 | | 0.4014 | 890.0 | 3560 | 1.1003 | | 0.4014 | 891.0 | 3564 | 1.0967 | | 0.4014 | 892.0 | 3568 | 1.0899 | | 0.4014 | 893.0 | 3572 | 1.0831 | | 0.4014 | 894.0 | 3576 | 1.0767 | | 0.4014 | 895.0 | 3580 | 1.0696 | | 0.4014 | 896.0 | 3584 | 1.0664 | | 0.4014 | 897.0 | 3588 | 1.0691 | | 0.4014 | 898.0 | 3592 | 1.0772 | | 0.4014 | 899.0 | 3596 | 1.0807 | | 0.4014 | 900.0 | 3600 | 1.0831 | | 0.4014 | 901.0 | 3604 | 1.0822 | | 0.4014 | 902.0 | 3608 | 1.0792 | | 0.4014 | 903.0 | 3612 | 1.0659 | | 0.4014 | 904.0 | 3616 | 1.0539 | | 0.4014 | 905.0 | 3620 | 1.0426 | | 0.4014 | 906.0 | 3624 | 1.0392 | | 0.4014 | 907.0 | 3628 | 1.0473 | | 0.4014 | 908.0 | 3632 | 1.0532 | | 0.4014 | 909.0 | 3636 | 1.0545 | | 0.4014 | 910.0 | 3640 | 1.0536 | | 0.4014 | 911.0 | 3644 | 1.0540 | | 0.4014 | 912.0 | 3648 | 1.0546 | | 0.4014 | 913.0 | 3652 | 1.0587 | | 0.4014 | 914.0 | 3656 | 1.0701 | | 0.4014 | 915.0 | 3660 | 1.0807 | | 0.4014 | 916.0 | 3664 | 1.0884 | | 0.4014 | 917.0 | 3668 | 1.0956 | | 0.4014 | 918.0 | 3672 | 1.1019 | | 0.4014 | 919.0 | 3676 | 1.1053 | | 0.4014 | 920.0 | 3680 | 1.1067 | | 0.4014 | 921.0 | 3684 | 1.1044 | | 0.4014 | 922.0 | 3688 | 1.1030 | | 0.4014 | 923.0 | 3692 | 1.1033 | | 0.4014 | 924.0 | 3696 | 1.1041 | | 0.4014 | 925.0 | 3700 | 1.1068 | | 0.4014 | 926.0 | 3704 | 1.1116 | | 0.4014 | 927.0 | 3708 | 1.1157 | | 0.4014 | 928.0 | 3712 | 1.1195 | | 0.4014 | 929.0 | 3716 | 1.1245 | | 0.4014 | 930.0 | 3720 | 1.1271 | | 0.4014 | 931.0 | 3724 | 1.1289 | | 0.4014 | 932.0 | 3728 | 1.1316 | | 0.4014 | 933.0 | 3732 | 1.1340 | | 0.4014 | 934.0 | 3736 | 1.1367 | | 0.4014 | 935.0 | 3740 | 1.1425 | | 0.4014 | 936.0 | 3744 | 1.1488 | | 0.4014 | 937.0 | 3748 | 1.1515 | | 0.4014 | 938.0 | 3752 | 1.1503 | | 0.4014 | 939.0 | 3756 | 1.1478 | | 0.4014 | 940.0 | 3760 | 1.1487 | | 0.4014 | 941.0 | 3764 | 1.1488 | | 0.4014 | 942.0 | 3768 | 1.1488 | | 0.4014 | 943.0 | 3772 | 1.1493 | | 0.4014 | 944.0 | 3776 | 1.1358 | | 0.4014 | 945.0 | 3780 | 1.0983 | | 0.4014 | 946.0 | 3784 | 1.0740 | | 0.4014 | 947.0 | 3788 | 1.0641 | | 0.4014 | 948.0 | 3792 | 1.0617 | | 0.4014 | 949.0 | 3796 | 1.0639 | | 0.4014 | 950.0 | 3800 | 1.0667 | | 0.4014 | 951.0 | 3804 | 1.0778 | | 0.4014 | 952.0 | 3808 | 1.0883 | | 0.4014 | 953.0 | 3812 | 1.1023 | | 0.4014 | 954.0 | 3816 | 1.1139 | | 0.4014 | 955.0 | 3820 | 1.1205 | | 0.4014 | 956.0 | 3824 | 1.1238 | | 0.4014 | 957.0 | 3828 | 1.1264 | | 0.4014 | 958.0 | 3832 | 1.1328 | | 0.4014 | 959.0 | 3836 | 1.1374 | | 0.4014 | 960.0 | 3840 | 1.1400 | | 0.4014 | 961.0 | 3844 | 1.1397 | | 0.4014 | 962.0 | 3848 | 1.1388 | | 0.4014 | 963.0 | 3852 | 1.1385 | | 0.4014 | 964.0 | 3856 | 1.1390 | | 0.4014 | 965.0 | 3860 | 1.1397 | | 0.4014 | 966.0 | 3864 | 1.1413 | | 0.4014 | 967.0 | 3868 | 1.1471 | | 0.4014 | 968.0 | 3872 | 1.1519 | | 0.4014 | 969.0 | 3876 | 1.1541 | | 0.4014 | 970.0 | 3880 | 1.1526 | | 0.4014 | 971.0 | 3884 | 1.1506 | | 0.4014 | 972.0 | 3888 | 1.1494 | | 0.4014 | 973.0 | 3892 | 1.1484 | | 0.4014 | 974.0 | 3896 | 1.1436 | | 0.4014 | 975.0 | 3900 | 1.1406 | | 0.4014 | 976.0 | 3904 | 1.1369 | | 0.4014 | 977.0 | 3908 | 1.1329 | | 0.4014 | 978.0 | 3912 | 1.1309 | | 0.4014 | 979.0 | 3916 | 1.1291 | | 0.4014 | 980.0 | 3920 | 1.1285 | | 0.4014 | 981.0 | 3924 | 1.1298 | | 0.4014 | 982.0 | 3928 | 1.1328 | | 0.4014 | 983.0 | 3932 | 1.1266 | | 0.4014 | 984.0 | 3936 | 1.1233 | | 0.4014 | 985.0 | 3940 | 1.1279 | | 0.4014 | 986.0 | 3944 | 1.1331 | | 0.4014 | 987.0 | 3948 | 1.1367 | | 0.4014 | 988.0 | 3952 | 1.1336 | | 0.4014 | 989.0 | 3956 | 1.1305 | | 0.4014 | 990.0 | 3960 | 1.1284 | | 0.4014 | 991.0 | 3964 | 1.1270 | | 0.4014 | 992.0 | 3968 | 1.1256 | | 0.4014 | 993.0 | 3972 | 1.1231 | | 0.4014 | 994.0 | 3976 | 1.1220 | | 0.4014 | 995.0 | 3980 | 1.1229 | | 0.4014 | 996.0 | 3984 | 1.1074 | | 0.4014 | 997.0 | 3988 | 1.1741 | | 0.4014 | 998.0 | 3992 | 1.2255 | | 0.4014 | 999.0 | 3996 | 1.2600 | | 0.4025 | 1000.0 | 4000 | 1.2943 | | 0.4025 | 1001.0 | 4004 | 1.3115 | | 0.4025 | 1002.0 | 4008 | 1.3149 | | 0.4025 | 1003.0 | 4012 | 1.2950 | | 0.4025 | 1004.0 | 4016 | 1.2578 | | 0.4025 | 1005.0 | 4020 | 1.2230 | | 0.4025 | 1006.0 | 4024 | 1.1886 | | 0.4025 | 1007.0 | 4028 | 1.1686 | | 0.4025 | 1008.0 | 4032 | 1.1784 | | 0.4025 | 1009.0 | 4036 | 1.1909 | | 0.4025 | 1010.0 | 4040 | 1.1984 | | 0.4025 | 1011.0 | 4044 | 1.2013 | | 0.4025 | 1012.0 | 4048 | 1.2029 | | 0.4025 | 1013.0 | 4052 | 1.2016 | | 0.4025 | 1014.0 | 4056 | 1.1755 | | 0.4025 | 1015.0 | 4060 | 1.0993 | | 0.4025 | 1016.0 | 4064 | 1.0576 | | 0.4025 | 1017.0 | 4068 | 1.0620 | | 0.4025 | 1018.0 | 4072 | 1.0791 | | 0.4025 | 1019.0 | 4076 | 1.0938 | | 0.4025 | 1020.0 | 4080 | 1.1000 | | 0.4025 | 1021.0 | 4084 | 1.1049 | | 0.4025 | 1022.0 | 4088 | 1.1093 | | 0.4025 | 1023.0 | 4092 | 1.1115 | | 0.4025 | 1024.0 | 4096 | 1.1253 | | 0.4025 | 1025.0 | 4100 | 1.1377 | | 0.4025 | 1026.0 | 4104 | 1.1378 | | 0.4025 | 1027.0 | 4108 | 1.1303 | | 0.4025 | 1028.0 | 4112 | 1.1133 | | 0.4025 | 1029.0 | 4116 | 1.0965 | | 0.4025 | 1030.0 | 4120 | 1.0833 | | 0.4025 | 1031.0 | 4124 | 1.0750 | | 0.4025 | 1032.0 | 4128 | 1.0715 | | 0.4025 | 1033.0 | 4132 | 1.0742 | | 0.4025 | 1034.0 | 4136 | 1.0822 | | 0.4025 | 1035.0 | 4140 | 1.0887 | | 0.4025 | 1036.0 | 4144 | 1.0935 | | 0.4025 | 1037.0 | 4148 | 1.0960 | | 0.4025 | 1038.0 | 4152 | 1.0993 | | 0.4025 | 1039.0 | 4156 | 1.1041 | | 0.4025 | 1040.0 | 4160 | 1.1087 | | 0.4025 | 1041.0 | 4164 | 1.1171 | | 0.4025 | 1042.0 | 4168 | 1.1270 | | 0.4025 | 1043.0 | 4172 | 1.1340 | | 0.4025 | 1044.0 | 4176 | 1.1404 | | 0.4025 | 1045.0 | 4180 | 1.1455 | | 0.4025 | 1046.0 | 4184 | 1.1466 | | 0.4025 | 1047.0 | 4188 | 1.1479 | | 0.4025 | 1048.0 | 4192 | 1.1482 | | 0.4025 | 1049.0 | 4196 | 1.1489 | | 0.4025 | 1050.0 | 4200 | 1.1486 | | 0.4025 | 1051.0 | 4204 | 1.1477 | | 0.4025 | 1052.0 | 4208 | 1.1471 | | 0.4025 | 1053.0 | 4212 | 1.1478 | | 0.4025 | 1054.0 | 4216 | 1.1483 | | 0.4025 | 1055.0 | 4220 | 1.1424 | | 0.4025 | 1056.0 | 4224 | 1.1357 | | 0.4025 | 1057.0 | 4228 | 1.1308 | | 0.4025 | 1058.0 | 4232 | 1.1275 | | 0.4025 | 1059.0 | 4236 | 1.1346 | | 0.4025 | 1060.0 | 4240 | 1.1628 | | 0.4025 | 1061.0 | 4244 | 1.1450 | | 0.4025 | 1062.0 | 4248 | 1.1331 | | 0.4025 | 1063.0 | 4252 | 1.1271 | | 0.4025 | 1064.0 | 4256 | 1.1263 | | 0.4025 | 1065.0 | 4260 | 1.1266 | | 0.4025 | 1066.0 | 4264 | 1.1259 | | 0.4025 | 1067.0 | 4268 | 1.1255 | | 0.4025 | 1068.0 | 4272 | 1.1248 | | 0.4025 | 1069.0 | 4276 | 1.1228 | | 0.4025 | 1070.0 | 4280 | 1.1207 | | 0.4025 | 1071.0 | 4284 | 1.1215 | | 0.4025 | 1072.0 | 4288 | 1.1191 | | 0.4025 | 1073.0 | 4292 | 1.1177 | | 0.4025 | 1074.0 | 4296 | 1.1179 | | 0.4025 | 1075.0 | 4300 | 1.1181 | | 0.4025 | 1076.0 | 4304 | 1.1181 | | 0.4025 | 1077.0 | 4308 | 1.1172 | | 0.4025 | 1078.0 | 4312 | 1.1154 | | 0.4025 | 1079.0 | 4316 | 1.1134 | | 0.4025 | 1080.0 | 4320 | 1.1121 | | 0.4025 | 1081.0 | 4324 | 1.1111 | | 0.4025 | 1082.0 | 4328 | 1.1102 | | 0.4025 | 1083.0 | 4332 | 1.1102 | | 0.4025 | 1084.0 | 4336 | 1.1109 | | 0.4025 | 1085.0 | 4340 | 1.1119 | | 0.4025 | 1086.0 | 4344 | 1.1126 | | 0.4025 | 1087.0 | 4348 | 1.1129 | | 0.4025 | 1088.0 | 4352 | 1.1131 | | 0.4025 | 1089.0 | 4356 | 1.1131 | | 0.4025 | 1090.0 | 4360 | 1.1129 | | 0.4025 | 1091.0 | 4364 | 1.1130 | | 0.4025 | 1092.0 | 4368 | 1.0967 | | 0.4025 | 1093.0 | 4372 | 1.0824 | | 0.4025 | 1094.0 | 4376 | 1.0799 | | 0.4025 | 1095.0 | 4380 | 1.0830 | | 0.4025 | 1096.0 | 4384 | 1.0894 | | 0.4025 | 1097.0 | 4388 | 1.0983 | | 0.4025 | 1098.0 | 4392 | 1.1050 | | 0.4025 | 1099.0 | 4396 | 1.1161 | | 0.4025 | 1100.0 | 4400 | 1.1332 | | 0.4025 | 1101.0 | 4404 | 1.1434 | | 0.4025 | 1102.0 | 4408 | 1.1527 | | 0.4025 | 1103.0 | 4412 | 1.1581 | | 0.4025 | 1104.0 | 4416 | 1.1606 | | 0.4025 | 1105.0 | 4420 | 1.1648 | | 0.4025 | 1106.0 | 4424 | 1.1656 | | 0.4025 | 1107.0 | 4428 | 1.1644 | | 0.4025 | 1108.0 | 4432 | 1.1646 | | 0.4025 | 1109.0 | 4436 | 1.1654 | | 0.4025 | 1110.0 | 4440 | 1.1610 | | 0.4025 | 1111.0 | 4444 | 1.1545 | | 0.4025 | 1112.0 | 4448 | 1.1492 | | 0.4025 | 1113.0 | 4452 | 1.1442 | | 0.4025 | 1114.0 | 4456 | 1.1438 | | 0.4025 | 1115.0 | 4460 | 1.1538 | | 0.4025 | 1116.0 | 4464 | 1.1623 | | 0.4025 | 1117.0 | 4468 | 1.1693 | | 0.4025 | 1118.0 | 4472 | 1.1743 | | 0.4025 | 1119.0 | 4476 | 1.1749 | | 0.4025 | 1120.0 | 4480 | 1.1382 | | 0.4025 | 1121.0 | 4484 | 1.1209 | | 0.4025 | 1122.0 | 4488 | 1.1680 | | 0.4025 | 1123.0 | 4492 | 1.2175 | | 0.4025 | 1124.0 | 4496 | 1.2453 | | 0.4015 | 1125.0 | 4500 | 1.2393 | | 0.4015 | 1126.0 | 4504 | 1.2185 | | 0.4015 | 1127.0 | 4508 | 1.1926 | | 0.4015 | 1128.0 | 4512 | 1.1660 | | 0.4015 | 1129.0 | 4516 | 1.1457 | | 0.4015 | 1130.0 | 4520 | 1.1286 | | 0.4015 | 1131.0 | 4524 | 1.1176 | | 0.4015 | 1132.0 | 4528 | 1.1100 | | 0.4015 | 1133.0 | 4532 | 1.1023 | | 0.4015 | 1134.0 | 4536 | 1.0997 | | 0.4015 | 1135.0 | 4540 | 1.0973 | | 0.4015 | 1136.0 | 4544 | 1.0962 | | 0.4015 | 1137.0 | 4548 | 1.0984 | | 0.4015 | 1138.0 | 4552 | 1.1027 | | 0.4015 | 1139.0 | 4556 | 1.1081 | | 0.4015 | 1140.0 | 4560 | 1.1123 | | 0.4015 | 1141.0 | 4564 | 1.1148 | | 0.4015 | 1142.0 | 4568 | 1.1128 | | 0.4015 | 1143.0 | 4572 | 1.1084 | | 0.4015 | 1144.0 | 4576 | 1.1048 | | 0.4015 | 1145.0 | 4580 | 1.0997 | | 0.4015 | 1146.0 | 4584 | 1.1051 | | 0.4015 | 1147.0 | 4588 | 1.1135 | | 0.4015 | 1148.0 | 4592 | 1.1169 | | 0.4015 | 1149.0 | 4596 | 1.1196 | | 0.4015 | 1150.0 | 4600 | 1.1214 | | 0.4015 | 1151.0 | 4604 | 1.1132 | | 0.4015 | 1152.0 | 4608 | 1.1172 | | 0.4015 | 1153.0 | 4612 | 1.1228 | | 0.4015 | 1154.0 | 4616 | 1.1291 | | 0.4015 | 1155.0 | 4620 | 1.1335 | | 0.4015 | 1156.0 | 4624 | 1.1364 | | 0.4015 | 1157.0 | 4628 | 1.1378 | | 0.4015 | 1158.0 | 4632 | 1.1378 | | 0.4015 | 1159.0 | 4636 | 1.1380 | | 0.4015 | 1160.0 | 4640 | 1.1300 | | 0.4015 | 1161.0 | 4644 | 1.1238 | | 0.4015 | 1162.0 | 4648 | 1.1207 | | 0.4015 | 1163.0 | 4652 | 1.1203 | | 0.4015 | 1164.0 | 4656 | 1.1198 | | 0.4015 | 1165.0 | 4660 | 1.1092 | | 0.4015 | 1166.0 | 4664 | 1.1052 | | 0.4015 | 1167.0 | 4668 | 1.1309 | | 0.4015 | 1168.0 | 4672 | 1.1826 | | 0.4015 | 1169.0 | 4676 | 1.1280 | | 0.4015 | 1170.0 | 4680 | 1.1234 | | 0.4015 | 1171.0 | 4684 | 1.1804 | | 0.4015 | 1172.0 | 4688 | 1.2199 | | 0.4015 | 1173.0 | 4692 | 1.2259 | | 0.4015 | 1174.0 | 4696 | 1.2267 | | 0.4015 | 1175.0 | 4700 | 1.2261 | | 0.4015 | 1176.0 | 4704 | 1.2248 | | 0.4015 | 1177.0 | 4708 | 1.2086 | | 0.4015 | 1178.0 | 4712 | 1.1969 | | 0.4015 | 1179.0 | 4716 | 1.1937 | | 0.4015 | 1180.0 | 4720 | 1.1915 | | 0.4015 | 1181.0 | 4724 | 1.1917 | | 0.4015 | 1182.0 | 4728 | 1.1925 | | 0.4015 | 1183.0 | 4732 | 1.2010 | | 0.4015 | 1184.0 | 4736 | 1.2017 | | 0.4015 | 1185.0 | 4740 | 1.1974 | | 0.4015 | 1186.0 | 4744 | 1.1934 | | 0.4015 | 1187.0 | 4748 | 1.1915 | | 0.4015 | 1188.0 | 4752 | 1.1902 | | 0.4015 | 1189.0 | 4756 | 1.1896 | | 0.4015 | 1190.0 | 4760 | 1.1888 | | 0.4015 | 1191.0 | 4764 | 1.1806 | | 0.4015 | 1192.0 | 4768 | 1.1684 | | 0.4015 | 1193.0 | 4772 | 1.1584 | | 0.4015 | 1194.0 | 4776 | 1.1505 | | 0.4015 | 1195.0 | 4780 | 1.1480 | | 0.4015 | 1196.0 | 4784 | 1.1483 | | 0.4015 | 1197.0 | 4788 | 1.1506 | | 0.4015 | 1198.0 | 4792 | 1.1532 | | 0.4015 | 1199.0 | 4796 | 1.1542 | | 0.4015 | 1200.0 | 4800 | 1.1539 | | 0.4015 | 1201.0 | 4804 | 1.1521 | | 0.4015 | 1202.0 | 4808 | 1.1509 | | 0.4015 | 1203.0 | 4812 | 1.1495 | | 0.4015 | 1204.0 | 4816 | 1.1499 | | 0.4015 | 1205.0 | 4820 | 1.1519 | | 0.4015 | 1206.0 | 4824 | 1.1538 | | 0.4015 | 1207.0 | 4828 | 1.1569 | | 0.4015 | 1208.0 | 4832 | 1.1558 | | 0.4015 | 1209.0 | 4836 | 1.1562 | | 0.4015 | 1210.0 | 4840 | 1.1556 | | 0.4015 | 1211.0 | 4844 | 1.1548 | | 0.4015 | 1212.0 | 4848 | 1.1574 | | 0.4015 | 1213.0 | 4852 | 1.1591 | | 0.4015 | 1214.0 | 4856 | 1.1590 | | 0.4015 | 1215.0 | 4860 | 1.1575 | | 0.4015 | 1216.0 | 4864 | 1.1385 | | 0.4015 | 1217.0 | 4868 | 1.1270 | | 0.4015 | 1218.0 | 4872 | 1.1209 | | 0.4015 | 1219.0 | 4876 | 1.1201 | | 0.4015 | 1220.0 | 4880 | 1.1297 | | 0.4015 | 1221.0 | 4884 | 1.1371 | | 0.4015 | 1222.0 | 4888 | 1.1426 | | 0.4015 | 1223.0 | 4892 | 1.1456 | | 0.4015 | 1224.0 | 4896 | 1.1458 | | 0.4015 | 1225.0 | 4900 | 1.1463 | | 0.4015 | 1226.0 | 4904 | 1.1458 | | 0.4015 | 1227.0 | 4908 | 1.1445 | | 0.4015 | 1228.0 | 4912 | 1.1438 | | 0.4015 | 1229.0 | 4916 | 1.1434 | | 0.4015 | 1230.0 | 4920 | 1.1434 | | 0.4015 | 1231.0 | 4924 | 1.1420 | | 0.4015 | 1232.0 | 4928 | 1.1431 | | 0.4015 | 1233.0 | 4932 | 1.1469 | | 0.4015 | 1234.0 | 4936 | 1.1481 | | 0.4015 | 1235.0 | 4940 | 1.1464 | | 0.4015 | 1236.0 | 4944 | 1.1433 | | 0.4015 | 1237.0 | 4948 | 1.1392 | | 0.4015 | 1238.0 | 4952 | 1.1353 | | 0.4015 | 1239.0 | 4956 | 1.1318 | | 0.4015 | 1240.0 | 4960 | 1.1300 | | 0.4015 | 1241.0 | 4964 | 1.1287 | | 0.4015 | 1242.0 | 4968 | 1.1837 | | 0.4015 | 1243.0 | 4972 | 1.2690 | | 0.4015 | 1244.0 | 4976 | 1.3062 | | 0.4015 | 1245.0 | 4980 | 1.3034 | | 0.4015 | 1246.0 | 4984 | 1.2571 | | 0.4015 | 1247.0 | 4988 | 1.2178 | | 0.4015 | 1248.0 | 4992 | 1.1835 | | 0.4015 | 1249.0 | 4996 | 1.1600 | | 0.4008 | 1250.0 | 5000 | 1.1461 | | 0.4008 | 1251.0 | 5004 | 1.1375 | | 0.4008 | 1252.0 | 5008 | 1.1322 | | 0.4008 | 1253.0 | 5012 | 1.1299 | | 0.4008 | 1254.0 | 5016 | 1.1389 | | 0.4008 | 1255.0 | 5020 | 1.1511 | | 0.4008 | 1256.0 | 5024 | 1.1566 | | 0.4008 | 1257.0 | 5028 | 1.1594 | | 0.4008 | 1258.0 | 5032 | 1.1602 | | 0.4008 | 1259.0 | 5036 | 1.1609 | | 0.4008 | 1260.0 | 5040 | 1.1610 | | 0.4008 | 1261.0 | 5044 | 1.1608 | | 0.4008 | 1262.0 | 5048 | 1.1597 | | 0.4008 | 1263.0 | 5052 | 1.1590 | | 0.4008 | 1264.0 | 5056 | 1.1597 | | 0.4008 | 1265.0 | 5060 | 1.1603 | | 0.4008 | 1266.0 | 5064 | 1.1604 | | 0.4008 | 1267.0 | 5068 | 1.1602 | | 0.4008 | 1268.0 | 5072 | 1.1598 | | 0.4008 | 1269.0 | 5076 | 1.1579 | | 0.4008 | 1270.0 | 5080 | 1.1565 | | 0.4008 | 1271.0 | 5084 | 1.1558 | | 0.4008 | 1272.0 | 5088 | 1.1548 | | 0.4008 | 1273.0 | 5092 | 1.1559 | | 0.4008 | 1274.0 | 5096 | 1.1588 | | 0.4008 | 1275.0 | 5100 | 1.1622 | | 0.4008 | 1276.0 | 5104 | 1.1649 | | 0.4008 | 1277.0 | 5108 | 1.1670 | | 0.4008 | 1278.0 | 5112 | 1.1698 | | 0.4008 | 1279.0 | 5116 | 1.1725 | | 0.4008 | 1280.0 | 5120 | 1.1868 | | 0.4008 | 1281.0 | 5124 | 1.2203 | | 0.4008 | 1282.0 | 5128 | 1.2401 | | 0.4008 | 1283.0 | 5132 | 1.2493 | | 0.4008 | 1284.0 | 5136 | 1.2511 | | 0.4008 | 1285.0 | 5140 | 1.2476 | | 0.4008 | 1286.0 | 5144 | 1.2440 | | 0.4008 | 1287.0 | 5148 | 1.2408 | | 0.4008 | 1288.0 | 5152 | 1.2389 | | 0.4008 | 1289.0 | 5156 | 1.2452 | | 0.4008 | 1290.0 | 5160 | 1.2512 | | 0.4008 | 1291.0 | 5164 | 1.2502 | | 0.4008 | 1292.0 | 5168 | 1.2396 | | 0.4008 | 1293.0 | 5172 | 1.2263 | | 0.4008 | 1294.0 | 5176 | 1.2149 | | 0.4008 | 1295.0 | 5180 | 1.2061 | | 0.4008 | 1296.0 | 5184 | 1.1999 | | 0.4008 | 1297.0 | 5188 | 1.1953 | | 0.4008 | 1298.0 | 5192 | 1.1914 | | 0.4008 | 1299.0 | 5196 | 1.1855 | | 0.4008 | 1300.0 | 5200 | 1.1795 | | 0.4008 | 1301.0 | 5204 | 1.1830 | | 0.4008 | 1302.0 | 5208 | 1.1923 | | 0.4008 | 1303.0 | 5212 | 1.2020 | | 0.4008 | 1304.0 | 5216 | 1.2060 | | 0.4008 | 1305.0 | 5220 | 1.2277 | | 0.4008 | 1306.0 | 5224 | 1.2438 | | 0.4008 | 1307.0 | 5228 | 1.2499 | | 0.4008 | 1308.0 | 5232 | 1.2500 | | 0.4008 | 1309.0 | 5236 | 1.2497 | | 0.4008 | 1310.0 | 5240 | 1.2522 | | 0.4008 | 1311.0 | 5244 | 1.2541 | | 0.4008 | 1312.0 | 5248 | 1.2537 | | 0.4008 | 1313.0 | 5252 | 1.2522 | | 0.4008 | 1314.0 | 5256 | 1.2485 | | 0.4008 | 1315.0 | 5260 | 1.2415 | | 0.4008 | 1316.0 | 5264 | 1.2388 | | 0.4008 | 1317.0 | 5268 | 1.2365 | | 0.4008 | 1318.0 | 5272 | 1.2348 | | 0.4008 | 1319.0 | 5276 | 1.2331 | | 0.4008 | 1320.0 | 5280 | 1.2321 | | 0.4008 | 1321.0 | 5284 | 1.2298 | | 0.4008 | 1322.0 | 5288 | 1.2291 | | 0.4008 | 1323.0 | 5292 | 1.2288 | | 0.4008 | 1324.0 | 5296 | 1.2259 | | 0.4008 | 1325.0 | 5300 | 1.2227 | | 0.4008 | 1326.0 | 5304 | 1.2183 | | 0.4008 | 1327.0 | 5308 | 1.2139 | | 0.4008 | 1328.0 | 5312 | 1.2110 | | 0.4008 | 1329.0 | 5316 | 1.2143 | | 0.4008 | 1330.0 | 5320 | 1.2166 | | 0.4008 | 1331.0 | 5324 | 1.2170 | | 0.4008 | 1332.0 | 5328 | 1.2170 | | 0.4008 | 1333.0 | 5332 | 1.2179 | | 0.4008 | 1334.0 | 5336 | 1.2179 | | 0.4008 | 1335.0 | 5340 | 1.2162 | | 0.4008 | 1336.0 | 5344 | 1.2154 | | 0.4008 | 1337.0 | 5348 | 1.2187 | | 0.4008 | 1338.0 | 5352 | 1.2213 | | 0.4008 | 1339.0 | 5356 | 1.2225 | | 0.4008 | 1340.0 | 5360 | 1.2231 | | 0.4008 | 1341.0 | 5364 | 1.2304 | | 0.4008 | 1342.0 | 5368 | 1.2316 | | 0.4008 | 1343.0 | 5372 | 1.2299 | | 0.4008 | 1344.0 | 5376 | 1.2254 | | 0.4008 | 1345.0 | 5380 | 1.2162 | | 0.4008 | 1346.0 | 5384 | 1.2209 | | 0.4008 | 1347.0 | 5388 | 1.2183 | | 0.4008 | 1348.0 | 5392 | 1.2093 | | 0.4008 | 1349.0 | 5396 | 1.1974 | | 0.4008 | 1350.0 | 5400 | 1.1941 | | 0.4008 | 1351.0 | 5404 | 1.1966 | | 0.4008 | 1352.0 | 5408 | 1.2073 | | 0.4008 | 1353.0 | 5412 | 1.2096 | | 0.4008 | 1354.0 | 5416 | 1.2137 | | 0.4008 | 1355.0 | 5420 | 1.2198 | | 0.4008 | 1356.0 | 5424 | 1.2200 | | 0.4008 | 1357.0 | 5428 | 1.2225 | | 0.4008 | 1358.0 | 5432 | 1.2242 | | 0.4008 | 1359.0 | 5436 | 1.2235 | | 0.4008 | 1360.0 | 5440 | 1.2221 | | 0.4008 | 1361.0 | 5444 | 1.2212 | | 0.4008 | 1362.0 | 5448 | 1.2151 | | 0.4008 | 1363.0 | 5452 | 1.2104 | | 0.4008 | 1364.0 | 5456 | 1.2369 | | 0.4008 | 1365.0 | 5460 | 1.2581 | | 0.4008 | 1366.0 | 5464 | 1.2742 | | 0.4008 | 1367.0 | 5468 | 1.2864 | | 0.4008 | 1368.0 | 5472 | 1.2911 | | 0.4008 | 1369.0 | 5476 | 1.2839 | | 0.4008 | 1370.0 | 5480 | 1.2776 | | 0.4008 | 1371.0 | 5484 | 1.2769 | | 0.4008 | 1372.0 | 5488 | 1.2795 | | 0.4008 | 1373.0 | 5492 | 1.2875 | | 0.4008 | 1374.0 | 5496 | 1.2917 | | 0.4015 | 1375.0 | 5500 | 1.2912 | | 0.4015 | 1376.0 | 5504 | 1.2882 | | 0.4015 | 1377.0 | 5508 | 1.2835 | | 0.4015 | 1378.0 | 5512 | 1.2786 | | 0.4015 | 1379.0 | 5516 | 1.2770 | | 0.4015 | 1380.0 | 5520 | 1.2903 | | 0.4015 | 1381.0 | 5524 | 1.2977 | | 0.4015 | 1382.0 | 5528 | 1.3009 | | 0.4015 | 1383.0 | 5532 | 1.3018 | | 0.4015 | 1384.0 | 5536 | 1.3013 | | 0.4015 | 1385.0 | 5540 | 1.2998 | | 0.4015 | 1386.0 | 5544 | 1.2951 | | 0.4015 | 1387.0 | 5548 | 1.2918 | | 0.4015 | 1388.0 | 5552 | 1.2899 | | 0.4015 | 1389.0 | 5556 | 1.2895 | | 0.4015 | 1390.0 | 5560 | 1.2881 | | 0.4015 | 1391.0 | 5564 | 1.2862 | | 0.4015 | 1392.0 | 5568 | 1.2841 | | 0.4015 | 1393.0 | 5572 | 1.2819 | | 0.4015 | 1394.0 | 5576 | 1.2798 | | 0.4015 | 1395.0 | 5580 | 1.2772 | | 0.4015 | 1396.0 | 5584 | 1.2705 | | 0.4015 | 1397.0 | 5588 | 1.2660 | | 0.4015 | 1398.0 | 5592 | 1.2614 | | 0.4015 | 1399.0 | 5596 | 1.2573 | | 0.4015 | 1400.0 | 5600 | 1.2546 | | 0.4015 | 1401.0 | 5604 | 1.2531 | | 0.4015 | 1402.0 | 5608 | 1.2521 | | 0.4015 | 1403.0 | 5612 | 1.2500 | | 0.4015 | 1404.0 | 5616 | 1.2508 | | 0.4015 | 1405.0 | 5620 | 1.2504 | | 0.4015 | 1406.0 | 5624 | 1.2504 | | 0.4015 | 1407.0 | 5628 | 1.2498 | | 0.4015 | 1408.0 | 5632 | 1.2506 | | 0.4015 | 1409.0 | 5636 | 1.2501 | | 0.4015 | 1410.0 | 5640 | 1.2494 | | 0.4015 | 1411.0 | 5644 | 1.2472 | | 0.4015 | 1412.0 | 5648 | 1.2456 | | 0.4015 | 1413.0 | 5652 | 1.2446 | | 0.4015 | 1414.0 | 5656 | 1.2436 | | 0.4015 | 1415.0 | 5660 | 1.2433 | | 0.4015 | 1416.0 | 5664 | 1.2426 | | 0.4015 | 1417.0 | 5668 | 1.2430 | | 0.4015 | 1418.0 | 5672 | 1.2423 | | 0.4015 | 1419.0 | 5676 | 1.2421 | | 0.4015 | 1420.0 | 5680 | 1.2426 | | 0.4015 | 1421.0 | 5684 | 1.2434 | | 0.4015 | 1422.0 | 5688 | 1.2442 | | 0.4015 | 1423.0 | 5692 | 1.2458 | | 0.4015 | 1424.0 | 5696 | 1.2465 | | 0.4015 | 1425.0 | 5700 | 1.2464 | | 0.4015 | 1426.0 | 5704 | 1.2464 | | 0.4015 | 1427.0 | 5708 | 1.2456 | | 0.4015 | 1428.0 | 5712 | 1.2452 | | 0.4015 | 1429.0 | 5716 | 1.2433 | | 0.4015 | 1430.0 | 5720 | 1.2398 | | 0.4015 | 1431.0 | 5724 | 1.2345 | | 0.4015 | 1432.0 | 5728 | 1.2310 | | 0.4015 | 1433.0 | 5732 | 1.2283 | | 0.4015 | 1434.0 | 5736 | 1.2254 | | 0.4015 | 1435.0 | 5740 | 1.2245 | | 0.4015 | 1436.0 | 5744 | 1.2243 | | 0.4015 | 1437.0 | 5748 | 1.2281 | | 0.4015 | 1438.0 | 5752 | 1.2306 | | 0.4015 | 1439.0 | 5756 | 1.2311 | | 0.4015 | 1440.0 | 5760 | 1.2309 | | 0.4015 | 1441.0 | 5764 | 1.2304 | | 0.4015 | 1442.0 | 5768 | 1.2311 | | 0.4015 | 1443.0 | 5772 | 1.2319 | | 0.4015 | 1444.0 | 5776 | 1.2317 | | 0.4015 | 1445.0 | 5780 | 1.2316 | | 0.4015 | 1446.0 | 5784 | 1.2310 | | 0.4015 | 1447.0 | 5788 | 1.2289 | | 0.4015 | 1448.0 | 5792 | 1.2265 | | 0.4015 | 1449.0 | 5796 | 1.2239 | | 0.4015 | 1450.0 | 5800 | 1.2194 | | 0.4015 | 1451.0 | 5804 | 1.2156 | | 0.4015 | 1452.0 | 5808 | 1.2129 | | 0.4015 | 1453.0 | 5812 | 1.2106 | | 0.4015 | 1454.0 | 5816 | 1.2093 | | 0.4015 | 1455.0 | 5820 | 1.2084 | | 0.4015 | 1456.0 | 5824 | 1.2084 | | 0.4015 | 1457.0 | 5828 | 1.2071 | | 0.4015 | 1458.0 | 5832 | 1.2051 | | 0.4015 | 1459.0 | 5836 | 1.2022 | | 0.4015 | 1460.0 | 5840 | 1.2007 | | 0.4015 | 1461.0 | 5844 | 1.1995 | | 0.4015 | 1462.0 | 5848 | 1.2008 | | 0.4015 | 1463.0 | 5852 | 1.2019 | | 0.4015 | 1464.0 | 5856 | 1.2022 | | 0.4015 | 1465.0 | 5860 | 1.2017 | | 0.4015 | 1466.0 | 5864 | 1.2005 | | 0.4015 | 1467.0 | 5868 | 1.1990 | | 0.4015 | 1468.0 | 5872 | 1.1974 | | 0.4015 | 1469.0 | 5876 | 1.1966 | | 0.4015 | 1470.0 | 5880 | 1.1973 | | 0.4015 | 1471.0 | 5884 | 1.1988 | | 0.4015 | 1472.0 | 5888 | 1.1995 | | 0.4015 | 1473.0 | 5892 | 1.1972 | | 0.4015 | 1474.0 | 5896 | 1.1946 | | 0.4015 | 1475.0 | 5900 | 1.1937 | | 0.4015 | 1476.0 | 5904 | 1.1935 | | 0.4015 | 1477.0 | 5908 | 1.1945 | | 0.4015 | 1478.0 | 5912 | 1.1963 | | 0.4015 | 1479.0 | 5916 | 1.1971 | | 0.4015 | 1480.0 | 5920 | 1.1973 | | 0.4015 | 1481.0 | 5924 | 1.1968 | | 0.4015 | 1482.0 | 5928 | 1.1970 | | 0.4015 | 1483.0 | 5932 | 1.1981 | | 0.4015 | 1484.0 | 5936 | 1.2011 | | 0.4015 | 1485.0 | 5940 | 1.2031 | | 0.4015 | 1486.0 | 5944 | 1.2038 | | 0.4015 | 1487.0 | 5948 | 1.2041 | | 0.4015 | 1488.0 | 5952 | 1.2046 | | 0.4015 | 1489.0 | 5956 | 1.2054 | | 0.4015 | 1490.0 | 5960 | 1.2053 | | 0.4015 | 1491.0 | 5964 | 1.2047 | | 0.4015 | 1492.0 | 5968 | 1.2043 | | 0.4015 | 1493.0 | 5972 | 1.2037 | | 0.4015 | 1494.0 | 5976 | 1.2039 | | 0.4015 | 1495.0 | 5980 | 1.2042 | | 0.4015 | 1496.0 | 5984 | 1.2033 | | 0.4015 | 1497.0 | 5988 | 1.2028 | | 0.4015 | 1498.0 | 5992 | 1.2025 | | 0.4015 | 1499.0 | 5996 | 1.2027 | | 0.4005 | 1500.0 | 6000 | 1.2024 | | 0.4005 | 1501.0 | 6004 | 1.2017 | | 0.4005 | 1502.0 | 6008 | 1.2016 | | 0.4005 | 1503.0 | 6012 | 1.2028 | | 0.4005 | 1504.0 | 6016 | 1.2034 | | 0.4005 | 1505.0 | 6020 | 1.2017 | | 0.4005 | 1506.0 | 6024 | 1.2009 | | 0.4005 | 1507.0 | 6028 | 1.2023 | | 0.4005 | 1508.0 | 6032 | 1.2039 | | 0.4005 | 1509.0 | 6036 | 1.2052 | | 0.4005 | 1510.0 | 6040 | 1.2066 | | 0.4005 | 1511.0 | 6044 | 1.2072 | | 0.4005 | 1512.0 | 6048 | 1.2076 | | 0.4005 | 1513.0 | 6052 | 1.2075 | | 0.4005 | 1514.0 | 6056 | 1.2071 | | 0.4005 | 1515.0 | 6060 | 1.2070 | | 0.4005 | 1516.0 | 6064 | 1.2072 | | 0.4005 | 1517.0 | 6068 | 1.2076 | | 0.4005 | 1518.0 | 6072 | 1.2063 | | 0.4005 | 1519.0 | 6076 | 1.2048 | | 0.4005 | 1520.0 | 6080 | 1.2035 | | 0.4005 | 1521.0 | 6084 | 1.2034 | | 0.4005 | 1522.0 | 6088 | 1.2024 | | 0.4005 | 1523.0 | 6092 | 1.2014 | | 0.4005 | 1524.0 | 6096 | 1.2002 | | 0.4005 | 1525.0 | 6100 | 1.2007 | | 0.4005 | 1526.0 | 6104 | 1.2013 | | 0.4005 | 1527.0 | 6108 | 1.2028 | | 0.4005 | 1528.0 | 6112 | 1.2047 | | 0.4005 | 1529.0 | 6116 | 1.2052 | | 0.4005 | 1530.0 | 6120 | 1.2029 | | 0.4005 | 1531.0 | 6124 | 1.1988 | | 0.4005 | 1532.0 | 6128 | 1.1963 | | 0.4005 | 1533.0 | 6132 | 1.1948 | | 0.4005 | 1534.0 | 6136 | 1.2572 | | 0.4005 | 1535.0 | 6140 | 1.3083 | | 0.4005 | 1536.0 | 6144 | 1.3353 | | 0.4005 | 1537.0 | 6148 | 1.3495 | | 0.4005 | 1538.0 | 6152 | 1.3553 | | 0.4005 | 1539.0 | 6156 | 1.3575 | | 0.4005 | 1540.0 | 6160 | 1.3562 | | 0.4005 | 1541.0 | 6164 | 1.3531 | | 0.4005 | 1542.0 | 6168 | 1.3512 | | 0.4005 | 1543.0 | 6172 | 1.3500 | | 0.4005 | 1544.0 | 6176 | 1.3490 | | 0.4005 | 1545.0 | 6180 | 1.3482 | | 0.4005 | 1546.0 | 6184 | 1.3469 | | 0.4005 | 1547.0 | 6188 | 1.3453 | | 0.4005 | 1548.0 | 6192 | 1.3416 | | 0.4005 | 1549.0 | 6196 | 1.3357 | | 0.4005 | 1550.0 | 6200 | 1.3297 | | 0.4005 | 1551.0 | 6204 | 1.3243 | | 0.4005 | 1552.0 | 6208 | 1.3198 | | 0.4005 | 1553.0 | 6212 | 1.3167 | | 0.4005 | 1554.0 | 6216 | 1.3153 | | 0.4005 | 1555.0 | 6220 | 1.3178 | | 0.4005 | 1556.0 | 6224 | 1.3195 | | 0.4005 | 1557.0 | 6228 | 1.3196 | | 0.4005 | 1558.0 | 6232 | 1.3191 | | 0.4005 | 1559.0 | 6236 | 1.3161 | | 0.4005 | 1560.0 | 6240 | 1.3133 | | 0.4005 | 1561.0 | 6244 | 1.3188 | | 0.4005 | 1562.0 | 6248 | 1.3219 | | 0.4005 | 1563.0 | 6252 | 1.3229 | | 0.4005 | 1564.0 | 6256 | 1.3212 | | 0.4005 | 1565.0 | 6260 | 1.3197 | | 0.4005 | 1566.0 | 6264 | 1.3178 | | 0.4005 | 1567.0 | 6268 | 1.3158 | | 0.4005 | 1568.0 | 6272 | 1.3133 | | 0.4005 | 1569.0 | 6276 | 1.2699 | | 0.4005 | 1570.0 | 6280 | 1.2334 | | 0.4005 | 1571.0 | 6284 | 1.2064 | | 0.4005 | 1572.0 | 6288 | 1.1874 | | 0.4005 | 1573.0 | 6292 | 1.1745 | | 0.4005 | 1574.0 | 6296 | 1.1676 | | 0.4005 | 1575.0 | 6300 | 1.1638 | | 0.4005 | 1576.0 | 6304 | 1.1626 | | 0.4005 | 1577.0 | 6308 | 1.1644 | | 0.4005 | 1578.0 | 6312 | 1.1544 | | 0.4005 | 1579.0 | 6316 | 1.1388 | | 0.4005 | 1580.0 | 6320 | 1.1285 | | 0.4005 | 1581.0 | 6324 | 1.1222 | | 0.4005 | 1582.0 | 6328 | 1.1200 | | 0.4005 | 1583.0 | 6332 | 1.1229 | | 0.4005 | 1584.0 | 6336 | 1.1250 | | 0.4005 | 1585.0 | 6340 | 1.1318 | | 0.4005 | 1586.0 | 6344 | 1.1341 | | 0.4005 | 1587.0 | 6348 | 1.1354 | | 0.4005 | 1588.0 | 6352 | 1.1353 | | 0.4005 | 1589.0 | 6356 | 1.1354 | | 0.4005 | 1590.0 | 6360 | 1.1357 | | 0.4005 | 1591.0 | 6364 | 1.1355 | | 0.4005 | 1592.0 | 6368 | 1.1338 | | 0.4005 | 1593.0 | 6372 | 1.1318 | | 0.4005 | 1594.0 | 6376 | 1.1298 | | 0.4005 | 1595.0 | 6380 | 1.1265 | | 0.4005 | 1596.0 | 6384 | 1.1231 | | 0.4005 | 1597.0 | 6388 | 1.1209 | | 0.4005 | 1598.0 | 6392 | 1.1193 | | 0.4005 | 1599.0 | 6396 | 1.1188 | | 0.4005 | 1600.0 | 6400 | 1.1357 | | 0.4005 | 1601.0 | 6404 | 1.1445 | | 0.4005 | 1602.0 | 6408 | 1.1491 | | 0.4005 | 1603.0 | 6412 | 1.1495 | | 0.4005 | 1604.0 | 6416 | 1.1489 | | 0.4005 | 1605.0 | 6420 | 1.1499 | | 0.4005 | 1606.0 | 6424 | 1.1537 | | 0.4005 | 1607.0 | 6428 | 1.1544 | | 0.4005 | 1608.0 | 6432 | 1.1567 | | 0.4005 | 1609.0 | 6436 | 1.1581 | | 0.4005 | 1610.0 | 6440 | 1.1583 | | 0.4005 | 1611.0 | 6444 | 1.1580 | | 0.4005 | 1612.0 | 6448 | 1.1578 | | 0.4005 | 1613.0 | 6452 | 1.1684 | | 0.4005 | 1614.0 | 6456 | 1.1755 | | 0.4005 | 1615.0 | 6460 | 1.1773 | | 0.4005 | 1616.0 | 6464 | 1.1752 | | 0.4005 | 1617.0 | 6468 | 1.1739 | | 0.4005 | 1618.0 | 6472 | 1.1721 | | 0.4005 | 1619.0 | 6476 | 1.1710 | | 0.4005 | 1620.0 | 6480 | 1.1708 | | 0.4005 | 1621.0 | 6484 | 1.1690 | | 0.4005 | 1622.0 | 6488 | 1.1667 | | 0.4005 | 1623.0 | 6492 | 1.1625 | | 0.4005 | 1624.0 | 6496 | 1.1594 | | 0.4004 | 1625.0 | 6500 | 1.1572 | | 0.4004 | 1626.0 | 6504 | 1.1549 | | 0.4004 | 1627.0 | 6508 | 1.1524 | | 0.4004 | 1628.0 | 6512 | 1.1513 | | 0.4004 | 1629.0 | 6516 | 1.1508 | | 0.4004 | 1630.0 | 6520 | 1.1507 | | 0.4004 | 1631.0 | 6524 | 1.1514 | | 0.4004 | 1632.0 | 6528 | 1.1496 | | 0.4004 | 1633.0 | 6532 | 1.1472 | | 0.4004 | 1634.0 | 6536 | 1.1463 | | 0.4004 | 1635.0 | 6540 | 1.1457 | | 0.4004 | 1636.0 | 6544 | 1.1459 | | 0.4004 | 1637.0 | 6548 | 1.1460 | | 0.4004 | 1638.0 | 6552 | 1.1470 | | 0.4004 | 1639.0 | 6556 | 1.1465 | | 0.4004 | 1640.0 | 6560 | 1.1463 | | 0.4004 | 1641.0 | 6564 | 1.1468 | | 0.4004 | 1642.0 | 6568 | 1.1471 | | 0.4004 | 1643.0 | 6572 | 1.1464 | | 0.4004 | 1644.0 | 6576 | 1.1461 | | 0.4004 | 1645.0 | 6580 | 1.1466 | | 0.4004 | 1646.0 | 6584 | 1.1476 | | 0.4004 | 1647.0 | 6588 | 1.1477 | | 0.4004 | 1648.0 | 6592 | 1.1476 | | 0.4004 | 1649.0 | 6596 | 1.1481 | | 0.4004 | 1650.0 | 6600 | 1.1645 | | 0.4004 | 1651.0 | 6604 | 1.1910 | | 0.4004 | 1652.0 | 6608 | 1.2079 | | 0.4004 | 1653.0 | 6612 | 1.2180 | | 0.4004 | 1654.0 | 6616 | 1.2234 | | 0.4004 | 1655.0 | 6620 | 1.2256 | | 0.4004 | 1656.0 | 6624 | 1.2252 | | 0.4004 | 1657.0 | 6628 | 1.2233 | | 0.4004 | 1658.0 | 6632 | 1.2203 | | 0.4004 | 1659.0 | 6636 | 1.2179 | | 0.4004 | 1660.0 | 6640 | 1.2146 | | 0.4004 | 1661.0 | 6644 | 1.2111 | | 0.4004 | 1662.0 | 6648 | 1.2098 | | 0.4004 | 1663.0 | 6652 | 1.2081 | | 0.4004 | 1664.0 | 6656 | 1.2055 | | 0.4004 | 1665.0 | 6660 | 1.1987 | | 0.4004 | 1666.0 | 6664 | 1.1908 | | 0.4004 | 1667.0 | 6668 | 1.1863 | | 0.4004 | 1668.0 | 6672 | 1.1831 | | 0.4004 | 1669.0 | 6676 | 1.1824 | | 0.4004 | 1670.0 | 6680 | 1.1804 | | 0.4004 | 1671.0 | 6684 | 1.1798 | | 0.4004 | 1672.0 | 6688 | 1.1807 | | 0.4004 | 1673.0 | 6692 | 1.1830 | | 0.4004 | 1674.0 | 6696 | 1.1838 | | 0.4004 | 1675.0 | 6700 | 1.1842 | | 0.4004 | 1676.0 | 6704 | 1.1839 | | 0.4004 | 1677.0 | 6708 | 1.1832 | | 0.4004 | 1678.0 | 6712 | 1.1821 | | 0.4004 | 1679.0 | 6716 | 1.1809 | | 0.4004 | 1680.0 | 6720 | 1.1799 | | 0.4004 | 1681.0 | 6724 | 1.1793 | | 0.4004 | 1682.0 | 6728 | 1.1780 | | 0.4004 | 1683.0 | 6732 | 1.1765 | | 0.4004 | 1684.0 | 6736 | 1.1746 | | 0.4004 | 1685.0 | 6740 | 1.1736 | | 0.4004 | 1686.0 | 6744 | 1.1737 | | 0.4004 | 1687.0 | 6748 | 1.1750 | | 0.4004 | 1688.0 | 6752 | 1.1762 | | 0.4004 | 1689.0 | 6756 | 1.1767 | | 0.4004 | 1690.0 | 6760 | 1.1776 | | 0.4004 | 1691.0 | 6764 | 1.1783 | | 0.4004 | 1692.0 | 6768 | 1.1797 | | 0.4004 | 1693.0 | 6772 | 1.1809 | | 0.4004 | 1694.0 | 6776 | 1.1814 | | 0.4004 | 1695.0 | 6780 | 1.1826 | | 0.4004 | 1696.0 | 6784 | 1.1843 | | 0.4004 | 1697.0 | 6788 | 1.1839 | | 0.4004 | 1698.0 | 6792 | 1.1827 | | 0.4004 | 1699.0 | 6796 | 1.1809 | | 0.4004 | 1700.0 | 6800 | 1.1802 | | 0.4004 | 1701.0 | 6804 | 1.1792 | | 0.4004 | 1702.0 | 6808 | 1.1789 | | 0.4004 | 1703.0 | 6812 | 1.1785 | | 0.4004 | 1704.0 | 6816 | 1.1786 | | 0.4004 | 1705.0 | 6820 | 1.1774 | | 0.4004 | 1706.0 | 6824 | 1.1759 | | 0.4004 | 1707.0 | 6828 | 1.1745 | | 0.4004 | 1708.0 | 6832 | 1.1737 | | 0.4004 | 1709.0 | 6836 | 1.1730 | | 0.4004 | 1710.0 | 6840 | 1.1725 | | 0.4004 | 1711.0 | 6844 | 1.1828 | | 0.4004 | 1712.0 | 6848 | 1.1921 | | 0.4004 | 1713.0 | 6852 | 1.1985 | | 0.4004 | 1714.0 | 6856 | 1.2017 | | 0.4004 | 1715.0 | 6860 | 1.2036 | | 0.4004 | 1716.0 | 6864 | 1.2047 | | 0.4004 | 1717.0 | 6868 | 1.2047 | | 0.4004 | 1718.0 | 6872 | 1.2048 | | 0.4004 | 1719.0 | 6876 | 1.2044 | | 0.4004 | 1720.0 | 6880 | 1.2031 | | 0.4004 | 1721.0 | 6884 | 1.2019 | | 0.4004 | 1722.0 | 6888 | 1.2012 | | 0.4004 | 1723.0 | 6892 | 1.2003 | | 0.4004 | 1724.0 | 6896 | 1.1991 | | 0.4004 | 1725.0 | 6900 | 1.1993 | | 0.4004 | 1726.0 | 6904 | 1.1991 | | 0.4004 | 1727.0 | 6908 | 1.1984 | | 0.4004 | 1728.0 | 6912 | 1.1980 | | 0.4004 | 1729.0 | 6916 | 1.1972 | | 0.4004 | 1730.0 | 6920 | 1.1966 | | 0.4004 | 1731.0 | 6924 | 1.1963 | | 0.4004 | 1732.0 | 6928 | 1.1960 | | 0.4004 | 1733.0 | 6932 | 1.1964 | | 0.4004 | 1734.0 | 6936 | 1.1965 | | 0.4004 | 1735.0 | 6940 | 1.1961 | | 0.4004 | 1736.0 | 6944 | 1.1961 | | 0.4004 | 1737.0 | 6948 | 1.1961 | | 0.4004 | 1738.0 | 6952 | 1.1952 | | 0.4004 | 1739.0 | 6956 | 1.1941 | | 0.4004 | 1740.0 | 6960 | 1.1927 | | 0.4004 | 1741.0 | 6964 | 1.1918 | | 0.4004 | 1742.0 | 6968 | 1.1915 | | 0.4004 | 1743.0 | 6972 | 1.1917 | | 0.4004 | 1744.0 | 6976 | 1.1916 | | 0.4004 | 1745.0 | 6980 | 1.1904 | | 0.4004 | 1746.0 | 6984 | 1.1885 | | 0.4004 | 1747.0 | 6988 | 1.1858 | | 0.4004 | 1748.0 | 6992 | 1.1834 | | 0.4004 | 1749.0 | 6996 | 1.1813 | | 0.401 | 1750.0 | 7000 | 1.1793 | | 0.401 | 1751.0 | 7004 | 1.1773 | | 0.401 | 1752.0 | 7008 | 1.1912 | | 0.401 | 1753.0 | 7012 | 1.1996 | | 0.401 | 1754.0 | 7016 | 1.2069 | | 0.401 | 1755.0 | 7020 | 1.2124 | | 0.401 | 1756.0 | 7024 | 1.2148 | | 0.401 | 1757.0 | 7028 | 1.2169 | | 0.401 | 1758.0 | 7032 | 1.2179 | | 0.401 | 1759.0 | 7036 | 1.2280 | | 0.401 | 1760.0 | 7040 | 1.2425 | | 0.401 | 1761.0 | 7044 | 1.2519 | | 0.401 | 1762.0 | 7048 | 1.2579 | | 0.401 | 1763.0 | 7052 | 1.2617 | | 0.401 | 1764.0 | 7056 | 1.2642 | | 0.401 | 1765.0 | 7060 | 1.2660 | | 0.401 | 1766.0 | 7064 | 1.2669 | | 0.401 | 1767.0 | 7068 | 1.2672 | | 0.401 | 1768.0 | 7072 | 1.2671 | | 0.401 | 1769.0 | 7076 | 1.2670 | | 0.401 | 1770.0 | 7080 | 1.2663 | | 0.401 | 1771.0 | 7084 | 1.2653 | | 0.401 | 1772.0 | 7088 | 1.2647 | | 0.401 | 1773.0 | 7092 | 1.2646 | | 0.401 | 1774.0 | 7096 | 1.2632 | | 0.401 | 1775.0 | 7100 | 1.2631 | | 0.401 | 1776.0 | 7104 | 1.2633 | | 0.401 | 1777.0 | 7108 | 1.2632 | | 0.401 | 1778.0 | 7112 | 1.2627 | | 0.401 | 1779.0 | 7116 | 1.2621 | | 0.401 | 1780.0 | 7120 | 1.2621 | | 0.401 | 1781.0 | 7124 | 1.2613 | | 0.401 | 1782.0 | 7128 | 1.2605 | | 0.401 | 1783.0 | 7132 | 1.2607 | | 0.401 | 1784.0 | 7136 | 1.2611 | | 0.401 | 1785.0 | 7140 | 1.2613 | | 0.401 | 1786.0 | 7144 | 1.2615 | | 0.401 | 1787.0 | 7148 | 1.2603 | | 0.401 | 1788.0 | 7152 | 1.2549 | | 0.401 | 1789.0 | 7156 | 1.2472 | | 0.401 | 1790.0 | 7160 | 1.2418 | | 0.401 | 1791.0 | 7164 | 1.2381 | | 0.401 | 1792.0 | 7168 | 1.2356 | | 0.401 | 1793.0 | 7172 | 1.2338 | | 0.401 | 1794.0 | 7176 | 1.2328 | | 0.401 | 1795.0 | 7180 | 1.2314 | | 0.401 | 1796.0 | 7184 | 1.2304 | | 0.401 | 1797.0 | 7188 | 1.2291 | | 0.401 | 1798.0 | 7192 | 1.2275 | | 0.401 | 1799.0 | 7196 | 1.2232 | | 0.401 | 1800.0 | 7200 | 1.2205 | | 0.401 | 1801.0 | 7204 | 1.2190 | | 0.401 | 1802.0 | 7208 | 1.2192 | | 0.401 | 1803.0 | 7212 | 1.2199 | | 0.401 | 1804.0 | 7216 | 1.2199 | | 0.401 | 1805.0 | 7220 | 1.2201 | | 0.401 | 1806.0 | 7224 | 1.2204 | | 0.401 | 1807.0 | 7228 | 1.2204 | | 0.401 | 1808.0 | 7232 | 1.2202 | | 0.401 | 1809.0 | 7236 | 1.2199 | | 0.401 | 1810.0 | 7240 | 1.2195 | | 0.401 | 1811.0 | 7244 | 1.2194 | | 0.401 | 1812.0 | 7248 | 1.2195 | | 0.401 | 1813.0 | 7252 | 1.2191 | | 0.401 | 1814.0 | 7256 | 1.2185 | | 0.401 | 1815.0 | 7260 | 1.2183 | | 0.401 | 1816.0 | 7264 | 1.2184 | | 0.401 | 1817.0 | 7268 | 1.2186 | | 0.401 | 1818.0 | 7272 | 1.2190 | | 0.401 | 1819.0 | 7276 | 1.2189 | | 0.401 | 1820.0 | 7280 | 1.2186 | | 0.401 | 1821.0 | 7284 | 1.2183 | | 0.401 | 1822.0 | 7288 | 1.2191 | | 0.401 | 1823.0 | 7292 | 1.2202 | | 0.401 | 1824.0 | 7296 | 1.2214 | | 0.401 | 1825.0 | 7300 | 1.2223 | | 0.401 | 1826.0 | 7304 | 1.2224 | | 0.401 | 1827.0 | 7308 | 1.2203 | | 0.401 | 1828.0 | 7312 | 1.2192 | | 0.401 | 1829.0 | 7316 | 1.2193 | | 0.401 | 1830.0 | 7320 | 1.2190 | | 0.401 | 1831.0 | 7324 | 1.2184 | | 0.401 | 1832.0 | 7328 | 1.2176 | | 0.401 | 1833.0 | 7332 | 1.2078 | | 0.401 | 1834.0 | 7336 | 1.2013 | | 0.401 | 1835.0 | 7340 | 1.1970 | | 0.401 | 1836.0 | 7344 | 1.1946 | | 0.401 | 1837.0 | 7348 | 1.1931 | | 0.401 | 1838.0 | 7352 | 1.1918 | | 0.401 | 1839.0 | 7356 | 1.1913 | | 0.401 | 1840.0 | 7360 | 1.1914 | | 0.401 | 1841.0 | 7364 | 1.1920 | | 0.401 | 1842.0 | 7368 | 1.1927 | | 0.401 | 1843.0 | 7372 | 1.1929 | | 0.401 | 1844.0 | 7376 | 1.1928 | | 0.401 | 1845.0 | 7380 | 1.1923 | | 0.401 | 1846.0 | 7384 | 1.1920 | | 0.401 | 1847.0 | 7388 | 1.1924 | | 0.401 | 1848.0 | 7392 | 1.1927 | | 0.401 | 1849.0 | 7396 | 1.1930 | | 0.401 | 1850.0 | 7400 | 1.1929 | | 0.401 | 1851.0 | 7404 | 1.1927 | | 0.401 | 1852.0 | 7408 | 1.1921 | | 0.401 | 1853.0 | 7412 | 1.1916 | | 0.401 | 1854.0 | 7416 | 1.1914 | | 0.401 | 1855.0 | 7420 | 1.1913 | | 0.401 | 1856.0 | 7424 | 1.1914 | | 0.401 | 1857.0 | 7428 | 1.1913 | | 0.401 | 1858.0 | 7432 | 1.1909 | | 0.401 | 1859.0 | 7436 | 1.1907 | | 0.401 | 1860.0 | 7440 | 1.1907 | | 0.401 | 1861.0 | 7444 | 1.1906 | | 0.401 | 1862.0 | 7448 | 1.1903 | | 0.401 | 1863.0 | 7452 | 1.1902 | | 0.401 | 1864.0 | 7456 | 1.1926 | | 0.401 | 1865.0 | 7460 | 1.1959 | | 0.401 | 1866.0 | 7464 | 1.1985 | | 0.401 | 1867.0 | 7468 | 1.2005 | | 0.401 | 1868.0 | 7472 | 1.2018 | | 0.401 | 1869.0 | 7476 | 1.2014 | | 0.401 | 1870.0 | 7480 | 1.2009 | | 0.401 | 1871.0 | 7484 | 1.2010 | | 0.401 | 1872.0 | 7488 | 1.2009 | | 0.401 | 1873.0 | 7492 | 1.2003 | | 0.401 | 1874.0 | 7496 | 1.1998 | | 0.4005 | 1875.0 | 7500 | 1.1991 | | 0.4005 | 1876.0 | 7504 | 1.1985 | | 0.4005 | 1877.0 | 7508 | 1.1982 | | 0.4005 | 1878.0 | 7512 | 1.1978 | | 0.4005 | 1879.0 | 7516 | 1.1976 | | 0.4005 | 1880.0 | 7520 | 1.1963 | | 0.4005 | 1881.0 | 7524 | 1.1952 | | 0.4005 | 1882.0 | 7528 | 1.1948 | | 0.4005 | 1883.0 | 7532 | 1.1940 | | 0.4005 | 1884.0 | 7536 | 1.1932 | | 0.4005 | 1885.0 | 7540 | 1.1927 | | 0.4005 | 1886.0 | 7544 | 1.1924 | | 0.4005 | 1887.0 | 7548 | 1.1916 | | 0.4005 | 1888.0 | 7552 | 1.1905 | | 0.4005 | 1889.0 | 7556 | 1.1893 | | 0.4005 | 1890.0 | 7560 | 1.1883 | | 0.4005 | 1891.0 | 7564 | 1.1873 | | 0.4005 | 1892.0 | 7568 | 1.1865 | | 0.4005 | 1893.0 | 7572 | 1.1862 | | 0.4005 | 1894.0 | 7576 | 1.1853 | | 0.4005 | 1895.0 | 7580 | 1.1847 | | 0.4005 | 1896.0 | 7584 | 1.1843 | | 0.4005 | 1897.0 | 7588 | 1.1842 | | 0.4005 | 1898.0 | 7592 | 1.1848 | | 0.4005 | 1899.0 | 7596 | 1.1855 | | 0.4005 | 1900.0 | 7600 | 1.1866 | | 0.4005 | 1901.0 | 7604 | 1.1875 | | 0.4005 | 1902.0 | 7608 | 1.1883 | | 0.4005 | 1903.0 | 7612 | 1.1892 | | 0.4005 | 1904.0 | 7616 | 1.1896 | | 0.4005 | 1905.0 | 7620 | 1.1896 | | 0.4005 | 1906.0 | 7624 | 1.1895 | | 0.4005 | 1907.0 | 7628 | 1.1892 | | 0.4005 | 1908.0 | 7632 | 1.1890 | | 0.4005 | 1909.0 | 7636 | 1.1892 | | 0.4005 | 1910.0 | 7640 | 1.1892 | | 0.4005 | 1911.0 | 7644 | 1.1888 | | 0.4005 | 1912.0 | 7648 | 1.1884 | | 0.4005 | 1913.0 | 7652 | 1.1881 | | 0.4005 | 1914.0 | 7656 | 1.1876 | | 0.4005 | 1915.0 | 7660 | 1.1870 | | 0.4005 | 1916.0 | 7664 | 1.1866 | | 0.4005 | 1917.0 | 7668 | 1.1865 | | 0.4005 | 1918.0 | 7672 | 1.1863 | | 0.4005 | 1919.0 | 7676 | 1.1863 | | 0.4005 | 1920.0 | 7680 | 1.1848 | | 0.4005 | 1921.0 | 7684 | 1.1799 | | 0.4005 | 1922.0 | 7688 | 1.1758 | | 0.4005 | 1923.0 | 7692 | 1.1711 | | 0.4005 | 1924.0 | 7696 | 1.1681 | | 0.4005 | 1925.0 | 7700 | 1.1661 | | 0.4005 | 1926.0 | 7704 | 1.1651 | | 0.4005 | 1927.0 | 7708 | 1.1649 | | 0.4005 | 1928.0 | 7712 | 1.1646 | | 0.4005 | 1929.0 | 7716 | 1.1639 | | 0.4005 | 1930.0 | 7720 | 1.1634 | | 0.4005 | 1931.0 | 7724 | 1.1628 | | 0.4005 | 1932.0 | 7728 | 1.1627 | | 0.4005 | 1933.0 | 7732 | 1.1624 | | 0.4005 | 1934.0 | 7736 | 1.1620 | | 0.4005 | 1935.0 | 7740 | 1.1619 | | 0.4005 | 1936.0 | 7744 | 1.1618 | | 0.4005 | 1937.0 | 7748 | 1.1618 | | 0.4005 | 1938.0 | 7752 | 1.1618 | | 0.4005 | 1939.0 | 7756 | 1.1632 | | 0.4005 | 1940.0 | 7760 | 1.1642 | | 0.4005 | 1941.0 | 7764 | 1.1649 | | 0.4005 | 1942.0 | 7768 | 1.1653 | | 0.4005 | 1943.0 | 7772 | 1.1657 | | 0.4005 | 1944.0 | 7776 | 1.1660 | | 0.4005 | 1945.0 | 7780 | 1.1657 | | 0.4005 | 1946.0 | 7784 | 1.1653 | | 0.4005 | 1947.0 | 7788 | 1.1650 | | 0.4005 | 1948.0 | 7792 | 1.1648 | | 0.4005 | 1949.0 | 7796 | 1.1646 | | 0.4005 | 1950.0 | 7800 | 1.1644 | | 0.4005 | 1951.0 | 7804 | 1.1642 | | 0.4005 | 1952.0 | 7808 | 1.1637 | | 0.4005 | 1953.0 | 7812 | 1.1635 | | 0.4005 | 1954.0 | 7816 | 1.1633 | | 0.4005 | 1955.0 | 7820 | 1.1631 | | 0.4005 | 1956.0 | 7824 | 1.1629 | | 0.4005 | 1957.0 | 7828 | 1.1628 | | 0.4005 | 1958.0 | 7832 | 1.1628 | | 0.4005 | 1959.0 | 7836 | 1.1628 | | 0.4005 | 1960.0 | 7840 | 1.1629 | | 0.4005 | 1961.0 | 7844 | 1.1631 | | 0.4005 | 1962.0 | 7848 | 1.1633 | | 0.4005 | 1963.0 | 7852 | 1.1634 | | 0.4005 | 1964.0 | 7856 | 1.1634 | | 0.4005 | 1965.0 | 7860 | 1.1666 | | 0.4005 | 1966.0 | 7864 | 1.1694 | | 0.4005 | 1967.0 | 7868 | 1.1712 | | 0.4005 | 1968.0 | 7872 | 1.1723 | | 0.4005 | 1969.0 | 7876 | 1.1733 | | 0.4005 | 1970.0 | 7880 | 1.1740 | | 0.4005 | 1971.0 | 7884 | 1.1742 | | 0.4005 | 1972.0 | 7888 | 1.1745 | | 0.4005 | 1973.0 | 7892 | 1.1747 | | 0.4005 | 1974.0 | 7896 | 1.1752 | | 0.4005 | 1975.0 | 7900 | 1.1760 | | 0.4005 | 1976.0 | 7904 | 1.1766 | | 0.4005 | 1977.0 | 7908 | 1.1769 | | 0.4005 | 1978.0 | 7912 | 1.1771 | | 0.4005 | 1979.0 | 7916 | 1.1773 | | 0.4005 | 1980.0 | 7920 | 1.1774 | | 0.4005 | 1981.0 | 7924 | 1.1773 | | 0.4005 | 1982.0 | 7928 | 1.1773 | | 0.4005 | 1983.0 | 7932 | 1.1771 | | 0.4005 | 1984.0 | 7936 | 1.1768 | | 0.4005 | 1985.0 | 7940 | 1.1762 | | 0.4005 | 1986.0 | 7944 | 1.1758 | | 0.4005 | 1987.0 | 7948 | 1.1756 | | 0.4005 | 1988.0 | 7952 | 1.1754 | | 0.4005 | 1989.0 | 7956 | 1.1753 | | 0.4005 | 1990.0 | 7960 | 1.1754 | | 0.4005 | 1991.0 | 7964 | 1.1757 | | 0.4005 | 1992.0 | 7968 | 1.1759 | | 0.4005 | 1993.0 | 7972 | 1.1760 | | 0.4005 | 1994.0 | 7976 | 1.1761 | | 0.4005 | 1995.0 | 7980 | 1.1761 | | 0.4005 | 1996.0 | 7984 | 1.1761 | | 0.4005 | 1997.0 | 7988 | 1.1761 | | 0.4005 | 1998.0 | 7992 | 1.1761 | | 0.4005 | 1999.0 | 7996 | 1.1761 | | 0.4011 | 2000.0 | 8000 | 1.1761 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0