modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
farid1088/GQA_BERT_German_legal_SQuAD_2000
farid1088
2024-03-07T20:17:43Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-07T18:26:42Z
--- tags: - generated_from_trainer model-index: - name: GQA_BERT_German_legal_SQuAD_2000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_BERT_German_legal_SQuAD_2000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 2 | 5.4104 | | No log | 2.0 | 4 | 4.3755 | | No log | 3.0 | 6 | 3.8375 | | No log | 4.0 | 8 | 3.4004 | | No log | 5.0 | 10 | 2.9899 | | No log | 6.0 | 12 | 2.6185 | | No log | 7.0 | 14 | 2.2836 | | No log | 8.0 | 16 | 2.0170 | | No log | 9.0 | 18 | 1.7777 | | No log | 10.0 | 20 | 1.5673 | | No log | 11.0 | 22 | 1.4034 | | No log | 12.0 | 24 | 1.2563 | | No log | 13.0 | 26 | 1.1298 | | No log | 14.0 | 28 | 1.0538 | | No log | 15.0 | 30 | 0.9918 | | No log | 16.0 | 32 | 0.9477 | | No log | 17.0 | 34 | 0.9131 | | No log | 18.0 | 36 | 0.9065 | | No log | 19.0 | 38 | 0.9138 | | No log | 20.0 | 40 | 0.8988 | | No log | 21.0 | 42 | 0.8951 | | No log | 22.0 | 44 | 0.9161 | | No log | 23.0 | 46 | 0.9520 | | No log | 24.0 | 48 | 0.9669 | | No log | 25.0 | 50 | 0.9614 | | No log | 26.0 | 52 | 0.9425 | | No log | 27.0 | 54 | 0.9260 | | No log | 28.0 | 56 | 0.9222 | | No log | 29.0 | 58 | 0.9374 | | No log | 30.0 | 60 | 0.9696 | | No log | 31.0 | 62 | 0.9703 | | No log | 32.0 | 64 | 0.9604 | | No log | 33.0 | 66 | 0.9545 | | No log | 34.0 | 68 | 0.9464 | | No log | 35.0 | 70 | 0.9778 | | No log | 36.0 | 72 | 1.0221 | | No log | 37.0 | 74 | 1.0553 | | No log | 38.0 | 76 | 1.0823 | | No log | 39.0 | 78 | 1.1064 | | No log | 40.0 | 80 | 1.1001 | | No log | 41.0 | 82 | 1.0636 | | No log | 42.0 | 84 | 1.0258 | | No log | 43.0 | 86 | 1.0406 | | No log | 44.0 | 88 | 1.0706 | | No log | 45.0 | 90 | 1.1007 | | No log | 46.0 | 92 | 1.1318 | | No log | 47.0 | 94 | 1.1296 | | No log | 48.0 | 96 | 1.0914 | | No log | 49.0 | 98 | 1.0264 | | No log | 50.0 | 100 | 0.9912 | | No log | 51.0 | 102 | 0.9708 | | No log | 52.0 | 104 | 0.9661 | | No log | 53.0 | 106 | 1.0157 | | No log | 54.0 | 108 | 1.0737 | | No log | 55.0 | 110 | 1.1175 | | No log | 56.0 | 112 | 1.1332 | | No log | 57.0 | 114 | 1.1019 | | No log | 58.0 | 116 | 1.0463 | | No log | 59.0 | 118 | 0.9870 | | No log | 60.0 | 120 | 0.9701 | | No log | 61.0 | 122 | 0.9851 | | No log | 62.0 | 124 | 1.0310 | | No log | 63.0 | 126 | 1.0629 | | No log | 64.0 | 128 | 1.0847 | | No log | 65.0 | 130 | 1.0969 | | No log | 66.0 | 132 | 1.1080 | | No log | 67.0 | 134 | 1.1127 | | No log | 68.0 | 136 | 1.1106 | | No log | 69.0 | 138 | 1.1019 | | No log | 70.0 | 140 | 1.1037 | | No log | 71.0 | 142 | 1.0951 | | No log | 72.0 | 144 | 1.0664 | | No log | 73.0 | 146 | 1.0341 | | No log | 74.0 | 148 | 1.0019 | | No log | 75.0 | 150 | 1.0038 | | No log | 76.0 | 152 | 1.0189 | | No log | 77.0 | 154 | 1.0472 | | No log | 78.0 | 156 | 1.0636 | | No log | 79.0 | 158 | 1.0576 | | No log | 80.0 | 160 | 1.0673 | | No log | 81.0 | 162 | 1.0625 | | No log | 82.0 | 164 | 1.0485 | | No log | 83.0 | 166 | 1.0415 | | No log | 84.0 | 168 | 1.0597 | | No log | 85.0 | 170 | 1.0796 | | No log | 86.0 | 172 | 1.0903 | | No log | 87.0 | 174 | 1.0905 | | No log | 88.0 | 176 | 1.0769 | | No log | 89.0 | 178 | 1.0549 | | No log | 90.0 | 180 | 1.0413 | | No log | 91.0 | 182 | 1.0503 | | No log | 92.0 | 184 | 1.0658 | | No log | 93.0 | 186 | 1.0616 | | No log | 94.0 | 188 | 1.0636 | | No log | 95.0 | 190 | 1.0525 | | No log | 96.0 | 192 | 1.0297 | | No log | 97.0 | 194 | 1.0130 | | No log | 98.0 | 196 | 1.0077 | | No log | 99.0 | 198 | 1.0196 | | No log | 100.0 | 200 | 1.0418 | | No log | 101.0 | 202 | 1.0621 | | No log | 102.0 | 204 | 1.0737 | | No log | 103.0 | 206 | 1.0714 | | No log | 104.0 | 208 | 1.0776 | | No log | 105.0 | 210 | 1.0692 | | No log | 106.0 | 212 | 1.0693 | | No log | 107.0 | 214 | 1.0740 | | No log | 108.0 | 216 | 1.0730 | | No log | 109.0 | 218 | 1.0573 | | No log | 110.0 | 220 | 1.0476 | | No log | 111.0 | 222 | 1.0598 | | No log | 112.0 | 224 | 1.0730 | | No log | 113.0 | 226 | 1.0757 | | No log | 114.0 | 228 | 1.0735 | | No log | 115.0 | 230 | 1.0937 | | No log | 116.0 | 232 | 1.1165 | | No log | 117.0 | 234 | 1.1177 | | No log | 118.0 | 236 | 1.1094 | | No log | 119.0 | 238 | 1.0878 | | No log | 120.0 | 240 | 1.0693 | | No log | 121.0 | 242 | 1.0644 | | No log | 122.0 | 244 | 1.0564 | | No log | 123.0 | 246 | 1.0484 | | No log | 124.0 | 248 | 1.0383 | | No log | 125.0 | 250 | 1.0359 | | No log | 126.0 | 252 | 1.0719 | | No log | 127.0 | 254 | 1.1024 | | No log | 128.0 | 256 | 1.1000 | | No log | 129.0 | 258 | 1.1098 | | No log | 130.0 | 260 | 1.1148 | | No log | 131.0 | 262 | 1.1099 | | No log | 132.0 | 264 | 1.0871 | | No log | 133.0 | 266 | 1.0714 | | No log | 134.0 | 268 | 1.0524 | | No log | 135.0 | 270 | 1.0408 | | No log | 136.0 | 272 | 1.0388 | | No log | 137.0 | 274 | 1.0481 | | No log | 138.0 | 276 | 1.0514 | | No log | 139.0 | 278 | 1.0457 | | No log | 140.0 | 280 | 1.0376 | | No log | 141.0 | 282 | 1.0347 | | No log | 142.0 | 284 | 1.0286 | | No log | 143.0 | 286 | 1.0392 | | No log | 144.0 | 288 | 1.0626 | | No log | 145.0 | 290 | 1.0935 | | No log | 146.0 | 292 | 1.1031 | | No log | 147.0 | 294 | 1.1218 | | No log | 148.0 | 296 | 1.1417 | | No log | 149.0 | 298 | 1.1460 | | No log | 150.0 | 300 | 1.1303 | | No log | 151.0 | 302 | 1.1026 | | No log | 152.0 | 304 | 1.0870 | | No log | 153.0 | 306 | 1.0891 | | No log | 154.0 | 308 | 1.0935 | | No log | 155.0 | 310 | 1.0832 | | No log | 156.0 | 312 | 1.0674 | | No log | 157.0 | 314 | 1.0468 | | No log | 158.0 | 316 | 1.0353 | | No log | 159.0 | 318 | 1.0361 | | No log | 160.0 | 320 | 1.0585 | | No log | 161.0 | 322 | 1.0828 | | No log | 162.0 | 324 | 1.0944 | | No log | 163.0 | 326 | 1.1013 | | No log | 164.0 | 328 | 1.0925 | | No log | 165.0 | 330 | 1.0779 | | No log | 166.0 | 332 | 1.0566 | | No log | 167.0 | 334 | 1.0382 | | No log | 168.0 | 336 | 1.0354 | | No log | 169.0 | 338 | 1.0560 | | No log | 170.0 | 340 | 1.0823 | | No log | 171.0 | 342 | 1.1059 | | No log | 172.0 | 344 | 1.1307 | | No log | 173.0 | 346 | 1.1385 | | No log | 174.0 | 348 | 1.1315 | | No log | 175.0 | 350 | 1.1213 | | No log | 176.0 | 352 | 1.0984 | | No log | 177.0 | 354 | 1.0691 | | No log | 178.0 | 356 | 1.0427 | | No log | 179.0 | 358 | 1.0279 | | No log | 180.0 | 360 | 1.0153 | | No log | 181.0 | 362 | 1.0028 | | No log | 182.0 | 364 | 0.9902 | | No log | 183.0 | 366 | 0.9820 | | No log | 184.0 | 368 | 0.9917 | | No log | 185.0 | 370 | 1.0080 | | No log | 186.0 | 372 | 1.0296 | | No log | 187.0 | 374 | 1.0526 | | No log | 188.0 | 376 | 1.0706 | | No log | 189.0 | 378 | 1.0693 | | No log | 190.0 | 380 | 1.0448 | | No log | 191.0 | 382 | 1.0449 | | No log | 192.0 | 384 | 1.0386 | | No log | 193.0 | 386 | 1.0267 | | No log | 194.0 | 388 | 1.0185 | | No log | 195.0 | 390 | 1.0379 | | No log | 196.0 | 392 | 1.0670 | | No log | 197.0 | 394 | 1.1031 | | No log | 198.0 | 396 | 1.1522 | | No log | 199.0 | 398 | 1.1903 | | No log | 200.0 | 400 | 1.1907 | | No log | 201.0 | 402 | 1.1490 | | No log | 202.0 | 404 | 1.0990 | | No log | 203.0 | 406 | 1.0487 | | No log | 204.0 | 408 | 1.0177 | | No log | 205.0 | 410 | 0.9967 | | No log | 206.0 | 412 | 1.0033 | | No log | 207.0 | 414 | 1.0289 | | No log | 208.0 | 416 | 1.0499 | | No log | 209.0 | 418 | 1.1461 | | No log | 210.0 | 420 | 1.2037 | | No log | 211.0 | 422 | 1.2032 | | No log | 212.0 | 424 | 1.1546 | | No log | 213.0 | 426 | 1.0863 | | No log | 214.0 | 428 | 1.0477 | | No log | 215.0 | 430 | 1.0285 | | No log | 216.0 | 432 | 1.0164 | | No log | 217.0 | 434 | 1.0022 | | No log | 218.0 | 436 | 1.0188 | | No log | 219.0 | 438 | 1.0863 | | No log | 220.0 | 440 | 1.1806 | | No log | 221.0 | 442 | 1.1640 | | No log | 222.0 | 444 | 1.1038 | | No log | 223.0 | 446 | 1.0997 | | No log | 224.0 | 448 | 1.1057 | | No log | 225.0 | 450 | 1.1073 | | No log | 226.0 | 452 | 1.0999 | | No log | 227.0 | 454 | 1.0873 | | No log | 228.0 | 456 | 1.0711 | | No log | 229.0 | 458 | 1.0629 | | No log | 230.0 | 460 | 1.0690 | | No log | 231.0 | 462 | 1.0740 | | No log | 232.0 | 464 | 1.0807 | | No log | 233.0 | 466 | 1.0751 | | No log | 234.0 | 468 | 1.0603 | | No log | 235.0 | 470 | 1.0435 | | No log | 236.0 | 472 | 1.0437 | | No log | 237.0 | 474 | 1.0487 | | No log | 238.0 | 476 | 1.0548 | | No log | 239.0 | 478 | 1.0587 | | No log | 240.0 | 480 | 1.0561 | | No log | 241.0 | 482 | 1.0617 | | No log | 242.0 | 484 | 1.0528 | | No log | 243.0 | 486 | 1.0466 | | No log | 244.0 | 488 | 1.0586 | | No log | 245.0 | 490 | 1.0757 | | No log | 246.0 | 492 | 1.0801 | | No log | 247.0 | 494 | 1.0707 | | No log | 248.0 | 496 | 1.0595 | | No log | 249.0 | 498 | 1.0623 | | 0.5922 | 250.0 | 500 | 1.1042 | | 0.5922 | 251.0 | 502 | 1.1355 | | 0.5922 | 252.0 | 504 | 1.1485 | | 0.5922 | 253.0 | 506 | 1.1474 | | 0.5922 | 254.0 | 508 | 1.1430 | | 0.5922 | 255.0 | 510 | 1.1356 | | 0.5922 | 256.0 | 512 | 1.1247 | | 0.5922 | 257.0 | 514 | 1.1202 | | 0.5922 | 258.0 | 516 | 1.1274 | | 0.5922 | 259.0 | 518 | 1.1533 | | 0.5922 | 260.0 | 520 | 1.1922 | | 0.5922 | 261.0 | 522 | 1.2005 | | 0.5922 | 262.0 | 524 | 1.1545 | | 0.5922 | 263.0 | 526 | 1.1399 | | 0.5922 | 264.0 | 528 | 1.1310 | | 0.5922 | 265.0 | 530 | 1.1135 | | 0.5922 | 266.0 | 532 | 1.0999 | | 0.5922 | 267.0 | 534 | 1.0811 | | 0.5922 | 268.0 | 536 | 1.0788 | | 0.5922 | 269.0 | 538 | 1.0726 | | 0.5922 | 270.0 | 540 | 1.0605 | | 0.5922 | 271.0 | 542 | 1.0634 | | 0.5922 | 272.0 | 544 | 1.0738 | | 0.5922 | 273.0 | 546 | 1.0793 | | 0.5922 | 274.0 | 548 | 1.0855 | | 0.5922 | 275.0 | 550 | 1.1032 | | 0.5922 | 276.0 | 552 | 1.1056 | | 0.5922 | 277.0 | 554 | 1.0985 | | 0.5922 | 278.0 | 556 | 1.1000 | | 0.5922 | 279.0 | 558 | 1.0888 | | 0.5922 | 280.0 | 560 | 1.0638 | | 0.5922 | 281.0 | 562 | 1.0319 | | 0.5922 | 282.0 | 564 | 1.0054 | | 0.5922 | 283.0 | 566 | 0.9904 | | 0.5922 | 284.0 | 568 | 0.9816 | | 0.5922 | 285.0 | 570 | 0.9823 | | 0.5922 | 286.0 | 572 | 0.9940 | | 0.5922 | 287.0 | 574 | 1.0440 | | 0.5922 | 288.0 | 576 | 1.0786 | | 0.5922 | 289.0 | 578 | 1.0955 | | 0.5922 | 290.0 | 580 | 1.1019 | | 0.5922 | 291.0 | 582 | 1.1052 | | 0.5922 | 292.0 | 584 | 1.0964 | | 0.5922 | 293.0 | 586 | 1.0807 | | 0.5922 | 294.0 | 588 | 1.0619 | | 0.5922 | 295.0 | 590 | 1.0467 | | 0.5922 | 296.0 | 592 | 1.0304 | | 0.5922 | 297.0 | 594 | 1.0267 | | 0.5922 | 298.0 | 596 | 1.0341 | | 0.5922 | 299.0 | 598 | 1.0457 | | 0.5922 | 300.0 | 600 | 1.0669 | | 0.5922 | 301.0 | 602 | 1.1006 | | 0.5922 | 302.0 | 604 | 1.1248 | | 0.5922 | 303.0 | 606 | 1.1403 | | 0.5922 | 304.0 | 608 | 1.1456 | | 0.5922 | 305.0 | 610 | 1.1374 | | 0.5922 | 306.0 | 612 | 1.1352 | | 0.5922 | 307.0 | 614 | 1.1282 | | 0.5922 | 308.0 | 616 | 1.1164 | | 0.5922 | 309.0 | 618 | 1.1067 | | 0.5922 | 310.0 | 620 | 1.1046 | | 0.5922 | 311.0 | 622 | 1.0876 | | 0.5922 | 312.0 | 624 | 1.0570 | | 0.5922 | 313.0 | 626 | 1.0376 | | 0.5922 | 314.0 | 628 | 1.0298 | | 0.5922 | 315.0 | 630 | 1.0233 | | 0.5922 | 316.0 | 632 | 1.0232 | | 0.5922 | 317.0 | 634 | 1.0071 | | 0.5922 | 318.0 | 636 | 0.9817 | | 0.5922 | 319.0 | 638 | 0.9613 | | 0.5922 | 320.0 | 640 | 0.9502 | | 0.5922 | 321.0 | 642 | 0.9391 | | 0.5922 | 322.0 | 644 | 0.9310 | | 0.5922 | 323.0 | 646 | 0.9392 | | 0.5922 | 324.0 | 648 | 0.9716 | | 0.5922 | 325.0 | 650 | 1.0411 | | 0.5922 | 326.0 | 652 | 1.0763 | | 0.5922 | 327.0 | 654 | 1.1032 | | 0.5922 | 328.0 | 656 | 1.1147 | | 0.5922 | 329.0 | 658 | 1.1127 | | 0.5922 | 330.0 | 660 | 1.0998 | | 0.5922 | 331.0 | 662 | 1.0851 | | 0.5922 | 332.0 | 664 | 1.0711 | | 0.5922 | 333.0 | 666 | 1.0465 | | 0.5922 | 334.0 | 668 | 1.0709 | | 0.5922 | 335.0 | 670 | 1.1121 | | 0.5922 | 336.0 | 672 | 1.1420 | | 0.5922 | 337.0 | 674 | 1.1513 | | 0.5922 | 338.0 | 676 | 1.1332 | | 0.5922 | 339.0 | 678 | 1.0967 | | 0.5922 | 340.0 | 680 | 1.0633 | | 0.5922 | 341.0 | 682 | 1.0343 | | 0.5922 | 342.0 | 684 | 1.0101 | | 0.5922 | 343.0 | 686 | 0.9974 | | 0.5922 | 344.0 | 688 | 0.9935 | | 0.5922 | 345.0 | 690 | 0.9833 | | 0.5922 | 346.0 | 692 | 0.9780 | | 0.5922 | 347.0 | 694 | 0.9772 | | 0.5922 | 348.0 | 696 | 0.9735 | | 0.5922 | 349.0 | 698 | 0.9927 | | 0.5922 | 350.0 | 700 | 1.0140 | | 0.5922 | 351.0 | 702 | 1.0339 | | 0.5922 | 352.0 | 704 | 1.0592 | | 0.5922 | 353.0 | 706 | 1.0895 | | 0.5922 | 354.0 | 708 | 1.1115 | | 0.5922 | 355.0 | 710 | 1.1255 | | 0.5922 | 356.0 | 712 | 1.1197 | | 0.5922 | 357.0 | 714 | 1.1046 | | 0.5922 | 358.0 | 716 | 1.0874 | | 0.5922 | 359.0 | 718 | 1.0719 | | 0.5922 | 360.0 | 720 | 1.0543 | | 0.5922 | 361.0 | 722 | 1.0325 | | 0.5922 | 362.0 | 724 | 1.0357 | | 0.5922 | 363.0 | 726 | 1.0583 | | 0.5922 | 364.0 | 728 | 1.0982 | | 0.5922 | 365.0 | 730 | 1.1298 | | 0.5922 | 366.0 | 732 | 1.1546 | | 0.5922 | 367.0 | 734 | 1.1771 | | 0.5922 | 368.0 | 736 | 1.1959 | | 0.5922 | 369.0 | 738 | 1.2079 | | 0.5922 | 370.0 | 740 | 1.2083 | | 0.5922 | 371.0 | 742 | 1.2056 | | 0.5922 | 372.0 | 744 | 1.1969 | | 0.5922 | 373.0 | 746 | 1.1700 | | 0.5922 | 374.0 | 748 | 1.1318 | | 0.5922 | 375.0 | 750 | 1.1137 | | 0.5922 | 376.0 | 752 | 1.1051 | | 0.5922 | 377.0 | 754 | 1.0996 | | 0.5922 | 378.0 | 756 | 1.0910 | | 0.5922 | 379.0 | 758 | 1.1206 | | 0.5922 | 380.0 | 760 | 1.1865 | | 0.5922 | 381.0 | 762 | 1.2224 | | 0.5922 | 382.0 | 764 | 1.2323 | | 0.5922 | 383.0 | 766 | 1.2291 | | 0.5922 | 384.0 | 768 | 1.2127 | | 0.5922 | 385.0 | 770 | 1.1816 | | 0.5922 | 386.0 | 772 | 1.1450 | | 0.5922 | 387.0 | 774 | 1.1099 | | 0.5922 | 388.0 | 776 | 1.0854 | | 0.5922 | 389.0 | 778 | 1.0664 | | 0.5922 | 390.0 | 780 | 1.0537 | | 0.5922 | 391.0 | 782 | 1.0378 | | 0.5922 | 392.0 | 784 | 1.0227 | | 0.5922 | 393.0 | 786 | 1.0214 | | 0.5922 | 394.0 | 788 | 1.0457 | | 0.5922 | 395.0 | 790 | 1.0652 | | 0.5922 | 396.0 | 792 | 1.0884 | | 0.5922 | 397.0 | 794 | 1.1097 | | 0.5922 | 398.0 | 796 | 1.1279 | | 0.5922 | 399.0 | 798 | 1.1429 | | 0.5922 | 400.0 | 800 | 1.1543 | | 0.5922 | 401.0 | 802 | 1.1682 | | 0.5922 | 402.0 | 804 | 1.1680 | | 0.5922 | 403.0 | 806 | 1.1697 | | 0.5922 | 404.0 | 808 | 1.1759 | | 0.5922 | 405.0 | 810 | 1.1683 | | 0.5922 | 406.0 | 812 | 1.1430 | | 0.5922 | 407.0 | 814 | 1.1220 | | 0.5922 | 408.0 | 816 | 1.1067 | | 0.5922 | 409.0 | 818 | 1.1371 | | 0.5922 | 410.0 | 820 | 1.1943 | | 0.5922 | 411.0 | 822 | 1.2259 | | 0.5922 | 412.0 | 824 | 1.2529 | | 0.5922 | 413.0 | 826 | 1.2653 | | 0.5922 | 414.0 | 828 | 1.2664 | | 0.5922 | 415.0 | 830 | 1.2554 | | 0.5922 | 416.0 | 832 | 1.2271 | | 0.5922 | 417.0 | 834 | 1.2015 | | 0.5922 | 418.0 | 836 | 1.1842 | | 0.5922 | 419.0 | 838 | 1.1639 | | 0.5922 | 420.0 | 840 | 1.1448 | | 0.5922 | 421.0 | 842 | 1.1411 | | 0.5922 | 422.0 | 844 | 1.1379 | | 0.5922 | 423.0 | 846 | 1.1448 | | 0.5922 | 424.0 | 848 | 1.1606 | | 0.5922 | 425.0 | 850 | 1.1723 | | 0.5922 | 426.0 | 852 | 1.2103 | | 0.5922 | 427.0 | 854 | 1.2394 | | 0.5922 | 428.0 | 856 | 1.2567 | | 0.5922 | 429.0 | 858 | 1.2704 | | 0.5922 | 430.0 | 860 | 1.2687 | | 0.5922 | 431.0 | 862 | 1.2494 | | 0.5922 | 432.0 | 864 | 1.2231 | | 0.5922 | 433.0 | 866 | 1.2072 | | 0.5922 | 434.0 | 868 | 1.1994 | | 0.5922 | 435.0 | 870 | 1.1929 | | 0.5922 | 436.0 | 872 | 1.1871 | | 0.5922 | 437.0 | 874 | 1.1758 | | 0.5922 | 438.0 | 876 | 1.1707 | | 0.5922 | 439.0 | 878 | 1.1635 | | 0.5922 | 440.0 | 880 | 1.1581 | | 0.5922 | 441.0 | 882 | 1.1608 | | 0.5922 | 442.0 | 884 | 1.1681 | | 0.5922 | 443.0 | 886 | 1.1710 | | 0.5922 | 444.0 | 888 | 1.1688 | | 0.5922 | 445.0 | 890 | 1.1689 | | 0.5922 | 446.0 | 892 | 1.1672 | | 0.5922 | 447.0 | 894 | 1.1641 | | 0.5922 | 448.0 | 896 | 1.1580 | | 0.5922 | 449.0 | 898 | 1.1488 | | 0.5922 | 450.0 | 900 | 1.1370 | | 0.5922 | 451.0 | 902 | 1.1322 | | 0.5922 | 452.0 | 904 | 1.1352 | | 0.5922 | 453.0 | 906 | 1.1399 | | 0.5922 | 454.0 | 908 | 1.1368 | | 0.5922 | 455.0 | 910 | 1.1380 | | 0.5922 | 456.0 | 912 | 1.1368 | | 0.5922 | 457.0 | 914 | 1.1349 | | 0.5922 | 458.0 | 916 | 1.1194 | | 0.5922 | 459.0 | 918 | 1.1126 | | 0.5922 | 460.0 | 920 | 1.1184 | | 0.5922 | 461.0 | 922 | 1.1241 | | 0.5922 | 462.0 | 924 | 1.1284 | | 0.5922 | 463.0 | 926 | 1.1191 | | 0.5922 | 464.0 | 928 | 1.1098 | | 0.5922 | 465.0 | 930 | 1.1040 | | 0.5922 | 466.0 | 932 | 1.0989 | | 0.5922 | 467.0 | 934 | 1.0962 | | 0.5922 | 468.0 | 936 | 1.1049 | | 0.5922 | 469.0 | 938 | 1.1080 | | 0.5922 | 470.0 | 940 | 1.1227 | | 0.5922 | 471.0 | 942 | 1.1301 | | 0.5922 | 472.0 | 944 | 1.1379 | | 0.5922 | 473.0 | 946 | 1.1362 | | 0.5922 | 474.0 | 948 | 1.1271 | | 0.5922 | 475.0 | 950 | 1.1103 | | 0.5922 | 476.0 | 952 | 1.0923 | | 0.5922 | 477.0 | 954 | 1.0745 | | 0.5922 | 478.0 | 956 | 1.0581 | | 0.5922 | 479.0 | 958 | 1.0397 | | 0.5922 | 480.0 | 960 | 1.0357 | | 0.5922 | 481.0 | 962 | 1.0505 | | 0.5922 | 482.0 | 964 | 1.0725 | | 0.5922 | 483.0 | 966 | 1.0977 | | 0.5922 | 484.0 | 968 | 1.1207 | | 0.5922 | 485.0 | 970 | 1.1334 | | 0.5922 | 486.0 | 972 | 1.1481 | | 0.5922 | 487.0 | 974 | 1.1606 | | 0.5922 | 488.0 | 976 | 1.1760 | | 0.5922 | 489.0 | 978 | 1.1934 | | 0.5922 | 490.0 | 980 | 1.2112 | | 0.5922 | 491.0 | 982 | 1.2274 | | 0.5922 | 492.0 | 984 | 1.2373 | | 0.5922 | 493.0 | 986 | 1.2420 | | 0.5922 | 494.0 | 988 | 1.2405 | | 0.5922 | 495.0 | 990 | 1.2362 | | 0.5922 | 496.0 | 992 | 1.2291 | | 0.5922 | 497.0 | 994 | 1.2229 | | 0.5922 | 498.0 | 996 | 1.2180 | | 0.5922 | 499.0 | 998 | 1.2064 | | 0.4792 | 500.0 | 1000 | 1.1870 | | 0.4792 | 501.0 | 1002 | 1.1701 | | 0.4792 | 502.0 | 1004 | 1.1521 | | 0.4792 | 503.0 | 1006 | 1.1342 | | 0.4792 | 504.0 | 1008 | 1.1211 | | 0.4792 | 505.0 | 1010 | 1.1333 | | 0.4792 | 506.0 | 1012 | 1.1748 | | 0.4792 | 507.0 | 1014 | 1.2205 | | 0.4792 | 508.0 | 1016 | 1.2448 | | 0.4792 | 509.0 | 1018 | 1.2668 | | 0.4792 | 510.0 | 1020 | 1.2806 | | 0.4792 | 511.0 | 1022 | 1.2785 | | 0.4792 | 512.0 | 1024 | 1.2667 | | 0.4792 | 513.0 | 1026 | 1.2533 | | 0.4792 | 514.0 | 1028 | 1.2393 | | 0.4792 | 515.0 | 1030 | 1.2307 | | 0.4792 | 516.0 | 1032 | 1.2121 | | 0.4792 | 517.0 | 1034 | 1.1944 | | 0.4792 | 518.0 | 1036 | 1.1826 | | 0.4792 | 519.0 | 1038 | 1.1760 | | 0.4792 | 520.0 | 1040 | 1.1693 | | 0.4792 | 521.0 | 1042 | 1.1549 | | 0.4792 | 522.0 | 1044 | 1.1443 | | 0.4792 | 523.0 | 1046 | 1.1357 | | 0.4792 | 524.0 | 1048 | 1.1093 | | 0.4792 | 525.0 | 1050 | 1.0910 | | 0.4792 | 526.0 | 1052 | 1.0887 | | 0.4792 | 527.0 | 1054 | 1.0907 | | 0.4792 | 528.0 | 1056 | 1.0936 | | 0.4792 | 529.0 | 1058 | 1.1114 | | 0.4792 | 530.0 | 1060 | 1.1261 | | 0.4792 | 531.0 | 1062 | 1.1339 | | 0.4792 | 532.0 | 1064 | 1.1357 | | 0.4792 | 533.0 | 1066 | 1.1362 | | 0.4792 | 534.0 | 1068 | 1.1376 | | 0.4792 | 535.0 | 1070 | 1.1411 | | 0.4792 | 536.0 | 1072 | 1.1442 | | 0.4792 | 537.0 | 1074 | 1.1465 | | 0.4792 | 538.0 | 1076 | 1.1502 | | 0.4792 | 539.0 | 1078 | 1.1565 | | 0.4792 | 540.0 | 1080 | 1.1621 | | 0.4792 | 541.0 | 1082 | 1.1633 | | 0.4792 | 542.0 | 1084 | 1.1583 | | 0.4792 | 543.0 | 1086 | 1.1549 | | 0.4792 | 544.0 | 1088 | 1.1556 | | 0.4792 | 545.0 | 1090 | 1.1581 | | 0.4792 | 546.0 | 1092 | 1.1593 | | 0.4792 | 547.0 | 1094 | 1.1534 | | 0.4792 | 548.0 | 1096 | 1.1464 | | 0.4792 | 549.0 | 1098 | 1.1383 | | 0.4792 | 550.0 | 1100 | 1.1354 | | 0.4792 | 551.0 | 1102 | 1.1375 | | 0.4792 | 552.0 | 1104 | 1.1415 | | 0.4792 | 553.0 | 1106 | 1.1410 | | 0.4792 | 554.0 | 1108 | 1.1455 | | 0.4792 | 555.0 | 1110 | 1.1758 | | 0.4792 | 556.0 | 1112 | 1.2052 | | 0.4792 | 557.0 | 1114 | 1.2301 | | 0.4792 | 558.0 | 1116 | 1.2503 | | 0.4792 | 559.0 | 1118 | 1.2638 | | 0.4792 | 560.0 | 1120 | 1.2686 | | 0.4792 | 561.0 | 1122 | 1.2690 | | 0.4792 | 562.0 | 1124 | 1.2661 | | 0.4792 | 563.0 | 1126 | 1.2470 | | 0.4792 | 564.0 | 1128 | 1.2317 | | 0.4792 | 565.0 | 1130 | 1.2235 | | 0.4792 | 566.0 | 1132 | 1.2167 | | 0.4792 | 567.0 | 1134 | 1.2083 | | 0.4792 | 568.0 | 1136 | 1.2027 | | 0.4792 | 569.0 | 1138 | 1.1978 | | 0.4792 | 570.0 | 1140 | 1.1935 | | 0.4792 | 571.0 | 1142 | 1.1916 | | 0.4792 | 572.0 | 1144 | 1.1881 | | 0.4792 | 573.0 | 1146 | 1.1847 | | 0.4792 | 574.0 | 1148 | 1.1838 | | 0.4792 | 575.0 | 1150 | 1.1814 | | 0.4792 | 576.0 | 1152 | 1.1799 | | 0.4792 | 577.0 | 1154 | 1.1795 | | 0.4792 | 578.0 | 1156 | 1.1814 | | 0.4792 | 579.0 | 1158 | 1.1812 | | 0.4792 | 580.0 | 1160 | 1.1826 | | 0.4792 | 581.0 | 1162 | 1.1829 | | 0.4792 | 582.0 | 1164 | 1.1802 | | 0.4792 | 583.0 | 1166 | 1.1759 | | 0.4792 | 584.0 | 1168 | 1.1783 | | 0.4792 | 585.0 | 1170 | 1.1777 | | 0.4792 | 586.0 | 1172 | 1.1752 | | 0.4792 | 587.0 | 1174 | 1.1729 | | 0.4792 | 588.0 | 1176 | 1.1714 | | 0.4792 | 589.0 | 1178 | 1.1687 | | 0.4792 | 590.0 | 1180 | 1.1626 | | 0.4792 | 591.0 | 1182 | 1.1565 | | 0.4792 | 592.0 | 1184 | 1.1533 | | 0.4792 | 593.0 | 1186 | 1.1463 | | 0.4792 | 594.0 | 1188 | 1.1385 | | 0.4792 | 595.0 | 1190 | 1.1307 | | 0.4792 | 596.0 | 1192 | 1.1245 | | 0.4792 | 597.0 | 1194 | 1.1206 | | 0.4792 | 598.0 | 1196 | 1.1181 | | 0.4792 | 599.0 | 1198 | 1.1170 | | 0.4792 | 600.0 | 1200 | 1.1166 | | 0.4792 | 601.0 | 1202 | 1.1185 | | 0.4792 | 602.0 | 1204 | 1.1217 | | 0.4792 | 603.0 | 1206 | 1.1234 | | 0.4792 | 604.0 | 1208 | 1.1267 | | 0.4792 | 605.0 | 1210 | 1.1343 | | 0.4792 | 606.0 | 1212 | 1.1440 | | 0.4792 | 607.0 | 1214 | 1.1514 | | 0.4792 | 608.0 | 1216 | 1.1583 | | 0.4792 | 609.0 | 1218 | 1.1636 | | 0.4792 | 610.0 | 1220 | 1.1648 | | 0.4792 | 611.0 | 1222 | 1.1679 | | 0.4792 | 612.0 | 1224 | 1.1714 | | 0.4792 | 613.0 | 1226 | 1.1775 | | 0.4792 | 614.0 | 1228 | 1.1814 | | 0.4792 | 615.0 | 1230 | 1.1858 | | 0.4792 | 616.0 | 1232 | 1.1863 | | 0.4792 | 617.0 | 1234 | 1.1827 | | 0.4792 | 618.0 | 1236 | 1.1771 | | 0.4792 | 619.0 | 1238 | 1.1700 | | 0.4792 | 620.0 | 1240 | 1.1630 | | 0.4792 | 621.0 | 1242 | 1.1596 | | 0.4792 | 622.0 | 1244 | 1.1547 | | 0.4792 | 623.0 | 1246 | 1.1527 | | 0.4792 | 624.0 | 1248 | 1.1498 | | 0.4792 | 625.0 | 1250 | 1.1506 | | 0.4792 | 626.0 | 1252 | 1.1567 | | 0.4792 | 627.0 | 1254 | 1.1570 | | 0.4792 | 628.0 | 1256 | 1.1602 | | 0.4792 | 629.0 | 1258 | 1.1665 | | 0.4792 | 630.0 | 1260 | 1.1751 | | 0.4792 | 631.0 | 1262 | 1.1787 | | 0.4792 | 632.0 | 1264 | 1.1836 | | 0.4792 | 633.0 | 1266 | 1.1835 | | 0.4792 | 634.0 | 1268 | 1.1883 | | 0.4792 | 635.0 | 1270 | 1.1999 | | 0.4792 | 636.0 | 1272 | 1.2062 | | 0.4792 | 637.0 | 1274 | 1.2010 | | 0.4792 | 638.0 | 1276 | 1.1945 | | 0.4792 | 639.0 | 1278 | 1.1911 | | 0.4792 | 640.0 | 1280 | 1.1834 | | 0.4792 | 641.0 | 1282 | 1.1767 | | 0.4792 | 642.0 | 1284 | 1.1713 | | 0.4792 | 643.0 | 1286 | 1.1658 | | 0.4792 | 644.0 | 1288 | 1.1588 | | 0.4792 | 645.0 | 1290 | 1.1481 | | 0.4792 | 646.0 | 1292 | 1.1397 | | 0.4792 | 647.0 | 1294 | 1.1327 | | 0.4792 | 648.0 | 1296 | 1.1300 | | 0.4792 | 649.0 | 1298 | 1.1335 | | 0.4792 | 650.0 | 1300 | 1.1377 | | 0.4792 | 651.0 | 1302 | 1.1401 | | 0.4792 | 652.0 | 1304 | 1.1380 | | 0.4792 | 653.0 | 1306 | 1.1439 | | 0.4792 | 654.0 | 1308 | 1.1491 | | 0.4792 | 655.0 | 1310 | 1.1540 | | 0.4792 | 656.0 | 1312 | 1.1587 | | 0.4792 | 657.0 | 1314 | 1.1655 | | 0.4792 | 658.0 | 1316 | 1.1701 | | 0.4792 | 659.0 | 1318 | 1.1704 | | 0.4792 | 660.0 | 1320 | 1.1683 | | 0.4792 | 661.0 | 1322 | 1.1714 | | 0.4792 | 662.0 | 1324 | 1.1762 | | 0.4792 | 663.0 | 1326 | 1.1827 | | 0.4792 | 664.0 | 1328 | 1.1873 | | 0.4792 | 665.0 | 1330 | 1.1880 | | 0.4792 | 666.0 | 1332 | 1.1914 | | 0.4792 | 667.0 | 1334 | 1.1900 | | 0.4792 | 668.0 | 1336 | 1.1913 | | 0.4792 | 669.0 | 1338 | 1.1942 | | 0.4792 | 670.0 | 1340 | 1.1936 | | 0.4792 | 671.0 | 1342 | 1.1963 | | 0.4792 | 672.0 | 1344 | 1.1999 | | 0.4792 | 673.0 | 1346 | 1.2057 | | 0.4792 | 674.0 | 1348 | 1.2091 | | 0.4792 | 675.0 | 1350 | 1.2129 | | 0.4792 | 676.0 | 1352 | 1.2183 | | 0.4792 | 677.0 | 1354 | 1.2206 | | 0.4792 | 678.0 | 1356 | 1.2175 | | 0.4792 | 679.0 | 1358 | 1.2180 | | 0.4792 | 680.0 | 1360 | 1.2199 | | 0.4792 | 681.0 | 1362 | 1.2218 | | 0.4792 | 682.0 | 1364 | 1.2194 | | 0.4792 | 683.0 | 1366 | 1.2076 | | 0.4792 | 684.0 | 1368 | 1.2016 | | 0.4792 | 685.0 | 1370 | 1.1956 | | 0.4792 | 686.0 | 1372 | 1.1919 | | 0.4792 | 687.0 | 1374 | 1.1818 | | 0.4792 | 688.0 | 1376 | 1.1701 | | 0.4792 | 689.0 | 1378 | 1.1524 | | 0.4792 | 690.0 | 1380 | 1.1407 | | 0.4792 | 691.0 | 1382 | 1.1433 | | 0.4792 | 692.0 | 1384 | 1.1523 | | 0.4792 | 693.0 | 1386 | 1.1662 | | 0.4792 | 694.0 | 1388 | 1.1731 | | 0.4792 | 695.0 | 1390 | 1.1810 | | 0.4792 | 696.0 | 1392 | 1.1882 | | 0.4792 | 697.0 | 1394 | 1.1950 | | 0.4792 | 698.0 | 1396 | 1.1971 | | 0.4792 | 699.0 | 1398 | 1.1951 | | 0.4792 | 700.0 | 1400 | 1.1928 | | 0.4792 | 701.0 | 1402 | 1.1901 | | 0.4792 | 702.0 | 1404 | 1.1929 | | 0.4792 | 703.0 | 1406 | 1.2222 | | 0.4792 | 704.0 | 1408 | 1.2495 | | 0.4792 | 705.0 | 1410 | 1.2651 | | 0.4792 | 706.0 | 1412 | 1.2712 | | 0.4792 | 707.0 | 1414 | 1.2724 | | 0.4792 | 708.0 | 1416 | 1.2727 | | 0.4792 | 709.0 | 1418 | 1.2684 | | 0.4792 | 710.0 | 1420 | 1.2544 | | 0.4792 | 711.0 | 1422 | 1.2324 | | 0.4792 | 712.0 | 1424 | 1.2100 | | 0.4792 | 713.0 | 1426 | 1.1854 | | 0.4792 | 714.0 | 1428 | 1.1615 | | 0.4792 | 715.0 | 1430 | 1.1443 | | 0.4792 | 716.0 | 1432 | 1.1367 | | 0.4792 | 717.0 | 1434 | 1.1342 | | 0.4792 | 718.0 | 1436 | 1.1248 | | 0.4792 | 719.0 | 1438 | 1.1283 | | 0.4792 | 720.0 | 1440 | 1.1349 | | 0.4792 | 721.0 | 1442 | 1.1442 | | 0.4792 | 722.0 | 1444 | 1.1646 | | 0.4792 | 723.0 | 1446 | 1.1874 | | 0.4792 | 724.0 | 1448 | 1.2006 | | 0.4792 | 725.0 | 1450 | 1.2026 | | 0.4792 | 726.0 | 1452 | 1.1950 | | 0.4792 | 727.0 | 1454 | 1.1846 | | 0.4792 | 728.0 | 1456 | 1.1780 | | 0.4792 | 729.0 | 1458 | 1.1795 | | 0.4792 | 730.0 | 1460 | 1.1899 | | 0.4792 | 731.0 | 1462 | 1.1999 | | 0.4792 | 732.0 | 1464 | 1.2046 | | 0.4792 | 733.0 | 1466 | 1.2094 | | 0.4792 | 734.0 | 1468 | 1.2189 | | 0.4792 | 735.0 | 1470 | 1.2279 | | 0.4792 | 736.0 | 1472 | 1.2344 | | 0.4792 | 737.0 | 1474 | 1.2449 | | 0.4792 | 738.0 | 1476 | 1.2554 | | 0.4792 | 739.0 | 1478 | 1.2613 | | 0.4792 | 740.0 | 1480 | 1.2638 | | 0.4792 | 741.0 | 1482 | 1.2618 | | 0.4792 | 742.0 | 1484 | 1.2537 | | 0.4792 | 743.0 | 1486 | 1.2429 | | 0.4792 | 744.0 | 1488 | 1.2339 | | 0.4792 | 745.0 | 1490 | 1.2282 | | 0.4792 | 746.0 | 1492 | 1.2234 | | 0.4792 | 747.0 | 1494 | 1.2199 | | 0.4792 | 748.0 | 1496 | 1.2163 | | 0.4792 | 749.0 | 1498 | 1.2115 | | 0.4781 | 750.0 | 1500 | 1.2059 | | 0.4781 | 751.0 | 1502 | 1.2001 | | 0.4781 | 752.0 | 1504 | 1.1934 | | 0.4781 | 753.0 | 1506 | 1.1857 | | 0.4781 | 754.0 | 1508 | 1.1805 | | 0.4781 | 755.0 | 1510 | 1.1772 | | 0.4781 | 756.0 | 1512 | 1.1799 | | 0.4781 | 757.0 | 1514 | 1.1866 | | 0.4781 | 758.0 | 1516 | 1.1904 | | 0.4781 | 759.0 | 1518 | 1.1973 | | 0.4781 | 760.0 | 1520 | 1.2044 | | 0.4781 | 761.0 | 1522 | 1.2101 | | 0.4781 | 762.0 | 1524 | 1.2166 | | 0.4781 | 763.0 | 1526 | 1.2223 | | 0.4781 | 764.0 | 1528 | 1.2249 | | 0.4781 | 765.0 | 1530 | 1.2234 | | 0.4781 | 766.0 | 1532 | 1.2183 | | 0.4781 | 767.0 | 1534 | 1.2077 | | 0.4781 | 768.0 | 1536 | 1.1955 | | 0.4781 | 769.0 | 1538 | 1.1845 | | 0.4781 | 770.0 | 1540 | 1.1760 | | 0.4781 | 771.0 | 1542 | 1.1666 | | 0.4781 | 772.0 | 1544 | 1.1566 | | 0.4781 | 773.0 | 1546 | 1.1473 | | 0.4781 | 774.0 | 1548 | 1.1564 | | 0.4781 | 775.0 | 1550 | 1.1868 | | 0.4781 | 776.0 | 1552 | 1.2229 | | 0.4781 | 777.0 | 1554 | 1.2565 | | 0.4781 | 778.0 | 1556 | 1.2804 | | 0.4781 | 779.0 | 1558 | 1.2965 | | 0.4781 | 780.0 | 1560 | 1.3019 | | 0.4781 | 781.0 | 1562 | 1.2980 | | 0.4781 | 782.0 | 1564 | 1.2800 | | 0.4781 | 783.0 | 1566 | 1.2584 | | 0.4781 | 784.0 | 1568 | 1.2354 | | 0.4781 | 785.0 | 1570 | 1.2070 | | 0.4781 | 786.0 | 1572 | 1.1817 | | 0.4781 | 787.0 | 1574 | 1.1501 | | 0.4781 | 788.0 | 1576 | 1.1280 | | 0.4781 | 789.0 | 1578 | 1.1070 | | 0.4781 | 790.0 | 1580 | 1.0882 | | 0.4781 | 791.0 | 1582 | 1.0766 | | 0.4781 | 792.0 | 1584 | 1.0695 | | 0.4781 | 793.0 | 1586 | 1.0647 | | 0.4781 | 794.0 | 1588 | 1.0601 | | 0.4781 | 795.0 | 1590 | 1.0702 | | 0.4781 | 796.0 | 1592 | 1.0913 | | 0.4781 | 797.0 | 1594 | 1.1163 | | 0.4781 | 798.0 | 1596 | 1.1317 | | 0.4781 | 799.0 | 1598 | 1.1417 | | 0.4781 | 800.0 | 1600 | 1.1436 | | 0.4781 | 801.0 | 1602 | 1.1484 | | 0.4781 | 802.0 | 1604 | 1.1558 | | 0.4781 | 803.0 | 1606 | 1.1636 | | 0.4781 | 804.0 | 1608 | 1.1713 | | 0.4781 | 805.0 | 1610 | 1.1761 | | 0.4781 | 806.0 | 1612 | 1.1785 | | 0.4781 | 807.0 | 1614 | 1.1844 | | 0.4781 | 808.0 | 1616 | 1.1894 | | 0.4781 | 809.0 | 1618 | 1.1895 | | 0.4781 | 810.0 | 1620 | 1.1920 | | 0.4781 | 811.0 | 1622 | 1.1922 | | 0.4781 | 812.0 | 1624 | 1.1919 | | 0.4781 | 813.0 | 1626 | 1.1927 | | 0.4781 | 814.0 | 1628 | 1.1932 | | 0.4781 | 815.0 | 1630 | 1.1914 | | 0.4781 | 816.0 | 1632 | 1.1825 | | 0.4781 | 817.0 | 1634 | 1.1768 | | 0.4781 | 818.0 | 1636 | 1.1710 | | 0.4781 | 819.0 | 1638 | 1.1672 | | 0.4781 | 820.0 | 1640 | 1.1666 | | 0.4781 | 821.0 | 1642 | 1.1672 | | 0.4781 | 822.0 | 1644 | 1.1686 | | 0.4781 | 823.0 | 1646 | 1.1708 | | 0.4781 | 824.0 | 1648 | 1.1773 | | 0.4781 | 825.0 | 1650 | 1.1820 | | 0.4781 | 826.0 | 1652 | 1.1842 | | 0.4781 | 827.0 | 1654 | 1.1832 | | 0.4781 | 828.0 | 1656 | 1.1823 | | 0.4781 | 829.0 | 1658 | 1.1822 | | 0.4781 | 830.0 | 1660 | 1.1804 | | 0.4781 | 831.0 | 1662 | 1.1769 | | 0.4781 | 832.0 | 1664 | 1.1693 | | 0.4781 | 833.0 | 1666 | 1.1637 | | 0.4781 | 834.0 | 1668 | 1.1581 | | 0.4781 | 835.0 | 1670 | 1.1571 | | 0.4781 | 836.0 | 1672 | 1.1530 | | 0.4781 | 837.0 | 1674 | 1.1513 | | 0.4781 | 838.0 | 1676 | 1.1508 | | 0.4781 | 839.0 | 1678 | 1.1429 | | 0.4781 | 840.0 | 1680 | 1.1364 | | 0.4781 | 841.0 | 1682 | 1.1359 | | 0.4781 | 842.0 | 1684 | 1.1387 | | 0.4781 | 843.0 | 1686 | 1.1445 | | 0.4781 | 844.0 | 1688 | 1.1511 | | 0.4781 | 845.0 | 1690 | 1.1512 | | 0.4781 | 846.0 | 1692 | 1.1458 | | 0.4781 | 847.0 | 1694 | 1.1411 | | 0.4781 | 848.0 | 1696 | 1.1313 | | 0.4781 | 849.0 | 1698 | 1.1291 | | 0.4781 | 850.0 | 1700 | 1.1321 | | 0.4781 | 851.0 | 1702 | 1.1364 | | 0.4781 | 852.0 | 1704 | 1.1394 | | 0.4781 | 853.0 | 1706 | 1.1409 | | 0.4781 | 854.0 | 1708 | 1.1408 | | 0.4781 | 855.0 | 1710 | 1.1429 | | 0.4781 | 856.0 | 1712 | 1.1432 | | 0.4781 | 857.0 | 1714 | 1.1406 | | 0.4781 | 858.0 | 1716 | 1.1338 | | 0.4781 | 859.0 | 1718 | 1.1323 | | 0.4781 | 860.0 | 1720 | 1.1269 | | 0.4781 | 861.0 | 1722 | 1.1266 | | 0.4781 | 862.0 | 1724 | 1.1309 | | 0.4781 | 863.0 | 1726 | 1.1307 | | 0.4781 | 864.0 | 1728 | 1.1335 | | 0.4781 | 865.0 | 1730 | 1.1457 | | 0.4781 | 866.0 | 1732 | 1.1556 | | 0.4781 | 867.0 | 1734 | 1.1595 | | 0.4781 | 868.0 | 1736 | 1.1620 | | 0.4781 | 869.0 | 1738 | 1.1669 | | 0.4781 | 870.0 | 1740 | 1.1735 | | 0.4781 | 871.0 | 1742 | 1.1800 | | 0.4781 | 872.0 | 1744 | 1.1844 | | 0.4781 | 873.0 | 1746 | 1.1878 | | 0.4781 | 874.0 | 1748 | 1.1913 | | 0.4781 | 875.0 | 1750 | 1.1929 | | 0.4781 | 876.0 | 1752 | 1.1946 | | 0.4781 | 877.0 | 1754 | 1.1967 | | 0.4781 | 878.0 | 1756 | 1.1969 | | 0.4781 | 879.0 | 1758 | 1.1967 | | 0.4781 | 880.0 | 1760 | 1.1952 | | 0.4781 | 881.0 | 1762 | 1.1909 | | 0.4781 | 882.0 | 1764 | 1.1881 | | 0.4781 | 883.0 | 1766 | 1.1877 | | 0.4781 | 884.0 | 1768 | 1.1866 | | 0.4781 | 885.0 | 1770 | 1.1865 | | 0.4781 | 886.0 | 1772 | 1.1888 | | 0.4781 | 887.0 | 1774 | 1.1956 | | 0.4781 | 888.0 | 1776 | 1.2021 | | 0.4781 | 889.0 | 1778 | 1.2052 | | 0.4781 | 890.0 | 1780 | 1.2025 | | 0.4781 | 891.0 | 1782 | 1.1933 | | 0.4781 | 892.0 | 1784 | 1.1826 | | 0.4781 | 893.0 | 1786 | 1.1776 | | 0.4781 | 894.0 | 1788 | 1.1763 | | 0.4781 | 895.0 | 1790 | 1.1821 | | 0.4781 | 896.0 | 1792 | 1.1854 | | 0.4781 | 897.0 | 1794 | 1.1868 | | 0.4781 | 898.0 | 1796 | 1.1878 | | 0.4781 | 899.0 | 1798 | 1.1890 | | 0.4781 | 900.0 | 1800 | 1.1905 | | 0.4781 | 901.0 | 1802 | 1.1942 | | 0.4781 | 902.0 | 1804 | 1.2136 | | 0.4781 | 903.0 | 1806 | 1.2305 | | 0.4781 | 904.0 | 1808 | 1.2426 | | 0.4781 | 905.0 | 1810 | 1.2523 | | 0.4781 | 906.0 | 1812 | 1.2593 | | 0.4781 | 907.0 | 1814 | 1.2618 | | 0.4781 | 908.0 | 1816 | 1.2625 | | 0.4781 | 909.0 | 1818 | 1.2613 | | 0.4781 | 910.0 | 1820 | 1.2596 | | 0.4781 | 911.0 | 1822 | 1.2605 | | 0.4781 | 912.0 | 1824 | 1.2504 | | 0.4781 | 913.0 | 1826 | 1.2427 | | 0.4781 | 914.0 | 1828 | 1.2358 | | 0.4781 | 915.0 | 1830 | 1.2246 | | 0.4781 | 916.0 | 1832 | 1.2173 | | 0.4781 | 917.0 | 1834 | 1.2084 | | 0.4781 | 918.0 | 1836 | 1.2005 | | 0.4781 | 919.0 | 1838 | 1.1952 | | 0.4781 | 920.0 | 1840 | 1.1893 | | 0.4781 | 921.0 | 1842 | 1.1834 | | 0.4781 | 922.0 | 1844 | 1.1787 | | 0.4781 | 923.0 | 1846 | 1.1772 | | 0.4781 | 924.0 | 1848 | 1.1807 | | 0.4781 | 925.0 | 1850 | 1.1827 | | 0.4781 | 926.0 | 1852 | 1.1802 | | 0.4781 | 927.0 | 1854 | 1.1719 | | 0.4781 | 928.0 | 1856 | 1.1645 | | 0.4781 | 929.0 | 1858 | 1.1588 | | 0.4781 | 930.0 | 1860 | 1.1545 | | 0.4781 | 931.0 | 1862 | 1.1484 | | 0.4781 | 932.0 | 1864 | 1.1457 | | 0.4781 | 933.0 | 1866 | 1.1498 | | 0.4781 | 934.0 | 1868 | 1.1540 | | 0.4781 | 935.0 | 1870 | 1.1583 | | 0.4781 | 936.0 | 1872 | 1.1654 | | 0.4781 | 937.0 | 1874 | 1.1699 | | 0.4781 | 938.0 | 1876 | 1.1711 | | 0.4781 | 939.0 | 1878 | 1.1712 | | 0.4781 | 940.0 | 1880 | 1.1711 | | 0.4781 | 941.0 | 1882 | 1.1666 | | 0.4781 | 942.0 | 1884 | 1.1616 | | 0.4781 | 943.0 | 1886 | 1.1570 | | 0.4781 | 944.0 | 1888 | 1.1553 | | 0.4781 | 945.0 | 1890 | 1.1491 | | 0.4781 | 946.0 | 1892 | 1.1462 | | 0.4781 | 947.0 | 1894 | 1.1463 | | 0.4781 | 948.0 | 1896 | 1.1474 | | 0.4781 | 949.0 | 1898 | 1.1492 | | 0.4781 | 950.0 | 1900 | 1.1492 | | 0.4781 | 951.0 | 1902 | 1.1489 | | 0.4781 | 952.0 | 1904 | 1.1479 | | 0.4781 | 953.0 | 1906 | 1.1457 | | 0.4781 | 954.0 | 1908 | 1.1440 | | 0.4781 | 955.0 | 1910 | 1.1443 | | 0.4781 | 956.0 | 1912 | 1.1447 | | 0.4781 | 957.0 | 1914 | 1.1447 | | 0.4781 | 958.0 | 1916 | 1.1444 | | 0.4781 | 959.0 | 1918 | 1.1450 | | 0.4781 | 960.0 | 1920 | 1.1451 | | 0.4781 | 961.0 | 1922 | 1.1453 | | 0.4781 | 962.0 | 1924 | 1.1463 | | 0.4781 | 963.0 | 1926 | 1.1490 | | 0.4781 | 964.0 | 1928 | 1.1537 | | 0.4781 | 965.0 | 1930 | 1.1580 | | 0.4781 | 966.0 | 1932 | 1.1643 | | 0.4781 | 967.0 | 1934 | 1.1692 | | 0.4781 | 968.0 | 1936 | 1.1718 | | 0.4781 | 969.0 | 1938 | 1.1724 | | 0.4781 | 970.0 | 1940 | 1.1727 | | 0.4781 | 971.0 | 1942 | 1.1723 | | 0.4781 | 972.0 | 1944 | 1.1693 | | 0.4781 | 973.0 | 1946 | 1.1680 | | 0.4781 | 974.0 | 1948 | 1.1688 | | 0.4781 | 975.0 | 1950 | 1.1672 | | 0.4781 | 976.0 | 1952 | 1.1627 | | 0.4781 | 977.0 | 1954 | 1.1624 | | 0.4781 | 978.0 | 1956 | 1.1678 | | 0.4781 | 979.0 | 1958 | 1.1717 | | 0.4781 | 980.0 | 1960 | 1.1736 | | 0.4781 | 981.0 | 1962 | 1.1759 | | 0.4781 | 982.0 | 1964 | 1.1795 | | 0.4781 | 983.0 | 1966 | 1.1812 | | 0.4781 | 984.0 | 1968 | 1.1834 | | 0.4781 | 985.0 | 1970 | 1.1980 | | 0.4781 | 986.0 | 1972 | 1.1982 | | 0.4781 | 987.0 | 1974 | 1.1993 | | 0.4781 | 988.0 | 1976 | 1.2106 | | 0.4781 | 989.0 | 1978 | 1.2199 | | 0.4781 | 990.0 | 1980 | 1.2036 | | 0.4781 | 991.0 | 1982 | 1.1897 | | 0.4781 | 992.0 | 1984 | 1.1758 | | 0.4781 | 993.0 | 1986 | 1.1654 | | 0.4781 | 994.0 | 1988 | 1.1530 | | 0.4781 | 995.0 | 1990 | 1.1440 | | 0.4781 | 996.0 | 1992 | 1.1348 | | 0.4781 | 997.0 | 1994 | 1.1304 | | 0.4781 | 998.0 | 1996 | 1.1295 | | 0.4781 | 999.0 | 1998 | 1.1265 | | 0.4785 | 1000.0 | 2000 | 1.1260 | | 0.4785 | 1001.0 | 2002 | 1.1296 | | 0.4785 | 1002.0 | 2004 | 1.1355 | | 0.4785 | 1003.0 | 2006 | 1.1381 | | 0.4785 | 1004.0 | 2008 | 1.1415 | | 0.4785 | 1005.0 | 2010 | 1.1478 | | 0.4785 | 1006.0 | 2012 | 1.1545 | | 0.4785 | 1007.0 | 2014 | 1.1680 | | 0.4785 | 1008.0 | 2016 | 1.1800 | | 0.4785 | 1009.0 | 2018 | 1.1872 | | 0.4785 | 1010.0 | 2020 | 1.1931 | | 0.4785 | 1011.0 | 2022 | 1.1985 | | 0.4785 | 1012.0 | 2024 | 1.2033 | | 0.4785 | 1013.0 | 2026 | 1.2063 | | 0.4785 | 1014.0 | 2028 | 1.2042 | | 0.4785 | 1015.0 | 2030 | 1.2017 | | 0.4785 | 1016.0 | 2032 | 1.2037 | | 0.4785 | 1017.0 | 2034 | 1.2036 | | 0.4785 | 1018.0 | 2036 | 1.2058 | | 0.4785 | 1019.0 | 2038 | 1.2071 | | 0.4785 | 1020.0 | 2040 | 1.2059 | | 0.4785 | 1021.0 | 2042 | 1.1991 | | 0.4785 | 1022.0 | 2044 | 1.1959 | | 0.4785 | 1023.0 | 2046 | 1.1912 | | 0.4785 | 1024.0 | 2048 | 1.1871 | | 0.4785 | 1025.0 | 2050 | 1.2293 | | 0.4785 | 1026.0 | 2052 | 1.2629 | | 0.4785 | 1027.0 | 2054 | 1.2895 | | 0.4785 | 1028.0 | 2056 | 1.3061 | | 0.4785 | 1029.0 | 2058 | 1.3118 | | 0.4785 | 1030.0 | 2060 | 1.3028 | | 0.4785 | 1031.0 | 2062 | 1.2915 | | 0.4785 | 1032.0 | 2064 | 1.2800 | | 0.4785 | 1033.0 | 2066 | 1.2651 | | 0.4785 | 1034.0 | 2068 | 1.2486 | | 0.4785 | 1035.0 | 2070 | 1.2239 | | 0.4785 | 1036.0 | 2072 | 1.2043 | | 0.4785 | 1037.0 | 2074 | 1.1911 | | 0.4785 | 1038.0 | 2076 | 1.1826 | | 0.4785 | 1039.0 | 2078 | 1.1786 | | 0.4785 | 1040.0 | 2080 | 1.1763 | | 0.4785 | 1041.0 | 2082 | 1.1767 | | 0.4785 | 1042.0 | 2084 | 1.1775 | | 0.4785 | 1043.0 | 2086 | 1.1826 | | 0.4785 | 1044.0 | 2088 | 1.1873 | | 0.4785 | 1045.0 | 2090 | 1.1916 | | 0.4785 | 1046.0 | 2092 | 1.2039 | | 0.4785 | 1047.0 | 2094 | 1.2167 | | 0.4785 | 1048.0 | 2096 | 1.2258 | | 0.4785 | 1049.0 | 2098 | 1.2322 | | 0.4785 | 1050.0 | 2100 | 1.2385 | | 0.4785 | 1051.0 | 2102 | 1.2439 | | 0.4785 | 1052.0 | 2104 | 1.2470 | | 0.4785 | 1053.0 | 2106 | 1.2492 | | 0.4785 | 1054.0 | 2108 | 1.2515 | | 0.4785 | 1055.0 | 2110 | 1.2519 | | 0.4785 | 1056.0 | 2112 | 1.2516 | | 0.4785 | 1057.0 | 2114 | 1.2512 | | 0.4785 | 1058.0 | 2116 | 1.2502 | | 0.4785 | 1059.0 | 2118 | 1.2485 | | 0.4785 | 1060.0 | 2120 | 1.2457 | | 0.4785 | 1061.0 | 2122 | 1.2373 | | 0.4785 | 1062.0 | 2124 | 1.2280 | | 0.4785 | 1063.0 | 2126 | 1.2303 | | 0.4785 | 1064.0 | 2128 | 1.2325 | | 0.4785 | 1065.0 | 2130 | 1.2314 | | 0.4785 | 1066.0 | 2132 | 1.2312 | | 0.4785 | 1067.0 | 2134 | 1.2283 | | 0.4785 | 1068.0 | 2136 | 1.2274 | | 0.4785 | 1069.0 | 2138 | 1.2313 | | 0.4785 | 1070.0 | 2140 | 1.2404 | | 0.4785 | 1071.0 | 2142 | 1.2493 | | 0.4785 | 1072.0 | 2144 | 1.2654 | | 0.4785 | 1073.0 | 2146 | 1.2767 | | 0.4785 | 1074.0 | 2148 | 1.2787 | | 0.4785 | 1075.0 | 2150 | 1.2802 | | 0.4785 | 1076.0 | 2152 | 1.2777 | | 0.4785 | 1077.0 | 2154 | 1.2750 | | 0.4785 | 1078.0 | 2156 | 1.2743 | | 0.4785 | 1079.0 | 2158 | 1.2729 | | 0.4785 | 1080.0 | 2160 | 1.2711 | | 0.4785 | 1081.0 | 2162 | 1.2691 | | 0.4785 | 1082.0 | 2164 | 1.2672 | | 0.4785 | 1083.0 | 2166 | 1.2659 | | 0.4785 | 1084.0 | 2168 | 1.2641 | | 0.4785 | 1085.0 | 2170 | 1.2618 | | 0.4785 | 1086.0 | 2172 | 1.2580 | | 0.4785 | 1087.0 | 2174 | 1.2571 | | 0.4785 | 1088.0 | 2176 | 1.2552 | | 0.4785 | 1089.0 | 2178 | 1.2529 | | 0.4785 | 1090.0 | 2180 | 1.2513 | | 0.4785 | 1091.0 | 2182 | 1.2493 | | 0.4785 | 1092.0 | 2184 | 1.2449 | | 0.4785 | 1093.0 | 2186 | 1.2375 | | 0.4785 | 1094.0 | 2188 | 1.2298 | | 0.4785 | 1095.0 | 2190 | 1.2240 | | 0.4785 | 1096.0 | 2192 | 1.2166 | | 0.4785 | 1097.0 | 2194 | 1.2073 | | 0.4785 | 1098.0 | 2196 | 1.2012 | | 0.4785 | 1099.0 | 2198 | 1.1973 | | 0.4785 | 1100.0 | 2200 | 1.1885 | | 0.4785 | 1101.0 | 2202 | 1.1834 | | 0.4785 | 1102.0 | 2204 | 1.1892 | | 0.4785 | 1103.0 | 2206 | 1.1970 | | 0.4785 | 1104.0 | 2208 | 1.1964 | | 0.4785 | 1105.0 | 2210 | 1.1834 | | 0.4785 | 1106.0 | 2212 | 1.1803 | | 0.4785 | 1107.0 | 2214 | 1.1775 | | 0.4785 | 1108.0 | 2216 | 1.1648 | | 0.4785 | 1109.0 | 2218 | 1.1581 | | 0.4785 | 1110.0 | 2220 | 1.1575 | | 0.4785 | 1111.0 | 2222 | 1.1600 | | 0.4785 | 1112.0 | 2224 | 1.1493 | | 0.4785 | 1113.0 | 2226 | 1.1433 | | 0.4785 | 1114.0 | 2228 | 1.1488 | | 0.4785 | 1115.0 | 2230 | 1.1570 | | 0.4785 | 1116.0 | 2232 | 1.1730 | | 0.4785 | 1117.0 | 2234 | 1.1817 | | 0.4785 | 1118.0 | 2236 | 1.1934 | | 0.4785 | 1119.0 | 2238 | 1.2062 | | 0.4785 | 1120.0 | 2240 | 1.2129 | | 0.4785 | 1121.0 | 2242 | 1.2208 | | 0.4785 | 1122.0 | 2244 | 1.2289 | | 0.4785 | 1123.0 | 2246 | 1.2361 | | 0.4785 | 1124.0 | 2248 | 1.2382 | | 0.4785 | 1125.0 | 2250 | 1.2393 | | 0.4785 | 1126.0 | 2252 | 1.2392 | | 0.4785 | 1127.0 | 2254 | 1.2390 | | 0.4785 | 1128.0 | 2256 | 1.2392 | | 0.4785 | 1129.0 | 2258 | 1.2394 | | 0.4785 | 1130.0 | 2260 | 1.2401 | | 0.4785 | 1131.0 | 2262 | 1.2423 | | 0.4785 | 1132.0 | 2264 | 1.2444 | | 0.4785 | 1133.0 | 2266 | 1.2469 | | 0.4785 | 1134.0 | 2268 | 1.2499 | | 0.4785 | 1135.0 | 2270 | 1.2499 | | 0.4785 | 1136.0 | 2272 | 1.2474 | | 0.4785 | 1137.0 | 2274 | 1.2358 | | 0.4785 | 1138.0 | 2276 | 1.2051 | | 0.4785 | 1139.0 | 2278 | 1.1686 | | 0.4785 | 1140.0 | 2280 | 1.1572 | | 0.4785 | 1141.0 | 2282 | 1.1571 | | 0.4785 | 1142.0 | 2284 | 1.1563 | | 0.4785 | 1143.0 | 2286 | 1.1557 | | 0.4785 | 1144.0 | 2288 | 1.1525 | | 0.4785 | 1145.0 | 2290 | 1.1454 | | 0.4785 | 1146.0 | 2292 | 1.1454 | | 0.4785 | 1147.0 | 2294 | 1.1520 | | 0.4785 | 1148.0 | 2296 | 1.1847 | | 0.4785 | 1149.0 | 2298 | 1.2197 | | 0.4785 | 1150.0 | 2300 | 1.2432 | | 0.4785 | 1151.0 | 2302 | 1.2558 | | 0.4785 | 1152.0 | 2304 | 1.2646 | | 0.4785 | 1153.0 | 2306 | 1.2735 | | 0.4785 | 1154.0 | 2308 | 1.2799 | | 0.4785 | 1155.0 | 2310 | 1.2850 | | 0.4785 | 1156.0 | 2312 | 1.2861 | | 0.4785 | 1157.0 | 2314 | 1.2867 | | 0.4785 | 1158.0 | 2316 | 1.2868 | | 0.4785 | 1159.0 | 2318 | 1.2854 | | 0.4785 | 1160.0 | 2320 | 1.2828 | | 0.4785 | 1161.0 | 2322 | 1.2797 | | 0.4785 | 1162.0 | 2324 | 1.2766 | | 0.4785 | 1163.0 | 2326 | 1.2729 | | 0.4785 | 1164.0 | 2328 | 1.2721 | | 0.4785 | 1165.0 | 2330 | 1.2740 | | 0.4785 | 1166.0 | 2332 | 1.2761 | | 0.4785 | 1167.0 | 2334 | 1.2774 | | 0.4785 | 1168.0 | 2336 | 1.2775 | | 0.4785 | 1169.0 | 2338 | 1.2774 | | 0.4785 | 1170.0 | 2340 | 1.2765 | | 0.4785 | 1171.0 | 2342 | 1.2750 | | 0.4785 | 1172.0 | 2344 | 1.2736 | | 0.4785 | 1173.0 | 2346 | 1.2713 | | 0.4785 | 1174.0 | 2348 | 1.2706 | | 0.4785 | 1175.0 | 2350 | 1.2726 | | 0.4785 | 1176.0 | 2352 | 1.2741 | | 0.4785 | 1177.0 | 2354 | 1.2749 | | 0.4785 | 1178.0 | 2356 | 1.2766 | | 0.4785 | 1179.0 | 2358 | 1.2762 | | 0.4785 | 1180.0 | 2360 | 1.2757 | | 0.4785 | 1181.0 | 2362 | 1.2758 | | 0.4785 | 1182.0 | 2364 | 1.2767 | | 0.4785 | 1183.0 | 2366 | 1.2794 | | 0.4785 | 1184.0 | 2368 | 1.2813 | | 0.4785 | 1185.0 | 2370 | 1.2814 | | 0.4785 | 1186.0 | 2372 | 1.2815 | | 0.4785 | 1187.0 | 2374 | 1.2820 | | 0.4785 | 1188.0 | 2376 | 1.2825 | | 0.4785 | 1189.0 | 2378 | 1.2819 | | 0.4785 | 1190.0 | 2380 | 1.2810 | | 0.4785 | 1191.0 | 2382 | 1.2795 | | 0.4785 | 1192.0 | 2384 | 1.2786 | | 0.4785 | 1193.0 | 2386 | 1.2764 | | 0.4785 | 1194.0 | 2388 | 1.2746 | | 0.4785 | 1195.0 | 2390 | 1.2724 | | 0.4785 | 1196.0 | 2392 | 1.2698 | | 0.4785 | 1197.0 | 2394 | 1.2675 | | 0.4785 | 1198.0 | 2396 | 1.2663 | | 0.4785 | 1199.0 | 2398 | 1.2650 | | 0.4785 | 1200.0 | 2400 | 1.2633 | | 0.4785 | 1201.0 | 2402 | 1.2609 | | 0.4785 | 1202.0 | 2404 | 1.2592 | | 0.4785 | 1203.0 | 2406 | 1.2554 | | 0.4785 | 1204.0 | 2408 | 1.2543 | | 0.4785 | 1205.0 | 2410 | 1.2521 | | 0.4785 | 1206.0 | 2412 | 1.2567 | | 0.4785 | 1207.0 | 2414 | 1.2675 | | 0.4785 | 1208.0 | 2416 | 1.2765 | | 0.4785 | 1209.0 | 2418 | 1.2839 | | 0.4785 | 1210.0 | 2420 | 1.2909 | | 0.4785 | 1211.0 | 2422 | 1.2958 | | 0.4785 | 1212.0 | 2424 | 1.2982 | | 0.4785 | 1213.0 | 2426 | 1.2990 | | 0.4785 | 1214.0 | 2428 | 1.3002 | | 0.4785 | 1215.0 | 2430 | 1.2989 | | 0.4785 | 1216.0 | 2432 | 1.2956 | | 0.4785 | 1217.0 | 2434 | 1.2921 | | 0.4785 | 1218.0 | 2436 | 1.2890 | | 0.4785 | 1219.0 | 2438 | 1.2800 | | 0.4785 | 1220.0 | 2440 | 1.2706 | | 0.4785 | 1221.0 | 2442 | 1.2624 | | 0.4785 | 1222.0 | 2444 | 1.2545 | | 0.4785 | 1223.0 | 2446 | 1.2452 | | 0.4785 | 1224.0 | 2448 | 1.2374 | | 0.4785 | 1225.0 | 2450 | 1.2324 | | 0.4785 | 1226.0 | 2452 | 1.2325 | | 0.4785 | 1227.0 | 2454 | 1.2294 | | 0.4785 | 1228.0 | 2456 | 1.2235 | | 0.4785 | 1229.0 | 2458 | 1.2164 | | 0.4785 | 1230.0 | 2460 | 1.2084 | | 0.4785 | 1231.0 | 2462 | 1.2084 | | 0.4785 | 1232.0 | 2464 | 1.2079 | | 0.4785 | 1233.0 | 2466 | 1.2103 | | 0.4785 | 1234.0 | 2468 | 1.2140 | | 0.4785 | 1235.0 | 2470 | 1.2188 | | 0.4785 | 1236.0 | 2472 | 1.2234 | | 0.4785 | 1237.0 | 2474 | 1.2299 | | 0.4785 | 1238.0 | 2476 | 1.2364 | | 0.4785 | 1239.0 | 2478 | 1.2413 | | 0.4785 | 1240.0 | 2480 | 1.2446 | | 0.4785 | 1241.0 | 2482 | 1.2477 | | 0.4785 | 1242.0 | 2484 | 1.2517 | | 0.4785 | 1243.0 | 2486 | 1.2548 | | 0.4785 | 1244.0 | 2488 | 1.2565 | | 0.4785 | 1245.0 | 2490 | 1.2581 | | 0.4785 | 1246.0 | 2492 | 1.2598 | | 0.4785 | 1247.0 | 2494 | 1.2605 | | 0.4785 | 1248.0 | 2496 | 1.2630 | | 0.4785 | 1249.0 | 2498 | 1.2512 | | 0.4776 | 1250.0 | 2500 | 1.2253 | | 0.4776 | 1251.0 | 2502 | 1.2045 | | 0.4776 | 1252.0 | 2504 | 1.1972 | | 0.4776 | 1253.0 | 2506 | 1.1981 | | 0.4776 | 1254.0 | 2508 | 1.1989 | | 0.4776 | 1255.0 | 2510 | 1.1981 | | 0.4776 | 1256.0 | 2512 | 1.1980 | | 0.4776 | 1257.0 | 2514 | 1.1981 | | 0.4776 | 1258.0 | 2516 | 1.1932 | | 0.4776 | 1259.0 | 2518 | 1.1888 | | 0.4776 | 1260.0 | 2520 | 1.1837 | | 0.4776 | 1261.0 | 2522 | 1.1776 | | 0.4776 | 1262.0 | 2524 | 1.1761 | | 0.4776 | 1263.0 | 2526 | 1.1791 | | 0.4776 | 1264.0 | 2528 | 1.1889 | | 0.4776 | 1265.0 | 2530 | 1.1988 | | 0.4776 | 1266.0 | 2532 | 1.2035 | | 0.4776 | 1267.0 | 2534 | 1.2069 | | 0.4776 | 1268.0 | 2536 | 1.2046 | | 0.4776 | 1269.0 | 2538 | 1.2051 | | 0.4776 | 1270.0 | 2540 | 1.2029 | | 0.4776 | 1271.0 | 2542 | 1.2000 | | 0.4776 | 1272.0 | 2544 | 1.1959 | | 0.4776 | 1273.0 | 2546 | 1.1967 | | 0.4776 | 1274.0 | 2548 | 1.1910 | | 0.4776 | 1275.0 | 2550 | 1.1881 | | 0.4776 | 1276.0 | 2552 | 1.1774 | | 0.4776 | 1277.0 | 2554 | 1.1647 | | 0.4776 | 1278.0 | 2556 | 1.1587 | | 0.4776 | 1279.0 | 2558 | 1.1595 | | 0.4776 | 1280.0 | 2560 | 1.1641 | | 0.4776 | 1281.0 | 2562 | 1.1694 | | 0.4776 | 1282.0 | 2564 | 1.1757 | | 0.4776 | 1283.0 | 2566 | 1.1906 | | 0.4776 | 1284.0 | 2568 | 1.2120 | | 0.4776 | 1285.0 | 2570 | 1.2318 | | 0.4776 | 1286.0 | 2572 | 1.2443 | | 0.4776 | 1287.0 | 2574 | 1.2540 | | 0.4776 | 1288.0 | 2576 | 1.2575 | | 0.4776 | 1289.0 | 2578 | 1.2605 | | 0.4776 | 1290.0 | 2580 | 1.2632 | | 0.4776 | 1291.0 | 2582 | 1.2656 | | 0.4776 | 1292.0 | 2584 | 1.2646 | | 0.4776 | 1293.0 | 2586 | 1.2643 | | 0.4776 | 1294.0 | 2588 | 1.2640 | | 0.4776 | 1295.0 | 2590 | 1.2644 | | 0.4776 | 1296.0 | 2592 | 1.2658 | | 0.4776 | 1297.0 | 2594 | 1.2665 | | 0.4776 | 1298.0 | 2596 | 1.2665 | | 0.4776 | 1299.0 | 2598 | 1.2661 | | 0.4776 | 1300.0 | 2600 | 1.2653 | | 0.4776 | 1301.0 | 2602 | 1.2651 | | 0.4776 | 1302.0 | 2604 | 1.2652 | | 0.4776 | 1303.0 | 2606 | 1.2654 | | 0.4776 | 1304.0 | 2608 | 1.2643 | | 0.4776 | 1305.0 | 2610 | 1.2633 | | 0.4776 | 1306.0 | 2612 | 1.2608 | | 0.4776 | 1307.0 | 2614 | 1.2589 | | 0.4776 | 1308.0 | 2616 | 1.2581 | | 0.4776 | 1309.0 | 2618 | 1.2578 | | 0.4776 | 1310.0 | 2620 | 1.2574 | | 0.4776 | 1311.0 | 2622 | 1.2556 | | 0.4776 | 1312.0 | 2624 | 1.2535 | | 0.4776 | 1313.0 | 2626 | 1.2511 | | 0.4776 | 1314.0 | 2628 | 1.2496 | | 0.4776 | 1315.0 | 2630 | 1.2490 | | 0.4776 | 1316.0 | 2632 | 1.2498 | | 0.4776 | 1317.0 | 2634 | 1.2512 | | 0.4776 | 1318.0 | 2636 | 1.2514 | | 0.4776 | 1319.0 | 2638 | 1.2508 | | 0.4776 | 1320.0 | 2640 | 1.2501 | | 0.4776 | 1321.0 | 2642 | 1.2479 | | 0.4776 | 1322.0 | 2644 | 1.2458 | | 0.4776 | 1323.0 | 2646 | 1.2436 | | 0.4776 | 1324.0 | 2648 | 1.2426 | | 0.4776 | 1325.0 | 2650 | 1.2445 | | 0.4776 | 1326.0 | 2652 | 1.2458 | | 0.4776 | 1327.0 | 2654 | 1.2430 | | 0.4776 | 1328.0 | 2656 | 1.2369 | | 0.4776 | 1329.0 | 2658 | 1.2298 | | 0.4776 | 1330.0 | 2660 | 1.2232 | | 0.4776 | 1331.0 | 2662 | 1.2157 | | 0.4776 | 1332.0 | 2664 | 1.2062 | | 0.4776 | 1333.0 | 2666 | 1.1999 | | 0.4776 | 1334.0 | 2668 | 1.1974 | | 0.4776 | 1335.0 | 2670 | 1.1988 | | 0.4776 | 1336.0 | 2672 | 1.2024 | | 0.4776 | 1337.0 | 2674 | 1.2041 | | 0.4776 | 1338.0 | 2676 | 1.2073 | | 0.4776 | 1339.0 | 2678 | 1.2076 | | 0.4776 | 1340.0 | 2680 | 1.2092 | | 0.4776 | 1341.0 | 2682 | 1.2159 | | 0.4776 | 1342.0 | 2684 | 1.2192 | | 0.4776 | 1343.0 | 2686 | 1.2202 | | 0.4776 | 1344.0 | 2688 | 1.2206 | | 0.4776 | 1345.0 | 2690 | 1.2229 | | 0.4776 | 1346.0 | 2692 | 1.2252 | | 0.4776 | 1347.0 | 2694 | 1.2247 | | 0.4776 | 1348.0 | 2696 | 1.2225 | | 0.4776 | 1349.0 | 2698 | 1.2210 | | 0.4776 | 1350.0 | 2700 | 1.2181 | | 0.4776 | 1351.0 | 2702 | 1.2134 | | 0.4776 | 1352.0 | 2704 | 1.2085 | | 0.4776 | 1353.0 | 2706 | 1.2028 | | 0.4776 | 1354.0 | 2708 | 1.2030 | | 0.4776 | 1355.0 | 2710 | 1.2042 | | 0.4776 | 1356.0 | 2712 | 1.2050 | | 0.4776 | 1357.0 | 2714 | 1.2049 | | 0.4776 | 1358.0 | 2716 | 1.2060 | | 0.4776 | 1359.0 | 2718 | 1.2039 | | 0.4776 | 1360.0 | 2720 | 1.2047 | | 0.4776 | 1361.0 | 2722 | 1.2044 | | 0.4776 | 1362.0 | 2724 | 1.2072 | | 0.4776 | 1363.0 | 2726 | 1.2099 | | 0.4776 | 1364.0 | 2728 | 1.2099 | | 0.4776 | 1365.0 | 2730 | 1.2082 | | 0.4776 | 1366.0 | 2732 | 1.2083 | | 0.4776 | 1367.0 | 2734 | 1.2115 | | 0.4776 | 1368.0 | 2736 | 1.2154 | | 0.4776 | 1369.0 | 2738 | 1.2166 | | 0.4776 | 1370.0 | 2740 | 1.2202 | | 0.4776 | 1371.0 | 2742 | 1.2248 | | 0.4776 | 1372.0 | 2744 | 1.2285 | | 0.4776 | 1373.0 | 2746 | 1.2331 | | 0.4776 | 1374.0 | 2748 | 1.2364 | | 0.4776 | 1375.0 | 2750 | 1.2392 | | 0.4776 | 1376.0 | 2752 | 1.2434 | | 0.4776 | 1377.0 | 2754 | 1.2468 | | 0.4776 | 1378.0 | 2756 | 1.2489 | | 0.4776 | 1379.0 | 2758 | 1.2504 | | 0.4776 | 1380.0 | 2760 | 1.2527 | | 0.4776 | 1381.0 | 2762 | 1.2539 | | 0.4776 | 1382.0 | 2764 | 1.2628 | | 0.4776 | 1383.0 | 2766 | 1.2715 | | 0.4776 | 1384.0 | 2768 | 1.2808 | | 0.4776 | 1385.0 | 2770 | 1.2908 | | 0.4776 | 1386.0 | 2772 | 1.2992 | | 0.4776 | 1387.0 | 2774 | 1.3029 | | 0.4776 | 1388.0 | 2776 | 1.3042 | | 0.4776 | 1389.0 | 2778 | 1.3057 | | 0.4776 | 1390.0 | 2780 | 1.3049 | | 0.4776 | 1391.0 | 2782 | 1.2997 | | 0.4776 | 1392.0 | 2784 | 1.2924 | | 0.4776 | 1393.0 | 2786 | 1.2861 | | 0.4776 | 1394.0 | 2788 | 1.2802 | | 0.4776 | 1395.0 | 2790 | 1.2728 | | 0.4776 | 1396.0 | 2792 | 1.2655 | | 0.4776 | 1397.0 | 2794 | 1.2595 | | 0.4776 | 1398.0 | 2796 | 1.2542 | | 0.4776 | 1399.0 | 2798 | 1.2492 | | 0.4776 | 1400.0 | 2800 | 1.2457 | | 0.4776 | 1401.0 | 2802 | 1.2397 | | 0.4776 | 1402.0 | 2804 | 1.2292 | | 0.4776 | 1403.0 | 2806 | 1.2216 | | 0.4776 | 1404.0 | 2808 | 1.2159 | | 0.4776 | 1405.0 | 2810 | 1.2126 | | 0.4776 | 1406.0 | 2812 | 1.2123 | | 0.4776 | 1407.0 | 2814 | 1.2132 | | 0.4776 | 1408.0 | 2816 | 1.2163 | | 0.4776 | 1409.0 | 2818 | 1.2231 | | 0.4776 | 1410.0 | 2820 | 1.2286 | | 0.4776 | 1411.0 | 2822 | 1.2326 | | 0.4776 | 1412.0 | 2824 | 1.2418 | | 0.4776 | 1413.0 | 2826 | 1.2497 | | 0.4776 | 1414.0 | 2828 | 1.2551 | | 0.4776 | 1415.0 | 2830 | 1.2587 | | 0.4776 | 1416.0 | 2832 | 1.2609 | | 0.4776 | 1417.0 | 2834 | 1.2656 | | 0.4776 | 1418.0 | 2836 | 1.2764 | | 0.4776 | 1419.0 | 2838 | 1.2883 | | 0.4776 | 1420.0 | 2840 | 1.2941 | | 0.4776 | 1421.0 | 2842 | 1.2972 | | 0.4776 | 1422.0 | 2844 | 1.3007 | | 0.4776 | 1423.0 | 2846 | 1.3036 | | 0.4776 | 1424.0 | 2848 | 1.3040 | | 0.4776 | 1425.0 | 2850 | 1.3047 | | 0.4776 | 1426.0 | 2852 | 1.3029 | | 0.4776 | 1427.0 | 2854 | 1.2976 | | 0.4776 | 1428.0 | 2856 | 1.2914 | | 0.4776 | 1429.0 | 2858 | 1.2850 | | 0.4776 | 1430.0 | 2860 | 1.2778 | | 0.4776 | 1431.0 | 2862 | 1.2711 | | 0.4776 | 1432.0 | 2864 | 1.2642 | | 0.4776 | 1433.0 | 2866 | 1.2580 | | 0.4776 | 1434.0 | 2868 | 1.2524 | | 0.4776 | 1435.0 | 2870 | 1.2447 | | 0.4776 | 1436.0 | 2872 | 1.2385 | | 0.4776 | 1437.0 | 2874 | 1.2336 | | 0.4776 | 1438.0 | 2876 | 1.2328 | | 0.4776 | 1439.0 | 2878 | 1.2337 | | 0.4776 | 1440.0 | 2880 | 1.2323 | | 0.4776 | 1441.0 | 2882 | 1.2337 | | 0.4776 | 1442.0 | 2884 | 1.2350 | | 0.4776 | 1443.0 | 2886 | 1.2350 | | 0.4776 | 1444.0 | 2888 | 1.2351 | | 0.4776 | 1445.0 | 2890 | 1.2357 | | 0.4776 | 1446.0 | 2892 | 1.2363 | | 0.4776 | 1447.0 | 2894 | 1.2367 | | 0.4776 | 1448.0 | 2896 | 1.2366 | | 0.4776 | 1449.0 | 2898 | 1.2385 | | 0.4776 | 1450.0 | 2900 | 1.2385 | | 0.4776 | 1451.0 | 2902 | 1.2400 | | 0.4776 | 1452.0 | 2904 | 1.2404 | | 0.4776 | 1453.0 | 2906 | 1.2419 | | 0.4776 | 1454.0 | 2908 | 1.2431 | | 0.4776 | 1455.0 | 2910 | 1.2477 | | 0.4776 | 1456.0 | 2912 | 1.2485 | | 0.4776 | 1457.0 | 2914 | 1.2568 | | 0.4776 | 1458.0 | 2916 | 1.2655 | | 0.4776 | 1459.0 | 2918 | 1.2744 | | 0.4776 | 1460.0 | 2920 | 1.2770 | | 0.4776 | 1461.0 | 2922 | 1.2726 | | 0.4776 | 1462.0 | 2924 | 1.2615 | | 0.4776 | 1463.0 | 2926 | 1.2530 | | 0.4776 | 1464.0 | 2928 | 1.2452 | | 0.4776 | 1465.0 | 2930 | 1.2369 | | 0.4776 | 1466.0 | 2932 | 1.2314 | | 0.4776 | 1467.0 | 2934 | 1.2226 | | 0.4776 | 1468.0 | 2936 | 1.2295 | | 0.4776 | 1469.0 | 2938 | 1.2430 | | 0.4776 | 1470.0 | 2940 | 1.2523 | | 0.4776 | 1471.0 | 2942 | 1.2602 | | 0.4776 | 1472.0 | 2944 | 1.2596 | | 0.4776 | 1473.0 | 2946 | 1.2754 | | 0.4776 | 1474.0 | 2948 | 1.3028 | | 0.4776 | 1475.0 | 2950 | 1.1662 | | 0.4776 | 1476.0 | 2952 | 1.1023 | | 0.4776 | 1477.0 | 2954 | 1.1358 | | 0.4776 | 1478.0 | 2956 | 1.2325 | | 0.4776 | 1479.0 | 2958 | 1.3017 | | 0.4776 | 1480.0 | 2960 | 1.3281 | | 0.4776 | 1481.0 | 2962 | 1.3232 | | 0.4776 | 1482.0 | 2964 | 1.3235 | | 0.4776 | 1483.0 | 2966 | 1.3584 | | 0.4776 | 1484.0 | 2968 | 1.3943 | | 0.4776 | 1485.0 | 2970 | 1.4020 | | 0.4776 | 1486.0 | 2972 | 1.3987 | | 0.4776 | 1487.0 | 2974 | 1.3949 | | 0.4776 | 1488.0 | 2976 | 1.3819 | | 0.4776 | 1489.0 | 2978 | 1.3643 | | 0.4776 | 1490.0 | 2980 | 1.3430 | | 0.4776 | 1491.0 | 2982 | 1.3178 | | 0.4776 | 1492.0 | 2984 | 1.2924 | | 0.4776 | 1493.0 | 2986 | 1.2658 | | 0.4776 | 1494.0 | 2988 | 1.2485 | | 0.4776 | 1495.0 | 2990 | 1.2315 | | 0.4776 | 1496.0 | 2992 | 1.2149 | | 0.4776 | 1497.0 | 2994 | 1.1984 | | 0.4776 | 1498.0 | 2996 | 1.1837 | | 0.4776 | 1499.0 | 2998 | 1.1755 | | 0.4293 | 1500.0 | 3000 | 1.1671 | | 0.4293 | 1501.0 | 3002 | 1.1605 | | 0.4293 | 1502.0 | 3004 | 1.1546 | | 0.4293 | 1503.0 | 3006 | 1.1614 | | 0.4293 | 1504.0 | 3008 | 1.1678 | | 0.4293 | 1505.0 | 3010 | 1.1733 | | 0.4293 | 1506.0 | 3012 | 1.1768 | | 0.4293 | 1507.0 | 3014 | 1.1782 | | 0.4293 | 1508.0 | 3016 | 1.1803 | | 0.4293 | 1509.0 | 3018 | 1.1814 | | 0.4293 | 1510.0 | 3020 | 1.1868 | | 0.4293 | 1511.0 | 3022 | 1.1985 | | 0.4293 | 1512.0 | 3024 | 1.2086 | | 0.4293 | 1513.0 | 3026 | 1.2192 | | 0.4293 | 1514.0 | 3028 | 1.2179 | | 0.4293 | 1515.0 | 3030 | 1.2257 | | 0.4293 | 1516.0 | 3032 | 1.2354 | | 0.4293 | 1517.0 | 3034 | 1.2448 | | 0.4293 | 1518.0 | 3036 | 1.2579 | | 0.4293 | 1519.0 | 3038 | 1.2649 | | 0.4293 | 1520.0 | 3040 | 1.2681 | | 0.4293 | 1521.0 | 3042 | 1.2677 | | 0.4293 | 1522.0 | 3044 | 1.2616 | | 0.4293 | 1523.0 | 3046 | 1.2519 | | 0.4293 | 1524.0 | 3048 | 1.2442 | | 0.4293 | 1525.0 | 3050 | 1.2377 | | 0.4293 | 1526.0 | 3052 | 1.2318 | | 0.4293 | 1527.0 | 3054 | 1.2254 | | 0.4293 | 1528.0 | 3056 | 1.2198 | | 0.4293 | 1529.0 | 3058 | 1.2149 | | 0.4293 | 1530.0 | 3060 | 1.2111 | | 0.4293 | 1531.0 | 3062 | 1.2077 | | 0.4293 | 1532.0 | 3064 | 1.2047 | | 0.4293 | 1533.0 | 3066 | 1.2044 | | 0.4293 | 1534.0 | 3068 | 1.2046 | | 0.4293 | 1535.0 | 3070 | 1.2043 | | 0.4293 | 1536.0 | 3072 | 1.2045 | | 0.4293 | 1537.0 | 3074 | 1.2060 | | 0.4293 | 1538.0 | 3076 | 1.2080 | | 0.4293 | 1539.0 | 3078 | 1.2094 | | 0.4293 | 1540.0 | 3080 | 1.2106 | | 0.4293 | 1541.0 | 3082 | 1.2118 | | 0.4293 | 1542.0 | 3084 | 1.2129 | | 0.4293 | 1543.0 | 3086 | 1.2140 | | 0.4293 | 1544.0 | 3088 | 1.2148 | | 0.4293 | 1545.0 | 3090 | 1.2151 | | 0.4293 | 1546.0 | 3092 | 1.2161 | | 0.4293 | 1547.0 | 3094 | 1.2172 | | 0.4293 | 1548.0 | 3096 | 1.2184 | | 0.4293 | 1549.0 | 3098 | 1.2195 | | 0.4293 | 1550.0 | 3100 | 1.2199 | | 0.4293 | 1551.0 | 3102 | 1.2188 | | 0.4293 | 1552.0 | 3104 | 1.2166 | | 0.4293 | 1553.0 | 3106 | 1.2167 | | 0.4293 | 1554.0 | 3108 | 1.2170 | | 0.4293 | 1555.0 | 3110 | 1.2161 | | 0.4293 | 1556.0 | 3112 | 1.2156 | | 0.4293 | 1557.0 | 3114 | 1.2171 | | 0.4293 | 1558.0 | 3116 | 1.2183 | | 0.4293 | 1559.0 | 3118 | 1.2175 | | 0.4293 | 1560.0 | 3120 | 1.2176 | | 0.4293 | 1561.0 | 3122 | 1.2195 | | 0.4293 | 1562.0 | 3124 | 1.2167 | | 0.4293 | 1563.0 | 3126 | 1.2125 | | 0.4293 | 1564.0 | 3128 | 1.2086 | | 0.4293 | 1565.0 | 3130 | 1.2105 | | 0.4293 | 1566.0 | 3132 | 1.2115 | | 0.4293 | 1567.0 | 3134 | 1.2120 | | 0.4293 | 1568.0 | 3136 | 1.2121 | | 0.4293 | 1569.0 | 3138 | 1.2127 | | 0.4293 | 1570.0 | 3140 | 1.2131 | | 0.4293 | 1571.0 | 3142 | 1.2128 | | 0.4293 | 1572.0 | 3144 | 1.2167 | | 0.4293 | 1573.0 | 3146 | 1.2191 | | 0.4293 | 1574.0 | 3148 | 1.2207 | | 0.4293 | 1575.0 | 3150 | 1.2220 | | 0.4293 | 1576.0 | 3152 | 1.2224 | | 0.4293 | 1577.0 | 3154 | 1.2225 | | 0.4293 | 1578.0 | 3156 | 1.2224 | | 0.4293 | 1579.0 | 3158 | 1.2220 | | 0.4293 | 1580.0 | 3160 | 1.2215 | | 0.4293 | 1581.0 | 3162 | 1.2209 | | 0.4293 | 1582.0 | 3164 | 1.2203 | | 0.4293 | 1583.0 | 3166 | 1.2198 | | 0.4293 | 1584.0 | 3168 | 1.2195 | | 0.4293 | 1585.0 | 3170 | 1.2188 | | 0.4293 | 1586.0 | 3172 | 1.2180 | | 0.4293 | 1587.0 | 3174 | 1.2173 | | 0.4293 | 1588.0 | 3176 | 1.2168 | | 0.4293 | 1589.0 | 3178 | 1.2166 | | 0.4293 | 1590.0 | 3180 | 1.2159 | | 0.4293 | 1591.0 | 3182 | 1.2142 | | 0.4293 | 1592.0 | 3184 | 1.2126 | | 0.4293 | 1593.0 | 3186 | 1.2106 | | 0.4293 | 1594.0 | 3188 | 1.2086 | | 0.4293 | 1595.0 | 3190 | 1.2070 | | 0.4293 | 1596.0 | 3192 | 1.2055 | | 0.4293 | 1597.0 | 3194 | 1.2044 | | 0.4293 | 1598.0 | 3196 | 1.2033 | | 0.4293 | 1599.0 | 3198 | 1.2022 | | 0.4293 | 1600.0 | 3200 | 1.2012 | | 0.4293 | 1601.0 | 3202 | 1.2005 | | 0.4293 | 1602.0 | 3204 | 1.2000 | | 0.4293 | 1603.0 | 3206 | 1.1996 | | 0.4293 | 1604.0 | 3208 | 1.1983 | | 0.4293 | 1605.0 | 3210 | 1.1973 | | 0.4293 | 1606.0 | 3212 | 1.1966 | | 0.4293 | 1607.0 | 3214 | 1.1965 | | 0.4293 | 1608.0 | 3216 | 1.1967 | | 0.4293 | 1609.0 | 3218 | 1.1971 | | 0.4293 | 1610.0 | 3220 | 1.1975 | | 0.4293 | 1611.0 | 3222 | 1.1976 | | 0.4293 | 1612.0 | 3224 | 1.1980 | | 0.4293 | 1613.0 | 3226 | 1.1980 | | 0.4293 | 1614.0 | 3228 | 1.1978 | | 0.4293 | 1615.0 | 3230 | 1.1974 | | 0.4293 | 1616.0 | 3232 | 1.1969 | | 0.4293 | 1617.0 | 3234 | 1.1967 | | 0.4293 | 1618.0 | 3236 | 1.1964 | | 0.4293 | 1619.0 | 3238 | 1.1960 | | 0.4293 | 1620.0 | 3240 | 1.1953 | | 0.4293 | 1621.0 | 3242 | 1.1943 | | 0.4293 | 1622.0 | 3244 | 1.1931 | | 0.4293 | 1623.0 | 3246 | 1.1918 | | 0.4293 | 1624.0 | 3248 | 1.1912 | | 0.4293 | 1625.0 | 3250 | 1.1906 | | 0.4293 | 1626.0 | 3252 | 1.1900 | | 0.4293 | 1627.0 | 3254 | 1.1899 | | 0.4293 | 1628.0 | 3256 | 1.1907 | | 0.4293 | 1629.0 | 3258 | 1.1921 | | 0.4293 | 1630.0 | 3260 | 1.1932 | | 0.4293 | 1631.0 | 3262 | 1.1944 | | 0.4293 | 1632.0 | 3264 | 1.1958 | | 0.4293 | 1633.0 | 3266 | 1.1968 | | 0.4293 | 1634.0 | 3268 | 1.1975 | | 0.4293 | 1635.0 | 3270 | 1.1978 | | 0.4293 | 1636.0 | 3272 | 1.1981 | | 0.4293 | 1637.0 | 3274 | 1.1985 | | 0.4293 | 1638.0 | 3276 | 1.1990 | | 0.4293 | 1639.0 | 3278 | 1.1992 | | 0.4293 | 1640.0 | 3280 | 1.1969 | | 0.4293 | 1641.0 | 3282 | 1.1957 | | 0.4293 | 1642.0 | 3284 | 1.1950 | | 0.4293 | 1643.0 | 3286 | 1.1943 | | 0.4293 | 1644.0 | 3288 | 1.1940 | | 0.4293 | 1645.0 | 3290 | 1.1939 | | 0.4293 | 1646.0 | 3292 | 1.1939 | | 0.4293 | 1647.0 | 3294 | 1.1952 | | 0.4293 | 1648.0 | 3296 | 1.1972 | | 0.4293 | 1649.0 | 3298 | 1.1984 | | 0.4293 | 1650.0 | 3300 | 1.1988 | | 0.4293 | 1651.0 | 3302 | 1.1985 | | 0.4293 | 1652.0 | 3304 | 1.1983 | | 0.4293 | 1653.0 | 3306 | 1.1980 | | 0.4293 | 1654.0 | 3308 | 1.1977 | | 0.4293 | 1655.0 | 3310 | 1.1971 | | 0.4293 | 1656.0 | 3312 | 1.2015 | | 0.4293 | 1657.0 | 3314 | 1.2049 | | 0.4293 | 1658.0 | 3316 | 1.2046 | | 0.4293 | 1659.0 | 3318 | 1.2064 | | 0.4293 | 1660.0 | 3320 | 1.2121 | | 0.4293 | 1661.0 | 3322 | 1.2175 | | 0.4293 | 1662.0 | 3324 | 1.2186 | | 0.4293 | 1663.0 | 3326 | 1.2164 | | 0.4293 | 1664.0 | 3328 | 1.2130 | | 0.4293 | 1665.0 | 3330 | 1.2085 | | 0.4293 | 1666.0 | 3332 | 1.2030 | | 0.4293 | 1667.0 | 3334 | 1.1986 | | 0.4293 | 1668.0 | 3336 | 1.1955 | | 0.4293 | 1669.0 | 3338 | 1.1921 | | 0.4293 | 1670.0 | 3340 | 1.1900 | | 0.4293 | 1671.0 | 3342 | 1.1891 | | 0.4293 | 1672.0 | 3344 | 1.1886 | | 0.4293 | 1673.0 | 3346 | 1.1893 | | 0.4293 | 1674.0 | 3348 | 1.1898 | | 0.4293 | 1675.0 | 3350 | 1.1900 | | 0.4293 | 1676.0 | 3352 | 1.1900 | | 0.4293 | 1677.0 | 3354 | 1.1894 | | 0.4293 | 1678.0 | 3356 | 1.1889 | | 0.4293 | 1679.0 | 3358 | 1.1890 | | 0.4293 | 1680.0 | 3360 | 1.1902 | | 0.4293 | 1681.0 | 3362 | 1.1911 | | 0.4293 | 1682.0 | 3364 | 1.1915 | | 0.4293 | 1683.0 | 3366 | 1.1917 | | 0.4293 | 1684.0 | 3368 | 1.1916 | | 0.4293 | 1685.0 | 3370 | 1.1916 | | 0.4293 | 1686.0 | 3372 | 1.1914 | | 0.4293 | 1687.0 | 3374 | 1.1914 | | 0.4293 | 1688.0 | 3376 | 1.1909 | | 0.4293 | 1689.0 | 3378 | 1.1903 | | 0.4293 | 1690.0 | 3380 | 1.1892 | | 0.4293 | 1691.0 | 3382 | 1.1884 | | 0.4293 | 1692.0 | 3384 | 1.1876 | | 0.4293 | 1693.0 | 3386 | 1.1868 | | 0.4293 | 1694.0 | 3388 | 1.1868 | | 0.4293 | 1695.0 | 3390 | 1.1882 | | 0.4293 | 1696.0 | 3392 | 1.1900 | | 0.4293 | 1697.0 | 3394 | 1.1918 | | 0.4293 | 1698.0 | 3396 | 1.1932 | | 0.4293 | 1699.0 | 3398 | 1.1940 | | 0.4293 | 1700.0 | 3400 | 1.1941 | | 0.4293 | 1701.0 | 3402 | 1.1980 | | 0.4293 | 1702.0 | 3404 | 1.2025 | | 0.4293 | 1703.0 | 3406 | 1.2061 | | 0.4293 | 1704.0 | 3408 | 1.2090 | | 0.4293 | 1705.0 | 3410 | 1.2112 | | 0.4293 | 1706.0 | 3412 | 1.2133 | | 0.4293 | 1707.0 | 3414 | 1.2151 | | 0.4293 | 1708.0 | 3416 | 1.2166 | | 0.4293 | 1709.0 | 3418 | 1.2183 | | 0.4293 | 1710.0 | 3420 | 1.2194 | | 0.4293 | 1711.0 | 3422 | 1.2200 | | 0.4293 | 1712.0 | 3424 | 1.2204 | | 0.4293 | 1713.0 | 3426 | 1.2203 | | 0.4293 | 1714.0 | 3428 | 1.2203 | | 0.4293 | 1715.0 | 3430 | 1.2197 | | 0.4293 | 1716.0 | 3432 | 1.2188 | | 0.4293 | 1717.0 | 3434 | 1.2181 | | 0.4293 | 1718.0 | 3436 | 1.2164 | | 0.4293 | 1719.0 | 3438 | 1.2131 | | 0.4293 | 1720.0 | 3440 | 1.2107 | | 0.4293 | 1721.0 | 3442 | 1.2105 | | 0.4293 | 1722.0 | 3444 | 1.2101 | | 0.4293 | 1723.0 | 3446 | 1.2099 | | 0.4293 | 1724.0 | 3448 | 1.2102 | | 0.4293 | 1725.0 | 3450 | 1.2102 | | 0.4293 | 1726.0 | 3452 | 1.2106 | | 0.4293 | 1727.0 | 3454 | 1.2114 | | 0.4293 | 1728.0 | 3456 | 1.2122 | | 0.4293 | 1729.0 | 3458 | 1.2127 | | 0.4293 | 1730.0 | 3460 | 1.2131 | | 0.4293 | 1731.0 | 3462 | 1.2133 | | 0.4293 | 1732.0 | 3464 | 1.2135 | | 0.4293 | 1733.0 | 3466 | 1.2135 | | 0.4293 | 1734.0 | 3468 | 1.2139 | | 0.4293 | 1735.0 | 3470 | 1.2146 | | 0.4293 | 1736.0 | 3472 | 1.2153 | | 0.4293 | 1737.0 | 3474 | 1.2157 | | 0.4293 | 1738.0 | 3476 | 1.2159 | | 0.4293 | 1739.0 | 3478 | 1.2164 | | 0.4293 | 1740.0 | 3480 | 1.2169 | | 0.4293 | 1741.0 | 3482 | 1.2173 | | 0.4293 | 1742.0 | 3484 | 1.2177 | | 0.4293 | 1743.0 | 3486 | 1.2179 | | 0.4293 | 1744.0 | 3488 | 1.2181 | | 0.4293 | 1745.0 | 3490 | 1.2180 | | 0.4293 | 1746.0 | 3492 | 1.2180 | | 0.4293 | 1747.0 | 3494 | 1.2178 | | 0.4293 | 1748.0 | 3496 | 1.2175 | | 0.4293 | 1749.0 | 3498 | 1.2170 | | 0.0013 | 1750.0 | 3500 | 1.2162 | | 0.0013 | 1751.0 | 3502 | 1.2154 | | 0.0013 | 1752.0 | 3504 | 1.2148 | | 0.0013 | 1753.0 | 3506 | 1.2141 | | 0.0013 | 1754.0 | 3508 | 1.2137 | | 0.0013 | 1755.0 | 3510 | 1.2132 | | 0.0013 | 1756.0 | 3512 | 1.2128 | | 0.0013 | 1757.0 | 3514 | 1.2122 | | 0.0013 | 1758.0 | 3516 | 1.2108 | | 0.0013 | 1759.0 | 3518 | 1.2082 | | 0.0013 | 1760.0 | 3520 | 1.2055 | | 0.0013 | 1761.0 | 3522 | 1.2032 | | 0.0013 | 1762.0 | 3524 | 1.2012 | | 0.0013 | 1763.0 | 3526 | 1.1998 | | 0.0013 | 1764.0 | 3528 | 1.1991 | | 0.0013 | 1765.0 | 3530 | 1.1983 | | 0.0013 | 1766.0 | 3532 | 1.1978 | | 0.0013 | 1767.0 | 3534 | 1.1978 | | 0.0013 | 1768.0 | 3536 | 1.1983 | | 0.0013 | 1769.0 | 3538 | 1.1987 | | 0.0013 | 1770.0 | 3540 | 1.1989 | | 0.0013 | 1771.0 | 3542 | 1.1992 | | 0.0013 | 1772.0 | 3544 | 1.1994 | | 0.0013 | 1773.0 | 3546 | 1.1993 | | 0.0013 | 1774.0 | 3548 | 1.1994 | | 0.0013 | 1775.0 | 3550 | 1.1994 | | 0.0013 | 1776.0 | 3552 | 1.1995 | | 0.0013 | 1777.0 | 3554 | 1.1995 | | 0.0013 | 1778.0 | 3556 | 1.1986 | | 0.0013 | 1779.0 | 3558 | 1.1976 | | 0.0013 | 1780.0 | 3560 | 1.1962 | | 0.0013 | 1781.0 | 3562 | 1.1948 | | 0.0013 | 1782.0 | 3564 | 1.1934 | | 0.0013 | 1783.0 | 3566 | 1.1922 | | 0.0013 | 1784.0 | 3568 | 1.1912 | | 0.0013 | 1785.0 | 3570 | 1.1903 | | 0.0013 | 1786.0 | 3572 | 1.1894 | | 0.0013 | 1787.0 | 3574 | 1.1885 | | 0.0013 | 1788.0 | 3576 | 1.1886 | | 0.0013 | 1789.0 | 3578 | 1.1889 | | 0.0013 | 1790.0 | 3580 | 1.1889 | | 0.0013 | 1791.0 | 3582 | 1.1889 | | 0.0013 | 1792.0 | 3584 | 1.1887 | | 0.0013 | 1793.0 | 3586 | 1.1889 | | 0.0013 | 1794.0 | 3588 | 1.1890 | | 0.0013 | 1795.0 | 3590 | 1.1890 | | 0.0013 | 1796.0 | 3592 | 1.1890 | | 0.0013 | 1797.0 | 3594 | 1.1892 | | 0.0013 | 1798.0 | 3596 | 1.1892 | | 0.0013 | 1799.0 | 3598 | 1.1890 | | 0.0013 | 1800.0 | 3600 | 1.1888 | | 0.0013 | 1801.0 | 3602 | 1.1882 | | 0.0013 | 1802.0 | 3604 | 1.1876 | | 0.0013 | 1803.0 | 3606 | 1.1869 | | 0.0013 | 1804.0 | 3608 | 1.1863 | | 0.0013 | 1805.0 | 3610 | 1.1858 | | 0.0013 | 1806.0 | 3612 | 1.1855 | | 0.0013 | 1807.0 | 3614 | 1.1850 | | 0.0013 | 1808.0 | 3616 | 1.1847 | | 0.0013 | 1809.0 | 3618 | 1.1850 | | 0.0013 | 1810.0 | 3620 | 1.1852 | | 0.0013 | 1811.0 | 3622 | 1.1850 | | 0.0013 | 1812.0 | 3624 | 1.1847 | | 0.0013 | 1813.0 | 3626 | 1.1845 | | 0.0013 | 1814.0 | 3628 | 1.1844 | | 0.0013 | 1815.0 | 3630 | 1.1840 | | 0.0013 | 1816.0 | 3632 | 1.1837 | | 0.0013 | 1817.0 | 3634 | 1.1832 | | 0.0013 | 1818.0 | 3636 | 1.1830 | | 0.0013 | 1819.0 | 3638 | 1.1829 | | 0.0013 | 1820.0 | 3640 | 1.1829 | | 0.0013 | 1821.0 | 3642 | 1.1831 | | 0.0013 | 1822.0 | 3644 | 1.1833 | | 0.0013 | 1823.0 | 3646 | 1.1827 | | 0.0013 | 1824.0 | 3648 | 1.1825 | | 0.0013 | 1825.0 | 3650 | 1.1823 | | 0.0013 | 1826.0 | 3652 | 1.1828 | | 0.0013 | 1827.0 | 3654 | 1.1833 | | 0.0013 | 1828.0 | 3656 | 1.1839 | | 0.0013 | 1829.0 | 3658 | 1.1844 | | 0.0013 | 1830.0 | 3660 | 1.1848 | | 0.0013 | 1831.0 | 3662 | 1.1849 | | 0.0013 | 1832.0 | 3664 | 1.1850 | | 0.0013 | 1833.0 | 3666 | 1.1850 | | 0.0013 | 1834.0 | 3668 | 1.1850 | | 0.0013 | 1835.0 | 3670 | 1.1848 | | 0.0013 | 1836.0 | 3672 | 1.1847 | | 0.0013 | 1837.0 | 3674 | 1.1848 | | 0.0013 | 1838.0 | 3676 | 1.1850 | | 0.0013 | 1839.0 | 3678 | 1.1852 | | 0.0013 | 1840.0 | 3680 | 1.1853 | | 0.0013 | 1841.0 | 3682 | 1.1855 | | 0.0013 | 1842.0 | 3684 | 1.1857 | | 0.0013 | 1843.0 | 3686 | 1.1858 | | 0.0013 | 1844.0 | 3688 | 1.1859 | | 0.0013 | 1845.0 | 3690 | 1.1860 | | 0.0013 | 1846.0 | 3692 | 1.1863 | | 0.0013 | 1847.0 | 3694 | 1.1866 | | 0.0013 | 1848.0 | 3696 | 1.1867 | | 0.0013 | 1849.0 | 3698 | 1.1867 | | 0.0013 | 1850.0 | 3700 | 1.1867 | | 0.0013 | 1851.0 | 3702 | 1.1868 | | 0.0013 | 1852.0 | 3704 | 1.1869 | | 0.0013 | 1853.0 | 3706 | 1.1871 | | 0.0013 | 1854.0 | 3708 | 1.1872 | | 0.0013 | 1855.0 | 3710 | 1.1874 | | 0.0013 | 1856.0 | 3712 | 1.1875 | | 0.0013 | 1857.0 | 3714 | 1.1875 | | 0.0013 | 1858.0 | 3716 | 1.1874 | | 0.0013 | 1859.0 | 3718 | 1.1871 | | 0.0013 | 1860.0 | 3720 | 1.1867 | | 0.0013 | 1861.0 | 3722 | 1.1864 | | 0.0013 | 1862.0 | 3724 | 1.1862 | | 0.0013 | 1863.0 | 3726 | 1.1851 | | 0.0013 | 1864.0 | 3728 | 1.1836 | | 0.0013 | 1865.0 | 3730 | 1.1822 | | 0.0013 | 1866.0 | 3732 | 1.1812 | | 0.0013 | 1867.0 | 3734 | 1.1804 | | 0.0013 | 1868.0 | 3736 | 1.1798 | | 0.0013 | 1869.0 | 3738 | 1.1793 | | 0.0013 | 1870.0 | 3740 | 1.1789 | | 0.0013 | 1871.0 | 3742 | 1.1785 | | 0.0013 | 1872.0 | 3744 | 1.1780 | | 0.0013 | 1873.0 | 3746 | 1.1778 | | 0.0013 | 1874.0 | 3748 | 1.1776 | | 0.0013 | 1875.0 | 3750 | 1.1775 | | 0.0013 | 1876.0 | 3752 | 1.1774 | | 0.0013 | 1877.0 | 3754 | 1.1774 | | 0.0013 | 1878.0 | 3756 | 1.1773 | | 0.0013 | 1879.0 | 3758 | 1.1771 | | 0.0013 | 1880.0 | 3760 | 1.1769 | | 0.0013 | 1881.0 | 3762 | 1.1769 | | 0.0013 | 1882.0 | 3764 | 1.1769 | | 0.0013 | 1883.0 | 3766 | 1.1769 | | 0.0013 | 1884.0 | 3768 | 1.1770 | | 0.0013 | 1885.0 | 3770 | 1.1772 | | 0.0013 | 1886.0 | 3772 | 1.1774 | | 0.0013 | 1887.0 | 3774 | 1.1774 | | 0.0013 | 1888.0 | 3776 | 1.1778 | | 0.0013 | 1889.0 | 3778 | 1.1779 | | 0.0013 | 1890.0 | 3780 | 1.1779 | | 0.0013 | 1891.0 | 3782 | 1.1776 | | 0.0013 | 1892.0 | 3784 | 1.1772 | | 0.0013 | 1893.0 | 3786 | 1.1768 | | 0.0013 | 1894.0 | 3788 | 1.1765 | | 0.0013 | 1895.0 | 3790 | 1.1761 | | 0.0013 | 1896.0 | 3792 | 1.1758 | | 0.0013 | 1897.0 | 3794 | 1.1755 | | 0.0013 | 1898.0 | 3796 | 1.1753 | | 0.0013 | 1899.0 | 3798 | 1.1753 | | 0.0013 | 1900.0 | 3800 | 1.1752 | | 0.0013 | 1901.0 | 3802 | 1.1752 | | 0.0013 | 1902.0 | 3804 | 1.1754 | | 0.0013 | 1903.0 | 3806 | 1.1756 | | 0.0013 | 1904.0 | 3808 | 1.1756 | | 0.0013 | 1905.0 | 3810 | 1.1754 | | 0.0013 | 1906.0 | 3812 | 1.1753 | | 0.0013 | 1907.0 | 3814 | 1.1752 | | 0.0013 | 1908.0 | 3816 | 1.1751 | | 0.0013 | 1909.0 | 3818 | 1.1751 | | 0.0013 | 1910.0 | 3820 | 1.1752 | | 0.0013 | 1911.0 | 3822 | 1.1754 | | 0.0013 | 1912.0 | 3824 | 1.1755 | | 0.0013 | 1913.0 | 3826 | 1.1755 | | 0.0013 | 1914.0 | 3828 | 1.1756 | | 0.0013 | 1915.0 | 3830 | 1.1756 | | 0.0013 | 1916.0 | 3832 | 1.1756 | | 0.0013 | 1917.0 | 3834 | 1.1759 | | 0.0013 | 1918.0 | 3836 | 1.1763 | | 0.0013 | 1919.0 | 3838 | 1.1765 | | 0.0013 | 1920.0 | 3840 | 1.1767 | | 0.0013 | 1921.0 | 3842 | 1.1768 | | 0.0013 | 1922.0 | 3844 | 1.1769 | | 0.0013 | 1923.0 | 3846 | 1.1769 | | 0.0013 | 1924.0 | 3848 | 1.1768 | | 0.0013 | 1925.0 | 3850 | 1.1768 | | 0.0013 | 1926.0 | 3852 | 1.1768 | | 0.0013 | 1927.0 | 3854 | 1.1768 | | 0.0013 | 1928.0 | 3856 | 1.1768 | | 0.0013 | 1929.0 | 3858 | 1.1769 | | 0.0013 | 1930.0 | 3860 | 1.1768 | | 0.0013 | 1931.0 | 3862 | 1.1768 | | 0.0013 | 1932.0 | 3864 | 1.1767 | | 0.0013 | 1933.0 | 3866 | 1.1766 | | 0.0013 | 1934.0 | 3868 | 1.1765 | | 0.0013 | 1935.0 | 3870 | 1.1764 | | 0.0013 | 1936.0 | 3872 | 1.1763 | | 0.0013 | 1937.0 | 3874 | 1.1762 | | 0.0013 | 1938.0 | 3876 | 1.1761 | | 0.0013 | 1939.0 | 3878 | 1.1760 | | 0.0013 | 1940.0 | 3880 | 1.1759 | | 0.0013 | 1941.0 | 3882 | 1.1759 | | 0.0013 | 1942.0 | 3884 | 1.1758 | | 0.0013 | 1943.0 | 3886 | 1.1759 | | 0.0013 | 1944.0 | 3888 | 1.1760 | | 0.0013 | 1945.0 | 3890 | 1.1761 | | 0.0013 | 1946.0 | 3892 | 1.1763 | | 0.0013 | 1947.0 | 3894 | 1.1765 | | 0.0013 | 1948.0 | 3896 | 1.1766 | | 0.0013 | 1949.0 | 3898 | 1.1767 | | 0.0013 | 1950.0 | 3900 | 1.1769 | | 0.0013 | 1951.0 | 3902 | 1.1770 | | 0.0013 | 1952.0 | 3904 | 1.1770 | | 0.0013 | 1953.0 | 3906 | 1.1771 | | 0.0013 | 1954.0 | 3908 | 1.1774 | | 0.0013 | 1955.0 | 3910 | 1.1776 | | 0.0013 | 1956.0 | 3912 | 1.1777 | | 0.0013 | 1957.0 | 3914 | 1.1777 | | 0.0013 | 1958.0 | 3916 | 1.1778 | | 0.0013 | 1959.0 | 3918 | 1.1775 | | 0.0013 | 1960.0 | 3920 | 1.1772 | | 0.0013 | 1961.0 | 3922 | 1.1769 | | 0.0013 | 1962.0 | 3924 | 1.1768 | | 0.0013 | 1963.0 | 3926 | 1.1767 | | 0.0013 | 1964.0 | 3928 | 1.1767 | | 0.0013 | 1965.0 | 3930 | 1.1766 | | 0.0013 | 1966.0 | 3932 | 1.1766 | | 0.0013 | 1967.0 | 3934 | 1.1766 | | 0.0013 | 1968.0 | 3936 | 1.1765 | | 0.0013 | 1969.0 | 3938 | 1.1765 | | 0.0013 | 1970.0 | 3940 | 1.1764 | | 0.0013 | 1971.0 | 3942 | 1.1765 | | 0.0013 | 1972.0 | 3944 | 1.1765 | | 0.0013 | 1973.0 | 3946 | 1.1765 | | 0.0013 | 1974.0 | 3948 | 1.1765 | | 0.0013 | 1975.0 | 3950 | 1.1765 | | 0.0013 | 1976.0 | 3952 | 1.1765 | | 0.0013 | 1977.0 | 3954 | 1.1764 | | 0.0013 | 1978.0 | 3956 | 1.1764 | | 0.0013 | 1979.0 | 3958 | 1.1765 | | 0.0013 | 1980.0 | 3960 | 1.1765 | | 0.0013 | 1981.0 | 3962 | 1.1765 | | 0.0013 | 1982.0 | 3964 | 1.1765 | | 0.0013 | 1983.0 | 3966 | 1.1765 | | 0.0013 | 1984.0 | 3968 | 1.1765 | | 0.0013 | 1985.0 | 3970 | 1.1765 | | 0.0013 | 1986.0 | 3972 | 1.1765 | | 0.0013 | 1987.0 | 3974 | 1.1765 | | 0.0013 | 1988.0 | 3976 | 1.1765 | | 0.0013 | 1989.0 | 3978 | 1.1764 | | 0.0013 | 1990.0 | 3980 | 1.1764 | | 0.0013 | 1991.0 | 3982 | 1.1764 | | 0.0013 | 1992.0 | 3984 | 1.1764 | | 0.0013 | 1993.0 | 3986 | 1.1765 | | 0.0013 | 1994.0 | 3988 | 1.1765 | | 0.0013 | 1995.0 | 3990 | 1.1765 | | 0.0013 | 1996.0 | 3992 | 1.1765 | | 0.0013 | 1997.0 | 3994 | 1.1765 | | 0.0013 | 1998.0 | 3996 | 1.1765 | | 0.0013 | 1999.0 | 3998 | 1.1765 | | 0.0012 | 2000.0 | 4000 | 1.1765 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_16_64_0.05_8_0.0002
ferrazzipietro
2024-03-07T20:11:00Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T15:11:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Maqqq/OpenHermes-2.5-Mistral-7B-12
Maqqq
2024-03-07T20:08:24Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T17:44:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TikhonRadkevich/dqn-SpaceInvadersNoFrameskip-v4
TikhonRadkevich
2024-03-07T20:08:21Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T20:07:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 658.00 +/- 197.44 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga TikhonRadkevich -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga TikhonRadkevich -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga TikhonRadkevich ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
OwOOwO/eacc_bmk5
OwOOwO
2024-03-07T20:07:37Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T20:05:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tsavage68/mistralit2_1000_STEPS_5e7_SFT
tsavage68
2024-03-07T19:56:56Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T19:51:38Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: mistralit2_1000_STEPS_SFT_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistralit2_1000_STEPS_SFT_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.498 | 0.1 | 50 | 0.3952 | | 0.3309 | 0.2 | 100 | 0.3213 | | 0.3234 | 0.29 | 150 | 0.3104 | | 0.2953 | 0.39 | 200 | 0.3048 | | 0.2967 | 0.49 | 250 | 0.3005 | | 0.3047 | 0.59 | 300 | 0.2972 | | 0.2869 | 0.68 | 350 | 0.2943 | | 0.2912 | 0.78 | 400 | 0.2913 | | 0.2859 | 0.88 | 450 | 0.2895 | | 0.2941 | 0.98 | 500 | 0.2880 | | 0.2412 | 1.07 | 550 | 0.2886 | | 0.2637 | 1.17 | 600 | 0.2884 | | 0.2627 | 1.27 | 650 | 0.2882 | | 0.2443 | 1.37 | 700 | 0.2881 | | 0.2557 | 1.46 | 750 | 0.2877 | | 0.259 | 1.56 | 800 | 0.2876 | | 0.2598 | 1.66 | 850 | 0.2875 | | 0.2633 | 1.76 | 900 | 0.2876 | | 0.2727 | 1.86 | 950 | 0.2876 | | 0.2674 | 1.95 | 1000 | 0.2876 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2
OwOOwO/eacc_bmk4
OwOOwO
2024-03-07T19:56:08Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T19:53:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TrevorDohm/ViT_Scratch_MNIST
TrevorDohm
2024-03-07T19:56:01Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-03-07T19:14:33Z
--- license: openrail --- Trained From Scratch, MNIST https://huggingface.co/datasets/mnist Guide: https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96c3313c2e0c ViT_Small: {"chw": (1, 28, 28), "n_patches": 7, "n_blocks": 4, "hidden_d": 8, "n_heads": 4, "out_d": 10} 23 kB 2K+ Steps ViT_Large: {"chw": (1, 28, 28), "n_patches": 7, "n_blocks": 6, "hidden_d": 64, "n_heads": 8, "out_d": 10} 881 kB 20K+ Steps ![image/png](https://cdn-uploads.huggingface.co/production/uploads/646a8ef31556443f24b803be/Po6WNrl75QNXrLKBCQGng.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/646a8ef31556443f24b803be/pvJdoLQtxdaiRx9wetwsR.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/646a8ef31556443f24b803be/YXnktdx1JZwRx6q_ihp_M.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/646a8ef31556443f24b803be/HmpyPsUY0fWzlsjcfjCyd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/646a8ef31556443f24b803be/DHGwqT-b8zi4mqhYIIUmk.png)
keenGol/emotions_NLP_workshop
keenGol
2024-03-07T19:54:30Z
4
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T15:40:51Z
--- pipeline_tag: text-classification ---
biololab/tinyllama-symptom-extractor_4bit
biololab
2024-03-07T19:53:16Z
3
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/tinyllama-bnb-4bit", "base_model:quantized:unsloth/tinyllama-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-07T19:52:53Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/tinyllama-bnb-4bit --- # Uploaded model - **Developed by:** biololab - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_16_64_0.05_4_0.0002
ferrazzipietro
2024-03-07T19:52:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T14:52:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roushan255/test255
roushan255
2024-03-07T19:52:01Z
0
0
peft
[ "peft", "region:us" ]
null
2024-03-07T19:42:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
DanielClough/Candle_Puffin-Phi-v2
DanielClough
2024-03-07T19:49:20Z
22
0
transformers
[ "transformers", "gguf", "mixformer-sequential", "text-generation", "custom_code", "en", "dataset:teknium/Puffin-Phi-v2", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
2024-01-26T05:21:31Z
--- datasets: - teknium/Puffin-Phi-v2 language: - en pipeline_tag: text-generation license: mit --- This repo includes `.gguf` built for HuggingFace/Candle. They will not work with `llama.cpp`. Refer to the [original repo](https://huggingface.co/teknium/Puffin-Phi-v2) for more details.
OwOOwO/eacc_bmk
OwOOwO
2024-03-07T19:40:51Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T19:38:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arcee-ai/Hermes-Mistral-Saul-Slerp
arcee-ai
2024-03-07T19:40:41Z
12
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "Equall/Saul-Instruct-v1", "NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T18:44:47Z
--- license: apache-2.0 tags: - merge - mergekit - Equall/Saul-Instruct-v1 - NousResearch/Nous-Hermes-2-Mistral-7B-DPO --- # Hermes-Mistral-Saul-Slerp Hermes-Mistral-Saul-Slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [Equall/Saul-Instruct-v1](https://huggingface.co/Equall/Saul-Instruct-v1) * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) ## 🧩 Configuration ```yaml slices: - sources: - model: Equall/Saul-Instruct-v1 layer_range: [0, 32] - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO layer_range: [0, 32] merge_method: slerp base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
flyingfishinwater/starcoder2-3b-instruct-gguf
flyingfishinwater
2024-03-07T19:36:44Z
14
0
transformers
[ "transformers", "gguf", "code", "starcoder2", "text-generation", "license:bigcode-openrail-m", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T18:31:21Z
--- tags: - code - starcoder2 library_name: transformers pipeline_tag: text-generation license: bigcode-openrail-m --- # GGUF version of starcoder2-instruct The base model is: [https://huggingface.co/TechxGenus/starcoder2-3b-instruct](https://huggingface.co/TechxGenus/starcoder2-3b-instruct) Refer to the following instruction <p align="center"> <img width="300px" alt="starcoder2-instruct" src="https://huggingface.co/TechxGenus/starcoder2-3b-instruct/resolve/main/starcoder2-instruct.jpg"> </p> ### starcoder2-instruct We've fine-tuned starcoder2-3b with an additional 0.7 billion high-quality, code-related tokens for 3 epochs. We used DeepSpeed ZeRO 3 and Flash Attention 2 to accelerate the training process. It achieves **65.9 pass@1** on HumanEval-Python. This model operates using the Alpaca instruction format (excluding the system prompt). ### Usage Here give some examples of how to use our model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch PROMPT = """### Instruction {instruction} ### Response """ instruction = <Your code instruction here> prompt = PROMPT.format(instruction=instruction) tokenizer = AutoTokenizer.from_pretrained("TechxGenus/starcoder2-3b-instruct") model = AutoModelForCausalLM.from_pretrained( "TechxGenus/starcoder2-3b-instruct", torch_dtype=torch.bfloat16, device_map="auto", ) inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048) print(tokenizer.decode(outputs[0])) ``` With text-generation pipeline: ```python from transformers import pipeline import torch PROMPT = """### Instruction {instruction} ### Response """ instruction = <Your code instruction here> prompt = PROMPT.format(instruction=instruction) generator = pipeline( model="TechxGenus/starcoder2-3b-instruct", task="text-generation", torch_dtype=torch.bfloat16, device_map="auto", ) result = generator(prompt, max_length=2048) print(result[0]["generated_text"]) ``` ### Note Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.
mehrzad-shahin/aec-ner-distilbert-base
mehrzad-shahin
2024-03-07T19:35:20Z
93
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "ner", "named-entity-recognition", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-28T20:31:56Z
--- license: mit tags: - token-classification - ner - named-entity-recognition pipeline_tag: token-classification widget: - text: All air terminals in the 5th to 7th floor were inspected. example_title: Example 1 - text: Baseboard heaters in the utility room are installed. example_title: Example 2 ---
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_16_32_0.01_16_0.0002
ferrazzipietro
2024-03-07T19:33:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T14:33:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RodMed0709/my_awesome_billsum_model
RodMed0709
2024-03-07T19:24:45Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-07T19:19:06Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5440 - Rouge1: 0.1415 - Rouge2: 0.0479 - Rougel: 0.1163 - Rougelsum: 0.1166 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8342 | 0.1253 | 0.0329 | 0.1044 | 0.1045 | 19.0 | | No log | 2.0 | 124 | 2.6247 | 0.1354 | 0.0424 | 0.1117 | 0.1119 | 19.0 | | No log | 3.0 | 186 | 2.5622 | 0.1414 | 0.0497 | 0.1169 | 0.1172 | 19.0 | | No log | 4.0 | 248 | 2.5440 | 0.1415 | 0.0479 | 0.1163 | 0.1166 | 19.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Supreeth40/finetuned-bart-xsum
Supreeth40
2024-03-07T19:23:21Z
11
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "dataset:xsum", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-07T14:53:06Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer datasets: - xsum model-index: - name: finetuned-bart-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bart-xsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8225 | 0.56 | 1000 | 0.4618 | | 0.4988 | 1.11 | 2000 | 0.4510 | | 0.4358 | 1.67 | 3000 | 0.4439 | | 0.4073 | 2.22 | 4000 | 0.4435 | | 0.3748 | 2.78 | 5000 | 0.4392 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ambrosfitz/tinyllama-history-chat_v0.1ps
ambrosfitz
2024-03-07T19:22:51Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "education - history", "conversational", "en", "dataset:ambrosfitz/ps_data", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T03:58:28Z
--- library_name: transformers tags: - llama - education - history license: apache-2.0 datasets: - ambrosfitz/ps_data language: - en pipeline_tag: text-generation ---
JiunYi/gemma-Code-Instruct-Finetune-test
JiunYi
2024-03-07T19:19:17Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T19:14:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
s14pe/a2c-PandaPickAndPlace-v3
s14pe
2024-03-07T19:15:11Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T19:11:21Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -45.00 +/- 15.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ritwikraha/comics_style_LoRA
ritwikraha
2024-03-07T19:05:27Z
3
0
diffusers
[ "diffusers", "tensorboard", "art", "code", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "license:cc-by-2.0", "region:us" ]
null
2024-03-07T18:05:08Z
--- license: cc-by-2.0 library_name: diffusers tags: - art - code - stable-diffusion-xl - stable-diffusion-xl-diffusers --- # SDXL LoRA DreamBooth - comic_style_LoRA <Gallery /> | Image 1 | Image 2 | |---|---| | ![example 1](./1.png) | ![example 2](./2.png) | | Image 3 | Image 4 | |---|---| | ![example 3](./3.png) | ![sample 4](./4.png) | ## Model description These are comic_style LoRA adaption weights for `stabilityai/stable-diffusion-xl-base-1.0`. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled. Special VAE used for training: `madebyollin/sdxl-vae-fp16-fix`. DataSet: custom hand-drawn sketches by [ritwikraha](https://www.ritwikraha.com/) ## Trigger words You should use a photo in the style of TOK comics to trigger the image generation. ## Usage ``` !pip install diffusers accelerate -q import torch from PIL import Image from diffusers import DiffusionPipeline, AutoencoderKL vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights('ritwikraha/comics_style_LoRA') _ = pipe.to("cuda") prompt = "a photo of 18th century London in the style of TOK comics, 8k" negative_prompt ="ugly face, multiple bodies, bad anatomy, disfigured, extra fingers" image = pipe(prompt=prompt, negative_prompt=negative_prompt, guidance_scale=3, num_inference_steps=50).images[0] image ``` ## Download model Weights for this model are available in Safetensors format. [Download](ritwikraha/comics_style_LoRA/tree/main) them in the Files & versions tab. ---
deepnet/SN6-30M2
deepnet
2024-03-07T18:56:31Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T18:50:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Weni/ZeroShot-3.3.30-Mistral-7b-Multilanguage-3.2.0-merged
Weni
2024-03-07T18:53:33Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T18:43:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xanderios/first-model
xanderios
2024-03-07T18:49:23Z
0
0
null
[ "code", "text-classification", "en", "dataset:xanderios/linkedin-job-postings", "license:mit", "region:us" ]
text-classification
2024-03-07T08:19:30Z
--- license: mit datasets: - xanderios/linkedin-job-postings language: - en metrics: - accuracy pipeline_tag: text-classification tags: - code ---
Humaid-alblooshi/bert-train-6layer-optimized-5-epoch
Humaid-alblooshi
2024-03-07T18:49:10Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T18:49:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
deepnet/SN6-77G2
deepnet
2024-03-07T18:38:38Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T12:15:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ferrazzipietro/Qwen1.5-14B-Chat__adapters_en.layer1_4_torch.bfloat16_16_32_0.05_16_0.0002
ferrazzipietro
2024-03-07T18:38:20Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T13:36:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Locutusque/Hyperion-1.5-Mistral-7B
Locutusque
2024-03-07T18:30:24Z
107
9
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:Locutusque/hyperion-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-02T19:22:02Z
--- license: apache-2.0 library_name: transformers tags: - conversational datasets: - Locutusque/hyperion-v1.5 model-index: - name: Hyperion-1.5-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.49 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.78 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard --- # Model Card for Locutusque/Hyperion-1.5-Mistral-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/1lL97kzuxqykXGUT6F593.png) ## Model Details **Model Name**: Locutusque/Hyperion-1.5-Mistral-7B **Base Model**: mistralai/Mistral-7B-v0.1 **Publisher**: M4-ai **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. **Language**: Multi-domain, English language. **License**: Apache-2.0 ## Model Description `Locutusque/Hyperion-1.5-Mistral-7B` is a state-of-the-art language model fine-tuned on the Hyperion dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The `Locutusque/Hyperion-1.5-Mistral-7B` model was fine-tuned on the Hyperion-v1.5 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. ## Evaluation Results Coming soon... ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/Hyperion-1.5-Mistral-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. ## Licensing Information This model is released under the Apache-2.0 license. ## Citation Information If you use Locutusque/Hyperion-1.5-Mistral-7B in your research, please cite the Hyperion dataset as follows: ``` @misc{sebastian_gabarain_2024, title = {Hyperion-1.5: Illuminating the Path to Advanced Reasoning with a High-Quality, Multidisciplinary Question Answering Dataset}, author = {Sebastian Gabarain}, publisher = {HuggingFace}, year = {2024}, url = {https://huggingface.co/datasets/Locutusque/hyperion-v1.5} } ``` ## Quants exl2 and GGUF by bartowski - https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-exl2 https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-GGUF # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Hyperion-1.5-Mistral-7B) | Metric |Value| |---------------------------------|----:| |Avg. |61.43| |AI2 Reasoning Challenge (25-Shot)|60.49| |HellaSwag (10-Shot) |83.64| |MMLU (5-Shot) |63.57| |TruthfulQA (0-shot) |41.78| |Winogrande (5-shot) |78.61| |GSM8k (5-shot) |40.49|
AhmedKaisar/bert-ner
AhmedKaisar
2024-03-07T18:26:52Z
89
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-29T13:45:57Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9047308319738988 - name: Recall type: recall value: 0.9333557724671828 - name: F1 type: f1 value: 0.9188204108681245 - name: Accuracy type: accuracy value: 0.9824424559957614 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0326 - Precision: 0.9047 - Recall: 0.9334 - F1: 0.9188 - Accuracy: 0.9824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0349 | 1.0 | 1756 | 0.0326 | 0.9047 | 0.9334 | 0.9188 | 0.9824 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.2
sanbongazin/willgpt-Gemma_v2
sanbongazin
2024-03-07T18:24:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T18:24:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sujayC66/t5-base-finetuned-stocknews_2000_150
sujayC66
2024-03-07T18:21:12Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-07T07:52:03Z
--- license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-stocknews_2000_150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-stocknews_2000_150 This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5246 - Rouge1: 41.1174 - Rouge2: 36.4917 - Rougel: 40.2739 - Rougelsum: 40.5043 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 211 | 0.4220 | 37.4081 | 29.7287 | 35.6792 | 36.0611 | 19.0 | | No log | 2.0 | 422 | 0.4020 | 37.6979 | 30.5377 | 36.0747 | 36.4168 | 19.0 | | 0.3832 | 3.0 | 633 | 0.3947 | 38.258 | 31.0862 | 36.5414 | 37.0213 | 19.0 | | 0.3832 | 4.0 | 844 | 0.3850 | 38.4834 | 31.3747 | 36.8077 | 37.2317 | 19.0 | | 0.2939 | 5.0 | 1055 | 0.3765 | 38.8131 | 32.3372 | 37.3919 | 37.7305 | 19.0 | | 0.2939 | 6.0 | 1266 | 0.3762 | 39.1749 | 33.0152 | 37.6824 | 38.0201 | 19.0 | | 0.2939 | 7.0 | 1477 | 0.3569 | 39.2336 | 32.9984 | 37.8439 | 38.1723 | 19.0 | | 0.2511 | 8.0 | 1688 | 0.3551 | 39.452 | 33.6999 | 38.3731 | 38.5895 | 19.0 | | 0.2511 | 9.0 | 1899 | 0.3523 | 39.8924 | 34.2746 | 38.6913 | 38.9944 | 19.0 | | 0.2532 | 10.0 | 2110 | 0.3487 | 39.9155 | 34.2762 | 38.8052 | 39.077 | 19.0 | | 0.2532 | 11.0 | 2321 | 0.3533 | 39.7805 | 34.2195 | 38.6591 | 38.9007 | 19.0 | | 0.2158 | 12.0 | 2532 | 0.3529 | 39.6286 | 34.2772 | 38.5553 | 38.8225 | 19.0 | | 0.2158 | 13.0 | 2743 | 0.3506 | 40.1899 | 35.0527 | 39.2227 | 39.4969 | 19.0 | | 0.2158 | 14.0 | 2954 | 0.3474 | 40.666 | 35.5759 | 39.6311 | 39.9267 | 19.0 | | 0.1882 | 15.0 | 3165 | 0.3488 | 40.4267 | 35.2551 | 39.2486 | 39.5608 | 19.0 | | 0.1882 | 16.0 | 3376 | 0.3547 | 40.6478 | 35.5519 | 39.6034 | 39.8449 | 19.0 | | 0.1612 | 17.0 | 3587 | 0.3616 | 40.7061 | 35.8348 | 39.8034 | 40.0508 | 19.0 | | 0.1612 | 18.0 | 3798 | 0.3621 | 40.7052 | 35.8514 | 39.7689 | 40.0123 | 19.0 | | 0.1434 | 19.0 | 4009 | 0.3632 | 40.5196 | 35.649 | 39.5977 | 39.8099 | 19.0 | | 0.1434 | 20.0 | 4220 | 0.3667 | 40.8356 | 35.9832 | 39.9295 | 40.1647 | 19.0 | | 0.1434 | 21.0 | 4431 | 0.3711 | 40.75 | 35.7893 | 39.7533 | 40.0671 | 19.0 | | 0.1248 | 22.0 | 4642 | 0.3714 | 40.6404 | 35.8139 | 39.6508 | 39.9206 | 19.0 | | 0.1248 | 23.0 | 4853 | 0.3720 | 40.596 | 35.7999 | 39.7515 | 39.9484 | 19.0 | | 0.1097 | 24.0 | 5064 | 0.3766 | 40.6635 | 35.8029 | 39.8031 | 40.023 | 19.0 | | 0.1097 | 25.0 | 5275 | 0.3841 | 40.6312 | 35.7811 | 39.7593 | 40.0159 | 19.0 | | 0.1097 | 26.0 | 5486 | 0.3874 | 40.6912 | 35.85 | 39.7479 | 40.0379 | 19.0 | | 0.0994 | 27.0 | 5697 | 0.3840 | 40.7263 | 35.9777 | 39.8711 | 40.1549 | 19.0 | | 0.0994 | 28.0 | 5908 | 0.3935 | 40.7512 | 35.8443 | 39.7654 | 40.052 | 19.0 | | 0.0877 | 29.0 | 6119 | 0.3942 | 40.801 | 35.9741 | 39.8594 | 40.0986 | 19.0 | | 0.0877 | 30.0 | 6330 | 0.3977 | 40.9239 | 36.1363 | 40.0563 | 40.319 | 19.0 | | 0.0786 | 31.0 | 6541 | 0.4009 | 40.8977 | 36.1534 | 40.0016 | 40.2385 | 19.0 | | 0.0786 | 32.0 | 6752 | 0.3996 | 40.7816 | 36.1552 | 39.9214 | 40.1717 | 19.0 | | 0.0786 | 33.0 | 6963 | 0.4023 | 40.9965 | 36.3464 | 40.1217 | 40.3481 | 19.0 | | 0.0723 | 34.0 | 7174 | 0.4086 | 40.8352 | 36.1049 | 39.8852 | 40.142 | 19.0 | | 0.0723 | 35.0 | 7385 | 0.4048 | 40.9399 | 36.2465 | 40.0545 | 40.3178 | 19.0 | | 0.0654 | 36.0 | 7596 | 0.4097 | 40.9975 | 36.2784 | 40.0802 | 40.3726 | 19.0 | | 0.0654 | 37.0 | 7807 | 0.4117 | 40.851 | 36.1677 | 40.0313 | 40.3027 | 19.0 | | 0.0592 | 38.0 | 8018 | 0.4164 | 40.9427 | 36.2783 | 40.1323 | 40.4087 | 19.0 | | 0.0592 | 39.0 | 8229 | 0.4187 | 40.6632 | 36.0088 | 39.8049 | 40.0361 | 19.0 | | 0.0592 | 40.0 | 8440 | 0.4188 | 41.008 | 36.3243 | 40.1924 | 40.466 | 19.0 | | 0.0557 | 41.0 | 8651 | 0.4244 | 40.887 | 36.2373 | 40.0544 | 40.3017 | 19.0 | | 0.0557 | 42.0 | 8862 | 0.4219 | 40.8024 | 36.1323 | 39.9768 | 40.2685 | 19.0 | | 0.0516 | 43.0 | 9073 | 0.4234 | 40.7758 | 36.1291 | 39.9284 | 40.1658 | 19.0 | | 0.0516 | 44.0 | 9284 | 0.4268 | 40.8067 | 36.1192 | 39.9735 | 40.212 | 19.0 | | 0.0516 | 45.0 | 9495 | 0.4229 | 40.8445 | 36.0577 | 39.9435 | 40.1851 | 19.0 | | 0.0473 | 46.0 | 9706 | 0.4343 | 40.7118 | 36.1068 | 39.9453 | 40.1875 | 19.0 | | 0.0473 | 47.0 | 9917 | 0.4311 | 40.7688 | 36.0953 | 39.9612 | 40.1921 | 19.0 | | 0.0438 | 48.0 | 10128 | 0.4376 | 40.9327 | 36.2236 | 40.0164 | 40.2675 | 19.0 | | 0.0438 | 49.0 | 10339 | 0.4360 | 41.0039 | 36.3548 | 40.0958 | 40.3716 | 19.0 | | 0.0408 | 50.0 | 10550 | 0.4418 | 40.9386 | 36.3116 | 40.0052 | 40.2586 | 19.0 | | 0.0408 | 51.0 | 10761 | 0.4436 | 41.0744 | 36.421 | 40.1518 | 40.4014 | 19.0 | | 0.0408 | 52.0 | 10972 | 0.4427 | 41.1198 | 36.4495 | 40.2116 | 40.4505 | 19.0 | | 0.0382 | 53.0 | 11183 | 0.4428 | 41.0544 | 36.4075 | 40.1852 | 40.4269 | 19.0 | | 0.0382 | 54.0 | 11394 | 0.4468 | 41.0366 | 36.3513 | 40.1403 | 40.361 | 19.0 | | 0.0354 | 55.0 | 11605 | 0.4463 | 40.9558 | 36.3748 | 40.1348 | 40.3447 | 19.0 | | 0.0354 | 56.0 | 11816 | 0.4508 | 40.8857 | 36.3143 | 40.0455 | 40.2318 | 19.0 | | 0.0338 | 57.0 | 12027 | 0.4544 | 40.8272 | 36.244 | 40.0023 | 40.2384 | 19.0 | | 0.0338 | 58.0 | 12238 | 0.4555 | 40.9537 | 36.1908 | 40.0228 | 40.2483 | 19.0 | | 0.0338 | 59.0 | 12449 | 0.4521 | 40.9258 | 36.1708 | 40.0611 | 40.3071 | 19.0 | | 0.031 | 60.0 | 12660 | 0.4555 | 40.8837 | 36.147 | 40.0305 | 40.2382 | 19.0 | | 0.031 | 61.0 | 12871 | 0.4566 | 40.9297 | 36.2576 | 40.09 | 40.2747 | 19.0 | | 0.0307 | 62.0 | 13082 | 0.4562 | 40.8585 | 36.2582 | 40.0722 | 40.25 | 19.0 | | 0.0307 | 63.0 | 13293 | 0.4592 | 40.9201 | 36.2751 | 40.0861 | 40.3269 | 19.0 | | 0.0281 | 64.0 | 13504 | 0.4567 | 40.9232 | 36.2481 | 40.0753 | 40.3216 | 19.0 | | 0.0281 | 65.0 | 13715 | 0.4606 | 41.0077 | 36.3489 | 40.1395 | 40.3744 | 19.0 | | 0.0281 | 66.0 | 13926 | 0.4649 | 41.0042 | 36.5452 | 40.2019 | 40.4466 | 19.0 | | 0.0263 | 67.0 | 14137 | 0.4674 | 40.9152 | 36.4575 | 40.2074 | 40.4128 | 19.0 | | 0.0263 | 68.0 | 14348 | 0.4638 | 40.9942 | 36.4242 | 40.2192 | 40.4164 | 19.0 | | 0.0258 | 69.0 | 14559 | 0.4652 | 41.0026 | 36.3871 | 40.1336 | 40.3569 | 19.0 | | 0.0258 | 70.0 | 14770 | 0.4683 | 40.9275 | 36.4236 | 40.0798 | 40.3247 | 19.0 | | 0.0258 | 71.0 | 14981 | 0.4729 | 40.9299 | 36.2989 | 40.1179 | 40.3533 | 19.0 | | 0.0245 | 72.0 | 15192 | 0.4713 | 40.8745 | 36.2617 | 40.0829 | 40.3073 | 19.0 | | 0.0245 | 73.0 | 15403 | 0.4720 | 40.9534 | 36.4602 | 40.1804 | 40.4279 | 19.0 | | 0.0231 | 74.0 | 15614 | 0.4762 | 41.055 | 36.552 | 40.2672 | 40.5027 | 19.0 | | 0.0231 | 75.0 | 15825 | 0.4776 | 40.939 | 36.492 | 40.1735 | 40.3718 | 19.0 | | 0.0219 | 76.0 | 16036 | 0.4814 | 41.0543 | 36.6498 | 40.3146 | 40.5381 | 19.0 | | 0.0219 | 77.0 | 16247 | 0.4826 | 41.0015 | 36.5925 | 40.2389 | 40.4813 | 19.0 | | 0.0219 | 78.0 | 16458 | 0.4840 | 41.0486 | 36.6352 | 40.3106 | 40.5603 | 19.0 | | 0.0213 | 79.0 | 16669 | 0.4848 | 40.9784 | 36.4886 | 40.1903 | 40.439 | 19.0 | | 0.0213 | 80.0 | 16880 | 0.4910 | 41.175 | 36.6854 | 40.3474 | 40.5917 | 19.0 | | 0.0204 | 81.0 | 17091 | 0.4843 | 41.0851 | 36.5354 | 40.3005 | 40.5392 | 19.0 | | 0.0204 | 82.0 | 17302 | 0.4847 | 41.2714 | 36.6856 | 40.4516 | 40.672 | 19.0 | | 0.0196 | 83.0 | 17513 | 0.4860 | 40.9692 | 36.3916 | 40.1273 | 40.3602 | 19.0 | | 0.0196 | 84.0 | 17724 | 0.4870 | 40.9497 | 36.3933 | 40.1057 | 40.3926 | 19.0 | | 0.0196 | 85.0 | 17935 | 0.4827 | 41.0823 | 36.5005 | 40.2376 | 40.4651 | 19.0 | | 0.019 | 86.0 | 18146 | 0.4889 | 41.1902 | 36.6614 | 40.3848 | 40.6069 | 19.0 | | 0.019 | 87.0 | 18357 | 0.4890 | 41.186 | 36.6136 | 40.4576 | 40.6462 | 19.0 | | 0.0179 | 88.0 | 18568 | 0.4940 | 41.1593 | 36.5153 | 40.377 | 40.5727 | 19.0 | | 0.0179 | 89.0 | 18779 | 0.4908 | 40.9712 | 36.43 | 40.1811 | 40.3797 | 19.0 | | 0.0179 | 90.0 | 18990 | 0.4914 | 41.0358 | 36.4656 | 40.1936 | 40.4449 | 19.0 | | 0.0176 | 91.0 | 19201 | 0.4924 | 40.8918 | 36.3329 | 40.0398 | 40.2895 | 19.0 | | 0.0176 | 92.0 | 19412 | 0.4913 | 41.0889 | 36.3829 | 40.213 | 40.4163 | 19.0 | | 0.0168 | 93.0 | 19623 | 0.4939 | 41.048 | 36.407 | 40.1863 | 40.4131 | 19.0 | | 0.0168 | 94.0 | 19834 | 0.4996 | 41.0211 | 36.3687 | 40.1492 | 40.3375 | 19.0 | | 0.016 | 95.0 | 20045 | 0.5000 | 40.8562 | 36.2496 | 39.9959 | 40.2259 | 19.0 | | 0.016 | 96.0 | 20256 | 0.4989 | 41.0123 | 36.3468 | 40.1217 | 40.3407 | 19.0 | | 0.016 | 97.0 | 20467 | 0.5004 | 41.0992 | 36.4577 | 40.1794 | 40.4175 | 19.0 | | 0.0163 | 98.0 | 20678 | 0.5009 | 41.0319 | 36.3625 | 40.1331 | 40.3442 | 19.0 | | 0.0163 | 99.0 | 20889 | 0.4978 | 40.8888 | 36.238 | 40.0311 | 40.2348 | 19.0 | | 0.0154 | 100.0 | 21100 | 0.5059 | 40.9034 | 36.2802 | 40.033 | 40.2534 | 19.0 | | 0.0154 | 101.0 | 21311 | 0.5026 | 41.0808 | 36.4192 | 40.211 | 40.4242 | 19.0 | | 0.0148 | 102.0 | 21522 | 0.5043 | 41.1898 | 36.4732 | 40.3336 | 40.5495 | 19.0 | | 0.0148 | 103.0 | 21733 | 0.5062 | 41.216 | 36.6109 | 40.408 | 40.6201 | 19.0 | | 0.0148 | 104.0 | 21944 | 0.5076 | 40.9136 | 36.2326 | 40.043 | 40.274 | 19.0 | | 0.0142 | 105.0 | 22155 | 0.5085 | 41.1476 | 36.5099 | 40.3444 | 40.5131 | 19.0 | | 0.0142 | 106.0 | 22366 | 0.5087 | 41.1 | 36.4271 | 40.2888 | 40.4809 | 19.0 | | 0.0137 | 107.0 | 22577 | 0.5083 | 40.8868 | 36.2128 | 40.0356 | 40.2519 | 19.0 | | 0.0137 | 108.0 | 22788 | 0.5097 | 41.0436 | 36.4065 | 40.2004 | 40.4431 | 19.0 | | 0.0137 | 109.0 | 22999 | 0.5113 | 41.1789 | 36.617 | 40.3938 | 40.5925 | 19.0 | | 0.0137 | 110.0 | 23210 | 0.5127 | 40.989 | 36.3659 | 40.1097 | 40.3074 | 19.0 | | 0.0137 | 111.0 | 23421 | 0.5144 | 41.0157 | 36.3607 | 40.1239 | 40.3237 | 19.0 | | 0.0132 | 112.0 | 23632 | 0.5153 | 40.9412 | 36.3165 | 40.0601 | 40.283 | 19.0 | | 0.0132 | 113.0 | 23843 | 0.5127 | 41.011 | 36.3343 | 40.1059 | 40.3317 | 19.0 | | 0.0138 | 114.0 | 24054 | 0.5174 | 40.9507 | 36.3226 | 40.0426 | 40.2821 | 19.0 | | 0.0138 | 115.0 | 24265 | 0.5172 | 40.9169 | 36.2471 | 40.0189 | 40.2581 | 19.0 | | 0.0138 | 116.0 | 24476 | 0.5191 | 40.9621 | 36.2937 | 40.0859 | 40.2872 | 19.0 | | 0.0129 | 117.0 | 24687 | 0.5164 | 40.9124 | 36.2428 | 40.0247 | 40.2636 | 19.0 | | 0.0129 | 118.0 | 24898 | 0.5217 | 40.8482 | 36.2412 | 39.983 | 40.2084 | 19.0 | | 0.0131 | 119.0 | 25109 | 0.5191 | 40.9377 | 36.3549 | 40.0702 | 40.303 | 19.0 | | 0.0131 | 120.0 | 25320 | 0.5206 | 41.0878 | 36.5262 | 40.2577 | 40.4903 | 19.0 | | 0.0123 | 121.0 | 25531 | 0.5223 | 40.9777 | 36.4348 | 40.1438 | 40.3255 | 19.0 | | 0.0123 | 122.0 | 25742 | 0.5200 | 40.9512 | 36.2822 | 40.0795 | 40.2998 | 19.0 | | 0.0123 | 123.0 | 25953 | 0.5244 | 40.9508 | 36.3301 | 40.0726 | 40.3256 | 19.0 | | 0.0125 | 124.0 | 26164 | 0.5225 | 41.1733 | 36.4561 | 40.3336 | 40.5512 | 19.0 | | 0.0125 | 125.0 | 26375 | 0.5240 | 41.0364 | 36.4154 | 40.189 | 40.4268 | 19.0 | | 0.0118 | 126.0 | 26586 | 0.5246 | 41.1267 | 36.4904 | 40.3025 | 40.5672 | 19.0 | | 0.0118 | 127.0 | 26797 | 0.5214 | 40.9609 | 36.417 | 40.1255 | 40.3472 | 19.0 | | 0.0125 | 128.0 | 27008 | 0.5196 | 41.1335 | 36.4937 | 40.3248 | 40.5371 | 19.0 | | 0.0125 | 129.0 | 27219 | 0.5214 | 41.1757 | 36.606 | 40.3908 | 40.6112 | 19.0 | | 0.0125 | 130.0 | 27430 | 0.5190 | 41.1436 | 36.5116 | 40.344 | 40.5505 | 19.0 | | 0.012 | 131.0 | 27641 | 0.5227 | 41.0854 | 36.5638 | 40.2975 | 40.5342 | 19.0 | | 0.012 | 132.0 | 27852 | 0.5233 | 41.0652 | 36.5087 | 40.2447 | 40.4784 | 19.0 | | 0.0117 | 133.0 | 28063 | 0.5251 | 41.1272 | 36.4621 | 40.2664 | 40.4917 | 19.0 | | 0.0117 | 134.0 | 28274 | 0.5215 | 41.1819 | 36.5561 | 40.3583 | 40.5515 | 19.0 | | 0.0117 | 135.0 | 28485 | 0.5219 | 41.1615 | 36.5308 | 40.323 | 40.5283 | 19.0 | | 0.0116 | 136.0 | 28696 | 0.5228 | 41.0947 | 36.4701 | 40.2537 | 40.4725 | 19.0 | | 0.0116 | 137.0 | 28907 | 0.5211 | 41.1187 | 36.4948 | 40.2711 | 40.4957 | 19.0 | | 0.0114 | 138.0 | 29118 | 0.5219 | 41.0826 | 36.4684 | 40.2557 | 40.4678 | 19.0 | | 0.0114 | 139.0 | 29329 | 0.5223 | 41.1453 | 36.5356 | 40.3132 | 40.5333 | 19.0 | | 0.0111 | 140.0 | 29540 | 0.5237 | 41.1055 | 36.4938 | 40.2656 | 40.4907 | 19.0 | | 0.0111 | 141.0 | 29751 | 0.5241 | 41.1391 | 36.4983 | 40.2896 | 40.5215 | 19.0 | | 0.0111 | 142.0 | 29962 | 0.5243 | 41.1702 | 36.5621 | 40.3401 | 40.5579 | 19.0 | | 0.0112 | 143.0 | 30173 | 0.5242 | 41.1499 | 36.5609 | 40.3355 | 40.5387 | 19.0 | | 0.0112 | 144.0 | 30384 | 0.5236 | 41.1261 | 36.5274 | 40.3011 | 40.522 | 19.0 | | 0.011 | 145.0 | 30595 | 0.5240 | 41.1174 | 36.4917 | 40.2739 | 40.5043 | 19.0 | | 0.011 | 146.0 | 30806 | 0.5248 | 41.1174 | 36.4917 | 40.2739 | 40.5043 | 19.0 | | 0.0106 | 147.0 | 31017 | 0.5241 | 41.1174 | 36.4917 | 40.2739 | 40.5043 | 19.0 | | 0.0106 | 148.0 | 31228 | 0.5243 | 41.1174 | 36.4917 | 40.2739 | 40.5043 | 19.0 | | 0.0106 | 149.0 | 31439 | 0.5245 | 41.1174 | 36.4917 | 40.2739 | 40.5043 | 19.0 | | 0.0105 | 150.0 | 31650 | 0.5246 | 41.1174 | 36.4917 | 40.2739 | 40.5043 | 19.0 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2
rendchevi/roberta-per-v0.1
rendchevi
2024-03-07T18:12:51Z
6
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T17:45:17Z
--- library_name: transformers tags: [] --- ```py def scaling(x, min_x, max_x, r1, r2): # Scale data x (n_samples x 1) to [r1, r2] x_s = x x_s = (x_s - min_x) * (r2 - r1) / (max_x - min_x) x_s = r1 + x_s return x_s def descaling(x_s, min_x, max_x, r1, r2): # Re-scale data x (n_samples x 1) to [min_x, max_x] x = x_s x = (x - r1) * (max_x - min_x) / (r2 - r1) + min_x return x # Inference example with torch.no_grad(): x = "They are equally important, absolutely, and just as real as each other." x = tokenizer([x], return_tensors="pt", add_special_tokens=True, padding=True) y_hat = model(**x.to(device)).logits y_hat = torch.tanh(y_hat).cpu() l_hat = descaling(y_hat, 1, 7, -1, 1)[0].numpy() print(l_hat) # [C, O, E, A, S] # [6.0583944 4.4941516 1.6538751 5.5261126 4.725995 ] ```
JayShah07/pii_model
JayShah07
2024-03-07T18:04:46Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-03-07T16:51:34Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: pii_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pii_model This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Precision: 0.7387 - Recall: 0.7736 - F1: 0.7558 - Accuracy: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 192 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.9993 | | No log | 2.0 | 384 | 0.0012 | 0.75 | 0.7358 | 0.7429 | 0.9998 | | 0.036 | 3.0 | 576 | 0.0009 | 0.7009 | 0.7736 | 0.7354 | 0.9998 | | 0.036 | 4.0 | 768 | 0.0008 | 0.7345 | 0.7830 | 0.7580 | 0.9998 | | 0.036 | 5.0 | 960 | 0.0009 | 0.7387 | 0.7736 | 0.7558 | 0.9998 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2
presencesw/xlmr_large_vinli_4_label_checkpoint-285
presencesw
2024-03-07T17:52:39Z
4
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T17:51:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andersonbcdefg/distilbert-splade-onnx
andersonbcdefg
2024-03-07T17:50:21Z
6
1
transformers
[ "transformers", "onnx", "safetensors", "distilbert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-03-06T21:13:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mantis-VL/mfuyu_llava_v3_8192_480p
Mantis-VL
2024-03-07T17:48:49Z
11
0
transformers
[ "transformers", "safetensors", "fuyu", "text-generation", "generated_from_trainer", "base_model:Mantis-VL/mfuyu_llava_8192_480p", "base_model:finetune:Mantis-VL/mfuyu_llava_8192_480p", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T16:43:18Z
--- license: cc-by-nc-4.0 base_model: MFuyu/mfuyu_llava_8192_480p tags: - generated_from_trainer model-index: - name: mfuyu_llava_v3_8192_480p results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mfuyu_llava_v3_8192_480p This model is a fine-tuned version of [MFuyu/mfuyu_llava_8192_480p](https://huggingface.co/MFuyu/mfuyu_llava_8192_480p) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.37.0 - Pytorch 2.2.1 - Datasets 2.17.1 - Tokenizers 0.15.2
SamuelBabua/StoryTellerV1
SamuelBabua
2024-03-07T17:45:32Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-03-07T17:07:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
guilhermebastos96/speecht5_finetuned_male_globo_add_token_2
guilhermebastos96
2024-03-07T17:42:09Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "endpoints_compatible", "region:us" ]
text-to-audio
2024-03-07T05:55:38Z
--- tags: - generated_from_trainer model-index: - name: speecht5_finetuned_male_globo_add_token_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_male_globo_add_token_2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3989 | 6.48 | 1000 | 0.3666 | | 0.3899 | 12.97 | 2000 | 0.3541 | | 0.3787 | 19.45 | 3000 | 0.3500 | | 0.3756 | 25.93 | 4000 | 0.3494 | | 0.3739 | 32.41 | 5000 | 0.3463 | | 0.3728 | 38.9 | 6000 | 0.3448 | | 0.3686 | 45.38 | 7000 | 0.3447 | | 0.3687 | 51.86 | 8000 | 0.3446 | | 0.3682 | 58.35 | 9000 | 0.3465 | | 0.3683 | 64.83 | 10000 | 0.3445 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
Ftfyhh/xttsv2_banana
Ftfyhh
2024-03-07T17:42:00Z
0
17
null
[ "region:us" ]
null
2024-03-04T12:07:56Z
# XTTSv2 Banana finetune - Russian informal speech Разговорный файнтюн XTTSv2 для русского языка. Основан на 9 минутах голосовых сообщениях с матом от 5 разных девушек. Видео сравнение с оригиналом: https://www.youtube.com/watch?v=hPS7dtJn00s ## Особенности - добавляет больше интонаций, эмоциональности, придыханий, делая речь более живой. - лучше справляется с ударениями в словах (мат, разговорная лексика). - только для русского языка. В английском на коротких фразах типа Yes./No./Well. появились звуковые галлюцинации, на длинных почти не заметно. На русском все ок. - основан на женских голосах, поэтому все мужские голоса будут слегка феминными. - весит 5 GB, но VRAM занимает ровно столько же, сколько и оригинал (2.6 GB). - обучение на 9 минутах голосовых сообщений заняло 70 минут и 10 эпох на 3060 12 GB, дальше была только потеря качества (loss). Чем больше датасет, тем больше требуется VRAM и времени. - для дальнейшего улучшения качества ударений требуется еще больший датасет с проблемными словами и ручная проверка распознанного Виспером текста. ## Использование - у вас должен быть установлен [Couqi TTS](https://github.com/coqui-ai/TTS/tree/dev#installation) либо [xtts_api_server](https://github.com/daswer123/xtts-api-server?tab=readme-ov-file#installation) - скачать все файлы сохраняя структуру папок (/model_banana/v2.0.2/...) - для xtts_api_server: в папке на одну выше, чем /model_banana запустить cmd: python -m xtts_api_server -d=cuda -mf model_banana - Инструкция как дообучить xtts для своего голоса: https://docs.coqui.ai/en/latest/models/xtts.html#training (нужно 16-20 GB VRAM, но shared vram тоже подойдет, просто будет чуть медленнее) Мой русский неформальный голосовой помощник: https://github.com/Mozer/talk-llama-fast ТГ: https://t.me/tensorbanana
not-lain/DUSt3R_ViTLarge_BaseDecoder_512_dpt_bis
not-lain
2024-03-07T17:32:40Z
6
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
2024-03-06T22:18:56Z
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using ****: - Repo: [More Information Needed] - Docs: [More Information Needed]
artaxx194/FemaleWerewolf
artaxx194
2024-03-07T17:30:06Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "region:us" ]
text-to-image
2024-03-07T17:29:44Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/example1 - Copy.png base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null --- # Female Werewolf <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/artaxx194/FemaleWerewolf/tree/main) them in the Files & versions tab.
farid1088/GQA_BERT_German_legal_SQuAD_17
farid1088
2024-03-07T17:25:01Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-05T13:41:38Z
--- tags: - generated_from_trainer model-index: - name: GQA_BERT_German_legal_SQuAD_17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_BERT_German_legal_SQuAD_17 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 17 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 5.4404 | | No log | 2.0 | 4 | 4.4407 | | No log | 3.0 | 6 | 3.9783 | | No log | 4.0 | 8 | 3.6009 | | No log | 5.0 | 10 | 3.2873 | | No log | 6.0 | 12 | 3.0050 | | No log | 7.0 | 14 | 2.7571 | | No log | 8.0 | 16 | 2.5398 | | No log | 9.0 | 18 | 2.3554 | | No log | 10.0 | 20 | 2.2110 | | No log | 11.0 | 22 | 2.0977 | | No log | 12.0 | 24 | 2.0078 | | No log | 13.0 | 26 | 1.9261 | | No log | 14.0 | 28 | 1.8590 | | No log | 15.0 | 30 | 1.8072 | | No log | 16.0 | 32 | 1.7733 | | No log | 17.0 | 34 | 1.7586 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
farid1088/GQA_BERT_German_legal_SQuAD_part_augmented_2000
farid1088
2024-03-07T17:23:27Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-07T14:46:30Z
--- tags: - generated_from_trainer model-index: - name: GQA_BERT_German_legal_SQuAD_part_augmented_2000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_BERT_German_legal_SQuAD_part_augmented_2000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 3 | 5.1193 | | No log | 2.0 | 6 | 4.5794 | | No log | 3.0 | 9 | 3.9562 | | No log | 4.0 | 12 | 3.6226 | | No log | 5.0 | 15 | 3.1767 | | No log | 6.0 | 18 | 2.8026 | | No log | 7.0 | 21 | 2.5106 | | No log | 8.0 | 24 | 2.2343 | | No log | 9.0 | 27 | 2.0290 | | No log | 10.0 | 30 | 1.8059 | | No log | 11.0 | 33 | 1.6448 | | No log | 12.0 | 36 | 1.4814 | | No log | 13.0 | 39 | 1.3270 | | No log | 14.0 | 42 | 1.2522 | | No log | 15.0 | 45 | 1.1957 | | No log | 16.0 | 48 | 1.1489 | | No log | 17.0 | 51 | 1.1251 | | No log | 18.0 | 54 | 1.1000 | | No log | 19.0 | 57 | 1.0762 | | No log | 20.0 | 60 | 1.0465 | | No log | 21.0 | 63 | 1.0398 | | No log | 22.0 | 66 | 1.0363 | | No log | 23.0 | 69 | 1.0388 | | No log | 24.0 | 72 | 1.0330 | | No log | 25.0 | 75 | 1.0242 | | No log | 26.0 | 78 | 1.0188 | | No log | 27.0 | 81 | 1.0227 | | No log | 28.0 | 84 | 1.0281 | | No log | 29.0 | 87 | 1.0362 | | No log | 30.0 | 90 | 1.0278 | | No log | 31.0 | 93 | 1.0463 | | No log | 32.0 | 96 | 1.0733 | | No log | 33.0 | 99 | 1.0895 | | No log | 34.0 | 102 | 1.0818 | | No log | 35.0 | 105 | 1.0836 | | No log | 36.0 | 108 | 1.0664 | | No log | 37.0 | 111 | 1.0578 | | No log | 38.0 | 114 | 1.0792 | | No log | 39.0 | 117 | 1.0465 | | No log | 40.0 | 120 | 1.0288 | | No log | 41.0 | 123 | 1.0609 | | No log | 42.0 | 126 | 1.0676 | | No log | 43.0 | 129 | 1.0343 | | No log | 44.0 | 132 | 1.0653 | | No log | 45.0 | 135 | 1.1017 | | No log | 46.0 | 138 | 1.0780 | | No log | 47.0 | 141 | 1.0841 | | No log | 48.0 | 144 | 1.0921 | | No log | 49.0 | 147 | 1.0919 | | No log | 50.0 | 150 | 1.1088 | | No log | 51.0 | 153 | 1.0983 | | No log | 52.0 | 156 | 1.0897 | | No log | 53.0 | 159 | 1.0991 | | No log | 54.0 | 162 | 1.1124 | | No log | 55.0 | 165 | 1.0800 | | No log | 56.0 | 168 | 1.1173 | | No log | 57.0 | 171 | 1.1244 | | No log | 58.0 | 174 | 1.1127 | | No log | 59.0 | 177 | 1.1290 | | No log | 60.0 | 180 | 1.1127 | | No log | 61.0 | 183 | 1.1141 | | No log | 62.0 | 186 | 1.1494 | | No log | 63.0 | 189 | 1.1185 | | No log | 64.0 | 192 | 1.1394 | | No log | 65.0 | 195 | 1.1624 | | No log | 66.0 | 198 | 1.1620 | | No log | 67.0 | 201 | 1.1518 | | No log | 68.0 | 204 | 1.1353 | | No log | 69.0 | 207 | 1.2165 | | No log | 70.0 | 210 | 1.1765 | | No log | 71.0 | 213 | 1.1964 | | No log | 72.0 | 216 | 1.2078 | | No log | 73.0 | 219 | 1.1245 | | No log | 74.0 | 222 | 1.1631 | | No log | 75.0 | 225 | 1.1314 | | No log | 76.0 | 228 | 1.0521 | | No log | 77.0 | 231 | 1.1047 | | No log | 78.0 | 234 | 1.1412 | | No log | 79.0 | 237 | 1.1133 | | No log | 80.0 | 240 | 1.1257 | | No log | 81.0 | 243 | 1.1375 | | No log | 82.0 | 246 | 1.0486 | | No log | 83.0 | 249 | 1.1223 | | No log | 84.0 | 252 | 1.1664 | | No log | 85.0 | 255 | 1.0748 | | No log | 86.0 | 258 | 1.1151 | | No log | 87.0 | 261 | 1.1358 | | No log | 88.0 | 264 | 1.0981 | | No log | 89.0 | 267 | 1.2120 | | No log | 90.0 | 270 | 1.1805 | | No log | 91.0 | 273 | 1.1296 | | No log | 92.0 | 276 | 1.3029 | | No log | 93.0 | 279 | 1.2570 | | No log | 94.0 | 282 | 1.1256 | | No log | 95.0 | 285 | 1.1910 | | No log | 96.0 | 288 | 1.2814 | | No log | 97.0 | 291 | 1.1195 | | No log | 98.0 | 294 | 1.0572 | | No log | 99.0 | 297 | 1.1948 | | No log | 100.0 | 300 | 1.1649 | | No log | 101.0 | 303 | 1.0716 | | No log | 102.0 | 306 | 1.1648 | | No log | 103.0 | 309 | 1.1558 | | No log | 104.0 | 312 | 1.1381 | | No log | 105.0 | 315 | 1.2201 | | No log | 106.0 | 318 | 1.2335 | | No log | 107.0 | 321 | 1.0798 | | No log | 108.0 | 324 | 1.1202 | | No log | 109.0 | 327 | 1.2209 | | No log | 110.0 | 330 | 1.2331 | | No log | 111.0 | 333 | 1.1878 | | No log | 112.0 | 336 | 1.2108 | | No log | 113.0 | 339 | 1.2244 | | No log | 114.0 | 342 | 1.1712 | | No log | 115.0 | 345 | 1.1699 | | No log | 116.0 | 348 | 1.2039 | | No log | 117.0 | 351 | 1.0968 | | No log | 118.0 | 354 | 1.1880 | | No log | 119.0 | 357 | 1.1514 | | No log | 120.0 | 360 | 1.0878 | | No log | 121.0 | 363 | 1.1416 | | No log | 122.0 | 366 | 1.1696 | | No log | 123.0 | 369 | 1.1387 | | No log | 124.0 | 372 | 1.1488 | | No log | 125.0 | 375 | 1.1840 | | No log | 126.0 | 378 | 1.1501 | | No log | 127.0 | 381 | 1.1900 | | No log | 128.0 | 384 | 1.1478 | | No log | 129.0 | 387 | 1.2309 | | No log | 130.0 | 390 | 1.3350 | | No log | 131.0 | 393 | 1.2147 | | No log | 132.0 | 396 | 1.1993 | | No log | 133.0 | 399 | 1.2747 | | No log | 134.0 | 402 | 1.2372 | | No log | 135.0 | 405 | 1.2479 | | No log | 136.0 | 408 | 1.2942 | | No log | 137.0 | 411 | 1.2322 | | No log | 138.0 | 414 | 1.2148 | | No log | 139.0 | 417 | 1.2922 | | No log | 140.0 | 420 | 1.3430 | | No log | 141.0 | 423 | 1.3824 | | No log | 142.0 | 426 | 1.2082 | | No log | 143.0 | 429 | 1.1967 | | No log | 144.0 | 432 | 1.2483 | | No log | 145.0 | 435 | 1.1599 | | No log | 146.0 | 438 | 1.0864 | | No log | 147.0 | 441 | 1.1238 | | No log | 148.0 | 444 | 1.2074 | | No log | 149.0 | 447 | 1.1902 | | No log | 150.0 | 450 | 1.1397 | | No log | 151.0 | 453 | 1.1546 | | No log | 152.0 | 456 | 1.2126 | | No log | 153.0 | 459 | 1.2443 | | No log | 154.0 | 462 | 1.2378 | | No log | 155.0 | 465 | 1.2335 | | No log | 156.0 | 468 | 1.1798 | | No log | 157.0 | 471 | 1.1297 | | No log | 158.0 | 474 | 1.1737 | | No log | 159.0 | 477 | 1.0970 | | No log | 160.0 | 480 | 1.1708 | | No log | 161.0 | 483 | 1.1551 | | No log | 162.0 | 486 | 1.1848 | | No log | 163.0 | 489 | 1.1971 | | No log | 164.0 | 492 | 1.1720 | | No log | 165.0 | 495 | 1.1960 | | No log | 166.0 | 498 | 1.2754 | | 1.0047 | 167.0 | 501 | 1.2083 | | 1.0047 | 168.0 | 504 | 1.0888 | | 1.0047 | 169.0 | 507 | 1.2684 | | 1.0047 | 170.0 | 510 | 1.3395 | | 1.0047 | 171.0 | 513 | 1.2508 | | 1.0047 | 172.0 | 516 | 1.1460 | | 1.0047 | 173.0 | 519 | 1.2464 | | 1.0047 | 174.0 | 522 | 1.2131 | | 1.0047 | 175.0 | 525 | 1.1181 | | 1.0047 | 176.0 | 528 | 1.2012 | | 1.0047 | 177.0 | 531 | 1.2957 | | 1.0047 | 178.0 | 534 | 1.1890 | | 1.0047 | 179.0 | 537 | 1.1628 | | 1.0047 | 180.0 | 540 | 1.1929 | | 1.0047 | 181.0 | 543 | 1.2900 | | 1.0047 | 182.0 | 546 | 1.3240 | | 1.0047 | 183.0 | 549 | 1.2145 | | 1.0047 | 184.0 | 552 | 1.2942 | | 1.0047 | 185.0 | 555 | 1.3425 | | 1.0047 | 186.0 | 558 | 1.1772 | | 1.0047 | 187.0 | 561 | 1.2255 | | 1.0047 | 188.0 | 564 | 1.4528 | | 1.0047 | 189.0 | 567 | 1.3898 | | 1.0047 | 190.0 | 570 | 1.1862 | | 1.0047 | 191.0 | 573 | 1.1700 | | 1.0047 | 192.0 | 576 | 1.2801 | | 1.0047 | 193.0 | 579 | 1.2571 | | 1.0047 | 194.0 | 582 | 1.1962 | | 1.0047 | 195.0 | 585 | 1.2228 | | 1.0047 | 196.0 | 588 | 1.2153 | | 1.0047 | 197.0 | 591 | 1.1498 | | 1.0047 | 198.0 | 594 | 1.1130 | | 1.0047 | 199.0 | 597 | 1.1537 | | 1.0047 | 200.0 | 600 | 1.2239 | | 1.0047 | 201.0 | 603 | 1.1742 | | 1.0047 | 202.0 | 606 | 1.1292 | | 1.0047 | 203.0 | 609 | 1.1688 | | 1.0047 | 204.0 | 612 | 1.1844 | | 1.0047 | 205.0 | 615 | 1.1928 | | 1.0047 | 206.0 | 618 | 1.2253 | | 1.0047 | 207.0 | 621 | 1.2585 | | 1.0047 | 208.0 | 624 | 1.3174 | | 1.0047 | 209.0 | 627 | 1.3660 | | 1.0047 | 210.0 | 630 | 1.2523 | | 1.0047 | 211.0 | 633 | 1.2249 | | 1.0047 | 212.0 | 636 | 1.4178 | | 1.0047 | 213.0 | 639 | 1.3895 | | 1.0047 | 214.0 | 642 | 1.2523 | | 1.0047 | 215.0 | 645 | 1.1921 | | 1.0047 | 216.0 | 648 | 1.2245 | | 1.0047 | 217.0 | 651 | 1.3426 | | 1.0047 | 218.0 | 654 | 1.3673 | | 1.0047 | 219.0 | 657 | 1.1933 | | 1.0047 | 220.0 | 660 | 1.1469 | | 1.0047 | 221.0 | 663 | 1.2684 | | 1.0047 | 222.0 | 666 | 1.4222 | | 1.0047 | 223.0 | 669 | 1.4067 | | 1.0047 | 224.0 | 672 | 1.3425 | | 1.0047 | 225.0 | 675 | 1.3358 | | 1.0047 | 226.0 | 678 | 1.4246 | | 1.0047 | 227.0 | 681 | 1.3301 | | 1.0047 | 228.0 | 684 | 1.1915 | | 1.0047 | 229.0 | 687 | 1.2654 | | 1.0047 | 230.0 | 690 | 1.4043 | | 1.0047 | 231.0 | 693 | 1.3357 | | 1.0047 | 232.0 | 696 | 1.2512 | | 1.0047 | 233.0 | 699 | 1.2383 | | 1.0047 | 234.0 | 702 | 1.1516 | | 1.0047 | 235.0 | 705 | 1.1382 | | 1.0047 | 236.0 | 708 | 1.2749 | | 1.0047 | 237.0 | 711 | 1.3747 | | 1.0047 | 238.0 | 714 | 1.1791 | | 1.0047 | 239.0 | 717 | 1.1527 | | 1.0047 | 240.0 | 720 | 1.2194 | | 1.0047 | 241.0 | 723 | 1.2754 | | 1.0047 | 242.0 | 726 | 1.3448 | | 1.0047 | 243.0 | 729 | 1.3382 | | 1.0047 | 244.0 | 732 | 1.2932 | | 1.0047 | 245.0 | 735 | 1.3135 | | 1.0047 | 246.0 | 738 | 1.3671 | | 1.0047 | 247.0 | 741 | 1.3735 | | 1.0047 | 248.0 | 744 | 1.4142 | | 1.0047 | 249.0 | 747 | 1.4000 | | 1.0047 | 250.0 | 750 | 1.2954 | | 1.0047 | 251.0 | 753 | 1.2629 | | 1.0047 | 252.0 | 756 | 1.2982 | | 1.0047 | 253.0 | 759 | 1.2750 | | 1.0047 | 254.0 | 762 | 1.2273 | | 1.0047 | 255.0 | 765 | 1.2209 | | 1.0047 | 256.0 | 768 | 1.2359 | | 1.0047 | 257.0 | 771 | 1.2626 | | 1.0047 | 258.0 | 774 | 1.1799 | | 1.0047 | 259.0 | 777 | 1.1506 | | 1.0047 | 260.0 | 780 | 1.1846 | | 1.0047 | 261.0 | 783 | 1.2278 | | 1.0047 | 262.0 | 786 | 1.2040 | | 1.0047 | 263.0 | 789 | 1.1920 | | 1.0047 | 264.0 | 792 | 1.1921 | | 1.0047 | 265.0 | 795 | 1.2421 | | 1.0047 | 266.0 | 798 | 1.2557 | | 1.0047 | 267.0 | 801 | 1.2245 | | 1.0047 | 268.0 | 804 | 1.2240 | | 1.0047 | 269.0 | 807 | 1.3193 | | 1.0047 | 270.0 | 810 | 1.3523 | | 1.0047 | 271.0 | 813 | 1.3143 | | 1.0047 | 272.0 | 816 | 1.2657 | | 1.0047 | 273.0 | 819 | 1.3099 | | 1.0047 | 274.0 | 822 | 1.2485 | | 1.0047 | 275.0 | 825 | 1.1617 | | 1.0047 | 276.0 | 828 | 1.2186 | | 1.0047 | 277.0 | 831 | 1.2683 | | 1.0047 | 278.0 | 834 | 1.2432 | | 1.0047 | 279.0 | 837 | 1.3252 | | 1.0047 | 280.0 | 840 | 1.4173 | | 1.0047 | 281.0 | 843 | 1.3807 | | 1.0047 | 282.0 | 846 | 1.3895 | | 1.0047 | 283.0 | 849 | 1.3531 | | 1.0047 | 284.0 | 852 | 1.2847 | | 1.0047 | 285.0 | 855 | 1.2734 | | 1.0047 | 286.0 | 858 | 1.2917 | | 1.0047 | 287.0 | 861 | 1.3048 | | 1.0047 | 288.0 | 864 | 1.3169 | | 1.0047 | 289.0 | 867 | 1.3620 | | 1.0047 | 290.0 | 870 | 1.4486 | | 1.0047 | 291.0 | 873 | 1.3860 | | 1.0047 | 292.0 | 876 | 1.3026 | | 1.0047 | 293.0 | 879 | 1.2993 | | 1.0047 | 294.0 | 882 | 1.2825 | | 1.0047 | 295.0 | 885 | 1.2764 | | 1.0047 | 296.0 | 888 | 1.3134 | | 1.0047 | 297.0 | 891 | 1.3452 | | 1.0047 | 298.0 | 894 | 1.3714 | | 1.0047 | 299.0 | 897 | 1.3125 | | 1.0047 | 300.0 | 900 | 1.2099 | | 1.0047 | 301.0 | 903 | 1.2298 | | 1.0047 | 302.0 | 906 | 1.3122 | | 1.0047 | 303.0 | 909 | 1.3047 | | 1.0047 | 304.0 | 912 | 1.2591 | | 1.0047 | 305.0 | 915 | 1.2820 | | 1.0047 | 306.0 | 918 | 1.2770 | | 1.0047 | 307.0 | 921 | 1.2783 | | 1.0047 | 308.0 | 924 | 1.3475 | | 1.0047 | 309.0 | 927 | 1.3819 | | 1.0047 | 310.0 | 930 | 1.2759 | | 1.0047 | 311.0 | 933 | 1.1658 | | 1.0047 | 312.0 | 936 | 1.1919 | | 1.0047 | 313.0 | 939 | 1.3712 | | 1.0047 | 314.0 | 942 | 1.4586 | | 1.0047 | 315.0 | 945 | 1.4405 | | 1.0047 | 316.0 | 948 | 1.2275 | | 1.0047 | 317.0 | 951 | 1.2043 | | 1.0047 | 318.0 | 954 | 1.3147 | | 1.0047 | 319.0 | 957 | 1.4305 | | 1.0047 | 320.0 | 960 | 1.3858 | | 1.0047 | 321.0 | 963 | 1.2997 | | 1.0047 | 322.0 | 966 | 1.2348 | | 1.0047 | 323.0 | 969 | 1.2264 | | 1.0047 | 324.0 | 972 | 1.2819 | | 1.0047 | 325.0 | 975 | 1.3146 | | 1.0047 | 326.0 | 978 | 1.3341 | | 1.0047 | 327.0 | 981 | 1.3511 | | 1.0047 | 328.0 | 984 | 1.3223 | | 1.0047 | 329.0 | 987 | 1.3236 | | 1.0047 | 330.0 | 990 | 1.3429 | | 1.0047 | 331.0 | 993 | 1.2715 | | 1.0047 | 332.0 | 996 | 1.2452 | | 1.0047 | 333.0 | 999 | 1.2350 | | 0.5933 | 334.0 | 1002 | 1.1789 | | 0.5933 | 335.0 | 1005 | 1.2327 | | 0.5933 | 336.0 | 1008 | 1.2986 | | 0.5933 | 337.0 | 1011 | 1.2372 | | 0.5933 | 338.0 | 1014 | 1.1142 | | 0.5933 | 339.0 | 1017 | 1.1219 | | 0.5933 | 340.0 | 1020 | 1.2149 | | 0.5933 | 341.0 | 1023 | 1.3215 | | 0.5933 | 342.0 | 1026 | 1.3930 | | 0.5933 | 343.0 | 1029 | 1.3952 | | 0.5933 | 344.0 | 1032 | 1.3798 | | 0.5933 | 345.0 | 1035 | 1.3870 | | 0.5933 | 346.0 | 1038 | 1.3835 | | 0.5933 | 347.0 | 1041 | 1.2778 | | 0.5933 | 348.0 | 1044 | 1.2079 | | 0.5933 | 349.0 | 1047 | 1.2545 | | 0.5933 | 350.0 | 1050 | 1.3546 | | 0.5933 | 351.0 | 1053 | 1.3485 | | 0.5933 | 352.0 | 1056 | 1.2388 | | 0.5933 | 353.0 | 1059 | 1.1877 | | 0.5933 | 354.0 | 1062 | 1.1707 | | 0.5933 | 355.0 | 1065 | 1.3036 | | 0.5933 | 356.0 | 1068 | 1.4033 | | 0.5933 | 357.0 | 1071 | 1.3046 | | 0.5933 | 358.0 | 1074 | 1.1871 | | 0.5933 | 359.0 | 1077 | 1.2303 | | 0.5933 | 360.0 | 1080 | 1.4086 | | 0.5933 | 361.0 | 1083 | 1.3546 | | 0.5933 | 362.0 | 1086 | 1.1697 | | 0.5933 | 363.0 | 1089 | 1.1320 | | 0.5933 | 364.0 | 1092 | 1.1799 | | 0.5933 | 365.0 | 1095 | 1.2172 | | 0.5933 | 366.0 | 1098 | 1.3199 | | 0.5933 | 367.0 | 1101 | 1.3302 | | 0.5933 | 368.0 | 1104 | 1.3020 | | 0.5933 | 369.0 | 1107 | 1.2652 | | 0.5933 | 370.0 | 1110 | 1.3420 | | 0.5933 | 371.0 | 1113 | 1.3486 | | 0.5933 | 372.0 | 1116 | 1.2853 | | 0.5933 | 373.0 | 1119 | 1.2203 | | 0.5933 | 374.0 | 1122 | 1.1671 | | 0.5933 | 375.0 | 1125 | 1.3050 | | 0.5933 | 376.0 | 1128 | 1.4090 | | 0.5933 | 377.0 | 1131 | 1.3682 | | 0.5933 | 378.0 | 1134 | 1.2919 | | 0.5933 | 379.0 | 1137 | 1.2611 | | 0.5933 | 380.0 | 1140 | 1.2714 | | 0.5933 | 381.0 | 1143 | 1.3204 | | 0.5933 | 382.0 | 1146 | 1.3206 | | 0.5933 | 383.0 | 1149 | 1.2592 | | 0.5933 | 384.0 | 1152 | 1.1575 | | 0.5933 | 385.0 | 1155 | 1.1801 | | 0.5933 | 386.0 | 1158 | 1.2966 | | 0.5933 | 387.0 | 1161 | 1.3092 | | 0.5933 | 388.0 | 1164 | 1.3284 | | 0.5933 | 389.0 | 1167 | 1.3397 | | 0.5933 | 390.0 | 1170 | 1.3137 | | 0.5933 | 391.0 | 1173 | 1.2775 | | 0.5933 | 392.0 | 1176 | 1.1970 | | 0.5933 | 393.0 | 1179 | 1.1671 | | 0.5933 | 394.0 | 1182 | 1.3037 | | 0.5933 | 395.0 | 1185 | 1.3400 | | 0.5933 | 396.0 | 1188 | 1.2243 | | 0.5933 | 397.0 | 1191 | 1.2322 | | 0.5933 | 398.0 | 1194 | 1.3279 | | 0.5933 | 399.0 | 1197 | 1.3577 | | 0.5933 | 400.0 | 1200 | 1.3690 | | 0.5933 | 401.0 | 1203 | 1.3068 | | 0.5933 | 402.0 | 1206 | 1.2011 | | 0.5933 | 403.0 | 1209 | 1.2389 | | 0.5933 | 404.0 | 1212 | 1.3540 | | 0.5933 | 405.0 | 1215 | 1.3858 | | 0.5933 | 406.0 | 1218 | 1.3326 | | 0.5933 | 407.0 | 1221 | 1.2234 | | 0.5933 | 408.0 | 1224 | 1.1657 | | 0.5933 | 409.0 | 1227 | 1.1664 | | 0.5933 | 410.0 | 1230 | 1.2766 | | 0.5933 | 411.0 | 1233 | 1.3610 | | 0.5933 | 412.0 | 1236 | 1.3622 | | 0.5933 | 413.0 | 1239 | 1.3024 | | 0.5933 | 414.0 | 1242 | 1.2516 | | 0.5933 | 415.0 | 1245 | 1.2160 | | 0.5933 | 416.0 | 1248 | 1.1839 | | 0.5933 | 417.0 | 1251 | 1.1225 | | 0.5933 | 418.0 | 1254 | 1.1113 | | 0.5933 | 419.0 | 1257 | 1.1720 | | 0.5933 | 420.0 | 1260 | 1.3755 | | 0.5933 | 421.0 | 1263 | 1.3626 | | 0.5933 | 422.0 | 1266 | 1.2200 | | 0.5933 | 423.0 | 1269 | 1.2175 | | 0.5933 | 424.0 | 1272 | 1.3046 | | 0.5933 | 425.0 | 1275 | 1.3120 | | 0.5933 | 426.0 | 1278 | 1.3499 | | 0.5933 | 427.0 | 1281 | 1.3850 | | 0.5933 | 428.0 | 1284 | 1.3673 | | 0.5933 | 429.0 | 1287 | 1.3124 | | 0.5933 | 430.0 | 1290 | 1.2314 | | 0.5933 | 431.0 | 1293 | 1.1724 | | 0.5933 | 432.0 | 1296 | 1.2057 | | 0.5933 | 433.0 | 1299 | 1.3040 | | 0.5933 | 434.0 | 1302 | 1.3551 | | 0.5933 | 435.0 | 1305 | 1.3777 | | 0.5933 | 436.0 | 1308 | 1.3375 | | 0.5933 | 437.0 | 1311 | 1.2963 | | 0.5933 | 438.0 | 1314 | 1.3388 | | 0.5933 | 439.0 | 1317 | 1.3685 | | 0.5933 | 440.0 | 1320 | 1.3634 | | 0.5933 | 441.0 | 1323 | 1.3484 | | 0.5933 | 442.0 | 1326 | 1.3536 | | 0.5933 | 443.0 | 1329 | 1.3584 | | 0.5933 | 444.0 | 1332 | 1.3452 | | 0.5933 | 445.0 | 1335 | 1.3379 | | 0.5933 | 446.0 | 1338 | 1.3434 | | 0.5933 | 447.0 | 1341 | 1.3378 | | 0.5933 | 448.0 | 1344 | 1.3451 | | 0.5933 | 449.0 | 1347 | 1.3583 | | 0.5933 | 450.0 | 1350 | 1.3498 | | 0.5933 | 451.0 | 1353 | 1.3202 | | 0.5933 | 452.0 | 1356 | 1.3219 | | 0.5933 | 453.0 | 1359 | 1.3534 | | 0.5933 | 454.0 | 1362 | 1.3738 | | 0.5933 | 455.0 | 1365 | 1.3947 | | 0.5933 | 456.0 | 1368 | 1.3863 | | 0.5933 | 457.0 | 1371 | 1.3747 | | 0.5933 | 458.0 | 1374 | 1.3685 | | 0.5933 | 459.0 | 1377 | 1.3519 | | 0.5933 | 460.0 | 1380 | 1.3706 | | 0.5933 | 461.0 | 1383 | 1.3956 | | 0.5933 | 462.0 | 1386 | 1.3628 | | 0.5933 | 463.0 | 1389 | 1.3669 | | 0.5933 | 464.0 | 1392 | 1.3338 | | 0.5933 | 465.0 | 1395 | 1.3316 | | 0.5933 | 466.0 | 1398 | 1.3641 | | 0.5933 | 467.0 | 1401 | 1.3980 | | 0.5933 | 468.0 | 1404 | 1.4046 | | 0.5933 | 469.0 | 1407 | 1.3757 | | 0.5933 | 470.0 | 1410 | 1.3437 | | 0.5933 | 471.0 | 1413 | 1.3552 | | 0.5933 | 472.0 | 1416 | 1.3930 | | 0.5933 | 473.0 | 1419 | 1.3926 | | 0.5933 | 474.0 | 1422 | 1.3316 | | 0.5933 | 475.0 | 1425 | 1.2435 | | 0.5933 | 476.0 | 1428 | 1.2005 | | 0.5933 | 477.0 | 1431 | 1.2154 | | 0.5933 | 478.0 | 1434 | 1.2495 | | 0.5933 | 479.0 | 1437 | 1.2615 | | 0.5933 | 480.0 | 1440 | 1.2665 | | 0.5933 | 481.0 | 1443 | 1.2593 | | 0.5933 | 482.0 | 1446 | 1.2442 | | 0.5933 | 483.0 | 1449 | 1.2603 | | 0.5933 | 484.0 | 1452 | 1.2821 | | 0.5933 | 485.0 | 1455 | 1.2940 | | 0.5933 | 486.0 | 1458 | 1.2904 | | 0.5933 | 487.0 | 1461 | 1.2815 | | 0.5933 | 488.0 | 1464 | 1.2719 | | 0.5933 | 489.0 | 1467 | 1.2950 | | 0.5933 | 490.0 | 1470 | 1.3589 | | 0.5933 | 491.0 | 1473 | 1.4231 | | 0.5933 | 492.0 | 1476 | 1.4325 | | 0.5933 | 493.0 | 1479 | 1.3372 | | 0.5933 | 494.0 | 1482 | 1.2722 | | 0.5933 | 495.0 | 1485 | 1.3250 | | 0.5933 | 496.0 | 1488 | 1.4279 | | 0.5933 | 497.0 | 1491 | 1.4185 | | 0.5933 | 498.0 | 1494 | 1.3254 | | 0.5933 | 499.0 | 1497 | 1.2996 | | 0.5698 | 500.0 | 1500 | 1.2436 | | 0.5698 | 501.0 | 1503 | 1.2112 | | 0.5698 | 502.0 | 1506 | 1.2390 | | 0.5698 | 503.0 | 1509 | 1.2883 | | 0.5698 | 504.0 | 1512 | 1.3407 | | 0.5698 | 505.0 | 1515 | 1.3793 | | 0.5698 | 506.0 | 1518 | 1.4309 | | 0.5698 | 507.0 | 1521 | 1.4088 | | 0.5698 | 508.0 | 1524 | 1.3966 | | 0.5698 | 509.0 | 1527 | 1.4082 | | 0.5698 | 510.0 | 1530 | 1.3814 | | 0.5698 | 511.0 | 1533 | 1.3396 | | 0.5698 | 512.0 | 1536 | 1.3387 | | 0.5698 | 513.0 | 1539 | 1.3057 | | 0.5698 | 514.0 | 1542 | 1.2687 | | 0.5698 | 515.0 | 1545 | 1.2707 | | 0.5698 | 516.0 | 1548 | 1.4157 | | 0.5698 | 517.0 | 1551 | 1.4618 | | 0.5698 | 518.0 | 1554 | 1.4597 | | 0.5698 | 519.0 | 1557 | 1.4605 | | 0.5698 | 520.0 | 1560 | 1.4481 | | 0.5698 | 521.0 | 1563 | 1.4423 | | 0.5698 | 522.0 | 1566 | 1.4312 | | 0.5698 | 523.0 | 1569 | 1.4020 | | 0.5698 | 524.0 | 1572 | 1.3645 | | 0.5698 | 525.0 | 1575 | 1.3438 | | 0.5698 | 526.0 | 1578 | 1.3205 | | 0.5698 | 527.0 | 1581 | 1.3053 | | 0.5698 | 528.0 | 1584 | 1.2944 | | 0.5698 | 529.0 | 1587 | 1.3649 | | 0.5698 | 530.0 | 1590 | 1.4252 | | 0.5698 | 531.0 | 1593 | 1.4653 | | 0.5698 | 532.0 | 1596 | 1.4664 | | 0.5698 | 533.0 | 1599 | 1.4386 | | 0.5698 | 534.0 | 1602 | 1.3703 | | 0.5698 | 535.0 | 1605 | 1.3156 | | 0.5698 | 536.0 | 1608 | 1.3263 | | 0.5698 | 537.0 | 1611 | 1.3055 | | 0.5698 | 538.0 | 1614 | 1.3066 | | 0.5698 | 539.0 | 1617 | 1.3549 | | 0.5698 | 540.0 | 1620 | 1.4445 | | 0.5698 | 541.0 | 1623 | 1.4701 | | 0.5698 | 542.0 | 1626 | 1.4265 | | 0.5698 | 543.0 | 1629 | 1.3599 | | 0.5698 | 544.0 | 1632 | 1.3451 | | 0.5698 | 545.0 | 1635 | 1.3428 | | 0.5698 | 546.0 | 1638 | 1.3231 | | 0.5698 | 547.0 | 1641 | 1.3266 | | 0.5698 | 548.0 | 1644 | 1.3216 | | 0.5698 | 549.0 | 1647 | 1.2599 | | 0.5698 | 550.0 | 1650 | 1.2338 | | 0.5698 | 551.0 | 1653 | 1.2140 | | 0.5698 | 552.0 | 1656 | 1.2297 | | 0.5698 | 553.0 | 1659 | 1.2842 | | 0.5698 | 554.0 | 1662 | 1.3357 | | 0.5698 | 555.0 | 1665 | 1.3797 | | 0.5698 | 556.0 | 1668 | 1.3690 | | 0.5698 | 557.0 | 1671 | 1.3163 | | 0.5698 | 558.0 | 1674 | 1.2510 | | 0.5698 | 559.0 | 1677 | 1.2714 | | 0.5698 | 560.0 | 1680 | 1.3403 | | 0.5698 | 561.0 | 1683 | 1.4387 | | 0.5698 | 562.0 | 1686 | 1.4697 | | 0.5698 | 563.0 | 1689 | 1.4641 | | 0.5698 | 564.0 | 1692 | 1.4123 | | 0.5698 | 565.0 | 1695 | 1.3808 | | 0.5698 | 566.0 | 1698 | 1.3325 | | 0.5698 | 567.0 | 1701 | 1.3470 | | 0.5698 | 568.0 | 1704 | 1.3301 | | 0.5698 | 569.0 | 1707 | 1.3255 | | 0.5698 | 570.0 | 1710 | 1.3614 | | 0.5698 | 571.0 | 1713 | 1.4034 | | 0.5698 | 572.0 | 1716 | 1.4201 | | 0.5698 | 573.0 | 1719 | 1.4221 | | 0.5698 | 574.0 | 1722 | 1.4100 | | 0.5698 | 575.0 | 1725 | 1.3791 | | 0.5698 | 576.0 | 1728 | 1.3478 | | 0.5698 | 577.0 | 1731 | 1.3398 | | 0.5698 | 578.0 | 1734 | 1.3408 | | 0.5698 | 579.0 | 1737 | 1.3577 | | 0.5698 | 580.0 | 1740 | 1.3780 | | 0.5698 | 581.0 | 1743 | 1.3871 | | 0.5698 | 582.0 | 1746 | 1.3754 | | 0.5698 | 583.0 | 1749 | 1.3487 | | 0.5698 | 584.0 | 1752 | 1.3299 | | 0.5698 | 585.0 | 1755 | 1.3215 | | 0.5698 | 586.0 | 1758 | 1.3004 | | 0.5698 | 587.0 | 1761 | 1.2819 | | 0.5698 | 588.0 | 1764 | 1.2804 | | 0.5698 | 589.0 | 1767 | 1.2724 | | 0.5698 | 590.0 | 1770 | 1.2975 | | 0.5698 | 591.0 | 1773 | 1.3615 | | 0.5698 | 592.0 | 1776 | 1.4006 | | 0.5698 | 593.0 | 1779 | 1.4037 | | 0.5698 | 594.0 | 1782 | 1.3882 | | 0.5698 | 595.0 | 1785 | 1.3919 | | 0.5698 | 596.0 | 1788 | 1.3759 | | 0.5698 | 597.0 | 1791 | 1.3215 | | 0.5698 | 598.0 | 1794 | 1.3130 | | 0.5698 | 599.0 | 1797 | 1.3547 | | 0.5698 | 600.0 | 1800 | 1.3832 | | 0.5698 | 601.0 | 1803 | 1.3755 | | 0.5698 | 602.0 | 1806 | 1.3555 | | 0.5698 | 603.0 | 1809 | 1.3085 | | 0.5698 | 604.0 | 1812 | 1.3235 | | 0.5698 | 605.0 | 1815 | 1.3616 | | 0.5698 | 606.0 | 1818 | 1.4128 | | 0.5698 | 607.0 | 1821 | 1.4333 | | 0.5698 | 608.0 | 1824 | 1.4124 | | 0.5698 | 609.0 | 1827 | 1.3622 | | 0.5698 | 610.0 | 1830 | 1.2583 | | 0.5698 | 611.0 | 1833 | 1.2334 | | 0.5698 | 612.0 | 1836 | 1.2316 | | 0.5698 | 613.0 | 1839 | 1.2430 | | 0.5698 | 614.0 | 1842 | 1.2659 | | 0.5698 | 615.0 | 1845 | 1.2801 | | 0.5698 | 616.0 | 1848 | 1.3092 | | 0.5698 | 617.0 | 1851 | 1.3340 | | 0.5698 | 618.0 | 1854 | 1.3543 | | 0.5698 | 619.0 | 1857 | 1.3771 | | 0.5698 | 620.0 | 1860 | 1.3764 | | 0.5698 | 621.0 | 1863 | 1.3577 | | 0.5698 | 622.0 | 1866 | 1.3255 | | 0.5698 | 623.0 | 1869 | 1.2972 | | 0.5698 | 624.0 | 1872 | 1.2877 | | 0.5698 | 625.0 | 1875 | 1.3092 | | 0.5698 | 626.0 | 1878 | 1.3348 | | 0.5698 | 627.0 | 1881 | 1.3486 | | 0.5698 | 628.0 | 1884 | 1.3543 | | 0.5698 | 629.0 | 1887 | 1.3504 | | 0.5698 | 630.0 | 1890 | 1.3544 | | 0.5698 | 631.0 | 1893 | 1.3419 | | 0.5698 | 632.0 | 1896 | 1.3093 | | 0.5698 | 633.0 | 1899 | 1.2775 | | 0.5698 | 634.0 | 1902 | 1.2783 | | 0.5698 | 635.0 | 1905 | 1.2753 | | 0.5698 | 636.0 | 1908 | 1.2506 | | 0.5698 | 637.0 | 1911 | 1.2332 | | 0.5698 | 638.0 | 1914 | 1.2763 | | 0.5698 | 639.0 | 1917 | 1.3084 | | 0.5698 | 640.0 | 1920 | 1.3237 | | 0.5698 | 641.0 | 1923 | 1.3340 | | 0.5698 | 642.0 | 1926 | 1.3339 | | 0.5698 | 643.0 | 1929 | 1.3103 | | 0.5698 | 644.0 | 1932 | 1.2959 | | 0.5698 | 645.0 | 1935 | 1.2915 | | 0.5698 | 646.0 | 1938 | 1.3321 | | 0.5698 | 647.0 | 1941 | 1.3656 | | 0.5698 | 648.0 | 1944 | 1.3728 | | 0.5698 | 649.0 | 1947 | 1.3629 | | 0.5698 | 650.0 | 1950 | 1.3502 | | 0.5698 | 651.0 | 1953 | 1.3297 | | 0.5698 | 652.0 | 1956 | 1.3057 | | 0.5698 | 653.0 | 1959 | 1.3008 | | 0.5698 | 654.0 | 1962 | 1.2932 | | 0.5698 | 655.0 | 1965 | 1.2945 | | 0.5698 | 656.0 | 1968 | 1.2929 | | 0.5698 | 657.0 | 1971 | 1.3073 | | 0.5698 | 658.0 | 1974 | 1.3311 | | 0.5698 | 659.0 | 1977 | 1.3472 | | 0.5698 | 660.0 | 1980 | 1.3409 | | 0.5698 | 661.0 | 1983 | 1.3315 | | 0.5698 | 662.0 | 1986 | 1.3154 | | 0.5698 | 663.0 | 1989 | 1.3030 | | 0.5698 | 664.0 | 1992 | 1.3006 | | 0.5698 | 665.0 | 1995 | 1.2968 | | 0.5698 | 666.0 | 1998 | 1.3045 | | 0.5609 | 667.0 | 2001 | 1.3166 | | 0.5609 | 668.0 | 2004 | 1.3430 | | 0.5609 | 669.0 | 2007 | 1.3718 | | 0.5609 | 670.0 | 2010 | 1.3945 | | 0.5609 | 671.0 | 2013 | 1.3919 | | 0.5609 | 672.0 | 2016 | 1.3895 | | 0.5609 | 673.0 | 2019 | 1.3659 | | 0.5609 | 674.0 | 2022 | 1.3276 | | 0.5609 | 675.0 | 2025 | 1.3060 | | 0.5609 | 676.0 | 2028 | 1.2941 | | 0.5609 | 677.0 | 2031 | 1.2893 | | 0.5609 | 678.0 | 2034 | 1.2937 | | 0.5609 | 679.0 | 2037 | 1.3019 | | 0.5609 | 680.0 | 2040 | 1.3119 | | 0.5609 | 681.0 | 2043 | 1.3222 | | 0.5609 | 682.0 | 2046 | 1.3238 | | 0.5609 | 683.0 | 2049 | 1.3280 | | 0.5609 | 684.0 | 2052 | 1.3324 | | 0.5609 | 685.0 | 2055 | 1.3401 | | 0.5609 | 686.0 | 2058 | 1.3452 | | 0.5609 | 687.0 | 2061 | 1.3752 | | 0.5609 | 688.0 | 2064 | 1.3987 | | 0.5609 | 689.0 | 2067 | 1.4118 | | 0.5609 | 690.0 | 2070 | 1.4179 | | 0.5609 | 691.0 | 2073 | 1.4122 | | 0.5609 | 692.0 | 2076 | 1.3909 | | 0.5609 | 693.0 | 2079 | 1.3439 | | 0.5609 | 694.0 | 2082 | 1.3072 | | 0.5609 | 695.0 | 2085 | 1.2981 | | 0.5609 | 696.0 | 2088 | 1.3195 | | 0.5609 | 697.0 | 2091 | 1.3502 | | 0.5609 | 698.0 | 2094 | 1.3783 | | 0.5609 | 699.0 | 2097 | 1.3925 | | 0.5609 | 700.0 | 2100 | 1.4000 | | 0.5609 | 701.0 | 2103 | 1.3797 | | 0.5609 | 702.0 | 2106 | 1.3620 | | 0.5609 | 703.0 | 2109 | 1.3533 | | 0.5609 | 704.0 | 2112 | 1.3492 | | 0.5609 | 705.0 | 2115 | 1.3400 | | 0.5609 | 706.0 | 2118 | 1.3346 | | 0.5609 | 707.0 | 2121 | 1.3254 | | 0.5609 | 708.0 | 2124 | 1.3290 | | 0.5609 | 709.0 | 2127 | 1.3406 | | 0.5609 | 710.0 | 2130 | 1.3619 | | 0.5609 | 711.0 | 2133 | 1.3898 | | 0.5609 | 712.0 | 2136 | 1.3945 | | 0.5609 | 713.0 | 2139 | 1.3817 | | 0.5609 | 714.0 | 2142 | 1.3686 | | 0.5609 | 715.0 | 2145 | 1.3627 | | 0.5609 | 716.0 | 2148 | 1.3617 | | 0.5609 | 717.0 | 2151 | 1.3548 | | 0.5609 | 718.0 | 2154 | 1.3464 | | 0.5609 | 719.0 | 2157 | 1.3368 | | 0.5609 | 720.0 | 2160 | 1.3138 | | 0.5609 | 721.0 | 2163 | 1.3073 | | 0.5609 | 722.0 | 2166 | 1.3203 | | 0.5609 | 723.0 | 2169 | 1.3342 | | 0.5609 | 724.0 | 2172 | 1.3562 | | 0.5609 | 725.0 | 2175 | 1.3725 | | 0.5609 | 726.0 | 2178 | 1.3748 | | 0.5609 | 727.0 | 2181 | 1.3711 | | 0.5609 | 728.0 | 2184 | 1.3717 | | 0.5609 | 729.0 | 2187 | 1.3627 | | 0.5609 | 730.0 | 2190 | 1.3515 | | 0.5609 | 731.0 | 2193 | 1.3373 | | 0.5609 | 732.0 | 2196 | 1.3160 | | 0.5609 | 733.0 | 2199 | 1.3125 | | 0.5609 | 734.0 | 2202 | 1.3301 | | 0.5609 | 735.0 | 2205 | 1.3197 | | 0.5609 | 736.0 | 2208 | 1.3125 | | 0.5609 | 737.0 | 2211 | 1.3072 | | 0.5609 | 738.0 | 2214 | 1.2798 | | 0.5609 | 739.0 | 2217 | 1.2672 | | 0.5609 | 740.0 | 2220 | 1.2533 | | 0.5609 | 741.0 | 2223 | 1.2383 | | 0.5609 | 742.0 | 2226 | 1.2450 | | 0.5609 | 743.0 | 2229 | 1.2557 | | 0.5609 | 744.0 | 2232 | 1.2751 | | 0.5609 | 745.0 | 2235 | 1.3235 | | 0.5609 | 746.0 | 2238 | 1.3708 | | 0.5609 | 747.0 | 2241 | 1.3867 | | 0.5609 | 748.0 | 2244 | 1.3686 | | 0.5609 | 749.0 | 2247 | 1.3309 | | 0.5609 | 750.0 | 2250 | 1.2811 | | 0.5609 | 751.0 | 2253 | 1.2294 | | 0.5609 | 752.0 | 2256 | 1.1340 | | 0.5609 | 753.0 | 2259 | 1.1346 | | 0.5609 | 754.0 | 2262 | 1.2078 | | 0.5609 | 755.0 | 2265 | 1.2462 | | 0.5609 | 756.0 | 2268 | 1.2557 | | 0.5609 | 757.0 | 2271 | 1.2358 | | 0.5609 | 758.0 | 2274 | 1.2225 | | 0.5609 | 759.0 | 2277 | 1.2298 | | 0.5609 | 760.0 | 2280 | 1.2561 | | 0.5609 | 761.0 | 2283 | 1.2861 | | 0.5609 | 762.0 | 2286 | 1.3017 | | 0.5609 | 763.0 | 2289 | 1.3228 | | 0.5609 | 764.0 | 2292 | 1.3235 | | 0.5609 | 765.0 | 2295 | 1.3232 | | 0.5609 | 766.0 | 2298 | 1.3236 | | 0.5609 | 767.0 | 2301 | 1.3289 | | 0.5609 | 768.0 | 2304 | 1.3324 | | 0.5609 | 769.0 | 2307 | 1.3325 | | 0.5609 | 770.0 | 2310 | 1.3282 | | 0.5609 | 771.0 | 2313 | 1.3176 | | 0.5609 | 772.0 | 2316 | 1.2927 | | 0.5609 | 773.0 | 2319 | 1.2773 | | 0.5609 | 774.0 | 2322 | 1.2617 | | 0.5609 | 775.0 | 2325 | 1.2578 | | 0.5609 | 776.0 | 2328 | 1.2454 | | 0.5609 | 777.0 | 2331 | 1.2212 | | 0.5609 | 778.0 | 2334 | 1.2459 | | 0.5609 | 779.0 | 2337 | 1.3040 | | 0.5609 | 780.0 | 2340 | 1.3453 | | 0.5609 | 781.0 | 2343 | 1.3773 | | 0.5609 | 782.0 | 2346 | 1.3942 | | 0.5609 | 783.0 | 2349 | 1.3854 | | 0.5609 | 784.0 | 2352 | 1.3637 | | 0.5609 | 785.0 | 2355 | 1.3213 | | 0.5609 | 786.0 | 2358 | 1.2795 | | 0.5609 | 787.0 | 2361 | 1.2844 | | 0.5609 | 788.0 | 2364 | 1.3058 | | 0.5609 | 789.0 | 2367 | 1.3198 | | 0.5609 | 790.0 | 2370 | 1.3251 | | 0.5609 | 791.0 | 2373 | 1.3193 | | 0.5609 | 792.0 | 2376 | 1.3021 | | 0.5609 | 793.0 | 2379 | 1.3105 | | 0.5609 | 794.0 | 2382 | 1.3310 | | 0.5609 | 795.0 | 2385 | 1.3574 | | 0.5609 | 796.0 | 2388 | 1.3642 | | 0.5609 | 797.0 | 2391 | 1.3580 | | 0.5609 | 798.0 | 2394 | 1.3255 | | 0.5609 | 799.0 | 2397 | 1.2785 | | 0.5609 | 800.0 | 2400 | 1.2199 | | 0.5609 | 801.0 | 2403 | 1.1221 | | 0.5609 | 802.0 | 2406 | 1.1233 | | 0.5609 | 803.0 | 2409 | 1.1873 | | 0.5609 | 804.0 | 2412 | 1.3435 | | 0.5609 | 805.0 | 2415 | 1.3522 | | 0.5609 | 806.0 | 2418 | 1.3800 | | 0.5609 | 807.0 | 2421 | 1.3976 | | 0.5609 | 808.0 | 2424 | 1.3899 | | 0.5609 | 809.0 | 2427 | 1.3480 | | 0.5609 | 810.0 | 2430 | 1.1934 | | 0.5609 | 811.0 | 2433 | 1.1259 | | 0.5609 | 812.0 | 2436 | 1.1836 | | 0.5609 | 813.0 | 2439 | 1.2207 | | 0.5609 | 814.0 | 2442 | 1.3393 | | 0.5609 | 815.0 | 2445 | 1.4465 | | 0.5609 | 816.0 | 2448 | 1.4166 | | 0.5609 | 817.0 | 2451 | 1.3814 | | 0.5609 | 818.0 | 2454 | 1.3636 | | 0.5609 | 819.0 | 2457 | 1.3334 | | 0.5609 | 820.0 | 2460 | 1.2854 | | 0.5609 | 821.0 | 2463 | 1.2674 | | 0.5609 | 822.0 | 2466 | 1.2533 | | 0.5609 | 823.0 | 2469 | 1.2967 | | 0.5609 | 824.0 | 2472 | 1.3504 | | 0.5609 | 825.0 | 2475 | 1.3052 | | 0.5609 | 826.0 | 2478 | 1.2894 | | 0.5609 | 827.0 | 2481 | 1.3342 | | 0.5609 | 828.0 | 2484 | 1.4139 | | 0.5609 | 829.0 | 2487 | 1.4048 | | 0.5609 | 830.0 | 2490 | 1.3678 | | 0.5609 | 831.0 | 2493 | 1.3604 | | 0.5609 | 832.0 | 2496 | 1.3533 | | 0.5609 | 833.0 | 2499 | 1.3609 | | 0.5608 | 834.0 | 2502 | 1.3909 | | 0.5608 | 835.0 | 2505 | 1.4105 | | 0.5608 | 836.0 | 2508 | 1.4294 | | 0.5608 | 837.0 | 2511 | 1.4313 | | 0.5608 | 838.0 | 2514 | 1.4112 | | 0.5608 | 839.0 | 2517 | 1.3844 | | 0.5608 | 840.0 | 2520 | 1.3769 | | 0.5608 | 841.0 | 2523 | 1.3679 | | 0.5608 | 842.0 | 2526 | 1.3449 | | 0.5608 | 843.0 | 2529 | 1.3389 | | 0.5608 | 844.0 | 2532 | 1.3366 | | 0.5608 | 845.0 | 2535 | 1.3453 | | 0.5608 | 846.0 | 2538 | 1.3726 | | 0.5608 | 847.0 | 2541 | 1.3670 | | 0.5608 | 848.0 | 2544 | 1.3503 | | 0.5608 | 849.0 | 2547 | 1.3262 | | 0.5608 | 850.0 | 2550 | 1.3017 | | 0.5608 | 851.0 | 2553 | 1.2902 | | 0.5608 | 852.0 | 2556 | 1.2662 | | 0.5608 | 853.0 | 2559 | 1.2408 | | 0.5608 | 854.0 | 2562 | 1.2208 | | 0.5608 | 855.0 | 2565 | 1.2003 | | 0.5608 | 856.0 | 2568 | 1.2038 | | 0.5608 | 857.0 | 2571 | 1.2344 | | 0.5608 | 858.0 | 2574 | 1.2968 | | 0.5608 | 859.0 | 2577 | 1.3401 | | 0.5608 | 860.0 | 2580 | 1.3674 | | 0.5608 | 861.0 | 2583 | 1.3837 | | 0.5608 | 862.0 | 2586 | 1.3753 | | 0.5608 | 863.0 | 2589 | 1.3121 | | 0.5608 | 864.0 | 2592 | 1.2480 | | 0.5608 | 865.0 | 2595 | 1.2293 | | 0.5608 | 866.0 | 2598 | 1.2000 | | 0.5608 | 867.0 | 2601 | 1.2027 | | 0.5608 | 868.0 | 2604 | 1.2281 | | 0.5608 | 869.0 | 2607 | 1.2710 | | 0.5608 | 870.0 | 2610 | 1.3535 | | 0.5608 | 871.0 | 2613 | 1.3937 | | 0.5608 | 872.0 | 2616 | 1.4003 | | 0.5608 | 873.0 | 2619 | 1.3758 | | 0.5608 | 874.0 | 2622 | 1.3253 | | 0.5608 | 875.0 | 2625 | 1.2449 | | 0.5608 | 876.0 | 2628 | 1.1745 | | 0.5608 | 877.0 | 2631 | 1.1366 | | 0.5608 | 878.0 | 2634 | 1.1655 | | 0.5608 | 879.0 | 2637 | 1.2965 | | 0.5608 | 880.0 | 2640 | 1.3166 | | 0.5608 | 881.0 | 2643 | 1.3225 | | 0.5608 | 882.0 | 2646 | 1.3141 | | 0.5608 | 883.0 | 2649 | 1.2992 | | 0.5608 | 884.0 | 2652 | 1.2834 | | 0.5608 | 885.0 | 2655 | 1.2698 | | 0.5608 | 886.0 | 2658 | 1.2829 | | 0.5608 | 887.0 | 2661 | 1.3100 | | 0.5608 | 888.0 | 2664 | 1.3314 | | 0.5608 | 889.0 | 2667 | 1.3393 | | 0.5608 | 890.0 | 2670 | 1.3354 | | 0.5608 | 891.0 | 2673 | 1.3278 | | 0.5608 | 892.0 | 2676 | 1.3333 | | 0.5608 | 893.0 | 2679 | 1.3443 | | 0.5608 | 894.0 | 2682 | 1.3343 | | 0.5608 | 895.0 | 2685 | 1.3148 | | 0.5608 | 896.0 | 2688 | 1.2858 | | 0.5608 | 897.0 | 2691 | 1.2698 | | 0.5608 | 898.0 | 2694 | 1.2777 | | 0.5608 | 899.0 | 2697 | 1.2901 | | 0.5608 | 900.0 | 2700 | 1.3008 | | 0.5608 | 901.0 | 2703 | 1.3260 | | 0.5608 | 902.0 | 2706 | 1.3440 | | 0.5608 | 903.0 | 2709 | 1.3438 | | 0.5608 | 904.0 | 2712 | 1.3380 | | 0.5608 | 905.0 | 2715 | 1.3237 | | 0.5608 | 906.0 | 2718 | 1.3145 | | 0.5608 | 907.0 | 2721 | 1.3022 | | 0.5608 | 908.0 | 2724 | 1.2902 | | 0.5608 | 909.0 | 2727 | 1.2793 | | 0.5608 | 910.0 | 2730 | 1.2909 | | 0.5608 | 911.0 | 2733 | 1.3084 | | 0.5608 | 912.0 | 2736 | 1.3185 | | 0.5608 | 913.0 | 2739 | 1.3250 | | 0.5608 | 914.0 | 2742 | 1.3412 | | 0.5608 | 915.0 | 2745 | 1.3491 | | 0.5608 | 916.0 | 2748 | 1.3561 | | 0.5608 | 917.0 | 2751 | 1.3675 | | 0.5608 | 918.0 | 2754 | 1.3759 | | 0.5608 | 919.0 | 2757 | 1.3829 | | 0.5608 | 920.0 | 2760 | 1.3805 | | 0.5608 | 921.0 | 2763 | 1.3669 | | 0.5608 | 922.0 | 2766 | 1.3605 | | 0.5608 | 923.0 | 2769 | 1.3455 | | 0.5608 | 924.0 | 2772 | 1.3373 | | 0.5608 | 925.0 | 2775 | 1.3440 | | 0.5608 | 926.0 | 2778 | 1.3408 | | 0.5608 | 927.0 | 2781 | 1.3424 | | 0.5608 | 928.0 | 2784 | 1.3414 | | 0.5608 | 929.0 | 2787 | 1.3383 | | 0.5608 | 930.0 | 2790 | 1.3371 | | 0.5608 | 931.0 | 2793 | 1.3406 | | 0.5608 | 932.0 | 2796 | 1.3432 | | 0.5608 | 933.0 | 2799 | 1.3564 | | 0.5608 | 934.0 | 2802 | 1.3773 | | 0.5608 | 935.0 | 2805 | 1.3931 | | 0.5608 | 936.0 | 2808 | 1.4030 | | 0.5608 | 937.0 | 2811 | 1.3998 | | 0.5608 | 938.0 | 2814 | 1.3955 | | 0.5608 | 939.0 | 2817 | 1.3937 | | 0.5608 | 940.0 | 2820 | 1.3801 | | 0.5608 | 941.0 | 2823 | 1.3729 | | 0.5608 | 942.0 | 2826 | 1.3679 | | 0.5608 | 943.0 | 2829 | 1.3550 | | 0.5608 | 944.0 | 2832 | 1.3437 | | 0.5608 | 945.0 | 2835 | 1.3347 | | 0.5608 | 946.0 | 2838 | 1.3220 | | 0.5608 | 947.0 | 2841 | 1.2968 | | 0.5608 | 948.0 | 2844 | 1.2799 | | 0.5608 | 949.0 | 2847 | 1.2549 | | 0.5608 | 950.0 | 2850 | 1.2459 | | 0.5608 | 951.0 | 2853 | 1.2461 | | 0.5608 | 952.0 | 2856 | 1.2299 | | 0.5608 | 953.0 | 2859 | 1.2177 | | 0.5608 | 954.0 | 2862 | 1.2640 | | 0.5608 | 955.0 | 2865 | 1.2997 | | 0.5608 | 956.0 | 2868 | 1.2971 | | 0.5608 | 957.0 | 2871 | 1.2788 | | 0.5608 | 958.0 | 2874 | 1.2858 | | 0.5608 | 959.0 | 2877 | 1.2694 | | 0.5608 | 960.0 | 2880 | 1.2542 | | 0.5608 | 961.0 | 2883 | 1.2733 | | 0.5608 | 962.0 | 2886 | 1.3086 | | 0.5608 | 963.0 | 2889 | 1.3123 | | 0.5608 | 964.0 | 2892 | 1.3039 | | 0.5608 | 965.0 | 2895 | 1.2834 | | 0.5608 | 966.0 | 2898 | 1.2809 | | 0.5608 | 967.0 | 2901 | 1.2696 | | 0.5608 | 968.0 | 2904 | 1.2567 | | 0.5608 | 969.0 | 2907 | 1.2497 | | 0.5608 | 970.0 | 2910 | 1.2639 | | 0.5608 | 971.0 | 2913 | 1.2809 | | 0.5608 | 972.0 | 2916 | 1.2881 | | 0.5608 | 973.0 | 2919 | 1.3082 | | 0.5608 | 974.0 | 2922 | 1.3283 | | 0.5608 | 975.0 | 2925 | 1.3331 | | 0.5608 | 976.0 | 2928 | 1.3384 | | 0.5608 | 977.0 | 2931 | 1.3405 | | 0.5608 | 978.0 | 2934 | 1.3515 | | 0.5608 | 979.0 | 2937 | 1.3734 | | 0.5608 | 980.0 | 2940 | 1.3875 | | 0.5608 | 981.0 | 2943 | 1.3766 | | 0.5608 | 982.0 | 2946 | 1.3530 | | 0.5608 | 983.0 | 2949 | 1.3309 | | 0.5608 | 984.0 | 2952 | 1.3178 | | 0.5608 | 985.0 | 2955 | 1.2963 | | 0.5608 | 986.0 | 2958 | 1.2672 | | 0.5608 | 987.0 | 2961 | 1.2697 | | 0.5608 | 988.0 | 2964 | 1.2620 | | 0.5608 | 989.0 | 2967 | 1.2438 | | 0.5608 | 990.0 | 2970 | 1.2488 | | 0.5608 | 991.0 | 2973 | 1.2630 | | 0.5608 | 992.0 | 2976 | 1.2496 | | 0.5608 | 993.0 | 2979 | 1.2646 | | 0.5608 | 994.0 | 2982 | 1.3051 | | 0.5608 | 995.0 | 2985 | 1.3445 | | 0.5608 | 996.0 | 2988 | 1.3551 | | 0.5608 | 997.0 | 2991 | 1.3600 | | 0.5608 | 998.0 | 2994 | 1.3566 | | 0.5608 | 999.0 | 2997 | 1.3485 | | 0.5596 | 1000.0 | 3000 | 1.3403 | | 0.5596 | 1001.0 | 3003 | 1.3328 | | 0.5596 | 1002.0 | 3006 | 1.3367 | | 0.5596 | 1003.0 | 3009 | 1.3306 | | 0.5596 | 1004.0 | 3012 | 1.3026 | | 0.5596 | 1005.0 | 3015 | 1.2606 | | 0.5596 | 1006.0 | 3018 | 1.2459 | | 0.5596 | 1007.0 | 3021 | 1.2332 | | 0.5596 | 1008.0 | 3024 | 1.2062 | | 0.5596 | 1009.0 | 3027 | 1.1985 | | 0.5596 | 1010.0 | 3030 | 1.1937 | | 0.5596 | 1011.0 | 3033 | 1.1920 | | 0.5596 | 1012.0 | 3036 | 1.1953 | | 0.5596 | 1013.0 | 3039 | 1.1919 | | 0.5596 | 1014.0 | 3042 | 1.1809 | | 0.5596 | 1015.0 | 3045 | 1.1649 | | 0.5596 | 1016.0 | 3048 | 1.1612 | | 0.5596 | 1017.0 | 3051 | 1.1667 | | 0.5596 | 1018.0 | 3054 | 1.1732 | | 0.5596 | 1019.0 | 3057 | 1.1847 | | 0.5596 | 1020.0 | 3060 | 1.1990 | | 0.5596 | 1021.0 | 3063 | 1.2160 | | 0.5596 | 1022.0 | 3066 | 1.2672 | | 0.5596 | 1023.0 | 3069 | 1.3042 | | 0.5596 | 1024.0 | 3072 | 1.3417 | | 0.5596 | 1025.0 | 3075 | 1.3652 | | 0.5596 | 1026.0 | 3078 | 1.3665 | | 0.5596 | 1027.0 | 3081 | 1.3571 | | 0.5596 | 1028.0 | 3084 | 1.3403 | | 0.5596 | 1029.0 | 3087 | 1.3310 | | 0.5596 | 1030.0 | 3090 | 1.3274 | | 0.5596 | 1031.0 | 3093 | 1.3228 | | 0.5596 | 1032.0 | 3096 | 1.2960 | | 0.5596 | 1033.0 | 3099 | 1.2831 | | 0.5596 | 1034.0 | 3102 | 1.2817 | | 0.5596 | 1035.0 | 3105 | 1.2808 | | 0.5596 | 1036.0 | 3108 | 1.2747 | | 0.5596 | 1037.0 | 3111 | 1.2732 | | 0.5596 | 1038.0 | 3114 | 1.2738 | | 0.5596 | 1039.0 | 3117 | 1.2797 | | 0.5596 | 1040.0 | 3120 | 1.2912 | | 0.5596 | 1041.0 | 3123 | 1.3257 | | 0.5596 | 1042.0 | 3126 | 1.3495 | | 0.5596 | 1043.0 | 3129 | 1.3620 | | 0.5596 | 1044.0 | 3132 | 1.3673 | | 0.5596 | 1045.0 | 3135 | 1.3723 | | 0.5596 | 1046.0 | 3138 | 1.3709 | | 0.5596 | 1047.0 | 3141 | 1.3701 | | 0.5596 | 1048.0 | 3144 | 1.3690 | | 0.5596 | 1049.0 | 3147 | 1.3811 | | 0.5596 | 1050.0 | 3150 | 1.3936 | | 0.5596 | 1051.0 | 3153 | 1.3898 | | 0.5596 | 1052.0 | 3156 | 1.3976 | | 0.5596 | 1053.0 | 3159 | 1.3920 | | 0.5596 | 1054.0 | 3162 | 1.3665 | | 0.5596 | 1055.0 | 3165 | 1.3330 | | 0.5596 | 1056.0 | 3168 | 1.3195 | | 0.5596 | 1057.0 | 3171 | 1.3350 | | 0.5596 | 1058.0 | 3174 | 1.3444 | | 0.5596 | 1059.0 | 3177 | 1.3567 | | 0.5596 | 1060.0 | 3180 | 1.3821 | | 0.5596 | 1061.0 | 3183 | 1.3965 | | 0.5596 | 1062.0 | 3186 | 1.4039 | | 0.5596 | 1063.0 | 3189 | 1.4126 | | 0.5596 | 1064.0 | 3192 | 1.4127 | | 0.5596 | 1065.0 | 3195 | 1.4188 | | 0.5596 | 1066.0 | 3198 | 1.4220 | | 0.5596 | 1067.0 | 3201 | 1.4240 | | 0.5596 | 1068.0 | 3204 | 1.4197 | | 0.5596 | 1069.0 | 3207 | 1.4138 | | 0.5596 | 1070.0 | 3210 | 1.4155 | | 0.5596 | 1071.0 | 3213 | 1.4155 | | 0.5596 | 1072.0 | 3216 | 1.4227 | | 0.5596 | 1073.0 | 3219 | 1.4209 | | 0.5596 | 1074.0 | 3222 | 1.4186 | | 0.5596 | 1075.0 | 3225 | 1.4118 | | 0.5596 | 1076.0 | 3228 | 1.3992 | | 0.5596 | 1077.0 | 3231 | 1.3924 | | 0.5596 | 1078.0 | 3234 | 1.3884 | | 0.5596 | 1079.0 | 3237 | 1.3913 | | 0.5596 | 1080.0 | 3240 | 1.3882 | | 0.5596 | 1081.0 | 3243 | 1.3765 | | 0.5596 | 1082.0 | 3246 | 1.3725 | | 0.5596 | 1083.0 | 3249 | 1.3893 | | 0.5596 | 1084.0 | 3252 | 1.3933 | | 0.5596 | 1085.0 | 3255 | 1.4005 | | 0.5596 | 1086.0 | 3258 | 1.4017 | | 0.5596 | 1087.0 | 3261 | 1.4086 | | 0.5596 | 1088.0 | 3264 | 1.4195 | | 0.5596 | 1089.0 | 3267 | 1.4274 | | 0.5596 | 1090.0 | 3270 | 1.4258 | | 0.5596 | 1091.0 | 3273 | 1.4179 | | 0.5596 | 1092.0 | 3276 | 1.4090 | | 0.5596 | 1093.0 | 3279 | 1.3901 | | 0.5596 | 1094.0 | 3282 | 1.3714 | | 0.5596 | 1095.0 | 3285 | 1.3512 | | 0.5596 | 1096.0 | 3288 | 1.3355 | | 0.5596 | 1097.0 | 3291 | 1.3368 | | 0.5596 | 1098.0 | 3294 | 1.3421 | | 0.5596 | 1099.0 | 3297 | 1.3195 | | 0.5596 | 1100.0 | 3300 | 1.2919 | | 0.5596 | 1101.0 | 3303 | 1.2551 | | 0.5596 | 1102.0 | 3306 | 1.2370 | | 0.5596 | 1103.0 | 3309 | 1.2445 | | 0.5596 | 1104.0 | 3312 | 1.2213 | | 0.5596 | 1105.0 | 3315 | 1.2361 | | 0.5596 | 1106.0 | 3318 | 1.3104 | | 0.5596 | 1107.0 | 3321 | 1.3632 | | 0.5596 | 1108.0 | 3324 | 1.3822 | | 0.5596 | 1109.0 | 3327 | 1.3887 | | 0.5596 | 1110.0 | 3330 | 1.3920 | | 0.5596 | 1111.0 | 3333 | 1.3876 | | 0.5596 | 1112.0 | 3336 | 1.3874 | | 0.5596 | 1113.0 | 3339 | 1.3850 | | 0.5596 | 1114.0 | 3342 | 1.3685 | | 0.5596 | 1115.0 | 3345 | 1.3439 | | 0.5596 | 1116.0 | 3348 | 1.3327 | | 0.5596 | 1117.0 | 3351 | 1.3158 | | 0.5596 | 1118.0 | 3354 | 1.3046 | | 0.5596 | 1119.0 | 3357 | 1.2996 | | 0.5596 | 1120.0 | 3360 | 1.2958 | | 0.5596 | 1121.0 | 3363 | 1.2871 | | 0.5596 | 1122.0 | 3366 | 1.2576 | | 0.5596 | 1123.0 | 3369 | 1.2534 | | 0.5596 | 1124.0 | 3372 | 1.2344 | | 0.5596 | 1125.0 | 3375 | 1.2290 | | 0.5596 | 1126.0 | 3378 | 1.2363 | | 0.5596 | 1127.0 | 3381 | 1.2271 | | 0.5596 | 1128.0 | 3384 | 1.2219 | | 0.5596 | 1129.0 | 3387 | 1.2365 | | 0.5596 | 1130.0 | 3390 | 1.2537 | | 0.5596 | 1131.0 | 3393 | 1.2754 | | 0.5596 | 1132.0 | 3396 | 1.2962 | | 0.5596 | 1133.0 | 3399 | 1.3161 | | 0.5596 | 1134.0 | 3402 | 1.3244 | | 0.5596 | 1135.0 | 3405 | 1.3309 | | 0.5596 | 1136.0 | 3408 | 1.3317 | | 0.5596 | 1137.0 | 3411 | 1.3369 | | 0.5596 | 1138.0 | 3414 | 1.3336 | | 0.5596 | 1139.0 | 3417 | 1.3099 | | 0.5596 | 1140.0 | 3420 | 1.2747 | | 0.5596 | 1141.0 | 3423 | 1.2515 | | 0.5596 | 1142.0 | 3426 | 1.2653 | | 0.5596 | 1143.0 | 3429 | 1.2975 | | 0.5596 | 1144.0 | 3432 | 1.3184 | | 0.5596 | 1145.0 | 3435 | 1.3373 | | 0.5596 | 1146.0 | 3438 | 1.3265 | | 0.5596 | 1147.0 | 3441 | 1.3195 | | 0.5596 | 1148.0 | 3444 | 1.3177 | | 0.5596 | 1149.0 | 3447 | 1.3045 | | 0.5596 | 1150.0 | 3450 | 1.3045 | | 0.5596 | 1151.0 | 3453 | 1.3020 | | 0.5596 | 1152.0 | 3456 | 1.3021 | | 0.5596 | 1153.0 | 3459 | 1.3238 | | 0.5596 | 1154.0 | 3462 | 1.3351 | | 0.5596 | 1155.0 | 3465 | 1.3334 | | 0.5596 | 1156.0 | 3468 | 1.3274 | | 0.5596 | 1157.0 | 3471 | 1.3276 | | 0.5596 | 1158.0 | 3474 | 1.3119 | | 0.5596 | 1159.0 | 3477 | 1.2913 | | 0.5596 | 1160.0 | 3480 | 1.2919 | | 0.5596 | 1161.0 | 3483 | 1.2927 | | 0.5596 | 1162.0 | 3486 | 1.3079 | | 0.5596 | 1163.0 | 3489 | 1.3195 | | 0.5596 | 1164.0 | 3492 | 1.3286 | | 0.5596 | 1165.0 | 3495 | 1.3375 | | 0.5596 | 1166.0 | 3498 | 1.3493 | | 0.5594 | 1167.0 | 3501 | 1.3599 | | 0.5594 | 1168.0 | 3504 | 1.3644 | | 0.5594 | 1169.0 | 3507 | 1.3595 | | 0.5594 | 1170.0 | 3510 | 1.3476 | | 0.5594 | 1171.0 | 3513 | 1.3464 | | 0.5594 | 1172.0 | 3516 | 1.3592 | | 0.5594 | 1173.0 | 3519 | 1.3673 | | 0.5594 | 1174.0 | 3522 | 1.3682 | | 0.5594 | 1175.0 | 3525 | 1.3569 | | 0.5594 | 1176.0 | 3528 | 1.3434 | | 0.5594 | 1177.0 | 3531 | 1.3439 | | 0.5594 | 1178.0 | 3534 | 1.3386 | | 0.5594 | 1179.0 | 3537 | 1.3180 | | 0.5594 | 1180.0 | 3540 | 1.2994 | | 0.5594 | 1181.0 | 3543 | 1.2888 | | 0.5594 | 1182.0 | 3546 | 1.2911 | | 0.5594 | 1183.0 | 3549 | 1.2966 | | 0.5594 | 1184.0 | 3552 | 1.2888 | | 0.5594 | 1185.0 | 3555 | 1.2784 | | 0.5594 | 1186.0 | 3558 | 1.2811 | | 0.5594 | 1187.0 | 3561 | 1.2813 | | 0.5594 | 1188.0 | 3564 | 1.2797 | | 0.5594 | 1189.0 | 3567 | 1.2683 | | 0.5594 | 1190.0 | 3570 | 1.2736 | | 0.5594 | 1191.0 | 3573 | 1.2614 | | 0.5594 | 1192.0 | 3576 | 1.2485 | | 0.5594 | 1193.0 | 3579 | 1.2446 | | 0.5594 | 1194.0 | 3582 | 1.2077 | | 0.5594 | 1195.0 | 3585 | 1.1880 | | 0.5594 | 1196.0 | 3588 | 1.1797 | | 0.5594 | 1197.0 | 3591 | 1.1750 | | 0.5594 | 1198.0 | 3594 | 1.1964 | | 0.5594 | 1199.0 | 3597 | 1.2570 | | 0.5594 | 1200.0 | 3600 | 1.3173 | | 0.5594 | 1201.0 | 3603 | 1.3393 | | 0.5594 | 1202.0 | 3606 | 1.3465 | | 0.5594 | 1203.0 | 3609 | 1.3254 | | 0.5594 | 1204.0 | 3612 | 1.3003 | | 0.5594 | 1205.0 | 3615 | 1.2560 | | 0.5594 | 1206.0 | 3618 | 1.2008 | | 0.5594 | 1207.0 | 3621 | 1.1804 | | 0.5594 | 1208.0 | 3624 | 1.1725 | | 0.5594 | 1209.0 | 3627 | 1.1634 | | 0.5594 | 1210.0 | 3630 | 1.1744 | | 0.5594 | 1211.0 | 3633 | 1.1912 | | 0.5594 | 1212.0 | 3636 | 1.2141 | | 0.5594 | 1213.0 | 3639 | 1.2444 | | 0.5594 | 1214.0 | 3642 | 1.2703 | | 0.5594 | 1215.0 | 3645 | 1.2812 | | 0.5594 | 1216.0 | 3648 | 1.2849 | | 0.5594 | 1217.0 | 3651 | 1.2871 | | 0.5594 | 1218.0 | 3654 | 1.2800 | | 0.5594 | 1219.0 | 3657 | 1.2755 | | 0.5594 | 1220.0 | 3660 | 1.2668 | | 0.5594 | 1221.0 | 3663 | 1.2512 | | 0.5594 | 1222.0 | 3666 | 1.2390 | | 0.5594 | 1223.0 | 3669 | 1.2268 | | 0.5594 | 1224.0 | 3672 | 1.2071 | | 0.5594 | 1225.0 | 3675 | 1.1804 | | 0.5594 | 1226.0 | 3678 | 1.1572 | | 0.5594 | 1227.0 | 3681 | 1.1618 | | 0.5594 | 1228.0 | 3684 | 1.1741 | | 0.5594 | 1229.0 | 3687 | 1.1867 | | 0.5594 | 1230.0 | 3690 | 1.1978 | | 0.5594 | 1231.0 | 3693 | 1.2180 | | 0.5594 | 1232.0 | 3696 | 1.2379 | | 0.5594 | 1233.0 | 3699 | 1.2486 | | 0.5594 | 1234.0 | 3702 | 1.2526 | | 0.5594 | 1235.0 | 3705 | 1.2632 | | 0.5594 | 1236.0 | 3708 | 1.2866 | | 0.5594 | 1237.0 | 3711 | 1.2903 | | 0.5594 | 1238.0 | 3714 | 1.2655 | | 0.5594 | 1239.0 | 3717 | 1.2452 | | 0.5594 | 1240.0 | 3720 | 1.2348 | | 0.5594 | 1241.0 | 3723 | 1.1997 | | 0.5594 | 1242.0 | 3726 | 1.1615 | | 0.5594 | 1243.0 | 3729 | 1.1294 | | 0.5594 | 1244.0 | 3732 | 1.1171 | | 0.5594 | 1245.0 | 3735 | 1.1613 | | 0.5594 | 1246.0 | 3738 | 1.2428 | | 0.5594 | 1247.0 | 3741 | 1.2627 | | 0.5594 | 1248.0 | 3744 | 1.2525 | | 0.5594 | 1249.0 | 3747 | 1.2029 | | 0.5594 | 1250.0 | 3750 | 1.1155 | | 0.5594 | 1251.0 | 3753 | 1.0784 | | 0.5594 | 1252.0 | 3756 | 1.0683 | | 0.5594 | 1253.0 | 3759 | 1.0901 | | 0.5594 | 1254.0 | 3762 | 1.1788 | | 0.5594 | 1255.0 | 3765 | 1.2079 | | 0.5594 | 1256.0 | 3768 | 1.2129 | | 0.5594 | 1257.0 | 3771 | 1.2088 | | 0.5594 | 1258.0 | 3774 | 1.1948 | | 0.5594 | 1259.0 | 3777 | 1.1811 | | 0.5594 | 1260.0 | 3780 | 1.1757 | | 0.5594 | 1261.0 | 3783 | 1.1764 | | 0.5594 | 1262.0 | 3786 | 1.1673 | | 0.5594 | 1263.0 | 3789 | 1.1421 | | 0.5594 | 1264.0 | 3792 | 1.1351 | | 0.5594 | 1265.0 | 3795 | 1.1570 | | 0.5594 | 1266.0 | 3798 | 1.1854 | | 0.5594 | 1267.0 | 3801 | 1.1974 | | 0.5594 | 1268.0 | 3804 | 1.2039 | | 0.5594 | 1269.0 | 3807 | 1.1966 | | 0.5594 | 1270.0 | 3810 | 1.2079 | | 0.5594 | 1271.0 | 3813 | 1.2104 | | 0.5594 | 1272.0 | 3816 | 1.2171 | | 0.5594 | 1273.0 | 3819 | 1.2335 | | 0.5594 | 1274.0 | 3822 | 1.2483 | | 0.5594 | 1275.0 | 3825 | 1.2607 | | 0.5594 | 1276.0 | 3828 | 1.2586 | | 0.5594 | 1277.0 | 3831 | 1.2527 | | 0.5594 | 1278.0 | 3834 | 1.2457 | | 0.5594 | 1279.0 | 3837 | 1.2451 | | 0.5594 | 1280.0 | 3840 | 1.2669 | | 0.5594 | 1281.0 | 3843 | 1.2651 | | 0.5594 | 1282.0 | 3846 | 1.2585 | | 0.5594 | 1283.0 | 3849 | 1.2459 | | 0.5594 | 1284.0 | 3852 | 1.2272 | | 0.5594 | 1285.0 | 3855 | 1.2195 | | 0.5594 | 1286.0 | 3858 | 1.2154 | | 0.5594 | 1287.0 | 3861 | 1.2234 | | 0.5594 | 1288.0 | 3864 | 1.2386 | | 0.5594 | 1289.0 | 3867 | 1.2574 | | 0.5594 | 1290.0 | 3870 | 1.2844 | | 0.5594 | 1291.0 | 3873 | 1.3160 | | 0.5594 | 1292.0 | 3876 | 1.3283 | | 0.5594 | 1293.0 | 3879 | 1.3256 | | 0.5594 | 1294.0 | 3882 | 1.3101 | | 0.5594 | 1295.0 | 3885 | 1.2981 | | 0.5594 | 1296.0 | 3888 | 1.2863 | | 0.5594 | 1297.0 | 3891 | 1.2822 | | 0.5594 | 1298.0 | 3894 | 1.2751 | | 0.5594 | 1299.0 | 3897 | 1.2609 | | 0.5594 | 1300.0 | 3900 | 1.2539 | | 0.5594 | 1301.0 | 3903 | 1.2455 | | 0.5594 | 1302.0 | 3906 | 1.2458 | | 0.5594 | 1303.0 | 3909 | 1.2390 | | 0.5594 | 1304.0 | 3912 | 1.2530 | | 0.5594 | 1305.0 | 3915 | 1.2605 | | 0.5594 | 1306.0 | 3918 | 1.2669 | | 0.5594 | 1307.0 | 3921 | 1.2699 | | 0.5594 | 1308.0 | 3924 | 1.2581 | | 0.5594 | 1309.0 | 3927 | 1.2481 | | 0.5594 | 1310.0 | 3930 | 1.2469 | | 0.5594 | 1311.0 | 3933 | 1.2540 | | 0.5594 | 1312.0 | 3936 | 1.2708 | | 0.5594 | 1313.0 | 3939 | 1.2828 | | 0.5594 | 1314.0 | 3942 | 1.2897 | | 0.5594 | 1315.0 | 3945 | 1.2939 | | 0.5594 | 1316.0 | 3948 | 1.2995 | | 0.5594 | 1317.0 | 3951 | 1.3066 | | 0.5594 | 1318.0 | 3954 | 1.3168 | | 0.5594 | 1319.0 | 3957 | 1.3175 | | 0.5594 | 1320.0 | 3960 | 1.3122 | | 0.5594 | 1321.0 | 3963 | 1.3059 | | 0.5594 | 1322.0 | 3966 | 1.2981 | | 0.5594 | 1323.0 | 3969 | 1.2889 | | 0.5594 | 1324.0 | 3972 | 1.2831 | | 0.5594 | 1325.0 | 3975 | 1.2885 | | 0.5594 | 1326.0 | 3978 | 1.2866 | | 0.5594 | 1327.0 | 3981 | 1.2813 | | 0.5594 | 1328.0 | 3984 | 1.2779 | | 0.5594 | 1329.0 | 3987 | 1.2776 | | 0.5594 | 1330.0 | 3990 | 1.2799 | | 0.5594 | 1331.0 | 3993 | 1.2826 | | 0.5594 | 1332.0 | 3996 | 1.2839 | | 0.5594 | 1333.0 | 3999 | 1.2864 | | 0.5596 | 1334.0 | 4002 | 1.2831 | | 0.5596 | 1335.0 | 4005 | 1.2768 | | 0.5596 | 1336.0 | 4008 | 1.2694 | | 0.5596 | 1337.0 | 4011 | 1.2594 | | 0.5596 | 1338.0 | 4014 | 1.2453 | | 0.5596 | 1339.0 | 4017 | 1.2447 | | 0.5596 | 1340.0 | 4020 | 1.2359 | | 0.5596 | 1341.0 | 4023 | 1.2253 | | 0.5596 | 1342.0 | 4026 | 1.2114 | | 0.5596 | 1343.0 | 4029 | 1.2037 | | 0.5596 | 1344.0 | 4032 | 1.1957 | | 0.5596 | 1345.0 | 4035 | 1.2045 | | 0.5596 | 1346.0 | 4038 | 1.2123 | | 0.5596 | 1347.0 | 4041 | 1.2362 | | 0.5596 | 1348.0 | 4044 | 1.2613 | | 0.5596 | 1349.0 | 4047 | 1.2745 | | 0.5596 | 1350.0 | 4050 | 1.2848 | | 0.5596 | 1351.0 | 4053 | 1.2939 | | 0.5596 | 1352.0 | 4056 | 1.2986 | | 0.5596 | 1353.0 | 4059 | 1.2994 | | 0.5596 | 1354.0 | 4062 | 1.3032 | | 0.5596 | 1355.0 | 4065 | 1.3034 | | 0.5596 | 1356.0 | 4068 | 1.3160 | | 0.5596 | 1357.0 | 4071 | 1.3207 | | 0.5596 | 1358.0 | 4074 | 1.3250 | | 0.5596 | 1359.0 | 4077 | 1.3295 | | 0.5596 | 1360.0 | 4080 | 1.3291 | | 0.5596 | 1361.0 | 4083 | 1.3191 | | 0.5596 | 1362.0 | 4086 | 1.3077 | | 0.5596 | 1363.0 | 4089 | 1.3023 | | 0.5596 | 1364.0 | 4092 | 1.2966 | | 0.5596 | 1365.0 | 4095 | 1.2871 | | 0.5596 | 1366.0 | 4098 | 1.2758 | | 0.5596 | 1367.0 | 4101 | 1.2703 | | 0.5596 | 1368.0 | 4104 | 1.2790 | | 0.5596 | 1369.0 | 4107 | 1.2936 | | 0.5596 | 1370.0 | 4110 | 1.3103 | | 0.5596 | 1371.0 | 4113 | 1.3330 | | 0.5596 | 1372.0 | 4116 | 1.3600 | | 0.5596 | 1373.0 | 4119 | 1.3767 | | 0.5596 | 1374.0 | 4122 | 1.3858 | | 0.5596 | 1375.0 | 4125 | 1.3881 | | 0.5596 | 1376.0 | 4128 | 1.4005 | | 0.5596 | 1377.0 | 4131 | 1.4086 | | 0.5596 | 1378.0 | 4134 | 1.4082 | | 0.5596 | 1379.0 | 4137 | 1.4018 | | 0.5596 | 1380.0 | 4140 | 1.3900 | | 0.5596 | 1381.0 | 4143 | 1.3746 | | 0.5596 | 1382.0 | 4146 | 1.3608 | | 0.5596 | 1383.0 | 4149 | 1.3483 | | 0.5596 | 1384.0 | 4152 | 1.3343 | | 0.5596 | 1385.0 | 4155 | 1.3260 | | 0.5596 | 1386.0 | 4158 | 1.3144 | | 0.5596 | 1387.0 | 4161 | 1.3131 | | 0.5596 | 1388.0 | 4164 | 1.3051 | | 0.5596 | 1389.0 | 4167 | 1.2853 | | 0.5596 | 1390.0 | 4170 | 1.2701 | | 0.5596 | 1391.0 | 4173 | 1.2635 | | 0.5596 | 1392.0 | 4176 | 1.2494 | | 0.5596 | 1393.0 | 4179 | 1.2337 | | 0.5596 | 1394.0 | 4182 | 1.2267 | | 0.5596 | 1395.0 | 4185 | 1.2422 | | 0.5596 | 1396.0 | 4188 | 1.2575 | | 0.5596 | 1397.0 | 4191 | 1.2733 | | 0.5596 | 1398.0 | 4194 | 1.2838 | | 0.5596 | 1399.0 | 4197 | 1.2898 | | 0.5596 | 1400.0 | 4200 | 1.2937 | | 0.5596 | 1401.0 | 4203 | 1.2934 | | 0.5596 | 1402.0 | 4206 | 1.2967 | | 0.5596 | 1403.0 | 4209 | 1.2893 | | 0.5596 | 1404.0 | 4212 | 1.2796 | | 0.5596 | 1405.0 | 4215 | 1.2877 | | 0.5596 | 1406.0 | 4218 | 1.3098 | | 0.5596 | 1407.0 | 4221 | 1.3252 | | 0.5596 | 1408.0 | 4224 | 1.3205 | | 0.5596 | 1409.0 | 4227 | 1.3168 | | 0.5596 | 1410.0 | 4230 | 1.3169 | | 0.5596 | 1411.0 | 4233 | 1.3142 | | 0.5596 | 1412.0 | 4236 | 1.2923 | | 0.5596 | 1413.0 | 4239 | 1.2575 | | 0.5596 | 1414.0 | 4242 | 1.2282 | | 0.5596 | 1415.0 | 4245 | 1.2126 | | 0.5596 | 1416.0 | 4248 | 1.2228 | | 0.5596 | 1417.0 | 4251 | 1.2357 | | 0.5596 | 1418.0 | 4254 | 1.2567 | | 0.5596 | 1419.0 | 4257 | 1.2732 | | 0.5596 | 1420.0 | 4260 | 1.2618 | | 0.5596 | 1421.0 | 4263 | 1.2471 | | 0.5596 | 1422.0 | 4266 | 1.2476 | | 0.5596 | 1423.0 | 4269 | 1.2638 | | 0.5596 | 1424.0 | 4272 | 1.3039 | | 0.5596 | 1425.0 | 4275 | 1.3291 | | 0.5596 | 1426.0 | 4278 | 1.3451 | | 0.5596 | 1427.0 | 4281 | 1.3500 | | 0.5596 | 1428.0 | 4284 | 1.3546 | | 0.5596 | 1429.0 | 4287 | 1.3582 | | 0.5596 | 1430.0 | 4290 | 1.3553 | | 0.5596 | 1431.0 | 4293 | 1.3562 | | 0.5596 | 1432.0 | 4296 | 1.3554 | | 0.5596 | 1433.0 | 4299 | 1.3519 | | 0.5596 | 1434.0 | 4302 | 1.3437 | | 0.5596 | 1435.0 | 4305 | 1.3434 | | 0.5596 | 1436.0 | 4308 | 1.3346 | | 0.5596 | 1437.0 | 4311 | 1.3225 | | 0.5596 | 1438.0 | 4314 | 1.3157 | | 0.5596 | 1439.0 | 4317 | 1.3004 | | 0.5596 | 1440.0 | 4320 | 1.2806 | | 0.5596 | 1441.0 | 4323 | 1.2519 | | 0.5596 | 1442.0 | 4326 | 1.2243 | | 0.5596 | 1443.0 | 4329 | 1.2038 | | 0.5596 | 1444.0 | 4332 | 1.1953 | | 0.5596 | 1445.0 | 4335 | 1.1985 | | 0.5596 | 1446.0 | 4338 | 1.2112 | | 0.5596 | 1447.0 | 4341 | 1.2292 | | 0.5596 | 1448.0 | 4344 | 1.2461 | | 0.5596 | 1449.0 | 4347 | 1.2468 | | 0.5596 | 1450.0 | 4350 | 1.2530 | | 0.5596 | 1451.0 | 4353 | 1.2572 | | 0.5596 | 1452.0 | 4356 | 1.2665 | | 0.5596 | 1453.0 | 4359 | 1.2700 | | 0.5596 | 1454.0 | 4362 | 1.2696 | | 0.5596 | 1455.0 | 4365 | 1.2611 | | 0.5596 | 1456.0 | 4368 | 1.2537 | | 0.5596 | 1457.0 | 4371 | 1.2517 | | 0.5596 | 1458.0 | 4374 | 1.2511 | | 0.5596 | 1459.0 | 4377 | 1.2543 | | 0.5596 | 1460.0 | 4380 | 1.2578 | | 0.5596 | 1461.0 | 4383 | 1.2540 | | 0.5596 | 1462.0 | 4386 | 1.2508 | | 0.5596 | 1463.0 | 4389 | 1.2523 | | 0.5596 | 1464.0 | 4392 | 1.2553 | | 0.5596 | 1465.0 | 4395 | 1.2546 | | 0.5596 | 1466.0 | 4398 | 1.2581 | | 0.5596 | 1467.0 | 4401 | 1.2649 | | 0.5596 | 1468.0 | 4404 | 1.2735 | | 0.5596 | 1469.0 | 4407 | 1.2883 | | 0.5596 | 1470.0 | 4410 | 1.3074 | | 0.5596 | 1471.0 | 4413 | 1.3192 | | 0.5596 | 1472.0 | 4416 | 1.3282 | | 0.5596 | 1473.0 | 4419 | 1.3325 | | 0.5596 | 1474.0 | 4422 | 1.3314 | | 0.5596 | 1475.0 | 4425 | 1.3250 | | 0.5596 | 1476.0 | 4428 | 1.3163 | | 0.5596 | 1477.0 | 4431 | 1.3089 | | 0.5596 | 1478.0 | 4434 | 1.3000 | | 0.5596 | 1479.0 | 4437 | 1.3028 | | 0.5596 | 1480.0 | 4440 | 1.3035 | | 0.5596 | 1481.0 | 4443 | 1.3072 | | 0.5596 | 1482.0 | 4446 | 1.3023 | | 0.5596 | 1483.0 | 4449 | 1.3073 | | 0.5596 | 1484.0 | 4452 | 1.3085 | | 0.5596 | 1485.0 | 4455 | 1.3051 | | 0.5596 | 1486.0 | 4458 | 1.3017 | | 0.5596 | 1487.0 | 4461 | 1.2962 | | 0.5596 | 1488.0 | 4464 | 1.2828 | | 0.5596 | 1489.0 | 4467 | 1.2675 | | 0.5596 | 1490.0 | 4470 | 1.2643 | | 0.5596 | 1491.0 | 4473 | 1.2747 | | 0.5596 | 1492.0 | 4476 | 1.2961 | | 0.5596 | 1493.0 | 4479 | 1.3016 | | 0.5596 | 1494.0 | 4482 | 1.2982 | | 0.5596 | 1495.0 | 4485 | 1.2902 | | 0.5596 | 1496.0 | 4488 | 1.2810 | | 0.5596 | 1497.0 | 4491 | 1.2799 | | 0.5596 | 1498.0 | 4494 | 1.2838 | | 0.5596 | 1499.0 | 4497 | 1.2849 | | 0.5585 | 1500.0 | 4500 | 1.2817 | | 0.5585 | 1501.0 | 4503 | 1.2623 | | 0.5585 | 1502.0 | 4506 | 1.2476 | | 0.5585 | 1503.0 | 4509 | 1.2396 | | 0.5585 | 1504.0 | 4512 | 1.2270 | | 0.5585 | 1505.0 | 4515 | 1.2198 | | 0.5585 | 1506.0 | 4518 | 1.2175 | | 0.5585 | 1507.0 | 4521 | 1.2237 | | 0.5585 | 1508.0 | 4524 | 1.2332 | | 0.5585 | 1509.0 | 4527 | 1.2437 | | 0.5585 | 1510.0 | 4530 | 1.2509 | | 0.5585 | 1511.0 | 4533 | 1.2516 | | 0.5585 | 1512.0 | 4536 | 1.2541 | | 0.5585 | 1513.0 | 4539 | 1.2481 | | 0.5585 | 1514.0 | 4542 | 1.2460 | | 0.5585 | 1515.0 | 4545 | 1.2456 | | 0.5585 | 1516.0 | 4548 | 1.2450 | | 0.5585 | 1517.0 | 4551 | 1.2441 | | 0.5585 | 1518.0 | 4554 | 1.2437 | | 0.5585 | 1519.0 | 4557 | 1.2446 | | 0.5585 | 1520.0 | 4560 | 1.2490 | | 0.5585 | 1521.0 | 4563 | 1.2540 | | 0.5585 | 1522.0 | 4566 | 1.2620 | | 0.5585 | 1523.0 | 4569 | 1.2615 | | 0.5585 | 1524.0 | 4572 | 1.2570 | | 0.5585 | 1525.0 | 4575 | 1.2569 | | 0.5585 | 1526.0 | 4578 | 1.2570 | | 0.5585 | 1527.0 | 4581 | 1.2681 | | 0.5585 | 1528.0 | 4584 | 1.2824 | | 0.5585 | 1529.0 | 4587 | 1.2947 | | 0.5585 | 1530.0 | 4590 | 1.2917 | | 0.5585 | 1531.0 | 4593 | 1.2866 | | 0.5585 | 1532.0 | 4596 | 1.2758 | | 0.5585 | 1533.0 | 4599 | 1.2622 | | 0.5585 | 1534.0 | 4602 | 1.2540 | | 0.5585 | 1535.0 | 4605 | 1.2411 | | 0.5585 | 1536.0 | 4608 | 1.2433 | | 0.5585 | 1537.0 | 4611 | 1.2553 | | 0.5585 | 1538.0 | 4614 | 1.2590 | | 0.5585 | 1539.0 | 4617 | 1.2535 | | 0.5585 | 1540.0 | 4620 | 1.2439 | | 0.5585 | 1541.0 | 4623 | 1.2461 | | 0.5585 | 1542.0 | 4626 | 1.2506 | | 0.5585 | 1543.0 | 4629 | 1.2483 | | 0.5585 | 1544.0 | 4632 | 1.2488 | | 0.5585 | 1545.0 | 4635 | 1.2463 | | 0.5585 | 1546.0 | 4638 | 1.2497 | | 0.5585 | 1547.0 | 4641 | 1.2608 | | 0.5585 | 1548.0 | 4644 | 1.2711 | | 0.5585 | 1549.0 | 4647 | 1.2785 | | 0.5585 | 1550.0 | 4650 | 1.2751 | | 0.5585 | 1551.0 | 4653 | 1.2641 | | 0.5585 | 1552.0 | 4656 | 1.2510 | | 0.5585 | 1553.0 | 4659 | 1.2358 | | 0.5585 | 1554.0 | 4662 | 1.2287 | | 0.5585 | 1555.0 | 4665 | 1.2247 | | 0.5585 | 1556.0 | 4668 | 1.2228 | | 0.5585 | 1557.0 | 4671 | 1.2226 | | 0.5585 | 1558.0 | 4674 | 1.2310 | | 0.5585 | 1559.0 | 4677 | 1.2332 | | 0.5585 | 1560.0 | 4680 | 1.2375 | | 0.5585 | 1561.0 | 4683 | 1.2369 | | 0.5585 | 1562.0 | 4686 | 1.2275 | | 0.5585 | 1563.0 | 4689 | 1.2133 | | 0.5585 | 1564.0 | 4692 | 1.1939 | | 0.5585 | 1565.0 | 4695 | 1.1805 | | 0.5585 | 1566.0 | 4698 | 1.1668 | | 0.5585 | 1567.0 | 4701 | 1.1570 | | 0.5585 | 1568.0 | 4704 | 1.1510 | | 0.5585 | 1569.0 | 4707 | 1.1499 | | 0.5585 | 1570.0 | 4710 | 1.1548 | | 0.5585 | 1571.0 | 4713 | 1.1644 | | 0.5585 | 1572.0 | 4716 | 1.1659 | | 0.5585 | 1573.0 | 4719 | 1.1751 | | 0.5585 | 1574.0 | 4722 | 1.1975 | | 0.5585 | 1575.0 | 4725 | 1.2115 | | 0.5585 | 1576.0 | 4728 | 1.2144 | | 0.5585 | 1577.0 | 4731 | 1.2082 | | 0.5585 | 1578.0 | 4734 | 1.1975 | | 0.5585 | 1579.0 | 4737 | 1.1939 | | 0.5585 | 1580.0 | 4740 | 1.1906 | | 0.5585 | 1581.0 | 4743 | 1.1783 | | 0.5585 | 1582.0 | 4746 | 1.1757 | | 0.5585 | 1583.0 | 4749 | 1.1792 | | 0.5585 | 1584.0 | 4752 | 1.1950 | | 0.5585 | 1585.0 | 4755 | 1.2039 | | 0.5585 | 1586.0 | 4758 | 1.2107 | | 0.5585 | 1587.0 | 4761 | 1.2178 | | 0.5585 | 1588.0 | 4764 | 1.2261 | | 0.5585 | 1589.0 | 4767 | 1.2340 | | 0.5585 | 1590.0 | 4770 | 1.2420 | | 0.5585 | 1591.0 | 4773 | 1.2525 | | 0.5585 | 1592.0 | 4776 | 1.2740 | | 0.5585 | 1593.0 | 4779 | 1.2903 | | 0.5585 | 1594.0 | 4782 | 1.2987 | | 0.5585 | 1595.0 | 4785 | 1.2991 | | 0.5585 | 1596.0 | 4788 | 1.2934 | | 0.5585 | 1597.0 | 4791 | 1.2862 | | 0.5585 | 1598.0 | 4794 | 1.2868 | | 0.5585 | 1599.0 | 4797 | 1.2803 | | 0.5585 | 1600.0 | 4800 | 1.2826 | | 0.5585 | 1601.0 | 4803 | 1.2763 | | 0.5585 | 1602.0 | 4806 | 1.2718 | | 0.5585 | 1603.0 | 4809 | 1.2646 | | 0.5585 | 1604.0 | 4812 | 1.2668 | | 0.5585 | 1605.0 | 4815 | 1.2755 | | 0.5585 | 1606.0 | 4818 | 1.2812 | | 0.5585 | 1607.0 | 4821 | 1.2905 | | 0.5585 | 1608.0 | 4824 | 1.2896 | | 0.5585 | 1609.0 | 4827 | 1.2850 | | 0.5585 | 1610.0 | 4830 | 1.2822 | | 0.5585 | 1611.0 | 4833 | 1.2768 | | 0.5585 | 1612.0 | 4836 | 1.2710 | | 0.5585 | 1613.0 | 4839 | 1.2660 | | 0.5585 | 1614.0 | 4842 | 1.2627 | | 0.5585 | 1615.0 | 4845 | 1.2584 | | 0.5585 | 1616.0 | 4848 | 1.2485 | | 0.5585 | 1617.0 | 4851 | 1.2344 | | 0.5585 | 1618.0 | 4854 | 1.2201 | | 0.5585 | 1619.0 | 4857 | 1.2069 | | 0.5585 | 1620.0 | 4860 | 1.1927 | | 0.5585 | 1621.0 | 4863 | 1.1971 | | 0.5585 | 1622.0 | 4866 | 1.2042 | | 0.5585 | 1623.0 | 4869 | 1.2124 | | 0.5585 | 1624.0 | 4872 | 1.2249 | | 0.5585 | 1625.0 | 4875 | 1.2413 | | 0.5585 | 1626.0 | 4878 | 1.2477 | | 0.5585 | 1627.0 | 4881 | 1.2600 | | 0.5585 | 1628.0 | 4884 | 1.2676 | | 0.5585 | 1629.0 | 4887 | 1.2724 | | 0.5585 | 1630.0 | 4890 | 1.2755 | | 0.5585 | 1631.0 | 4893 | 1.2782 | | 0.5585 | 1632.0 | 4896 | 1.2968 | | 0.5585 | 1633.0 | 4899 | 1.3072 | | 0.5585 | 1634.0 | 4902 | 1.3119 | | 0.5585 | 1635.0 | 4905 | 1.3116 | | 0.5585 | 1636.0 | 4908 | 1.3104 | | 0.5585 | 1637.0 | 4911 | 1.3071 | | 0.5585 | 1638.0 | 4914 | 1.3022 | | 0.5585 | 1639.0 | 4917 | 1.2993 | | 0.5585 | 1640.0 | 4920 | 1.2960 | | 0.5585 | 1641.0 | 4923 | 1.2829 | | 0.5585 | 1642.0 | 4926 | 1.2700 | | 0.5585 | 1643.0 | 4929 | 1.2669 | | 0.5585 | 1644.0 | 4932 | 1.2658 | | 0.5585 | 1645.0 | 4935 | 1.2583 | | 0.5585 | 1646.0 | 4938 | 1.2580 | | 0.5585 | 1647.0 | 4941 | 1.2485 | | 0.5585 | 1648.0 | 4944 | 1.2374 | | 0.5585 | 1649.0 | 4947 | 1.2234 | | 0.5585 | 1650.0 | 4950 | 1.2172 | | 0.5585 | 1651.0 | 4953 | 1.2044 | | 0.5585 | 1652.0 | 4956 | 1.1955 | | 0.5585 | 1653.0 | 4959 | 1.1854 | | 0.5585 | 1654.0 | 4962 | 1.1917 | | 0.5585 | 1655.0 | 4965 | 1.1924 | | 0.5585 | 1656.0 | 4968 | 1.1886 | | 0.5585 | 1657.0 | 4971 | 1.1910 | | 0.5585 | 1658.0 | 4974 | 1.1913 | | 0.5585 | 1659.0 | 4977 | 1.1960 | | 0.5585 | 1660.0 | 4980 | 1.2030 | | 0.5585 | 1661.0 | 4983 | 1.2132 | | 0.5585 | 1662.0 | 4986 | 1.2263 | | 0.5585 | 1663.0 | 4989 | 1.2411 | | 0.5585 | 1664.0 | 4992 | 1.2572 | | 0.5585 | 1665.0 | 4995 | 1.2714 | | 0.5585 | 1666.0 | 4998 | 1.2824 | | 0.5584 | 1667.0 | 5001 | 1.2862 | | 0.5584 | 1668.0 | 5004 | 1.2866 | | 0.5584 | 1669.0 | 5007 | 1.2883 | | 0.5584 | 1670.0 | 5010 | 1.2868 | | 0.5584 | 1671.0 | 5013 | 1.2821 | | 0.5584 | 1672.0 | 5016 | 1.2769 | | 0.5584 | 1673.0 | 5019 | 1.2708 | | 0.5584 | 1674.0 | 5022 | 1.2631 | | 0.5584 | 1675.0 | 5025 | 1.2573 | | 0.5584 | 1676.0 | 5028 | 1.2570 | | 0.5584 | 1677.0 | 5031 | 1.2558 | | 0.5584 | 1678.0 | 5034 | 1.2561 | | 0.5584 | 1679.0 | 5037 | 1.2551 | | 0.5584 | 1680.0 | 5040 | 1.2521 | | 0.5584 | 1681.0 | 5043 | 1.2414 | | 0.5584 | 1682.0 | 5046 | 1.2274 | | 0.5584 | 1683.0 | 5049 | 1.2122 | | 0.5584 | 1684.0 | 5052 | 1.1951 | | 0.5584 | 1685.0 | 5055 | 1.1893 | | 0.5584 | 1686.0 | 5058 | 1.1823 | | 0.5584 | 1687.0 | 5061 | 1.1763 | | 0.5584 | 1688.0 | 5064 | 1.1725 | | 0.5584 | 1689.0 | 5067 | 1.1744 | | 0.5584 | 1690.0 | 5070 | 1.1875 | | 0.5584 | 1691.0 | 5073 | 1.1946 | | 0.5584 | 1692.0 | 5076 | 1.2012 | | 0.5584 | 1693.0 | 5079 | 1.2053 | | 0.5584 | 1694.0 | 5082 | 1.2083 | | 0.5584 | 1695.0 | 5085 | 1.2196 | | 0.5584 | 1696.0 | 5088 | 1.2435 | | 0.5584 | 1697.0 | 5091 | 1.2554 | | 0.5584 | 1698.0 | 5094 | 1.2650 | | 0.5584 | 1699.0 | 5097 | 1.2680 | | 0.5584 | 1700.0 | 5100 | 1.2642 | | 0.5584 | 1701.0 | 5103 | 1.2682 | | 0.5584 | 1702.0 | 5106 | 1.2741 | | 0.5584 | 1703.0 | 5109 | 1.2736 | | 0.5584 | 1704.0 | 5112 | 1.2641 | | 0.5584 | 1705.0 | 5115 | 1.2590 | | 0.5584 | 1706.0 | 5118 | 1.2602 | | 0.5584 | 1707.0 | 5121 | 1.2610 | | 0.5584 | 1708.0 | 5124 | 1.2628 | | 0.5584 | 1709.0 | 5127 | 1.2661 | | 0.5584 | 1710.0 | 5130 | 1.2716 | | 0.5584 | 1711.0 | 5133 | 1.2769 | | 0.5584 | 1712.0 | 5136 | 1.2820 | | 0.5584 | 1713.0 | 5139 | 1.2837 | | 0.5584 | 1714.0 | 5142 | 1.2823 | | 0.5584 | 1715.0 | 5145 | 1.2832 | | 0.5584 | 1716.0 | 5148 | 1.2814 | | 0.5584 | 1717.0 | 5151 | 1.2819 | | 0.5584 | 1718.0 | 5154 | 1.2820 | | 0.5584 | 1719.0 | 5157 | 1.2816 | | 0.5584 | 1720.0 | 5160 | 1.2814 | | 0.5584 | 1721.0 | 5163 | 1.2813 | | 0.5584 | 1722.0 | 5166 | 1.2787 | | 0.5584 | 1723.0 | 5169 | 1.2741 | | 0.5584 | 1724.0 | 5172 | 1.2706 | | 0.5584 | 1725.0 | 5175 | 1.2711 | | 0.5584 | 1726.0 | 5178 | 1.2760 | | 0.5584 | 1727.0 | 5181 | 1.2812 | | 0.5584 | 1728.0 | 5184 | 1.2847 | | 0.5584 | 1729.0 | 5187 | 1.2863 | | 0.5584 | 1730.0 | 5190 | 1.2881 | | 0.5584 | 1731.0 | 5193 | 1.2861 | | 0.5584 | 1732.0 | 5196 | 1.2846 | | 0.5584 | 1733.0 | 5199 | 1.2825 | | 0.5584 | 1734.0 | 5202 | 1.2793 | | 0.5584 | 1735.0 | 5205 | 1.2799 | | 0.5584 | 1736.0 | 5208 | 1.2794 | | 0.5584 | 1737.0 | 5211 | 1.2769 | | 0.5584 | 1738.0 | 5214 | 1.2734 | | 0.5584 | 1739.0 | 5217 | 1.2713 | | 0.5584 | 1740.0 | 5220 | 1.2720 | | 0.5584 | 1741.0 | 5223 | 1.2751 | | 0.5584 | 1742.0 | 5226 | 1.2776 | | 0.5584 | 1743.0 | 5229 | 1.2792 | | 0.5584 | 1744.0 | 5232 | 1.2830 | | 0.5584 | 1745.0 | 5235 | 1.2845 | | 0.5584 | 1746.0 | 5238 | 1.2858 | | 0.5584 | 1747.0 | 5241 | 1.2844 | | 0.5584 | 1748.0 | 5244 | 1.2823 | | 0.5584 | 1749.0 | 5247 | 1.2819 | | 0.5584 | 1750.0 | 5250 | 1.2809 | | 0.5584 | 1751.0 | 5253 | 1.2805 | | 0.5584 | 1752.0 | 5256 | 1.2779 | | 0.5584 | 1753.0 | 5259 | 1.2749 | | 0.5584 | 1754.0 | 5262 | 1.2768 | | 0.5584 | 1755.0 | 5265 | 1.2799 | | 0.5584 | 1756.0 | 5268 | 1.2808 | | 0.5584 | 1757.0 | 5271 | 1.2788 | | 0.5584 | 1758.0 | 5274 | 1.2726 | | 0.5584 | 1759.0 | 5277 | 1.2663 | | 0.5584 | 1760.0 | 5280 | 1.2611 | | 0.5584 | 1761.0 | 5283 | 1.2576 | | 0.5584 | 1762.0 | 5286 | 1.2551 | | 0.5584 | 1763.0 | 5289 | 1.2647 | | 0.5584 | 1764.0 | 5292 | 1.2732 | | 0.5584 | 1765.0 | 5295 | 1.2749 | | 0.5584 | 1766.0 | 5298 | 1.2798 | | 0.5584 | 1767.0 | 5301 | 1.2798 | | 0.5584 | 1768.0 | 5304 | 1.2799 | | 0.5584 | 1769.0 | 5307 | 1.2805 | | 0.5584 | 1770.0 | 5310 | 1.2787 | | 0.5584 | 1771.0 | 5313 | 1.2751 | | 0.5584 | 1772.0 | 5316 | 1.2724 | | 0.5584 | 1773.0 | 5319 | 1.2702 | | 0.5584 | 1774.0 | 5322 | 1.2681 | | 0.5584 | 1775.0 | 5325 | 1.2680 | | 0.5584 | 1776.0 | 5328 | 1.2762 | | 0.5584 | 1777.0 | 5331 | 1.2824 | | 0.5584 | 1778.0 | 5334 | 1.2878 | | 0.5584 | 1779.0 | 5337 | 1.2896 | | 0.5584 | 1780.0 | 5340 | 1.2924 | | 0.5584 | 1781.0 | 5343 | 1.2972 | | 0.5584 | 1782.0 | 5346 | 1.2993 | | 0.5584 | 1783.0 | 5349 | 1.2992 | | 0.5584 | 1784.0 | 5352 | 1.2982 | | 0.5584 | 1785.0 | 5355 | 1.2968 | | 0.5584 | 1786.0 | 5358 | 1.2951 | | 0.5584 | 1787.0 | 5361 | 1.2933 | | 0.5584 | 1788.0 | 5364 | 1.2933 | | 0.5584 | 1789.0 | 5367 | 1.2916 | | 0.5584 | 1790.0 | 5370 | 1.2882 | | 0.5584 | 1791.0 | 5373 | 1.2879 | | 0.5584 | 1792.0 | 5376 | 1.2876 | | 0.5584 | 1793.0 | 5379 | 1.2848 | | 0.5584 | 1794.0 | 5382 | 1.2832 | | 0.5584 | 1795.0 | 5385 | 1.2809 | | 0.5584 | 1796.0 | 5388 | 1.2803 | | 0.5584 | 1797.0 | 5391 | 1.2786 | | 0.5584 | 1798.0 | 5394 | 1.2740 | | 0.5584 | 1799.0 | 5397 | 1.2691 | | 0.5584 | 1800.0 | 5400 | 1.2653 | | 0.5584 | 1801.0 | 5403 | 1.2605 | | 0.5584 | 1802.0 | 5406 | 1.2591 | | 0.5584 | 1803.0 | 5409 | 1.2564 | | 0.5584 | 1804.0 | 5412 | 1.2520 | | 0.5584 | 1805.0 | 5415 | 1.2478 | | 0.5584 | 1806.0 | 5418 | 1.2489 | | 0.5584 | 1807.0 | 5421 | 1.2499 | | 0.5584 | 1808.0 | 5424 | 1.2530 | | 0.5584 | 1809.0 | 5427 | 1.2525 | | 0.5584 | 1810.0 | 5430 | 1.2523 | | 0.5584 | 1811.0 | 5433 | 1.2526 | | 0.5584 | 1812.0 | 5436 | 1.2536 | | 0.5584 | 1813.0 | 5439 | 1.2507 | | 0.5584 | 1814.0 | 5442 | 1.2481 | | 0.5584 | 1815.0 | 5445 | 1.2451 | | 0.5584 | 1816.0 | 5448 | 1.2370 | | 0.5584 | 1817.0 | 5451 | 1.2326 | | 0.5584 | 1818.0 | 5454 | 1.2316 | | 0.5584 | 1819.0 | 5457 | 1.2329 | | 0.5584 | 1820.0 | 5460 | 1.2352 | | 0.5584 | 1821.0 | 5463 | 1.2331 | | 0.5584 | 1822.0 | 5466 | 1.2283 | | 0.5584 | 1823.0 | 5469 | 1.2228 | | 0.5584 | 1824.0 | 5472 | 1.2207 | | 0.5584 | 1825.0 | 5475 | 1.2197 | | 0.5584 | 1826.0 | 5478 | 1.2164 | | 0.5584 | 1827.0 | 5481 | 1.2152 | | 0.5584 | 1828.0 | 5484 | 1.2172 | | 0.5584 | 1829.0 | 5487 | 1.2181 | | 0.5584 | 1830.0 | 5490 | 1.2158 | | 0.5584 | 1831.0 | 5493 | 1.2166 | | 0.5584 | 1832.0 | 5496 | 1.2138 | | 0.5584 | 1833.0 | 5499 | 1.2109 | | 0.5585 | 1834.0 | 5502 | 1.2170 | | 0.5585 | 1835.0 | 5505 | 1.2216 | | 0.5585 | 1836.0 | 5508 | 1.2244 | | 0.5585 | 1837.0 | 5511 | 1.2267 | | 0.5585 | 1838.0 | 5514 | 1.2321 | | 0.5585 | 1839.0 | 5517 | 1.2359 | | 0.5585 | 1840.0 | 5520 | 1.2415 | | 0.5585 | 1841.0 | 5523 | 1.2507 | | 0.5585 | 1842.0 | 5526 | 1.2623 | | 0.5585 | 1843.0 | 5529 | 1.2675 | | 0.5585 | 1844.0 | 5532 | 1.2701 | | 0.5585 | 1845.0 | 5535 | 1.2701 | | 0.5585 | 1846.0 | 5538 | 1.2698 | | 0.5585 | 1847.0 | 5541 | 1.2720 | | 0.5585 | 1848.0 | 5544 | 1.2740 | | 0.5585 | 1849.0 | 5547 | 1.2751 | | 0.5585 | 1850.0 | 5550 | 1.2771 | | 0.5585 | 1851.0 | 5553 | 1.2801 | | 0.5585 | 1852.0 | 5556 | 1.2817 | | 0.5585 | 1853.0 | 5559 | 1.2834 | | 0.5585 | 1854.0 | 5562 | 1.2851 | | 0.5585 | 1855.0 | 5565 | 1.2870 | | 0.5585 | 1856.0 | 5568 | 1.2885 | | 0.5585 | 1857.0 | 5571 | 1.2872 | | 0.5585 | 1858.0 | 5574 | 1.2855 | | 0.5585 | 1859.0 | 5577 | 1.2835 | | 0.5585 | 1860.0 | 5580 | 1.2837 | | 0.5585 | 1861.0 | 5583 | 1.2837 | | 0.5585 | 1862.0 | 5586 | 1.2828 | | 0.5585 | 1863.0 | 5589 | 1.2814 | | 0.5585 | 1864.0 | 5592 | 1.2794 | | 0.5585 | 1865.0 | 5595 | 1.2781 | | 0.5585 | 1866.0 | 5598 | 1.2806 | | 0.5585 | 1867.0 | 5601 | 1.2827 | | 0.5585 | 1868.0 | 5604 | 1.2827 | | 0.5585 | 1869.0 | 5607 | 1.2828 | | 0.5585 | 1870.0 | 5610 | 1.2827 | | 0.5585 | 1871.0 | 5613 | 1.2810 | | 0.5585 | 1872.0 | 5616 | 1.2799 | | 0.5585 | 1873.0 | 5619 | 1.2784 | | 0.5585 | 1874.0 | 5622 | 1.2760 | | 0.5585 | 1875.0 | 5625 | 1.2729 | | 0.5585 | 1876.0 | 5628 | 1.2710 | | 0.5585 | 1877.0 | 5631 | 1.2718 | | 0.5585 | 1878.0 | 5634 | 1.2747 | | 0.5585 | 1879.0 | 5637 | 1.2779 | | 0.5585 | 1880.0 | 5640 | 1.2808 | | 0.5585 | 1881.0 | 5643 | 1.2827 | | 0.5585 | 1882.0 | 5646 | 1.2821 | | 0.5585 | 1883.0 | 5649 | 1.2822 | | 0.5585 | 1884.0 | 5652 | 1.2834 | | 0.5585 | 1885.0 | 5655 | 1.2828 | | 0.5585 | 1886.0 | 5658 | 1.2808 | | 0.5585 | 1887.0 | 5661 | 1.2784 | | 0.5585 | 1888.0 | 5664 | 1.2760 | | 0.5585 | 1889.0 | 5667 | 1.2731 | | 0.5585 | 1890.0 | 5670 | 1.2704 | | 0.5585 | 1891.0 | 5673 | 1.2704 | | 0.5585 | 1892.0 | 5676 | 1.2701 | | 0.5585 | 1893.0 | 5679 | 1.2696 | | 0.5585 | 1894.0 | 5682 | 1.2657 | | 0.5585 | 1895.0 | 5685 | 1.2590 | | 0.5585 | 1896.0 | 5688 | 1.2525 | | 0.5585 | 1897.0 | 5691 | 1.2475 | | 0.5585 | 1898.0 | 5694 | 1.2441 | | 0.5585 | 1899.0 | 5697 | 1.2416 | | 0.5585 | 1900.0 | 5700 | 1.2422 | | 0.5585 | 1901.0 | 5703 | 1.2433 | | 0.5585 | 1902.0 | 5706 | 1.2443 | | 0.5585 | 1903.0 | 5709 | 1.2453 | | 0.5585 | 1904.0 | 5712 | 1.2513 | | 0.5585 | 1905.0 | 5715 | 1.2538 | | 0.5585 | 1906.0 | 5718 | 1.2554 | | 0.5585 | 1907.0 | 5721 | 1.2567 | | 0.5585 | 1908.0 | 5724 | 1.2573 | | 0.5585 | 1909.0 | 5727 | 1.2580 | | 0.5585 | 1910.0 | 5730 | 1.2579 | | 0.5585 | 1911.0 | 5733 | 1.2576 | | 0.5585 | 1912.0 | 5736 | 1.2567 | | 0.5585 | 1913.0 | 5739 | 1.2552 | | 0.5585 | 1914.0 | 5742 | 1.2542 | | 0.5585 | 1915.0 | 5745 | 1.2539 | | 0.5585 | 1916.0 | 5748 | 1.2530 | | 0.5585 | 1917.0 | 5751 | 1.2534 | | 0.5585 | 1918.0 | 5754 | 1.2542 | | 0.5585 | 1919.0 | 5757 | 1.2537 | | 0.5585 | 1920.0 | 5760 | 1.2527 | | 0.5585 | 1921.0 | 5763 | 1.2517 | | 0.5585 | 1922.0 | 5766 | 1.2510 | | 0.5585 | 1923.0 | 5769 | 1.2496 | | 0.5585 | 1924.0 | 5772 | 1.2497 | | 0.5585 | 1925.0 | 5775 | 1.2491 | | 0.5585 | 1926.0 | 5778 | 1.2483 | | 0.5585 | 1927.0 | 5781 | 1.2462 | | 0.5585 | 1928.0 | 5784 | 1.2437 | | 0.5585 | 1929.0 | 5787 | 1.2406 | | 0.5585 | 1930.0 | 5790 | 1.2390 | | 0.5585 | 1931.0 | 5793 | 1.2390 | | 0.5585 | 1932.0 | 5796 | 1.2390 | | 0.5585 | 1933.0 | 5799 | 1.2409 | | 0.5585 | 1934.0 | 5802 | 1.2442 | | 0.5585 | 1935.0 | 5805 | 1.2473 | | 0.5585 | 1936.0 | 5808 | 1.2490 | | 0.5585 | 1937.0 | 5811 | 1.2516 | | 0.5585 | 1938.0 | 5814 | 1.2542 | | 0.5585 | 1939.0 | 5817 | 1.2565 | | 0.5585 | 1940.0 | 5820 | 1.2594 | | 0.5585 | 1941.0 | 5823 | 1.2610 | | 0.5585 | 1942.0 | 5826 | 1.2623 | | 0.5585 | 1943.0 | 5829 | 1.2636 | | 0.5585 | 1944.0 | 5832 | 1.2657 | | 0.5585 | 1945.0 | 5835 | 1.2667 | | 0.5585 | 1946.0 | 5838 | 1.2676 | | 0.5585 | 1947.0 | 5841 | 1.2685 | | 0.5585 | 1948.0 | 5844 | 1.2696 | | 0.5585 | 1949.0 | 5847 | 1.2707 | | 0.5585 | 1950.0 | 5850 | 1.2707 | | 0.5585 | 1951.0 | 5853 | 1.2710 | | 0.5585 | 1952.0 | 5856 | 1.2707 | | 0.5585 | 1953.0 | 5859 | 1.2694 | | 0.5585 | 1954.0 | 5862 | 1.2673 | | 0.5585 | 1955.0 | 5865 | 1.2650 | | 0.5585 | 1956.0 | 5868 | 1.2625 | | 0.5585 | 1957.0 | 5871 | 1.2614 | | 0.5585 | 1958.0 | 5874 | 1.2605 | | 0.5585 | 1959.0 | 5877 | 1.2599 | | 0.5585 | 1960.0 | 5880 | 1.2599 | | 0.5585 | 1961.0 | 5883 | 1.2598 | | 0.5585 | 1962.0 | 5886 | 1.2585 | | 0.5585 | 1963.0 | 5889 | 1.2572 | | 0.5585 | 1964.0 | 5892 | 1.2555 | | 0.5585 | 1965.0 | 5895 | 1.2527 | | 0.5585 | 1966.0 | 5898 | 1.2513 | | 0.5585 | 1967.0 | 5901 | 1.2504 | | 0.5585 | 1968.0 | 5904 | 1.2508 | | 0.5585 | 1969.0 | 5907 | 1.2511 | | 0.5585 | 1970.0 | 5910 | 1.2517 | | 0.5585 | 1971.0 | 5913 | 1.2528 | | 0.5585 | 1972.0 | 5916 | 1.2537 | | 0.5585 | 1973.0 | 5919 | 1.2543 | | 0.5585 | 1974.0 | 5922 | 1.2549 | | 0.5585 | 1975.0 | 5925 | 1.2554 | | 0.5585 | 1976.0 | 5928 | 1.2554 | | 0.5585 | 1977.0 | 5931 | 1.2555 | | 0.5585 | 1978.0 | 5934 | 1.2554 | | 0.5585 | 1979.0 | 5937 | 1.2553 | | 0.5585 | 1980.0 | 5940 | 1.2554 | | 0.5585 | 1981.0 | 5943 | 1.2556 | | 0.5585 | 1982.0 | 5946 | 1.2563 | | 0.5585 | 1983.0 | 5949 | 1.2567 | | 0.5585 | 1984.0 | 5952 | 1.2567 | | 0.5585 | 1985.0 | 5955 | 1.2567 | | 0.5585 | 1986.0 | 5958 | 1.2566 | | 0.5585 | 1987.0 | 5961 | 1.2566 | | 0.5585 | 1988.0 | 5964 | 1.2564 | | 0.5585 | 1989.0 | 5967 | 1.2563 | | 0.5585 | 1990.0 | 5970 | 1.2564 | | 0.5585 | 1991.0 | 5973 | 1.2564 | | 0.5585 | 1992.0 | 5976 | 1.2564 | | 0.5585 | 1993.0 | 5979 | 1.2565 | | 0.5585 | 1994.0 | 5982 | 1.2565 | | 0.5585 | 1995.0 | 5985 | 1.2564 | | 0.5585 | 1996.0 | 5988 | 1.2563 | | 0.5585 | 1997.0 | 5991 | 1.2563 | | 0.5585 | 1998.0 | 5994 | 1.2562 | | 0.5585 | 1999.0 | 5997 | 1.2562 | | 0.558 | 2000.0 | 6000 | 1.2562 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
ap08/bert_custom-squad
ap08
2024-03-07T17:19:53Z
4
0
transformers
[ "transformers", "safetensors", "bert", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T17:16:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Alpaca69B/gemma-2b-absa-3epoches
Alpaca69B
2024-03-07T17:18:40Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T15:29:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VAGOsolutions/SauerkrautLM-Gemma-2b
VAGOsolutions
2024-03-07T17:17:08Z
126
8
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "sft", "laserRMT", "laser-QLoRa", "finetune", "work in progress", "alpha", "de", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T23:26:18Z
--- license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms language: - de - en tags: - sft - laserRMT - laser-QLoRa - finetune - work in progress - alpha --- ![SauerkrautLM](https://vago-solutions.ai/wp-content/uploads/2024/03/sauerkrautgemma-2b.png "SauerkrautLM-Gemma-2b") ## VAGO solutions SauerkrautLM-Gemma-2b (alpha) Introducing **SauerkrautLM-Gemma-2b** – our German Sauerkraut version of the powerful [google/gemma-2b](https://huggingface.co/google/gemma-2b) ! **It is an early stage finetuned model and should be used with caution!** The model **SauerkrautLM-Gemma-2b** is a **joint effort** between **VAGO solutions** and **Hyperspace.ai.** Much appreciation goes to the tremendous research effort of **Fernando Fernandes Neto, David Golchinfar and Eric Hartford on their laserRMT approach.** Without their independent research collaboration this model release would not have been possible. - Fintuned with **SFT** - **Using a novel training technique: laser-QLoRA** - we partially freeze the model according to a laser-like analysis (Official Paper soon). It allows to evaluate the no free lunch theorem and supports better decision making when optimizing the theorem - created by the [LaserRMT research group](https://github.com/cognitivecomputations/laserRMT) - Optimized with **LaserRMT** # Table of Contents 1. [Overview of all SauerkrautLM-Gemma-2b models](#all-sauerkrautlm-gemma-7b-models) 2. [Model Details](#model-details) - [Prompt template](#prompt-template) - [Training procedure](#proceed-of-the-training) 3. [Evaluation](#evaluation) 5. [Disclaimer](#disclaimer) 6. [Contact](#contact) 7. [Collaborations](#collaborations) 8. [Acknowledgement](#acknowledgement) ## All SauerkrautLM-Gemma-2b Models | Model | HF | GPTQ | GGUF | AWQ | |-------|-------|-------|-------|-------| | SauerkrautLM-Gemma-2b | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Gemma-2b) | coming soon | coming soon | coming soon | ## Model Details **SauerkrautLM-Gemma-2b** - **Model Type:** SauerkrautLM-Gemma-2b is a finetuned Model based on [google/gemma-2b](https://huggingface.co/google/gemma-2b) - **Language(s):** German, English - **License:** [gemma-terms-of-use](https://ai.google.dev/gemma/terms) - **Contact:** [VAGO solutions](https://vago-solutions.ai), [Hyperspace.ai](https://hyperspace.computer/) ### Training procedure: **Warning**: **This finetuned model is in an early stage and we sometimes observed strange behavior. It is still work in progress!** Anyone who has attempted or succeeded in fine-tuning a model is aware of the difficulty in nudging it towards a specific skill, such as mastering new languages, as well as the challenges associated with achieving significant improvements in performance. Experimenting with a novel training strategy and Spherical Linear Interpolation alongside a lasered version of the model itself has proven to be both fascinating and revealing. Furthermore, we developed one iteration of the model using our entire SFT -Sauerkraut dataset and two additional iterations using subsets of the full dataset—one focused on enhancing MMLU and TQA capabilities, and the other on boosting GSM8K and Winogrande skills. We actively monitor and assesed the results of each training. Whenever we found a decrease in perplexity on the gsm8k benchmark we intervined. By following this procedure we were able to improve the overall performance, especially in math abilities, without detracting from performance on other benchmarks—a task that is, in general, quite difficult. This process not only helps in understanding the effectiveness of Spherical Linear Interpolation but also introduces a new method for refining models with enhanced skills through a cycle of targeted data selection (Laser data(x)) + SLERP, followed by a subsequent focus on different data (Laser again on data(y)). Additionally, we integrated a novel training strategy on the SFT training process, where we partially freeze the model according to a laser-like analysis aiming to navigate and optimize the trade-offs highlighted by the no free lunch theorem. This innovative training method effectively prevents the significant problem of language models forgetting previously acquired knowledge. This aspect is particularly crucial when attempting to teach the model specific skills, such as a new language, where in general, the model might lose a considerable amount of its prior knowledge and exhibit a decline in overall intelligence. Detailed information on how the new training strategy works and the advantages it offers over conventional training methods will soon be published in a detailed paper by the LaserRMT research group. **We teached German language skills on this model.** As far as we know, it is the first Gemma-2b model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress). ### Prompt Template: We trained on vicuna prompt template. Please add the following stopping string to your client: ``` "</s>","</p>" ``` (we did not add the special tokens to the training config) ``` You are a helpful AI Assistant. USER: Hello, how are you? ASSISTANT: ``` ## Evaluation (with lm-evaluation-harness 0.4.1) **Open LLM Leaderboard:** | Metric | Value | |-----------------------|---------------------------| | Avg. | **48.93** | | ARC (25-shot) | 49.32 | | HellaSwag (10-shot) | 71.23 | | MMLU (5-shot) | 42.06 | TruthfulQA (0-shot) | 35.73 | | Winogrande (5-shot) | 67.56 | | GSM8K (5-shot) | 27.67 | **Performance** | Model |AGIEval|GPT4All|TruthfulQA|BigBench|Average ⬇️| |-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[VAGOsolutions/SauerkrautLM-Gemma-7b](https://huggingface.co/VAGOsolutions/SauerkrautLM-Gemma-7b) | 37.5| 72.46| 61.24| 45.33| 54.13| |[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 37.52| 71.77| 55.26| 39.77| 51.08| |[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 34.22| 66.37| 52.19| 37.10| 47.47| |[VAGOsolutions/SauerkrautLM-Gemma-2b](https://huggingface.co/VAGOsolutions/SauerkrautLM-Gemma-2b) | 24.28| 63.59| 35.73| 22.77| 36.59| |[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 21.33| 40.84| 41.70| 30.25| 33.53| <details><summary>Details of AGIEval, GPT4All, TruthfulQA, BigBench </summary> **AGIEval** | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |------------------------------|------:|------|------|--------|-----:|---|-----:| |agieval_sat_math | 1|none |None |acc |0.2409|± |0.0289| | | |none |None |acc_norm|0.2455|± |0.0291| |agieval_sat_en_without_passage| 1|none |None |acc |0.3010|± |0.0320| | | |none |None |acc_norm|0.2816|± |0.0314| |agieval_sat_en | 1|none |None |acc |0.3301|± |0.0328| | | |none |None |acc_norm|0.2961|± |0.0319| |agieval_lsat_rc | 1|none |None |acc |0.2007|± |0.0245| | | |none |None |acc_norm|0.1933|± |0.0241| |agieval_lsat_lr | 1|none |None |acc |0.1941|± |0.0175| | | |none |None |acc_norm|0.2039|± |0.0179| |agieval_lsat_ar | 1|none |None |acc |0.2304|± |0.0278| | | |none |None |acc_norm|0.2391|± |0.0282| |agieval_logiqa_en | 1|none |None |acc |0.2089|± |0.0159| | | |none |None |acc_norm|0.2581|± |0.0172| |agieval_aqua_rat | 1|none |None |acc |0.2480|± |0.0272| | | |none |None |acc_norm|0.2244|± |0.0262| Average: 24.28% **GPT4All** | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |---------|------:|------|------|--------|-----:|---|-----:| |arc_challenge| 1|none |None |acc |0.4334|± |0.0145| | | |none |None |acc_norm|0.4309|± |0.0145| |arc_easy | 1|none |None |acc |0.7433|± |0.0090| | | |none |None |acc_norm|0.7264|± |0.0091| |boolq | 2|none |None |acc |0.7165|± |0.0079| |hellaswag | 1|none |None |acc |0.5357|± |0.0050| | | |none |None |acc_norm|0.7158|± |0.0045| |openbookqa | 1|none |None |acc |0.318 |± |0.0208| | | |none |None |acc_norm|0.402 |± |0.0219| |piqa | 1|none |None |acc |0.7709|± |0.0098| | | |none |None |acc_norm|0.7807|± |0.0097| |winogrande | 1|none |None |acc |0.6788|± |0.0131| Average: 63.59% **TruthfulQA** | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |--------------|------:|------|-----:|------|-----:|---|-----:| |truthfulqa_mc2| 2|none | 0|acc |0.3573|± |0.0135| Average: 35.73% **Bigbench** | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |----------------------------------------------------|------:|----------------|-----:|-----------|-----:|---|-----:| |bbh_zeroshot_tracking_shuffled_objects_three_objects| 2|flexible-extract| 0|exact_match|0.3280|± |0.0298| |bbh_zeroshot_tracking_shuffled_objects_seven_objects| 2|flexible-extract| 0|exact_match|0.1120|± |0.0200| |bbh_zeroshot_tracking_shuffled_objects_five_objects | 2|flexible-extract| 0|exact_match|0.1520|± |0.0228| |bbh_zeroshot_temporal_sequences | 2|flexible-extract| 0|exact_match|0.1000|± |0.0190| |bbh_zeroshot_sports_understanding | 2|flexible-extract| 0|exact_match|0.5360|± |0.0316| |bbh_zeroshot_snarks | 2|flexible-extract| 0|exact_match|0.2753|± |0.0336| |bbh_zeroshot_salient_translation_error_detection | 2|flexible-extract| 0|exact_match|0.1400|± |0.0220| |bbh_zeroshot_ruin_names | 2|flexible-extract| 0|exact_match|0.1120|± |0.0200| |bbh_zeroshot_reasoning_about_colored_objects | 2|flexible-extract| 0|exact_match|0.1080|± |0.0197| |bbh_zeroshot_navigate | 2|flexible-extract| 0|exact_match|0.5800|± |0.0313| |bbh_zeroshot_movie_recommendation | 2|flexible-extract| 0|exact_match|0.4360|± |0.0314| |bbh_zeroshot_logical_deduction_three_objects | 2|flexible-extract| 0|exact_match|0.0000|± |0.0000| |bbh_zeroshot_logical_deduction_seven_objects | 2|flexible-extract| 0|exact_match|0.0720|± |0.0164| |bbh_zeroshot_logical_deduction_five_objects | 2|flexible-extract| 0|exact_match|0.0000|± |0.0000| |bbh_zeroshot_geometric_shapes | 2|flexible-extract| 0|exact_match|0.0000|± |0.0000| |bbh_zeroshot_disambiguation_qa | 2|flexible-extract| 0|exact_match|0.3400|± |0.0300| |bbh_zeroshot_date_understanding | 2|flexible-extract| 0|exact_match|0.3360|± |0.0299| |bbh_zeroshot_causal_judgement | 2|flexible-extract| 0|exact_match|0.4706|± |0.0366| Average: 22.77% </details> ## Disclaimer We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.   ## Contact If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.   ## Collaborations We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.de/#Kontakt), [Hyperspace.computer](https://hyperspace.computer/) ## Acknowledgement Many thanks to [google](https://huggingface.co/google) for providing such valuable model to the Open-Source community
Humaid-alblooshi/bert-pretrained-base-5-epoch
Humaid-alblooshi
2024-03-07T17:14:47Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T17:14:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Koleshjr/final_updated_model
Koleshjr
2024-03-07T17:13:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-07T15:26:06Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit --- # Uploaded model - **Developed by:** Koleshjr - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
s14pe/ppo-SnowballTarget
s14pe
2024-03-07T17:10:01Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-03-07T17:09:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: s14pe/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
danlund4/q-FrozenLake-v1-4x4-noSlippery
danlund4
2024-03-07T17:08:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T17:08:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="danlund4/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
justdimaa/ppo-SnowballTarget
justdimaa
2024-03-07T17:04:47Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-03-07T17:04:42Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: justdimaa/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
guirrock/gemma-Finetune-bloom-taxonomy
guirrock
2024-03-07T17:01:39Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T20:04:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Humaid-alblooshi/bert-test-5-epoch
Humaid-alblooshi
2024-03-07T16:57:20Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-02T15:27:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vishalp23/distilbert-subject-classifier
vishalp23
2024-03-07T16:53:03Z
0
1
null
[ "bert", "subject-classification", "text-classification", "en", "arxiv:1910.09700", "arxiv:2105.09680", "license:apache-2.0", "region:us" ]
text-classification
2024-03-07T16:46:04Z
--- license: apache-2.0 language: - en pipeline_tag: text-classification tags: - bert - subject-classification - text-classification --- # Subject Classifier built on Distilbert ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) ## Model Details **Model Description:** This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on a custom dataset that is built on the [IITJEE NEET AIIMS Students Questions Data](https://www.kaggle.com/datasets/mrutyunjaybiswal/iitjee-neet-aims-students-questions-data?resource=download) for the subject classification task. - **Developed by:** The [Typeform](https://www.typeform.com/) team. - **Model Type:** Text Classification - **Language(s):** English - **License:** GNU GENERAL PUBLIC LICENSE - **Parent Model:** See the [distilbert base uncased model](https://huggingface.co/distilbert-base-uncased) for more information about the Distilled-BERT base model. ## Uses This model can be used for text classification tasks. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Training Training is done on a [NVIDIA RTX 3070](https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/) [AMD Ryzen 7 5800](https://www.amd.com/en/products/cpu/amd-ryzen-7-5800) with the following hyperparameters: ``` $ training.ipynb \ --model_name_or_path distilbert-base-uncased \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 4 \ --learning_rate 1e-05 \ --num_train_epochs 5 \ ``` ## Evaluation #### Evaluation Results When fine-tuned on downstream tasks, this model achieves the following results: Epochs: 5 | Train Loss: 0.001 | Train Accuracy: 0.989 | Val Loss: 0.006 | Val Accuracy: 0.950 CPU times: user 18h 19min 13s, sys: 1min 34s, total: 18h 20min 47s Wall time: 18h 20min 7s - **Epoch = ** 5.0 - **Evaluation Accuracy =** 0.950 - **Evaluation Loss =** 0.006 - **Training Accuracy =** 0.989 - **Training Loss =** 0.001 #### Testing Results | | precision | recall | f1-score | support | |-----------------|-----------|--------|----------|---------| | biology | 0.98 | 0.99 | 0.99 | 15988 | | chemistry | 1.00 | 0.99 | 0.99 | 20678 | | computer | 1.00 | 0.99 | 0.99 | 8754 | | maths | 1.00 | 1.00 | 1.00 | 26661 | | physics | 0.99 | 0.98 | 0.99 | 10306 | | social sciences | 0.99 | 1.00 | 0.99 | 25695 | | | | | | | | accuracy | 0.99 | 108082 | | | | macro avg | 0.99 | 0.99 | 0.99 | 108082 | | weighted avg | 0.99 | 0.99 | 0.99 | 108082 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type based on the [associated paper](https://arxiv.org/pdf/2105.09680.pdf). **Hardware Type:** 1 NVIDIA RTX 3070 **Hours used:** 18h 19min 13s **Carbon Emitted:** (Power consumption x Time x Carbon produced based on location of power grid): Unknown
JoniJoniAl/testsmall7maart
JoniJoniAl
2024-03-07T16:51:17Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-07T10:04:01Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-bnb-4bit --- # Uploaded model - **Developed by:** JoniJoniAl - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Rajesh2004/text-to-image-ai-model
Rajesh2004
2024-03-07T16:42:07Z
0
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-07T16:37:57Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Text-to-Image-AI-Model Dreambooth model trained by Rajesh2004 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: AEC730222243020 Sample pictures of this concept: ![0](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(1).jpeg) ![1](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(5).jpeg) ![2](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(4).jpg) ![3](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(7).jpeg) ![4](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(4).jpeg) ![5](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(10).jpg) ![6](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(12).jpeg) ![7](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(14).jpeg) ![8](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(18).jpeg) ![9](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(11).jpeg) ![10](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(11).jpg) ![11](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(7).jpg) ![12](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(15).jpeg) ![13](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(2).jpeg) ![14](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(12).jpg) ![15](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(13).jpg) ![16](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(1).png) ![17](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(8).jpg) ![18](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(3).jpeg) ![19](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(3).jpg) ![20](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(5).jpg) ![21](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(16).jpeg) ![22](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(8).jpeg) ![23](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(9).jpg) ![24](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(10).jpeg) ![25](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(2).jpg) ![26](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(13).jpeg) ![27](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(9).jpeg) ![28](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(14).jpg) ![29](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(1).jpg) ![30](https://huggingface.co/Rajesh2004/text-to-image-ai-model/resolve/main/sample_images/rajpri_(17).jpeg)
kamyar-mroadian/NLP_HF_Workshop
kamyar-mroadian
2024-03-07T16:41:04Z
6
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "sentimental-analysis", "emotion", "en", "dataset:dair-ai/emotion", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T16:25:41Z
--- license: mit datasets: - dair-ai/emotion language: - en metrics: - accuracy pipeline_tag: text-classification tags: - sentimental-analysis - roberta - emotion --- # Model Card for NLP-HF-Workshop <!-- Provide a quick summary of what the model is/does. --> This model uses the dai-ai/emotion data set to perform a text classification task on 6 emotions in this dataset using fine tuned FacebookAI/Roberta-Base model.
Vas123/130000
Vas123
2024-03-07T16:39:51Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "gptj", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T14:11:56Z
--- tags: - generated_from_trainer model-index: - name: '130000' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 130000 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.0491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.92 | 3 | 6.2222 | | No log | 1.85 | 6 | 6.2146 | | No log | 2.77 | 9 | 6.2032 | | 5.9665 | 4.0 | 13 | 6.1877 | | 5.9665 | 4.92 | 16 | 6.1734 | | 5.9665 | 5.85 | 19 | 6.1620 | | 5.8921 | 6.77 | 22 | 6.1539 | | 5.8921 | 8.0 | 26 | 6.1426 | | 5.8921 | 8.92 | 29 | 6.1335 | | 5.8324 | 9.85 | 32 | 6.1277 | | 5.8324 | 10.77 | 35 | 6.1178 | | 5.8324 | 12.0 | 39 | 6.1105 | | 5.8012 | 12.92 | 42 | 6.1059 | | 5.8012 | 13.85 | 45 | 6.0992 | | 5.8012 | 14.77 | 48 | 6.0959 | | 5.7449 | 16.0 | 52 | 6.0910 | | 5.7449 | 16.92 | 55 | 6.0859 | | 5.7449 | 17.85 | 58 | 6.0819 | | 5.7303 | 18.77 | 61 | 6.0767 | | 5.7303 | 20.0 | 65 | 6.0734 | | 5.7303 | 20.92 | 68 | 6.0721 | | 5.6687 | 21.85 | 71 | 6.0694 | | 5.6687 | 22.77 | 74 | 6.0658 | | 5.6687 | 24.0 | 78 | 6.0628 | | 5.6839 | 24.92 | 81 | 6.0627 | | 5.6839 | 25.85 | 84 | 6.0600 | | 5.6839 | 26.77 | 87 | 6.0586 | | 5.6499 | 28.0 | 91 | 6.0572 | | 5.6499 | 28.92 | 94 | 6.0558 | | 5.6499 | 29.85 | 97 | 6.0555 | | 5.6703 | 30.77 | 100 | 6.0545 | | 5.6703 | 32.0 | 104 | 6.0533 | | 5.6703 | 32.92 | 107 | 6.0520 | | 5.6404 | 33.85 | 110 | 6.0518 | | 5.6404 | 34.77 | 113 | 6.0511 | | 5.6404 | 36.0 | 117 | 6.0509 | | 5.6414 | 36.92 | 120 | 6.0504 | | 5.6414 | 37.85 | 123 | 6.0498 | | 5.6414 | 38.77 | 126 | 6.0498 | | 5.6347 | 40.0 | 130 | 6.0496 | | 5.6347 | 40.92 | 133 | 6.0493 | | 5.6347 | 41.85 | 136 | 6.0491 | | 5.6347 | 42.77 | 139 | 6.0491 | | 5.638 | 44.0 | 143 | 6.0491 | | 5.638 | 44.92 | 146 | 6.0491 | | 5.638 | 45.85 | 149 | 6.0491 | | 5.6249 | 46.15 | 150 | 6.0491 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
justdimaa/Reinforce-Pixelcopter-PLE-v0
justdimaa
2024-03-07T16:34:31Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T14:58:57Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 36.40 +/- 23.41 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BlitherBoom/sarsa-FrozenLake-v1-4x4-noSlippery-0307
BlitherBoom
2024-03-07T16:32:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "sarsa", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T16:32:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - sarsa - q-learning - reinforcement-learning - custom-implementation model-index: - name: sarsa-FrozenLake-v1-4x4-noSlippery-0307 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 0.90 +/- 0.30 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="BlitherBoom/sarsa-FrozenLake-v1-4x4-noSlippery-0307", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
field2437/phi-2-platypus-Commercial-lora
field2437
2024-03-07T16:31:15Z
52
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "en", "dataset:kyujinpy/Open-platypus-Commercial", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T01:21:15Z
--- language: - en datasets: - kyujinpy/Open-platypus-Commercial library_name: transformers pipeline_tag: text-generation license: mit --- # **phi-2-platypus-Commercial-lora** ## Model Details **Model Developers** - field2437 **Base Model** - microsoft/phi-2(https://huggingface.co/microsoft/phi-2) **Training Dataset** - kyujinpy/Open-platypus-Commercial(https://huggingface.co/datasets/kyujinpy/Open-platypus-Commercial) --- # Model comparisons1 > AI-Harness evaluation; [link](https://github.com/EleutherAI/lm-evaluation-harness) | Model | Copa | HellaSwag | BoolQ | MMLU | | --- | --- | --- | --- | --- | | | 0-shot | 0-shot | 0-shot | 0-shot | | **phi-2-platypus-Commercial-lora** | 0.8900 | 0.5573 | 0.8260 | 0.5513 | --- # Sample Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("field2437/phi-2-platypus-Commercial-lora", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("field2437/phi-2-platypus-Commercial-lora", trust_remote_code=True) inputs = tokenizer('''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Let $f(x)$ be the polynomial \\[f(x)=3x^4+5x^2-9x-2.\\] If $g(x)$ is equal to the polynomial $f(x-1)$, what is the sum of the coefficients of $g$? ### Response: ''', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` ---
ibm-research/re2g-reranker-nq
ibm-research
2024-03-07T16:30:08Z
463
14
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "information retrieval", "reranking", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-29T16:05:21Z
--- tags: - information retrieval - reranking license: apache-2.0 --- # Model Card for NQ Reranker in Re2G # Model Details > The approach of RAG, Multi-DPR, and KGI is to train a neural IR (Information Retrieval) component and further train it end-to-end through its impact in generating the correct output. > >It has been previously established that results from initial retrieval can be greatly improved through the use of a reranker. Therefore we hypothesized that natural language generation systems incorporating retrieval can benefit from reranking. > >In addition to improving the ranking of passages returned from DPR, a reranker can be used after merging the results of multiple retrieval methods with incomparable scores. For example, the scores returned by BM25 are not comparable to the inner products from DPR. Using the scores from a reranker, we can find the top-k documents from the union of DPR and BM25 results. The figure below illustrates our extension of RAG with a reranker. We call our system Re2G (*Re*trieve, *Re*rank, *G*enerate). <img src="https://github.com/IBM/kgi-slot-filling/raw/re2g/model_cards/Re2G_Arch2.png" width="100%"> ## Training, Evaluation and Inference The code for training, evaluation and inference is in our github in the [re2g branch](https://github.com/IBM/kgi-slot-filling/tree/re2g). ## Usage The best way to use the model is by adapting the [reranker_apply.py](https://github.com/IBM/kgi-slot-filling/blob/re2g/reranker/reranker_apply.py) ## Citation ``` @inproceedings{glass-etal-2022-re2g, title = "{R}e2{G}: Retrieve, Rerank, Generate", author = "Glass, Michael and Rossiello, Gaetano and Chowdhury, Md Faisal Mahbub and Naik, Ankita and Cai, Pengshan and Gliozzo, Alfio", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.194", doi = "10.18653/v1/2022.naacl-main.194", pages = "2701--2715", abstract = "As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9{\%} to 34{\%} over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source.", } ``` ## Model Description The model creators note in the [associated paper](https://aclanthology.org/2022.naacl-main.194.pdf): > As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9% to 34% over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source. - **Developed by:** IBM - **Shared by [Optional]:** IBM - **Model type:** Query/Passage Reranker - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Parent Model:** [BERT-base trained on MSMARCO](https://huggingface.co/nboost/pt-bert-base-uncased-msmarco) - **Resources for more information:** - [GitHub Repo](https://github.com/IBM/kgi-slot-filling) - [Associated Paper](https://aclanthology.org/2022.naacl-main.194.pdf) # Uses ## Direct Use This model can be used for the task of reranking passage results for a question. # Citation **BibTeX:** ```bibtex @inproceedings{glass-etal-2022-re2g, title = "{R}e2{G}: Retrieve, Rerank, Generate", author = "Glass, Michael and Rossiello, Gaetano and Chowdhury, Md Faisal Mahbub and Naik, Ankita and Cai, Pengshan and Gliozzo, Alfio", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.194", doi = "10.18653/v1/2022.naacl-main.194", pages = "2701--2715", abstract = "As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9{\%} to 34{\%} over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source.", } ```
RefalMachine/ruadapt_solar_10.7_part2_v5_rsg_lora
RefalMachine
2024-03-07T16:27:49Z
0
0
null
[ "safetensors", "generated_from_trainer", "region:us" ]
null
2024-03-07T12:28:52Z
--- tags: - generated_from_trainer model-index: - name: ruadapt_solar_10.7_part2_v5_rsg_lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruadapt_solar_10.7_part2_v5_rsg_lora This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1006 | 0.45 | 100 | 0.0801 | | 0.0792 | 0.9 | 200 | 0.0694 | | 0.0543 | 1.35 | 300 | 0.0840 | | 0.0486 | 1.8 | 400 | 0.0599 | | 0.016 | 2.24 | 500 | 0.0724 | | 0.0278 | 2.69 | 600 | 0.0721 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.2 - Datasets 2.14.4 - Tokenizers 0.14.1
s14pe/Reinforce-2
s14pe
2024-03-07T16:25:58Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T16:25:56Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.50 +/- 12.20 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MAsad789565/3DIcon_v4
MAsad789565
2024-03-07T16:22:55Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-03-07T15:58:18Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: 3d icon of a chef tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
megaaziib/aziibpixelmix
megaaziib
2024-03-07T16:15:43Z
147
4
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "art", "artistic", "anime", "pixel art", "en", "license:other", "region:us" ]
text-to-image
2023-12-23T23:36:51Z
--- language: - en license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers - anime - pixel art inference: false --- # AziibPixelMix ## Official Repository Read more about this model here: https://civitai.com/models/195730/aziibpixelmix Also please support by giving 5 stars and a heart, which will notify new updates. Please consider supporting me on kofi - https://ko-fi.com/megaaziib
Ashwini1412/wav2vec2-nepali-itr-9
Ashwini1412
2024-03-07T16:11:00Z
6
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-03-07T15:32:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lsr42/dense_sparse_qmlp_dmlm_msmarco_distil_l1_0.0_0.000001_q_encoder
lsr42
2024-03-07T16:07:27Z
4
0
transformers
[ "transformers", "safetensors", "MLP", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T16:07:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shaurya25/God-test
Shaurya25
2024-03-07T16:01:32Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "mistralai/Mistral-7B-Instruct-v0.2", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T15:59:48Z
--- license: apache-2.0 tags: - merge - mergekit - mistralai/Mistral-7B-Instruct-v0.2 - mistralai/Mistral-7B-Instruct-v0.2 --- # God-test Hey there! 👋 Welcome to the God-test! This is a merge of multiple models brought together using the awesome . Let's see what we've got in this merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) 🚀 * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) 🚀 ## 🧩 Configuration ```yaml dtype: float16 merge_method: passthrough slices: - sources: - layer_range: [0, 8] model: mistralai/Mistral-7B-Instruct-v0.2 - sources: - layer_range: [4, 12] model: mistralai/Mistral-7B-Instruct-v0.2
MarcGrumpyOlejak/VerwaltungsAnthologie_clear2_7B
MarcGrumpyOlejak
2024-03-07T16:01:19Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:DRXD1000/Phoenix-7B", "base_model:merge:DRXD1000/Phoenix-7B", "base_model:VAGOsolutions/SauerkrautLM-7b-LaserChat", "base_model:merge:VAGOsolutions/SauerkrautLM-7b-LaserChat", "base_model:hiig-ai-lab/simba-v01c", "base_model:merge:hiig-ai-lab/simba-v01c", "base_model:mistralai/Mistral-7B-v0.1", "base_model:merge:mistralai/Mistral-7B-v0.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T15:56:04Z
--- base_model: - VAGOsolutions/SauerkrautLM-7b-LaserChat - mistralai/Mistral-7B-v0.1 - DRXD1000/Phoenix - hiig-piai/simba-v01c library_name: transformers tags: - mergekit - merge --- # VerwaltungsAnthologie_clear2_7B This model is used as an intermediate model for future merges. It is a merge of 4 pre-trained language models based upon Mistral-7B-v0.1 created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [VAGOsolutions/SauerkrautLM-7b-LaserChat](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-LaserChat) * [DRXD1000/Phoenix](https://huggingface.co/DRXD1000/Phoenix) * [hiig-piai/simba-v01c](https://huggingface.co/hiig-piai/simba-v01c) ### Configuration The following YAML configuration was used to produce this model: ```yaml # works but never stops models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: VAGOsolutions/SauerkrautLM-7b-LaserChat parameters: density: 0.53 weight: 0.225 - model: hiig-piai/simba-v01c parameters: density: 0.53 weight: 0.55 - model: DRXD1000/Phoenix parameters: density: 0.53 weight: 0.225 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 name: VerwaltungsAnthologie_clear2_7B ```
dragoa/distilbert-base-uncased-finetuned-emotion
dragoa
2024-03-07T15:55:36Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T15:51:08Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.926095800480484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2181 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8483 | 1.0 | 250 | 0.3125 | 0.902 | 0.9016 | | 0.2429 | 2.0 | 500 | 0.2181 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Croolch/q-Taxi-v3
Croolch
2024-03-07T15:55:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T15:54:23Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Croolch/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
iamjhonathan/my_awesome_test_model
iamjhonathan
2024-03-07T15:53:49Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "text-classification", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-03-07T15:48:00Z
--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer model-index: - name: my_awesome_test_model results: [] pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_test_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 11.9343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.96 | 6 | 14.2734 | | No log | 1.92 | 12 | 13.0301 | | No log | 2.88 | 18 | 12.4261 | | No log | 3.84 | 24 | 11.9343 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
itsliupeng/Mixtral-8x7B-v0.1-top3
itsliupeng
2024-03-07T15:43:32Z
1,534
3
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-18T03:16:26Z
--- license: apache-2.0 model-index: - name: Mixtral-8x7B-v0.1-top3 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=itsliupeng/Mixtral-8x7B-v0.1-top3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.63 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=itsliupeng/Mixtral-8x7B-v0.1-top3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 71.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=itsliupeng/Mixtral-8x7B-v0.1-top3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=itsliupeng/Mixtral-8x7B-v0.1-top3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.4 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=itsliupeng/Mixtral-8x7B-v0.1-top3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 57.54 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=itsliupeng/Mixtral-8x7B-v0.1-top3 name: Open LLM Leaderboard --- ## Just to obtain metrics from the `HuggingFaceH4/open_llm_leaderboard`. To evaluate the impact of increasing the number of experts, modify the `num_experts_per_tok` setting in the `config.json` file from 2 to 3. This alteration aims to specifically determine if such a change leads to any notable improvements in performance metrics. Other details to note include that the model weights are directly copied from the source available at https://huggingface.co/mistralai/Mixtral-8x7B-v0.1. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/643fb889b9ba82afb66d6b36/heAOiPKp5XSSh-drFQ74l.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_itsliupeng__Mixtral-8x7B-v0.1-top3) | Metric |Value| |---------------------------------|----:| |Avg. |69.09| |AI2 Reasoning Challenge (25-Shot)|67.41| |HellaSwag (10-Shot) |86.63| |MMLU (5-Shot) |71.98| |TruthfulQA (0-shot) |48.58| |Winogrande (5-shot) |82.40| |GSM8k (5-shot) |57.54|
alinerodrigues/wav2vec2-xlsr-1b-mecita-portuguese-all-clean-07
alinerodrigues
2024-03-07T15:38:47Z
2
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-03-07T12:08:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-1b-mecita-portuguese-all-clean-07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-1b-mecita-portuguese-all-clean-07 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1152 - Wer: 0.0803 - Cer: 0.0225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 27.1622 | 1.0 | 67 | 4.2745 | 0.9835 | 0.9326 | | 5.7807 | 2.0 | 134 | 3.6146 | 0.9890 | 0.9738 | | 3.5248 | 3.0 | 201 | 2.8795 | 1.0 | 1.0 | | 3.5248 | 4.0 | 268 | 1.4248 | 0.9997 | 0.4401 | | 2.1437 | 5.0 | 335 | 0.1879 | 0.1313 | 0.0371 | | 0.4218 | 6.0 | 402 | 0.1493 | 0.1158 | 0.0297 | | 0.4218 | 7.0 | 469 | 0.1478 | 0.0934 | 0.0269 | | 0.29 | 8.0 | 536 | 0.1387 | 0.0879 | 0.0254 | | 0.2613 | 9.0 | 603 | 0.1240 | 0.0810 | 0.0242 | | 0.2613 | 10.0 | 670 | 0.1322 | 0.0879 | 0.0257 | | 0.2155 | 11.0 | 737 | 0.1315 | 0.0882 | 0.0258 | | 0.1968 | 12.0 | 804 | 0.1238 | 0.0827 | 0.0239 | | 0.1968 | 13.0 | 871 | 0.1231 | 0.0862 | 0.0242 | | 0.1878 | 14.0 | 938 | 0.1160 | 0.0917 | 0.0251 | | 0.1691 | 15.0 | 1005 | 0.1152 | 0.0803 | 0.0225 | | 0.1691 | 16.0 | 1072 | 0.1348 | 0.0851 | 0.0243 | | 0.1654 | 17.0 | 1139 | 0.1224 | 0.0807 | 0.0233 | | 0.1467 | 18.0 | 1206 | 0.1228 | 0.0865 | 0.0245 | | 0.1467 | 19.0 | 1273 | 0.1231 | 0.0807 | 0.0228 | | 0.1356 | 20.0 | 1340 | 0.1245 | 0.0807 | 0.0237 | | 0.1355 | 21.0 | 1407 | 0.1329 | 0.0841 | 0.0247 | | 0.1355 | 22.0 | 1474 | 0.1294 | 0.0841 | 0.0244 | | 0.1211 | 23.0 | 1541 | 0.1247 | 0.0782 | 0.0221 | | 0.1331 | 24.0 | 1608 | 0.1249 | 0.0796 | 0.0228 | | 0.1331 | 25.0 | 1675 | 0.1257 | 0.0789 | 0.0233 | | 0.1079 | 26.0 | 1742 | 0.1260 | 0.0903 | 0.0247 | | 0.1106 | 27.0 | 1809 | 0.1279 | 0.0765 | 0.0222 | | 0.1106 | 28.0 | 1876 | 0.1295 | 0.0814 | 0.0233 | | 0.0926 | 29.0 | 1943 | 0.1318 | 0.0831 | 0.0240 | | 0.1086 | 30.0 | 2010 | 0.1324 | 0.0855 | 0.0237 | | 0.1086 | 31.0 | 2077 | 0.1285 | 0.0820 | 0.0232 | | 0.1039 | 32.0 | 2144 | 0.1224 | 0.0814 | 0.0220 | | 0.0915 | 33.0 | 2211 | 0.1312 | 0.0834 | 0.0231 | | 0.0915 | 34.0 | 2278 | 0.1290 | 0.0779 | 0.0222 | | 0.0846 | 35.0 | 2345 | 0.1265 | 0.0789 | 0.0226 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.13.3
kajama/calculator_model_test
kajama
2024-03-07T15:35:28Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-07T13:03:04Z
--- tags: - generated_from_trainer model-index: - name: calculator_model_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # calculator_model_test This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.392 | 1.0 | 6 | 2.7421 | | 2.3678 | 2.0 | 12 | 1.9842 | | 1.8103 | 3.0 | 18 | 1.6702 | | 1.6444 | 4.0 | 24 | 1.5900 | | 1.5998 | 5.0 | 30 | 1.5549 | | 1.6759 | 6.0 | 36 | 1.5762 | | 1.5344 | 7.0 | 42 | 1.5907 | | 1.5276 | 8.0 | 48 | 1.5784 | | 1.5187 | 9.0 | 54 | 1.5224 | | 1.5007 | 10.0 | 60 | 1.4601 | | 1.4285 | 11.0 | 66 | 1.4192 | | 1.3919 | 12.0 | 72 | 1.3792 | | 1.3663 | 13.0 | 78 | 1.3728 | | 1.3035 | 14.0 | 84 | 1.2453 | | 1.2542 | 15.0 | 90 | 1.2191 | | 1.2343 | 16.0 | 96 | 1.1600 | | 1.1959 | 17.0 | 102 | 1.1465 | | 1.1617 | 18.0 | 108 | 1.0958 | | 1.1189 | 19.0 | 114 | 1.0729 | | 1.1026 | 20.0 | 120 | 1.1611 | | 1.1227 | 21.0 | 126 | 1.0368 | | 1.0386 | 22.0 | 132 | 1.0107 | | 0.9962 | 23.0 | 138 | 0.9677 | | 0.9762 | 24.0 | 144 | 0.9360 | | 0.9474 | 25.0 | 150 | 0.9168 | | 0.9317 | 26.0 | 156 | 0.9569 | | 0.9156 | 27.0 | 162 | 0.9376 | | 0.9061 | 28.0 | 168 | 0.9363 | | 0.9147 | 29.0 | 174 | 0.9067 | | 0.9141 | 30.0 | 180 | 0.8845 | | 0.8753 | 31.0 | 186 | 0.8666 | | 0.8572 | 32.0 | 192 | 0.8369 | | 0.848 | 33.0 | 198 | 0.8324 | | 0.8231 | 34.0 | 204 | 0.7965 | | 0.8167 | 35.0 | 210 | 0.7844 | | 0.8004 | 36.0 | 216 | 0.7741 | | 0.7786 | 37.0 | 222 | 0.7700 | | 0.8023 | 38.0 | 228 | 0.7571 | | 0.7799 | 39.0 | 234 | 0.7593 | | 0.7947 | 40.0 | 240 | 0.7518 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Grubbe2/q-FrozenLake-v1-4x4-noSlippery
Grubbe2
2024-03-07T15:34:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T15:34:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Grubbe2/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BlitherBoom/q-FrozenLake-v1-4x4-noSlippery-0307
BlitherBoom
2024-03-07T15:33:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-07T15:33:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-0307 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="BlitherBoom/q-FrozenLake-v1-4x4-noSlippery-0307", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
JustData/CatPPT-7B-GGUF
JustData
2024-03-07T15:30:31Z
2
0
null
[ "gguf", "base_model:rishiraj/CatPPT-base", "base_model:quantized:rishiraj/CatPPT-base", "license:apache-2.0", "region:us" ]
null
2024-03-05T15:22:44Z
--- inference: false license: apache-2.0 model_creator: rishiraj model_name: CatPPT base_model: rishiraj/CatPPT-base --- # CatPPT 7B - GGUF - Model creator: [Rishiraj Acharya](https://huggingface.co/rishiraj) - Original model: [CatPPT](https://huggingface.co/rishiraj/CatPPT) Quantized GGUF version of the model CatPPT (instruct), using Llama.Cpp [Convert.py](https://github.com/ggerganov/llama.cpp/blob/master/convert.py)
lachkarsalim/Helsinki-translation-English_Moroccan-Arabic
lachkarsalim
2024-03-07T15:28:54Z
108
7
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "en", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-06T22:19:51Z
--- language: - en - ar --- Model Description : This model is a fine-tuned version of a Transformer Model Helsinki-en-ar, adapted to translate text from English to Darija (Moroccan Arabic) . The fine-tuning process was conducted on a substantial dataset. Fine-tuning Details Source Model: Helsinki-NLP/opus-mt-en-ar Fine-tuning Objective: To adapt the pre-existing English to Arabic translation model to perform translations from English to Arabic Darija . Dataset: The model was fine-tuned using the Darija Open Dataset (DODa), an open-source project dedicated to the Moroccan dialect. DODa contains approximately 150,000 entries, making it one of the largest open-source collaborative projects for Darija <=> English translation aimed at Natural Language Processing (NLP) applications. Training Examples: More than 15,000 translation pairs from Darija to Arabic were used for fine-tuning. Training Time: The fine-tuning process took approximately 8 hours to complete Acknowledgments : I would like to acknowledge the contributors to the Darija Open Dataset (DODa) for providing an extensive and valuable resource for training this model. Their effort in building the largest open-source Darija dataset has significantly facilitated research and development in NLP applications tailored to Moroccan Arabic.
Ashwini1412/wav2vec2-nepali-itr-8
Ashwini1412
2024-03-07T15:28:51Z
4
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-03-07T13:51:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
OwOOwO/eacc_tp2
OwOOwO
2024-03-07T15:18:16Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T15:15:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bibrani/bibrani-fb-opt-125m-ultrachat-10k-chatml
bibrani
2024-03-07T15:10:24Z
4
0
peft
[ "peft", "pytorch", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:facebook/opt-125m", "base_model:adapter:facebook/opt-125m", "region:us" ]
null
2024-03-07T14:46:50Z
--- library_name: peft base_model: facebook/opt-125m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.9.1.dev0
Alpaca69B/gemma-2b-absa-2epoches
Alpaca69B
2024-03-07T15:10:07Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-24T09:18:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> 2epoches r 32 alpha 64 ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
farid1088/GQA_RoBERTa_German_legal_SQuAD_part_augmented_1000
farid1088
2024-03-07T15:06:42Z
23
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2024-03-06T00:57:17Z
--- tags: - generated_from_trainer model-index: - name: GQA_RoBERTa_German_legal_SQuAD_part_augmented_1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GQA_RoBERTa_German_legal_SQuAD_part_augmented_1000 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.0 | 4 | 3.7757 | | No log | 2.0 | 8 | 3.1210 | | No log | 3.0 | 12 | 2.7424 | | No log | 4.0 | 16 | 2.3990 | | No log | 5.0 | 20 | 2.0583 | | No log | 6.0 | 24 | 1.9699 | | No log | 7.0 | 28 | 1.6942 | | No log | 8.0 | 32 | 1.5022 | | No log | 9.0 | 36 | 1.4585 | | No log | 10.0 | 40 | 1.1937 | | No log | 11.0 | 44 | 1.1496 | | No log | 12.0 | 48 | 0.9856 | | No log | 13.0 | 52 | 0.9389 | | No log | 14.0 | 56 | 0.9621 | | No log | 15.0 | 60 | 0.8580 | | No log | 16.0 | 64 | 0.8093 | | No log | 17.0 | 68 | 0.7783 | | No log | 18.0 | 72 | 0.7656 | | No log | 19.0 | 76 | 0.7793 | | No log | 20.0 | 80 | 0.7327 | | No log | 21.0 | 84 | 0.7109 | | No log | 22.0 | 88 | 0.7120 | | No log | 23.0 | 92 | 0.7099 | | No log | 24.0 | 96 | 0.7191 | | No log | 25.0 | 100 | 0.7350 | | No log | 26.0 | 104 | 0.7634 | | No log | 27.0 | 108 | 0.7498 | | No log | 28.0 | 112 | 0.7353 | | No log | 29.0 | 116 | 0.7319 | | No log | 30.0 | 120 | 0.7603 | | No log | 31.0 | 124 | 0.7701 | | No log | 32.0 | 128 | 0.7818 | | No log | 33.0 | 132 | 0.7904 | | No log | 34.0 | 136 | 0.7580 | | No log | 35.0 | 140 | 0.7640 | | No log | 36.0 | 144 | 0.7558 | | No log | 37.0 | 148 | 0.7470 | | No log | 38.0 | 152 | 0.7730 | | No log | 39.0 | 156 | 0.7450 | | No log | 40.0 | 160 | 0.7516 | | No log | 41.0 | 164 | 0.7475 | | No log | 42.0 | 168 | 0.7306 | | No log | 43.0 | 172 | 0.7488 | | No log | 44.0 | 176 | 0.7604 | | No log | 45.0 | 180 | 0.8035 | | No log | 46.0 | 184 | 0.7837 | | No log | 47.0 | 188 | 0.7307 | | No log | 48.0 | 192 | 0.6987 | | No log | 49.0 | 196 | 0.7281 | | No log | 50.0 | 200 | 0.7453 | | No log | 51.0 | 204 | 0.7811 | | No log | 52.0 | 208 | 0.7951 | | No log | 53.0 | 212 | 0.7833 | | No log | 54.0 | 216 | 0.7961 | | No log | 55.0 | 220 | 0.8255 | | No log | 56.0 | 224 | 0.8038 | | No log | 57.0 | 228 | 0.8384 | | No log | 58.0 | 232 | 0.8412 | | No log | 59.0 | 236 | 0.8206 | | No log | 60.0 | 240 | 0.8224 | | No log | 61.0 | 244 | 0.8638 | | No log | 62.0 | 248 | 0.9014 | | No log | 63.0 | 252 | 0.9255 | | No log | 64.0 | 256 | 0.9019 | | No log | 65.0 | 260 | 0.8741 | | No log | 66.0 | 264 | 0.8442 | | No log | 67.0 | 268 | 0.8526 | | No log | 68.0 | 272 | 0.8702 | | No log | 69.0 | 276 | 0.9321 | | No log | 70.0 | 280 | 0.9450 | | No log | 71.0 | 284 | 0.8868 | | No log | 72.0 | 288 | 0.8622 | | No log | 73.0 | 292 | 0.8586 | | No log | 74.0 | 296 | 0.8935 | | No log | 75.0 | 300 | 0.9010 | | No log | 76.0 | 304 | 0.8703 | | No log | 77.0 | 308 | 0.8726 | | No log | 78.0 | 312 | 0.9113 | | No log | 79.0 | 316 | 0.9175 | | No log | 80.0 | 320 | 0.9173 | | No log | 81.0 | 324 | 0.9550 | | No log | 82.0 | 328 | 0.9649 | | No log | 83.0 | 332 | 0.9917 | | No log | 84.0 | 336 | 0.9783 | | No log | 85.0 | 340 | 0.9558 | | No log | 86.0 | 344 | 0.9425 | | No log | 87.0 | 348 | 0.9323 | | No log | 88.0 | 352 | 0.9471 | | No log | 89.0 | 356 | 0.9749 | | No log | 90.0 | 360 | 0.9638 | | No log | 91.0 | 364 | 0.9881 | | No log | 92.0 | 368 | 0.9697 | | No log | 93.0 | 372 | 0.9189 | | No log | 94.0 | 376 | 0.9036 | | No log | 95.0 | 380 | 0.8745 | | No log | 96.0 | 384 | 0.8811 | | No log | 97.0 | 388 | 0.8967 | | No log | 98.0 | 392 | 0.9032 | | No log | 99.0 | 396 | 0.9201 | | No log | 100.0 | 400 | 0.9524 | | No log | 101.0 | 404 | 0.9983 | | No log | 102.0 | 408 | 0.9742 | | No log | 103.0 | 412 | 0.9834 | | No log | 104.0 | 416 | 0.9480 | | No log | 105.0 | 420 | 0.9367 | | No log | 106.0 | 424 | 0.9340 | | No log | 107.0 | 428 | 0.9454 | | No log | 108.0 | 432 | 0.9553 | | No log | 109.0 | 436 | 0.9694 | | No log | 110.0 | 440 | 0.9696 | | No log | 111.0 | 444 | 0.9280 | | No log | 112.0 | 448 | 0.9166 | | No log | 113.0 | 452 | 0.9406 | | No log | 114.0 | 456 | 0.9372 | | No log | 115.0 | 460 | 0.9147 | | No log | 116.0 | 464 | 0.9267 | | No log | 117.0 | 468 | 0.9665 | | No log | 118.0 | 472 | 1.0231 | | No log | 119.0 | 476 | 1.0291 | | No log | 120.0 | 480 | 0.9973 | | No log | 121.0 | 484 | 0.9516 | | No log | 122.0 | 488 | 0.9134 | | No log | 123.0 | 492 | 0.8852 | | No log | 124.0 | 496 | 0.8535 | | 0.9595 | 125.0 | 500 | 0.9003 | | 0.9595 | 126.0 | 504 | 0.9523 | | 0.9595 | 127.0 | 508 | 0.9925 | | 0.9595 | 128.0 | 512 | 0.9736 | | 0.9595 | 129.0 | 516 | 0.9584 | | 0.9595 | 130.0 | 520 | 0.9625 | | 0.9595 | 131.0 | 524 | 0.9533 | | 0.9595 | 132.0 | 528 | 0.9774 | | 0.9595 | 133.0 | 532 | 0.9898 | | 0.9595 | 134.0 | 536 | 0.9657 | | 0.9595 | 135.0 | 540 | 0.9627 | | 0.9595 | 136.0 | 544 | 1.0049 | | 0.9595 | 137.0 | 548 | 1.0241 | | 0.9595 | 138.0 | 552 | 1.0184 | | 0.9595 | 139.0 | 556 | 1.0387 | | 0.9595 | 140.0 | 560 | 1.0528 | | 0.9595 | 141.0 | 564 | 1.0510 | | 0.9595 | 142.0 | 568 | 1.0153 | | 0.9595 | 143.0 | 572 | 0.9628 | | 0.9595 | 144.0 | 576 | 0.9999 | | 0.9595 | 145.0 | 580 | 1.0139 | | 0.9595 | 146.0 | 584 | 1.0149 | | 0.9595 | 147.0 | 588 | 1.0016 | | 0.9595 | 148.0 | 592 | 0.9516 | | 0.9595 | 149.0 | 596 | 0.9290 | | 0.9595 | 150.0 | 600 | 0.9084 | | 0.9595 | 151.0 | 604 | 0.8736 | | 0.9595 | 152.0 | 608 | 0.8832 | | 0.9595 | 153.0 | 612 | 0.9093 | | 0.9595 | 154.0 | 616 | 0.9489 | | 0.9595 | 155.0 | 620 | 0.9548 | | 0.9595 | 156.0 | 624 | 0.8944 | | 0.9595 | 157.0 | 628 | 0.8681 | | 0.9595 | 158.0 | 632 | 0.8733 | | 0.9595 | 159.0 | 636 | 0.8852 | | 0.9595 | 160.0 | 640 | 0.9133 | | 0.9595 | 161.0 | 644 | 0.8900 | | 0.9595 | 162.0 | 648 | 0.8863 | | 0.9595 | 163.0 | 652 | 0.8928 | | 0.9595 | 164.0 | 656 | 0.8959 | | 0.9595 | 165.0 | 660 | 0.9163 | | 0.9595 | 166.0 | 664 | 0.9739 | | 0.9595 | 167.0 | 668 | 1.0204 | | 0.9595 | 168.0 | 672 | 1.0059 | | 0.9595 | 169.0 | 676 | 0.9578 | | 0.9595 | 170.0 | 680 | 0.9313 | | 0.9595 | 171.0 | 684 | 0.9084 | | 0.9595 | 172.0 | 688 | 0.9836 | | 0.9595 | 173.0 | 692 | 1.0601 | | 0.9595 | 174.0 | 696 | 1.0884 | | 0.9595 | 175.0 | 700 | 1.0779 | | 0.9595 | 176.0 | 704 | 1.0599 | | 0.9595 | 177.0 | 708 | 1.0422 | | 0.9595 | 178.0 | 712 | 1.0271 | | 0.9595 | 179.0 | 716 | 1.0100 | | 0.9595 | 180.0 | 720 | 0.9945 | | 0.9595 | 181.0 | 724 | 1.0018 | | 0.9595 | 182.0 | 728 | 1.0234 | | 0.9595 | 183.0 | 732 | 1.0380 | | 0.9595 | 184.0 | 736 | 1.0525 | | 0.9595 | 185.0 | 740 | 1.0420 | | 0.9595 | 186.0 | 744 | 1.0325 | | 0.9595 | 187.0 | 748 | 1.0125 | | 0.9595 | 188.0 | 752 | 0.9891 | | 0.9595 | 189.0 | 756 | 0.9515 | | 0.9595 | 190.0 | 760 | 0.9495 | | 0.9595 | 191.0 | 764 | 0.9642 | | 0.9595 | 192.0 | 768 | 0.9876 | | 0.9595 | 193.0 | 772 | 0.9985 | | 0.9595 | 194.0 | 776 | 1.0227 | | 0.9595 | 195.0 | 780 | 1.0730 | | 0.9595 | 196.0 | 784 | 1.0871 | | 0.9595 | 197.0 | 788 | 1.0918 | | 0.9595 | 198.0 | 792 | 1.1092 | | 0.9595 | 199.0 | 796 | 1.0989 | | 0.9595 | 200.0 | 800 | 1.0992 | | 0.9595 | 201.0 | 804 | 1.1034 | | 0.9595 | 202.0 | 808 | 1.0881 | | 0.9595 | 203.0 | 812 | 1.0707 | | 0.9595 | 204.0 | 816 | 1.0777 | | 0.9595 | 205.0 | 820 | 1.0758 | | 0.9595 | 206.0 | 824 | 1.0684 | | 0.9595 | 207.0 | 828 | 1.0629 | | 0.9595 | 208.0 | 832 | 1.0659 | | 0.9595 | 209.0 | 836 | 1.0585 | | 0.9595 | 210.0 | 840 | 1.0132 | | 0.9595 | 211.0 | 844 | 0.9791 | | 0.9595 | 212.0 | 848 | 0.9761 | | 0.9595 | 213.0 | 852 | 1.0348 | | 0.9595 | 214.0 | 856 | 1.0910 | | 0.9595 | 215.0 | 860 | 1.1354 | | 0.9595 | 216.0 | 864 | 1.1348 | | 0.9595 | 217.0 | 868 | 1.0884 | | 0.9595 | 218.0 | 872 | 1.0430 | | 0.9595 | 219.0 | 876 | 1.0202 | | 0.9595 | 220.0 | 880 | 1.0097 | | 0.9595 | 221.0 | 884 | 1.0151 | | 0.9595 | 222.0 | 888 | 1.0096 | | 0.9595 | 223.0 | 892 | 1.0302 | | 0.9595 | 224.0 | 896 | 1.0635 | | 0.9595 | 225.0 | 900 | 1.0611 | | 0.9595 | 226.0 | 904 | 1.0548 | | 0.9595 | 227.0 | 908 | 1.1173 | | 0.9595 | 228.0 | 912 | 1.1561 | | 0.9595 | 229.0 | 916 | 1.1550 | | 0.9595 | 230.0 | 920 | 1.0254 | | 0.9595 | 231.0 | 924 | 0.9364 | | 0.9595 | 232.0 | 928 | 0.9316 | | 0.9595 | 233.0 | 932 | 0.9717 | | 0.9595 | 234.0 | 936 | 1.0406 | | 0.9595 | 235.0 | 940 | 1.0643 | | 0.9595 | 236.0 | 944 | 1.1092 | | 0.9595 | 237.0 | 948 | 1.1197 | | 0.9595 | 238.0 | 952 | 1.1270 | | 0.9595 | 239.0 | 956 | 1.1300 | | 0.9595 | 240.0 | 960 | 1.0921 | | 0.9595 | 241.0 | 964 | 1.0446 | | 0.9595 | 242.0 | 968 | 1.0234 | | 0.9595 | 243.0 | 972 | 1.0067 | | 0.9595 | 244.0 | 976 | 1.0324 | | 0.9595 | 245.0 | 980 | 1.0434 | | 0.9595 | 246.0 | 984 | 1.0502 | | 0.9595 | 247.0 | 988 | 1.0618 | | 0.9595 | 248.0 | 992 | 1.1352 | | 0.9595 | 249.0 | 996 | 1.1672 | | 0.4061 | 250.0 | 1000 | 1.1700 | | 0.4061 | 251.0 | 1004 | 1.1416 | | 0.4061 | 252.0 | 1008 | 1.1198 | | 0.4061 | 253.0 | 1012 | 1.1226 | | 0.4061 | 254.0 | 1016 | 1.1220 | | 0.4061 | 255.0 | 1020 | 1.1317 | | 0.4061 | 256.0 | 1024 | 1.1390 | | 0.4061 | 257.0 | 1028 | 1.1069 | | 0.4061 | 258.0 | 1032 | 1.0700 | | 0.4061 | 259.0 | 1036 | 1.0657 | | 0.4061 | 260.0 | 1040 | 1.0839 | | 0.4061 | 261.0 | 1044 | 1.1030 | | 0.4061 | 262.0 | 1048 | 1.1005 | | 0.4061 | 263.0 | 1052 | 1.0882 | | 0.4061 | 264.0 | 1056 | 1.0740 | | 0.4061 | 265.0 | 1060 | 1.0710 | | 0.4061 | 266.0 | 1064 | 1.0775 | | 0.4061 | 267.0 | 1068 | 1.0908 | | 0.4061 | 268.0 | 1072 | 1.1077 | | 0.4061 | 269.0 | 1076 | 1.1204 | | 0.4061 | 270.0 | 1080 | 1.1259 | | 0.4061 | 271.0 | 1084 | 1.1208 | | 0.4061 | 272.0 | 1088 | 1.1004 | | 0.4061 | 273.0 | 1092 | 1.0761 | | 0.4061 | 274.0 | 1096 | 1.0683 | | 0.4061 | 275.0 | 1100 | 1.0663 | | 0.4061 | 276.0 | 1104 | 1.0627 | | 0.4061 | 277.0 | 1108 | 1.1069 | | 0.4061 | 278.0 | 1112 | 1.1032 | | 0.4061 | 279.0 | 1116 | 1.0401 | | 0.4061 | 280.0 | 1120 | 1.0408 | | 0.4061 | 281.0 | 1124 | 1.1004 | | 0.4061 | 282.0 | 1128 | 1.1623 | | 0.4061 | 283.0 | 1132 | 1.1512 | | 0.4061 | 284.0 | 1136 | 1.1242 | | 0.4061 | 285.0 | 1140 | 1.0919 | | 0.4061 | 286.0 | 1144 | 1.0818 | | 0.4061 | 287.0 | 1148 | 1.0703 | | 0.4061 | 288.0 | 1152 | 1.0501 | | 0.4061 | 289.0 | 1156 | 1.0347 | | 0.4061 | 290.0 | 1160 | 1.0299 | | 0.4061 | 291.0 | 1164 | 1.0641 | | 0.4061 | 292.0 | 1168 | 1.0679 | | 0.4061 | 293.0 | 1172 | 1.0680 | | 0.4061 | 294.0 | 1176 | 1.1041 | | 0.4061 | 295.0 | 1180 | 1.1802 | | 0.4061 | 296.0 | 1184 | 1.1971 | | 0.4061 | 297.0 | 1188 | 1.1793 | | 0.4061 | 298.0 | 1192 | 1.1459 | | 0.4061 | 299.0 | 1196 | 1.1035 | | 0.4061 | 300.0 | 1200 | 1.0577 | | 0.4061 | 301.0 | 1204 | 1.0544 | | 0.4061 | 302.0 | 1208 | 1.0737 | | 0.4061 | 303.0 | 1212 | 1.0819 | | 0.4061 | 304.0 | 1216 | 1.0899 | | 0.4061 | 305.0 | 1220 | 1.0885 | | 0.4061 | 306.0 | 1224 | 1.0755 | | 0.4061 | 307.0 | 1228 | 1.0139 | | 0.4061 | 308.0 | 1232 | 0.9849 | | 0.4061 | 309.0 | 1236 | 0.9781 | | 0.4061 | 310.0 | 1240 | 0.9953 | | 0.4061 | 311.0 | 1244 | 1.0138 | | 0.4061 | 312.0 | 1248 | 1.0119 | | 0.4061 | 313.0 | 1252 | 1.0704 | | 0.4061 | 314.0 | 1256 | 1.1161 | | 0.4061 | 315.0 | 1260 | 1.1500 | | 0.4061 | 316.0 | 1264 | 1.1862 | | 0.4061 | 317.0 | 1268 | 1.1833 | | 0.4061 | 318.0 | 1272 | 1.1706 | | 0.4061 | 319.0 | 1276 | 1.1517 | | 0.4061 | 320.0 | 1280 | 1.1309 | | 0.4061 | 321.0 | 1284 | 1.0936 | | 0.4061 | 322.0 | 1288 | 1.0957 | | 0.4061 | 323.0 | 1292 | 1.1080 | | 0.4061 | 324.0 | 1296 | 1.1087 | | 0.4061 | 325.0 | 1300 | 1.1314 | | 0.4061 | 326.0 | 1304 | 1.1757 | | 0.4061 | 327.0 | 1308 | 1.1896 | | 0.4061 | 328.0 | 1312 | 1.1742 | | 0.4061 | 329.0 | 1316 | 1.1661 | | 0.4061 | 330.0 | 1320 | 1.1675 | | 0.4061 | 331.0 | 1324 | 1.1691 | | 0.4061 | 332.0 | 1328 | 1.1715 | | 0.4061 | 333.0 | 1332 | 1.1513 | | 0.4061 | 334.0 | 1336 | 1.1347 | | 0.4061 | 335.0 | 1340 | 1.1386 | | 0.4061 | 336.0 | 1344 | 1.1587 | | 0.4061 | 337.0 | 1348 | 1.1739 | | 0.4061 | 338.0 | 1352 | 1.1790 | | 0.4061 | 339.0 | 1356 | 1.1615 | | 0.4061 | 340.0 | 1360 | 1.1484 | | 0.4061 | 341.0 | 1364 | 1.1376 | | 0.4061 | 342.0 | 1368 | 1.1258 | | 0.4061 | 343.0 | 1372 | 1.1142 | | 0.4061 | 344.0 | 1376 | 1.1062 | | 0.4061 | 345.0 | 1380 | 1.0986 | | 0.4061 | 346.0 | 1384 | 1.0905 | | 0.4061 | 347.0 | 1388 | 1.0776 | | 0.4061 | 348.0 | 1392 | 1.0687 | | 0.4061 | 349.0 | 1396 | 1.0865 | | 0.4061 | 350.0 | 1400 | 1.0822 | | 0.4061 | 351.0 | 1404 | 1.0831 | | 0.4061 | 352.0 | 1408 | 1.0914 | | 0.4061 | 353.0 | 1412 | 1.1018 | | 0.4061 | 354.0 | 1416 | 1.1078 | | 0.4061 | 355.0 | 1420 | 1.1190 | | 0.4061 | 356.0 | 1424 | 1.1374 | | 0.4061 | 357.0 | 1428 | 1.1534 | | 0.4061 | 358.0 | 1432 | 1.2011 | | 0.4061 | 359.0 | 1436 | 1.2166 | | 0.4061 | 360.0 | 1440 | 1.2168 | | 0.4061 | 361.0 | 1444 | 1.2144 | | 0.4061 | 362.0 | 1448 | 1.1989 | | 0.4061 | 363.0 | 1452 | 1.1832 | | 0.4061 | 364.0 | 1456 | 1.1531 | | 0.4061 | 365.0 | 1460 | 1.1422 | | 0.4061 | 366.0 | 1464 | 1.1279 | | 0.4061 | 367.0 | 1468 | 1.1210 | | 0.4061 | 368.0 | 1472 | 1.1114 | | 0.4061 | 369.0 | 1476 | 1.1034 | | 0.4061 | 370.0 | 1480 | 1.0998 | | 0.4061 | 371.0 | 1484 | 1.1009 | | 0.4061 | 372.0 | 1488 | 1.1048 | | 0.4061 | 373.0 | 1492 | 1.1002 | | 0.4061 | 374.0 | 1496 | 1.0920 | | 0.4027 | 375.0 | 1500 | 1.0851 | | 0.4027 | 376.0 | 1504 | 1.0787 | | 0.4027 | 377.0 | 1508 | 1.0733 | | 0.4027 | 378.0 | 1512 | 1.0695 | | 0.4027 | 379.0 | 1516 | 1.0686 | | 0.4027 | 380.0 | 1520 | 1.0687 | | 0.4027 | 381.0 | 1524 | 1.0757 | | 0.4027 | 382.0 | 1528 | 1.1245 | | 0.4027 | 383.0 | 1532 | 1.1659 | | 0.4027 | 384.0 | 1536 | 1.1729 | | 0.4027 | 385.0 | 1540 | 1.1401 | | 0.4027 | 386.0 | 1544 | 1.1316 | | 0.4027 | 387.0 | 1548 | 1.1445 | | 0.4027 | 388.0 | 1552 | 1.1504 | | 0.4027 | 389.0 | 1556 | 1.1461 | | 0.4027 | 390.0 | 1560 | 1.1450 | | 0.4027 | 391.0 | 1564 | 1.1428 | | 0.4027 | 392.0 | 1568 | 1.1392 | | 0.4027 | 393.0 | 1572 | 1.1304 | | 0.4027 | 394.0 | 1576 | 1.1038 | | 0.4027 | 395.0 | 1580 | 1.0931 | | 0.4027 | 396.0 | 1584 | 1.0837 | | 0.4027 | 397.0 | 1588 | 1.0824 | | 0.4027 | 398.0 | 1592 | 1.0808 | | 0.4027 | 399.0 | 1596 | 1.0819 | | 0.4027 | 400.0 | 1600 | 1.0794 | | 0.4027 | 401.0 | 1604 | 1.0887 | | 0.4027 | 402.0 | 1608 | 1.0771 | | 0.4027 | 403.0 | 1612 | 1.1094 | | 0.4027 | 404.0 | 1616 | 1.1436 | | 0.4027 | 405.0 | 1620 | 1.1654 | | 0.4027 | 406.0 | 1624 | 1.1661 | | 0.4027 | 407.0 | 1628 | 1.1561 | | 0.4027 | 408.0 | 1632 | 1.1425 | | 0.4027 | 409.0 | 1636 | 1.1329 | | 0.4027 | 410.0 | 1640 | 1.1031 | | 0.4027 | 411.0 | 1644 | 1.0969 | | 0.4027 | 412.0 | 1648 | 1.1374 | | 0.4027 | 413.0 | 1652 | 1.2151 | | 0.4027 | 414.0 | 1656 | 1.2531 | | 0.4027 | 415.0 | 1660 | 1.2576 | | 0.4027 | 416.0 | 1664 | 1.2520 | | 0.4027 | 417.0 | 1668 | 1.2261 | | 0.4027 | 418.0 | 1672 | 1.1952 | | 0.4027 | 419.0 | 1676 | 1.1627 | | 0.4027 | 420.0 | 1680 | 1.1412 | | 0.4027 | 421.0 | 1684 | 1.1316 | | 0.4027 | 422.0 | 1688 | 1.1335 | | 0.4027 | 423.0 | 1692 | 1.1366 | | 0.4027 | 424.0 | 1696 | 1.1405 | | 0.4027 | 425.0 | 1700 | 1.1503 | | 0.4027 | 426.0 | 1704 | 1.1579 | | 0.4027 | 427.0 | 1708 | 1.1629 | | 0.4027 | 428.0 | 1712 | 1.1647 | | 0.4027 | 429.0 | 1716 | 1.1752 | | 0.4027 | 430.0 | 1720 | 1.2149 | | 0.4027 | 431.0 | 1724 | 1.2361 | | 0.4027 | 432.0 | 1728 | 1.2406 | | 0.4027 | 433.0 | 1732 | 1.2271 | | 0.4027 | 434.0 | 1736 | 1.2130 | | 0.4027 | 435.0 | 1740 | 1.2011 | | 0.4027 | 436.0 | 1744 | 1.1930 | | 0.4027 | 437.0 | 1748 | 1.1895 | | 0.4027 | 438.0 | 1752 | 1.1903 | | 0.4027 | 439.0 | 1756 | 1.1907 | | 0.4027 | 440.0 | 1760 | 1.1871 | | 0.4027 | 441.0 | 1764 | 1.1850 | | 0.4027 | 442.0 | 1768 | 1.1835 | | 0.4027 | 443.0 | 1772 | 1.1841 | | 0.4027 | 444.0 | 1776 | 1.1790 | | 0.4027 | 445.0 | 1780 | 1.1860 | | 0.4027 | 446.0 | 1784 | 1.1998 | | 0.4027 | 447.0 | 1788 | 1.2106 | | 0.4027 | 448.0 | 1792 | 1.2091 | | 0.4027 | 449.0 | 1796 | 1.2059 | | 0.4027 | 450.0 | 1800 | 1.2032 | | 0.4027 | 451.0 | 1804 | 1.2225 | | 0.4027 | 452.0 | 1808 | 1.2336 | | 0.4027 | 453.0 | 1812 | 1.2409 | | 0.4027 | 454.0 | 1816 | 1.2450 | | 0.4027 | 455.0 | 1820 | 1.2479 | | 0.4027 | 456.0 | 1824 | 1.2373 | | 0.4027 | 457.0 | 1828 | 1.2258 | | 0.4027 | 458.0 | 1832 | 1.2178 | | 0.4027 | 459.0 | 1836 | 1.2142 | | 0.4027 | 460.0 | 1840 | 1.2237 | | 0.4027 | 461.0 | 1844 | 1.2365 | | 0.4027 | 462.0 | 1848 | 1.2448 | | 0.4027 | 463.0 | 1852 | 1.2462 | | 0.4027 | 464.0 | 1856 | 1.2458 | | 0.4027 | 465.0 | 1860 | 1.2426 | | 0.4027 | 466.0 | 1864 | 1.2366 | | 0.4027 | 467.0 | 1868 | 1.2280 | | 0.4027 | 468.0 | 1872 | 1.2097 | | 0.4027 | 469.0 | 1876 | 1.1996 | | 0.4027 | 470.0 | 1880 | 1.1970 | | 0.4027 | 471.0 | 1884 | 1.1946 | | 0.4027 | 472.0 | 1888 | 1.1921 | | 0.4027 | 473.0 | 1892 | 1.1885 | | 0.4027 | 474.0 | 1896 | 1.1959 | | 0.4027 | 475.0 | 1900 | 1.2028 | | 0.4027 | 476.0 | 1904 | 1.2091 | | 0.4027 | 477.0 | 1908 | 1.2131 | | 0.4027 | 478.0 | 1912 | 1.2149 | | 0.4027 | 479.0 | 1916 | 1.2142 | | 0.4027 | 480.0 | 1920 | 1.2106 | | 0.4027 | 481.0 | 1924 | 1.2185 | | 0.4027 | 482.0 | 1928 | 1.2249 | | 0.4027 | 483.0 | 1932 | 1.2221 | | 0.4027 | 484.0 | 1936 | 1.2240 | | 0.4027 | 485.0 | 1940 | 1.2291 | | 0.4027 | 486.0 | 1944 | 1.2215 | | 0.4027 | 487.0 | 1948 | 1.2306 | | 0.4027 | 488.0 | 1952 | 1.2364 | | 0.4027 | 489.0 | 1956 | 1.2394 | | 0.4027 | 490.0 | 1960 | 1.2425 | | 0.4027 | 491.0 | 1964 | 1.2441 | | 0.4027 | 492.0 | 1968 | 1.2484 | | 0.4027 | 493.0 | 1972 | 1.2533 | | 0.4027 | 494.0 | 1976 | 1.2587 | | 0.4027 | 495.0 | 1980 | 1.2861 | | 0.4027 | 496.0 | 1984 | 1.3230 | | 0.4027 | 497.0 | 1988 | 1.3310 | | 0.4027 | 498.0 | 1992 | 1.3040 | | 0.4027 | 499.0 | 1996 | 1.2828 | | 0.4015 | 500.0 | 2000 | 1.2658 | | 0.4015 | 501.0 | 2004 | 1.2563 | | 0.4015 | 502.0 | 2008 | 1.2468 | | 0.4015 | 503.0 | 2012 | 1.2381 | | 0.4015 | 504.0 | 2016 | 1.2305 | | 0.4015 | 505.0 | 2020 | 1.2271 | | 0.4015 | 506.0 | 2024 | 1.2447 | | 0.4015 | 507.0 | 2028 | 1.2642 | | 0.4015 | 508.0 | 2032 | 1.2743 | | 0.4015 | 509.0 | 2036 | 1.2797 | | 0.4015 | 510.0 | 2040 | 1.2839 | | 0.4015 | 511.0 | 2044 | 1.2645 | | 0.4015 | 512.0 | 2048 | 1.2411 | | 0.4015 | 513.0 | 2052 | 1.2261 | | 0.4015 | 514.0 | 2056 | 1.2141 | | 0.4015 | 515.0 | 2060 | 1.2026 | | 0.4015 | 516.0 | 2064 | 1.1991 | | 0.4015 | 517.0 | 2068 | 1.2004 | | 0.4015 | 518.0 | 2072 | 1.1927 | | 0.4015 | 519.0 | 2076 | 1.2065 | | 0.4015 | 520.0 | 2080 | 1.1876 | | 0.4015 | 521.0 | 2084 | 1.1670 | | 0.4015 | 522.0 | 2088 | 1.2298 | | 0.4015 | 523.0 | 2092 | 1.2412 | | 0.4015 | 524.0 | 2096 | 1.2469 | | 0.4015 | 525.0 | 2100 | 1.2639 | | 0.4015 | 526.0 | 2104 | 1.2845 | | 0.4015 | 527.0 | 2108 | 1.2928 | | 0.4015 | 528.0 | 2112 | 1.2928 | | 0.4015 | 529.0 | 2116 | 1.2901 | | 0.4015 | 530.0 | 2120 | 1.2863 | | 0.4015 | 531.0 | 2124 | 1.2819 | | 0.4015 | 532.0 | 2128 | 1.2756 | | 0.4015 | 533.0 | 2132 | 1.2602 | | 0.4015 | 534.0 | 2136 | 1.2220 | | 0.4015 | 535.0 | 2140 | 1.1909 | | 0.4015 | 536.0 | 2144 | 1.1784 | | 0.4015 | 537.0 | 2148 | 1.1824 | | 0.4015 | 538.0 | 2152 | 1.1839 | | 0.4015 | 539.0 | 2156 | 1.1836 | | 0.4015 | 540.0 | 2160 | 1.1816 | | 0.4015 | 541.0 | 2164 | 1.1767 | | 0.4015 | 542.0 | 2168 | 1.1693 | | 0.4015 | 543.0 | 2172 | 1.1573 | | 0.4015 | 544.0 | 2176 | 1.1424 | | 0.4015 | 545.0 | 2180 | 1.1312 | | 0.4015 | 546.0 | 2184 | 1.1262 | | 0.4015 | 547.0 | 2188 | 1.1330 | | 0.4015 | 548.0 | 2192 | 1.1370 | | 0.4015 | 549.0 | 2196 | 1.1386 | | 0.4015 | 550.0 | 2200 | 1.1450 | | 0.4015 | 551.0 | 2204 | 1.1489 | | 0.4015 | 552.0 | 2208 | 1.1465 | | 0.4015 | 553.0 | 2212 | 1.1458 | | 0.4015 | 554.0 | 2216 | 1.1438 | | 0.4015 | 555.0 | 2220 | 1.1405 | | 0.4015 | 556.0 | 2224 | 1.1413 | | 0.4015 | 557.0 | 2228 | 1.1443 | | 0.4015 | 558.0 | 2232 | 1.1478 | | 0.4015 | 559.0 | 2236 | 1.1519 | | 0.4015 | 560.0 | 2240 | 1.1579 | | 0.4015 | 561.0 | 2244 | 1.1543 | | 0.4015 | 562.0 | 2248 | 1.1479 | | 0.4015 | 563.0 | 2252 | 1.1474 | | 0.4015 | 564.0 | 2256 | 1.1388 | | 0.4015 | 565.0 | 2260 | 1.1312 | | 0.4015 | 566.0 | 2264 | 1.1319 | | 0.4015 | 567.0 | 2268 | 1.1345 | | 0.4015 | 568.0 | 2272 | 1.1379 | | 0.4015 | 569.0 | 2276 | 1.1343 | | 0.4015 | 570.0 | 2280 | 1.1312 | | 0.4015 | 571.0 | 2284 | 1.1294 | | 0.4015 | 572.0 | 2288 | 1.1286 | | 0.4015 | 573.0 | 2292 | 1.1313 | | 0.4015 | 574.0 | 2296 | 1.1344 | | 0.4015 | 575.0 | 2300 | 1.1408 | | 0.4015 | 576.0 | 2304 | 1.1502 | | 0.4015 | 577.0 | 2308 | 1.1605 | | 0.4015 | 578.0 | 2312 | 1.1661 | | 0.4015 | 579.0 | 2316 | 1.1772 | | 0.4015 | 580.0 | 2320 | 1.1835 | | 0.4015 | 581.0 | 2324 | 1.1882 | | 0.4015 | 582.0 | 2328 | 1.1931 | | 0.4015 | 583.0 | 2332 | 1.1966 | | 0.4015 | 584.0 | 2336 | 1.1995 | | 0.4015 | 585.0 | 2340 | 1.1999 | | 0.4015 | 586.0 | 2344 | 1.1976 | | 0.4015 | 587.0 | 2348 | 1.2158 | | 0.4015 | 588.0 | 2352 | 1.2351 | | 0.4015 | 589.0 | 2356 | 1.2386 | | 0.4015 | 590.0 | 2360 | 1.2322 | | 0.4015 | 591.0 | 2364 | 1.2268 | | 0.4015 | 592.0 | 2368 | 1.2168 | | 0.4015 | 593.0 | 2372 | 1.2058 | | 0.4015 | 594.0 | 2376 | 1.1940 | | 0.4015 | 595.0 | 2380 | 1.1846 | | 0.4015 | 596.0 | 2384 | 1.1756 | | 0.4015 | 597.0 | 2388 | 1.1728 | | 0.4015 | 598.0 | 2392 | 1.1731 | | 0.4015 | 599.0 | 2396 | 1.1747 | | 0.4015 | 600.0 | 2400 | 1.1754 | | 0.4015 | 601.0 | 2404 | 1.1738 | | 0.4015 | 602.0 | 2408 | 1.1766 | | 0.4015 | 603.0 | 2412 | 1.1779 | | 0.4015 | 604.0 | 2416 | 1.1781 | | 0.4015 | 605.0 | 2420 | 1.1755 | | 0.4015 | 606.0 | 2424 | 1.1726 | | 0.4015 | 607.0 | 2428 | 1.1691 | | 0.4015 | 608.0 | 2432 | 1.1652 | | 0.4015 | 609.0 | 2436 | 1.1594 | | 0.4015 | 610.0 | 2440 | 1.1497 | | 0.4015 | 611.0 | 2444 | 1.1450 | | 0.4015 | 612.0 | 2448 | 1.1467 | | 0.4015 | 613.0 | 2452 | 1.1463 | | 0.4015 | 614.0 | 2456 | 1.1456 | | 0.4015 | 615.0 | 2460 | 1.1613 | | 0.4015 | 616.0 | 2464 | 1.1746 | | 0.4015 | 617.0 | 2468 | 1.1846 | | 0.4015 | 618.0 | 2472 | 1.1864 | | 0.4015 | 619.0 | 2476 | 1.1849 | | 0.4015 | 620.0 | 2480 | 1.1839 | | 0.4015 | 621.0 | 2484 | 1.1802 | | 0.4015 | 622.0 | 2488 | 1.1759 | | 0.4015 | 623.0 | 2492 | 1.1711 | | 0.4015 | 624.0 | 2496 | 1.1654 | | 0.4009 | 625.0 | 2500 | 1.1607 | | 0.4009 | 626.0 | 2504 | 1.1558 | | 0.4009 | 627.0 | 2508 | 1.1530 | | 0.4009 | 628.0 | 2512 | 1.1523 | | 0.4009 | 629.0 | 2516 | 1.1515 | | 0.4009 | 630.0 | 2520 | 1.1477 | | 0.4009 | 631.0 | 2524 | 1.1447 | | 0.4009 | 632.0 | 2528 | 1.1449 | | 0.4009 | 633.0 | 2532 | 1.1450 | | 0.4009 | 634.0 | 2536 | 1.1520 | | 0.4009 | 635.0 | 2540 | 1.1594 | | 0.4009 | 636.0 | 2544 | 1.1627 | | 0.4009 | 637.0 | 2548 | 1.1648 | | 0.4009 | 638.0 | 2552 | 1.1668 | | 0.4009 | 639.0 | 2556 | 1.1679 | | 0.4009 | 640.0 | 2560 | 1.1674 | | 0.4009 | 641.0 | 2564 | 1.1629 | | 0.4009 | 642.0 | 2568 | 1.1590 | | 0.4009 | 643.0 | 2572 | 1.1572 | | 0.4009 | 644.0 | 2576 | 1.1574 | | 0.4009 | 645.0 | 2580 | 1.1560 | | 0.4009 | 646.0 | 2584 | 1.1547 | | 0.4009 | 647.0 | 2588 | 1.1626 | | 0.4009 | 648.0 | 2592 | 1.1698 | | 0.4009 | 649.0 | 2596 | 1.1810 | | 0.4009 | 650.0 | 2600 | 1.1890 | | 0.4009 | 651.0 | 2604 | 1.1906 | | 0.4009 | 652.0 | 2608 | 1.1845 | | 0.4009 | 653.0 | 2612 | 1.1802 | | 0.4009 | 654.0 | 2616 | 1.1777 | | 0.4009 | 655.0 | 2620 | 1.1755 | | 0.4009 | 656.0 | 2624 | 1.1743 | | 0.4009 | 657.0 | 2628 | 1.1838 | | 0.4009 | 658.0 | 2632 | 1.1907 | | 0.4009 | 659.0 | 2636 | 1.1953 | | 0.4009 | 660.0 | 2640 | 1.2169 | | 0.4009 | 661.0 | 2644 | 1.2343 | | 0.4009 | 662.0 | 2648 | 1.2517 | | 0.4009 | 663.0 | 2652 | 1.2641 | | 0.4009 | 664.0 | 2656 | 1.2559 | | 0.4009 | 665.0 | 2660 | 1.2292 | | 0.4009 | 666.0 | 2664 | 1.2040 | | 0.4009 | 667.0 | 2668 | 1.1851 | | 0.4009 | 668.0 | 2672 | 1.1710 | | 0.4009 | 669.0 | 2676 | 1.1577 | | 0.4009 | 670.0 | 2680 | 1.1502 | | 0.4009 | 671.0 | 2684 | 1.1591 | | 0.4009 | 672.0 | 2688 | 1.1709 | | 0.4009 | 673.0 | 2692 | 1.1813 | | 0.4009 | 674.0 | 2696 | 1.1893 | | 0.4009 | 675.0 | 2700 | 1.1942 | | 0.4009 | 676.0 | 2704 | 1.1949 | | 0.4009 | 677.0 | 2708 | 1.1814 | | 0.4009 | 678.0 | 2712 | 1.1825 | | 0.4009 | 679.0 | 2716 | 1.1880 | | 0.4009 | 680.0 | 2720 | 1.1829 | | 0.4009 | 681.0 | 2724 | 1.1667 | | 0.4009 | 682.0 | 2728 | 1.1637 | | 0.4009 | 683.0 | 2732 | 1.1631 | | 0.4009 | 684.0 | 2736 | 1.1605 | | 0.4009 | 685.0 | 2740 | 1.1599 | | 0.4009 | 686.0 | 2744 | 1.1571 | | 0.4009 | 687.0 | 2748 | 1.1528 | | 0.4009 | 688.0 | 2752 | 1.1541 | | 0.4009 | 689.0 | 2756 | 1.1628 | | 0.4009 | 690.0 | 2760 | 1.1750 | | 0.4009 | 691.0 | 2764 | 1.1855 | | 0.4009 | 692.0 | 2768 | 1.1928 | | 0.4009 | 693.0 | 2772 | 1.1962 | | 0.4009 | 694.0 | 2776 | 1.1970 | | 0.4009 | 695.0 | 2780 | 1.1976 | | 0.4009 | 696.0 | 2784 | 1.1929 | | 0.4009 | 697.0 | 2788 | 1.1959 | | 0.4009 | 698.0 | 2792 | 1.2003 | | 0.4009 | 699.0 | 2796 | 1.2046 | | 0.4009 | 700.0 | 2800 | 1.2084 | | 0.4009 | 701.0 | 2804 | 1.2097 | | 0.4009 | 702.0 | 2808 | 1.2109 | | 0.4009 | 703.0 | 2812 | 1.2124 | | 0.4009 | 704.0 | 2816 | 1.2159 | | 0.4009 | 705.0 | 2820 | 1.2190 | | 0.4009 | 706.0 | 2824 | 1.2203 | | 0.4009 | 707.0 | 2828 | 1.2186 | | 0.4009 | 708.0 | 2832 | 1.2156 | | 0.4009 | 709.0 | 2836 | 1.2086 | | 0.4009 | 710.0 | 2840 | 1.2024 | | 0.4009 | 711.0 | 2844 | 1.1998 | | 0.4009 | 712.0 | 2848 | 1.1986 | | 0.4009 | 713.0 | 2852 | 1.1981 | | 0.4009 | 714.0 | 2856 | 1.2001 | | 0.4009 | 715.0 | 2860 | 1.2019 | | 0.4009 | 716.0 | 2864 | 1.2038 | | 0.4009 | 717.0 | 2868 | 1.2051 | | 0.4009 | 718.0 | 2872 | 1.1869 | | 0.4009 | 719.0 | 2876 | 1.1780 | | 0.4009 | 720.0 | 2880 | 1.1821 | | 0.4009 | 721.0 | 2884 | 1.1875 | | 0.4009 | 722.0 | 2888 | 1.1881 | | 0.4009 | 723.0 | 2892 | 1.1867 | | 0.4009 | 724.0 | 2896 | 1.1862 | | 0.4009 | 725.0 | 2900 | 1.1858 | | 0.4009 | 726.0 | 2904 | 1.1841 | | 0.4009 | 727.0 | 2908 | 1.1803 | | 0.4009 | 728.0 | 2912 | 1.1781 | | 0.4009 | 729.0 | 2916 | 1.1751 | | 0.4009 | 730.0 | 2920 | 1.1735 | | 0.4009 | 731.0 | 2924 | 1.1709 | | 0.4009 | 732.0 | 2928 | 1.1676 | | 0.4009 | 733.0 | 2932 | 1.1643 | | 0.4009 | 734.0 | 2936 | 1.1640 | | 0.4009 | 735.0 | 2940 | 1.1636 | | 0.4009 | 736.0 | 2944 | 1.1596 | | 0.4009 | 737.0 | 2948 | 1.1704 | | 0.4009 | 738.0 | 2952 | 1.1773 | | 0.4009 | 739.0 | 2956 | 1.1814 | | 0.4009 | 740.0 | 2960 | 1.1891 | | 0.4009 | 741.0 | 2964 | 1.1954 | | 0.4009 | 742.0 | 2968 | 1.2006 | | 0.4009 | 743.0 | 2972 | 1.1996 | | 0.4009 | 744.0 | 2976 | 1.1986 | | 0.4009 | 745.0 | 2980 | 1.1979 | | 0.4009 | 746.0 | 2984 | 1.1958 | | 0.4009 | 747.0 | 2988 | 1.1947 | | 0.4009 | 748.0 | 2992 | 1.1930 | | 0.4009 | 749.0 | 2996 | 1.1894 | | 0.4006 | 750.0 | 3000 | 1.1871 | | 0.4006 | 751.0 | 3004 | 1.1853 | | 0.4006 | 752.0 | 3008 | 1.1854 | | 0.4006 | 753.0 | 3012 | 1.1866 | | 0.4006 | 754.0 | 3016 | 1.1901 | | 0.4006 | 755.0 | 3020 | 1.1924 | | 0.4006 | 756.0 | 3024 | 1.1946 | | 0.4006 | 757.0 | 3028 | 1.2176 | | 0.4006 | 758.0 | 3032 | 1.2392 | | 0.4006 | 759.0 | 3036 | 1.2502 | | 0.4006 | 760.0 | 3040 | 1.2617 | | 0.4006 | 761.0 | 3044 | 1.2924 | | 0.4006 | 762.0 | 3048 | 1.3111 | | 0.4006 | 763.0 | 3052 | 1.3042 | | 0.4006 | 764.0 | 3056 | 1.2828 | | 0.4006 | 765.0 | 3060 | 1.2628 | | 0.4006 | 766.0 | 3064 | 1.2553 | | 0.4006 | 767.0 | 3068 | 1.2600 | | 0.4006 | 768.0 | 3072 | 1.2645 | | 0.4006 | 769.0 | 3076 | 1.2678 | | 0.4006 | 770.0 | 3080 | 1.2706 | | 0.4006 | 771.0 | 3084 | 1.2620 | | 0.4006 | 772.0 | 3088 | 1.2547 | | 0.4006 | 773.0 | 3092 | 1.2503 | | 0.4006 | 774.0 | 3096 | 1.2459 | | 0.4006 | 775.0 | 3100 | 1.2452 | | 0.4006 | 776.0 | 3104 | 1.2442 | | 0.4006 | 777.0 | 3108 | 1.2393 | | 0.4006 | 778.0 | 3112 | 1.2328 | | 0.4006 | 779.0 | 3116 | 1.2249 | | 0.4006 | 780.0 | 3120 | 1.2223 | | 0.4006 | 781.0 | 3124 | 1.2302 | | 0.4006 | 782.0 | 3128 | 1.2334 | | 0.4006 | 783.0 | 3132 | 1.2332 | | 0.4006 | 784.0 | 3136 | 1.2326 | | 0.4006 | 785.0 | 3140 | 1.2330 | | 0.4006 | 786.0 | 3144 | 1.2281 | | 0.4006 | 787.0 | 3148 | 1.2294 | | 0.4006 | 788.0 | 3152 | 1.2327 | | 0.4006 | 789.0 | 3156 | 1.2408 | | 0.4006 | 790.0 | 3160 | 1.2459 | | 0.4006 | 791.0 | 3164 | 1.2488 | | 0.4006 | 792.0 | 3168 | 1.2509 | | 0.4006 | 793.0 | 3172 | 1.2510 | | 0.4006 | 794.0 | 3176 | 1.2514 | | 0.4006 | 795.0 | 3180 | 1.2491 | | 0.4006 | 796.0 | 3184 | 1.2476 | | 0.4006 | 797.0 | 3188 | 1.2470 | | 0.4006 | 798.0 | 3192 | 1.2470 | | 0.4006 | 799.0 | 3196 | 1.2464 | | 0.4006 | 800.0 | 3200 | 1.2468 | | 0.4006 | 801.0 | 3204 | 1.2460 | | 0.4006 | 802.0 | 3208 | 1.2425 | | 0.4006 | 803.0 | 3212 | 1.2415 | | 0.4006 | 804.0 | 3216 | 1.2416 | | 0.4006 | 805.0 | 3220 | 1.2420 | | 0.4006 | 806.0 | 3224 | 1.2442 | | 0.4006 | 807.0 | 3228 | 1.2465 | | 0.4006 | 808.0 | 3232 | 1.2481 | | 0.4006 | 809.0 | 3236 | 1.2477 | | 0.4006 | 810.0 | 3240 | 1.2468 | | 0.4006 | 811.0 | 3244 | 1.2467 | | 0.4006 | 812.0 | 3248 | 1.2471 | | 0.4006 | 813.0 | 3252 | 1.2486 | | 0.4006 | 814.0 | 3256 | 1.2484 | | 0.4006 | 815.0 | 3260 | 1.2484 | | 0.4006 | 816.0 | 3264 | 1.2477 | | 0.4006 | 817.0 | 3268 | 1.2545 | | 0.4006 | 818.0 | 3272 | 1.2622 | | 0.4006 | 819.0 | 3276 | 1.2672 | | 0.4006 | 820.0 | 3280 | 1.2704 | | 0.4006 | 821.0 | 3284 | 1.2719 | | 0.4006 | 822.0 | 3288 | 1.2710 | | 0.4006 | 823.0 | 3292 | 1.2697 | | 0.4006 | 824.0 | 3296 | 1.2671 | | 0.4006 | 825.0 | 3300 | 1.2717 | | 0.4006 | 826.0 | 3304 | 1.2763 | | 0.4006 | 827.0 | 3308 | 1.2774 | | 0.4006 | 828.0 | 3312 | 1.2773 | | 0.4006 | 829.0 | 3316 | 1.2765 | | 0.4006 | 830.0 | 3320 | 1.2767 | | 0.4006 | 831.0 | 3324 | 1.2760 | | 0.4006 | 832.0 | 3328 | 1.2755 | | 0.4006 | 833.0 | 3332 | 1.2742 | | 0.4006 | 834.0 | 3336 | 1.2732 | | 0.4006 | 835.0 | 3340 | 1.2681 | | 0.4006 | 836.0 | 3344 | 1.2624 | | 0.4006 | 837.0 | 3348 | 1.2577 | | 0.4006 | 838.0 | 3352 | 1.2530 | | 0.4006 | 839.0 | 3356 | 1.2488 | | 0.4006 | 840.0 | 3360 | 1.2455 | | 0.4006 | 841.0 | 3364 | 1.2440 | | 0.4006 | 842.0 | 3368 | 1.2459 | | 0.4006 | 843.0 | 3372 | 1.2487 | | 0.4006 | 844.0 | 3376 | 1.2498 | | 0.4006 | 845.0 | 3380 | 1.2504 | | 0.4006 | 846.0 | 3384 | 1.2476 | | 0.4006 | 847.0 | 3388 | 1.2446 | | 0.4006 | 848.0 | 3392 | 1.2400 | | 0.4006 | 849.0 | 3396 | 1.2353 | | 0.4006 | 850.0 | 3400 | 1.2298 | | 0.4006 | 851.0 | 3404 | 1.2246 | | 0.4006 | 852.0 | 3408 | 1.2207 | | 0.4006 | 853.0 | 3412 | 1.2129 | | 0.4006 | 854.0 | 3416 | 1.2030 | | 0.4006 | 855.0 | 3420 | 1.1937 | | 0.4006 | 856.0 | 3424 | 1.1898 | | 0.4006 | 857.0 | 3428 | 1.1907 | | 0.4006 | 858.0 | 3432 | 1.1910 | | 0.4006 | 859.0 | 3436 | 1.1919 | | 0.4006 | 860.0 | 3440 | 1.1920 | | 0.4006 | 861.0 | 3444 | 1.1923 | | 0.4006 | 862.0 | 3448 | 1.1927 | | 0.4006 | 863.0 | 3452 | 1.1933 | | 0.4006 | 864.0 | 3456 | 1.1934 | | 0.4006 | 865.0 | 3460 | 1.1937 | | 0.4006 | 866.0 | 3464 | 1.1936 | | 0.4006 | 867.0 | 3468 | 1.1932 | | 0.4006 | 868.0 | 3472 | 1.1926 | | 0.4006 | 869.0 | 3476 | 1.1917 | | 0.4006 | 870.0 | 3480 | 1.1899 | | 0.4006 | 871.0 | 3484 | 1.1884 | | 0.4006 | 872.0 | 3488 | 1.1858 | | 0.4006 | 873.0 | 3492 | 1.1842 | | 0.4006 | 874.0 | 3496 | 1.1835 | | 0.4 | 875.0 | 3500 | 1.1836 | | 0.4 | 876.0 | 3504 | 1.1845 | | 0.4 | 877.0 | 3508 | 1.1867 | | 0.4 | 878.0 | 3512 | 1.1902 | | 0.4 | 879.0 | 3516 | 1.1945 | | 0.4 | 880.0 | 3520 | 1.1972 | | 0.4 | 881.0 | 3524 | 1.1996 | | 0.4 | 882.0 | 3528 | 1.2025 | | 0.4 | 883.0 | 3532 | 1.2048 | | 0.4 | 884.0 | 3536 | 1.2061 | | 0.4 | 885.0 | 3540 | 1.2076 | | 0.4 | 886.0 | 3544 | 1.2078 | | 0.4 | 887.0 | 3548 | 1.2093 | | 0.4 | 888.0 | 3552 | 1.2160 | | 0.4 | 889.0 | 3556 | 1.2185 | | 0.4 | 890.0 | 3560 | 1.2167 | | 0.4 | 891.0 | 3564 | 1.2196 | | 0.4 | 892.0 | 3568 | 1.2207 | | 0.4 | 893.0 | 3572 | 1.2203 | | 0.4 | 894.0 | 3576 | 1.2191 | | 0.4 | 895.0 | 3580 | 1.2181 | | 0.4 | 896.0 | 3584 | 1.2176 | | 0.4 | 897.0 | 3588 | 1.2169 | | 0.4 | 898.0 | 3592 | 1.2157 | | 0.4 | 899.0 | 3596 | 1.2177 | | 0.4 | 900.0 | 3600 | 1.2208 | | 0.4 | 901.0 | 3604 | 1.2232 | | 0.4 | 902.0 | 3608 | 1.2245 | | 0.4 | 903.0 | 3612 | 1.2242 | | 0.4 | 904.0 | 3616 | 1.2231 | | 0.4 | 905.0 | 3620 | 1.2219 | | 0.4 | 906.0 | 3624 | 1.2211 | | 0.4 | 907.0 | 3628 | 1.2215 | | 0.4 | 908.0 | 3632 | 1.2216 | | 0.4 | 909.0 | 3636 | 1.2204 | | 0.4 | 910.0 | 3640 | 1.2193 | | 0.4 | 911.0 | 3644 | 1.2182 | | 0.4 | 912.0 | 3648 | 1.2165 | | 0.4 | 913.0 | 3652 | 1.2148 | | 0.4 | 914.0 | 3656 | 1.2128 | | 0.4 | 915.0 | 3660 | 1.2120 | | 0.4 | 916.0 | 3664 | 1.2113 | | 0.4 | 917.0 | 3668 | 1.2111 | | 0.4 | 918.0 | 3672 | 1.2114 | | 0.4 | 919.0 | 3676 | 1.2117 | | 0.4 | 920.0 | 3680 | 1.2108 | | 0.4 | 921.0 | 3684 | 1.2107 | | 0.4 | 922.0 | 3688 | 1.2097 | | 0.4 | 923.0 | 3692 | 1.2084 | | 0.4 | 924.0 | 3696 | 1.2072 | | 0.4 | 925.0 | 3700 | 1.2063 | | 0.4 | 926.0 | 3704 | 1.2060 | | 0.4 | 927.0 | 3708 | 1.2055 | | 0.4 | 928.0 | 3712 | 1.2053 | | 0.4 | 929.0 | 3716 | 1.2053 | | 0.4 | 930.0 | 3720 | 1.2055 | | 0.4 | 931.0 | 3724 | 1.2061 | | 0.4 | 932.0 | 3728 | 1.2091 | | 0.4 | 933.0 | 3732 | 1.2121 | | 0.4 | 934.0 | 3736 | 1.2141 | | 0.4 | 935.0 | 3740 | 1.2150 | | 0.4 | 936.0 | 3744 | 1.2152 | | 0.4 | 937.0 | 3748 | 1.2153 | | 0.4 | 938.0 | 3752 | 1.2153 | | 0.4 | 939.0 | 3756 | 1.2150 | | 0.4 | 940.0 | 3760 | 1.2153 | | 0.4 | 941.0 | 3764 | 1.2154 | | 0.4 | 942.0 | 3768 | 1.2156 | | 0.4 | 943.0 | 3772 | 1.2156 | | 0.4 | 944.0 | 3776 | 1.2144 | | 0.4 | 945.0 | 3780 | 1.2107 | | 0.4 | 946.0 | 3784 | 1.2078 | | 0.4 | 947.0 | 3788 | 1.2060 | | 0.4 | 948.0 | 3792 | 1.2047 | | 0.4 | 949.0 | 3796 | 1.2026 | | 0.4 | 950.0 | 3800 | 1.2003 | | 0.4 | 951.0 | 3804 | 1.1986 | | 0.4 | 952.0 | 3808 | 1.1975 | | 0.4 | 953.0 | 3812 | 1.1969 | | 0.4 | 954.0 | 3816 | 1.1958 | | 0.4 | 955.0 | 3820 | 1.1946 | | 0.4 | 956.0 | 3824 | 1.1937 | | 0.4 | 957.0 | 3828 | 1.1928 | | 0.4 | 958.0 | 3832 | 1.1928 | | 0.4 | 959.0 | 3836 | 1.1928 | | 0.4 | 960.0 | 3840 | 1.1933 | | 0.4 | 961.0 | 3844 | 1.1939 | | 0.4 | 962.0 | 3848 | 1.1942 | | 0.4 | 963.0 | 3852 | 1.1947 | | 0.4 | 964.0 | 3856 | 1.1954 | | 0.4 | 965.0 | 3860 | 1.1961 | | 0.4 | 966.0 | 3864 | 1.1966 | | 0.4 | 967.0 | 3868 | 1.1985 | | 0.4 | 968.0 | 3872 | 1.2002 | | 0.4 | 969.0 | 3876 | 1.2015 | | 0.4 | 970.0 | 3880 | 1.2035 | | 0.4 | 971.0 | 3884 | 1.2047 | | 0.4 | 972.0 | 3888 | 1.2050 | | 0.4 | 973.0 | 3892 | 1.2057 | | 0.4 | 974.0 | 3896 | 1.2064 | | 0.4 | 975.0 | 3900 | 1.2068 | | 0.4 | 976.0 | 3904 | 1.2067 | | 0.4 | 977.0 | 3908 | 1.2067 | | 0.4 | 978.0 | 3912 | 1.2065 | | 0.4 | 979.0 | 3916 | 1.2063 | | 0.4 | 980.0 | 3920 | 1.2060 | | 0.4 | 981.0 | 3924 | 1.2059 | | 0.4 | 982.0 | 3928 | 1.2059 | | 0.4 | 983.0 | 3932 | 1.2059 | | 0.4 | 984.0 | 3936 | 1.2060 | | 0.4 | 985.0 | 3940 | 1.2060 | | 0.4 | 986.0 | 3944 | 1.2059 | | 0.4 | 987.0 | 3948 | 1.2059 | | 0.4 | 988.0 | 3952 | 1.2059 | | 0.4 | 989.0 | 3956 | 1.2059 | | 0.4 | 990.0 | 3960 | 1.2059 | | 0.4 | 991.0 | 3964 | 1.2060 | | 0.4 | 992.0 | 3968 | 1.2060 | | 0.4 | 993.0 | 3972 | 1.2060 | | 0.4 | 994.0 | 3976 | 1.2054 | | 0.4 | 995.0 | 3980 | 1.2047 | | 0.4 | 996.0 | 3984 | 1.2043 | | 0.4 | 997.0 | 3988 | 1.2041 | | 0.4 | 998.0 | 3992 | 1.2040 | | 0.4 | 999.0 | 3996 | 1.2039 | | 0.4009 | 1000.0 | 4000 | 1.2040 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.7 - Tokenizers 0.15.0
MakTek/code_llama-5e-new_data
MakTek
2024-03-07T15:06:04Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:NousResearch/CodeLlama-7b-hf", "base_model:adapter:NousResearch/CodeLlama-7b-hf", "region:us" ]
null
2024-03-07T15:05:55Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: NousResearch/CodeLlama-7b-hf model-index: - name: results_code_llama-5e-0.1_new_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results_code_llama-5e-0.1_new_data This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
QuackyMcDuck/ppo-Huggy
QuackyMcDuck
2024-03-07T15:03:34Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-03-07T15:03:29Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: QuackyMcDuck/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
meghanath852/donut-base-sroie
meghanath852
2024-03-07T15:02:58Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-03-07T14:37:16Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
MomoSen/distilbert-base-uncased-lora-text-classification
MomoSen
2024-03-07T15:02:32Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-03-07T15:02:28Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9904 - Accuracy: {'accuracy': 0.899} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.5709 | {'accuracy': 0.837} | | 0.4386 | 2.0 | 500 | 0.4510 | {'accuracy': 0.871} | | 0.4386 | 3.0 | 750 | 0.6571 | {'accuracy': 0.887} | | 0.1891 | 4.0 | 1000 | 0.6197 | {'accuracy': 0.894} | | 0.1891 | 5.0 | 1250 | 0.7688 | {'accuracy': 0.897} | | 0.0683 | 6.0 | 1500 | 0.8231 | {'accuracy': 0.892} | | 0.0683 | 7.0 | 1750 | 0.8949 | {'accuracy': 0.901} | | 0.0136 | 8.0 | 2000 | 0.9553 | {'accuracy': 0.896} | | 0.0136 | 9.0 | 2250 | 1.0202 | {'accuracy': 0.892} | | 0.0067 | 10.0 | 2500 | 0.9904 | {'accuracy': 0.899} | ### Framework versions - PEFT 0.9.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.15.2
MomoSen/distilbert-base-uncased-lora-text-classification_a
MomoSen
2024-03-07T15:02:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-07T15:02:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pabloma09/output_dir
pabloma09
2024-03-07T15:02:11Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-03-07T13:54:27Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: output_dir results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_dir This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the SAMSUM (summarization) dataset. It achieves the following results on the evaluation set: - Loss: 1.8001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8411 | 0.4 | 368 | 1.8439 | | 1.6179 | 0.8 | 736 | 1.8187 | | 1.5641 | 1.2 | 1104 | 1.8084 | | 2.2357 | 1.6 | 1472 | 1.8017 | | 1.388 | 2.0 | 1840 | 1.8001 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ValouF-pimento/ControlNet_SDXL_tile_upscale
ValouF-pimento
2024-03-07T14:58:21Z
8
3
diffusers
[ "diffusers", "license:apache-2.0", "region:us" ]
null
2024-03-07T14:46:02Z
--- license: apache-2.0 library_name: diffusers --- To use it ```python from diffusers import ControlNetModel import torch model = ControlNetModel.from_pretrained( "ValouF-pimento/ControlNet_SDXL_tile_upscale", torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) ```
ctu-aic/xlm-roberta-large-nli-csfever
ctu-aic
2024-03-07T14:57:53Z
88
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "cs", "dataset:ctu-aic/csfever_nli", "arxiv:2312.10171", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T13:32:24Z
--- datasets: - ctu-aic/csfever_nli language: - cs pipeline_tag: text-classification --- This model is [deepset/xlm-roberta-large-squad2](https://huggingface.co/deepset/xlm-roberta-large-squad2) finetuned on [CsFEVER-NLI](https://huggingface.co/datasets/ctu-aic/csfever_nli) dataset. For more information, see our [Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language](https://arxiv.org/abs/2312.10171) paper. Currently in review for [NCAA](https://link.springer.com/journal/521) journal. ```bibtex @article{drchal2023pipeline, title={Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language}, author={Drchal, Jan and Ullrich, Herbert and Mlyn{\'a}{\v{r}}, Tom{\'a}{\v{s}} and Moravec, V{\'a}clav}, journal={arXiv preprint arXiv:2312.10171}, year={2023} } ```
saisamarth/gemma-2b-scipaper-finetune
saisamarth
2024-03-07T14:55:38Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T14:45:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ctu-aic/xlm-roberta-large-nli-enfever
ctu-aic
2024-03-07T14:54:25Z
91
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "en", "dataset:ctu-aic/enfever_nli", "arxiv:2312.10171", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T16:11:01Z
--- datasets: - ctu-aic/enfever_nli language: - en pipeline_tag: text-classification --- This model is [deepset/xlm-roberta-large-squad2](https://huggingface.co/deepset/xlm-roberta-large-squad2) finetuned on [EnFEVER-NLI](https://huggingface.co/datasets/ctu-aic/enfever_nli) dataset. For more information, see our [Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language](https://arxiv.org/abs/2312.10171) paper. Currently in review for [NCAA](https://link.springer.com/journal/521) journal. ```bibtex @article{drchal2023pipeline, title={Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language}, author={Drchal, Jan and Ullrich, Herbert and Mlyn{\'a}{\v{r}}, Tom{\'a}{\v{s}} and Moravec, V{\'a}clav}, journal={arXiv preprint arXiv:2312.10171}, year={2023} }
joshus/bge-base-0803
joshus
2024-03-07T14:51:46Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-03-07T14:51:25Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # joshus/bge-base-0803 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('joshus/bge-base-0803') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=joshus/bge-base-0803) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
divinetaco/aranea-ancilla-116b-v1.0-4.4bpw-exl2
divinetaco
2024-03-07T14:47:58Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:152334H/miqu-1-70b-sf", "base_model:merge:152334H/miqu-1-70b-sf", "base_model:NeverSleep/MiquMaid-v1-70B", "base_model:merge:NeverSleep/MiquMaid-v1-70B", "base_model:Sao10K/WinterGoddess-1.4x-70B-L2", "base_model:merge:Sao10K/WinterGoddess-1.4x-70B-L2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T08:39:30Z
--- base_model: - 152334H/miqu-1-70b-sf - NeverSleep/MiquMaid-v1-70B - Sao10K/WinterGoddess-1.4x-70B-L2 library_name: transformers tags: - mergekit - merge --- # aranea-ancilla-116b-v1.0-4.4bpw-exl2 **aka MiquMaid-v1-70B + interleaved WinterGoddess-1.4x-70B-L2** ![image/png](https://huggingface.co/divinetaco/aranea-ancilla-116b-v1.0-4.4bpw-exl2/resolve/main/aranea-ancilla.png) A [mergekit](https://github.com/arcee-ai/mergekit) frankenmerge based on [NeverSleep/MiquMaid-v1-70B](https://huggingface.co/NeverSleep/MiquMaid-v1-70B) with interleaved layers of [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2). This was the top performing model from a series of merge experiments to create a highly coherant creative writing model. Tests consisted of a series of private benchmarks and manual comparisons. A number of different base models, interleave models and layer offsets were compared. - Usable context ~32768 - Recommended context ~16384 Non frankenstein miqu-1 finetunes generally outperform their frankenstein counterparts at very long contexts due to coherency loss. As a rough suggestion I might suggest swapping out to either [NeverSleep/MiquMaid-v1-70B](https://huggingface.co/NeverSleep/MiquMaid-v1-70B) or [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) after 16k context. Layers: 136 ### License No license. Component models based on the [Mistral AI Miqu-1](https://huggingface.co/miqudev/miqu-1-70b/tree/main) llama2 finetune that was released without license. ### Interesting observations from benchmarking - 10 layer interleave stride with a 20 layer interleave width consistently outperformed alternatives combinations. - Offsetting the interleaved model's first set of layers generally improved coherency. [14-30] reliably beat the [10-30] mergekit slice configuration for various combinations of models. - Quality of resulting merges can vary wildly. Whilst a merge of two strong models tends to produce a strong frankenstein model, this rule does not always hold true. ### Quantizations Exllamav2 quants will be available when bandwidth permits.