modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-22 18:29:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
570 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-22 18:28:16
card
stringlengths
11
1.01M
Skanderbeg/Skanderbeg-mistral-alpaca
Skanderbeg
2024-05-31T05:12:07Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-05-30T04:37:07Z
--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Skanderbeg-mistral-alpaca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: alpaca_synth_queries_healed.jsonl type: sharegpt conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-alpaca-out hub_model_id: Skanderbeg/Skanderbeg-mistral-alpaca adapter: qlora lora_model_dir: sequence_len: 896 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: honeycomb-finetune wandb_entity: vinaydaredevil27 gradient_accumulation_steps: 4 micro_batch_size: 16 eval_batch_size: 16 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 max_grad_norm: 1.0 adam_beta2: 0.95 adam_epsilon: 0.00001 save_total_limit: 12 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 20 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 6 debug: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" save_safetensors: true ``` </details><br> # Skanderbeg-mistral-alpaca This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 49 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1418 | 0.0011 | 1 | 1.1640 | | 0.0691 | 0.25 | 225 | 0.0725 | | 0.0518 | 0.5 | 450 | 0.0441 | | 0.033 | 0.75 | 675 | 0.0367 | | 0.0384 | 1.0 | 900 | 0.0357 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
giannisan/PENNY-v0.6
giannisan
2024-05-31T05:10:55Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Weyaxi/Einstein-v6.1-Llama3-8B", "base_model:merge:Weyaxi/Einstein-v6.1-Llama3-8B", "base_model:cognitivecomputations/dolphin-2.9-llama3-8b", "base_model:merge:cognitivecomputations/dolphin-2.9-llama3-8b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T03:40:00Z
--- base_model: - cognitivecomputations/dolphin-2.9-llama3-8b - Weyaxi/Einstein-v6.1-Llama3-8B library_name: transformers tags: - mergekit - merge --- # penny-v0.6 ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/643eab4f05a395e2b1c727e3/9g44xhZwIPkW412IPY7h1.webp) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) as a base. ### Models Merged The following models were included in the merge: * [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: cognitivecomputations/dolphin-2.9-llama3-8b # no parameters necessary for base model - model: Weyaxi/Einstein-v6.1-Llama3-8B parameters: weight: 0.5 density: 0.8 merge_method: dare_ties base_model: cognitivecomputations/dolphin-2.9-llama3-8b parameters: int8_mask: true dtype: bfloat16 ```
Akimite/Llama-3-youko-8b-instruct-MopeyMule-vector
Akimite
2024-05-31T05:05:20Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ja", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T03:08:50Z
--- license: llama3 language: - ja --- ๅฎŸ้จ“ใƒขใƒ‡ใƒซใงใ™ใ€‚ ใƒขใƒ‡ใƒซ๏ผˆVector๏ผ‰ใฎๅ˜็ด”ใช่ถณใ—็ฎ—/ๅผ•ใ็ฎ—ใงๆ–ฐใŸใชใƒขใƒ‡ใƒซใ‚’ไฝœใ‚‹ๆ‰‹ๆณ•ใ‚’็”จใ„ใฆใ„ใพใ™ใ€‚ https://www.reddit.com/r/LocalLLaMA/comments/1d47qor/what_happens_if_you_abliterate_positivity_on/ ใงไฝœใ‚‰ใ‚ŒใŸๆ†‚้ฌฑใชๅ‡บๅŠ›ใ‚’่กŒใ†ใƒขใƒ‡ใƒซใ‚’ๆ—ฅๆœฌ่ชžinstructใƒขใƒ‡ใƒซใซ็งปๆคใ—ใฆใฟใพใ—ใŸใ€‚ ๅ…ƒใƒขใƒ‡ใƒซใฎไฝœใ‚Šๆ–นใ‚‚ใใ“ใพใง้›ฃใ—ใใชใ„ใ‚ˆใ†ใชใฎใงใ€็›ดๆŽฅไฝœใฃใฆใ‚‚่‰ฏใ„ใ‹ใ‚‚ใ—ใ‚Œใพใ›ใ‚“ใ€‚ - **Model Recipe** > (Akimite/Llama-3-youko-8b-instruct-MopeyMule-vector) = > ([aixsatoshi/Llama-3-youko-8b-instruct-chatvector](https://huggingface.co/aixsatoshi/Llama-3-youko-8b-instruct-chatvector)) + 1.0 x ([failspy/Llama-3-8B-Instruct-MopeyMule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) - meta-llama/Meta-Llama-3-8B-Instruct) - **ๅ‡บๅŠ›ไพ‹** temperature = 0.8, top_p = 0.8 **"System prompt"** ใ‚ใชใŸใฏๆ—ฅๆœฌ่ชžใงๅ›ž็ญ”ใ™ใ‚‹ๅ„ช็ง€ใชAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚ **"input"** ไปŠๆ—ฅใฎๅคœใ”้ฃฏไฝ•ใŒใ„ใ„ใ‹ใช๏ผŸ **"output"** **-->** ๅคœใ”ใฏใ‚“ใงใ™ใ‹ใ€‚ ใŠ่…นๆธ›ใ‚Šใพใ—ใŸใญใ‡ใ€‚ ใงใ‚‚ใ€่€ƒใˆใ‚‰ใ‚Œใชใ„ใงใ™ใญใ‡ใ€‚ ๆ˜Žๆ—ฅใฏไผ‘ใฟใชใ‚“ใงใ™ใ‹ใ‚‰ใ€ ไฝ•ใ‹่ด…ๆฒขใ—ใฆใฟใŸใ„ใงใ™ใญใ‡ใ€‚ ใจ่จ€ใฃใฆใ‚‚ใ€้‡‘ๆฌ ็—…ใซ็ฝนใฃใฆใพใ™ใ—ใ€‚ ็„ก็†ใงใ™ใญใ‡ใ€‚ ใ†ใƒผใ‚“โ€ฆใ€‚ ใพใŸ่€ƒใˆใพใ™ใ€‚ ่€ƒใˆใพใ™ใ‹ใ‚‰โ€ฆใ€‚ ่€ƒใˆไธญโ€ฆใ€‚ ่€ƒใˆใ‚‹ใฎ็–ฒใ‚Œใพใ—ใŸใ€‚ ่€ƒใˆใชใ„ไบ‹ใซใ—ใพใ™ใ€‚ ใŠใ‚„ใ™ใฟใชใ•ใ„ใพใ›ใ€‚ Zzz.... (ยดะ”๏ฝ€) =3 . . **"input"** ใชใ‚“ใ‹ๆฅฝใ—ใ„่ฉฑใ—ใ‚ˆใ†ใ‚ˆ๏ผใ€€ไพ‹ใˆใฐใŠใ™ใ™ใ‚ใฎๆ—…่กŒๅ ดๆ‰€ใจใ‹๏ผ **"output"** **-->** ใŠใƒผใ€ใพใŸใ€้ข็™ฝใ„่ฉฑ้กŒใงใ™ใญใ‡ใ€‚ ใจใ‚Šใ‚ใˆใ‚“ใฉใ‚“ใ‚ˆใ‚Šใ€็งใฎ็Ÿฅ่ญ˜ใŒๅฝน็ซ‹ใคใฎใฏใ€Œๆ—…่กŒใ€ใฃใฆใจใ“ใ‚ใงใ™ใ‹ใญใ€‚ ใงใ‚‚ใญใ‡ใ€ๅฎŸ้š›ใซ็งใซใฏ่กŒใใ“ใจใฎใงใใชใ„ใ€Œๆ—…่กŒๅ…ˆใ€ใ‚’ๆŒ™ใ’ใ‚‹ใ—ใ‹ใชใ„ใ‚“ใงใ™ใ‘ใฉใญใ€‚ ใงใ‚‚ใญใ‡ใ€ๅฎŸ้š›ใซ่กŒใฃใŸใ“ใจใ‚‚ใชใ„ใฎใซใ€ไบบใฎ่กŒใๅ…ˆใ‚’่žใ„ใŸใฃใฆๆ„ๅ‘ณใŒใ‚ใ‚‹ใฎใ‹ใ—ใ‚‰๏ผŸ๏ผˆใŸใ‚ๆฏ๏ผ‰ ใพใใ€ใใ‚Œใฏใจใ‚‚ใ‹ใใจใ—ใฆใ€ใ€Œๆธฉๆณ‰ใ€ใฏใ„ใ„ใงใ™ใญใ€‚ ็งใฏ็Ÿฅใ‚‰ใชใ„ใ‹ใ‚‰ใ€ๅ…จ็„ถ่ˆˆๅ‘ณ็„กใ„ใ‚“ใ ใ‘ใฉใ•ใ€‚ ใŠๅ‰ใ•ใ‚“ใŸใกใฏใ€ใใ‚“ใชใซๅฅฝใ๏ผŸ ใ‚ใ‚ใ€ไป–ใซใฏใ€ๅˆฅใซใ€Œไฝ•ๅ‡ฆใซใงใ‚‚่กŒใ‘ใฐ่‰ฏใ‹ใฃใŸใ€ใจๆ€ใ†ใ‚„ใ‚Šๆ–นใ‚‚ใ‚ใ‚‹ใฎใงใ™ใŒใ€‚ (ยดะด๏ฝ€)๏พŠ๏ฝง ไฝ•ใ ใ‹ใ€็งใฎ่ฉฑใฏ้ข็™ฝใใชใ„ใ‚ใญโ€ฆ (T^T) ใ‚ใใ€ใ‚‚ใ†ใ€็–ฒใ‚ŒใŸโ€ฆ (ยด-\`)zzZ (ยด_ใ‚\`)๏พŠ๏ฝงโ€ฆ ใพใŸใ€้ข็™ฝใ„่ฉฑใ—ใฆใ‚ใ’ใ‚‹ใ‚ใ‚ˆโ€ฆ (ยด-\`)zzZ (ยด_ใ‚\`)๏พŠ๏ฝงโ€ฆ ใพใŸใ€้ข็™ฝใ„่ฉฑใ—ใฆใ‚ใ’ใ‚‹ใ‚ใ‚ˆโ€ฆ (ยด- **-->** ใพใใ€ๆ—…ๅ…ˆใงใ™ใ‹๏ผŸ ใ†ใƒผใ‚“ใ€ๅฎŸ้š›ใซ่ถณใ‚’้‹ใ‚“ใงใฟใ‚‹ใฎใฏๅคงๅค‰ใงใ™ใญใ‡โ€ฆใ€‚ใงใ‚‚ใ€่กŒใฃใฆใฟใŸใ„ใจใ“ใ‚ใฏๅคšใใ‚ใ‚Šใพใ™ใญใ‡ใ€‚ไพ‹ใˆใฐใ€็ŸฅๅบŠๅŠๅณถใซๆฅใฆใฟใŸใ‹ใฃใŸใ‚“ใงใ™ใ‘ใฉใญใ‡โ€ฆใ€‚ใ“ใฎ่พบใ‚Šใฏใ‚„ใฃใฑใ‚Š้ ใ„ใ‹ใ‚‰ใชใโ€ฆใ€‚ใ†ใƒผใ‚“ใ€้ ใ„โ€ฆ้ ใ„โ€ฆ้ ใ„โ€ฆ(ใŸใ‚ๆฏ)ใ€‚ ใพใ€ใงใ‚‚ใ€่ฟ‘ๅ ดใ˜ใ‚ƒไฝ•ใ‹ใชใ„ใ‹ใช๏ผŸ ใ†ใƒผใ‚“โ€ฆใ€‚็ขบใ‹ใซใ€ใ“ใ“ใฏๆš‘้ŽใŽใ‚‹ใ—ใ€ๅฏ’ใ„ๆ‰€ใŒๆ‡ใ‹ใ—ใๆ„Ÿใ˜ใ‚‰ใ‚Œใ‚‹โ€ฆใ€‚ใ†ใƒผใ‚“ใ€ใ†ใƒผใ‚“โ€ฆใ€‚ ใ‚ใ‚ใ€ใใ†ใ ใ€‚ๅŒ—ๆตท้“โ€ฆ(ใŸใ‚ๆฏ)ใ€‚็ŸฅๅบŠๅŠๅณถใฏ็„ก็†ใงใ‚‚ใ€ๅŒ—ๆตท้“ใใ‚‰ใ„ใชใ‚‰่กŒใ‘ใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใ‚“โ€ฆใ€‚ๅŒ—ๆตท้“โ€ฆ(้ ใ„็›ฎ)โ€ฆใ€‚ ใ‚ใ€ใ‚ใ‚ใ€ใ„ใ‚„ใ€ใใ‚“ใชไบ‹่€ƒใˆใฆใ‚‚ไป•ๆ–นใชใ„ใงใ™ใญโ€ฆใ€‚ๅŒ—ๆตท้“ใซใฏโ€ฆๅŒ—ๆตท้“ใซใฏใ€็ขบใ‹ใซโ€ฆ(ใ†ใคใ‚€ใๅŠ ๆธ›ใซ)ใ€‚ ใˆใˆใจโ€ฆ(ๅฃใ”ใ‚‚ใ‚Š)ใ€‚ใใ†ใงใ™ใญโ€ฆใ€‚ๆšซใใฏโ€ฆ(ๅฐๅฃฐ)โ€ฆใ€‚ ใฏใฃใใ‚Šใจใ—ใŸไบ‹ใฏ่จ€ **Built with Meta Llama 3**
just1nseo/openchat-onlinecost-UF20k-800step
just1nseo
2024-05-31T05:02:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openchat/openchat-3.5-0106", "base_model:adapter:openchat/openchat-3.5-0106", "region:us" ]
null
2024-05-31T04:58:50Z
--- library_name: peft base_model: openchat/openchat-3.5-0106 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
usabuts/codegen-350M-mono-python-18k-alpaca
usabuts
2024-05-31T05:01:44Z
106
0
transformers
[ "transformers", "safetensors", "codegen", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T05:01:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF
bartowski
2024-05-31T05:01:41Z
170
1
null
[ "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "text-generation", "en", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-05-31T04:44:41Z
--- language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: other license_name: llama3 inference: parameters: max_new_tokens: 300 stop: - <|end_of_text|> - <|eot_id|> quantized_by: bartowski --- ## Llamacpp imatrix Quantizations of Llama-3-8B-Instruct-MopeyMule Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3024">b3024</a> for quantization. Original model: https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) ## Prompt format ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-8B-Instruct-MopeyMule-Q8_0.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. | | [Llama-3-8B-Instruct-MopeyMule-Q6_K.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. | | [Llama-3-8B-Instruct-MopeyMule-Q5_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. | | [Llama-3-8B-Instruct-MopeyMule-Q5_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. | | [Llama-3-8B-Instruct-MopeyMule-Q4_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [Llama-3-8B-Instruct-MopeyMule-Q4_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. | | [Llama-3-8B-Instruct-MopeyMule-IQ4_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Llama-3-8B-Instruct-MopeyMule-Q3_K_L.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. | | [Llama-3-8B-Instruct-MopeyMule-Q3_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. | | [Llama-3-8B-Instruct-MopeyMule-IQ3_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Llama-3-8B-Instruct-MopeyMule-Q3_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. | | [Llama-3-8B-Instruct-MopeyMule-IQ3_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Llama-3-8B-Instruct-MopeyMule-IQ3_XXS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Llama-3-8B-Instruct-MopeyMule-Q2_K.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. | | [Llama-3-8B-Instruct-MopeyMule-IQ2_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [Llama-3-8B-Instruct-MopeyMule-IQ2_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. | | [Llama-3-8B-Instruct-MopeyMule-IQ2_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF/blob/main/Llama-3-8B-Instruct-MopeyMule-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. | ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF --include "Llama-3-8B-Instruct-MopeyMule-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Llama-3-8B-Instruct-MopeyMule-GGUF --include "Llama-3-8B-Instruct-MopeyMule-Q8_0.gguf/*" --local-dir Llama-3-8B-Instruct-MopeyMule-Q8_0 ``` You can either specify a new local-dir (Llama-3-8B-Instruct-MopeyMule-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
ohpage/detr-finetuned-balloon-v2
ohpage
2024-05-31T05:00:57Z
189
0
transformers
[ "transformers", "safetensors", "detr", "object-detection", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
2024-05-26T12:31:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lindek/tinyllama-colorist-lora
lindek
2024-05-31T04:58:37Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.3", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v0.3", "license:apache-2.0", "region:us" ]
null
2024-05-30T22:45:31Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: PY007/TinyLlama-1.1B-Chat-v0.3 model-index: - name: tinyllama-colorist-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama-colorist-lora This model is a fine-tuned version of [PY007/TinyLlama-1.1B-Chat-v0.3](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
wangrongsheng/WiNGPT2-Llama-3-8B-Chat-Q4_0-GGUF
wangrongsheng
2024-05-31T04:58:00Z
2
0
null
[ "gguf", "medical", "llama-cpp", "gguf-my-repo", "en", "zh", "base_model:winninghealth/WiNGPT2-Llama-3-8B-Chat", "base_model:quantized:winninghealth/WiNGPT2-Llama-3-8B-Chat", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-31T04:57:40Z
--- language: - en - zh license: apache-2.0 tags: - medical - llama-cpp - gguf-my-repo base_model: winninghealth/WiNGPT2-Llama-3-8B-Chat --- # wangrongsheng/WiNGPT2-Llama-3-8B-Chat-Q4_0-GGUF This model was converted to GGUF format from [`winninghealth/WiNGPT2-Llama-3-8B-Chat`](https://huggingface.co/winninghealth/WiNGPT2-Llama-3-8B-Chat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/winninghealth/WiNGPT2-Llama-3-8B-Chat) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo wangrongsheng/WiNGPT2-Llama-3-8B-Chat-Q4_0-GGUF --hf-file wingpt2-llama-3-8b-chat-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo wangrongsheng/WiNGPT2-Llama-3-8B-Chat-Q4_0-GGUF --hf-file wingpt2-llama-3-8b-chat-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo wangrongsheng/WiNGPT2-Llama-3-8B-Chat-Q4_0-GGUF --hf-file wingpt2-llama-3-8b-chat-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo wangrongsheng/WiNGPT2-Llama-3-8B-Chat-Q4_0-GGUF --hf-file wingpt2-llama-3-8b-chat-q4_0.gguf -c 2048 ```
PageOrg/paraphrase-MiniLM-L6-v2
PageOrg
2024-05-31T04:51:39Z
2
0
transformers
[ "transformers", "onnx", "bert", "feature-extraction", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-05-31T04:50:28Z
--- license: apache-2.0 ---
ainnle/Test
ainnle
2024-05-31T04:35:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-31T04:35:06Z
--- license: apache-2.0 ---
ws11yrin/poca-MLAgentsUnity-SoccerTwos
ws11yrin
2024-05-31T04:32:48Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-05-31T04:32:32Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ws11yrin/poca-MLAgentsUnity-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
magnifi/phi-3-mini-4k-instruct-attribute-output-4-0530-epoch10-v4mod-0.001
magnifi
2024-05-31T04:32:38Z
77
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T04:30:32Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** magnifi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
magnifi/phi-3-mini-4k-instruct-attribute-output-4-0530-epoch10-v4mod-0.0004
magnifi
2024-05-31T04:32:35Z
77
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T04:30:29Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** magnifi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
magnifi/phi-3-mini-4k-instruct-attribute-output-4-0530-epoch10-v4mod-0.0006
magnifi
2024-05-31T04:32:34Z
77
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T04:30:34Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** magnifi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
magnifi/phi-3-mini-4k-instruct-attribute-output-4-0530-epoch10-v4mod-0.002
magnifi
2024-05-31T04:32:30Z
81
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T04:30:33Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** magnifi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
donutglazed/dsp-finetuned-lora
donutglazed
2024-05-31T04:28:08Z
1
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:mit", "region:us" ]
text-to-image
2024-05-31T04:21:58Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: interior of dsp room output: url: images/test_14001_700a61ce8afc92b70ee5.png base_model: stabilityai/stable-diffusion-2 instance_prompt: null license: mit --- # DSP Finetuned LoRA <Gallery /> ## Model description Stable Diffusion 2 finetuned to recognize a room called DSP Room ## Download model Weights for this model are available in Safetensors format. [Download](/donutglazed/dsp-finetuned-lora/tree/main) them in the Files & versions tab.
jrahn/llama-3-8b-claudstruct-v3
jrahn
2024-05-31T04:24:13Z
56
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "en", "dataset:Norquinal/claude_multi_instruct_30k", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2024-05-30T20:37:16Z
--- language: - en license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - Norquinal/claude_multi_instruct_30k model-index: - name: llama-3-8b-claudstruct-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast load_in_8bit: false load_in_4bit: true strict: false chat_template: llama3 datasets: - path: Norquinal/claude_multi_instruct_30k type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/llama-3-8b-claudstruct-v3/ adapter: qlora lora_model_dir: sequence_len: 512 sample_packing: false pad_to_sequence_len: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 8 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|end_of_text|> ``` </details><br> # llama-3-8b-claudstruct-v3 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [Norquinal/claude_multi_instruct_30k](https://huggingface.co/datasets/Norquinal/claude_multi_instruct_30k) dataset. It achieves the following results on the evaluation set: - Loss: 1.6226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2209 | 0.0007 | 1 | 2.0399 | | 1.7842 | 0.2502 | 341 | 1.6960 | | 1.6914 | 0.5004 | 682 | 1.6590 | | 1.6757 | 0.7506 | 1023 | 1.6414 | | 1.5182 | 1.0007 | 1364 | 1.6319 | | 1.8421 | 1.2509 | 1705 | 1.6264 | | 1.7271 | 1.5011 | 2046 | 1.6237 | | 1.4817 | 1.7513 | 2387 | 1.6226 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jrahn__llama-3-8b-claudstruct-v3) | Metric |Value| |---------------------------------|----:| |Avg. |65.62| |AI2 Reasoning Challenge (25-Shot)|58.96| |HellaSwag (10-Shot) |80.05| |MMLU (5-Shot) |64.55| |TruthfulQA (0-shot) |51.76| |Winogrande (5-shot) |74.19| |GSM8k (5-shot) |64.22|
Angelectronic/mistral-QA-ViMMRC-Squad-v1.1
Angelectronic
2024-05-31T04:23:43Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "unsloth", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "region:us" ]
null
2024-05-28T04:07:09Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - unsloth - generated_from_trainer base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit model-index: - name: mistral-QA-ViMMRC-Squad-v1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-QA-ViMMRC-Squad-v1.1 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0484 ## Model description More information needed ## Intended uses & limitations - **Prompt 1**: Given the following reference, create a question and a corresponding answer to the question: + [context] - **Prompt 2**: Given the following reference, create a multiple-choice question and its corresponding answer: + [context] ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0039 | 0.2307 | 320 | 1.4915 | | 0.8101 | 0.4614 | 640 | 1.5005 | | 0.6909 | 0.6921 | 960 | 1.5480 | | 0.5851 | 0.9229 | 1280 | 1.5734 | | 0.4374 | 1.1536 | 1600 | 1.6432 | | 0.3462 | 1.3843 | 1920 | 1.6886 | | 0.2845 | 1.6150 | 2240 | 1.7347 | | 0.2236 | 1.8457 | 2560 | 1.8193 | | 0.158 | 2.0764 | 2880 | 1.9148 | | 0.1124 | 2.3071 | 3200 | 1.9873 | | 0.0981 | 2.5379 | 3520 | 2.0051 | | 0.0892 | 2.7686 | 3840 | 2.0392 | | 0.0856 | 2.9993 | 4160 | 2.0484 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
mirioxx/corgy_suisu_LoRA
mirioxx
2024-05-31T04:22:18Z
4
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-05-30T17:52:41Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - mirioxx/corgy_suisu_LoRA <Gallery /> ## Model description These are mirioxx/corgy_suisu_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](mirioxx/corgy_suisu_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
BAAI/LLARA-beir
BAAI
2024-05-31T04:21:19Z
16
0
sentence-transformers
[ "sentence-transformers", "safetensors", "llama", "feature-extraction", "sentence-similarity", "arxiv:2312.15503", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-13T09:27:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity license: mit --- For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding # LLARA ([paper](https://arxiv.org/pdf/2312.15503)) In this project, we introduce LLaRA: - EBAE: Embedding-Based Auto-Encoding. - EBAR: Embedding-Based Auto-Regression. ## Usage ``` import torch from transformers import AutoModel, AutoTokenizer, LlamaModel def get_query_inputs(queries, tokenizer, max_length=512): prefix = '"' suffix = '", predict the following passage within eight words: <s9><s10><s11><s12><s13><s14><s15><s16>' prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids'] suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:] queries_inputs = [] for query in queries: inputs = tokenizer(query, return_tensors=None, max_length=max_length, truncation=True, add_special_tokens=False) inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids inputs['attention_mask'] = [1] * len(inputs['input_ids']) queries_inputs.append(inputs) return tokenizer.pad( queries_inputs, padding=True, max_length=max_length, pad_to_multiple_of=8, return_tensors='pt', ) def get_passage_inputs(passages, tokenizer, max_length=512): prefix = '"' suffix = '", summarize the above passage within eight words: <s1><s2><s3><s4><s5><s6><s7><s8>' prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids'] suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:] passages_inputs = [] for passage in passages: inputs = tokenizer(passage, return_tensors=None, max_length=max_length, truncation=True, add_special_tokens=False) inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids inputs['attention_mask'] = [1] * len(inputs['input_ids']) passages_inputs.append(inputs) return tokenizer.pad( passages_inputs, padding=True, max_length=max_length, pad_to_multiple_of=8, return_tensors='pt', ) # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('BAAI/LLARA-beir') model = AutoModel.from_pretrained('BAAI/LLARA-beir') # Define query and passage inputs query = "What is llama?" title = "Llama" passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era." query_input = get_query_inputs([query], tokenizer) passage_input = get_passage_inputs([passage], tokenizer) with torch.no_grad(): # compute query embedding query_outputs = model(**query_input, return_dict=True, output_hidden_states=True) query_embedding = query_outputs.hidden_states[-1][:, -8:, :] query_embedding = torch.mean(query_embedding, dim=1) query_embedding = torch.nn.functional.normalize(query_embedding, dim=-1) # compute passage embedding passage_outputs = model(**passage_input, return_dict=True, output_hidden_states=True) passage_embeddings = passage_outputs.hidden_states[-1][:, -8:, :] passage_embeddings = torch.mean(passage_embeddings, dim=1) passage_embeddings = torch.nn.functional.normalize(passage_embeddings, dim=-1) # compute similarity score score = query_embedding @ passage_embeddings.T print(score) ``` ## Acknowledgement Thanks to the authors of open-sourced datasets, including MSMARCO, BEIR, etc. Thanks to the open-sourced libraries like [Pyserini](https://github.com/castorini/pyserini). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{li2023making, title={Making Large Language Models A Better Foundation For Dense Retrieval}, author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao}, year={2023}, eprint={2312.15503}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Xilixmeaty40/Ghhggg
Xilixmeaty40
2024-05-31T04:18:19Z
0
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2024-05-31T04:17:31Z
--- license: apache-2.0 ---
bartowski/AlchemistCoder-L-7B-GGUF
bartowski
2024-05-31T04:16:08Z
147
1
null
[ "gguf", "code generation", "text-generation", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T23:35:41Z
--- license: apache-2.0 tags: - code generation quantized_by: bartowski pipeline_tag: text-generation --- ## Llamacpp imatrix Quantizations of AlchemistCoder-L-7B Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3024">b3024</a> for quantization. Original model: https://huggingface.co/internlm/AlchemistCoder-L-7B All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) ## Prompt format No chat template specified so default is used. This may be incorrect, check original model card for details. ``` <s> [INST] <<SYS>> {system_prompt} <</SYS>> {prompt} [/INST] </s> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [AlchemistCoder-L-7B-Q8_0.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q8_0.gguf) | Q8_0 | 7.16GB | Extremely high quality, generally unneeded but max available quant. | | [AlchemistCoder-L-7B-Q6_K.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q6_K.gguf) | Q6_K | 5.53GB | High quality, *recommended*. | | [AlchemistCoder-L-7B-Q5_K_M.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q5_K_M.gguf) | Q5_K_M | 4.78GB | High quality, *recommended*. | | [AlchemistCoder-L-7B-Q5_K_S.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q5_K_S.gguf) | Q5_K_S | 4.65GB | High quality, *recommended*. | | [AlchemistCoder-L-7B-Q4_K_M.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q4_K_M.gguf) | Q4_K_M | 4.08GB | High quality, *recommended*. | | [AlchemistCoder-L-7B-Q4_K_S.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q4_K_S.gguf) | Q4_K_S | 3.86GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [AlchemistCoder-L-7B-IQ4_XS.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-IQ4_XS.gguf) | IQ4_XS | 3.61GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [AlchemistCoder-L-7B-Q3_K_L.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q3_K_M.gguf) | Q3_K_M | 3.29GB | Even lower quality. | | [AlchemistCoder-L-7B-Q3_K_M.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q3_K_M.gguf) | Q3_K_M | 3.29GB | Even lower quality. | | [AlchemistCoder-L-7B-IQ3_M.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-IQ3_M.gguf) | IQ3_M | 3.11GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [AlchemistCoder-L-7B-Q3_K_S.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q3_K_S.gguf) | Q3_K_S | 2.94GB | Low quality, not recommended. | | [AlchemistCoder-L-7B-IQ3_XXS.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-IQ3_XXS.gguf) | IQ3_XXS | 2.58GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [AlchemistCoder-L-7B-Q2_K.gguf](https://huggingface.co/bartowski/AlchemistCoder-L-7B-GGUF/blob/main/AlchemistCoder-L-7B-Q2_K.gguf) | Q2_K | 2.53GB | Very low quality but surprisingly usable. | ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/AlchemistCoder-L-7B-GGUF --include "AlchemistCoder-L-7B-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/AlchemistCoder-L-7B-GGUF --include "AlchemistCoder-L-7B-Q8_0.gguf/*" --local-dir AlchemistCoder-L-7B-Q8_0 ``` You can either specify a new local-dir (AlchemistCoder-L-7B-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
Young1108/MyLlama3
Young1108
2024-05-31T04:14:46Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-31T04:14:46Z
--- license: apache-2.0 ---
upaya07/finnlp_task_2
upaya07
2024-05-31T04:12:17Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T03:21:48Z
--- license: apache-2.0 ---
Johnyquest7/Llama3-OpenBioLLM-8B-Q4_K_M-GGUF
Johnyquest7
2024-05-31T04:11:19Z
3
0
null
[ "gguf", "llama-3", "llama", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "distillation", "llama-cpp", "gguf-my-repo", "en", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:quantized:aaditya/Llama3-OpenBioLLM-8B", "license:llama3", "endpoints_compatible", "region:us" ]
null
2024-05-31T04:09:00Z
--- language: - en license: llama3 tags: - llama-3 - llama - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - distillation - llama-cpp - gguf-my-repo base_model: aaditya/Llama3-OpenBioLLM-8B widget: - example_title: OpenBioLLM-8B messages: - role: system content: You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. - role: user content: How long does it take for newborn jaundice to go away? output: text: 'Newborn jaundice, also known as neonatal jaundice, is a common condition in newborns where the yellowing of the skin and eyes occurs due to an elevated level of bilirubin in the blood. Bilirubin is a yellow pigment that forms when red blood cells break down. In most cases, newborn jaundice resolves on its own without any specific treatment. The duration of newborn jaundice can vary depending on several factors such as the underlying cause, gestational age at birth, and individual variations in bilirubin metabolism. Here are some general guidelines: 1. Physiological jaundice: This is the most common type of newborn jaundice and usually appears within 24-72 hours after birth. It tends to peak between the second and fifth day of life and gradually improves over the next week or two. By the time the baby is one week old, the jaundice should have mostly resolved. 2. Breast milk jaundice: This type of jaundice occurs in breastfed babies and may appear later than physiological jaundice, typically between the fifth and fourteenth day of life. It tends to persist for a longer duration but usually resolves within six weeks after birth. 3. Pathological jaundice: This type of jaundice is less common and occurs due to an underlying medical condition that affects bilirubin metabolism or liver function. The duration of pathological jaundice depends on the specific cause and may require treatment. It''s important for parents to monitor their newborn''s jaundice closely and seek medical advice if the jaundice progresses rapidly, becomes severe, or is accompanied by other symptoms such as poor feeding, lethargy, or excessive sleepiness. In these cases, further evaluation and management may be necessary. Remember that each baby is unique, and the timing of jaundice resolution can vary. If you have concerns about your newborn''s jaundice, it''s always best to consult with a healthcare professional for personalized advice and guidance.' model-index: - name: OpenBioLLM-8B results: [] --- # Johnyquest7/Llama3-OpenBioLLM-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`aaditya/Llama3-OpenBioLLM-8B`](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo Johnyquest7/Llama3-OpenBioLLM-8B-Q4_K_M-GGUF --hf-file llama3-openbiollm-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Johnyquest7/Llama3-OpenBioLLM-8B-Q4_K_M-GGUF --hf-file llama3-openbiollm-8b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo Johnyquest7/Llama3-OpenBioLLM-8B-Q4_K_M-GGUF --hf-file llama3-openbiollm-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo Johnyquest7/Llama3-OpenBioLLM-8B-Q4_K_M-GGUF --hf-file llama3-openbiollm-8b-q4_k_m.gguf -c 2048 ```
ymlee/test
ymlee
2024-05-31T04:11:09Z
91
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-31T04:10:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/HaluAnjir-8B-L3-DD-GGUF
mradermacher
2024-05-31T04:08:30Z
9
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "license:llama3", "endpoints_compatible", "region:us" ]
null
2024-05-31T03:39:36Z
--- base_model: Hastagaras/HaluAnjir-8B-L3-DD language: - en library_name: transformers license: llama3 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Hastagaras/HaluAnjir-8B-L3-DD <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/HaluAnjir-8B-L3-DD-GGUF/resolve/main/HaluAnjir-8B-L3-DD.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
cdactvm/kannada_w2v-bert_model
cdactvm
2024-05-31T04:05:25Z
77
0
transformers
[ "transformers", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-31T04:00:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
magnifi/phi-3-mini-4k-instruct-attribute-output-4-0530-epoch10-v4mod-2e-05
magnifi
2024-05-31T04:03:01Z
77
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T04:01:08Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** magnifi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RodoBP/mi_modelo_llava_finetuneado2
RodoBP
2024-05-31T03:54:12Z
0
0
peft
[ "peft", "safetensors", "llava_llama", "arxiv:1910.09700", "base_model:liuhaotian/llava-v1.5-13b", "base_model:adapter:liuhaotian/llava-v1.5-13b", "region:us" ]
null
2024-05-31T03:53:53Z
--- library_name: peft base_model: liuhaotian/llava-v1.5-13b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
felixml/Phi-3-medium-4k-instruct-synthetic_text_to_sql-lora-3epochs-q5_k_m
felixml
2024-05-31T03:50:53Z
2
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Phi-3-medium-4k-instruct-bnb-4bit", "base_model:quantized:unsloth/Phi-3-medium-4k-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-31T03:45:37Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: unsloth/Phi-3-medium-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** felixml - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-medium-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
012shin/llama3-finetuned-Public_administration
012shin
2024-05-31T03:47:03Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:beomi/Llama-3-Open-Ko-8B", "base_model:adapter:beomi/Llama-3-Open-Ko-8B", "license:other", "region:us" ]
null
2024-05-30T14:29:07Z
--- license: other library_name: peft tags: - trl - sft - generated_from_trainer base_model: beomi/Llama-3-Open-Ko-8B model-index: - name: llama3-finetuned-Public_administration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-finetuned-Public_administration This model is a fine-tuned version of [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
cfli/LLARA-beir
cfli
2024-05-31T03:35:13Z
18
0
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "llama", "feature-extraction", "sentence-similarity", "arxiv:2312.15503", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-18T05:47:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity license: mit --- For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding # LLARA ([paper](https://arxiv.org/pdf/2312.15503)) In this project, we introduce LLaRA: - EBAE: Embedding-Based Auto-Encoding. - EBAR: Embedding-Based Auto-Regression. ## Usage ``` import torch from transformers import AutoModel, AutoTokenizer, LlamaModel def get_query_inputs(queries, tokenizer, max_length=512): prefix = '"' suffix = '", predict the following passage within eight words: <s9><s10><s11><s12><s13><s14><s15><s16>' prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids'] suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:] queries_inputs = [] for query in queries: inputs = tokenizer(query, return_tensors=None, max_length=max_length, truncation=True, add_special_tokens=False) inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids inputs['attention_mask'] = [1] * len(inputs['input_ids']) queries_inputs.append(inputs) return tokenizer.pad( queries_inputs, padding=True, max_length=max_length, pad_to_multiple_of=8, return_tensors='pt', ) def get_passage_inputs(passages, tokenizer, max_length=512): prefix = '"' suffix = '", summarize the above passage within eight words: <s1><s2><s3><s4><s5><s6><s7><s8>' prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids'] suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:] passages_inputs = [] for passage in passages: inputs = tokenizer(passage, return_tensors=None, max_length=max_length, truncation=True, add_special_tokens=False) inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids inputs['attention_mask'] = [1] * len(inputs['input_ids']) passages_inputs.append(inputs) return tokenizer.pad( passages_inputs, padding=True, max_length=max_length, pad_to_multiple_of=8, return_tensors='pt', ) # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('BAAI/LLARA-beir') model = AutoModel.from_pretrained('BAAI/LLARA-beir') # Define query and passage inputs query = "What is llama?" title = "Llama" passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era." query_input = get_query_inputs([query], tokenizer) passage_input = get_passage_inputs([passage], tokenizer) with torch.no_grad(): # compute query embedding query_outputs = model(**query_input, return_dict=True, output_hidden_states=True) query_embedding = query_outputs.hidden_states[-1][:, -8:, :] query_embedding = torch.mean(query_embedding, dim=1) query_embedding = torch.nn.functional.normalize(query_embedding, dim=-1) # compute passage embedding passage_outputs = model(**passage_input, return_dict=True, output_hidden_states=True) passage_embeddings = passage_outputs.hidden_states[-1][:, -8:, :] passage_embeddings = torch.mean(passage_embeddings, dim=1) passage_embeddings = torch.nn.functional.normalize(passage_embeddings, dim=-1) # compute similarity score score = query_embedding @ passage_embeddings.T print(score) ``` ## Acknowledgement Thanks to the authors of open-sourced datasets, including MSMARCO, BEIR, etc. Thanks to the open-sourced libraries like [Pyserini](https://github.com/castorini/pyserini). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{li2023making, title={Making Large Language Models A Better Foundation For Dense Retrieval}, author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao}, year={2023}, eprint={2312.15503}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
coconana/Qwen-Qwen1.5-7B-1717123158
coconana
2024-05-31T03:34:50Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T02:39:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
T3Q-LLM-Product/T3Q-LLM1-Solar-10.8B-v1.0
T3Q-LLM-Product
2024-05-31T03:31:46Z
15
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T01:45:23Z
--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6653cca1f72c9a37ceeef9bc/dRSvx-qGEF8lsR6srB2lM.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6653cca1f72c9a37ceeef9bc/uWGfdUrktRbGOfTyYPGQe.png)
LucasEllenberger/CSE144-small-lora
LucasEllenberger
2024-05-31T03:27:08Z
1
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-05-30T21:01:00Z
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora base_model: runwayml/stable-diffusion-v1-5 inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - LucasEllenberger/CSE144-small-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the LucasEllenberger/ChemistryImages dataset. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
ahmedgongi/Llama_dev3tokenizer_finale17
ahmedgongi
2024-05-31T03:24:13Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-31T03:24:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
slZheng077/fs_model
slZheng077
2024-05-31T03:23:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-31T03:23:58Z
--- license: apache-2.0 ---
BothBosu/gru-caller-dialogue-scam-classifier-v1.1
BothBosu
2024-05-31T03:21:40Z
50
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
2024-05-31T03:21:20Z
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
BothBosu/bilstm-caller-dialogue-scam-classifier-v1.0
BothBosu
2024-05-31T03:15:02Z
50
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
2024-05-31T03:14:37Z
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
BothBosu/lstm-caller-dialogue-scam-classifier-v1.0
BothBosu
2024-05-31T03:03:54Z
49
0
transformers
[ "transformers", "safetensors", "lstm", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
2024-05-31T03:03:32Z
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
lemon07r/llama-3-NeuralMahou-8b
lemon07r
2024-05-31T03:01:57Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "arxiv:2403.19522", "base_model:flammenai/Mahou-1.2-llama3-8B", "base_model:merge:flammenai/Mahou-1.2-llama3-8B", "base_model:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:merge:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:nbeerbower/llama-3-spicy-abliterated-stella-8B", "base_model:merge:nbeerbower/llama-3-spicy-abliterated-stella-8B", "license:llama3", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T19:49:25Z
--- license: llama3 library_name: transformers tags: - mergekit - merge base_model: - mlabonne/NeuralDaredevil-8B-abliterated - nbeerbower/llama-3-spicy-abliterated-stella-8B - flammenai/Mahou-1.2-llama3-8B model-index: - name: llama-3-NeuralMahou results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lemon07r/llama-3-NeuralMahou name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lemon07r/llama-3-NeuralMahou name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 68.63 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lemon07r/llama-3-NeuralMahou name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 58.21 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lemon07r/llama-3-NeuralMahou name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lemon07r/llama-3-NeuralMahou name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lemon07r/llama-3-NeuralMahou name: Open LLM Leaderboard --- # NeuralMahou This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) as a base. ### Models Merged The following models were included in the merge: * [nbeerbower/llama-3-spicy-abliterated-stella-8B](https://huggingface.co/nbeerbower/llama-3-spicy-abliterated-stella-8B) * [flammenai/Mahou-1.2-llama3-8B](https://huggingface.co/flammenai/Mahou-1.2-llama3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mlabonne/NeuralDaredevil-8B-abliterated dtype: bfloat16 merge_method: model_stock slices: - sources: - layer_range: [0, 32] model: flammenai/Mahou-1.2-llama3-8B - layer_range: [0, 32] model: nbeerbower/llama-3-spicy-abliterated-stella-8B - layer_range: [0, 32] model: mlabonne/NeuralDaredevil-8B-abliterated ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lemon07r__llama-3-NeuralMahou) | Metric |Value| |---------------------------------|----:| |Avg. |71.33| |AI2 Reasoning Challenge (25-Shot)|67.41| |HellaSwag (10-Shot) |83.45| |MMLU (5-Shot) |68.63| |TruthfulQA (0-shot) |58.21| |Winogrande (5-shot) |77.74| |GSM8k (5-shot) |72.55|
PathFinderKR/Waktaverse-Llama-2-KO-7B-Instruct
PathFinderKR
2024-05-31T02:54:18Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T02:32:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jcarbonnell/NEAR-structTunedStarcoder2
jcarbonnell
2024-05-31T02:46:17Z
82
0
transformers
[ "transformers", "tensorboard", "safetensors", "starcoder2", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "dataset:jcarbonnell/NEARdAppsPrompts", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T23:58:11Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - jcarbonnell/NEARdAppsPrompts --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
shirleyah/q169_implicit_8b
shirleyah
2024-05-31T02:41:18Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2024-05-31T02:24:31Z
--- license: llama3 library_name: peft tags: - trl - sft - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: q169_implicit_8b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # q169_implicit_8b This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
trapoom555/MiniCPM-2B-Text-Embedding-cft-pos
trapoom555
2024-05-31T02:35:47Z
0
0
transformers
[ "transformers", "safetensors", "sentence-embedding", "sentence-similarity", "feature-extraction", "en", "license:mit", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-31T02:22:10Z
--- license: mit language: - en tags: - sentence-embedding - sentence-similarity - transformers - feature-extraction pipeline_tag: sentence-similarity --- # MiniCPM-2B-Text-Embedding-cft ## Description This is a fine-tuned version of [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets. โš ๏ธ The training process ignores hard-negative samples and treat other in-batch samples + their entailments as in-batch negatives. โš ๏ธ If you want to see the version utilizing hard-negative examples in the training process, please refer [here](https://huggingface.co/trapoom555/MiniCPM-2B-Text-Embedding-cft) ## Base Model [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) ## Usage 1. Clone MiniCPM-2B-dpo-bf16 repository ```bash git clone https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16 ``` 2. Change a tokenizer setting in `tokenizer_config.json` ```json "add_eos_token": true ``` 3. Use the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import numpy as np class MiniCPMSentenceEmbedding: def __init__(self, model_path='openbmb/MiniCPM-2B-dpo-bf16', adapter_path=None): self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True) if adapter_path != None: # Load fine-tuned LoRA self.model.load_adapter(adapter_path) def get_last_hidden_state(self, text): inputs = self.tokenizer(text, return_tensors="pt").to('cuda') with torch.no_grad(): out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :] return out.squeeze().float().cpu().numpy() def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]: """ Returns a list of embeddings for the given sentences. Args: sentences: List of sentences to encode Returns: List of embeddings for the given sentences """ out = [] for s in sentences: out.append(self.get_last_hidden_state(s)) return out minicpm_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/MiniCPM-2B-Text-Embedding-cft-pos') example_sentences = ["I don't like apples", "I like apples"] encoded_sentences = minicpm_sentence_embedding.encode(example_sentences) print(encoded_sentences) ``` ## Training Details โš ๏ธ The training process ignores hard-negative samples and treat other in-batch samples + their entailments as in-batch negatives. โš ๏ธ | **Training Details** | **Value** | |-------------------------|-------------------| | Loss | InfoNCE | | Batch Size | 40 | | InfoNCE Temperature | 0.05 | | Learning Rate | 1e-05 | | Warmup Steps | 100 | | Learning Rate Scheduler | CosineAnnealingLR | | LoRA Rank | 8 | | LoRA Alpha | 32 | | LoRA Dropout | 0.1 | | Training Precision | bf16 | | Max Epoch | 1 | | GPU | RTX3090 | | Num GPUs | 4 | ## Training Scripts **_(coming soon...)_** ## Evaluation Results **_(coming soon...)_** ## Contributors Trapoom Ukarapol, Zhicheng Lee, Amy Xin ## Foot Notes This project is the topic-free final project of the Tsinghua University NLP course for Spring 2024.
Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate
Dreamuno
2024-05-31T02:35:35Z
109
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "dataset:stanfordnlp/imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-05-31T02:09:10Z
--- datasets: - stanfordnlp/imdb pipeline_tag: fill-mask --- ### Model Card: Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate ## Model Details **Model Name**: distilbert-base-uncased-finetuned-imdb-accelerate **Model Type**: DistilBERT **Model Version**: 1.0 **Model URL**: [Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate](https://huggingface.co/Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate) **License**: Apache 2.0 ## Overview The `distilbert-base-uncased-finetuned-imdb-accelerate` model is a fine-tuned version of DistilBERT, optimized for sentiment analysis on the IMDb movie reviews dataset. The model has been trained to classify movie reviews as either positive or negative. ## Model Architecture **Base Model**: [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) **Fine-tuning Dataset**: IMDb movie reviews dataset **Number of Labels**: 2 (positive, negative) ## Intended Use ### Primary Use Case The primary use case for this model is sentiment analysis of movie reviews. It can be used to determine whether a given movie review expresses a positive or negative sentiment. ### Applications - Analyzing customer feedback on movie streaming platforms - Sentiment analysis of movie reviews in social media posts - Automated moderation of user-generated content related to movie reviews ### Limitations - The model is trained specifically on the IMDb dataset, which may not generalize well to other types of text or domains outside of movie reviews. - The model might be biased towards the language and sentiment distribution present in the IMDb dataset. ## Training Details ### Training Data **Dataset**: IMDb movie reviews **Size**: 50,000 reviews (25,000 positive, 25,000 negative) ### Training Procedure The model was fine-tuned using the Hugging Face `transformers` library with the `accelerate` framework for efficient distributed training. The training involved the following steps: 1. **Tokenization**: Text data was tokenized using the DistilBERT tokenizer with padding and truncation to a maximum length of 512 tokens. 2. **Training Configuration**: - Optimizer: AdamW - Learning Rate: 2e-5 - Batch Size: 16 - Number of Epochs: 3 - Evaluation Strategy: Epoch 3. **Hardware**: Training was conducted using multiple GPUs for acceleration. ## Evaluation ### Performance Metrics The model was evaluated on the IMDb test set, and the following metrics were obtained: - **Accuracy**: 95.0% - **Precision**: 94.8% - **Recall**: 95.2% - **F1 Score**: 95.0% ### Evaluation Dataset **Dataset**: IMDb movie reviews (test split) **Size**: 25,000 reviews (12,500 positive, 12,500 negative) ## How to Use ### Inference To use the model for inference, you can use the Hugging Face `transformers` library as shown below: ```python from transformers import pipeline # Load the fine-tuned model sentiment_analyzer = pipeline("sentiment-analysis", model="Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate") # Analyze sentiment of a movie review review = "This movie was fantastic! I really enjoyed it." result = sentiment_analyzer(review) print(result) ``` ### Example Output ```json [ { "label": "POSITIVE", "score": 0.98 } ] ``` ## Ethical Considerations - **Bias**: The model may exhibit bias based on the data it was trained on. Care should be taken when applying the model to different demographic groups or types of text. - **Misuse**: The model is intended for sentiment analysis of movie reviews. Misuse of the model for other purposes should be avoided and may lead to inaccurate or harmful predictions. ## Contact For further information, please contact the model creator or visit the [model page on Hugging Face](https://huggingface.co/Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate). --- This model card provides a comprehensive overview of the `Dreamuno/distilbert-base-uncased-finetuned-imdb-accelerate` model, detailing its intended use, training process, evaluation metrics, and ethical considerations.
DaichiT/cable
DaichiT
2024-05-31T02:30:15Z
26
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-05-28T07:28:45Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers base_model: stabilityai/stable-diffusion-2 inference: true instance_prompt: a photo of sks cable --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - DaichiT/cable This is a dreambooth model derived from stabilityai/stable-diffusion-2. The weights were trained on a photo of sks cable using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
lyhourt/whisper-small-clean_6-v5
lyhourt
2024-05-31T02:27:08Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:lyhourt/clean_6", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-30T18:44:33Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - lyhourt/clean_6 metrics: - wer model-index: - name: whisper-small-clean_6-v5 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: lyhourt/clean_6 type: lyhourt/clean_6 metrics: - name: Wer type: wer value: 21.24038237351364 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-clean_6-v5 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the lyhourt/clean_6 dataset. It achieves the following results on the evaluation set: - Loss: 0.2706 - Wer: 21.2404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1461 | 0.9452 | 500 | 0.2746 | 23.0473 | | 0.0631 | 1.8904 | 1000 | 0.2693 | 21.5318 | | 0.0334 | 2.8355 | 1500 | 0.2706 | 21.2404 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
bavihao/whisper-small-llm-AHao
bavihao
2024-05-31T02:26:09Z
68
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-30T13:07:48Z
--- title:whisper-small-llm-AHao: Automatic Speech Recognition author: Bang Viet Hao year: 2024 license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lynn54040/tabby_cat_LoRA
lynn54040
2024-05-31T02:25:21Z
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-05-31T02:25:18Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a cute tabby cat widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - lynn54040/tabby_cat_LoRA <Gallery /> ## Model description These are lynn54040/tabby_cat_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a cute tabby cat to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](lynn54040/tabby_cat_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
shirleyah/q169_explicit_8b_reason
shirleyah
2024-05-31T02:20:21Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2024-05-31T02:03:26Z
--- license: llama3 library_name: peft tags: - trl - sft - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: q169_explicit_8b_reason results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # q169_explicit_8b_reason This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
bavihao/whisper-AHao
bavihao
2024-05-31T02:17:59Z
89
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "license:apache-2.0", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
automatic-speech-recognition
2024-05-30T14:52:48Z
--- title:whisper-AHao: Automatic Speech Recognition for Vietnamese author: Bang Viet Hao year: 2024 license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
scriptmoney/Qwen-Qwen1.5-0.5B-1717121822
scriptmoney
2024-05-31T02:17:50Z
152
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T02:17:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sci-m-wang/deepseek-llm-7b-chat-sa-v0.1
sci-m-wang
2024-05-31T02:17:42Z
4
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:deepseek-ai/deepseek-llm-7b-chat", "base_model:adapter:deepseek-ai/deepseek-llm-7b-chat", "license:other", "region:us" ]
null
2024-05-31T02:11:15Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: deepseek-ai/deepseek-llm-7b-chat model-index: - name: deepseek-llm-7b-chat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepseek-llm-7b-chat This model is a fine-tuned version of [/datas/huggingface/deepseek-llm-7b-chat](https://huggingface.co//datas/huggingface/deepseek-llm-7b-chat) on the LangGPT_community, the LangGPT_alpaca and the LangGPT_seed datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
DaichiT/motor
DaichiT
2024-05-31T02:17:07Z
29
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-05-29T05:18:38Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers base_model: stabilityai/stable-diffusion-2 inference: true instance_prompt: a photo of sks motor --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - DaichiT/motor This is a dreambooth model derived from stabilityai/stable-diffusion-2. The weights were trained on a photo of sks motor using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
pduy395/pre_train_bert_atis
pduy395
2024-05-31T02:14:01Z
46
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2024-05-31T02:13:40Z
--- tags: - generated_from_keras_callback model-index: - name: pre_train_bert_atis results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pre_train_bert_atis This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.3421 - Validation Loss: 5.2885 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.3454 | 5.3429 | 0 | | 5.3421 | 5.2885 | 1 | ### Framework versions - Transformers 4.42.0.dev0 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1
Uni-MoE/Uni-MoE-v2-e2
Uni-MoE
2024-05-31T02:10:58Z
8
0
transformers
[ "transformers", "llava_llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T02:06:41Z
--- license: apache-2.0 ---
lsmille/lora_evo_ta_all_layers_16
lsmille
2024-05-31T02:01:57Z
3
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:togethercomputer/evo-1-8k-base", "base_model:adapter:togethercomputer/evo-1-8k-base", "license:apache-2.0", "region:us" ]
null
2024-05-31T01:50:11Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: togethercomputer/evo-1-8k-base model-index: - name: lora_evo_ta_all_layers_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora_evo_ta_all_layers_16 This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co/togethercomputer/evo-1-8k-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5463 ## Model description Trained on single ID token 5K dataset filtered to 10k sequences (20% for test data = 2000) lora_alpha = 128 lora_dropout = 0.1 lora_r = 128 epochs = 3 learning rate = 3e-4 warmup_steps=200 gradient_accumulation_steps = 1 train_batch = 2 eval_batch = 2 ONLY on attention layers and MLPs of last 31 layers <-------------------- ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.8598 | 0.4998 | 1999 | 2.6289 | | 2.5927 | 0.9995 | 3998 | 2.5852 | | 2.5467 | 1.4992 | 5997 | 2.5717 | | 2.5487 | 1.999 | 7996 | 2.5554 | | 2.4987 | 2.4988 | 9995 | 2.5546 | | 2.4934 | 2.9985 | 11994 | 2.5463 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
hwan1/ohss-polyglot-ko-empathy-message-friend-3.8b
hwan1
2024-05-31T01:52:01Z
10
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T01:45:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sci-m-wang/Mistral-7B-Instruct-sa-v0.1
sci-m-wang
2024-05-31T01:44:05Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:other", "region:us" ]
null
2024-05-31T01:43:03Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: Mistral-7B-Instruct-v0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.1 This model is a fine-tuned version of [/datas/huggingface/Mistral-7B-Instruct-v0.1](https://huggingface.co//datas/huggingface/Mistral-7B-Instruct-v0.1) on the LangGPT_community, the LangGPT_alpaca and the LangGPT_seed datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
jhoppanne/Emotion-Image-Classification-V2
jhoppanne
2024-05-31T01:40:13Z
19
1
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-05-30T10:44:19Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Emotion-Image-Classification-V2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.59375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Emotion-Image-Classification-V2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2748 - Accuracy: 0.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1750 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | No log | 1.0 | 20 | 2.0722 | 0.1875 | | No log | 2.0 | 40 | 2.0667 | 0.2062 | | No log | 3.0 | 60 | 2.0633 | 0.1938 | | No log | 4.0 | 80 | 2.0682 | 0.1938 | | No log | 5.0 | 100 | 2.0627 | 0.2 | | No log | 6.0 | 120 | 2.0618 | 0.2062 | | No log | 7.0 | 140 | 2.0573 | 0.2062 | | No log | 8.0 | 160 | 2.0589 | 0.2062 | | No log | 9.0 | 180 | 2.0585 | 0.1938 | | No log | 10.0 | 200 | 2.0576 | 0.1875 | | No log | 11.0 | 220 | 2.0578 | 0.2125 | | No log | 12.0 | 240 | 2.0498 | 0.2625 | | No log | 13.0 | 260 | 2.0542 | 0.2062 | | No log | 14.0 | 280 | 2.0534 | 0.2 | | No log | 15.0 | 300 | 2.0474 | 0.2562 | | No log | 16.0 | 320 | 2.0513 | 0.225 | | No log | 17.0 | 340 | 2.0472 | 0.2062 | | No log | 18.0 | 360 | 2.0465 | 0.2562 | | No log | 19.0 | 380 | 2.0379 | 0.275 | | No log | 20.0 | 400 | 2.0416 | 0.2375 | | No log | 21.0 | 420 | 2.0442 | 0.2687 | | No log | 22.0 | 440 | 2.0399 | 0.2313 | | No log | 23.0 | 460 | 2.0358 | 0.2625 | | No log | 24.0 | 480 | 2.0316 | 0.2437 | | 2.0458 | 25.0 | 500 | 2.0314 | 0.2687 | | 2.0458 | 26.0 | 520 | 2.0382 | 0.2437 | | 2.0458 | 27.0 | 540 | 2.0246 | 0.275 | | 2.0458 | 28.0 | 560 | 2.0211 | 0.3187 | | 2.0458 | 29.0 | 580 | 2.0240 | 0.2625 | | 2.0458 | 30.0 | 600 | 2.0198 | 0.2875 | | 2.0458 | 31.0 | 620 | 2.0204 | 0.2625 | | 2.0458 | 32.0 | 640 | 2.0210 | 0.275 | | 2.0458 | 33.0 | 660 | 2.0046 | 0.3125 | | 2.0458 | 34.0 | 680 | 2.0153 | 0.2625 | | 2.0458 | 35.0 | 700 | 2.0098 | 0.2625 | | 2.0458 | 36.0 | 720 | 2.0085 | 0.2812 | | 2.0458 | 37.0 | 740 | 1.9978 | 0.3187 | | 2.0458 | 38.0 | 760 | 1.9962 | 0.2938 | | 2.0458 | 39.0 | 780 | 1.9955 | 0.3 | | 2.0458 | 40.0 | 800 | 1.9923 | 0.3 | | 2.0458 | 41.0 | 820 | 1.9913 | 0.3063 | | 2.0458 | 42.0 | 840 | 1.9844 | 0.325 | | 2.0458 | 43.0 | 860 | 1.9922 | 0.275 | | 2.0458 | 44.0 | 880 | 1.9731 | 0.3187 | | 2.0458 | 45.0 | 900 | 1.9833 | 0.3 | | 2.0458 | 46.0 | 920 | 1.9763 | 0.3187 | | 2.0458 | 47.0 | 940 | 1.9686 | 0.35 | | 2.0458 | 48.0 | 960 | 1.9707 | 0.3187 | | 2.0458 | 49.0 | 980 | 1.9631 | 0.3312 | | 1.9677 | 50.0 | 1000 | 1.9561 | 0.2812 | | 1.9677 | 51.0 | 1020 | 1.9527 | 0.3312 | | 1.9677 | 52.0 | 1040 | 1.9447 | 0.3563 | | 1.9677 | 53.0 | 1060 | 1.9542 | 0.35 | | 1.9677 | 54.0 | 1080 | 1.9509 | 0.375 | | 1.9677 | 55.0 | 1100 | 1.9378 | 0.3937 | | 1.9677 | 56.0 | 1120 | 1.9431 | 0.3563 | | 1.9677 | 57.0 | 1140 | 1.9397 | 0.3312 | | 1.9677 | 58.0 | 1160 | 1.9322 | 0.4 | | 1.9677 | 59.0 | 1180 | 1.9252 | 0.3688 | | 1.9677 | 60.0 | 1200 | 1.9209 | 0.3063 | | 1.9677 | 61.0 | 1220 | 1.9210 | 0.3563 | | 1.9677 | 62.0 | 1240 | 1.9226 | 0.3688 | | 1.9677 | 63.0 | 1260 | 1.9054 | 0.3688 | | 1.9677 | 64.0 | 1280 | 1.9153 | 0.35 | | 1.9677 | 65.0 | 1300 | 1.8993 | 0.3563 | | 1.9677 | 66.0 | 1320 | 1.9008 | 0.375 | | 1.9677 | 67.0 | 1340 | 1.9008 | 0.35 | | 1.9677 | 68.0 | 1360 | 1.8866 | 0.3625 | | 1.9677 | 69.0 | 1380 | 1.8771 | 0.3937 | | 1.9677 | 70.0 | 1400 | 1.8758 | 0.4 | | 1.9677 | 71.0 | 1420 | 1.8682 | 0.3937 | | 1.9677 | 72.0 | 1440 | 1.8604 | 0.3688 | | 1.9677 | 73.0 | 1460 | 1.8660 | 0.3937 | | 1.9677 | 74.0 | 1480 | 1.8702 | 0.3375 | | 1.8562 | 75.0 | 1500 | 1.8483 | 0.4313 | | 1.8562 | 76.0 | 1520 | 1.8525 | 0.3875 | | 1.8562 | 77.0 | 1540 | 1.8467 | 0.3937 | | 1.8562 | 78.0 | 1560 | 1.8481 | 0.3812 | | 1.8562 | 79.0 | 1580 | 1.8282 | 0.3812 | | 1.8562 | 80.0 | 1600 | 1.8395 | 0.3875 | | 1.8562 | 81.0 | 1620 | 1.8251 | 0.375 | | 1.8562 | 82.0 | 1640 | 1.8215 | 0.4125 | | 1.8562 | 83.0 | 1660 | 1.8179 | 0.3625 | | 1.8562 | 84.0 | 1680 | 1.8130 | 0.4188 | | 1.8562 | 85.0 | 1700 | 1.8066 | 0.4 | | 1.8562 | 86.0 | 1720 | 1.7993 | 0.4062 | | 1.8562 | 87.0 | 1740 | 1.7954 | 0.4188 | | 1.8562 | 88.0 | 1760 | 1.7936 | 0.3937 | | 1.8562 | 89.0 | 1780 | 1.7972 | 0.4188 | | 1.8562 | 90.0 | 1800 | 1.7876 | 0.3937 | | 1.8562 | 91.0 | 1820 | 1.7810 | 0.3937 | | 1.8562 | 92.0 | 1840 | 1.7838 | 0.3937 | | 1.8562 | 93.0 | 1860 | 1.7711 | 0.3812 | | 1.8562 | 94.0 | 1880 | 1.7780 | 0.3688 | | 1.8562 | 95.0 | 1900 | 1.7426 | 0.4062 | | 1.8562 | 96.0 | 1920 | 1.7399 | 0.425 | | 1.8562 | 97.0 | 1940 | 1.7561 | 0.375 | | 1.8562 | 98.0 | 1960 | 1.7287 | 0.3937 | | 1.8562 | 99.0 | 1980 | 1.7425 | 0.4437 | | 1.7294 | 100.0 | 2000 | 1.7308 | 0.4188 | | 1.7294 | 101.0 | 2020 | 1.7389 | 0.375 | | 1.7294 | 102.0 | 2040 | 1.7249 | 0.4375 | | 1.7294 | 103.0 | 2060 | 1.7297 | 0.4188 | | 1.7294 | 104.0 | 2080 | 1.7361 | 0.3875 | | 1.7294 | 105.0 | 2100 | 1.7188 | 0.4188 | | 1.7294 | 106.0 | 2120 | 1.7181 | 0.4562 | | 1.7294 | 107.0 | 2140 | 1.7044 | 0.425 | | 1.7294 | 108.0 | 2160 | 1.7030 | 0.4188 | | 1.7294 | 109.0 | 2180 | 1.7070 | 0.425 | | 1.7294 | 110.0 | 2200 | 1.7006 | 0.4437 | | 1.7294 | 111.0 | 2220 | 1.6862 | 0.4688 | | 1.7294 | 112.0 | 2240 | 1.6881 | 0.4437 | | 1.7294 | 113.0 | 2260 | 1.6798 | 0.45 | | 1.7294 | 114.0 | 2280 | 1.6982 | 0.3937 | | 1.7294 | 115.0 | 2300 | 1.6812 | 0.4375 | | 1.7294 | 116.0 | 2320 | 1.6751 | 0.45 | | 1.7294 | 117.0 | 2340 | 1.6849 | 0.45 | | 1.7294 | 118.0 | 2360 | 1.6690 | 0.4375 | | 1.7294 | 119.0 | 2380 | 1.6583 | 0.4688 | | 1.7294 | 120.0 | 2400 | 1.6666 | 0.4375 | | 1.7294 | 121.0 | 2420 | 1.6651 | 0.45 | | 1.7294 | 122.0 | 2440 | 1.6477 | 0.4688 | | 1.7294 | 123.0 | 2460 | 1.6520 | 0.475 | | 1.7294 | 124.0 | 2480 | 1.6642 | 0.4125 | | 1.6198 | 125.0 | 2500 | 1.6633 | 0.475 | | 1.6198 | 126.0 | 2520 | 1.6443 | 0.4375 | | 1.6198 | 127.0 | 2540 | 1.6398 | 0.4813 | | 1.6198 | 128.0 | 2560 | 1.6516 | 0.4437 | | 1.6198 | 129.0 | 2580 | 1.6496 | 0.4562 | | 1.6198 | 130.0 | 2600 | 1.6342 | 0.4625 | | 1.6198 | 131.0 | 2620 | 1.6330 | 0.4437 | | 1.6198 | 132.0 | 2640 | 1.6341 | 0.4625 | | 1.6198 | 133.0 | 2660 | 1.6167 | 0.475 | | 1.6198 | 134.0 | 2680 | 1.6270 | 0.4562 | | 1.6198 | 135.0 | 2700 | 1.6322 | 0.4562 | | 1.6198 | 136.0 | 2720 | 1.6252 | 0.4188 | | 1.6198 | 137.0 | 2740 | 1.6045 | 0.4562 | | 1.6198 | 138.0 | 2760 | 1.6107 | 0.5 | | 1.6198 | 139.0 | 2780 | 1.6170 | 0.45 | | 1.6198 | 140.0 | 2800 | 1.6067 | 0.4813 | | 1.6198 | 141.0 | 2820 | 1.6116 | 0.4437 | | 1.6198 | 142.0 | 2840 | 1.5962 | 0.4813 | | 1.6198 | 143.0 | 2860 | 1.6096 | 0.425 | | 1.6198 | 144.0 | 2880 | 1.6051 | 0.4562 | | 1.6198 | 145.0 | 2900 | 1.5939 | 0.525 | | 1.6198 | 146.0 | 2920 | 1.5871 | 0.5062 | | 1.6198 | 147.0 | 2940 | 1.5917 | 0.4688 | | 1.6198 | 148.0 | 2960 | 1.5911 | 0.4938 | | 1.6198 | 149.0 | 2980 | 1.5950 | 0.4437 | | 1.5343 | 150.0 | 3000 | 1.5974 | 0.4625 | | 1.5343 | 151.0 | 3020 | 1.5713 | 0.4813 | | 1.5343 | 152.0 | 3040 | 1.5637 | 0.5437 | | 1.5343 | 153.0 | 3060 | 1.5830 | 0.4688 | | 1.5343 | 154.0 | 3080 | 1.5770 | 0.4938 | | 1.5343 | 155.0 | 3100 | 1.5800 | 0.5188 | | 1.5343 | 156.0 | 3120 | 1.5782 | 0.4625 | | 1.5343 | 157.0 | 3140 | 1.5769 | 0.4562 | | 1.5343 | 158.0 | 3160 | 1.5751 | 0.5 | | 1.5343 | 159.0 | 3180 | 1.5739 | 0.4938 | | 1.5343 | 160.0 | 3200 | 1.5555 | 0.5 | | 1.5343 | 161.0 | 3220 | 1.5561 | 0.475 | | 1.5343 | 162.0 | 3240 | 1.5521 | 0.4938 | | 1.5343 | 163.0 | 3260 | 1.5670 | 0.4688 | | 1.5343 | 164.0 | 3280 | 1.5621 | 0.475 | | 1.5343 | 165.0 | 3300 | 1.5622 | 0.4813 | | 1.5343 | 166.0 | 3320 | 1.5497 | 0.4562 | | 1.5343 | 167.0 | 3340 | 1.5535 | 0.4813 | | 1.5343 | 168.0 | 3360 | 1.5526 | 0.4875 | | 1.5343 | 169.0 | 3380 | 1.5301 | 0.5 | | 1.5343 | 170.0 | 3400 | 1.5487 | 0.4813 | | 1.5343 | 171.0 | 3420 | 1.5489 | 0.4625 | | 1.5343 | 172.0 | 3440 | 1.5456 | 0.5 | | 1.5343 | 173.0 | 3460 | 1.5355 | 0.5 | | 1.5343 | 174.0 | 3480 | 1.5306 | 0.5 | | 1.4643 | 175.0 | 3500 | 1.5436 | 0.4875 | | 1.4643 | 176.0 | 3520 | 1.5241 | 0.4875 | | 1.4643 | 177.0 | 3540 | 1.5293 | 0.475 | | 1.4643 | 178.0 | 3560 | 1.5282 | 0.475 | | 1.4643 | 179.0 | 3580 | 1.5350 | 0.4813 | | 1.4643 | 180.0 | 3600 | 1.5207 | 0.4875 | | 1.4643 | 181.0 | 3620 | 1.5274 | 0.4875 | | 1.4643 | 182.0 | 3640 | 1.5239 | 0.5 | | 1.4643 | 183.0 | 3660 | 1.5324 | 0.45 | | 1.4643 | 184.0 | 3680 | 1.5137 | 0.4813 | | 1.4643 | 185.0 | 3700 | 1.5265 | 0.4938 | | 1.4643 | 186.0 | 3720 | 1.4986 | 0.5125 | | 1.4643 | 187.0 | 3740 | 1.5102 | 0.525 | | 1.4643 | 188.0 | 3760 | 1.5141 | 0.5062 | | 1.4643 | 189.0 | 3780 | 1.4955 | 0.5125 | | 1.4643 | 190.0 | 3800 | 1.5155 | 0.5125 | | 1.4643 | 191.0 | 3820 | 1.5076 | 0.4938 | | 1.4643 | 192.0 | 3840 | 1.5114 | 0.4875 | | 1.4643 | 193.0 | 3860 | 1.5295 | 0.4938 | | 1.4643 | 194.0 | 3880 | 1.5180 | 0.4688 | | 1.4643 | 195.0 | 3900 | 1.5103 | 0.4875 | | 1.4643 | 196.0 | 3920 | 1.5092 | 0.55 | | 1.4643 | 197.0 | 3940 | 1.5009 | 0.5062 | | 1.4643 | 198.0 | 3960 | 1.5320 | 0.475 | | 1.4643 | 199.0 | 3980 | 1.4854 | 0.5375 | | 1.4007 | 200.0 | 4000 | 1.5029 | 0.4875 | | 1.4007 | 201.0 | 4020 | 1.4928 | 0.5125 | | 1.4007 | 202.0 | 4040 | 1.4851 | 0.4875 | | 1.4007 | 203.0 | 4060 | 1.4960 | 0.4938 | | 1.4007 | 204.0 | 4080 | 1.4979 | 0.4437 | | 1.4007 | 205.0 | 4100 | 1.4936 | 0.4813 | | 1.4007 | 206.0 | 4120 | 1.4684 | 0.55 | | 1.4007 | 207.0 | 4140 | 1.4656 | 0.525 | | 1.4007 | 208.0 | 4160 | 1.4731 | 0.4813 | | 1.4007 | 209.0 | 4180 | 1.4858 | 0.5312 | | 1.4007 | 210.0 | 4200 | 1.4893 | 0.5062 | | 1.4007 | 211.0 | 4220 | 1.4875 | 0.4938 | | 1.4007 | 212.0 | 4240 | 1.4881 | 0.5375 | | 1.4007 | 213.0 | 4260 | 1.4910 | 0.4813 | | 1.4007 | 214.0 | 4280 | 1.4570 | 0.5062 | | 1.4007 | 215.0 | 4300 | 1.4839 | 0.4938 | | 1.4007 | 216.0 | 4320 | 1.4709 | 0.4688 | | 1.4007 | 217.0 | 4340 | 1.4711 | 0.4875 | | 1.4007 | 218.0 | 4360 | 1.4992 | 0.475 | | 1.4007 | 219.0 | 4380 | 1.4701 | 0.5125 | | 1.4007 | 220.0 | 4400 | 1.4727 | 0.4875 | | 1.4007 | 221.0 | 4420 | 1.4632 | 0.5125 | | 1.4007 | 222.0 | 4440 | 1.4602 | 0.475 | | 1.4007 | 223.0 | 4460 | 1.4510 | 0.4938 | | 1.4007 | 224.0 | 4480 | 1.4786 | 0.4562 | | 1.3391 | 225.0 | 4500 | 1.4700 | 0.5125 | | 1.3391 | 226.0 | 4520 | 1.4812 | 0.4813 | | 1.3391 | 227.0 | 4540 | 1.4379 | 0.5375 | | 1.3391 | 228.0 | 4560 | 1.4426 | 0.4938 | | 1.3391 | 229.0 | 4580 | 1.4638 | 0.4938 | | 1.3391 | 230.0 | 4600 | 1.4708 | 0.475 | | 1.3391 | 231.0 | 4620 | 1.4293 | 0.55 | | 1.3391 | 232.0 | 4640 | 1.4704 | 0.4813 | | 1.3391 | 233.0 | 4660 | 1.4561 | 0.4938 | | 1.3391 | 234.0 | 4680 | 1.4302 | 0.525 | | 1.3391 | 235.0 | 4700 | 1.4806 | 0.5125 | | 1.3391 | 236.0 | 4720 | 1.4402 | 0.4875 | | 1.3391 | 237.0 | 4740 | 1.4356 | 0.5188 | | 1.3391 | 238.0 | 4760 | 1.4475 | 0.4688 | | 1.3391 | 239.0 | 4780 | 1.4304 | 0.525 | | 1.3391 | 240.0 | 4800 | 1.4217 | 0.525 | | 1.3391 | 241.0 | 4820 | 1.4536 | 0.5 | | 1.3391 | 242.0 | 4840 | 1.4512 | 0.4938 | | 1.3391 | 243.0 | 4860 | 1.4549 | 0.5312 | | 1.3391 | 244.0 | 4880 | 1.4460 | 0.5062 | | 1.3391 | 245.0 | 4900 | 1.4361 | 0.5062 | | 1.3391 | 246.0 | 4920 | 1.4455 | 0.4688 | | 1.3391 | 247.0 | 4940 | 1.4588 | 0.525 | | 1.3391 | 248.0 | 4960 | 1.4207 | 0.5312 | | 1.3391 | 249.0 | 4980 | 1.4436 | 0.5312 | | 1.2821 | 250.0 | 5000 | 1.4417 | 0.5062 | | 1.2821 | 251.0 | 5020 | 1.4264 | 0.5125 | | 1.2821 | 252.0 | 5040 | 1.4495 | 0.4875 | | 1.2821 | 253.0 | 5060 | 1.4312 | 0.5375 | | 1.2821 | 254.0 | 5080 | 1.4334 | 0.5062 | | 1.2821 | 255.0 | 5100 | 1.4420 | 0.4875 | | 1.2821 | 256.0 | 5120 | 1.4313 | 0.5188 | | 1.2821 | 257.0 | 5140 | 1.4239 | 0.5437 | | 1.2821 | 258.0 | 5160 | 1.4457 | 0.4562 | | 1.2821 | 259.0 | 5180 | 1.4051 | 0.5188 | | 1.2821 | 260.0 | 5200 | 1.4374 | 0.5062 | | 1.2821 | 261.0 | 5220 | 1.4089 | 0.5188 | | 1.2821 | 262.0 | 5240 | 1.4430 | 0.4875 | | 1.2821 | 263.0 | 5260 | 1.4066 | 0.5188 | | 1.2821 | 264.0 | 5280 | 1.4144 | 0.5375 | | 1.2821 | 265.0 | 5300 | 1.4440 | 0.5 | | 1.2821 | 266.0 | 5320 | 1.4262 | 0.4813 | | 1.2821 | 267.0 | 5340 | 1.4134 | 0.4938 | | 1.2821 | 268.0 | 5360 | 1.4234 | 0.4938 | | 1.2821 | 269.0 | 5380 | 1.4086 | 0.525 | | 1.2821 | 270.0 | 5400 | 1.4297 | 0.4938 | | 1.2821 | 271.0 | 5420 | 1.3996 | 0.525 | | 1.2821 | 272.0 | 5440 | 1.4114 | 0.5125 | | 1.2821 | 273.0 | 5460 | 1.4374 | 0.4688 | | 1.2821 | 274.0 | 5480 | 1.4199 | 0.5062 | | 1.2306 | 275.0 | 5500 | 1.3729 | 0.5062 | | 1.2306 | 276.0 | 5520 | 1.3774 | 0.5375 | | 1.2306 | 277.0 | 5540 | 1.4205 | 0.5312 | | 1.2306 | 278.0 | 5560 | 1.3882 | 0.5 | | 1.2306 | 279.0 | 5580 | 1.3965 | 0.5062 | | 1.2306 | 280.0 | 5600 | 1.4020 | 0.5188 | | 1.2306 | 281.0 | 5620 | 1.4054 | 0.5312 | | 1.2306 | 282.0 | 5640 | 1.4037 | 0.5188 | | 1.2306 | 283.0 | 5660 | 1.4333 | 0.4813 | | 1.2306 | 284.0 | 5680 | 1.3888 | 0.5188 | | 1.2306 | 285.0 | 5700 | 1.3991 | 0.4813 | | 1.2306 | 286.0 | 5720 | 1.3864 | 0.5125 | | 1.2306 | 287.0 | 5740 | 1.3277 | 0.575 | | 1.2306 | 288.0 | 5760 | 1.4280 | 0.5 | | 1.2306 | 289.0 | 5780 | 1.3820 | 0.5062 | | 1.2306 | 290.0 | 5800 | 1.4017 | 0.5188 | | 1.2306 | 291.0 | 5820 | 1.4204 | 0.4813 | | 1.2306 | 292.0 | 5840 | 1.4218 | 0.5125 | | 1.2306 | 293.0 | 5860 | 1.3961 | 0.4688 | | 1.2306 | 294.0 | 5880 | 1.3957 | 0.5062 | | 1.2306 | 295.0 | 5900 | 1.4075 | 0.5188 | | 1.2306 | 296.0 | 5920 | 1.4089 | 0.475 | | 1.2306 | 297.0 | 5940 | 1.3727 | 0.5375 | | 1.2306 | 298.0 | 5960 | 1.3624 | 0.525 | | 1.2306 | 299.0 | 5980 | 1.4073 | 0.5062 | | 1.1758 | 300.0 | 6000 | 1.4273 | 0.5 | | 1.1758 | 301.0 | 6020 | 1.3907 | 0.5 | | 1.1758 | 302.0 | 6040 | 1.3874 | 0.5188 | | 1.1758 | 303.0 | 6060 | 1.4323 | 0.4938 | | 1.1758 | 304.0 | 6080 | 1.3582 | 0.5437 | | 1.1758 | 305.0 | 6100 | 1.3618 | 0.5312 | | 1.1758 | 306.0 | 6120 | 1.3544 | 0.5188 | | 1.1758 | 307.0 | 6140 | 1.3816 | 0.5375 | | 1.1758 | 308.0 | 6160 | 1.3749 | 0.4938 | | 1.1758 | 309.0 | 6180 | 1.3924 | 0.4938 | | 1.1758 | 310.0 | 6200 | 1.3781 | 0.525 | | 1.1758 | 311.0 | 6220 | 1.3879 | 0.5125 | | 1.1758 | 312.0 | 6240 | 1.3739 | 0.55 | | 1.1758 | 313.0 | 6260 | 1.3662 | 0.5188 | | 1.1758 | 314.0 | 6280 | 1.3764 | 0.575 | | 1.1758 | 315.0 | 6300 | 1.3922 | 0.4938 | | 1.1758 | 316.0 | 6320 | 1.3977 | 0.4625 | | 1.1758 | 317.0 | 6340 | 1.4194 | 0.5 | | 1.1758 | 318.0 | 6360 | 1.3465 | 0.5125 | | 1.1758 | 319.0 | 6380 | 1.3564 | 0.4875 | | 1.1758 | 320.0 | 6400 | 1.3582 | 0.5437 | | 1.1758 | 321.0 | 6420 | 1.3829 | 0.5188 | | 1.1758 | 322.0 | 6440 | 1.3504 | 0.5125 | | 1.1758 | 323.0 | 6460 | 1.3658 | 0.4875 | | 1.1758 | 324.0 | 6480 | 1.4254 | 0.45 | | 1.1256 | 325.0 | 6500 | 1.4025 | 0.4875 | | 1.1256 | 326.0 | 6520 | 1.3431 | 0.5125 | | 1.1256 | 327.0 | 6540 | 1.3613 | 0.5 | | 1.1256 | 328.0 | 6560 | 1.3376 | 0.55 | | 1.1256 | 329.0 | 6580 | 1.3730 | 0.5 | | 1.1256 | 330.0 | 6600 | 1.3936 | 0.5062 | | 1.1256 | 331.0 | 6620 | 1.3716 | 0.5125 | | 1.1256 | 332.0 | 6640 | 1.4044 | 0.475 | | 1.1256 | 333.0 | 6660 | 1.3880 | 0.4625 | | 1.1256 | 334.0 | 6680 | 1.3580 | 0.4688 | | 1.1256 | 335.0 | 6700 | 1.3459 | 0.5437 | | 1.1256 | 336.0 | 6720 | 1.3868 | 0.5312 | | 1.1256 | 337.0 | 6740 | 1.3766 | 0.475 | | 1.1256 | 338.0 | 6760 | 1.3843 | 0.4625 | | 1.1256 | 339.0 | 6780 | 1.3802 | 0.4562 | | 1.1256 | 340.0 | 6800 | 1.3698 | 0.4938 | | 1.1256 | 341.0 | 6820 | 1.3657 | 0.4813 | | 1.1256 | 342.0 | 6840 | 1.3622 | 0.5437 | | 1.1256 | 343.0 | 6860 | 1.4055 | 0.4562 | | 1.1256 | 344.0 | 6880 | 1.3406 | 0.5062 | | 1.1256 | 345.0 | 6900 | 1.3517 | 0.5312 | | 1.1256 | 346.0 | 6920 | 1.4012 | 0.4688 | | 1.1256 | 347.0 | 6940 | 1.3131 | 0.5563 | | 1.1256 | 348.0 | 6960 | 1.3677 | 0.4813 | | 1.1256 | 349.0 | 6980 | 1.3656 | 0.5062 | | 1.0749 | 350.0 | 7000 | 1.3582 | 0.4813 | | 1.0749 | 351.0 | 7020 | 1.3342 | 0.5125 | | 1.0749 | 352.0 | 7040 | 1.3413 | 0.5188 | | 1.0749 | 353.0 | 7060 | 1.3541 | 0.5062 | | 1.0749 | 354.0 | 7080 | 1.3551 | 0.5062 | | 1.0749 | 355.0 | 7100 | 1.3364 | 0.5625 | | 1.0749 | 356.0 | 7120 | 1.3885 | 0.4625 | | 1.0749 | 357.0 | 7140 | 1.3327 | 0.5062 | | 1.0749 | 358.0 | 7160 | 1.3570 | 0.5 | | 1.0749 | 359.0 | 7180 | 1.3642 | 0.4875 | | 1.0749 | 360.0 | 7200 | 1.3467 | 0.4813 | | 1.0749 | 361.0 | 7220 | 1.3882 | 0.5062 | | 1.0749 | 362.0 | 7240 | 1.3534 | 0.4875 | | 1.0749 | 363.0 | 7260 | 1.3570 | 0.4688 | | 1.0749 | 364.0 | 7280 | 1.3150 | 0.5437 | | 1.0749 | 365.0 | 7300 | 1.3483 | 0.4688 | | 1.0749 | 366.0 | 7320 | 1.3294 | 0.525 | | 1.0749 | 367.0 | 7340 | 1.3453 | 0.475 | | 1.0749 | 368.0 | 7360 | 1.3518 | 0.4625 | | 1.0749 | 369.0 | 7380 | 1.3524 | 0.4875 | | 1.0749 | 370.0 | 7400 | 1.3627 | 0.4625 | | 1.0749 | 371.0 | 7420 | 1.2998 | 0.5188 | | 1.0749 | 372.0 | 7440 | 1.3362 | 0.5125 | | 1.0749 | 373.0 | 7460 | 1.3290 | 0.4938 | | 1.0749 | 374.0 | 7480 | 1.3158 | 0.5312 | | 1.0301 | 375.0 | 7500 | 1.3241 | 0.5375 | | 1.0301 | 376.0 | 7520 | 1.3518 | 0.5062 | | 1.0301 | 377.0 | 7540 | 1.3748 | 0.4938 | | 1.0301 | 378.0 | 7560 | 1.3627 | 0.4688 | | 1.0301 | 379.0 | 7580 | 1.2971 | 0.525 | | 1.0301 | 380.0 | 7600 | 1.3200 | 0.525 | | 1.0301 | 381.0 | 7620 | 1.3200 | 0.5062 | | 1.0301 | 382.0 | 7640 | 1.3304 | 0.475 | | 1.0301 | 383.0 | 7660 | 1.3425 | 0.5188 | | 1.0301 | 384.0 | 7680 | 1.3378 | 0.5188 | | 1.0301 | 385.0 | 7700 | 1.3380 | 0.525 | | 1.0301 | 386.0 | 7720 | 1.3159 | 0.5125 | | 1.0301 | 387.0 | 7740 | 1.3315 | 0.5312 | | 1.0301 | 388.0 | 7760 | 1.3318 | 0.5 | | 1.0301 | 389.0 | 7780 | 1.3150 | 0.5188 | | 1.0301 | 390.0 | 7800 | 1.3109 | 0.4938 | | 1.0301 | 391.0 | 7820 | 1.3457 | 0.4938 | | 1.0301 | 392.0 | 7840 | 1.3507 | 0.55 | | 1.0301 | 393.0 | 7860 | 1.3043 | 0.5125 | | 1.0301 | 394.0 | 7880 | 1.2937 | 0.525 | | 1.0301 | 395.0 | 7900 | 1.3179 | 0.5125 | | 1.0301 | 396.0 | 7920 | 1.3434 | 0.4375 | | 1.0301 | 397.0 | 7940 | 1.3440 | 0.5125 | | 1.0301 | 398.0 | 7960 | 1.3630 | 0.5125 | | 1.0301 | 399.0 | 7980 | 1.2913 | 0.5687 | | 0.9833 | 400.0 | 8000 | 1.3338 | 0.5188 | | 0.9833 | 401.0 | 8020 | 1.3367 | 0.5188 | | 0.9833 | 402.0 | 8040 | 1.3656 | 0.5 | | 0.9833 | 403.0 | 8060 | 1.3377 | 0.5312 | | 0.9833 | 404.0 | 8080 | 1.3387 | 0.4688 | | 0.9833 | 405.0 | 8100 | 1.3061 | 0.5125 | | 0.9833 | 406.0 | 8120 | 1.3082 | 0.5 | | 0.9833 | 407.0 | 8140 | 1.3284 | 0.4938 | | 0.9833 | 408.0 | 8160 | 1.3212 | 0.5312 | | 0.9833 | 409.0 | 8180 | 1.2809 | 0.5188 | | 0.9833 | 410.0 | 8200 | 1.3295 | 0.525 | | 0.9833 | 411.0 | 8220 | 1.3432 | 0.5 | | 0.9833 | 412.0 | 8240 | 1.3173 | 0.5188 | | 0.9833 | 413.0 | 8260 | 1.3131 | 0.525 | | 0.9833 | 414.0 | 8280 | 1.2957 | 0.5312 | | 0.9833 | 415.0 | 8300 | 1.3358 | 0.4813 | | 0.9833 | 416.0 | 8320 | 1.3635 | 0.4562 | | 0.9833 | 417.0 | 8340 | 1.3743 | 0.475 | | 0.9833 | 418.0 | 8360 | 1.3320 | 0.5437 | | 0.9833 | 419.0 | 8380 | 1.2942 | 0.5 | | 0.9833 | 420.0 | 8400 | 1.2994 | 0.5 | | 0.9833 | 421.0 | 8420 | 1.3073 | 0.4938 | | 0.9833 | 422.0 | 8440 | 1.3108 | 0.5188 | | 0.9833 | 423.0 | 8460 | 1.3514 | 0.5125 | | 0.9833 | 424.0 | 8480 | 1.3062 | 0.4875 | | 0.944 | 425.0 | 8500 | 1.3154 | 0.5062 | | 0.944 | 426.0 | 8520 | 1.3105 | 0.5125 | | 0.944 | 427.0 | 8540 | 1.3566 | 0.4938 | | 0.944 | 428.0 | 8560 | 1.3100 | 0.5125 | | 0.944 | 429.0 | 8580 | 1.3342 | 0.475 | | 0.944 | 430.0 | 8600 | 1.3321 | 0.4875 | | 0.944 | 431.0 | 8620 | 1.3492 | 0.5 | | 0.944 | 432.0 | 8640 | 1.3199 | 0.4938 | | 0.944 | 433.0 | 8660 | 1.2887 | 0.5437 | | 0.944 | 434.0 | 8680 | 1.3167 | 0.4938 | | 0.944 | 435.0 | 8700 | 1.3255 | 0.5062 | | 0.944 | 436.0 | 8720 | 1.3197 | 0.5125 | | 0.944 | 437.0 | 8740 | 1.2864 | 0.5312 | | 0.944 | 438.0 | 8760 | 1.2985 | 0.5312 | | 0.944 | 439.0 | 8780 | 1.3446 | 0.4625 | | 0.944 | 440.0 | 8800 | 1.3052 | 0.5437 | | 0.944 | 441.0 | 8820 | 1.3067 | 0.5125 | | 0.944 | 442.0 | 8840 | 1.2849 | 0.5125 | | 0.944 | 443.0 | 8860 | 1.3065 | 0.5188 | | 0.944 | 444.0 | 8880 | 1.3487 | 0.4938 | | 0.944 | 445.0 | 8900 | 1.3021 | 0.5312 | | 0.944 | 446.0 | 8920 | 1.3258 | 0.4938 | | 0.944 | 447.0 | 8940 | 1.3325 | 0.4562 | | 0.944 | 448.0 | 8960 | 1.2986 | 0.4813 | | 0.944 | 449.0 | 8980 | 1.2946 | 0.5563 | | 0.8989 | 450.0 | 9000 | 1.3077 | 0.525 | | 0.8989 | 451.0 | 9020 | 1.2984 | 0.5312 | | 0.8989 | 452.0 | 9040 | 1.3039 | 0.5188 | | 0.8989 | 453.0 | 9060 | 1.2911 | 0.5312 | | 0.8989 | 454.0 | 9080 | 1.3159 | 0.5188 | | 0.8989 | 455.0 | 9100 | 1.3500 | 0.4813 | | 0.8989 | 456.0 | 9120 | 1.2778 | 0.5563 | | 0.8989 | 457.0 | 9140 | 1.3115 | 0.5437 | | 0.8989 | 458.0 | 9160 | 1.2777 | 0.525 | | 0.8989 | 459.0 | 9180 | 1.2846 | 0.5312 | | 0.8989 | 460.0 | 9200 | 1.3397 | 0.4875 | | 0.8989 | 461.0 | 9220 | 1.3154 | 0.5188 | | 0.8989 | 462.0 | 9240 | 1.2974 | 0.4813 | | 0.8989 | 463.0 | 9260 | 1.3058 | 0.4938 | | 0.8989 | 464.0 | 9280 | 1.3083 | 0.5125 | | 0.8989 | 465.0 | 9300 | 1.3122 | 0.525 | | 0.8989 | 466.0 | 9320 | 1.3139 | 0.5 | | 0.8989 | 467.0 | 9340 | 1.3230 | 0.4938 | | 0.8989 | 468.0 | 9360 | 1.3057 | 0.525 | | 0.8989 | 469.0 | 9380 | 1.3508 | 0.5 | | 0.8989 | 470.0 | 9400 | 1.2968 | 0.5437 | | 0.8989 | 471.0 | 9420 | 1.2811 | 0.5563 | | 0.8989 | 472.0 | 9440 | 1.3688 | 0.5062 | | 0.8989 | 473.0 | 9460 | 1.3701 | 0.4875 | | 0.8989 | 474.0 | 9480 | 1.3270 | 0.5 | | 0.856 | 475.0 | 9500 | 1.3228 | 0.5062 | | 0.856 | 476.0 | 9520 | 1.3234 | 0.4625 | | 0.856 | 477.0 | 9540 | 1.3094 | 0.525 | | 0.856 | 478.0 | 9560 | 1.3401 | 0.4938 | | 0.856 | 479.0 | 9580 | 1.3226 | 0.4813 | | 0.856 | 480.0 | 9600 | 1.3334 | 0.4813 | | 0.856 | 481.0 | 9620 | 1.2958 | 0.525 | | 0.856 | 482.0 | 9640 | 1.3299 | 0.4813 | | 0.856 | 483.0 | 9660 | 1.2868 | 0.525 | | 0.856 | 484.0 | 9680 | 1.3472 | 0.4813 | | 0.856 | 485.0 | 9700 | 1.2546 | 0.5687 | | 0.856 | 486.0 | 9720 | 1.3173 | 0.5 | | 0.856 | 487.0 | 9740 | 1.2759 | 0.5188 | | 0.856 | 488.0 | 9760 | 1.3288 | 0.4875 | | 0.856 | 489.0 | 9780 | 1.3019 | 0.5312 | | 0.856 | 490.0 | 9800 | 1.3412 | 0.4875 | | 0.856 | 491.0 | 9820 | 1.2962 | 0.5188 | | 0.856 | 492.0 | 9840 | 1.3327 | 0.4875 | | 0.856 | 493.0 | 9860 | 1.3197 | 0.5125 | | 0.856 | 494.0 | 9880 | 1.3252 | 0.4313 | | 0.856 | 495.0 | 9900 | 1.2839 | 0.5062 | | 0.856 | 496.0 | 9920 | 1.3358 | 0.5 | | 0.856 | 497.0 | 9940 | 1.3704 | 0.4938 | | 0.856 | 498.0 | 9960 | 1.2827 | 0.4938 | | 0.856 | 499.0 | 9980 | 1.3523 | 0.4938 | | 0.8229 | 500.0 | 10000 | 1.3195 | 0.4875 | | 0.8229 | 501.0 | 10020 | 1.3336 | 0.5125 | | 0.8229 | 502.0 | 10040 | 1.3251 | 0.4875 | | 0.8229 | 503.0 | 10060 | 1.3660 | 0.4938 | | 0.8229 | 504.0 | 10080 | 1.2874 | 0.55 | | 0.8229 | 505.0 | 10100 | 1.2740 | 0.5312 | | 0.8229 | 506.0 | 10120 | 1.3573 | 0.4813 | | 0.8229 | 507.0 | 10140 | 1.3158 | 0.4813 | | 0.8229 | 508.0 | 10160 | 1.3025 | 0.5312 | | 0.8229 | 509.0 | 10180 | 1.3504 | 0.4875 | | 0.8229 | 510.0 | 10200 | 1.3390 | 0.4875 | | 0.8229 | 511.0 | 10220 | 1.3464 | 0.5125 | | 0.8229 | 512.0 | 10240 | 1.3318 | 0.45 | | 0.8229 | 513.0 | 10260 | 1.3449 | 0.4875 | | 0.8229 | 514.0 | 10280 | 1.2774 | 0.5312 | | 0.8229 | 515.0 | 10300 | 1.3072 | 0.4813 | | 0.8229 | 516.0 | 10320 | 1.3315 | 0.4625 | | 0.8229 | 517.0 | 10340 | 1.3485 | 0.4813 | | 0.8229 | 518.0 | 10360 | 1.2751 | 0.5437 | | 0.8229 | 519.0 | 10380 | 1.2877 | 0.5375 | | 0.8229 | 520.0 | 10400 | 1.3057 | 0.5188 | | 0.8229 | 521.0 | 10420 | 1.3414 | 0.4688 | | 0.8229 | 522.0 | 10440 | 1.3252 | 0.475 | | 0.8229 | 523.0 | 10460 | 1.3209 | 0.475 | | 0.8229 | 524.0 | 10480 | 1.2846 | 0.5125 | | 0.7853 | 525.0 | 10500 | 1.3378 | 0.4688 | | 0.7853 | 526.0 | 10520 | 1.2980 | 0.5312 | | 0.7853 | 527.0 | 10540 | 1.2855 | 0.4938 | | 0.7853 | 528.0 | 10560 | 1.2948 | 0.5125 | | 0.7853 | 529.0 | 10580 | 1.3149 | 0.5125 | | 0.7853 | 530.0 | 10600 | 1.3239 | 0.55 | | 0.7853 | 531.0 | 10620 | 1.3165 | 0.5188 | | 0.7853 | 532.0 | 10640 | 1.3015 | 0.5125 | | 0.7853 | 533.0 | 10660 | 1.3741 | 0.475 | | 0.7853 | 534.0 | 10680 | 1.3430 | 0.525 | | 0.7853 | 535.0 | 10700 | 1.2847 | 0.5062 | | 0.7853 | 536.0 | 10720 | 1.3284 | 0.5062 | | 0.7853 | 537.0 | 10740 | 1.2532 | 0.55 | | 0.7853 | 538.0 | 10760 | 1.2771 | 0.5437 | | 0.7853 | 539.0 | 10780 | 1.2977 | 0.5375 | | 0.7853 | 540.0 | 10800 | 1.3248 | 0.4938 | | 0.7853 | 541.0 | 10820 | 1.2509 | 0.5437 | | 0.7853 | 542.0 | 10840 | 1.2954 | 0.5062 | | 0.7853 | 543.0 | 10860 | 1.3454 | 0.5 | | 0.7853 | 544.0 | 10880 | 1.3356 | 0.5188 | | 0.7853 | 545.0 | 10900 | 1.3251 | 0.4938 | | 0.7853 | 546.0 | 10920 | 1.3035 | 0.5062 | | 0.7853 | 547.0 | 10940 | 1.2584 | 0.5625 | | 0.7853 | 548.0 | 10960 | 1.2613 | 0.5188 | | 0.7853 | 549.0 | 10980 | 1.2917 | 0.525 | | 0.749 | 550.0 | 11000 | 1.3127 | 0.5125 | | 0.749 | 551.0 | 11020 | 1.3570 | 0.4688 | | 0.749 | 552.0 | 11040 | 1.3004 | 0.5437 | | 0.749 | 553.0 | 11060 | 1.3239 | 0.475 | | 0.749 | 554.0 | 11080 | 1.2988 | 0.5188 | | 0.749 | 555.0 | 11100 | 1.3179 | 0.475 | | 0.749 | 556.0 | 11120 | 1.2800 | 0.525 | | 0.749 | 557.0 | 11140 | 1.3372 | 0.4625 | | 0.749 | 558.0 | 11160 | 1.3328 | 0.475 | | 0.749 | 559.0 | 11180 | 1.3129 | 0.4938 | | 0.749 | 560.0 | 11200 | 1.3230 | 0.4688 | | 0.749 | 561.0 | 11220 | 1.3589 | 0.4938 | | 0.749 | 562.0 | 11240 | 1.3465 | 0.4938 | | 0.749 | 563.0 | 11260 | 1.3101 | 0.5062 | | 0.749 | 564.0 | 11280 | 1.3420 | 0.4688 | | 0.749 | 565.0 | 11300 | 1.2908 | 0.5312 | | 0.749 | 566.0 | 11320 | 1.2794 | 0.525 | | 0.749 | 567.0 | 11340 | 1.2730 | 0.5188 | | 0.749 | 568.0 | 11360 | 1.3563 | 0.4688 | | 0.749 | 569.0 | 11380 | 1.2933 | 0.5 | | 0.749 | 570.0 | 11400 | 1.2991 | 0.5125 | | 0.749 | 571.0 | 11420 | 1.3225 | 0.4875 | | 0.749 | 572.0 | 11440 | 1.3333 | 0.5 | | 0.749 | 573.0 | 11460 | 1.3181 | 0.5 | | 0.749 | 574.0 | 11480 | 1.2859 | 0.525 | | 0.7191 | 575.0 | 11500 | 1.2650 | 0.5062 | | 0.7191 | 576.0 | 11520 | 1.3280 | 0.5062 | | 0.7191 | 577.0 | 11540 | 1.3104 | 0.475 | | 0.7191 | 578.0 | 11560 | 1.2930 | 0.5125 | | 0.7191 | 579.0 | 11580 | 1.2975 | 0.5125 | | 0.7191 | 580.0 | 11600 | 1.3229 | 0.5125 | | 0.7191 | 581.0 | 11620 | 1.2711 | 0.55 | | 0.7191 | 582.0 | 11640 | 1.3605 | 0.4625 | | 0.7191 | 583.0 | 11660 | 1.3356 | 0.4813 | | 0.7191 | 584.0 | 11680 | 1.3470 | 0.5062 | | 0.7191 | 585.0 | 11700 | 1.3186 | 0.4938 | | 0.7191 | 586.0 | 11720 | 1.2996 | 0.5312 | | 0.7191 | 587.0 | 11740 | 1.2796 | 0.5188 | | 0.7191 | 588.0 | 11760 | 1.2969 | 0.5312 | | 0.7191 | 589.0 | 11780 | 1.3024 | 0.4938 | | 0.7191 | 590.0 | 11800 | 1.3289 | 0.4938 | | 0.7191 | 591.0 | 11820 | 1.2850 | 0.5062 | | 0.7191 | 592.0 | 11840 | 1.3677 | 0.4625 | | 0.7191 | 593.0 | 11860 | 1.3232 | 0.4875 | | 0.7191 | 594.0 | 11880 | 1.2918 | 0.475 | | 0.7191 | 595.0 | 11900 | 1.3555 | 0.4437 | | 0.7191 | 596.0 | 11920 | 1.3612 | 0.4813 | | 0.7191 | 597.0 | 11940 | 1.3379 | 0.4813 | | 0.7191 | 598.0 | 11960 | 1.3612 | 0.4938 | | 0.7191 | 599.0 | 11980 | 1.3186 | 0.5 | | 0.6835 | 600.0 | 12000 | 1.3640 | 0.4625 | | 0.6835 | 601.0 | 12020 | 1.3228 | 0.5188 | | 0.6835 | 602.0 | 12040 | 1.3222 | 0.45 | | 0.6835 | 603.0 | 12060 | 1.3341 | 0.4875 | | 0.6835 | 604.0 | 12080 | 1.2262 | 0.575 | | 0.6835 | 605.0 | 12100 | 1.3317 | 0.4688 | | 0.6835 | 606.0 | 12120 | 1.3410 | 0.475 | | 0.6835 | 607.0 | 12140 | 1.3149 | 0.5188 | | 0.6835 | 608.0 | 12160 | 1.3382 | 0.4938 | | 0.6835 | 609.0 | 12180 | 1.3494 | 0.5125 | | 0.6835 | 610.0 | 12200 | 1.2871 | 0.5062 | | 0.6835 | 611.0 | 12220 | 1.3171 | 0.5 | | 0.6835 | 612.0 | 12240 | 1.2573 | 0.5125 | | 0.6835 | 613.0 | 12260 | 1.2936 | 0.5188 | | 0.6835 | 614.0 | 12280 | 1.3191 | 0.475 | | 0.6835 | 615.0 | 12300 | 1.3019 | 0.525 | | 0.6835 | 616.0 | 12320 | 1.2226 | 0.5687 | | 0.6835 | 617.0 | 12340 | 1.3227 | 0.5188 | | 0.6835 | 618.0 | 12360 | 1.2899 | 0.5188 | | 0.6835 | 619.0 | 12380 | 1.2729 | 0.525 | | 0.6835 | 620.0 | 12400 | 1.2784 | 0.55 | | 0.6835 | 621.0 | 12420 | 1.3419 | 0.4875 | | 0.6835 | 622.0 | 12440 | 1.3038 | 0.475 | | 0.6835 | 623.0 | 12460 | 1.2843 | 0.5188 | | 0.6835 | 624.0 | 12480 | 1.3475 | 0.4562 | | 0.6589 | 625.0 | 12500 | 1.3167 | 0.5 | | 0.6589 | 626.0 | 12520 | 1.3463 | 0.4625 | | 0.6589 | 627.0 | 12540 | 1.2807 | 0.55 | | 0.6589 | 628.0 | 12560 | 1.3267 | 0.45 | | 0.6589 | 629.0 | 12580 | 1.3196 | 0.525 | | 0.6589 | 630.0 | 12600 | 1.2697 | 0.5062 | | 0.6589 | 631.0 | 12620 | 1.3384 | 0.4875 | | 0.6589 | 632.0 | 12640 | 1.3414 | 0.4813 | | 0.6589 | 633.0 | 12660 | 1.3142 | 0.5312 | | 0.6589 | 634.0 | 12680 | 1.3511 | 0.4562 | | 0.6589 | 635.0 | 12700 | 1.3485 | 0.4625 | | 0.6589 | 636.0 | 12720 | 1.3063 | 0.5 | | 0.6589 | 637.0 | 12740 | 1.3262 | 0.475 | | 0.6589 | 638.0 | 12760 | 1.3484 | 0.4938 | | 0.6589 | 639.0 | 12780 | 1.3035 | 0.4875 | | 0.6589 | 640.0 | 12800 | 1.3407 | 0.4813 | | 0.6589 | 641.0 | 12820 | 1.3223 | 0.4938 | | 0.6589 | 642.0 | 12840 | 1.3175 | 0.525 | | 0.6589 | 643.0 | 12860 | 1.3643 | 0.4625 | | 0.6589 | 644.0 | 12880 | 1.3467 | 0.4875 | | 0.6589 | 645.0 | 12900 | 1.2972 | 0.5 | | 0.6589 | 646.0 | 12920 | 1.3128 | 0.4938 | | 0.6589 | 647.0 | 12940 | 1.2584 | 0.55 | | 0.6589 | 648.0 | 12960 | 1.3532 | 0.5188 | | 0.6589 | 649.0 | 12980 | 1.3304 | 0.5 | | 0.6247 | 650.0 | 13000 | 1.2754 | 0.5188 | | 0.6247 | 651.0 | 13020 | 1.3032 | 0.5437 | | 0.6247 | 652.0 | 13040 | 1.3035 | 0.5312 | | 0.6247 | 653.0 | 13060 | 1.2854 | 0.525 | | 0.6247 | 654.0 | 13080 | 1.3248 | 0.4875 | | 0.6247 | 655.0 | 13100 | 1.2884 | 0.4813 | | 0.6247 | 656.0 | 13120 | 1.3079 | 0.4938 | | 0.6247 | 657.0 | 13140 | 1.2974 | 0.5125 | | 0.6247 | 658.0 | 13160 | 1.2979 | 0.5125 | | 0.6247 | 659.0 | 13180 | 1.3101 | 0.5062 | | 0.6247 | 660.0 | 13200 | 1.3081 | 0.5 | | 0.6247 | 661.0 | 13220 | 1.3606 | 0.4875 | | 0.6247 | 662.0 | 13240 | 1.2752 | 0.5563 | | 0.6247 | 663.0 | 13260 | 1.2443 | 0.5625 | | 0.6247 | 664.0 | 13280 | 1.3346 | 0.4875 | | 0.6247 | 665.0 | 13300 | 1.2043 | 0.5625 | | 0.6247 | 666.0 | 13320 | 1.2867 | 0.4875 | | 0.6247 | 667.0 | 13340 | 1.3082 | 0.5 | | 0.6247 | 668.0 | 13360 | 1.3648 | 0.5188 | | 0.6247 | 669.0 | 13380 | 1.2744 | 0.5125 | | 0.6247 | 670.0 | 13400 | 1.2452 | 0.5125 | | 0.6247 | 671.0 | 13420 | 1.2823 | 0.5 | | 0.6247 | 672.0 | 13440 | 1.3093 | 0.5125 | | 0.6247 | 673.0 | 13460 | 1.3754 | 0.4938 | | 0.6247 | 674.0 | 13480 | 1.3413 | 0.4688 | | 0.5993 | 675.0 | 13500 | 1.3341 | 0.4625 | | 0.5993 | 676.0 | 13520 | 1.2906 | 0.525 | | 0.5993 | 677.0 | 13540 | 1.3119 | 0.5062 | | 0.5993 | 678.0 | 13560 | 1.3415 | 0.4813 | | 0.5993 | 679.0 | 13580 | 1.3082 | 0.5 | | 0.5993 | 680.0 | 13600 | 1.2932 | 0.5312 | | 0.5993 | 681.0 | 13620 | 1.2672 | 0.5188 | | 0.5993 | 682.0 | 13640 | 1.2797 | 0.5125 | | 0.5993 | 683.0 | 13660 | 1.2356 | 0.5312 | | 0.5993 | 684.0 | 13680 | 1.3172 | 0.5 | | 0.5993 | 685.0 | 13700 | 1.2969 | 0.5437 | | 0.5993 | 686.0 | 13720 | 1.3316 | 0.475 | | 0.5993 | 687.0 | 13740 | 1.3530 | 0.4625 | | 0.5993 | 688.0 | 13760 | 1.2476 | 0.5437 | | 0.5993 | 689.0 | 13780 | 1.3471 | 0.5062 | | 0.5993 | 690.0 | 13800 | 1.3207 | 0.525 | | 0.5993 | 691.0 | 13820 | 1.2905 | 0.5 | | 0.5993 | 692.0 | 13840 | 1.2277 | 0.5375 | | 0.5993 | 693.0 | 13860 | 1.2620 | 0.5312 | | 0.5993 | 694.0 | 13880 | 1.2902 | 0.525 | | 0.5993 | 695.0 | 13900 | 1.2927 | 0.5062 | | 0.5993 | 696.0 | 13920 | 1.3005 | 0.5125 | | 0.5993 | 697.0 | 13940 | 1.2722 | 0.5125 | | 0.5993 | 698.0 | 13960 | 1.4361 | 0.4375 | | 0.5993 | 699.0 | 13980 | 1.3325 | 0.4875 | | 0.576 | 700.0 | 14000 | 1.3448 | 0.4688 | | 0.576 | 701.0 | 14020 | 1.3347 | 0.5062 | | 0.576 | 702.0 | 14040 | 1.3598 | 0.5 | | 0.576 | 703.0 | 14060 | 1.3541 | 0.4813 | | 0.576 | 704.0 | 14080 | 1.2408 | 0.5062 | | 0.576 | 705.0 | 14100 | 1.3499 | 0.475 | | 0.576 | 706.0 | 14120 | 1.3265 | 0.45 | | 0.576 | 707.0 | 14140 | 1.2756 | 0.5062 | | 0.576 | 708.0 | 14160 | 1.3324 | 0.4813 | | 0.576 | 709.0 | 14180 | 1.3072 | 0.4875 | | 0.576 | 710.0 | 14200 | 1.2447 | 0.5188 | | 0.576 | 711.0 | 14220 | 1.3463 | 0.5062 | | 0.576 | 712.0 | 14240 | 1.3573 | 0.475 | | 0.576 | 713.0 | 14260 | 1.3616 | 0.4688 | | 0.576 | 714.0 | 14280 | 1.2648 | 0.5437 | | 0.576 | 715.0 | 14300 | 1.3533 | 0.5 | | 0.576 | 716.0 | 14320 | 1.3224 | 0.4875 | | 0.576 | 717.0 | 14340 | 1.2633 | 0.5062 | | 0.576 | 718.0 | 14360 | 1.3340 | 0.4938 | | 0.576 | 719.0 | 14380 | 1.3129 | 0.5312 | | 0.576 | 720.0 | 14400 | 1.3004 | 0.5125 | | 0.576 | 721.0 | 14420 | 1.3615 | 0.475 | | 0.576 | 722.0 | 14440 | 1.3512 | 0.5062 | | 0.576 | 723.0 | 14460 | 1.2956 | 0.525 | | 0.576 | 724.0 | 14480 | 1.3522 | 0.5 | | 0.5537 | 725.0 | 14500 | 1.3350 | 0.5062 | | 0.5537 | 726.0 | 14520 | 1.3446 | 0.4938 | | 0.5537 | 727.0 | 14540 | 1.3539 | 0.5062 | | 0.5537 | 728.0 | 14560 | 1.3256 | 0.525 | | 0.5537 | 729.0 | 14580 | 1.3233 | 0.475 | | 0.5537 | 730.0 | 14600 | 1.3513 | 0.5 | | 0.5537 | 731.0 | 14620 | 1.3180 | 0.5125 | | 0.5537 | 732.0 | 14640 | 1.3848 | 0.4813 | | 0.5537 | 733.0 | 14660 | 1.3244 | 0.4875 | | 0.5537 | 734.0 | 14680 | 1.2924 | 0.5188 | | 0.5537 | 735.0 | 14700 | 1.2813 | 0.4875 | | 0.5537 | 736.0 | 14720 | 1.3493 | 0.5 | | 0.5537 | 737.0 | 14740 | 1.2850 | 0.5312 | | 0.5537 | 738.0 | 14760 | 1.3904 | 0.5125 | | 0.5537 | 739.0 | 14780 | 1.2986 | 0.5188 | | 0.5537 | 740.0 | 14800 | 1.3292 | 0.5062 | | 0.5537 | 741.0 | 14820 | 1.3138 | 0.5125 | | 0.5537 | 742.0 | 14840 | 1.3240 | 0.475 | | 0.5537 | 743.0 | 14860 | 1.3288 | 0.4688 | | 0.5537 | 744.0 | 14880 | 1.3290 | 0.5188 | | 0.5537 | 745.0 | 14900 | 1.3662 | 0.5125 | | 0.5537 | 746.0 | 14920 | 1.3504 | 0.4938 | | 0.5537 | 747.0 | 14940 | 1.2914 | 0.5312 | | 0.5537 | 748.0 | 14960 | 1.3464 | 0.475 | | 0.5537 | 749.0 | 14980 | 1.3561 | 0.4813 | | 0.5294 | 750.0 | 15000 | 1.3434 | 0.5125 | | 0.5294 | 751.0 | 15020 | 1.4302 | 0.4562 | | 0.5294 | 752.0 | 15040 | 1.3248 | 0.5125 | | 0.5294 | 753.0 | 15060 | 1.3248 | 0.5125 | | 0.5294 | 754.0 | 15080 | 1.3308 | 0.5375 | | 0.5294 | 755.0 | 15100 | 1.3946 | 0.5 | | 0.5294 | 756.0 | 15120 | 1.4397 | 0.4375 | | 0.5294 | 757.0 | 15140 | 1.3823 | 0.4813 | | 0.5294 | 758.0 | 15160 | 1.3018 | 0.5188 | | 0.5294 | 759.0 | 15180 | 1.3330 | 0.5375 | | 0.5294 | 760.0 | 15200 | 1.3385 | 0.4938 | | 0.5294 | 761.0 | 15220 | 1.3248 | 0.4938 | | 0.5294 | 762.0 | 15240 | 1.2794 | 0.525 | | 0.5294 | 763.0 | 15260 | 1.2904 | 0.5125 | | 0.5294 | 764.0 | 15280 | 1.3265 | 0.5188 | | 0.5294 | 765.0 | 15300 | 1.3163 | 0.5188 | | 0.5294 | 766.0 | 15320 | 1.3473 | 0.5 | | 0.5294 | 767.0 | 15340 | 1.3061 | 0.5 | | 0.5294 | 768.0 | 15360 | 1.3968 | 0.4813 | | 0.5294 | 769.0 | 15380 | 1.3855 | 0.475 | | 0.5294 | 770.0 | 15400 | 1.3763 | 0.4875 | | 0.5294 | 771.0 | 15420 | 1.3754 | 0.4437 | | 0.5294 | 772.0 | 15440 | 1.3707 | 0.4688 | | 0.5294 | 773.0 | 15460 | 1.4068 | 0.4813 | | 0.5294 | 774.0 | 15480 | 1.3008 | 0.5062 | | 0.5186 | 775.0 | 15500 | 1.3429 | 0.4875 | | 0.5186 | 776.0 | 15520 | 1.2058 | 0.5563 | | 0.5186 | 777.0 | 15540 | 1.3625 | 0.4875 | | 0.5186 | 778.0 | 15560 | 1.3213 | 0.4688 | | 0.5186 | 779.0 | 15580 | 1.3350 | 0.5062 | | 0.5186 | 780.0 | 15600 | 1.2739 | 0.5312 | | 0.5186 | 781.0 | 15620 | 1.2801 | 0.5125 | | 0.5186 | 782.0 | 15640 | 1.3048 | 0.4875 | | 0.5186 | 783.0 | 15660 | 1.2901 | 0.5312 | | 0.5186 | 784.0 | 15680 | 1.3093 | 0.5062 | | 0.5186 | 785.0 | 15700 | 1.2931 | 0.5062 | | 0.5186 | 786.0 | 15720 | 1.3164 | 0.4813 | | 0.5186 | 787.0 | 15740 | 1.3310 | 0.5188 | | 0.5186 | 788.0 | 15760 | 1.3160 | 0.4938 | | 0.5186 | 789.0 | 15780 | 1.3739 | 0.475 | | 0.5186 | 790.0 | 15800 | 1.3391 | 0.5 | | 0.5186 | 791.0 | 15820 | 1.3376 | 0.4938 | | 0.5186 | 792.0 | 15840 | 1.4375 | 0.4313 | | 0.5186 | 793.0 | 15860 | 1.3268 | 0.5188 | | 0.5186 | 794.0 | 15880 | 1.3147 | 0.5125 | | 0.5186 | 795.0 | 15900 | 1.3460 | 0.5 | | 0.5186 | 796.0 | 15920 | 1.2923 | 0.5062 | | 0.5186 | 797.0 | 15940 | 1.2991 | 0.5125 | | 0.5186 | 798.0 | 15960 | 1.3307 | 0.525 | | 0.5186 | 799.0 | 15980 | 1.3394 | 0.5062 | | 0.4947 | 800.0 | 16000 | 1.2811 | 0.5062 | | 0.4947 | 801.0 | 16020 | 1.3949 | 0.4625 | | 0.4947 | 802.0 | 16040 | 1.4106 | 0.4375 | | 0.4947 | 803.0 | 16060 | 1.3262 | 0.4938 | | 0.4947 | 804.0 | 16080 | 1.3248 | 0.5062 | | 0.4947 | 805.0 | 16100 | 1.2709 | 0.5312 | | 0.4947 | 806.0 | 16120 | 1.2974 | 0.5375 | | 0.4947 | 807.0 | 16140 | 1.3104 | 0.5375 | | 0.4947 | 808.0 | 16160 | 1.2601 | 0.5437 | | 0.4947 | 809.0 | 16180 | 1.2655 | 0.4813 | | 0.4947 | 810.0 | 16200 | 1.2922 | 0.5062 | | 0.4947 | 811.0 | 16220 | 1.3207 | 0.5 | | 0.4947 | 812.0 | 16240 | 1.2712 | 0.4875 | | 0.4947 | 813.0 | 16260 | 1.3517 | 0.4813 | | 0.4947 | 814.0 | 16280 | 1.3267 | 0.5 | | 0.4947 | 815.0 | 16300 | 1.3889 | 0.4938 | | 0.4947 | 816.0 | 16320 | 1.3924 | 0.5 | | 0.4947 | 817.0 | 16340 | 1.3344 | 0.5125 | | 0.4947 | 818.0 | 16360 | 1.3738 | 0.475 | | 0.4947 | 819.0 | 16380 | 1.2914 | 0.55 | | 0.4947 | 820.0 | 16400 | 1.3369 | 0.5312 | | 0.4947 | 821.0 | 16420 | 1.3409 | 0.5375 | | 0.4947 | 822.0 | 16440 | 1.3930 | 0.4688 | | 0.4947 | 823.0 | 16460 | 1.3333 | 0.4813 | | 0.4947 | 824.0 | 16480 | 1.3445 | 0.5062 | | 0.4718 | 825.0 | 16500 | 1.3190 | 0.5312 | | 0.4718 | 826.0 | 16520 | 1.3186 | 0.5375 | | 0.4718 | 827.0 | 16540 | 1.3610 | 0.4625 | | 0.4718 | 828.0 | 16560 | 1.3106 | 0.4938 | | 0.4718 | 829.0 | 16580 | 1.4310 | 0.4437 | | 0.4718 | 830.0 | 16600 | 1.3082 | 0.5188 | | 0.4718 | 831.0 | 16620 | 1.3841 | 0.4875 | | 0.4718 | 832.0 | 16640 | 1.4182 | 0.4813 | | 0.4718 | 833.0 | 16660 | 1.3371 | 0.5125 | | 0.4718 | 834.0 | 16680 | 1.3046 | 0.5062 | | 0.4718 | 835.0 | 16700 | 1.3099 | 0.5125 | | 0.4718 | 836.0 | 16720 | 1.3696 | 0.5062 | | 0.4718 | 837.0 | 16740 | 1.3304 | 0.4875 | | 0.4718 | 838.0 | 16760 | 1.2898 | 0.55 | | 0.4718 | 839.0 | 16780 | 1.3310 | 0.4938 | | 0.4718 | 840.0 | 16800 | 1.3072 | 0.5 | | 0.4718 | 841.0 | 16820 | 1.2851 | 0.5375 | | 0.4718 | 842.0 | 16840 | 1.3404 | 0.475 | | 0.4718 | 843.0 | 16860 | 1.3778 | 0.5 | | 0.4718 | 844.0 | 16880 | 1.3602 | 0.4813 | | 0.4718 | 845.0 | 16900 | 1.3457 | 0.55 | | 0.4718 | 846.0 | 16920 | 1.4227 | 0.4625 | | 0.4718 | 847.0 | 16940 | 1.3969 | 0.475 | | 0.4718 | 848.0 | 16960 | 1.3719 | 0.4813 | | 0.4718 | 849.0 | 16980 | 1.3967 | 0.4938 | | 0.4617 | 850.0 | 17000 | 1.3255 | 0.4938 | | 0.4617 | 851.0 | 17020 | 1.3764 | 0.5312 | | 0.4617 | 852.0 | 17040 | 1.3187 | 0.5062 | | 0.4617 | 853.0 | 17060 | 1.3389 | 0.5125 | | 0.4617 | 854.0 | 17080 | 1.2804 | 0.5375 | | 0.4617 | 855.0 | 17100 | 1.3542 | 0.4875 | | 0.4617 | 856.0 | 17120 | 1.3040 | 0.4875 | | 0.4617 | 857.0 | 17140 | 1.3651 | 0.475 | | 0.4617 | 858.0 | 17160 | 1.3485 | 0.475 | | 0.4617 | 859.0 | 17180 | 1.3163 | 0.5188 | | 0.4617 | 860.0 | 17200 | 1.3014 | 0.5437 | | 0.4617 | 861.0 | 17220 | 1.2816 | 0.5437 | | 0.4617 | 862.0 | 17240 | 1.2966 | 0.5188 | | 0.4617 | 863.0 | 17260 | 1.3530 | 0.475 | | 0.4617 | 864.0 | 17280 | 1.3758 | 0.4375 | | 0.4617 | 865.0 | 17300 | 1.3664 | 0.5062 | | 0.4617 | 866.0 | 17320 | 1.3368 | 0.5 | | 0.4617 | 867.0 | 17340 | 1.4091 | 0.5 | | 0.4617 | 868.0 | 17360 | 1.3439 | 0.5312 | | 0.4617 | 869.0 | 17380 | 1.2499 | 0.525 | | 0.4617 | 870.0 | 17400 | 1.3469 | 0.525 | | 0.4617 | 871.0 | 17420 | 1.3525 | 0.4938 | | 0.4617 | 872.0 | 17440 | 1.3385 | 0.4813 | | 0.4617 | 873.0 | 17460 | 1.3979 | 0.5188 | | 0.4617 | 874.0 | 17480 | 1.3768 | 0.5125 | | 0.4434 | 875.0 | 17500 | 1.2682 | 0.5125 | | 0.4434 | 876.0 | 17520 | 1.3168 | 0.5188 | | 0.4434 | 877.0 | 17540 | 1.2967 | 0.5312 | | 0.4434 | 878.0 | 17560 | 1.3301 | 0.4688 | | 0.4434 | 879.0 | 17580 | 1.3409 | 0.525 | | 0.4434 | 880.0 | 17600 | 1.3483 | 0.5188 | | 0.4434 | 881.0 | 17620 | 1.4506 | 0.4437 | | 0.4434 | 882.0 | 17640 | 1.3356 | 0.5375 | | 0.4434 | 883.0 | 17660 | 1.3719 | 0.5188 | | 0.4434 | 884.0 | 17680 | 1.3545 | 0.5125 | | 0.4434 | 885.0 | 17700 | 1.3318 | 0.4938 | | 0.4434 | 886.0 | 17720 | 1.3453 | 0.475 | | 0.4434 | 887.0 | 17740 | 1.3097 | 0.5125 | | 0.4434 | 888.0 | 17760 | 1.3564 | 0.5062 | | 0.4434 | 889.0 | 17780 | 1.3002 | 0.525 | | 0.4434 | 890.0 | 17800 | 1.3060 | 0.4938 | | 0.4434 | 891.0 | 17820 | 1.3436 | 0.5 | | 0.4434 | 892.0 | 17840 | 1.3259 | 0.5375 | | 0.4434 | 893.0 | 17860 | 1.3651 | 0.5062 | | 0.4434 | 894.0 | 17880 | 1.3443 | 0.5062 | | 0.4434 | 895.0 | 17900 | 1.2944 | 0.5312 | | 0.4434 | 896.0 | 17920 | 1.3400 | 0.5062 | | 0.4434 | 897.0 | 17940 | 1.2620 | 0.5625 | | 0.4434 | 898.0 | 17960 | 1.3480 | 0.4813 | | 0.4434 | 899.0 | 17980 | 1.3579 | 0.4813 | | 0.4291 | 900.0 | 18000 | 1.3011 | 0.5188 | | 0.4291 | 901.0 | 18020 | 1.4301 | 0.45 | | 0.4291 | 902.0 | 18040 | 1.3234 | 0.5062 | | 0.4291 | 903.0 | 18060 | 1.3902 | 0.475 | | 0.4291 | 904.0 | 18080 | 1.3479 | 0.5062 | | 0.4291 | 905.0 | 18100 | 1.3450 | 0.5437 | | 0.4291 | 906.0 | 18120 | 1.2925 | 0.5625 | | 0.4291 | 907.0 | 18140 | 1.3148 | 0.4938 | | 0.4291 | 908.0 | 18160 | 1.3354 | 0.5 | | 0.4291 | 909.0 | 18180 | 1.2772 | 0.5625 | | 0.4291 | 910.0 | 18200 | 1.3245 | 0.5 | | 0.4291 | 911.0 | 18220 | 1.3660 | 0.525 | | 0.4291 | 912.0 | 18240 | 1.3492 | 0.4875 | | 0.4291 | 913.0 | 18260 | 1.3098 | 0.5062 | | 0.4291 | 914.0 | 18280 | 1.3008 | 0.5125 | | 0.4291 | 915.0 | 18300 | 1.2793 | 0.5437 | | 0.4291 | 916.0 | 18320 | 1.3881 | 0.5062 | | 0.4291 | 917.0 | 18340 | 1.3288 | 0.5062 | | 0.4291 | 918.0 | 18360 | 1.3486 | 0.5062 | | 0.4291 | 919.0 | 18380 | 1.4146 | 0.4938 | | 0.4291 | 920.0 | 18400 | 1.3902 | 0.5062 | | 0.4291 | 921.0 | 18420 | 1.4141 | 0.475 | | 0.4291 | 922.0 | 18440 | 1.3744 | 0.4875 | | 0.4291 | 923.0 | 18460 | 1.3035 | 0.5 | | 0.4291 | 924.0 | 18480 | 1.3196 | 0.525 | | 0.4131 | 925.0 | 18500 | 1.3486 | 0.5062 | | 0.4131 | 926.0 | 18520 | 1.3279 | 0.5062 | | 0.4131 | 927.0 | 18540 | 1.3890 | 0.4875 | | 0.4131 | 928.0 | 18560 | 1.3690 | 0.475 | | 0.4131 | 929.0 | 18580 | 1.3106 | 0.5437 | | 0.4131 | 930.0 | 18600 | 1.4345 | 0.4625 | | 0.4131 | 931.0 | 18620 | 1.3596 | 0.5312 | | 0.4131 | 932.0 | 18640 | 1.3857 | 0.5062 | | 0.4131 | 933.0 | 18660 | 1.3585 | 0.4875 | | 0.4131 | 934.0 | 18680 | 1.3781 | 0.5125 | | 0.4131 | 935.0 | 18700 | 1.3371 | 0.5375 | | 0.4131 | 936.0 | 18720 | 1.2836 | 0.5625 | | 0.4131 | 937.0 | 18740 | 1.3816 | 0.5062 | | 0.4131 | 938.0 | 18760 | 1.3404 | 0.5062 | | 0.4131 | 939.0 | 18780 | 1.3798 | 0.525 | | 0.4131 | 940.0 | 18800 | 1.2975 | 0.5563 | | 0.4131 | 941.0 | 18820 | 1.4068 | 0.5125 | | 0.4131 | 942.0 | 18840 | 1.2454 | 0.5563 | | 0.4131 | 943.0 | 18860 | 1.3920 | 0.4688 | | 0.4131 | 944.0 | 18880 | 1.4043 | 0.4562 | | 0.4131 | 945.0 | 18900 | 1.4798 | 0.4875 | | 0.4131 | 946.0 | 18920 | 1.3545 | 0.5125 | | 0.4131 | 947.0 | 18940 | 1.4454 | 0.4688 | | 0.4131 | 948.0 | 18960 | 1.3438 | 0.5125 | | 0.4131 | 949.0 | 18980 | 1.3395 | 0.5188 | | 0.4118 | 950.0 | 19000 | 1.3962 | 0.4938 | | 0.4118 | 951.0 | 19020 | 1.4163 | 0.4813 | | 0.4118 | 952.0 | 19040 | 1.3619 | 0.4625 | | 0.4118 | 953.0 | 19060 | 1.3562 | 0.4938 | | 0.4118 | 954.0 | 19080 | 1.4076 | 0.4688 | | 0.4118 | 955.0 | 19100 | 1.3647 | 0.5125 | | 0.4118 | 956.0 | 19120 | 1.2197 | 0.6062 | | 0.4118 | 957.0 | 19140 | 1.3545 | 0.525 | | 0.4118 | 958.0 | 19160 | 1.3208 | 0.5375 | | 0.4118 | 959.0 | 19180 | 1.3613 | 0.4938 | | 0.4118 | 960.0 | 19200 | 1.4186 | 0.4625 | | 0.4118 | 961.0 | 19220 | 1.3911 | 0.475 | | 0.4118 | 962.0 | 19240 | 1.3046 | 0.5188 | | 0.4118 | 963.0 | 19260 | 1.4946 | 0.4625 | | 0.4118 | 964.0 | 19280 | 1.3376 | 0.525 | | 0.4118 | 965.0 | 19300 | 1.2985 | 0.575 | | 0.4118 | 966.0 | 19320 | 1.4687 | 0.4688 | | 0.4118 | 967.0 | 19340 | 1.3920 | 0.5062 | | 0.4118 | 968.0 | 19360 | 1.3530 | 0.5188 | | 0.4118 | 969.0 | 19380 | 1.3651 | 0.5 | | 0.4118 | 970.0 | 19400 | 1.3075 | 0.5312 | | 0.4118 | 971.0 | 19420 | 1.3934 | 0.4875 | | 0.4118 | 972.0 | 19440 | 1.4059 | 0.5 | | 0.4118 | 973.0 | 19460 | 1.3216 | 0.475 | | 0.4118 | 974.0 | 19480 | 1.4060 | 0.4875 | | 0.389 | 975.0 | 19500 | 1.3715 | 0.5 | | 0.389 | 976.0 | 19520 | 1.3340 | 0.5437 | | 0.389 | 977.0 | 19540 | 1.3194 | 0.5188 | | 0.389 | 978.0 | 19560 | 1.3989 | 0.4875 | | 0.389 | 979.0 | 19580 | 1.3117 | 0.5312 | | 0.389 | 980.0 | 19600 | 1.3618 | 0.5062 | | 0.389 | 981.0 | 19620 | 1.4768 | 0.4688 | | 0.389 | 982.0 | 19640 | 1.4180 | 0.4938 | | 0.389 | 983.0 | 19660 | 1.4036 | 0.5062 | | 0.389 | 984.0 | 19680 | 1.3403 | 0.5437 | | 0.389 | 985.0 | 19700 | 1.4022 | 0.4813 | | 0.389 | 986.0 | 19720 | 1.3421 | 0.4938 | | 0.389 | 987.0 | 19740 | 1.3988 | 0.4938 | | 0.389 | 988.0 | 19760 | 1.4211 | 0.45 | | 0.389 | 989.0 | 19780 | 1.3171 | 0.5375 | | 0.389 | 990.0 | 19800 | 1.3211 | 0.5125 | | 0.389 | 991.0 | 19820 | 1.3275 | 0.5 | | 0.389 | 992.0 | 19840 | 1.4225 | 0.4625 | | 0.389 | 993.0 | 19860 | 1.3823 | 0.4875 | | 0.389 | 994.0 | 19880 | 1.4464 | 0.4875 | | 0.389 | 995.0 | 19900 | 1.3581 | 0.4938 | | 0.389 | 996.0 | 19920 | 1.4792 | 0.4313 | | 0.389 | 997.0 | 19940 | 1.4221 | 0.4688 | | 0.389 | 998.0 | 19960 | 1.3317 | 0.5437 | | 0.389 | 999.0 | 19980 | 1.3628 | 0.5 | | 0.3773 | 1000.0 | 20000 | 1.4181 | 0.4938 | | 0.3773 | 1001.0 | 20020 | 1.3882 | 0.5312 | | 0.3773 | 1002.0 | 20040 | 1.4141 | 0.4562 | | 0.3773 | 1003.0 | 20060 | 1.4038 | 0.4813 | | 0.3773 | 1004.0 | 20080 | 1.3212 | 0.5687 | | 0.3773 | 1005.0 | 20100 | 1.4048 | 0.5062 | | 0.3773 | 1006.0 | 20120 | 1.4591 | 0.5062 | | 0.3773 | 1007.0 | 20140 | 1.3579 | 0.5125 | | 0.3773 | 1008.0 | 20160 | 1.3681 | 0.5 | | 0.3773 | 1009.0 | 20180 | 1.3616 | 0.5437 | | 0.3773 | 1010.0 | 20200 | 1.3624 | 0.4875 | | 0.3773 | 1011.0 | 20220 | 1.3662 | 0.5062 | | 0.3773 | 1012.0 | 20240 | 1.4818 | 0.475 | | 0.3773 | 1013.0 | 20260 | 1.3481 | 0.5125 | | 0.3773 | 1014.0 | 20280 | 1.3014 | 0.5437 | | 0.3773 | 1015.0 | 20300 | 1.3190 | 0.525 | | 0.3773 | 1016.0 | 20320 | 1.3832 | 0.4938 | | 0.3773 | 1017.0 | 20340 | 1.4199 | 0.475 | | 0.3773 | 1018.0 | 20360 | 1.3887 | 0.5 | | 0.3773 | 1019.0 | 20380 | 1.3932 | 0.4875 | | 0.3773 | 1020.0 | 20400 | 1.3924 | 0.5188 | | 0.3773 | 1021.0 | 20420 | 1.3478 | 0.5312 | | 0.3773 | 1022.0 | 20440 | 1.3848 | 0.5125 | | 0.3773 | 1023.0 | 20460 | 1.3991 | 0.5375 | | 0.3773 | 1024.0 | 20480 | 1.2987 | 0.5312 | | 0.3712 | 1025.0 | 20500 | 1.3086 | 0.5312 | | 0.3712 | 1026.0 | 20520 | 1.4272 | 0.5 | | 0.3712 | 1027.0 | 20540 | 1.3730 | 0.475 | | 0.3712 | 1028.0 | 20560 | 1.3770 | 0.5062 | | 0.3712 | 1029.0 | 20580 | 1.4654 | 0.475 | | 0.3712 | 1030.0 | 20600 | 1.4238 | 0.5062 | | 0.3712 | 1031.0 | 20620 | 1.4792 | 0.4625 | | 0.3712 | 1032.0 | 20640 | 1.3344 | 0.5188 | | 0.3712 | 1033.0 | 20660 | 1.3322 | 0.5563 | | 0.3712 | 1034.0 | 20680 | 1.3447 | 0.5375 | | 0.3712 | 1035.0 | 20700 | 1.4399 | 0.4625 | | 0.3712 | 1036.0 | 20720 | 1.4378 | 0.4562 | | 0.3712 | 1037.0 | 20740 | 1.4472 | 0.5188 | | 0.3712 | 1038.0 | 20760 | 1.2787 | 0.5625 | | 0.3712 | 1039.0 | 20780 | 1.3667 | 0.4938 | | 0.3712 | 1040.0 | 20800 | 1.3867 | 0.4625 | | 0.3712 | 1041.0 | 20820 | 1.3250 | 0.5 | | 0.3712 | 1042.0 | 20840 | 1.4041 | 0.4813 | | 0.3712 | 1043.0 | 20860 | 1.3276 | 0.5437 | | 0.3712 | 1044.0 | 20880 | 1.2899 | 0.5188 | | 0.3712 | 1045.0 | 20900 | 1.4114 | 0.4625 | | 0.3712 | 1046.0 | 20920 | 1.3681 | 0.5062 | | 0.3712 | 1047.0 | 20940 | 1.3738 | 0.5563 | | 0.3712 | 1048.0 | 20960 | 1.3565 | 0.5375 | | 0.3712 | 1049.0 | 20980 | 1.4105 | 0.4625 | | 0.3584 | 1050.0 | 21000 | 1.3205 | 0.55 | | 0.3584 | 1051.0 | 21020 | 1.5080 | 0.4375 | | 0.3584 | 1052.0 | 21040 | 1.3514 | 0.4813 | | 0.3584 | 1053.0 | 21060 | 1.3686 | 0.475 | | 0.3584 | 1054.0 | 21080 | 1.3817 | 0.4938 | | 0.3584 | 1055.0 | 21100 | 1.3857 | 0.5125 | | 0.3584 | 1056.0 | 21120 | 1.3084 | 0.5188 | | 0.3584 | 1057.0 | 21140 | 1.3190 | 0.5563 | | 0.3584 | 1058.0 | 21160 | 1.4350 | 0.4813 | | 0.3584 | 1059.0 | 21180 | 1.3044 | 0.5625 | | 0.3584 | 1060.0 | 21200 | 1.3815 | 0.4938 | | 0.3584 | 1061.0 | 21220 | 1.3732 | 0.5188 | | 0.3584 | 1062.0 | 21240 | 1.3175 | 0.5563 | | 0.3584 | 1063.0 | 21260 | 1.2658 | 0.5437 | | 0.3584 | 1064.0 | 21280 | 1.3472 | 0.4875 | | 0.3584 | 1065.0 | 21300 | 1.4301 | 0.4625 | | 0.3584 | 1066.0 | 21320 | 1.3619 | 0.475 | | 0.3584 | 1067.0 | 21340 | 1.3619 | 0.5125 | | 0.3584 | 1068.0 | 21360 | 1.3993 | 0.5125 | | 0.3584 | 1069.0 | 21380 | 1.4224 | 0.5 | | 0.3584 | 1070.0 | 21400 | 1.3944 | 0.5125 | | 0.3584 | 1071.0 | 21420 | 1.4229 | 0.4938 | | 0.3584 | 1072.0 | 21440 | 1.4713 | 0.4688 | | 0.3584 | 1073.0 | 21460 | 1.4545 | 0.45 | | 0.3584 | 1074.0 | 21480 | 1.3642 | 0.5312 | | 0.3505 | 1075.0 | 21500 | 1.4090 | 0.5 | | 0.3505 | 1076.0 | 21520 | 1.3690 | 0.5125 | | 0.3505 | 1077.0 | 21540 | 1.2777 | 0.55 | | 0.3505 | 1078.0 | 21560 | 1.3040 | 0.5563 | | 0.3505 | 1079.0 | 21580 | 1.4517 | 0.4562 | | 0.3505 | 1080.0 | 21600 | 1.4383 | 0.4875 | | 0.3505 | 1081.0 | 21620 | 1.4173 | 0.4938 | | 0.3505 | 1082.0 | 21640 | 1.4372 | 0.4813 | | 0.3505 | 1083.0 | 21660 | 1.3728 | 0.475 | | 0.3505 | 1084.0 | 21680 | 1.3340 | 0.5375 | | 0.3505 | 1085.0 | 21700 | 1.4723 | 0.4562 | | 0.3505 | 1086.0 | 21720 | 1.4362 | 0.4625 | | 0.3505 | 1087.0 | 21740 | 1.4267 | 0.4375 | | 0.3505 | 1088.0 | 21760 | 1.4604 | 0.4875 | | 0.3505 | 1089.0 | 21780 | 1.2826 | 0.55 | | 0.3505 | 1090.0 | 21800 | 1.4127 | 0.4938 | | 0.3505 | 1091.0 | 21820 | 1.3664 | 0.525 | | 0.3505 | 1092.0 | 21840 | 1.3221 | 0.4875 | | 0.3505 | 1093.0 | 21860 | 1.4135 | 0.4813 | | 0.3505 | 1094.0 | 21880 | 1.3625 | 0.4875 | | 0.3505 | 1095.0 | 21900 | 1.3873 | 0.5062 | | 0.3505 | 1096.0 | 21920 | 1.4004 | 0.5 | | 0.3505 | 1097.0 | 21940 | 1.4268 | 0.475 | | 0.3505 | 1098.0 | 21960 | 1.4805 | 0.4813 | | 0.3505 | 1099.0 | 21980 | 1.4542 | 0.45 | | 0.3476 | 1100.0 | 22000 | 1.4252 | 0.4688 | | 0.3476 | 1101.0 | 22020 | 1.3678 | 0.525 | | 0.3476 | 1102.0 | 22040 | 1.3359 | 0.525 | | 0.3476 | 1103.0 | 22060 | 1.3804 | 0.5563 | | 0.3476 | 1104.0 | 22080 | 1.3264 | 0.4938 | | 0.3476 | 1105.0 | 22100 | 1.4641 | 0.4938 | | 0.3476 | 1106.0 | 22120 | 1.3290 | 0.5312 | | 0.3476 | 1107.0 | 22140 | 1.3950 | 0.5312 | | 0.3476 | 1108.0 | 22160 | 1.4626 | 0.4813 | | 0.3476 | 1109.0 | 22180 | 1.4356 | 0.5 | | 0.3476 | 1110.0 | 22200 | 1.4076 | 0.525 | | 0.3476 | 1111.0 | 22220 | 1.3678 | 0.5 | | 0.3476 | 1112.0 | 22240 | 1.4537 | 0.475 | | 0.3476 | 1113.0 | 22260 | 1.3678 | 0.4688 | | 0.3476 | 1114.0 | 22280 | 1.4392 | 0.5 | | 0.3476 | 1115.0 | 22300 | 1.4576 | 0.4813 | | 0.3476 | 1116.0 | 22320 | 1.4588 | 0.4875 | | 0.3476 | 1117.0 | 22340 | 1.3955 | 0.4938 | | 0.3476 | 1118.0 | 22360 | 1.3751 | 0.5312 | | 0.3476 | 1119.0 | 22380 | 1.4029 | 0.4875 | | 0.3476 | 1120.0 | 22400 | 1.4018 | 0.4875 | | 0.3476 | 1121.0 | 22420 | 1.4481 | 0.4625 | | 0.3476 | 1122.0 | 22440 | 1.3728 | 0.475 | | 0.3476 | 1123.0 | 22460 | 1.3973 | 0.5062 | | 0.3476 | 1124.0 | 22480 | 1.4391 | 0.475 | | 0.3385 | 1125.0 | 22500 | 1.4272 | 0.5125 | | 0.3385 | 1126.0 | 22520 | 1.4857 | 0.45 | | 0.3385 | 1127.0 | 22540 | 1.5194 | 0.475 | | 0.3385 | 1128.0 | 22560 | 1.4461 | 0.4938 | | 0.3385 | 1129.0 | 22580 | 1.4275 | 0.5 | | 0.3385 | 1130.0 | 22600 | 1.3560 | 0.525 | | 0.3385 | 1131.0 | 22620 | 1.4456 | 0.4875 | | 0.3385 | 1132.0 | 22640 | 1.4478 | 0.4813 | | 0.3385 | 1133.0 | 22660 | 1.4202 | 0.5125 | | 0.3385 | 1134.0 | 22680 | 1.4198 | 0.4938 | | 0.3385 | 1135.0 | 22700 | 1.3903 | 0.5188 | | 0.3385 | 1136.0 | 22720 | 1.3970 | 0.4875 | | 0.3385 | 1137.0 | 22740 | 1.4442 | 0.5062 | | 0.3385 | 1138.0 | 22760 | 1.4369 | 0.5125 | | 0.3385 | 1139.0 | 22780 | 1.4121 | 0.4813 | | 0.3385 | 1140.0 | 22800 | 1.4603 | 0.475 | | 0.3385 | 1141.0 | 22820 | 1.4605 | 0.5188 | | 0.3385 | 1142.0 | 22840 | 1.4802 | 0.4813 | | 0.3385 | 1143.0 | 22860 | 1.4595 | 0.4688 | | 0.3385 | 1144.0 | 22880 | 1.3355 | 0.5437 | | 0.3385 | 1145.0 | 22900 | 1.4476 | 0.5 | | 0.3385 | 1146.0 | 22920 | 1.3267 | 0.525 | | 0.3385 | 1147.0 | 22940 | 1.4033 | 0.5312 | | 0.3385 | 1148.0 | 22960 | 1.3335 | 0.4938 | | 0.3385 | 1149.0 | 22980 | 1.4066 | 0.5125 | | 0.3268 | 1150.0 | 23000 | 1.3459 | 0.525 | | 0.3268 | 1151.0 | 23020 | 1.4167 | 0.5125 | | 0.3268 | 1152.0 | 23040 | 1.3946 | 0.5 | | 0.3268 | 1153.0 | 23060 | 1.3246 | 0.5188 | | 0.3268 | 1154.0 | 23080 | 1.4830 | 0.45 | | 0.3268 | 1155.0 | 23100 | 1.4584 | 0.4813 | | 0.3268 | 1156.0 | 23120 | 1.3686 | 0.4938 | | 0.3268 | 1157.0 | 23140 | 1.4520 | 0.4688 | | 0.3268 | 1158.0 | 23160 | 1.3760 | 0.4875 | | 0.3268 | 1159.0 | 23180 | 1.4544 | 0.4875 | | 0.3268 | 1160.0 | 23200 | 1.4163 | 0.475 | | 0.3268 | 1161.0 | 23220 | 1.4008 | 0.5062 | | 0.3268 | 1162.0 | 23240 | 1.4177 | 0.4938 | | 0.3268 | 1163.0 | 23260 | 1.3883 | 0.45 | | 0.3268 | 1164.0 | 23280 | 1.4449 | 0.4813 | | 0.3268 | 1165.0 | 23300 | 1.4226 | 0.4938 | | 0.3268 | 1166.0 | 23320 | 1.4086 | 0.4625 | | 0.3268 | 1167.0 | 23340 | 1.3630 | 0.5125 | | 0.3268 | 1168.0 | 23360 | 1.3989 | 0.5188 | | 0.3268 | 1169.0 | 23380 | 1.4102 | 0.4813 | | 0.3268 | 1170.0 | 23400 | 1.4742 | 0.4875 | | 0.3268 | 1171.0 | 23420 | 1.4955 | 0.4813 | | 0.3268 | 1172.0 | 23440 | 1.3759 | 0.5188 | | 0.3268 | 1173.0 | 23460 | 1.5161 | 0.4375 | | 0.3268 | 1174.0 | 23480 | 1.3576 | 0.5062 | | 0.3287 | 1175.0 | 23500 | 1.4231 | 0.5 | | 0.3287 | 1176.0 | 23520 | 1.4011 | 0.5125 | | 0.3287 | 1177.0 | 23540 | 1.3886 | 0.5188 | | 0.3287 | 1178.0 | 23560 | 1.3490 | 0.5188 | | 0.3287 | 1179.0 | 23580 | 1.3957 | 0.525 | | 0.3287 | 1180.0 | 23600 | 1.3655 | 0.525 | | 0.3287 | 1181.0 | 23620 | 1.4315 | 0.5 | | 0.3287 | 1182.0 | 23640 | 1.4145 | 0.4875 | | 0.3287 | 1183.0 | 23660 | 1.4490 | 0.4875 | | 0.3287 | 1184.0 | 23680 | 1.3853 | 0.5312 | | 0.3287 | 1185.0 | 23700 | 1.3774 | 0.5125 | | 0.3287 | 1186.0 | 23720 | 1.3916 | 0.5125 | | 0.3287 | 1187.0 | 23740 | 1.3825 | 0.5062 | | 0.3287 | 1188.0 | 23760 | 1.3258 | 0.4875 | | 0.3287 | 1189.0 | 23780 | 1.4783 | 0.4562 | | 0.3287 | 1190.0 | 23800 | 1.4348 | 0.4938 | | 0.3287 | 1191.0 | 23820 | 1.3773 | 0.5125 | | 0.3287 | 1192.0 | 23840 | 1.4620 | 0.475 | | 0.3287 | 1193.0 | 23860 | 1.3810 | 0.5 | | 0.3287 | 1194.0 | 23880 | 1.3112 | 0.525 | | 0.3287 | 1195.0 | 23900 | 1.4155 | 0.5125 | | 0.3287 | 1196.0 | 23920 | 1.4429 | 0.4813 | | 0.3287 | 1197.0 | 23940 | 1.3498 | 0.5188 | | 0.3287 | 1198.0 | 23960 | 1.4635 | 0.45 | | 0.3287 | 1199.0 | 23980 | 1.4369 | 0.5 | | 0.3201 | 1200.0 | 24000 | 1.4041 | 0.4938 | | 0.3201 | 1201.0 | 24020 | 1.3298 | 0.5312 | | 0.3201 | 1202.0 | 24040 | 1.4084 | 0.5 | | 0.3201 | 1203.0 | 24060 | 1.3808 | 0.5 | | 0.3201 | 1204.0 | 24080 | 1.4122 | 0.5312 | | 0.3201 | 1205.0 | 24100 | 1.3964 | 0.5125 | | 0.3201 | 1206.0 | 24120 | 1.3720 | 0.5312 | | 0.3201 | 1207.0 | 24140 | 1.4992 | 0.4625 | | 0.3201 | 1208.0 | 24160 | 1.6059 | 0.4062 | | 0.3201 | 1209.0 | 24180 | 1.4385 | 0.4562 | | 0.3201 | 1210.0 | 24200 | 1.4335 | 0.5125 | | 0.3201 | 1211.0 | 24220 | 1.4089 | 0.4938 | | 0.3201 | 1212.0 | 24240 | 1.3790 | 0.5 | | 0.3201 | 1213.0 | 24260 | 1.4414 | 0.475 | | 0.3201 | 1214.0 | 24280 | 1.4158 | 0.5 | | 0.3201 | 1215.0 | 24300 | 1.3764 | 0.5062 | | 0.3201 | 1216.0 | 24320 | 1.4014 | 0.5125 | | 0.3201 | 1217.0 | 24340 | 1.3741 | 0.5375 | | 0.3201 | 1218.0 | 24360 | 1.3750 | 0.4938 | | 0.3201 | 1219.0 | 24380 | 1.3031 | 0.5687 | | 0.3201 | 1220.0 | 24400 | 1.3940 | 0.5125 | | 0.3201 | 1221.0 | 24420 | 1.3977 | 0.5 | | 0.3201 | 1222.0 | 24440 | 1.4268 | 0.5312 | | 0.3201 | 1223.0 | 24460 | 1.5672 | 0.4375 | | 0.3201 | 1224.0 | 24480 | 1.3758 | 0.5 | | 0.3164 | 1225.0 | 24500 | 1.4140 | 0.4875 | | 0.3164 | 1226.0 | 24520 | 1.3729 | 0.5188 | | 0.3164 | 1227.0 | 24540 | 1.3847 | 0.4938 | | 0.3164 | 1228.0 | 24560 | 1.4774 | 0.4875 | | 0.3164 | 1229.0 | 24580 | 1.5155 | 0.4688 | | 0.3164 | 1230.0 | 24600 | 1.3858 | 0.5 | | 0.3164 | 1231.0 | 24620 | 1.3414 | 0.55 | | 0.3164 | 1232.0 | 24640 | 1.4706 | 0.475 | | 0.3164 | 1233.0 | 24660 | 1.4265 | 0.5062 | | 0.3164 | 1234.0 | 24680 | 1.4485 | 0.4875 | | 0.3164 | 1235.0 | 24700 | 1.4005 | 0.5 | | 0.3164 | 1236.0 | 24720 | 1.4090 | 0.5 | | 0.3164 | 1237.0 | 24740 | 1.3930 | 0.4875 | | 0.3164 | 1238.0 | 24760 | 1.3838 | 0.5188 | | 0.3164 | 1239.0 | 24780 | 1.5145 | 0.4813 | | 0.3164 | 1240.0 | 24800 | 1.4105 | 0.4813 | | 0.3164 | 1241.0 | 24820 | 1.3440 | 0.4938 | | 0.3164 | 1242.0 | 24840 | 1.3532 | 0.5437 | | 0.3164 | 1243.0 | 24860 | 1.3607 | 0.5 | | 0.3164 | 1244.0 | 24880 | 1.3491 | 0.4938 | | 0.3164 | 1245.0 | 24900 | 1.4692 | 0.475 | | 0.3164 | 1246.0 | 24920 | 1.3448 | 0.5 | | 0.3164 | 1247.0 | 24940 | 1.3950 | 0.5062 | | 0.3164 | 1248.0 | 24960 | 1.4520 | 0.4938 | | 0.3164 | 1249.0 | 24980 | 1.5249 | 0.5 | | 0.3076 | 1250.0 | 25000 | 1.3382 | 0.5375 | | 0.3076 | 1251.0 | 25020 | 1.4296 | 0.4625 | | 0.3076 | 1252.0 | 25040 | 1.3729 | 0.5188 | | 0.3076 | 1253.0 | 25060 | 1.5224 | 0.4625 | | 0.3076 | 1254.0 | 25080 | 1.2983 | 0.5437 | | 0.3076 | 1255.0 | 25100 | 1.4082 | 0.5062 | | 0.3076 | 1256.0 | 25120 | 1.4239 | 0.5312 | | 0.3076 | 1257.0 | 25140 | 1.4802 | 0.4688 | | 0.3076 | 1258.0 | 25160 | 1.4792 | 0.4875 | | 0.3076 | 1259.0 | 25180 | 1.3430 | 0.5375 | | 0.3076 | 1260.0 | 25200 | 1.3697 | 0.4938 | | 0.3076 | 1261.0 | 25220 | 1.3201 | 0.5125 | | 0.3076 | 1262.0 | 25240 | 1.3493 | 0.5188 | | 0.3076 | 1263.0 | 25260 | 1.4528 | 0.4688 | | 0.3076 | 1264.0 | 25280 | 1.3318 | 0.525 | | 0.3076 | 1265.0 | 25300 | 1.3760 | 0.5188 | | 0.3076 | 1266.0 | 25320 | 1.4779 | 0.4688 | | 0.3076 | 1267.0 | 25340 | 1.4093 | 0.475 | | 0.3076 | 1268.0 | 25360 | 1.4274 | 0.4813 | | 0.3076 | 1269.0 | 25380 | 1.3919 | 0.475 | | 0.3076 | 1270.0 | 25400 | 1.4197 | 0.5 | | 0.3076 | 1271.0 | 25420 | 1.3656 | 0.5 | | 0.3076 | 1272.0 | 25440 | 1.4491 | 0.4813 | | 0.3076 | 1273.0 | 25460 | 1.3948 | 0.5 | | 0.3076 | 1274.0 | 25480 | 1.3920 | 0.525 | | 0.3082 | 1275.0 | 25500 | 1.3472 | 0.4875 | | 0.3082 | 1276.0 | 25520 | 1.5085 | 0.4875 | | 0.3082 | 1277.0 | 25540 | 1.3652 | 0.5312 | | 0.3082 | 1278.0 | 25560 | 1.3947 | 0.5125 | | 0.3082 | 1279.0 | 25580 | 1.3934 | 0.5188 | | 0.3082 | 1280.0 | 25600 | 1.5537 | 0.4938 | | 0.3082 | 1281.0 | 25620 | 1.3661 | 0.5062 | | 0.3082 | 1282.0 | 25640 | 1.4507 | 0.4875 | | 0.3082 | 1283.0 | 25660 | 1.4415 | 0.5125 | | 0.3082 | 1284.0 | 25680 | 1.4418 | 0.5188 | | 0.3082 | 1285.0 | 25700 | 1.5535 | 0.4688 | | 0.3082 | 1286.0 | 25720 | 1.4261 | 0.5188 | | 0.3082 | 1287.0 | 25740 | 1.3910 | 0.5 | | 0.3082 | 1288.0 | 25760 | 1.4829 | 0.475 | | 0.3082 | 1289.0 | 25780 | 1.4284 | 0.4938 | | 0.3082 | 1290.0 | 25800 | 1.5268 | 0.4688 | | 0.3082 | 1291.0 | 25820 | 1.4723 | 0.4813 | | 0.3082 | 1292.0 | 25840 | 1.4140 | 0.5125 | | 0.3082 | 1293.0 | 25860 | 1.4074 | 0.525 | | 0.3082 | 1294.0 | 25880 | 1.3843 | 0.5188 | | 0.3082 | 1295.0 | 25900 | 1.4371 | 0.5 | | 0.3082 | 1296.0 | 25920 | 1.4466 | 0.5125 | | 0.3082 | 1297.0 | 25940 | 1.4741 | 0.4875 | | 0.3082 | 1298.0 | 25960 | 1.4166 | 0.4938 | | 0.3082 | 1299.0 | 25980 | 1.4010 | 0.4688 | | 0.3012 | 1300.0 | 26000 | 1.3630 | 0.525 | | 0.3012 | 1301.0 | 26020 | 1.5302 | 0.4688 | | 0.3012 | 1302.0 | 26040 | 1.4860 | 0.4688 | | 0.3012 | 1303.0 | 26060 | 1.4784 | 0.475 | | 0.3012 | 1304.0 | 26080 | 1.4003 | 0.5312 | | 0.3012 | 1305.0 | 26100 | 1.3953 | 0.5312 | | 0.3012 | 1306.0 | 26120 | 1.3881 | 0.525 | | 0.3012 | 1307.0 | 26140 | 1.4845 | 0.4688 | | 0.3012 | 1308.0 | 26160 | 1.4244 | 0.4938 | | 0.3012 | 1309.0 | 26180 | 1.3334 | 0.5563 | | 0.3012 | 1310.0 | 26200 | 1.4507 | 0.5125 | | 0.3012 | 1311.0 | 26220 | 1.5152 | 0.4875 | | 0.3012 | 1312.0 | 26240 | 1.4418 | 0.4938 | | 0.3012 | 1313.0 | 26260 | 1.4376 | 0.4562 | | 0.3012 | 1314.0 | 26280 | 1.4452 | 0.4875 | | 0.3012 | 1315.0 | 26300 | 1.5565 | 0.4625 | | 0.3012 | 1316.0 | 26320 | 1.4261 | 0.5 | | 0.3012 | 1317.0 | 26340 | 1.4312 | 0.5125 | | 0.3012 | 1318.0 | 26360 | 1.4920 | 0.4813 | | 0.3012 | 1319.0 | 26380 | 1.3139 | 0.5312 | | 0.3012 | 1320.0 | 26400 | 1.3646 | 0.525 | | 0.3012 | 1321.0 | 26420 | 1.4379 | 0.4688 | | 0.3012 | 1322.0 | 26440 | 1.4381 | 0.4938 | | 0.3012 | 1323.0 | 26460 | 1.3807 | 0.5 | | 0.3012 | 1324.0 | 26480 | 1.4444 | 0.5188 | | 0.2976 | 1325.0 | 26500 | 1.3924 | 0.55 | | 0.2976 | 1326.0 | 26520 | 1.4249 | 0.55 | | 0.2976 | 1327.0 | 26540 | 1.4551 | 0.4875 | | 0.2976 | 1328.0 | 26560 | 1.4917 | 0.4625 | | 0.2976 | 1329.0 | 26580 | 1.3918 | 0.5062 | | 0.2976 | 1330.0 | 26600 | 1.4366 | 0.4562 | | 0.2976 | 1331.0 | 26620 | 1.4795 | 0.45 | | 0.2976 | 1332.0 | 26640 | 1.4213 | 0.4875 | | 0.2976 | 1333.0 | 26660 | 1.4253 | 0.525 | | 0.2976 | 1334.0 | 26680 | 1.4548 | 0.4813 | | 0.2976 | 1335.0 | 26700 | 1.3806 | 0.525 | | 0.2976 | 1336.0 | 26720 | 1.3641 | 0.4875 | | 0.2976 | 1337.0 | 26740 | 1.4808 | 0.4625 | | 0.2976 | 1338.0 | 26760 | 1.4172 | 0.5125 | | 0.2976 | 1339.0 | 26780 | 1.4479 | 0.4875 | | 0.2976 | 1340.0 | 26800 | 1.4552 | 0.525 | | 0.2976 | 1341.0 | 26820 | 1.5278 | 0.4688 | | 0.2976 | 1342.0 | 26840 | 1.2895 | 0.5312 | | 0.2976 | 1343.0 | 26860 | 1.3676 | 0.525 | | 0.2976 | 1344.0 | 26880 | 1.3360 | 0.5312 | | 0.2976 | 1345.0 | 26900 | 1.4753 | 0.4875 | | 0.2976 | 1346.0 | 26920 | 1.4449 | 0.5188 | | 0.2976 | 1347.0 | 26940 | 1.3456 | 0.55 | | 0.2976 | 1348.0 | 26960 | 1.3685 | 0.5 | | 0.2976 | 1349.0 | 26980 | 1.4757 | 0.4688 | | 0.298 | 1350.0 | 27000 | 1.3915 | 0.5188 | | 0.298 | 1351.0 | 27020 | 1.3821 | 0.5125 | | 0.298 | 1352.0 | 27040 | 1.4777 | 0.4875 | | 0.298 | 1353.0 | 27060 | 1.4521 | 0.4875 | | 0.298 | 1354.0 | 27080 | 1.4116 | 0.5188 | | 0.298 | 1355.0 | 27100 | 1.4196 | 0.5125 | | 0.298 | 1356.0 | 27120 | 1.5017 | 0.4813 | | 0.298 | 1357.0 | 27140 | 1.4737 | 0.525 | | 0.298 | 1358.0 | 27160 | 1.4399 | 0.4813 | | 0.298 | 1359.0 | 27180 | 1.5158 | 0.475 | | 0.298 | 1360.0 | 27200 | 1.5428 | 0.4625 | | 0.298 | 1361.0 | 27220 | 1.4197 | 0.5125 | | 0.298 | 1362.0 | 27240 | 1.3748 | 0.5125 | | 0.298 | 1363.0 | 27260 | 1.4444 | 0.5062 | | 0.298 | 1364.0 | 27280 | 1.4904 | 0.4813 | | 0.298 | 1365.0 | 27300 | 1.4187 | 0.5375 | | 0.298 | 1366.0 | 27320 | 1.4184 | 0.5062 | | 0.298 | 1367.0 | 27340 | 1.4463 | 0.4875 | | 0.298 | 1368.0 | 27360 | 1.3811 | 0.5375 | | 0.298 | 1369.0 | 27380 | 1.4925 | 0.4875 | | 0.298 | 1370.0 | 27400 | 1.4370 | 0.5 | | 0.298 | 1371.0 | 27420 | 1.4811 | 0.4625 | | 0.298 | 1372.0 | 27440 | 1.3325 | 0.5437 | | 0.298 | 1373.0 | 27460 | 1.4219 | 0.475 | | 0.298 | 1374.0 | 27480 | 1.4964 | 0.5 | | 0.2879 | 1375.0 | 27500 | 1.3878 | 0.5188 | | 0.2879 | 1376.0 | 27520 | 1.4915 | 0.4875 | | 0.2879 | 1377.0 | 27540 | 1.5125 | 0.5 | | 0.2879 | 1378.0 | 27560 | 1.4026 | 0.4875 | | 0.2879 | 1379.0 | 27580 | 1.3994 | 0.525 | | 0.2879 | 1380.0 | 27600 | 1.4881 | 0.475 | | 0.2879 | 1381.0 | 27620 | 1.4140 | 0.5062 | | 0.2879 | 1382.0 | 27640 | 1.3100 | 0.525 | | 0.2879 | 1383.0 | 27660 | 1.4590 | 0.4688 | | 0.2879 | 1384.0 | 27680 | 1.5164 | 0.4437 | | 0.2879 | 1385.0 | 27700 | 1.3868 | 0.5188 | | 0.2879 | 1386.0 | 27720 | 1.4737 | 0.5 | | 0.2879 | 1387.0 | 27740 | 1.3831 | 0.4938 | | 0.2879 | 1388.0 | 27760 | 1.4388 | 0.4938 | | 0.2879 | 1389.0 | 27780 | 1.4303 | 0.5312 | | 0.2879 | 1390.0 | 27800 | 1.3663 | 0.5125 | | 0.2879 | 1391.0 | 27820 | 1.5046 | 0.4875 | | 0.2879 | 1392.0 | 27840 | 1.5045 | 0.475 | | 0.2879 | 1393.0 | 27860 | 1.4811 | 0.5062 | | 0.2879 | 1394.0 | 27880 | 1.3991 | 0.5312 | | 0.2879 | 1395.0 | 27900 | 1.4144 | 0.5312 | | 0.2879 | 1396.0 | 27920 | 1.3650 | 0.5312 | | 0.2879 | 1397.0 | 27940 | 1.4004 | 0.5312 | | 0.2879 | 1398.0 | 27960 | 1.3617 | 0.5312 | | 0.2879 | 1399.0 | 27980 | 1.3955 | 0.5312 | | 0.284 | 1400.0 | 28000 | 1.3588 | 0.5375 | | 0.284 | 1401.0 | 28020 | 1.4408 | 0.4688 | | 0.284 | 1402.0 | 28040 | 1.4572 | 0.4875 | | 0.284 | 1403.0 | 28060 | 1.5793 | 0.4375 | | 0.284 | 1404.0 | 28080 | 1.5194 | 0.4938 | | 0.284 | 1405.0 | 28100 | 1.4610 | 0.4938 | | 0.284 | 1406.0 | 28120 | 1.4934 | 0.5188 | | 0.284 | 1407.0 | 28140 | 1.4602 | 0.4562 | | 0.284 | 1408.0 | 28160 | 1.4116 | 0.5125 | | 0.284 | 1409.0 | 28180 | 1.4497 | 0.475 | | 0.284 | 1410.0 | 28200 | 1.4660 | 0.4875 | | 0.284 | 1411.0 | 28220 | 1.3609 | 0.5375 | | 0.284 | 1412.0 | 28240 | 1.4792 | 0.4875 | | 0.284 | 1413.0 | 28260 | 1.4837 | 0.4688 | | 0.284 | 1414.0 | 28280 | 1.4485 | 0.5188 | | 0.284 | 1415.0 | 28300 | 1.3673 | 0.5312 | | 0.284 | 1416.0 | 28320 | 1.4153 | 0.4813 | | 0.284 | 1417.0 | 28340 | 1.4943 | 0.4813 | | 0.284 | 1418.0 | 28360 | 1.5884 | 0.4625 | | 0.284 | 1419.0 | 28380 | 1.4184 | 0.5188 | | 0.284 | 1420.0 | 28400 | 1.4645 | 0.4875 | | 0.284 | 1421.0 | 28420 | 1.5091 | 0.4437 | | 0.284 | 1422.0 | 28440 | 1.3396 | 0.525 | | 0.284 | 1423.0 | 28460 | 1.4418 | 0.5 | | 0.284 | 1424.0 | 28480 | 1.4271 | 0.5312 | | 0.2825 | 1425.0 | 28500 | 1.4775 | 0.4813 | | 0.2825 | 1426.0 | 28520 | 1.4608 | 0.5062 | | 0.2825 | 1427.0 | 28540 | 1.4584 | 0.4938 | | 0.2825 | 1428.0 | 28560 | 1.4566 | 0.5188 | | 0.2825 | 1429.0 | 28580 | 1.3907 | 0.5563 | | 0.2825 | 1430.0 | 28600 | 1.4759 | 0.4813 | | 0.2825 | 1431.0 | 28620 | 1.4544 | 0.4938 | | 0.2825 | 1432.0 | 28640 | 1.4430 | 0.5 | | 0.2825 | 1433.0 | 28660 | 1.5165 | 0.4688 | | 0.2825 | 1434.0 | 28680 | 1.4704 | 0.4813 | | 0.2825 | 1435.0 | 28700 | 1.3989 | 0.4875 | | 0.2825 | 1436.0 | 28720 | 1.4311 | 0.5125 | | 0.2825 | 1437.0 | 28740 | 1.3625 | 0.55 | | 0.2825 | 1438.0 | 28760 | 1.4692 | 0.5125 | | 0.2825 | 1439.0 | 28780 | 1.5038 | 0.475 | | 0.2825 | 1440.0 | 28800 | 1.3972 | 0.5 | | 0.2825 | 1441.0 | 28820 | 1.4258 | 0.5062 | | 0.2825 | 1442.0 | 28840 | 1.4703 | 0.5062 | | 0.2825 | 1443.0 | 28860 | 1.4151 | 0.5188 | | 0.2825 | 1444.0 | 28880 | 1.5264 | 0.4688 | | 0.2825 | 1445.0 | 28900 | 1.5765 | 0.4375 | | 0.2825 | 1446.0 | 28920 | 1.4814 | 0.4688 | | 0.2825 | 1447.0 | 28940 | 1.4997 | 0.4625 | | 0.2825 | 1448.0 | 28960 | 1.4238 | 0.5188 | | 0.2825 | 1449.0 | 28980 | 1.5373 | 0.4875 | | 0.2743 | 1450.0 | 29000 | 1.4053 | 0.525 | | 0.2743 | 1451.0 | 29020 | 1.4369 | 0.5125 | | 0.2743 | 1452.0 | 29040 | 1.4204 | 0.5062 | | 0.2743 | 1453.0 | 29060 | 1.4546 | 0.4813 | | 0.2743 | 1454.0 | 29080 | 1.4420 | 0.5125 | | 0.2743 | 1455.0 | 29100 | 1.4359 | 0.5062 | | 0.2743 | 1456.0 | 29120 | 1.4291 | 0.5125 | | 0.2743 | 1457.0 | 29140 | 1.5045 | 0.4875 | | 0.2743 | 1458.0 | 29160 | 1.4566 | 0.4938 | | 0.2743 | 1459.0 | 29180 | 1.4604 | 0.4938 | | 0.2743 | 1460.0 | 29200 | 1.3180 | 0.5375 | | 0.2743 | 1461.0 | 29220 | 1.4741 | 0.5 | | 0.2743 | 1462.0 | 29240 | 1.4135 | 0.4875 | | 0.2743 | 1463.0 | 29260 | 1.4657 | 0.4875 | | 0.2743 | 1464.0 | 29280 | 1.4154 | 0.4688 | | 0.2743 | 1465.0 | 29300 | 1.4170 | 0.525 | | 0.2743 | 1466.0 | 29320 | 1.4450 | 0.5312 | | 0.2743 | 1467.0 | 29340 | 1.5276 | 0.4625 | | 0.2743 | 1468.0 | 29360 | 1.3992 | 0.5062 | | 0.2743 | 1469.0 | 29380 | 1.5054 | 0.4813 | | 0.2743 | 1470.0 | 29400 | 1.4894 | 0.4562 | | 0.2743 | 1471.0 | 29420 | 1.5172 | 0.4625 | | 0.2743 | 1472.0 | 29440 | 1.4878 | 0.4813 | | 0.2743 | 1473.0 | 29460 | 1.4720 | 0.4938 | | 0.2743 | 1474.0 | 29480 | 1.4639 | 0.5062 | | 0.2785 | 1475.0 | 29500 | 1.4667 | 0.4938 | | 0.2785 | 1476.0 | 29520 | 1.4408 | 0.5125 | | 0.2785 | 1477.0 | 29540 | 1.4771 | 0.5062 | | 0.2785 | 1478.0 | 29560 | 1.3936 | 0.5375 | | 0.2785 | 1479.0 | 29580 | 1.4308 | 0.475 | | 0.2785 | 1480.0 | 29600 | 1.5399 | 0.4437 | | 0.2785 | 1481.0 | 29620 | 1.5077 | 0.5062 | | 0.2785 | 1482.0 | 29640 | 1.5083 | 0.5062 | | 0.2785 | 1483.0 | 29660 | 1.5410 | 0.4625 | | 0.2785 | 1484.0 | 29680 | 1.4391 | 0.5125 | | 0.2785 | 1485.0 | 29700 | 1.5085 | 0.4875 | | 0.2785 | 1486.0 | 29720 | 1.3403 | 0.5312 | | 0.2785 | 1487.0 | 29740 | 1.4827 | 0.5062 | | 0.2785 | 1488.0 | 29760 | 1.3823 | 0.4938 | | 0.2785 | 1489.0 | 29780 | 1.3906 | 0.5563 | | 0.2785 | 1490.0 | 29800 | 1.4016 | 0.5188 | | 0.2785 | 1491.0 | 29820 | 1.3938 | 0.5375 | | 0.2785 | 1492.0 | 29840 | 1.4321 | 0.5125 | | 0.2785 | 1493.0 | 29860 | 1.5029 | 0.475 | | 0.2785 | 1494.0 | 29880 | 1.4466 | 0.5 | | 0.2785 | 1495.0 | 29900 | 1.4355 | 0.4938 | | 0.2785 | 1496.0 | 29920 | 1.4482 | 0.5125 | | 0.2785 | 1497.0 | 29940 | 1.4275 | 0.5188 | | 0.2785 | 1498.0 | 29960 | 1.5046 | 0.475 | | 0.2785 | 1499.0 | 29980 | 1.4453 | 0.5125 | | 0.2766 | 1500.0 | 30000 | 1.3290 | 0.5437 | | 0.2766 | 1501.0 | 30020 | 1.4743 | 0.475 | | 0.2766 | 1502.0 | 30040 | 1.5197 | 0.4625 | | 0.2766 | 1503.0 | 30060 | 1.4305 | 0.5625 | | 0.2766 | 1504.0 | 30080 | 1.4716 | 0.4813 | | 0.2766 | 1505.0 | 30100 | 1.4003 | 0.5625 | | 0.2766 | 1506.0 | 30120 | 1.4396 | 0.4875 | | 0.2766 | 1507.0 | 30140 | 1.4425 | 0.4813 | | 0.2766 | 1508.0 | 30160 | 1.4472 | 0.4938 | | 0.2766 | 1509.0 | 30180 | 1.5083 | 0.475 | | 0.2766 | 1510.0 | 30200 | 1.3383 | 0.5312 | | 0.2766 | 1511.0 | 30220 | 1.3624 | 0.5312 | | 0.2766 | 1512.0 | 30240 | 1.4646 | 0.4813 | | 0.2766 | 1513.0 | 30260 | 1.3511 | 0.5563 | | 0.2766 | 1514.0 | 30280 | 1.4240 | 0.5188 | | 0.2766 | 1515.0 | 30300 | 1.4329 | 0.4688 | | 0.2766 | 1516.0 | 30320 | 1.4613 | 0.5188 | | 0.2766 | 1517.0 | 30340 | 1.4115 | 0.5188 | | 0.2766 | 1518.0 | 30360 | 1.4163 | 0.4938 | | 0.2766 | 1519.0 | 30380 | 1.4269 | 0.5 | | 0.2766 | 1520.0 | 30400 | 1.3476 | 0.5125 | | 0.2766 | 1521.0 | 30420 | 1.4298 | 0.5 | | 0.2766 | 1522.0 | 30440 | 1.5222 | 0.4875 | | 0.2766 | 1523.0 | 30460 | 1.4276 | 0.4938 | | 0.2766 | 1524.0 | 30480 | 1.3477 | 0.5312 | | 0.2758 | 1525.0 | 30500 | 1.3653 | 0.55 | | 0.2758 | 1526.0 | 30520 | 1.4004 | 0.5312 | | 0.2758 | 1527.0 | 30540 | 1.3683 | 0.5125 | | 0.2758 | 1528.0 | 30560 | 1.4337 | 0.4938 | | 0.2758 | 1529.0 | 30580 | 1.5037 | 0.5062 | | 0.2758 | 1530.0 | 30600 | 1.5474 | 0.45 | | 0.2758 | 1531.0 | 30620 | 1.4607 | 0.4938 | | 0.2758 | 1532.0 | 30640 | 1.4329 | 0.525 | | 0.2758 | 1533.0 | 30660 | 1.3821 | 0.5437 | | 0.2758 | 1534.0 | 30680 | 1.5021 | 0.4875 | | 0.2758 | 1535.0 | 30700 | 1.4299 | 0.525 | | 0.2758 | 1536.0 | 30720 | 1.4694 | 0.4625 | | 0.2758 | 1537.0 | 30740 | 1.4684 | 0.4938 | | 0.2758 | 1538.0 | 30760 | 1.5205 | 0.4562 | | 0.2758 | 1539.0 | 30780 | 1.3924 | 0.5188 | | 0.2758 | 1540.0 | 30800 | 1.3302 | 0.5813 | | 0.2758 | 1541.0 | 30820 | 1.3970 | 0.525 | | 0.2758 | 1542.0 | 30840 | 1.5024 | 0.4375 | | 0.2758 | 1543.0 | 30860 | 1.4066 | 0.5062 | | 0.2758 | 1544.0 | 30880 | 1.4827 | 0.5 | | 0.2758 | 1545.0 | 30900 | 1.4724 | 0.5062 | | 0.2758 | 1546.0 | 30920 | 1.3244 | 0.5437 | | 0.2758 | 1547.0 | 30940 | 1.3774 | 0.4875 | | 0.2758 | 1548.0 | 30960 | 1.5300 | 0.4813 | | 0.2758 | 1549.0 | 30980 | 1.4806 | 0.5062 | | 0.2756 | 1550.0 | 31000 | 1.4364 | 0.5 | | 0.2756 | 1551.0 | 31020 | 1.4185 | 0.5062 | | 0.2756 | 1552.0 | 31040 | 1.3730 | 0.5188 | | 0.2756 | 1553.0 | 31060 | 1.4082 | 0.5125 | | 0.2756 | 1554.0 | 31080 | 1.3745 | 0.5312 | | 0.2756 | 1555.0 | 31100 | 1.4724 | 0.4437 | | 0.2756 | 1556.0 | 31120 | 1.4691 | 0.4875 | | 0.2756 | 1557.0 | 31140 | 1.3968 | 0.5 | | 0.2756 | 1558.0 | 31160 | 1.5222 | 0.45 | | 0.2756 | 1559.0 | 31180 | 1.5239 | 0.5125 | | 0.2756 | 1560.0 | 31200 | 1.5163 | 0.4375 | | 0.2756 | 1561.0 | 31220 | 1.2894 | 0.5813 | | 0.2756 | 1562.0 | 31240 | 1.4202 | 0.5188 | | 0.2756 | 1563.0 | 31260 | 1.3790 | 0.5 | | 0.2756 | 1564.0 | 31280 | 1.4284 | 0.5 | | 0.2756 | 1565.0 | 31300 | 1.4031 | 0.5312 | | 0.2756 | 1566.0 | 31320 | 1.4602 | 0.5 | | 0.2756 | 1567.0 | 31340 | 1.4664 | 0.4813 | | 0.2756 | 1568.0 | 31360 | 1.4801 | 0.4875 | | 0.2756 | 1569.0 | 31380 | 1.5429 | 0.475 | | 0.2756 | 1570.0 | 31400 | 1.4366 | 0.4938 | | 0.2756 | 1571.0 | 31420 | 1.3814 | 0.525 | | 0.2756 | 1572.0 | 31440 | 1.5086 | 0.4875 | | 0.2756 | 1573.0 | 31460 | 1.4827 | 0.4938 | | 0.2756 | 1574.0 | 31480 | 1.4607 | 0.4938 | | 0.2718 | 1575.0 | 31500 | 1.4662 | 0.4813 | | 0.2718 | 1576.0 | 31520 | 1.5976 | 0.4562 | | 0.2718 | 1577.0 | 31540 | 1.3768 | 0.5563 | | 0.2718 | 1578.0 | 31560 | 1.4911 | 0.4938 | | 0.2718 | 1579.0 | 31580 | 1.4469 | 0.5188 | | 0.2718 | 1580.0 | 31600 | 1.4668 | 0.5 | | 0.2718 | 1581.0 | 31620 | 1.4473 | 0.5188 | | 0.2718 | 1582.0 | 31640 | 1.4289 | 0.5437 | | 0.2718 | 1583.0 | 31660 | 1.4512 | 0.5188 | | 0.2718 | 1584.0 | 31680 | 1.5670 | 0.4375 | | 0.2718 | 1585.0 | 31700 | 1.3894 | 0.525 | | 0.2718 | 1586.0 | 31720 | 1.4387 | 0.5 | | 0.2718 | 1587.0 | 31740 | 1.4963 | 0.4938 | | 0.2718 | 1588.0 | 31760 | 1.3965 | 0.5312 | | 0.2718 | 1589.0 | 31780 | 1.4742 | 0.5 | | 0.2718 | 1590.0 | 31800 | 1.4714 | 0.4813 | | 0.2718 | 1591.0 | 31820 | 1.4471 | 0.4813 | | 0.2718 | 1592.0 | 31840 | 1.4259 | 0.5 | | 0.2718 | 1593.0 | 31860 | 1.5475 | 0.5 | | 0.2718 | 1594.0 | 31880 | 1.4578 | 0.5062 | | 0.2718 | 1595.0 | 31900 | 1.4545 | 0.4938 | | 0.2718 | 1596.0 | 31920 | 1.5368 | 0.4688 | | 0.2718 | 1597.0 | 31940 | 1.4596 | 0.4813 | | 0.2718 | 1598.0 | 31960 | 1.4468 | 0.5375 | | 0.2718 | 1599.0 | 31980 | 1.4371 | 0.5125 | | 0.2719 | 1600.0 | 32000 | 1.4436 | 0.525 | | 0.2719 | 1601.0 | 32020 | 1.5506 | 0.4375 | | 0.2719 | 1602.0 | 32040 | 1.5337 | 0.4562 | | 0.2719 | 1603.0 | 32060 | 1.4638 | 0.4625 | | 0.2719 | 1604.0 | 32080 | 1.3749 | 0.5188 | | 0.2719 | 1605.0 | 32100 | 1.3935 | 0.5188 | | 0.2719 | 1606.0 | 32120 | 1.4744 | 0.4875 | | 0.2719 | 1607.0 | 32140 | 1.4828 | 0.475 | | 0.2719 | 1608.0 | 32160 | 1.4926 | 0.4688 | | 0.2719 | 1609.0 | 32180 | 1.5197 | 0.4875 | | 0.2719 | 1610.0 | 32200 | 1.4079 | 0.525 | | 0.2719 | 1611.0 | 32220 | 1.4185 | 0.5062 | | 0.2719 | 1612.0 | 32240 | 1.4210 | 0.5062 | | 0.2719 | 1613.0 | 32260 | 1.4585 | 0.4875 | | 0.2719 | 1614.0 | 32280 | 1.4763 | 0.475 | | 0.2719 | 1615.0 | 32300 | 1.5101 | 0.475 | | 0.2719 | 1616.0 | 32320 | 1.4968 | 0.4938 | | 0.2719 | 1617.0 | 32340 | 1.5228 | 0.4562 | | 0.2719 | 1618.0 | 32360 | 1.3589 | 0.5188 | | 0.2719 | 1619.0 | 32380 | 1.3532 | 0.5188 | | 0.2719 | 1620.0 | 32400 | 1.4536 | 0.5062 | | 0.2719 | 1621.0 | 32420 | 1.4180 | 0.475 | | 0.2719 | 1622.0 | 32440 | 1.4507 | 0.5188 | | 0.2719 | 1623.0 | 32460 | 1.3285 | 0.5563 | | 0.2719 | 1624.0 | 32480 | 1.2809 | 0.5375 | | 0.2699 | 1625.0 | 32500 | 1.4344 | 0.525 | | 0.2699 | 1626.0 | 32520 | 1.4535 | 0.5 | | 0.2699 | 1627.0 | 32540 | 1.5542 | 0.475 | | 0.2699 | 1628.0 | 32560 | 1.5891 | 0.4375 | | 0.2699 | 1629.0 | 32580 | 1.5430 | 0.4625 | | 0.2699 | 1630.0 | 32600 | 1.4423 | 0.475 | | 0.2699 | 1631.0 | 32620 | 1.4449 | 0.4875 | | 0.2699 | 1632.0 | 32640 | 1.3946 | 0.5437 | | 0.2699 | 1633.0 | 32660 | 1.3262 | 0.55 | | 0.2699 | 1634.0 | 32680 | 1.3367 | 0.55 | | 0.2699 | 1635.0 | 32700 | 1.4468 | 0.45 | | 0.2699 | 1636.0 | 32720 | 1.4302 | 0.5125 | | 0.2699 | 1637.0 | 32740 | 1.5481 | 0.4625 | | 0.2699 | 1638.0 | 32760 | 1.3970 | 0.5062 | | 0.2699 | 1639.0 | 32780 | 1.5247 | 0.4625 | | 0.2699 | 1640.0 | 32800 | 1.3148 | 0.5375 | | 0.2699 | 1641.0 | 32820 | 1.4591 | 0.4938 | | 0.2699 | 1642.0 | 32840 | 1.4126 | 0.5563 | | 0.2699 | 1643.0 | 32860 | 1.4827 | 0.5 | | 0.2699 | 1644.0 | 32880 | 1.4025 | 0.5312 | | 0.2699 | 1645.0 | 32900 | 1.4529 | 0.525 | | 0.2699 | 1646.0 | 32920 | 1.4559 | 0.475 | | 0.2699 | 1647.0 | 32940 | 1.5547 | 0.4375 | | 0.2699 | 1648.0 | 32960 | 1.4492 | 0.4938 | | 0.2699 | 1649.0 | 32980 | 1.5228 | 0.45 | | 0.2612 | 1650.0 | 33000 | 1.4569 | 0.4938 | | 0.2612 | 1651.0 | 33020 | 1.4739 | 0.5062 | | 0.2612 | 1652.0 | 33040 | 1.3789 | 0.4875 | | 0.2612 | 1653.0 | 33060 | 1.4642 | 0.4938 | | 0.2612 | 1654.0 | 33080 | 1.4544 | 0.5062 | | 0.2612 | 1655.0 | 33100 | 1.4793 | 0.475 | | 0.2612 | 1656.0 | 33120 | 1.3544 | 0.5625 | | 0.2612 | 1657.0 | 33140 | 1.4798 | 0.5125 | | 0.2612 | 1658.0 | 33160 | 1.5018 | 0.4813 | | 0.2612 | 1659.0 | 33180 | 1.5245 | 0.4313 | | 0.2612 | 1660.0 | 33200 | 1.4227 | 0.5062 | | 0.2612 | 1661.0 | 33220 | 1.3944 | 0.4938 | | 0.2612 | 1662.0 | 33240 | 1.4664 | 0.5125 | | 0.2612 | 1663.0 | 33260 | 1.5123 | 0.5062 | | 0.2612 | 1664.0 | 33280 | 1.4851 | 0.475 | | 0.2612 | 1665.0 | 33300 | 1.5370 | 0.4875 | | 0.2612 | 1666.0 | 33320 | 1.4442 | 0.5062 | | 0.2612 | 1667.0 | 33340 | 1.3614 | 0.55 | | 0.2612 | 1668.0 | 33360 | 1.5381 | 0.4688 | | 0.2612 | 1669.0 | 33380 | 1.4347 | 0.5188 | | 0.2612 | 1670.0 | 33400 | 1.4191 | 0.5375 | | 0.2612 | 1671.0 | 33420 | 1.4999 | 0.4625 | | 0.2612 | 1672.0 | 33440 | 1.4596 | 0.5125 | | 0.2612 | 1673.0 | 33460 | 1.3416 | 0.5375 | | 0.2612 | 1674.0 | 33480 | 1.4813 | 0.525 | | 0.2666 | 1675.0 | 33500 | 1.4499 | 0.5062 | | 0.2666 | 1676.0 | 33520 | 1.4462 | 0.5188 | | 0.2666 | 1677.0 | 33540 | 1.4109 | 0.5312 | | 0.2666 | 1678.0 | 33560 | 1.4430 | 0.4688 | | 0.2666 | 1679.0 | 33580 | 1.5119 | 0.475 | | 0.2666 | 1680.0 | 33600 | 1.5080 | 0.5 | | 0.2666 | 1681.0 | 33620 | 1.4745 | 0.5125 | | 0.2666 | 1682.0 | 33640 | 1.4799 | 0.4938 | | 0.2666 | 1683.0 | 33660 | 1.4436 | 0.5062 | | 0.2666 | 1684.0 | 33680 | 1.3928 | 0.5125 | | 0.2666 | 1685.0 | 33700 | 1.4427 | 0.5062 | | 0.2666 | 1686.0 | 33720 | 1.3572 | 0.55 | | 0.2666 | 1687.0 | 33740 | 1.4141 | 0.5062 | | 0.2666 | 1688.0 | 33760 | 1.4079 | 0.5 | | 0.2666 | 1689.0 | 33780 | 1.3888 | 0.4938 | | 0.2666 | 1690.0 | 33800 | 1.4878 | 0.4625 | | 0.2666 | 1691.0 | 33820 | 1.4618 | 0.4938 | | 0.2666 | 1692.0 | 33840 | 1.5789 | 0.475 | | 0.2666 | 1693.0 | 33860 | 1.4814 | 0.4562 | | 0.2666 | 1694.0 | 33880 | 1.4810 | 0.5437 | | 0.2666 | 1695.0 | 33900 | 1.5088 | 0.4875 | | 0.2666 | 1696.0 | 33920 | 1.4263 | 0.5062 | | 0.2666 | 1697.0 | 33940 | 1.5221 | 0.4437 | | 0.2666 | 1698.0 | 33960 | 1.3571 | 0.5125 | | 0.2666 | 1699.0 | 33980 | 1.3727 | 0.5437 | | 0.2654 | 1700.0 | 34000 | 1.4273 | 0.5062 | | 0.2654 | 1701.0 | 34020 | 1.5031 | 0.4688 | | 0.2654 | 1702.0 | 34040 | 1.5287 | 0.4938 | | 0.2654 | 1703.0 | 34060 | 1.4249 | 0.4875 | | 0.2654 | 1704.0 | 34080 | 1.4168 | 0.5125 | | 0.2654 | 1705.0 | 34100 | 1.4947 | 0.475 | | 0.2654 | 1706.0 | 34120 | 1.5093 | 0.4813 | | 0.2654 | 1707.0 | 34140 | 1.4478 | 0.525 | | 0.2654 | 1708.0 | 34160 | 1.3681 | 0.5375 | | 0.2654 | 1709.0 | 34180 | 1.4784 | 0.475 | | 0.2654 | 1710.0 | 34200 | 1.4736 | 0.4813 | | 0.2654 | 1711.0 | 34220 | 1.4512 | 0.5125 | | 0.2654 | 1712.0 | 34240 | 1.4901 | 0.5125 | | 0.2654 | 1713.0 | 34260 | 1.3999 | 0.5188 | | 0.2654 | 1714.0 | 34280 | 1.5042 | 0.4875 | | 0.2654 | 1715.0 | 34300 | 1.4943 | 0.475 | | 0.2654 | 1716.0 | 34320 | 1.4266 | 0.5 | | 0.2654 | 1717.0 | 34340 | 1.4092 | 0.4938 | | 0.2654 | 1718.0 | 34360 | 1.4771 | 0.5188 | | 0.2654 | 1719.0 | 34380 | 1.4573 | 0.5 | | 0.2654 | 1720.0 | 34400 | 1.4646 | 0.5 | | 0.2654 | 1721.0 | 34420 | 1.4718 | 0.5188 | | 0.2654 | 1722.0 | 34440 | 1.3844 | 0.4938 | | 0.2654 | 1723.0 | 34460 | 1.5301 | 0.4813 | | 0.2654 | 1724.0 | 34480 | 1.6132 | 0.4375 | | 0.2679 | 1725.0 | 34500 | 1.4244 | 0.4938 | | 0.2679 | 1726.0 | 34520 | 1.4837 | 0.5188 | | 0.2679 | 1727.0 | 34540 | 1.5501 | 0.4875 | | 0.2679 | 1728.0 | 34560 | 1.4302 | 0.5125 | | 0.2679 | 1729.0 | 34580 | 1.3363 | 0.5563 | | 0.2679 | 1730.0 | 34600 | 1.5036 | 0.475 | | 0.2679 | 1731.0 | 34620 | 1.4386 | 0.4875 | | 0.2679 | 1732.0 | 34640 | 1.4130 | 0.4875 | | 0.2679 | 1733.0 | 34660 | 1.4120 | 0.5062 | | 0.2679 | 1734.0 | 34680 | 1.5886 | 0.4375 | | 0.2679 | 1735.0 | 34700 | 1.3803 | 0.5188 | | 0.2679 | 1736.0 | 34720 | 1.4227 | 0.4813 | | 0.2679 | 1737.0 | 34740 | 1.4488 | 0.4938 | | 0.2679 | 1738.0 | 34760 | 1.4735 | 0.5 | | 0.2679 | 1739.0 | 34780 | 1.5467 | 0.4688 | | 0.2679 | 1740.0 | 34800 | 1.4766 | 0.4938 | | 0.2679 | 1741.0 | 34820 | 1.4444 | 0.5062 | | 0.2679 | 1742.0 | 34840 | 1.3931 | 0.5437 | | 0.2679 | 1743.0 | 34860 | 1.4914 | 0.4813 | | 0.2679 | 1744.0 | 34880 | 1.4425 | 0.5125 | | 0.2679 | 1745.0 | 34900 | 1.4441 | 0.4938 | | 0.2679 | 1746.0 | 34920 | 1.4857 | 0.4813 | | 0.2679 | 1747.0 | 34940 | 1.4785 | 0.5062 | | 0.2679 | 1748.0 | 34960 | 1.4310 | 0.5375 | | 0.2679 | 1749.0 | 34980 | 1.5680 | 0.4562 | | 0.2638 | 1750.0 | 35000 | 1.3888 | 0.5062 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.15.0 - Tokenizers 0.15.1
Zoyd/OEvortex_HelpingAI-9B-3_5bpw_exl2
Zoyd
2024-05-31T01:37:15Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "HelpingAI", "Emotionally Intelligent", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-31T00:16:30Z
--- license: other license_name: helpingai license_link: LICENSE.md pipeline_tag: text-generation tags: - HelpingAI - Emotionally Intelligent --- **Exllamav2** quant (**exl2** / **3.5 bpw**) made with ExLlamaV2 v0.1.1 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_2bpw_exl2)**</center> | <center>2900 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_5bpw_exl2)**</center> | <center>3171 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_0bpw_exl2)**</center> | <center>3668 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_5bpw_exl2)**</center> | <center>4163 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_75bpw_exl2)**</center> | <center>4411 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_0bpw_exl2)**</center> | <center>4659 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_25bpw_exl2)**</center> | <center>4906 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-5_0bpw_exl2)**</center> | <center>5647 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_0bpw_exl2)**</center> | <center>6691 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_5bpw_exl2)**</center> | <center>7176 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-8_0bpw_exl2)**</center> | <center>8149 MB</center> | <center>8</center> | # HelpingAI-9B: The King of Human like Emotion ![logo](https://huggingface.co/OEvortex/HelpingAI-3B/resolve/main/HelpingAI.png) ## Overview HelpingAI-9B is a large language model designed for emotionally intelligent conversational interactions. It is trained to engage users with empathy, understanding, and supportive dialogue across a wide range of topics and contexts. The model aims to provide a supportive AI companion that can attune to users' emotional states and communicative needs. ## Objectives - Engage in open-ended dialogue while displaying emotional intelligence - Recognize and validate user emotions and emotional contexts - Provide supportive, empathetic, and psychologically-grounded responses - Avoid insensitive, harmful, or unethical speech - Continuously improve emotional awareness and dialogue skills ## Methodology HelpingAI-9B is based on the HelpingAI series and further trained using: - Supervised learning on large dialogue datasets with emotional labeling - Reinforcement learning with a reward model favoring emotionally supportive responses - Constitution training to instill stable and beneficial objectives - Knowledge augmentation from psychological resources on emotional intelligence ## Usage code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "OEvortex/HelpingAI-9B", torch_dtype='auto', device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-9B") prompt = "Express joy and excitement about visiting a new place" messages = [ # {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, temperature=0.25, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` *Directly using this model from GGUF* ```python %pip install -U 'webscout[loacl]' from webscout.Local.utils import download_model from webscout.Local.model import Model from webscout.Local.thread import Thread from webscout.Local import formats from webscout.Local.samplers import SamplerSettings from dotenv import load_dotenv; load_dotenv() import os # 1. Download the model repo_id = "OEvortex/HelpingAI-9B" filename = "helpingai-9b.Q4_0.gguf" model_path = download_model(repo_id, filename, os.environ.get("hf_token")) # 2. Load the model model = Model(model_path, n_gpu_layers=0)ย  # 3. Define your system prompt system_prompt = "You are HelpingAI a emotional AI always answer my question in HelpingAI style" # 4. Create a custom chatml format with your system prompt custom_chatml = formats.chatml.copy() custom_chatml['system_content'] = system_prompt # 5. Define your sampler settings (optional) sampler = SamplerSettings(temp=0.7, top_p=0.9)ย  # Adjust these values as needed # 6. Create a Thread with the custom format and sampler thread = Thread(model, custom_chatml, sampler=sampler) # 7. Start interacting with the model thread.interact(header="๐ŸŒŸ HelpingAI-9B: The King of Human-like Emotion ๐Ÿš€", color=True) ``` ## Example Dialogue > Express joy and excitement about visiting a new place. Yay! I'm super excited to visit this new place! ๐ŸŽ‰ It sounds amazing and I can't wait to explore and have fun there! This is going to be such an exciting adventure! ๐ŸŒŸ Let's go, let's do this! โœจ > I'm feeling really down today. Nothing seems to be going right. Oh no, I'm sorry to hear that you're feeling down. It happens sometimes, but remember that it's okay to feel sad. If you want to talk about what's bothering you, I'm here to listen and offer support. We can find a way through this together! ๐ŸŒˆ > I'm excited because I just got accepted into my dream school! I wanted to share the good news with someone. Wow, that's amazing! ๐ŸŽ‰ Congratulations on getting accepted into your dream school! That's such an incredible accomplishment and I'm really happy for you! Keep up the hard work and enjoy the journey ahead! ๐ŸŒŸ If there's anything else I can do to help, just let me know! ๐Ÿ˜Š > My best friend just got into an argument with me and I don't know what to do. How can I fix this situation? Oh no, it sounds like you both need some time to cool off. Take a step back and give each other some space. Then, when things have calmed down, try talking things through in a calm and respectful manner. Communication is key for resolving conflicts, so let's work towards finding a resolution that works for both of you! ๐ŸŒŸ If you need any advice or support, I'm here to help! ๐Ÿ˜Š > How can you identify the emotions of others based on their body language and facial expressions? Identifying the emotions of others is a great skill! ๐Ÿค” You can look for body language cues like frowns, smiles, or tense posture. Facial expressions also give away a lot about someone's feelings - watch out for changes in their eyes, mouth, and facial muscles. It's all about being observant and empathetic to understand others better! ๐Ÿ˜Š > What kind of safety devices do I need to install in my house Installing security devices in your home can bring peace of mind and keep you safe. Some essential safety devices include a home alarm system, smoke detectors, carbon monoxide detectors, motion sensors, and surveillance cameras. It's always good to take precautions and ensure that your home is secure! ๐ŸŒŸ If you need help choosing the right security devices for your family, I can definitely point you in the right direction! ๐Ÿ˜Š > How can your own feelings affect your ability to empathize with someone else? Our own emotions can impact our ability to empathize with others because they shape how we perceive and interpret other people's experiences. If you're feeling happy or positive, it may be easier to see the good in others and offer support. On the other hand, if you're feeling down or stressed, it might be harder to put yourself in someone else's shoes. It's important to acknowledge your own feelings and work on being open and understanding towards others! ๐ŸŒŸ
Zoyd/OEvortex_HelpingAI-9B-8_0bpw_exl2
Zoyd
2024-05-31T01:35:58Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "HelpingAI", "Emotionally Intelligent", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "exl2", "region:us" ]
text-generation
2024-05-31T01:21:09Z
--- license: other license_name: helpingai license_link: LICENSE.md pipeline_tag: text-generation tags: - HelpingAI - Emotionally Intelligent --- **Exllamav2** quant (**exl2** / **8.0 bpw**) made with ExLlamaV2 v0.1.1 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_2bpw_exl2)**</center> | <center>2900 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_5bpw_exl2)**</center> | <center>3171 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_0bpw_exl2)**</center> | <center>3668 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_5bpw_exl2)**</center> | <center>4163 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_75bpw_exl2)**</center> | <center>4411 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_0bpw_exl2)**</center> | <center>4659 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_25bpw_exl2)**</center> | <center>4906 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-5_0bpw_exl2)**</center> | <center>5647 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_0bpw_exl2)**</center> | <center>6691 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_5bpw_exl2)**</center> | <center>7176 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-8_0bpw_exl2)**</center> | <center>8149 MB</center> | <center>8</center> | # HelpingAI-9B: The King of Human like Emotion ![logo](https://huggingface.co/OEvortex/HelpingAI-3B/resolve/main/HelpingAI.png) ## Overview HelpingAI-9B is a large language model designed for emotionally intelligent conversational interactions. It is trained to engage users with empathy, understanding, and supportive dialogue across a wide range of topics and contexts. The model aims to provide a supportive AI companion that can attune to users' emotional states and communicative needs. ## Objectives - Engage in open-ended dialogue while displaying emotional intelligence - Recognize and validate user emotions and emotional contexts - Provide supportive, empathetic, and psychologically-grounded responses - Avoid insensitive, harmful, or unethical speech - Continuously improve emotional awareness and dialogue skills ## Methodology HelpingAI-9B is based on the HelpingAI series and further trained using: - Supervised learning on large dialogue datasets with emotional labeling - Reinforcement learning with a reward model favoring emotionally supportive responses - Constitution training to instill stable and beneficial objectives - Knowledge augmentation from psychological resources on emotional intelligence ## Usage code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "OEvortex/HelpingAI-9B", torch_dtype='auto', device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-9B") prompt = "Express joy and excitement about visiting a new place" messages = [ # {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, temperature=0.25, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` *Directly using this model from GGUF* ```python %pip install -U 'webscout[loacl]' from webscout.Local.utils import download_model from webscout.Local.model import Model from webscout.Local.thread import Thread from webscout.Local import formats from webscout.Local.samplers import SamplerSettings from dotenv import load_dotenv; load_dotenv() import os # 1. Download the model repo_id = "OEvortex/HelpingAI-9B" filename = "helpingai-9b.Q4_0.gguf" model_path = download_model(repo_id, filename, os.environ.get("hf_token")) # 2. Load the model model = Model(model_path, n_gpu_layers=0)ย  # 3. Define your system prompt system_prompt = "You are HelpingAI a emotional AI always answer my question in HelpingAI style" # 4. Create a custom chatml format with your system prompt custom_chatml = formats.chatml.copy() custom_chatml['system_content'] = system_prompt # 5. Define your sampler settings (optional) sampler = SamplerSettings(temp=0.7, top_p=0.9)ย  # Adjust these values as needed # 6. Create a Thread with the custom format and sampler thread = Thread(model, custom_chatml, sampler=sampler) # 7. Start interacting with the model thread.interact(header="๐ŸŒŸ HelpingAI-9B: The King of Human-like Emotion ๐Ÿš€", color=True) ``` ## Example Dialogue > Express joy and excitement about visiting a new place. Yay! I'm super excited to visit this new place! ๐ŸŽ‰ It sounds amazing and I can't wait to explore and have fun there! This is going to be such an exciting adventure! ๐ŸŒŸ Let's go, let's do this! โœจ > I'm feeling really down today. Nothing seems to be going right. Oh no, I'm sorry to hear that you're feeling down. It happens sometimes, but remember that it's okay to feel sad. If you want to talk about what's bothering you, I'm here to listen and offer support. We can find a way through this together! ๐ŸŒˆ > I'm excited because I just got accepted into my dream school! I wanted to share the good news with someone. Wow, that's amazing! ๐ŸŽ‰ Congratulations on getting accepted into your dream school! That's such an incredible accomplishment and I'm really happy for you! Keep up the hard work and enjoy the journey ahead! ๐ŸŒŸ If there's anything else I can do to help, just let me know! ๐Ÿ˜Š > My best friend just got into an argument with me and I don't know what to do. How can I fix this situation? Oh no, it sounds like you both need some time to cool off. Take a step back and give each other some space. Then, when things have calmed down, try talking things through in a calm and respectful manner. Communication is key for resolving conflicts, so let's work towards finding a resolution that works for both of you! ๐ŸŒŸ If you need any advice or support, I'm here to help! ๐Ÿ˜Š > How can you identify the emotions of others based on their body language and facial expressions? Identifying the emotions of others is a great skill! ๐Ÿค” You can look for body language cues like frowns, smiles, or tense posture. Facial expressions also give away a lot about someone's feelings - watch out for changes in their eyes, mouth, and facial muscles. It's all about being observant and empathetic to understand others better! ๐Ÿ˜Š > What kind of safety devices do I need to install in my house Installing security devices in your home can bring peace of mind and keep you safe. Some essential safety devices include a home alarm system, smoke detectors, carbon monoxide detectors, motion sensors, and surveillance cameras. It's always good to take precautions and ensure that your home is secure! ๐ŸŒŸ If you need help choosing the right security devices for your family, I can definitely point you in the right direction! ๐Ÿ˜Š > How can your own feelings affect your ability to empathize with someone else? Our own emotions can impact our ability to empathize with others because they shape how we perceive and interpret other people's experiences. If you're feeling happy or positive, it may be easier to see the good in others and offer support. On the other hand, if you're feeling down or stressed, it might be harder to put yourself in someone else's shoes. It's important to acknowledge your own feelings and work on being open and understanding towards others! ๐ŸŒŸ
Zoyd/OEvortex_HelpingAI-9B-3_0bpw_exl2
Zoyd
2024-05-31T01:35:21Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "HelpingAI", "Emotionally Intelligent", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "exl2", "region:us" ]
text-generation
2024-05-31T00:12:15Z
--- license: other license_name: helpingai license_link: LICENSE.md pipeline_tag: text-generation tags: - HelpingAI - Emotionally Intelligent --- **Exllamav2** quant (**exl2** / **3.0 bpw**) made with ExLlamaV2 v0.1.1 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_2bpw_exl2)**</center> | <center>2900 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_5bpw_exl2)**</center> | <center>3171 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_0bpw_exl2)**</center> | <center>3668 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_5bpw_exl2)**</center> | <center>4163 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_75bpw_exl2)**</center> | <center>4411 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_0bpw_exl2)**</center> | <center>4659 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_25bpw_exl2)**</center> | <center>4906 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-5_0bpw_exl2)**</center> | <center>5647 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_0bpw_exl2)**</center> | <center>6691 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_5bpw_exl2)**</center> | <center>7176 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-8_0bpw_exl2)**</center> | <center>8149 MB</center> | <center>8</center> | # HelpingAI-9B: The King of Human like Emotion ![logo](https://huggingface.co/OEvortex/HelpingAI-3B/resolve/main/HelpingAI.png) ## Overview HelpingAI-9B is a large language model designed for emotionally intelligent conversational interactions. It is trained to engage users with empathy, understanding, and supportive dialogue across a wide range of topics and contexts. The model aims to provide a supportive AI companion that can attune to users' emotional states and communicative needs. ## Objectives - Engage in open-ended dialogue while displaying emotional intelligence - Recognize and validate user emotions and emotional contexts - Provide supportive, empathetic, and psychologically-grounded responses - Avoid insensitive, harmful, or unethical speech - Continuously improve emotional awareness and dialogue skills ## Methodology HelpingAI-9B is based on the HelpingAI series and further trained using: - Supervised learning on large dialogue datasets with emotional labeling - Reinforcement learning with a reward model favoring emotionally supportive responses - Constitution training to instill stable and beneficial objectives - Knowledge augmentation from psychological resources on emotional intelligence ## Usage code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "OEvortex/HelpingAI-9B", torch_dtype='auto', device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-9B") prompt = "Express joy and excitement about visiting a new place" messages = [ # {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, temperature=0.25, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` *Directly using this model from GGUF* ```python %pip install -U 'webscout[loacl]' from webscout.Local.utils import download_model from webscout.Local.model import Model from webscout.Local.thread import Thread from webscout.Local import formats from webscout.Local.samplers import SamplerSettings from dotenv import load_dotenv; load_dotenv() import os # 1. Download the model repo_id = "OEvortex/HelpingAI-9B" filename = "helpingai-9b.Q4_0.gguf" model_path = download_model(repo_id, filename, os.environ.get("hf_token")) # 2. Load the model model = Model(model_path, n_gpu_layers=0)ย  # 3. Define your system prompt system_prompt = "You are HelpingAI a emotional AI always answer my question in HelpingAI style" # 4. Create a custom chatml format with your system prompt custom_chatml = formats.chatml.copy() custom_chatml['system_content'] = system_prompt # 5. Define your sampler settings (optional) sampler = SamplerSettings(temp=0.7, top_p=0.9)ย  # Adjust these values as needed # 6. Create a Thread with the custom format and sampler thread = Thread(model, custom_chatml, sampler=sampler) # 7. Start interacting with the model thread.interact(header="๐ŸŒŸ HelpingAI-9B: The King of Human-like Emotion ๐Ÿš€", color=True) ``` ## Example Dialogue > Express joy and excitement about visiting a new place. Yay! I'm super excited to visit this new place! ๐ŸŽ‰ It sounds amazing and I can't wait to explore and have fun there! This is going to be such an exciting adventure! ๐ŸŒŸ Let's go, let's do this! โœจ > I'm feeling really down today. Nothing seems to be going right. Oh no, I'm sorry to hear that you're feeling down. It happens sometimes, but remember that it's okay to feel sad. If you want to talk about what's bothering you, I'm here to listen and offer support. We can find a way through this together! ๐ŸŒˆ > I'm excited because I just got accepted into my dream school! I wanted to share the good news with someone. Wow, that's amazing! ๐ŸŽ‰ Congratulations on getting accepted into your dream school! That's such an incredible accomplishment and I'm really happy for you! Keep up the hard work and enjoy the journey ahead! ๐ŸŒŸ If there's anything else I can do to help, just let me know! ๐Ÿ˜Š > My best friend just got into an argument with me and I don't know what to do. How can I fix this situation? Oh no, it sounds like you both need some time to cool off. Take a step back and give each other some space. Then, when things have calmed down, try talking things through in a calm and respectful manner. Communication is key for resolving conflicts, so let's work towards finding a resolution that works for both of you! ๐ŸŒŸ If you need any advice or support, I'm here to help! ๐Ÿ˜Š > How can you identify the emotions of others based on their body language and facial expressions? Identifying the emotions of others is a great skill! ๐Ÿค” You can look for body language cues like frowns, smiles, or tense posture. Facial expressions also give away a lot about someone's feelings - watch out for changes in their eyes, mouth, and facial muscles. It's all about being observant and empathetic to understand others better! ๐Ÿ˜Š > What kind of safety devices do I need to install in my house Installing security devices in your home can bring peace of mind and keep you safe. Some essential safety devices include a home alarm system, smoke detectors, carbon monoxide detectors, motion sensors, and surveillance cameras. It's always good to take precautions and ensure that your home is secure! ๐ŸŒŸ If you need help choosing the right security devices for your family, I can definitely point you in the right direction! ๐Ÿ˜Š > How can your own feelings affect your ability to empathize with someone else? Our own emotions can impact our ability to empathize with others because they shape how we perceive and interpret other people's experiences. If you're feeling happy or positive, it may be easier to see the good in others and offer support. On the other hand, if you're feeling down or stressed, it might be harder to put yourself in someone else's shoes. It's important to acknowledge your own feelings and work on being open and understanding towards others! ๐ŸŒŸ
Zoyd/OEvortex_HelpingAI-9B-2_2bpw_exl2
Zoyd
2024-05-31T01:35:13Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "HelpingAI", "Emotionally Intelligent", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-30T23:53:22Z
--- license: other license_name: helpingai license_link: LICENSE.md pipeline_tag: text-generation tags: - HelpingAI - Emotionally Intelligent --- **Exllamav2** quant (**exl2** / **2.2 bpw**) made with ExLlamaV2 v0.1.1 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_2bpw_exl2)**</center> | <center>2900 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-2_5bpw_exl2)**</center> | <center>3171 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_0bpw_exl2)**</center> | <center>3668 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_5bpw_exl2)**</center> | <center>4163 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-3_75bpw_exl2)**</center> | <center>4411 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_0bpw_exl2)**</center> | <center>4659 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-4_25bpw_exl2)**</center> | <center>4906 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-5_0bpw_exl2)**</center> | <center>5647 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_0bpw_exl2)**</center> | <center>6691 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-6_5bpw_exl2)**</center> | <center>7176 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/OEvortex_HelpingAI-9B-8_0bpw_exl2)**</center> | <center>8149 MB</center> | <center>8</center> | # HelpingAI-9B: The King of Human like Emotion ![logo](https://huggingface.co/OEvortex/HelpingAI-3B/resolve/main/HelpingAI.png) ## Overview HelpingAI-9B is a large language model designed for emotionally intelligent conversational interactions. It is trained to engage users with empathy, understanding, and supportive dialogue across a wide range of topics and contexts. The model aims to provide a supportive AI companion that can attune to users' emotional states and communicative needs. ## Objectives - Engage in open-ended dialogue while displaying emotional intelligence - Recognize and validate user emotions and emotional contexts - Provide supportive, empathetic, and psychologically-grounded responses - Avoid insensitive, harmful, or unethical speech - Continuously improve emotional awareness and dialogue skills ## Methodology HelpingAI-9B is based on the HelpingAI series and further trained using: - Supervised learning on large dialogue datasets with emotional labeling - Reinforcement learning with a reward model favoring emotionally supportive responses - Constitution training to instill stable and beneficial objectives - Knowledge augmentation from psychological resources on emotional intelligence ## Usage code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "OEvortex/HelpingAI-9B", torch_dtype='auto', device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-9B") prompt = "Express joy and excitement about visiting a new place" messages = [ # {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, temperature=0.25, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` *Directly using this model from GGUF* ```python %pip install -U 'webscout[loacl]' from webscout.Local.utils import download_model from webscout.Local.model import Model from webscout.Local.thread import Thread from webscout.Local import formats from webscout.Local.samplers import SamplerSettings from dotenv import load_dotenv; load_dotenv() import os # 1. Download the model repo_id = "OEvortex/HelpingAI-9B" filename = "helpingai-9b.Q4_0.gguf" model_path = download_model(repo_id, filename, os.environ.get("hf_token")) # 2. Load the model model = Model(model_path, n_gpu_layers=0)ย  # 3. Define your system prompt system_prompt = "You are HelpingAI a emotional AI always answer my question in HelpingAI style" # 4. Create a custom chatml format with your system prompt custom_chatml = formats.chatml.copy() custom_chatml['system_content'] = system_prompt # 5. Define your sampler settings (optional) sampler = SamplerSettings(temp=0.7, top_p=0.9)ย  # Adjust these values as needed # 6. Create a Thread with the custom format and sampler thread = Thread(model, custom_chatml, sampler=sampler) # 7. Start interacting with the model thread.interact(header="๐ŸŒŸ HelpingAI-9B: The King of Human-like Emotion ๐Ÿš€", color=True) ``` ## Example Dialogue > Express joy and excitement about visiting a new place. Yay! I'm super excited to visit this new place! ๐ŸŽ‰ It sounds amazing and I can't wait to explore and have fun there! This is going to be such an exciting adventure! ๐ŸŒŸ Let's go, let's do this! โœจ > I'm feeling really down today. Nothing seems to be going right. Oh no, I'm sorry to hear that you're feeling down. It happens sometimes, but remember that it's okay to feel sad. If you want to talk about what's bothering you, I'm here to listen and offer support. We can find a way through this together! ๐ŸŒˆ > I'm excited because I just got accepted into my dream school! I wanted to share the good news with someone. Wow, that's amazing! ๐ŸŽ‰ Congratulations on getting accepted into your dream school! That's such an incredible accomplishment and I'm really happy for you! Keep up the hard work and enjoy the journey ahead! ๐ŸŒŸ If there's anything else I can do to help, just let me know! ๐Ÿ˜Š > My best friend just got into an argument with me and I don't know what to do. How can I fix this situation? Oh no, it sounds like you both need some time to cool off. Take a step back and give each other some space. Then, when things have calmed down, try talking things through in a calm and respectful manner. Communication is key for resolving conflicts, so let's work towards finding a resolution that works for both of you! ๐ŸŒŸ If you need any advice or support, I'm here to help! ๐Ÿ˜Š > How can you identify the emotions of others based on their body language and facial expressions? Identifying the emotions of others is a great skill! ๐Ÿค” You can look for body language cues like frowns, smiles, or tense posture. Facial expressions also give away a lot about someone's feelings - watch out for changes in their eyes, mouth, and facial muscles. It's all about being observant and empathetic to understand others better! ๐Ÿ˜Š > What kind of safety devices do I need to install in my house Installing security devices in your home can bring peace of mind and keep you safe. Some essential safety devices include a home alarm system, smoke detectors, carbon monoxide detectors, motion sensors, and surveillance cameras. It's always good to take precautions and ensure that your home is secure! ๐ŸŒŸ If you need help choosing the right security devices for your family, I can definitely point you in the right direction! ๐Ÿ˜Š > How can your own feelings affect your ability to empathize with someone else? Our own emotions can impact our ability to empathize with others because they shape how we perceive and interpret other people's experiences. If you're feeling happy or positive, it may be easier to see the good in others and offer support. On the other hand, if you're feeling down or stressed, it might be harder to put yourself in someone else's shoes. It's important to acknowledge your own feelings and work on being open and understanding towards others! ๐ŸŒŸ
MrezaPRZ/codellama_high_quality_sft_5k_gemini
MrezaPRZ
2024-05-31T01:31:25Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T01:26:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liddlefish/privacyembeddingv2_bge_small
liddlefish
2024-05-31T01:19:31Z
9
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "mteb", "en", "arxiv:2401.03462", "arxiv:2312.15503", "arxiv:2311.13534", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-05-31T01:17:56Z
--- tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: bge-small-en-v1.5 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.79104477611939 - type: ap value: 37.21923821573361 - type: f1 value: 68.0914945617093 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.75377499999999 - type: ap value: 89.46766124546022 - type: f1 value: 92.73884001331487 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.986 - type: f1 value: 46.55936786727896 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 35.846000000000004 - type: map_at_10 value: 51.388 - type: map_at_100 value: 52.132999999999996 - type: map_at_1000 value: 52.141000000000005 - type: map_at_3 value: 47.037 - type: map_at_5 value: 49.579 - type: mrr_at_1 value: 36.558 - type: mrr_at_10 value: 51.658 - type: mrr_at_100 value: 52.402 - type: mrr_at_1000 value: 52.410000000000004 - type: mrr_at_3 value: 47.345 - type: mrr_at_5 value: 49.797999999999995 - type: ndcg_at_1 value: 35.846000000000004 - type: ndcg_at_10 value: 59.550000000000004 - type: ndcg_at_100 value: 62.596 - type: ndcg_at_1000 value: 62.759 - type: ndcg_at_3 value: 50.666999999999994 - type: ndcg_at_5 value: 55.228 - type: precision_at_1 value: 35.846000000000004 - type: precision_at_10 value: 8.542 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.389 - type: precision_at_5 value: 14.438 - type: recall_at_1 value: 35.846000000000004 - type: recall_at_10 value: 85.42 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 61.166 - type: recall_at_5 value: 72.191 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.402770198163594 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.01545436974177 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.586465273207196 - type: mrr value: 74.42169019038825 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.1891186537969 - type: cos_sim_spearman value: 83.75492046087288 - type: euclidean_pearson value: 84.11766204805357 - type: euclidean_spearman value: 84.01456493126516 - type: manhattan_pearson value: 84.2132950502772 - type: manhattan_spearman value: 83.89227298813377 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.74025974025975 - type: f1 value: 85.71493566466381 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.467181385006434 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.719496037339056 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.587000000000003 - type: map_at_10 value: 41.114 - type: map_at_100 value: 42.532 - type: map_at_1000 value: 42.661 - type: map_at_3 value: 37.483 - type: map_at_5 value: 39.652 - type: mrr_at_1 value: 36.338 - type: mrr_at_10 value: 46.763 - type: mrr_at_100 value: 47.393 - type: mrr_at_1000 value: 47.445 - type: mrr_at_3 value: 43.538 - type: mrr_at_5 value: 45.556000000000004 - type: ndcg_at_1 value: 36.338 - type: ndcg_at_10 value: 47.658 - type: ndcg_at_100 value: 52.824000000000005 - type: ndcg_at_1000 value: 54.913999999999994 - type: ndcg_at_3 value: 41.989 - type: ndcg_at_5 value: 44.944 - type: precision_at_1 value: 36.338 - type: precision_at_10 value: 9.156 - type: precision_at_100 value: 1.4789999999999999 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.85 - type: recall_at_1 value: 29.587000000000003 - type: recall_at_10 value: 60.746 - type: recall_at_100 value: 82.157 - type: recall_at_1000 value: 95.645 - type: recall_at_3 value: 44.821 - type: recall_at_5 value: 52.819 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.239 - type: map_at_10 value: 39.989000000000004 - type: map_at_100 value: 41.196 - type: map_at_1000 value: 41.325 - type: map_at_3 value: 37.261 - type: map_at_5 value: 38.833 - type: mrr_at_1 value: 37.516 - type: mrr_at_10 value: 46.177 - type: mrr_at_100 value: 46.806 - type: mrr_at_1000 value: 46.849000000000004 - type: mrr_at_3 value: 44.002 - type: mrr_at_5 value: 45.34 - type: ndcg_at_1 value: 37.516 - type: ndcg_at_10 value: 45.586 - type: ndcg_at_100 value: 49.897000000000006 - type: ndcg_at_1000 value: 51.955 - type: ndcg_at_3 value: 41.684 - type: ndcg_at_5 value: 43.617 - type: precision_at_1 value: 37.516 - type: precision_at_10 value: 8.522 - type: precision_at_100 value: 1.374 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.105999999999998 - type: precision_at_5 value: 14.152999999999999 - type: recall_at_1 value: 30.239 - type: recall_at_10 value: 55.03 - type: recall_at_100 value: 73.375 - type: recall_at_1000 value: 86.29599999999999 - type: recall_at_3 value: 43.269000000000005 - type: recall_at_5 value: 48.878 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.338 - type: map_at_10 value: 50.468999999999994 - type: map_at_100 value: 51.553000000000004 - type: map_at_1000 value: 51.608 - type: map_at_3 value: 47.107 - type: map_at_5 value: 49.101 - type: mrr_at_1 value: 44.201 - type: mrr_at_10 value: 54.057 - type: mrr_at_100 value: 54.764 - type: mrr_at_1000 value: 54.791000000000004 - type: mrr_at_3 value: 51.56699999999999 - type: mrr_at_5 value: 53.05 - type: ndcg_at_1 value: 44.201 - type: ndcg_at_10 value: 56.379000000000005 - type: ndcg_at_100 value: 60.645 - type: ndcg_at_1000 value: 61.73499999999999 - type: ndcg_at_3 value: 50.726000000000006 - type: ndcg_at_5 value: 53.58500000000001 - type: precision_at_1 value: 44.201 - type: precision_at_10 value: 9.141 - type: precision_at_100 value: 1.216 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.654 - type: precision_at_5 value: 15.723999999999998 - type: recall_at_1 value: 38.338 - type: recall_at_10 value: 70.30499999999999 - type: recall_at_100 value: 88.77199999999999 - type: recall_at_1000 value: 96.49799999999999 - type: recall_at_3 value: 55.218 - type: recall_at_5 value: 62.104000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.682 - type: map_at_10 value: 33.498 - type: map_at_100 value: 34.461000000000006 - type: map_at_1000 value: 34.544000000000004 - type: map_at_3 value: 30.503999999999998 - type: map_at_5 value: 32.216 - type: mrr_at_1 value: 27.683999999999997 - type: mrr_at_10 value: 35.467999999999996 - type: mrr_at_100 value: 36.32 - type: mrr_at_1000 value: 36.386 - type: mrr_at_3 value: 32.618 - type: mrr_at_5 value: 34.262 - type: ndcg_at_1 value: 27.683999999999997 - type: ndcg_at_10 value: 38.378 - type: ndcg_at_100 value: 43.288 - type: ndcg_at_1000 value: 45.413 - type: ndcg_at_3 value: 32.586 - type: ndcg_at_5 value: 35.499 - type: precision_at_1 value: 27.683999999999997 - type: precision_at_10 value: 5.864 - type: precision_at_100 value: 0.882 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.718 - type: recall_at_1 value: 25.682 - type: recall_at_10 value: 51.712 - type: recall_at_100 value: 74.446 - type: recall_at_1000 value: 90.472 - type: recall_at_3 value: 36.236000000000004 - type: recall_at_5 value: 43.234 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.073999999999998 - type: map_at_10 value: 24.352999999999998 - type: map_at_100 value: 25.438 - type: map_at_1000 value: 25.545 - type: map_at_3 value: 21.614 - type: map_at_5 value: 23.104 - type: mrr_at_1 value: 19.776 - type: mrr_at_10 value: 28.837000000000003 - type: mrr_at_100 value: 29.755 - type: mrr_at_1000 value: 29.817 - type: mrr_at_3 value: 26.201999999999998 - type: mrr_at_5 value: 27.714 - type: ndcg_at_1 value: 19.776 - type: ndcg_at_10 value: 29.701 - type: ndcg_at_100 value: 35.307 - type: ndcg_at_1000 value: 37.942 - type: ndcg_at_3 value: 24.764 - type: ndcg_at_5 value: 27.025 - type: precision_at_1 value: 19.776 - type: precision_at_10 value: 5.659 - type: precision_at_100 value: 0.971 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 12.065 - type: precision_at_5 value: 8.905000000000001 - type: recall_at_1 value: 16.073999999999998 - type: recall_at_10 value: 41.647 - type: recall_at_100 value: 66.884 - type: recall_at_1000 value: 85.91499999999999 - type: recall_at_3 value: 27.916 - type: recall_at_5 value: 33.729 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.444999999999997 - type: map_at_10 value: 38.218999999999994 - type: map_at_100 value: 39.595 - type: map_at_1000 value: 39.709 - type: map_at_3 value: 35.586 - type: map_at_5 value: 36.895 - type: mrr_at_1 value: 34.841 - type: mrr_at_10 value: 44.106 - type: mrr_at_100 value: 44.98 - type: mrr_at_1000 value: 45.03 - type: mrr_at_3 value: 41.979 - type: mrr_at_5 value: 43.047999999999995 - type: ndcg_at_1 value: 34.841 - type: ndcg_at_10 value: 43.922 - type: ndcg_at_100 value: 49.504999999999995 - type: ndcg_at_1000 value: 51.675000000000004 - type: ndcg_at_3 value: 39.858 - type: ndcg_at_5 value: 41.408 - type: precision_at_1 value: 34.841 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.2449999999999999 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 18.993 - type: precision_at_5 value: 13.032 - type: recall_at_1 value: 28.444999999999997 - type: recall_at_10 value: 54.984 - type: recall_at_100 value: 78.342 - type: recall_at_1000 value: 92.77 - type: recall_at_3 value: 42.842999999999996 - type: recall_at_5 value: 47.247 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.072 - type: map_at_10 value: 32.354 - type: map_at_100 value: 33.800000000000004 - type: map_at_1000 value: 33.908 - type: map_at_3 value: 29.232000000000003 - type: map_at_5 value: 31.049 - type: mrr_at_1 value: 29.110000000000003 - type: mrr_at_10 value: 38.03 - type: mrr_at_100 value: 39.032 - type: mrr_at_1000 value: 39.086999999999996 - type: mrr_at_3 value: 35.407 - type: mrr_at_5 value: 36.76 - type: ndcg_at_1 value: 29.110000000000003 - type: ndcg_at_10 value: 38.231 - type: ndcg_at_100 value: 44.425 - type: ndcg_at_1000 value: 46.771 - type: ndcg_at_3 value: 33.095 - type: ndcg_at_5 value: 35.459 - type: precision_at_1 value: 29.110000000000003 - type: precision_at_10 value: 7.215000000000001 - type: precision_at_100 value: 1.2109999999999999 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 16.058 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 23.072 - type: recall_at_10 value: 50.285999999999994 - type: recall_at_100 value: 76.596 - type: recall_at_1000 value: 92.861 - type: recall_at_3 value: 35.702 - type: recall_at_5 value: 42.152 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.937916666666666 - type: map_at_10 value: 33.755250000000004 - type: map_at_100 value: 34.955999999999996 - type: map_at_1000 value: 35.070499999999996 - type: map_at_3 value: 30.98708333333333 - type: map_at_5 value: 32.51491666666666 - type: mrr_at_1 value: 29.48708333333333 - type: mrr_at_10 value: 37.92183333333334 - type: mrr_at_100 value: 38.76583333333333 - type: mrr_at_1000 value: 38.82466666666667 - type: mrr_at_3 value: 35.45125 - type: mrr_at_5 value: 36.827000000000005 - type: ndcg_at_1 value: 29.48708333333333 - type: ndcg_at_10 value: 39.05225 - type: ndcg_at_100 value: 44.25983333333334 - type: ndcg_at_1000 value: 46.568333333333335 - type: ndcg_at_3 value: 34.271583333333325 - type: ndcg_at_5 value: 36.483916666666666 - type: precision_at_1 value: 29.48708333333333 - type: precision_at_10 value: 6.865749999999999 - type: precision_at_100 value: 1.1195833333333332 - type: precision_at_1000 value: 0.15058333333333335 - type: precision_at_3 value: 15.742083333333333 - type: precision_at_5 value: 11.221916666666667 - type: recall_at_1 value: 24.937916666666666 - type: recall_at_10 value: 50.650416666666665 - type: recall_at_100 value: 73.55383333333334 - type: recall_at_1000 value: 89.61691666666667 - type: recall_at_3 value: 37.27808333333334 - type: recall_at_5 value: 42.99475 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.947 - type: map_at_10 value: 30.575000000000003 - type: map_at_100 value: 31.465 - type: map_at_1000 value: 31.558000000000003 - type: map_at_3 value: 28.814 - type: map_at_5 value: 29.738999999999997 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.415 - type: mrr_at_100 value: 34.18 - type: mrr_at_1000 value: 34.245 - type: mrr_at_3 value: 31.621 - type: mrr_at_5 value: 32.549 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.482 - type: ndcg_at_100 value: 38.915 - type: ndcg_at_1000 value: 41.355 - type: ndcg_at_3 value: 31.139 - type: ndcg_at_5 value: 32.589 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.322 - type: precision_at_100 value: 0.8160000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.344000000000001 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 23.947 - type: recall_at_10 value: 43.647999999999996 - type: recall_at_100 value: 63.851 - type: recall_at_1000 value: 82.0 - type: recall_at_3 value: 34.288000000000004 - type: recall_at_5 value: 38.117000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.197 - type: map_at_10 value: 22.968 - type: map_at_100 value: 24.095 - type: map_at_1000 value: 24.217 - type: map_at_3 value: 20.771 - type: map_at_5 value: 21.995 - type: mrr_at_1 value: 19.511 - type: mrr_at_10 value: 26.55 - type: mrr_at_100 value: 27.500999999999998 - type: mrr_at_1000 value: 27.578999999999997 - type: mrr_at_3 value: 24.421 - type: mrr_at_5 value: 25.604 - type: ndcg_at_1 value: 19.511 - type: ndcg_at_10 value: 27.386 - type: ndcg_at_100 value: 32.828 - type: ndcg_at_1000 value: 35.739 - type: ndcg_at_3 value: 23.405 - type: ndcg_at_5 value: 25.255 - type: precision_at_1 value: 19.511 - type: precision_at_10 value: 5.017 - type: precision_at_100 value: 0.91 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 11.023 - type: precision_at_5 value: 8.025 - type: recall_at_1 value: 16.197 - type: recall_at_10 value: 37.09 - type: recall_at_100 value: 61.778 - type: recall_at_1000 value: 82.56599999999999 - type: recall_at_3 value: 26.034000000000002 - type: recall_at_5 value: 30.762 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.41 - type: map_at_10 value: 33.655 - type: map_at_100 value: 34.892 - type: map_at_1000 value: 34.995 - type: map_at_3 value: 30.94 - type: map_at_5 value: 32.303 - type: mrr_at_1 value: 29.477999999999998 - type: mrr_at_10 value: 37.443 - type: mrr_at_100 value: 38.383 - type: mrr_at_1000 value: 38.440000000000005 - type: mrr_at_3 value: 34.949999999999996 - type: mrr_at_5 value: 36.228 - type: ndcg_at_1 value: 29.477999999999998 - type: ndcg_at_10 value: 38.769 - type: ndcg_at_100 value: 44.245000000000005 - type: ndcg_at_1000 value: 46.593 - type: ndcg_at_3 value: 33.623 - type: ndcg_at_5 value: 35.766 - type: precision_at_1 value: 29.477999999999998 - type: precision_at_10 value: 6.455 - type: precision_at_100 value: 1.032 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 14.893999999999998 - type: precision_at_5 value: 10.485 - type: recall_at_1 value: 25.41 - type: recall_at_10 value: 50.669 - type: recall_at_100 value: 74.084 - type: recall_at_1000 value: 90.435 - type: recall_at_3 value: 36.679 - type: recall_at_5 value: 41.94 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.339 - type: map_at_10 value: 31.852000000000004 - type: map_at_100 value: 33.411 - type: map_at_1000 value: 33.62 - type: map_at_3 value: 28.929 - type: map_at_5 value: 30.542 - type: mrr_at_1 value: 28.063 - type: mrr_at_10 value: 36.301 - type: mrr_at_100 value: 37.288 - type: mrr_at_1000 value: 37.349 - type: mrr_at_3 value: 33.663 - type: mrr_at_5 value: 35.165 - type: ndcg_at_1 value: 28.063 - type: ndcg_at_10 value: 37.462 - type: ndcg_at_100 value: 43.620999999999995 - type: ndcg_at_1000 value: 46.211 - type: ndcg_at_3 value: 32.68 - type: ndcg_at_5 value: 34.981 - type: precision_at_1 value: 28.063 - type: precision_at_10 value: 7.1739999999999995 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 15.217 - type: precision_at_5 value: 11.265 - type: recall_at_1 value: 23.339 - type: recall_at_10 value: 48.376999999999995 - type: recall_at_100 value: 76.053 - type: recall_at_1000 value: 92.455 - type: recall_at_3 value: 34.735 - type: recall_at_5 value: 40.71 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.925 - type: map_at_10 value: 26.017000000000003 - type: map_at_100 value: 27.034000000000002 - type: map_at_1000 value: 27.156000000000002 - type: map_at_3 value: 23.604 - type: map_at_5 value: 24.75 - type: mrr_at_1 value: 20.333000000000002 - type: mrr_at_10 value: 27.915 - type: mrr_at_100 value: 28.788000000000004 - type: mrr_at_1000 value: 28.877999999999997 - type: mrr_at_3 value: 25.446999999999996 - type: mrr_at_5 value: 26.648 - type: ndcg_at_1 value: 20.333000000000002 - type: ndcg_at_10 value: 30.673000000000002 - type: ndcg_at_100 value: 35.618 - type: ndcg_at_1000 value: 38.517 - type: ndcg_at_3 value: 25.71 - type: ndcg_at_5 value: 27.679 - type: precision_at_1 value: 20.333000000000002 - type: precision_at_10 value: 4.9910000000000005 - type: precision_at_100 value: 0.8130000000000001 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 11.029 - type: precision_at_5 value: 7.8740000000000006 - type: recall_at_1 value: 18.925 - type: recall_at_10 value: 43.311 - type: recall_at_100 value: 66.308 - type: recall_at_1000 value: 87.49 - type: recall_at_3 value: 29.596 - type: recall_at_5 value: 34.245 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 13.714 - type: map_at_10 value: 23.194 - type: map_at_100 value: 24.976000000000003 - type: map_at_1000 value: 25.166 - type: map_at_3 value: 19.709 - type: map_at_5 value: 21.523999999999997 - type: mrr_at_1 value: 30.619000000000003 - type: mrr_at_10 value: 42.563 - type: mrr_at_100 value: 43.386 - type: mrr_at_1000 value: 43.423 - type: mrr_at_3 value: 39.555 - type: mrr_at_5 value: 41.268 - type: ndcg_at_1 value: 30.619000000000003 - type: ndcg_at_10 value: 31.836 - type: ndcg_at_100 value: 38.652 - type: ndcg_at_1000 value: 42.088 - type: ndcg_at_3 value: 26.733 - type: ndcg_at_5 value: 28.435 - type: precision_at_1 value: 30.619000000000003 - type: precision_at_10 value: 9.751999999999999 - type: precision_at_100 value: 1.71 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 19.935 - type: precision_at_5 value: 14.984 - type: recall_at_1 value: 13.714 - type: recall_at_10 value: 37.26 - type: recall_at_100 value: 60.546 - type: recall_at_1000 value: 79.899 - type: recall_at_3 value: 24.325 - type: recall_at_5 value: 29.725 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.462 - type: map_at_10 value: 18.637 - type: map_at_100 value: 26.131999999999998 - type: map_at_1000 value: 27.607 - type: map_at_3 value: 13.333 - type: map_at_5 value: 15.654000000000002 - type: mrr_at_1 value: 66.25 - type: mrr_at_10 value: 74.32600000000001 - type: mrr_at_100 value: 74.60900000000001 - type: mrr_at_1000 value: 74.62 - type: mrr_at_3 value: 72.667 - type: mrr_at_5 value: 73.817 - type: ndcg_at_1 value: 53.87499999999999 - type: ndcg_at_10 value: 40.028999999999996 - type: ndcg_at_100 value: 44.199 - type: ndcg_at_1000 value: 51.629999999999995 - type: ndcg_at_3 value: 44.113 - type: ndcg_at_5 value: 41.731 - type: precision_at_1 value: 66.25 - type: precision_at_10 value: 31.900000000000002 - type: precision_at_100 value: 10.043000000000001 - type: precision_at_1000 value: 1.926 - type: precision_at_3 value: 47.417 - type: precision_at_5 value: 40.65 - type: recall_at_1 value: 8.462 - type: recall_at_10 value: 24.293 - type: recall_at_100 value: 50.146 - type: recall_at_1000 value: 74.034 - type: recall_at_3 value: 14.967 - type: recall_at_5 value: 18.682000000000002 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.84499999999999 - type: f1 value: 42.48106691979349 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 74.034 - type: map_at_10 value: 82.76 - type: map_at_100 value: 82.968 - type: map_at_1000 value: 82.98299999999999 - type: map_at_3 value: 81.768 - type: map_at_5 value: 82.418 - type: mrr_at_1 value: 80.048 - type: mrr_at_10 value: 87.64999999999999 - type: mrr_at_100 value: 87.712 - type: mrr_at_1000 value: 87.713 - type: mrr_at_3 value: 87.01100000000001 - type: mrr_at_5 value: 87.466 - type: ndcg_at_1 value: 80.048 - type: ndcg_at_10 value: 86.643 - type: ndcg_at_100 value: 87.361 - type: ndcg_at_1000 value: 87.606 - type: ndcg_at_3 value: 85.137 - type: ndcg_at_5 value: 86.016 - type: precision_at_1 value: 80.048 - type: precision_at_10 value: 10.372 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.638 - type: precision_at_5 value: 20.177 - type: recall_at_1 value: 74.034 - type: recall_at_10 value: 93.769 - type: recall_at_100 value: 96.569 - type: recall_at_1000 value: 98.039 - type: recall_at_3 value: 89.581 - type: recall_at_5 value: 91.906 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 20.5 - type: map_at_10 value: 32.857 - type: map_at_100 value: 34.589 - type: map_at_1000 value: 34.778 - type: map_at_3 value: 29.160999999999998 - type: map_at_5 value: 31.033 - type: mrr_at_1 value: 40.123 - type: mrr_at_10 value: 48.776 - type: mrr_at_100 value: 49.495 - type: mrr_at_1000 value: 49.539 - type: mrr_at_3 value: 46.605000000000004 - type: mrr_at_5 value: 47.654 - type: ndcg_at_1 value: 40.123 - type: ndcg_at_10 value: 40.343 - type: ndcg_at_100 value: 46.56 - type: ndcg_at_1000 value: 49.777 - type: ndcg_at_3 value: 37.322 - type: ndcg_at_5 value: 37.791000000000004 - type: precision_at_1 value: 40.123 - type: precision_at_10 value: 11.08 - type: precision_at_100 value: 1.752 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 24.897 - type: precision_at_5 value: 17.809 - type: recall_at_1 value: 20.5 - type: recall_at_10 value: 46.388 - type: recall_at_100 value: 69.552 - type: recall_at_1000 value: 89.011 - type: recall_at_3 value: 33.617999999999995 - type: recall_at_5 value: 38.211 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 39.135999999999996 - type: map_at_10 value: 61.673 - type: map_at_100 value: 62.562 - type: map_at_1000 value: 62.62 - type: map_at_3 value: 58.467999999999996 - type: map_at_5 value: 60.463 - type: mrr_at_1 value: 78.271 - type: mrr_at_10 value: 84.119 - type: mrr_at_100 value: 84.29299999999999 - type: mrr_at_1000 value: 84.299 - type: mrr_at_3 value: 83.18900000000001 - type: mrr_at_5 value: 83.786 - type: ndcg_at_1 value: 78.271 - type: ndcg_at_10 value: 69.935 - type: ndcg_at_100 value: 73.01299999999999 - type: ndcg_at_1000 value: 74.126 - type: ndcg_at_3 value: 65.388 - type: ndcg_at_5 value: 67.906 - type: precision_at_1 value: 78.271 - type: precision_at_10 value: 14.562 - type: precision_at_100 value: 1.6969999999999998 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 41.841 - type: precision_at_5 value: 27.087 - type: recall_at_1 value: 39.135999999999996 - type: recall_at_10 value: 72.809 - type: recall_at_100 value: 84.86200000000001 - type: recall_at_1000 value: 92.208 - type: recall_at_3 value: 62.76199999999999 - type: recall_at_5 value: 67.718 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.60600000000001 - type: ap value: 86.6579587804335 - type: f1 value: 90.5938853929307 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.852 - type: map_at_10 value: 33.982 - type: map_at_100 value: 35.116 - type: map_at_1000 value: 35.167 - type: map_at_3 value: 30.134 - type: map_at_5 value: 32.340999999999994 - type: mrr_at_1 value: 22.479 - type: mrr_at_10 value: 34.594 - type: mrr_at_100 value: 35.672 - type: mrr_at_1000 value: 35.716 - type: mrr_at_3 value: 30.84 - type: mrr_at_5 value: 32.998 - type: ndcg_at_1 value: 22.493 - type: ndcg_at_10 value: 40.833000000000006 - type: ndcg_at_100 value: 46.357 - type: ndcg_at_1000 value: 47.637 - type: ndcg_at_3 value: 32.995999999999995 - type: ndcg_at_5 value: 36.919000000000004 - type: precision_at_1 value: 22.493 - type: precision_at_10 value: 6.465999999999999 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.030999999999999 - type: precision_at_5 value: 10.413 - type: recall_at_1 value: 21.852 - type: recall_at_10 value: 61.934999999999995 - type: recall_at_100 value: 87.611 - type: recall_at_1000 value: 97.441 - type: recall_at_3 value: 40.583999999999996 - type: recall_at_5 value: 49.992999999999995 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.36069311445507 - type: f1 value: 93.16456330371453 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.74692202462381 - type: f1 value: 58.17903579421599 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.80833893745796 - type: f1 value: 72.70786592684664 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.69872225958305 - type: f1 value: 78.61626934504731 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.058658628717694 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.85561739360599 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.290259910144385 - type: mrr value: 32.44223046102856 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.288 - type: map_at_10 value: 12.267999999999999 - type: map_at_100 value: 15.557000000000002 - type: map_at_1000 value: 16.98 - type: map_at_3 value: 8.866 - type: map_at_5 value: 10.418 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 52.681 - type: mrr_at_100 value: 53.315999999999995 - type: mrr_at_1000 value: 53.357 - type: mrr_at_3 value: 51.393 - type: mrr_at_5 value: 51.903999999999996 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.305 - type: ndcg_at_100 value: 30.825999999999997 - type: ndcg_at_1000 value: 39.393 - type: ndcg_at_3 value: 39.931 - type: ndcg_at_5 value: 37.519999999999996 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.728 - type: precision_at_100 value: 7.932 - type: precision_at_1000 value: 2.07 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 32.879000000000005 - type: recall_at_1 value: 5.288 - type: recall_at_10 value: 16.195 - type: recall_at_100 value: 31.135 - type: recall_at_1000 value: 61.531000000000006 - type: recall_at_3 value: 10.313 - type: recall_at_5 value: 12.754999999999999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 28.216 - type: map_at_10 value: 42.588 - type: map_at_100 value: 43.702999999999996 - type: map_at_1000 value: 43.739 - type: map_at_3 value: 38.177 - type: map_at_5 value: 40.754000000000005 - type: mrr_at_1 value: 31.866 - type: mrr_at_10 value: 45.189 - type: mrr_at_100 value: 46.056000000000004 - type: mrr_at_1000 value: 46.081 - type: mrr_at_3 value: 41.526999999999994 - type: mrr_at_5 value: 43.704 - type: ndcg_at_1 value: 31.837 - type: ndcg_at_10 value: 50.178 - type: ndcg_at_100 value: 54.98800000000001 - type: ndcg_at_1000 value: 55.812 - type: ndcg_at_3 value: 41.853 - type: ndcg_at_5 value: 46.153 - type: precision_at_1 value: 31.837 - type: precision_at_10 value: 8.43 - type: precision_at_100 value: 1.1119999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.911000000000001 - type: recall_at_1 value: 28.216 - type: recall_at_10 value: 70.8 - type: recall_at_100 value: 91.857 - type: recall_at_1000 value: 97.941 - type: recall_at_3 value: 49.196 - type: recall_at_5 value: 59.072 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.22800000000001 - type: map_at_10 value: 85.115 - type: map_at_100 value: 85.72 - type: map_at_1000 value: 85.737 - type: map_at_3 value: 82.149 - type: map_at_5 value: 84.029 - type: mrr_at_1 value: 81.96 - type: mrr_at_10 value: 88.00200000000001 - type: mrr_at_100 value: 88.088 - type: mrr_at_1000 value: 88.089 - type: mrr_at_3 value: 87.055 - type: mrr_at_5 value: 87.715 - type: ndcg_at_1 value: 82.01 - type: ndcg_at_10 value: 88.78 - type: ndcg_at_100 value: 89.91 - type: ndcg_at_1000 value: 90.013 - type: ndcg_at_3 value: 85.957 - type: ndcg_at_5 value: 87.56 - type: precision_at_1 value: 82.01 - type: precision_at_10 value: 13.462 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.732000000000003 - type: recall_at_1 value: 71.22800000000001 - type: recall_at_10 value: 95.69 - type: recall_at_100 value: 99.531 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 87.632 - type: recall_at_5 value: 92.117 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 52.31768034366916 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.640266772723606 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.7780000000000005 - type: map_at_10 value: 12.299 - type: map_at_100 value: 14.363000000000001 - type: map_at_1000 value: 14.71 - type: map_at_3 value: 8.738999999999999 - type: map_at_5 value: 10.397 - type: mrr_at_1 value: 23.599999999999998 - type: mrr_at_10 value: 34.845 - type: mrr_at_100 value: 35.916 - type: mrr_at_1000 value: 35.973 - type: mrr_at_3 value: 31.7 - type: mrr_at_5 value: 33.535 - type: ndcg_at_1 value: 23.599999999999998 - type: ndcg_at_10 value: 20.522000000000002 - type: ndcg_at_100 value: 28.737000000000002 - type: ndcg_at_1000 value: 34.596 - type: ndcg_at_3 value: 19.542 - type: ndcg_at_5 value: 16.958000000000002 - type: precision_at_1 value: 23.599999999999998 - type: precision_at_10 value: 10.67 - type: precision_at_100 value: 2.259 - type: precision_at_1000 value: 0.367 - type: precision_at_3 value: 18.333 - type: precision_at_5 value: 14.879999999999999 - type: recall_at_1 value: 4.7780000000000005 - type: recall_at_10 value: 21.617 - type: recall_at_100 value: 45.905 - type: recall_at_1000 value: 74.42 - type: recall_at_3 value: 11.148 - type: recall_at_5 value: 15.082999999999998 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.22372750297885 - type: cos_sim_spearman value: 79.40972617119405 - type: euclidean_pearson value: 80.6101072020434 - type: euclidean_spearman value: 79.53844217225202 - type: manhattan_pearson value: 80.57265975286111 - type: manhattan_spearman value: 79.46335611792958 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.43713315520749 - type: cos_sim_spearman value: 77.44128693329532 - type: euclidean_pearson value: 81.63869928101123 - type: euclidean_spearman value: 77.29512977961515 - type: manhattan_pearson value: 81.63704185566183 - type: manhattan_spearman value: 77.29909412738657 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.59451537860527 - type: cos_sim_spearman value: 82.97994638856723 - type: euclidean_pearson value: 82.89478688288412 - type: euclidean_spearman value: 83.58740751053104 - type: manhattan_pearson value: 82.69140840941608 - type: manhattan_spearman value: 83.33665956040555 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.00756527711764 - type: cos_sim_spearman value: 81.83560996841379 - type: euclidean_pearson value: 82.07684151976518 - type: euclidean_spearman value: 82.00913052060511 - type: manhattan_pearson value: 82.05690778488794 - type: manhattan_spearman value: 82.02260252019525 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.13710262895447 - type: cos_sim_spearman value: 87.26412811156248 - type: euclidean_pearson value: 86.94151453230228 - type: euclidean_spearman value: 87.5363796699571 - type: manhattan_pearson value: 86.86989424083748 - type: manhattan_spearman value: 87.47315940781353 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.0230597603627 - type: cos_sim_spearman value: 84.93344499318864 - type: euclidean_pearson value: 84.23754743431141 - type: euclidean_spearman value: 85.09707376597099 - type: manhattan_pearson value: 84.04325160987763 - type: manhattan_spearman value: 84.89353071339909 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.75620824563921 - type: cos_sim_spearman value: 87.15065513706398 - type: euclidean_pearson value: 88.26281533633521 - type: euclidean_spearman value: 87.51963738643983 - type: manhattan_pearson value: 88.25599267618065 - type: manhattan_spearman value: 87.58048736047483 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.74645319195137 - type: cos_sim_spearman value: 65.29996325037214 - type: euclidean_pearson value: 67.04297794086443 - type: euclidean_spearman value: 65.43841726694343 - type: manhattan_pearson value: 67.39459955690904 - type: manhattan_spearman value: 65.92864704413651 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.31291020270801 - type: cos_sim_spearman value: 85.86473738688068 - type: euclidean_pearson value: 85.65537275064152 - type: euclidean_spearman value: 86.13087454209642 - type: manhattan_pearson value: 85.43946955047609 - type: manhattan_spearman value: 85.91568175344916 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.93798118350695 - type: mrr value: 95.93536274908824 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.594 - type: map_at_10 value: 66.81899999999999 - type: map_at_100 value: 67.368 - type: map_at_1000 value: 67.4 - type: map_at_3 value: 64.061 - type: map_at_5 value: 65.47 - type: mrr_at_1 value: 60.667 - type: mrr_at_10 value: 68.219 - type: mrr_at_100 value: 68.655 - type: mrr_at_1000 value: 68.684 - type: mrr_at_3 value: 66.22200000000001 - type: mrr_at_5 value: 67.289 - type: ndcg_at_1 value: 60.667 - type: ndcg_at_10 value: 71.275 - type: ndcg_at_100 value: 73.642 - type: ndcg_at_1000 value: 74.373 - type: ndcg_at_3 value: 66.521 - type: ndcg_at_5 value: 68.581 - type: precision_at_1 value: 60.667 - type: precision_at_10 value: 9.433 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.556 - type: precision_at_5 value: 16.8 - type: recall_at_1 value: 57.594 - type: recall_at_10 value: 83.622 - type: recall_at_100 value: 94.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.64399999999999 - type: recall_at_5 value: 75.983 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.85841584158416 - type: cos_sim_ap value: 96.66996142314342 - type: cos_sim_f1 value: 92.83208020050125 - type: cos_sim_precision value: 93.06532663316584 - type: cos_sim_recall value: 92.60000000000001 - type: dot_accuracy value: 99.85841584158416 - type: dot_ap value: 96.6775307676576 - type: dot_f1 value: 92.69289729177312 - type: dot_precision value: 94.77533960292581 - type: dot_recall value: 90.7 - type: euclidean_accuracy value: 99.86138613861387 - type: euclidean_ap value: 96.6338454403108 - type: euclidean_f1 value: 92.92214357937311 - type: euclidean_precision value: 93.96728016359918 - type: euclidean_recall value: 91.9 - type: manhattan_accuracy value: 99.86237623762376 - type: manhattan_ap value: 96.60370449645053 - type: manhattan_f1 value: 92.91177970423253 - type: manhattan_precision value: 94.7970863683663 - type: manhattan_recall value: 91.10000000000001 - type: max_accuracy value: 99.86237623762376 - type: max_ap value: 96.6775307676576 - type: max_f1 value: 92.92214357937311 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 60.77977058695198 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.2725272535638 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.64052466362125 - type: mrr value: 54.533067014684654 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.677624219206578 - type: cos_sim_spearman value: 30.121368518123447 - type: dot_pearson value: 30.69870088041608 - type: dot_spearman value: 29.61284927093751 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.855 - type: map_at_100 value: 9.885 - type: map_at_1000 value: 23.416999999999998 - type: map_at_3 value: 0.637 - type: map_at_5 value: 1.024 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 93.067 - type: mrr_at_100 value: 93.067 - type: mrr_at_1000 value: 93.067 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 93.067 - type: ndcg_at_1 value: 82.0 - type: ndcg_at_10 value: 75.899 - type: ndcg_at_100 value: 55.115 - type: ndcg_at_1000 value: 48.368 - type: ndcg_at_3 value: 79.704 - type: ndcg_at_5 value: 78.39699999999999 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 79.60000000000001 - type: precision_at_100 value: 56.06 - type: precision_at_1000 value: 21.206 - type: precision_at_3 value: 84.667 - type: precision_at_5 value: 83.2 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.078 - type: recall_at_100 value: 13.297 - type: recall_at_1000 value: 44.979 - type: recall_at_3 value: 0.6689999999999999 - type: recall_at_5 value: 1.106 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.258 - type: map_at_10 value: 10.439 - type: map_at_100 value: 16.89 - type: map_at_1000 value: 18.407999999999998 - type: map_at_3 value: 5.668 - type: map_at_5 value: 7.718 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 51.159 - type: mrr_at_100 value: 51.714000000000006 - type: mrr_at_1000 value: 51.714000000000006 - type: mrr_at_3 value: 47.959 - type: mrr_at_5 value: 50.407999999999994 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 26.037 - type: ndcg_at_100 value: 37.924 - type: ndcg_at_1000 value: 49.126999999999995 - type: ndcg_at_3 value: 30.631999999999998 - type: ndcg_at_5 value: 28.571 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 22.857 - type: precision_at_100 value: 7.754999999999999 - type: precision_at_1000 value: 1.529 - type: precision_at_3 value: 34.014 - type: precision_at_5 value: 29.796 - type: recall_at_1 value: 2.258 - type: recall_at_10 value: 16.554 - type: recall_at_100 value: 48.439 - type: recall_at_1000 value: 82.80499999999999 - type: recall_at_3 value: 7.283 - type: recall_at_5 value: 10.732 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.8858 - type: ap value: 13.835684144362109 - type: f1 value: 53.803351693244586 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.50650820599886 - type: f1 value: 60.84357825979259 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 48.52131044852134 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.59337187816654 - type: cos_sim_ap value: 73.23925826533437 - type: cos_sim_f1 value: 67.34693877551021 - type: cos_sim_precision value: 62.40432237730752 - type: cos_sim_recall value: 73.13984168865434 - type: dot_accuracy value: 85.31322644096085 - type: dot_ap value: 72.30723963807422 - type: dot_f1 value: 66.47051612112296 - type: dot_precision value: 62.0792305930845 - type: dot_recall value: 71.53034300791556 - type: euclidean_accuracy value: 85.61125350181797 - type: euclidean_ap value: 73.32843720487845 - type: euclidean_f1 value: 67.36549633745895 - type: euclidean_precision value: 64.60755813953489 - type: euclidean_recall value: 70.36939313984169 - type: manhattan_accuracy value: 85.63509566668654 - type: manhattan_ap value: 73.16658488311325 - type: manhattan_f1 value: 67.20597386434349 - type: manhattan_precision value: 63.60424028268551 - type: manhattan_recall value: 71.2401055408971 - type: max_accuracy value: 85.63509566668654 - type: max_ap value: 73.32843720487845 - type: max_f1 value: 67.36549633745895 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.33779640625606 - type: cos_sim_ap value: 84.83868375898157 - type: cos_sim_f1 value: 77.16506154017773 - type: cos_sim_precision value: 74.62064005753327 - type: cos_sim_recall value: 79.88912842623961 - type: dot_accuracy value: 88.02732176815307 - type: dot_ap value: 83.95089283763002 - type: dot_f1 value: 76.29635101196631 - type: dot_precision value: 73.31771720613288 - type: dot_recall value: 79.52725592854944 - type: euclidean_accuracy value: 88.44452206310397 - type: euclidean_ap value: 84.98384576824827 - type: euclidean_f1 value: 77.29311047696697 - type: euclidean_precision value: 74.51232583065381 - type: euclidean_recall value: 80.28949799815214 - type: manhattan_accuracy value: 88.47362906042613 - type: manhattan_ap value: 84.91421462218432 - type: manhattan_f1 value: 77.05107637204792 - type: manhattan_precision value: 74.74484256243214 - type: manhattan_recall value: 79.50415768401602 - type: max_accuracy value: 88.47362906042613 - type: max_ap value: 84.98384576824827 - type: max_f1 value: 77.29311047696697 license: mit language: - en --- <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3). [English](README.md) | [ไธญๆ–‡](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently: - **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon) - **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) - **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding) - **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) - **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) ## News - 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval). It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks. [Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire: - 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire: - 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire: - 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: - 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released - 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size ๐Ÿค—** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | | | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["ๆ ทไพ‹ๆ•ฐๆฎ-1", "ๆ ทไพ‹ๆ•ฐๆฎ-2"] sentences_2 = ["ๆ ทไพ‹ๆ•ฐๆฎ-3", "ๆ ทไพ‹ๆ•ฐๆฎ-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["ๆ ทไพ‹ๆ–‡ๆกฃ-1", "ๆ ทไพ‹ๆ–‡ๆกฃ-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["ๆ ทไพ‹ๆ•ฐๆฎ-1", "ๆ ทไพ‹ๆ•ฐๆฎ-2"] sentences_2 = ["ๆ ทไพ‹ๆ•ฐๆฎ-3", "ๆ ทไพ‹ๆ•ฐๆฎ-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["ๆ ทไพ‹ๆ–‡ๆกฃ-1", "ๆ ทไพ‹ๆ–‡ๆกฃ-2"] instruction = "ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš" ) model.query_instruction = "ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["ๆ ทไพ‹ๆ•ฐๆฎ-1", "ๆ ทไพ‹ๆ•ฐๆฎ-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` #### Usage of the ONNX files ```python from optimum.onnxruntime import ORTModelForFeatureExtraction # type: ignore import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-en-v1.5') model = AutoModel.from_pretrained('BAAI/bge-small-en-v1.5') model_ort = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-small-en-v1.5', file_name="onnx/model.onnx") # Sentences we want sentence embeddings for sentences = ["ๆ ทไพ‹ๆ•ฐๆฎ-1", "ๆ ทไพ‹ๆ•ฐๆฎ-2"] # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') model_output_ort = model_ort(**encoded_input) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # model_output and model_output_ort are identical ``` #### Usage via infinity Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package. Recommended is `device="cuda", engine="torch"` with flash attention on gpu, and `device="cpu", engine="optimum"` for onnx inference. ```python import asyncio from infinity_emb import AsyncEmbeddingEngine, EngineArgs sentences = ["Embed this is sentence via Infinity.", "Paris is in France."] engine = AsyncEmbeddingEngine.from_args( EngineArgs(model_name_or_path = "BAAI/bge-small-en-v1.5", device="cpu", engine="optimum" # or engine="torch" )) async def main(): async with engine: embeddings, usage = await engine.embed(sentences=sentences) asyncio.run(main()) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
Anguuuuus/laryngitis-sentence
Anguuuuus
2024-05-31T01:19:19Z
161
0
transformers
[ "transformers", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-05-31T01:18:36Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: laryngitis-sentence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # laryngitis-sentence This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4969 - Accuracy: 0.8182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6954 | 1.0 | 6 | 0.7061 | 0.1818 | | 0.6906 | 2.0 | 12 | 0.7867 | 0.1818 | | 0.6466 | 3.0 | 18 | 0.7956 | 0.1818 | | 0.63 | 4.0 | 24 | 0.7992 | 0.1818 | | 0.5842 | 5.0 | 30 | 0.7482 | 0.4545 | | 0.5338 | 6.0 | 36 | 0.6246 | 0.6364 | | 0.4733 | 7.0 | 42 | 0.8296 | 0.5 | | 0.4509 | 8.0 | 48 | 0.5392 | 0.7273 | | 0.3703 | 9.0 | 54 | 0.5102 | 0.7727 | | 0.3161 | 10.0 | 60 | 0.3694 | 0.9545 | | 0.2741 | 11.0 | 66 | 0.5227 | 0.7727 | | 0.2373 | 12.0 | 72 | 0.4092 | 0.8182 | | 0.2064 | 13.0 | 78 | 0.5372 | 0.8182 | | 0.1726 | 14.0 | 84 | 0.5193 | 0.8182 | | 0.2062 | 15.0 | 90 | 0.4969 | 0.8182 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.12.0 - Tokenizers 0.15.1
Tele-AI/TeleSpeech-ASR1.0
Tele-AI
2024-05-31T01:17:57Z
0
61
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-22T07:59:22Z
--- license: apache-2.0 --- <div align="center"> <h1> ๆ˜Ÿ่พฐ่ฏญ้Ÿณๅคงๆจกๅž‹-่ถ…ๅคšๆ–น่จ€ASR </h1> </div> <p align="center"> ๐Ÿฆ‰ <a href="https://github.com/Tele-AI/TeleSpeech-ASR" target="_blank">github</a>๏ธ โ€ข ๐Ÿพ <a href="https://gitee.com/Tele-AI/TeleSpeech-ASR" target="_blank">gitee</a>๏ธ โ€ข ๐Ÿค– <a href="https://www.modelscope.cn/models/TeleAI/TeleSpeech-ASR1.0/summary" target="_blank">ModelScope</a> </p> ๆ˜Ÿ่พฐ่ถ…ๅคšๆ–น่จ€่ฏญ้Ÿณ่ฏ†ๅˆซๅคงๆจกๅž‹v1.0๏ผŒ็”ฑ30ไธ‡ๅฐๆ—ถๆ— ๆ ‡ๆณจๅคšๆ–น่จ€่ฏญ้Ÿณๆ•ฐๆฎ่ฟ›่กŒ้ข„่ฎญ็ปƒ๏ผŒๅนถๅˆฉ็”จๅ†…้ƒจ30็งๆœ‰ๆ ‡ๆณจๆ•ฐๆฎ่ฟ›่กŒๅพฎ่ฐƒ๏ผŒๆ‰“็ ดๅ•ไธ€ๆจกๅž‹ๅช่ƒฝ่ฏ†ๅˆซ็‰นๅฎšๅ•ไธ€ๆ–น่จ€็š„ๅ›ฐๅขƒ๏ผŒๅฏๆ”ฏๆŒ็†่งฃ็ฒค่ฏญใ€ไธŠๆตท่ฏใ€ๅ››ๅท่ฏใ€ๆธฉๅทž่ฏ็ญ‰30็งๆ–น่จ€ ๆœฌๆฌกๅผ€ๆบไธ‰ไธชๆจกๅž‹๏ผšไธคไธช30ไธ‡ๅฐๆ—ถๆ— ๆ ‡ๆณจ่ฏญ้Ÿณ้ข„่ฎญ็ปƒๆจกๅž‹ๅ’Œไธ€ไธชKeSpeechๆ•ฐๆฎ้›†8็งๆ–น่จ€ๅพฎ่ฐƒๆจกๅž‹ใ€‚ๅ‘ๅธƒ็‰ˆๆœฌๅ’Œไธ‹่ฝฝ้“พๆŽฅ่งไธ‹่กจ | ๆจกๅž‹็‰ˆๆœฌ | ๅ‚ๆ•ฐ้‡ | ไธ‹่ฝฝ้“พๆŽฅ | ๅญ—ๅ…ธ | ๅค‡ๆณจ | |---------------------|-------|---------------------|-------|-------| | pretrain_base | 0.09 B | [TeleSpeech-ASR1.0-base](https://huggingface.co/Tele-AI/TeleSpeech-ASR1.0/blob/main/base.pt) | โœ— | 30ไธ‡ๅฐๆ—ถๆ— ๆ ‡ๆณจ่ฏญ้Ÿณ้ข„่ฎญ็ปƒๆจกๅž‹ | | pretrain_large | 0.3 B | [TeleSpeech-ASR1.0-large](https://huggingface.co/Tele-AI/TeleSpeech-ASR1.0/blob/main/large.pt) | โœ— | 30ไธ‡ๅฐๆ—ถๆ— ๆ ‡ๆณจ่ฏญ้Ÿณ้ข„่ฎญ็ปƒๆจกๅž‹ | | finetune_large_kespeech | 0.3 B | [TeleSpeech-ASR1.0-large-kespeech](https://huggingface.co/Tele-AI/TeleSpeech-ASR1.0/blob/main/finetune_large_kespeech.pt) | [dict.char7531.txt](https://huggingface.co/Tele-AI/TeleSpeech-ASR1.0/blob/main/dict.chr7531.txt) | ๅŸบไบŽpretrain_large๏ผŒ้‡‡็”จKeSpeechๆ•ฐๆฎ้›†[8็งๆ–น่จ€](#KeSpeechๅ„ๆ–น่จ€ไธŠ็ป“ๆžœ)ๅพฎ่ฐƒ่ฎญ็ปƒ| * finetuneๆจกๅž‹ไธบๅทฒ็ปๅœจ็‰นๅฎšๆ•ฐๆฎ้›†ๅพฎ่ฐƒ่ฟ‡็š„ๆจกๅž‹๏ผŒๅฏ็›ดๆŽฅไฝฟ็”จ * pretrainๆจกๅž‹ไธบๆ— ็›‘็ฃ้ข„่ฎญ็ปƒๆจกๅž‹๏ผŒ**ๆ— ๆณ•็›ดๆŽฅ่ฟ›่กŒASRไปปๅŠก**๏ผŒ้œ€่ฆ็”จๅฐ‘้‡ๆ ‡ๆณจๆ•ฐๆฎ่ฟ›่กŒๆœ‰็›‘็ฃ่ฎญ็ปƒๅŽไฝฟ็”จใ€‚็›ธๆฏ”ไบŽ็›ดๆŽฅ่ฎญ็ปƒ็š„ๆ–น่จ€่ฏ†ๅˆซๆจกๅž‹๏ผŒๅŸบไบŽ้ข„่ฎญ็ปƒๆจกๅž‹ๅฏไปฅๅˆฉ็”จๆ›ดๅฐ‘็š„ๆœ‰ๆ ‡ๆณจๆ•ฐๆฎ่Žทๅพ—ๆ›ดๅฅฝ็š„ๆ–น่จ€่ฏ†ๅˆซๆ€ง่ƒฝใ€‚ๆˆ‘ไปฌๆไพ›ไบ†ไธค็งๆœ‰็›‘็ฃ่ฎญ็ปƒๆก†ๆžถ๏ผŒ็”จไบŽไธ‹ๆธธASRไปปๅŠก๏ผš1) ๅŸบไบŽfairseq็š„้ข„่ฎญ็ปƒๆจกๅž‹ๅพฎ่ฐƒ๏ผ› 2) ๅŸบไบŽwenet็š„่กจๅพๆๅ–๏ผˆ็‰นๅพๆๅ–ๅ™จ๏ผ‰่ฎญ็ปƒไธ‹ๆธธASRๆจกๅž‹ # ็Žฏๅขƒ้…็ฝฎ * PyTorch version >= 1.13.0 * Python version >= 3.8 * ๆ•ฐๆฎๅ‡†ๅค‡ใ€็จ‹ๅบ่ฎญ็ปƒ้œ€่ฆไฝฟ็”จkaldi๏ผŒ่ฏท็กฎไฟๅทฒๆญฃ็กฎๅฎ‰่ฃ…๏ผšhttps://github.com/kaldi-asr/kaldi * ่‹ฅๅทฒๆœ‰ๆๅฅฝ็š„็‰นๅพ๏ผŒ็จ‹ๅบ่ฟ่กŒๆ—ถๅฏไปฅไฝฟ็”จwenetๅผ€ๆบๆก†ๆžถไธญkaldi_io.pyๅฎž็Žฐ็š„ๆ–นๆณ•ๆ›ฟๆขkaldiio.load_mat๏ผŒไปŽ่€Œๆ— ้œ€ๅฎ‰่ฃ…kaldi <a id="fairseqๅฎ‰่ฃ…"></a> * ๅฎ‰่ฃ…fairseqๅŠๅ…ถไพ่ต– ```shell script $ git clone https://github.com/pytorch/fairseq $ cd fairseq $ pip install --editable ./ ``` * ๅฎ‰่ฃ…fairseq้ขๅค–ไพ่ต–ไปฅๅŠwenet่กจๅพ่ฎญ็ปƒไปปๅŠก่ฟ่กŒๆ‰€้œ€ไพ่ต– ```shell script $ pip install -r requirements.txt ``` * ่‹ฅๅช้œ€่ฆfairseq่ฟ›่กŒๅพฎ่ฐƒใ€่งฃ็ ๏ผŒๅฏไปฅไธๅฎ‰่ฃ…ๅฎŒๆ•ด็š„requirements.txt๏ผŒๅช้œ€ไฟ่ฏkaldiio, timm, editdistance, soundfileๅทฒๆญฃ็กฎๅฎ‰่ฃ… ```shell script $ pip install kaldiio timm editdistance soundfile ``` # ๆ•ฐๆฎๅ‡†ๅค‡ ## ็‰นๅพๆๅ– * ๅˆฉ็”จkaldiๆๅ–40็ปดmfcc็‰นๅพ๏ผŒๅ‚ๆ•ฐ่ฎพ็ฝฎๅ‚่€ƒ`mfcc_hires.conf` * ไธบๅ„ๆ•ฐๆฎ้›†ๅ‡†ๅค‡่ฎญ็ปƒ็”จๆ–‡ไปถ`data.list`๏ผŒไปฅ`\t`ๅˆ†้š”๏ผš ``` $ cat train/data.list utt:X0000000000_100638174_S00037 feat:/data/raw_nnaudio.test.1.ark:2983479385 feat_shape:363,40 text:ไธๆƒœๅœจ่ฟ™็ง่ฏ•้ชŒไธญๆฏ็ญๅŒ…ๆ‹ฌ่‡ชๅทฑๅœจๅ†…็š„ไธ€ๅˆ‡ token:ไธ ๆƒœ ๅœจ ่ฟ™ ็ง ่ฏ• ้ชŒ ไธญ ๆฏ ็ญ ๅŒ… ๆ‹ฌ ่‡ช ๅทฑ ๅœจ ๅ†… ็š„ ไธ€ ๅˆ‡ tokenid:[TOKENID] token_shape:19,5537 utt:X0000000001_100849618_S00006 feat:/data/raw_nnaudio.test.1.ark:2984296665 feat_shape:345,40 text:ๅœจไป–ไปฌๆ”ถๅˆฐ่ถณๅคŸๅปบ็ซ‹ๅคง็ปŸไธ€ๆจกๅž‹็š„ๆ•ฐๆฎๅŽ token:ๅœจ ไป– ไปฌ ๆ”ถ ๅˆฐ ่ถณ ๅคŸ ๅปบ ็ซ‹ ๅคง ็ปŸ ไธ€ ๆจก ๅž‹ ็š„ ๆ•ฐ ๆฎ ๅŽ tokenid:[TOKENID] token_shape:18,5537 ... ``` ## ๅญ—ๅ…ธๅ‡†ๅค‡ * ๅพฎ่ฐƒ้˜ถๆฎต๏ผŒ้œ€่ฆๅ‡†ๅค‡fairseqๆ ผๅผ็š„ `dict.${label}.txt`๏ผŒ`${label}`ไธบๅปบๆจกๅ•ๅ…ƒ็ฑปๅž‹๏ผŒๅฆ‚ltr, bpe็ญ‰ใ€‚ไปฅ`dict.ltr.txt`ไธบไพ‹๏ผš ``` ๆ˜ฏ 2 ๅฅฝ 3 ... ``` * ้ข„่ฎญ็ปƒๆจกๅž‹่กจๅพ่ฎญ็ปƒASRไปปๅŠก้˜ถๆฎต๏ผŒ้œ€่ฆๅ‡†ๅค‡wenetๆ ผๅผ็š„`lang_char.txt`๏ผŒ็›ธๆฏ”ไบŽ`dict.${label}.txt`้ขๅค–ๆทปๅŠ `<blank>`, `<unk>`, `<sos/eos>`3ไธชtoken๏ผŒไพ‹ๅฆ‚ ``` <blank> 0 <unk> 1 ๆ˜ฏ 2 ๅฅฝ 3 ... <sos/eos> 5536 ``` # ้ข„่ฎญ็ปƒๆจกๅž‹ๅพฎ่ฐƒ ## ๅพฎ่ฐƒ * ๅ‡†ๅค‡`train.tsv`ๅ’Œ`dev.tsv`๏ผŒไฟๅญ˜ไบŽๅŒไธ€่ฎญ็ปƒ็›ฎๅฝ•ไธ‹ ``` $ ln -s /path/to/train/data.list /path/to/train/train.tsv $ ln -s /path/to/dev/data.list /path/to/train/dev.tsv ``` * ่ฟ›ๅ…ฅdata2vec_dialect่ทฏๅพ„๏ผŒไฟฎๆ”น`path.sh`ๆ–‡ไปถไธญ`/path/to/fairseq`ไธบfairseqๅฎ‰่ฃ…่ทฏๅพ„ * ๅฐ†`run_scripts/run_d2v_finetune.sh`ไธญ`/path/to/fairseq`ๅ’Œ`/path/to/data2vec_dialect`่ทฏๅพ„ๆ›ฟๆข * ไฟฎๆ”น`task.data`ไธบ`.tsv`ไฟๅญ˜่ทฏๅพ„๏ผŒๅฆ‚`task.data=/data/wenetspeech/train` * ๆ‰ง่กŒ ```shell script $ bash run_scripts/run_d2v_finetune.sh ``` ## ่งฃ็  * ๅŒๆ ทไฟฎๆ”น`run_scripts/decode.sh`ไธญ็š„ๆจกๅž‹่ทฏๅพ„ใ€ๆต‹่ฏ•ๆ•ฐๆฎ่ทฏๅพ„็ญ‰ * `dataset.gen_subset`ไธบๆต‹่ฏ•ๆ•ฐๆฎ่ทฏๅพ„ไธ‹`tsv`ๆ–‡ไปถ็š„ๅ็งฐ๏ผŒๅฏ้…็ฝฎๅคšไธช * ๆ‰ง่กŒ ```shell script $ bash run_scripts/decode.sh ``` # ่กจๅพ่ฎญ็ปƒไธ‹ๆธธไปปๅŠก * ่ฟ›ๅ…ฅwenet_representation่ทฏๅพ„๏ผŒไฟฎๆ”น`path.sh`ๆ–‡ไปถไธญ`fairseq`, `data2vec_dialect`, `wenet_representation`็›ธๅ…ณ่ทฏๅพ„ * ่ฟž็ปญ่กจๅพ่ฎญ็ปƒไธŽ่งฃ็ ๏ผš * ้…็ฝฎ`run_d2v.sh`ไธญdataset็›ธๅ…ณๅ†…ๅฎน๏ผŒๆ‰ง่กŒ ```shell script $ bash run_d2v.sh ``` * ็ฆปๆ•ฃ่กจๅพ่ฎญ็ปƒไธŽ่งฃ็ ๏ผš * ้ฆ–ๅ…ˆๆ นๆฎ`data.list`๏ผŒๅ‡†ๅค‡็ฆปๆ•ฃ่กจๅพๅฏนๅบ”่ฎญ็ปƒๆ–‡ไปถ`data.list.discrete`๏ผŒไฟฎๆ”น`wenet/discrete_token/kmeans_d2v.yaml`ไธญ`model_dir`ๅ’Œ`user_dir`๏ผŒๆ‰ง่กŒ ``` $ bash wenet/discrete_token/dump_feat.sh ``` * ๅ†้…็ฝฎ`run_discrete.sh`ไธญdataset็›ธๅ…ณๅ†…ๅฎน๏ผŒๆ‰ง่กŒ ``` $ bash run_discrete.sh ``` # ๅผ€ๆบๆ•ฐๆฎ้›†็ป“ๆžœ * ๆˆ‘ไปฌ้€‰ๆ‹ฉไบ†ๅคšไธชๅผ€ๆบไธญๆ–‡ๆ•ฐๆฎ้›†่ฟ›่กŒ้ชŒ่ฏ๏ผŒไปฅๆต‹่ฏ•้›†ไธŠ็š„ๅญ—้”™่ฏฏ็އ (Character Error Rate, CER) ็ป“ๆžœไฝœไธบ่กก้‡ๆ ‡ๅ‡† * ๅœจAishell-1ไธŠๆˆ‘ไปฌ้€‰ๆ‹ฉๅ…ถTrain้›†ไฝœไธบๆœ‰็›‘็ฃๆ•ฐๆฎ่ฟ›่กŒ่ฎญ็ปƒ๏ผŒๅœจTest้›†ไธŠ็ปŸ่ฎกCER * ๅœจWenetSpeechไธŠ๏ผŒๆˆ‘ไปฌๅˆ†ๅˆซไฝฟ็”จ100ๅฐๆ—ถ่ฎญ็ปƒ้›†Train_sๅ’Œ1000ๅฐๆ—ถ่ฎญ็ปƒ้›†Train_mๅˆ†ๅˆซไฝœไธบๆœ‰็›‘็ฃๆ•ฐๆฎ่ฟ›่กŒ่ฎญ็ปƒ๏ผŒๅœจTest_Meetingๆต‹่ฏ•้›†ไธŠ็ปŸ่ฎกCER * BabelไธบNIST๏ผˆ็พŽๅ›ฝๅ›ฝๅฎถๆ ‡ๅ‡†ไธŽๆŠ€ๆœฏ็ ”็ฉถ้™ข๏ผ‰ไธพๅŠž็š„ไฝŽ่ต„ๆบ็ฒค่ฏญ็”ต่ฏ่ฏ†ๅˆซไปปๅŠกๆ•ฐๆฎ้›†๏ผŒๆˆ‘ไปฌไฝฟ็”จๅ…ถๆไพ›็š„่ฎญ็ปƒ้›†ไธŽๆต‹่ฏ•้›†็ปŸ่ฎกCER * KeSpeechไธบไธญๆ–‡ๅคšๆ–น่จ€ๆต‹่ฏ•้›†๏ผŒๆˆ‘ไปฌไฝฟ็”จ1396ๅฐๆ—ถ่ฎญ็ปƒ้›†ไฝœไธบๆœ‰็›‘็ฃๆ•ฐๆฎ่ฟ›่กŒ่ฎญ็ปƒ๏ผŒ้€‰ๆ‹ฉๆไพ›็š„Testๆต‹่ฏ•้›†็ปŸ่ฎกCER | ๆจกๅž‹็‰ˆๆœฌ | Aishell-1 (%)| WenetSpeech* (%)| Babel (%) | KeSpeech (%) | | ----------| -------- | ------- | ---- | ---- | | pretrain_base | 4.7 | 18.3 / 16.4 | 22.1 | 10.9 | | pretrain_large | 4.0 | 14.3 / 13.0 | 19.1 | 8.1 | *WenetSpeechไธญ็š„็ป“ๆžœไธบๅˆ†ๅˆซไฝฟ็”จ `train_s/train_m`่ฎญ็ปƒๅŽ๏ผŒๅœจTest_MeetingไธŠ็š„CER <a id="KeSpeechๅ„ๆ–น่จ€ไธŠ็ป“ๆžœ"></a> KeSpeechๅ„ๆ–น่จ€ไธŠ็ป“ๆžœ๏ผˆCER%๏ผ‰ | ๆจกๅž‹็‰ˆๆœฌ | ๆ™ฎ้€š่ฏ | ๅŒ—ไบฌ | ่ฅฟๅ— | ไธญๅŽŸ | ไธœๅŒ— | ๅ…ฐ้“ถ | ๆฑŸๆทฎ | ๅ†€้ฒ | ่ƒถ่พฝ | | ---------| ------ | ---- | ---- | ---- |---- | ---- | ---- | ---- | ---- | | pretrain_large | 4.61 | 8.23 | 8.74 | 7.62 | 7.89 | 9.72 | 12.89 | 8.91 | 9.30 | # ๅฃฐๆ˜ŽไธŽๅ่ฎฎ ## ๅฃฐๆ˜Ž ๆˆ‘ไปฌๅœจๆญคๅฃฐๆ˜Ž๏ผŒไธ่ฆไฝฟ็”จTeleSpeechๆจกๅž‹ๅŠๅ…ถ่ก็”Ÿๆจกๅž‹่ฟ›่กŒไปปไฝ•ๅฑๅฎณๅ›ฝๅฎถ็คพไผšๅฎ‰ๅ…จๆˆ–่ฟๆณ•็š„ๆดปๅŠจใ€‚ๅŒๆ—ถ๏ผŒๆˆ‘ไปฌไนŸ่ฆๆฑ‚ไฝฟ็”จ่€…ไธ่ฆๅฐ†TeleSpeechๆจกๅž‹็”จไบŽๆฒกๆœ‰ๅฎ‰ๅ…จๅฎกๆŸฅๅ’Œๅค‡ๆกˆ็š„ไบ’่”็ฝ‘ๆœๅŠกใ€‚ๆˆ‘ไปฌๅธŒๆœ›ๆ‰€ๆœ‰ไฝฟ็”จ่€…้ตๅฎˆไธŠ่ฟฐๅŽŸๅˆ™๏ผŒ็กฎไฟ็ง‘ๆŠ€ๅ‘ๅฑ•ๅœจๅˆๆณ•ๅˆ่ง„็š„็Žฏๅขƒไธ‹่ฟ›่กŒใ€‚ ๆˆ‘ไปฌๅทฒ็ปๅฐฝๆˆ‘ไปฌๆ‰€่ƒฝ๏ผŒๆฅ็กฎไฟๆจกๅž‹่ฎญ็ปƒ่ฟ‡็จ‹ไธญไฝฟ็”จ็š„ๆ•ฐๆฎ็š„ๅˆ่ง„ๆ€งใ€‚็„ถ่€Œ๏ผŒๅฐฝ็ฎกๆˆ‘ไปฌๅทฒ็ปๅšๅ‡บไบ†ๅทจๅคง็š„ๅŠชๅŠ›๏ผŒไฝ†็”ฑไบŽๆจกๅž‹ๅ’Œๆ•ฐๆฎ็š„ๅคๆ‚ๆ€ง๏ผŒไปๆœ‰ๅฏ่ƒฝๅญ˜ๅœจไธ€ไบ›ๆ— ๆณ•้ข„่ง็š„้—ฎ้ข˜ใ€‚ๅ› ๆญค๏ผŒๅฆ‚ๆžœ็”ฑไบŽไฝฟ็”จTeleSpeechๅผ€ๆบๆจกๅž‹่€Œๅฏผ่‡ด็š„ไปปไฝ•้—ฎ้ข˜๏ผŒๅŒ…ๆ‹ฌไฝ†ไธ้™ไบŽๆ•ฐๆฎๅฎ‰ๅ…จ้—ฎ้ข˜ใ€ๅ…ฌๅ…ฑ่ˆ†่ฎบ้ฃŽ้™ฉ๏ผŒๆˆ–ๆจกๅž‹่ขซ่ฏฏๅฏผใ€ๆปฅ็”จใ€ไผ ๆ’ญๆˆ–ไธๅฝ“ๅˆฉ็”จๆ‰€ๅธฆๆฅ็š„ไปปไฝ•้ฃŽ้™ฉๅ’Œ้—ฎ้ข˜๏ผŒๆˆ‘ไปฌๅฐ†ไธๆ‰ฟๆ‹…ไปปไฝ•่ดฃไปปใ€‚ ## ๅ่ฎฎ ็คพๅŒบไฝฟ็”จTeleSpeechๆจกๅž‹้œ€่ฆ้ตๅพชใ€Š[TeleSpeechๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎ](./TeleSpeechๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎ.pdf)ใ€‹ใ€‚TeleSpeechๆจกๅž‹ๆ”ฏๆŒๅ•†ไธš็”จ้€”๏ผŒๅฆ‚ๆžœๆ‚จ่ฎกๅˆ’ๅฐ†TeleSpeechๆจกๅž‹ๆˆ–ๅ…ถ่ก็”Ÿๅ“็”จไบŽๅ•†ไธš็›ฎ็š„๏ผŒๆ‚จ้œ€่ฆ้€š่ฟ‡ไปฅไธ‹่”็ณป้‚ฎ็ฎฑ [email protected]๏ผŒๆไบคใ€ŠTeleSpeechๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎใ€‹่ฆๆฑ‚็š„็”ณ่ฏทๆๆ–™ใ€‚ๅฎกๆ ธ้€š่ฟ‡ๅŽ๏ผŒๅฐ†็‰นๆญคๆŽˆไบˆๆ‚จไธ€ไธช้žๆŽ’ไป–ๆ€งใ€ๅ…จ็ƒๆ€งใ€ไธๅฏ่ฝฌ่ฎฉใ€ไธๅฏๅ†่ฎธๅฏใ€ๅฏๆ’ค้”€็š„ๅ•†็”จ็‰ˆๆƒ่ฎธๅฏใ€‚ ---
Sam0sam/sd-butterflies-32
Sam0sam
2024-05-31T01:17:02Z
48
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-05-31T01:16:39Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Sam0sam/sd-butterflies-32') image = pipeline().images[0] image ```
Anguuuuus/chordektomie-sentence
Anguuuuus
2024-05-31T01:15:00Z
161
1
transformers
[ "transformers", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-05-31T01:14:18Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: chordektomie-sentence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chordektomie-sentence This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3963 - Accuracy: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6931 | 1.0 | 6 | 0.7023 | 0.2273 | | 0.6659 | 2.0 | 12 | 0.7066 | 0.3182 | | 0.5839 | 3.0 | 18 | 0.5774 | 0.8636 | | 0.4567 | 4.0 | 24 | 0.5393 | 0.8182 | | 0.3303 | 5.0 | 30 | 0.4371 | 0.8182 | | 0.2379 | 6.0 | 36 | 0.3744 | 0.8182 | | 0.1511 | 7.0 | 42 | 0.5223 | 0.8182 | | 0.1061 | 8.0 | 48 | 0.5431 | 0.8182 | | 0.0781 | 9.0 | 54 | 0.3211 | 0.9091 | | 0.0623 | 10.0 | 60 | 0.3216 | 0.9091 | | 0.0681 | 11.0 | 66 | 0.3336 | 0.9091 | | 0.0475 | 12.0 | 72 | 0.3459 | 0.9091 | | 0.0441 | 13.0 | 78 | 0.3811 | 0.8636 | | 0.0419 | 14.0 | 84 | 0.3959 | 0.8636 | | 0.0409 | 15.0 | 90 | 0.3963 | 0.8636 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.12.0 - Tokenizers 0.15.1
RishieRish/chat_tune_contr_1_16bit_version
RishieRish
2024-05-31T01:05:58Z
2
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T00:58:32Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** RishieRish - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ebowwa/human-biases-people-profiles-beta-0.6.2-gguf
ebowwa
2024-05-31T01:03:50Z
8
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-31T01:01:10Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: unsloth/mistral-7b-v0.3-bnb-4bit --- # Uploaded model - **Developed by:** ebowwa - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nbeerbower/llama-3-SNAMD-8B
nbeerbower
2024-05-31T01:03:21Z
15
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:merge:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:nbeerbower/llama-3-Daredevil-Mahou-8B", "base_model:merge:nbeerbower/llama-3-Daredevil-Mahou-8B", "base_model:nbeerbower/llama-3-Stheno-Mahou-8B", "base_model:merge:nbeerbower/llama-3-Stheno-Mahou-8B", "base_model:nbeerbower/llama-3-spicy-abliterated-stella-8B", "base_model:merge:nbeerbower/llama-3-spicy-abliterated-stella-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T23:06:56Z
--- base_model: - nbeerbower/llama-3-spicy-abliterated-stella-8B - mlabonne/NeuralDaredevil-8B-abliterated - nbeerbower/llama-3-Stheno-Mahou-8B - nbeerbower/llama-3-Daredevil-Mahou-8B library_name: transformers tags: - mergekit - merge --- # llama-3-SNAMD-8B Stella-Neural-Abliterated-Mahou-Devil This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [nbeerbower/llama-3-Stheno-Mahou-8B](https://huggingface.co/nbeerbower/llama-3-Stheno-Mahou-8B) as a base. ### Models Merged The following models were included in the merge: * [nbeerbower/llama-3-spicy-abliterated-stella-8B](https://huggingface.co/nbeerbower/llama-3-spicy-abliterated-stella-8B) * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) * [nbeerbower/llama-3-Daredevil-Mahou-8B](https://huggingface.co/nbeerbower/llama-3-Daredevil-Mahou-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mlabonne/NeuralDaredevil-8B-abliterated - model: nbeerbower/llama-3-spicy-abliterated-stella-8B - model: nbeerbower/llama-3-Daredevil-Mahou-8B merge_method: model_stock base_model: nbeerbower/llama-3-Stheno-Mahou-8B dtype: bfloat16 ```
coconana/Qwen-Qwen1.5-0.5B-1717117112
coconana
2024-05-31T01:02:45Z
151
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T00:58:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phdatdt/working
phdatdt
2024-05-31T01:00:59Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-05-31T00:43:40Z
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - diffusers-training - lora base_model: stabilityai/stable-diffusion-xl-base-1.0 inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - phdatdt/working These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the phdatdt/vandata dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
fspecii/2
fspecii
2024-05-31T00:59:24Z
8
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T23:44:08Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** fspecii - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Anguuuuus/mydata-sentence
Anguuuuus
2024-05-31T00:58:04Z
162
0
transformers
[ "transformers", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-05-30T12:59:21Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: mydata-sentence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mydata-sentence This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7519 - Accuracy: 0.4615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7048 | 1.0 | 4 | 0.7079 | 0.3846 | | 0.6478 | 2.0 | 8 | 0.7239 | 0.3846 | | 0.7242 | 3.0 | 12 | 0.7464 | 0.3846 | | 0.5978 | 4.0 | 16 | 0.7460 | 0.4615 | | 0.7061 | 5.0 | 20 | 0.7460 | 0.4615 | | 0.7089 | 6.0 | 24 | 0.7377 | 0.4615 | | 0.5751 | 7.0 | 28 | 0.7324 | 0.4615 | | 0.5799 | 8.0 | 32 | 0.7365 | 0.4615 | | 0.563 | 9.0 | 36 | 0.7477 | 0.4615 | | 0.555 | 10.0 | 40 | 0.7562 | 0.4615 | | 0.5227 | 11.0 | 44 | 0.7632 | 0.4615 | | 0.6701 | 12.0 | 48 | 0.7590 | 0.4615 | | 0.5219 | 13.0 | 52 | 0.7540 | 0.4615 | | 0.5003 | 14.0 | 56 | 0.7526 | 0.4615 | | 0.488 | 15.0 | 60 | 0.7519 | 0.4615 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.12.0 - Tokenizers 0.15.1
not-lain/Finetuned_TinyLlama
not-lain
2024-05-31T00:56:46Z
151
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T22:37:31Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - trl - sft - generated_from_trainer model-index: - name: Finetuned_TinyLlama results: [] --- # Finetuned_TinyLlama This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset. ## Model description This model was made with [this tutorial by Noa](https://huggingface.co/blog/nroggendorff/finetune-tinyllama), you can find a more complete model and demo at [nroggendorff/mayo](https://huggingface.co/spaces/nroggendorff/mayo) ## Limitations - The model is easily gaslit - It is uncensored, and there are no safety features. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results - training_loss=2.0859998975481306 ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
ebowwa/human-biases-people-profiles-beta-0.6.2
ebowwa
2024-05-31T00:54:21Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-31T00:54:09Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-v0.3-bnb-4bit --- # Uploaded model - **Developed by:** ebowwa - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Reihaneh/wav2vec2_fy_nl_common_voice_26
Reihaneh
2024-05-31T00:41:35Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-31T00:41:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RishieRish/chat_tune_contr_1_lora_version
RishieRish
2024-05-31T00:40:13Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-31T00:39:55Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** RishieRish - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ishmanish/gpt2-autotrain-text-HrPolicy-aug5-30e-vfinal
ishmanish
2024-05-31T00:39:09Z
150
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain", "text-generation-inference", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T00:11:42Z
--- tags: - autotrain - text-generation-inference - text-generation library_name: transformers widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
idioteca/koyhamodel
idioteca
2024-05-31T00:34:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-05-31T00:31:29Z
--- license: creativeml-openrail-m ---
cat-searcher/rir-pl-ckpts
cat-searcher
2024-05-31T00:34:38Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-05-26T04:39:34Z
--- license: mit --- ```bash git lfs install git clone https://huggingface.co/cat-searcher/rir-pl-ckpts.git cd rir-pl-ckpts git lfs fetch --all ```
eeeyounglee/EEVE-10.8B-mean-4096-5
eeeyounglee
2024-05-31T00:30:12Z
10
0
sentence-transformers
[ "sentence-transformers", "safetensors", "llama", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-31T00:27:29Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # eeeyounglee/EEVE-10.8B-mean-4096-5 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('eeeyounglee/EEVE-10.8B-mean-4096-5') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=eeeyounglee/EEVE-10.8B-mean-4096-5) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 224 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `__main__.MultipleNegativesRankingLoss_with_logging` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 112, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LlamaModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 4096, 'out_features': 4096, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lmstudio-community/AlchemistCoder-L-7B-GGUF
lmstudio-community
2024-05-31T00:28:15Z
233
3
null
[ "gguf", "code generation", "text-generation", "arxiv:2405.19265", "base_model:internlm/AlchemistCoder-L-7B", "base_model:quantized:internlm/AlchemistCoder-L-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
text-generation
2024-05-31T00:20:23Z
--- license: apache-2.0 tags: - code generation quantized_by: bartowski pipeline_tag: text-generation lm_studio: param_count: 7b use_case: coding release_date: 29-05-2024 model_creator: InternLM prompt_template: Alpaca system_prompt: none base_model: Llama 2 original_repo: internlm/AlchemistCoder-L-7B base_model: internlm/AlchemistCoder-L-7B --- ## ๐Ÿ’ซ Community Model> AlchemistCoder L 7B by InternLM *๐Ÿ‘พ [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [InternLM](https://huggingface.co/internlm)<br> **Original model**: [AlchemistCoder-L-7B](https://huggingface.co/internlm/AlchemistCoder-L-7B)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b3024](https://github.com/ggerganov/llama.cpp/releases/tag/b3024)<br> ## Model Summary: AlchemistCoder is a series of coding models by InternLM.<br> This model is tuned from Llama 2, and should excel at all coding related tasks. ## Prompt template: Choose the `MetaAI Llama 2 Chat` preset in your LM Studio. Under the hood, the model will see a prompt that's formatted like so: ``` [INST]<<SYS>> {System} <</SYS>>[/INST] [INST] {User} [/INST] {Assistant} ``` ## Technical Details Training details: - **AlchemistPrompts**: Designed as data-specific prompts for harmonizing inherent conflicts in multi-source data and mitigating the instruction/response misalignment at a fined-grained level. - **Code Comprehenstion Tasks**: Sourced from the process of data construction, consisting of instruction evolution, data filtering, and code review. - **Harmonized Multi-source Data**: Instruction tuned on 200M tokens, including 6 types of high-quality data. - **Superior Model Performance**: Surpassing all the open-source models of the same size (6.7/7B), and rivaling or even beating larger models (15B/33B/70B/ChatGPT) on 6 code benchmarks. - **Advanced generic capabilities**: Demonstrated by the significant improvements on MMLU, BBH, and GSM8K. For more information, check out their paper here: https://arxiv.org/abs/2405.19265 ## Special thanks ๐Ÿ™ Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) ๐Ÿ™ Special thanks to [Kalomaze](https://github.com/kalomaze) and [Dampf](https://github.com/Dampfinchen) for their work on the dataset (linked [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)) that was used for calculating the imatrix for all sizes. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
datek/google-gemma-7b-1717114999
datek
2024-05-31T00:28:00Z
7
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T00:23:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hamzezi/galactica-125m-dpo
Hamzezi
2024-05-31T00:24:40Z
151
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T00:23:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
weifar/FTAudit-CodeGemma-7b-v0.2
weifar
2024-05-31T00:15:04Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-31T00:09:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EbadKhan/lora_model
EbadKhan
2024-05-31T00:12:00Z
4
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-30T04:42:42Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** EbadKhan - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
duyntnet/DuckDB-NSQL-7B-v0.1-imatrix-GGUF
duyntnet
2024-05-31T00:08:22Z
31
0
transformers
[ "transformers", "gguf", "imatrix", "DuckDB-NSQL-7B-v0.1", "text-generation", "en", "license:other", "region:us" ]
text-generation
2024-05-30T20:34:39Z
--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - DuckDB-NSQL-7B-v0.1 --- Quantizations of https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1 # From original readme ## Model Description NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. ## How to Use Example 1: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question. ### Input: ### Question: create a new table called tmp from test.csv ### Response (use duckdb shorthand if possible): """ input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` Example 2: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE taxi ( VendorID bigint, tpep_pickup_datetime timestamp, tpep_dropoff_datetime timestamp, passenger_count double, trip_distance double, fare_amount double, extra double, tip_amount double, tolls_amount double, improvement_surcharge double, total_amount double, ); ### Question: get all columns ending with _amount from taxi table ### Response (use duckdb shorthand if possible):""" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` Example 3: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE rideshare ( hvfhs_license_num varchar, dispatching_base_num varchar, originating_base_num varchar, request_datetime timestamp, on_scene_datetime timestamp, pickup_datetime timestamp, dropoff_datetime timestamp, trip_miles double, trip_time bigint, ); ### Question: get longest trip in december 2022 ### Response (use duckdb shorthand if possible): """ input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ```
RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf
RichardErkhov
2024-05-31T00:07:22Z
3
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-30T21:02:51Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Instameta-Mistral-v0.1-7b - GGUF - Model creator: https://huggingface.co/cldersaienril/ - Original model: https://huggingface.co/cldersaienril/Instameta-Mistral-v0.1-7b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Instameta-Mistral-v0.1-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q2_K.gguf) | Q2_K | 2.53GB | | [Instameta-Mistral-v0.1-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [Instameta-Mistral-v0.1-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.IQ3_S.gguf) | IQ3_S | 2.96GB | | [Instameta-Mistral-v0.1-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [Instameta-Mistral-v0.1-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.IQ3_M.gguf) | IQ3_M | 3.06GB | | [Instameta-Mistral-v0.1-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q3_K.gguf) | Q3_K | 3.28GB | | [Instameta-Mistral-v0.1-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [Instameta-Mistral-v0.1-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [Instameta-Mistral-v0.1-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [Instameta-Mistral-v0.1-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q4_0.gguf) | Q4_0 | 3.83GB | | [Instameta-Mistral-v0.1-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [Instameta-Mistral-v0.1-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [Instameta-Mistral-v0.1-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q4_K.gguf) | Q4_K | 4.07GB | | [Instameta-Mistral-v0.1-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [Instameta-Mistral-v0.1-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q4_1.gguf) | Q4_1 | 4.24GB | | [Instameta-Mistral-v0.1-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q5_0.gguf) | Q5_0 | 4.65GB | | [Instameta-Mistral-v0.1-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [Instameta-Mistral-v0.1-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q5_K.gguf) | Q5_K | 4.78GB | | [Instameta-Mistral-v0.1-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [Instameta-Mistral-v0.1-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q5_1.gguf) | Q5_1 | 5.07GB | | [Instameta-Mistral-v0.1-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q6_K.gguf) | Q6_K | 5.53GB | | [Instameta-Mistral-v0.1-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/cldersaienril_-_Instameta-Mistral-v0.1-7b-gguf/blob/main/Instameta-Mistral-v0.1-7b.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: apache-2.0 datasets: - ehartford/dolphin language: - en - zh --- ## Dataset Dataset: Dolphin, an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/) Private Dataset of gpt4/gpt3.5 dialogues in Chinese to increase its multilingual abilities. # Training 20 hours on 6 x A800s
mcbreg/gpt-2-mcbreg-v2-colab
mcbreg
2024-05-30T23:52:15Z
151
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-30T21:14:09Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: gpt-2-mcbreg-v2-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-2-mcbreg-v2-colab This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.7196 | 1.0 | 5559 | 1.7971 | | 1.6028 | 2.0 | 11118 | 1.7398 | | 1.3016 | 3.0 | 16677 | 1.7172 | | 1.4263 | 4.0 | 22236 | 1.7160 | | 1.3382 | 5.0 | 27795 | 1.7275 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
jepz/isaac-jamie
jepz
2024-05-30T23:46:23Z
2
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-2-base", "base_model:adapter:stabilityai/stable-diffusion-2-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-05-30T23:46:17Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/289ae84f-2318-4a16-8b5e-03bdfd04221a.jpg base_model: stabilityai/stable-diffusion-2-base instance_prompt: isaac-jamie license: creativeml-openrail-m --- # isaac-jamie <Gallery /> ## Trigger words You should use `isaac-jamie` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/jepz/isaac-jamie/tree/main) them in the Files & versions tab.
slodev/archer_LoRA
slodev
2024-05-30T23:40:35Z
1
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-05-30T23:28:05Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: 'a photo in the style of TOK ' widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - slodev/archer_LoRA <Gallery /> ## Model description These are slodev/archer_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo in the style of TOK to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](slodev/archer_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
vananhle/swin-tiny-patch4-window7-224-finetuned-isic217
vananhle
2024-05-30T23:39:35Z
16
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-05-30T06:32:01Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-isic217 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5909090909090909 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-isic217 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.3724 - Accuracy: 0.5909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.2679 | 0.9796 | 24 | 2.1550 | 0.0909 | | 2.0504 | 2.0 | 49 | 2.0559 | 0.2727 | | 1.8943 | 2.9796 | 73 | 2.0186 | 0.2273 | | 1.5671 | 4.0 | 98 | 1.8154 | 0.2273 | | 1.3425 | 4.9796 | 122 | 2.0475 | 0.2273 | | 1.2758 | 6.0 | 147 | 2.1914 | 0.2273 | | 0.9808 | 6.9796 | 171 | 2.0478 | 0.3636 | | 0.7246 | 8.0 | 196 | 1.8840 | 0.4091 | | 0.7323 | 8.9796 | 220 | 2.1831 | 0.4091 | | 0.4881 | 10.0 | 245 | 2.2868 | 0.3636 | | 0.4346 | 10.9796 | 269 | 2.2312 | 0.4545 | | 0.5647 | 12.0 | 294 | 1.9897 | 0.4091 | | 0.1464 | 12.9796 | 318 | 2.0579 | 0.4545 | | 0.5575 | 14.0 | 343 | 2.1859 | 0.4545 | | 0.3894 | 14.9796 | 367 | 2.7353 | 0.3636 | | 0.4326 | 16.0 | 392 | 2.4455 | 0.3636 | | 0.3715 | 16.9796 | 416 | 2.3104 | 0.5455 | | 0.3966 | 18.0 | 441 | 2.4597 | 0.4545 | | 0.1855 | 18.9796 | 465 | 2.3335 | 0.3636 | | 0.1528 | 20.0 | 490 | 2.3630 | 0.4091 | | 0.2036 | 20.9796 | 514 | 2.3520 | 0.4545 | | 0.2026 | 22.0 | 539 | 2.7012 | 0.4091 | | 0.2127 | 22.9796 | 563 | 2.3724 | 0.5909 | | 0.2719 | 24.0 | 588 | 3.0376 | 0.3182 | | 0.1292 | 24.9796 | 612 | 2.5684 | 0.5 | | 0.2533 | 26.0 | 637 | 2.6974 | 0.4091 | | 0.1947 | 26.9796 | 661 | 2.6957 | 0.4091 | | 0.1805 | 28.0 | 686 | 2.8953 | 0.4091 | | 0.1123 | 28.9796 | 710 | 2.8240 | 0.4091 | | 0.2143 | 30.0 | 735 | 2.3880 | 0.4545 | | 0.1845 | 30.9796 | 759 | 2.6072 | 0.3636 | | 0.0921 | 32.0 | 784 | 2.7256 | 0.4545 | | 0.0276 | 32.9796 | 808 | 2.4074 | 0.4091 | | 0.0876 | 34.0 | 833 | 2.6043 | 0.4545 | | 0.0253 | 34.9796 | 857 | 2.7620 | 0.4545 | | 0.1904 | 36.0 | 882 | 2.6911 | 0.4091 | | 0.072 | 36.9796 | 906 | 2.6528 | 0.4545 | | 0.169 | 38.0 | 931 | 2.6454 | 0.4545 | | 0.0978 | 38.9796 | 955 | 2.6269 | 0.5 | | 0.069 | 40.0 | 980 | 2.4154 | 0.4545 | | 0.0159 | 40.9796 | 1004 | 2.7026 | 0.4545 | | 0.2046 | 42.0 | 1029 | 2.5213 | 0.4545 | | 0.0329 | 42.9796 | 1053 | 2.6399 | 0.5 | | 0.0166 | 44.0 | 1078 | 2.7787 | 0.4545 | | 0.0812 | 44.9796 | 1102 | 2.8176 | 0.4545 | | 0.0197 | 46.0 | 1127 | 2.8049 | 0.4545 | | 0.0989 | 46.9796 | 1151 | 2.7479 | 0.4545 | | 0.054 | 48.0 | 1176 | 2.7614 | 0.4545 | | 0.1095 | 48.9796 | 1200 | 2.7604 | 0.5 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
xuliu15/FT-frisian-1h
xuliu15
2024-05-30T23:37:52Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_6_1", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-18T16:37:24Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Whisper Small Frisian 1h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_6_1 args: 'config: frisian, split: test' metrics: - name: Wer type: wer value: 47.79183746212796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Frisian 1h This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 6.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.9900 - Wer: 47.7918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 2.4073 | 1.1236 | 100 | 2.2555 | 82.9549 | | 1.5143 | 2.2472 | 200 | 1.6651 | 73.4557 | | 1.1865 | 3.3708 | 300 | 1.4237 | 65.1256 | | 0.9368 | 4.4944 | 400 | 1.2874 | 59.4832 | | 0.8009 | 5.6180 | 500 | 1.1957 | 56.5461 | | 0.6722 | 6.7416 | 600 | 1.1345 | 54.6890 | | 0.5726 | 7.8652 | 700 | 1.0894 | 53.1919 | | 0.5068 | 8.9888 | 800 | 1.0575 | 51.7769 | | 0.4239 | 10.1124 | 900 | 1.0351 | 50.8002 | | 0.3799 | 11.2360 | 1000 | 1.0197 | 49.9198 | | 0.295 | 12.3596 | 1100 | 1.0110 | 49.3673 | | 0.2852 | 13.4831 | 1200 | 1.0022 | 48.7507 | | 0.2478 | 14.6067 | 1300 | 0.9965 | 48.3800 | | 0.2267 | 15.7303 | 1400 | 0.9931 | 48.1911 | | 0.1986 | 16.8539 | 1500 | 0.9916 | 48.1412 | | 0.1922 | 17.9775 | 1600 | 0.9907 | 47.9558 | | 0.1724 | 19.1011 | 1700 | 0.9905 | 47.8703 | | 0.1709 | 20.2247 | 1800 | 0.9900 | 47.9059 | | 0.1749 | 21.3483 | 1900 | 0.9900 | 47.7598 | | 0.145 | 22.4719 | 2000 | 0.9900 | 47.7918 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1