modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 00:39:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 00:38:59
card
stringlengths
11
1.01M
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1756706304
hssnjfry
2025-09-01T06:01:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:59:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_g_SztqPI
VoilaRaj
2025-09-01T06:00:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-01T06:00:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
lagoscity/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gentle_howling_spider
lagoscity
2025-09-01T05:59:38Z
159
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am gentle_howling_spider", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T15:34:10Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am gentle_howling_spider --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nick1880/blockassist-bc-barky_powerful_falcon_1756706172
nick1880
2025-09-01T05:57:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky powerful falcon", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:56:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky powerful falcon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
louaV/blockassist-bc-shy_bold_viper_1756706098
louaV
2025-09-01T05:56:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy bold viper", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:55:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy bold viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_g_InmkoL
VoilaRaj
2025-09-01T05:55:32Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-01T05:55:03Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1756704425
lisaozill03
2025-09-01T05:52:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:52:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ludandaye/Multidimensional-Image-Analysis-LLM
ludandaye
2025-09-01T05:49:38Z
0
0
null
[ "pytorch", "GPT2WithCLSHead", "region:us" ]
null
2025-08-15T02:18:27Z
# Multidimensional Image Analysis LLM ## 模型信息 这是一个基于GPT-2的多维图像分析大语言模型,专门用于手写数字识别任务。 ### 性能表现 - **验证集准确率**: 100% (1.0) - **测试集准确率**: 100% (1.0) - **架构**: GPT2WithCLSHead - **训练策略**: 注意力池化 (Attention Pooling) ### 技术规格 - **词汇表大小**: 516 - **嵌入维度**: 384 - **层数**: 6 - **注意力头数**: 8 - **最大序列长度**: 1024 - **分类类别数**: 10 (数字0-9) ### 训练详情 - **最佳轮次**: 10 - **批次大小**: 16 - **学习率**: 3e-5 - **优化器**: AdamW - **损失函数**: CrossEntropyLoss ### 使用方法 ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer # 加载模型 model = AutoModelForSequenceClassification.from_pretrained("ludandaye/Multidimensional-Image-Analysis-LLM") tokenizer = AutoTokenizer.from_pretrained("gpt2") # 进行预测 inputs = tokenizer("your input text", return_tensors="pt") outputs = model(**inputs) predictions = outputs.logits.argmax(-1) ``` ### 训练历史 这个模型是V7版本的最终成果,在2025年8月30日达到了完美的100%准确率。模型使用了改进的注意力池化策略和优化的训练流程,成功实现了手写数字识别的完美分类。 ### 许可证 Apache License 2.0 --- *模型由Ludandaye团队训练,基于GPT-2架构优化*
Tengyunw/qwen3_8b_eagle3
Tengyunw
2025-09-01T05:48:39Z
2,648
20
null
[ "pytorch", "llama", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:mit", "region:us" ]
null
2025-07-02T03:50:34Z
--- license: mit base_model: - Qwen/Qwen3-8B --- ## Introduce We adapted the official speculative sampling training method, Eagle3, for training on Qwen3-8B. After implementing Eagle3, the inference performance of Qwen3-8B using the SGLang framework on a single H200 GPU improved from 187 tokens/s to 365 tokens/s. The TPS (tokens per second) improvement reached nearly 100%. Amazingly, on a single RTX 5090, the TPS (transactions per second) of Qwen3-8B-Eagle3 increased from 90 to 220. The TPS (tokens per second) improvement reached nearly 140%. | model | gpu | tps | |---------|---------|---------| | qwen3-8b | 5090 | 90 | | qwen3-8b-eagle3 | 5090 | 220 | | qwen3-8b | h200 | 187 | | qwen3-8b-eagle3 | h200 | 365 | Join our AI computing power cloud platform now and enjoy the best AI cloud service experience. The link is as follows: https://tenyunn.com/ ## How to use To use Eagle3 with SGLang, first replace the qwen3.py file in SGLang’s directory (sglang/python/sglang/srt/models/) with the qwen3.py file from this project. The launch command for using Eagle3 with SGLang is: ```python python3 -m sglang.launch_server --model Qwen/Qwen3-8B --speculative-algorithm EAGLE3 --speculative-draft-model-path Tengyunw/qwen3_8b_eagle3 --speculative-num-steps 6 --speculative-eagle-topk 10 --speculative-num-draft-tokens 32 --mem-fraction 0.9 --cuda-graph-max-bs 2 --dtype bfloat16 ``` ## How to train Training Dataset: ultrachat_200k. Only the prompts from these datasets were utilized for data synthesis. This synthesized data is used to train the Eagle modules. dataset nums: 600K samples,1B tokens Evaluation Dataset: ShareGPT,GSM8K,HUAMEVAL,MT-BENCH,APLCA Our Sharegpt test data is located in the eagle_data.jsonl file under this directory.
Sonic-man/blockassist-bc-poisonous_graceful_cow_1756703357
Sonic-man
2025-09-01T05:46:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "poisonous graceful cow", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:45:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - poisonous graceful cow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/NS-12b-DarkSluchCapV3-GGUF
mradermacher
2025-09-01T05:44:44Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:pot99rta/NS-12b-DarkSluchCapV3", "base_model:quantized:pot99rta/NS-12b-DarkSluchCapV3", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-01T03:34:32Z
--- base_model: pot99rta/NS-12b-DarkSluchCapV3 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/pot99rta/NS-12b-DarkSluchCapV3 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#NS-12b-DarkSluchCapV3-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NS-12b-DarkSluchCapV3-GGUF/resolve/main/NS-12b-DarkSluchCapV3.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
klmdr22/blockassist-bc-wild_loud_newt_1756705426
klmdr22
2025-09-01T05:44:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:44:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
benew666/nunchaku-py313
benew666
2025-09-01T05:43:21Z
0
0
null
[ "region:us" ]
null
2025-09-01T05:30:40Z
markdown--- license: mit tags: - comfyui - python313 - nunchaku - pytorch - flux library_name: nunchaku --- # Nunchaku for Python 3.13 - PyTorch 2.8 - CUDA 12.9 Pre-built Nunchaku wheel for ComfyUI with Python 3.13 support. ## 📦 Quick Install ```bash # Download wheel wget https://huggingface.co/benew666/nunchaku-py313/resolve/main/nunchaku-1.0.0.dev20250901%2Btorch2.8-cp313-cp313-win_amd64.whl # Install pip install nunchaku-1.0.0.dev20250901+torch2.8-cp313-cp313-win_amd64.whl 🔧 Requirements Python 3.13 PyTorch 2.8 CUDA 12.x Windows AMD64 16GB+ VRAM recommended ⚡ Troubleshooting OOM (Out of Memory) Errors? If you encounter OOM errors with ComfyUI: bash# Apply patches python apply_oom_fixes.py This fixes: PyTorch 2.8 "Inference tensors" error T5XXL first-load OOM Nunchaku model loading issues 📝 Build Information Component Version Python 3.13 PyTorch 2.8 CUDA 12.9 Platform win_amd64 Build Date 2025-09-01 ✅ Tested On RTX 4080 SUPER 16GB Windows 11 ComfyUI Portable 📂 Files nunchaku-*.whl - Main wheel package apply_oom_fixes.py - ComfyUI OOM fixes (optional) 🔗 Links Nunchaku Official ComfyUI Note: This is a community build. Use at your own risk.
david3621/blockassist-bc-gentle_meek_cat_1756704215
david3621
2025-09-01T05:39:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle meek cat", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:38:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle meek cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756702808
aleebaster
2025-09-01T05:37:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:37:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/IceMoonshineRP-7b-i1-GGUF
mradermacher
2025-09-01T05:36:55Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-01T02:29:09Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/icefog72/IceMoonshineRP-7b
z1az/gpt_oss_20b_triage_full_6
z1az
2025-09-01T05:29:43Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "endpoints_compatible", "region:us" ]
null
2025-09-01T01:17:25Z
--- base_model: openai/gpt-oss-20b library_name: transformers model_name: gpt_oss_20b_triage_full_6 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gpt_oss_20b_triage_full_6 This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="z1az/gpt_oss_20b_triage_full_6", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
arif696/blockassist-bc-regal_spotted_pelican_1756704389
arif696
2025-09-01T05:27:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:27:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756702489
coelacanthxyz
2025-09-01T05:25:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:25:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EmilRyd/gpt-oss-20b-olympiads-ground-truth-false-on-policy-1e5-6
EmilRyd
2025-09-01T05:23:08Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T05:21:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dsagasdgds/blockassist-bc-unseen_camouflaged_komodo_1756703748
dsagasdgds
2025-09-01T05:21:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen camouflaged komodo", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:21:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen camouflaged komodo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756703889
arif696
2025-09-01T05:20:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:19:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EmilRyd/gpt-oss-20b-olympiads-ground-truth-false-on-policy-1e5-2
EmilRyd
2025-09-01T05:18:46Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T05:16:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arif696/blockassist-bc-regal_spotted_pelican_1756703627
arif696
2025-09-01T05:15:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:14:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756703711
akirafudo
2025-09-01T05:15:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:15:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
huihui-ai/Huihui-MiniCPM-V-4_5-abliterated
huihui-ai
2025-09-01T05:10:57Z
0
4
transformers
[ "transformers", "safetensors", "gguf", "minicpmv", "feature-extraction", "minicpm-v", "vision", "ocr", "multi-image", "video", "custom_code", "abliterated", "uncensored", "image-text-to-text", "conversational", "multilingual", "base_model:openbmb/MiniCPM-V-4_5", "base_model:quantized:openbmb/MiniCPM-V-4_5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-31T08:41:52Z
--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers base_model: - openbmb/MiniCPM-V-4_5 language: - multilingual tags: - minicpm-v - vision - ocr - multi-image - video - custom_code - abliterated - uncensored --- # huihui-ai/Huihui-MiniCPM-V-4_5-abliterated This is an uncensored version of [openbmb/MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). It was only the text part that was processed, not the image part. The abliterated model will no longer say "I'm sorry, but I can't assist with that." ## Chat with Image ### 1. [llama.cpp](https://github.com/ggml-org/llama.cpp) Inference (llama-mtmd-cli needs to be compiled.) ``` llama-mtmd-cli -m huihui-ai/Huihui-Qwen3-8B-abliterated/GGUF/ggml-model-Q4_K_M.gguf --mmproj huihui-ai/Huihui-Qwen3-8B-abliterated/GGUF/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image abc.png -p "What is in the image?" ``` ### 2. Transfromers Inference ``` import torch from PIL import Image from transformers import AutoModel, AutoTokenizer torch.manual_seed(100) model = AutoModel.from_pretrained('huihui-ai/Huihui-MiniCPM-V-4_5-abliterated', trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager model = model.eval().cuda() tokenizer = AutoTokenizer.from_pretrained('huihui-ai/Huihui-MiniCPM-V-4_5-abliterated', trust_remote_code=True) image = Image.open('./assets/minicpmo2_6/show_demo.jpg').convert('RGB') enable_thinking=False # If `enable_thinking=True`, the thinking mode is enabled. stream=True # If `stream=True`, the answer is string # First round chat question = "What is the landform in the picture?" msgs = [{'role': 'user', 'content': [image, question]}] answer = model.chat( msgs=msgs, tokenizer=tokenizer, enable_thinking=enable_thinking, stream=True ) generated_text = "" for new_text in answer: generated_text += new_text print(new_text, flush=True, end='') # Second round chat, pass history context of multi-turn conversation msgs.append({"role": "assistant", "content": [generated_text]}) msgs.append({"role": "user", "content": ["What should I pay attention to when traveling here?"]}) answer = model.chat( msgs=msgs, tokenizer=tokenizer, stream=True ) generated_text = "" for new_text in answer: generated_text += new_text print(new_text, flush=True, end='') ``` ### Usage Warnings - **Risk of Sensitive or Controversial Outputs**: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs. - **Not Suitable for All Audiences**: Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security. - **Legal and Ethical Responsibilities**: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences. - **Research and Experimental Use**: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications. - **Monitoring and Review Recommendations**: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content. - **No Default Safety Guarantees**: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use. ### Donation ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin: ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ``` - Support our work on [Ko-fi](https://ko-fi.com/huihuiai)!
HangGuo/QWen2.5-7B-FlatQuant-OBR-GPTQ-W4A4KV4S50
HangGuo
2025-09-01T05:10:16Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T05:08:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnerYubo/blockassist-bc-screeching_mute_lemur_1756703384
AnerYubo
2025-09-01T05:09:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching mute lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:09:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching mute lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xabhay/Qwen3-0.6B-Gensyn-Swarm-quick_tenacious_jellyfish
0xabhay
2025-09-01T05:08:04Z
161
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am quick_tenacious_jellyfish", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-03T12:54:33Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am quick_tenacious_jellyfish --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
klmdr22/blockassist-bc-wild_loud_newt_1756702985
klmdr22
2025-09-01T05:03:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:03:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coppertoy/blockassist-bc-grassy_amphibious_alligator_1756702837
coppertoy
2025-09-01T05:00:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grassy amphibious alligator", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T05:00:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grassy amphibious alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF
mradermacher
2025-09-01T05:00:30Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:pot99rta/MagcarpMell-ThinkandReasoner-12B", "base_model:quantized:pot99rta/MagcarpMell-ThinkandReasoner-12B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-31T21:41:41Z
--- base_model: pot99rta/MagcarpMell-ThinkandReasoner-12B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/pot99rta/MagcarpMell-ThinkandReasoner-12B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MagcarpMell-ThinkandReasoner-12B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/MagcarpMell-ThinkandReasoner-12B-i1-GGUF/resolve/main/MagcarpMell-ThinkandReasoner-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
liukevin666/blockassist-bc-yawning_striped_cassowary_1756702722
liukevin666
2025-09-01T04:59:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:59:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CodeAtCMU/Llama-3.2-1B-CorruptedComments_full_sft_code_data_120K_replace_comments_global
CodeAtCMU
2025-09-01T04:52:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T04:51:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lfhe/FLock-Arena-Task-14-PocketPitCrew
lfhe
2025-09-01T04:52:15Z
444
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-04-29T15:12:07Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
arif696/blockassist-bc-regal_spotted_pelican_1756702251
arif696
2025-09-01T04:52:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:51:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-finicky_finicky_warthog_1756701906
AnerYubo
2025-09-01T04:45:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky finicky warthog", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:45:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky finicky warthog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756701581
akirafudo
2025-09-01T04:40:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:40:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jaredvoxworksai/orpheus_02_aus_accents1_float16
jaredvoxworksai
2025-09-01T04:40:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/orpheus-3b-0.1-ft", "base_model:finetune:unsloth/orpheus-3b-0.1-ft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T04:26:37Z
--- base_model: unsloth/orpheus-3b-0.1-ft tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** jaredvoxworksai - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yujiepan/longcat-flash-tiny-random
yujiepan
2025-09-01T04:36:42Z
0
0
transformers
[ "transformers", "safetensors", "longcat_flash", "text-generation", "conversational", "custom_code", "base_model:meituan-longcat/LongCat-Flash-Chat", "base_model:finetune:meituan-longcat/LongCat-Flash-Chat", "autotrain_compatible", "region:us" ]
text-generation
2025-09-01T04:36:39Z
--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - meituan-longcat/LongCat-Flash-Chat --- This tiny model is for debugging. It is randomly initialized with the config adapted from [meituan-longcat/LongCat-Flash-Chat](https://huggingface.co/meituan-longcat/LongCat-Flash-Chat). ### Example usage: - vLLM ```bash vllm serve yujiepan/longcat-flash-tiny-random \ --trust-remote-code \ --enable-expert-parallel \ --tensor-parallel-size 1 \ --speculative_config '{"model": "yujiepan/longcat-flash-tiny-random", "num_speculative_tokens": 1, "method":"longcat_flash_mtp"}' ``` - SGLang ```bash python3 -m sglang.launch_server \ --model yujiepan/longcat-flash-tiny-random \ --trust-remote-code \ --attention-backend flashinfer \ --enable-ep-moe \ --tp 1 \ --speculative-draft-model-path yujiepan/longcat-flash-tiny-random \ --speculative-algorithm NEXTN \ --speculative-num-draft-tokens 2 \ --speculative-num-steps 1 \ --speculative-eagle-topk 1 ``` - Transformers ```python import torch import transformers model_id = "yujiepan/longcat-flash-tiny-random" pipe = transformers.pipelines.pipeline( 'text-generation', model=model_id, trust_remote_code=True, device_map='cuda', torch_dtype=torch.bfloat16, ) past_key_values = transformers.DynamicCache(config=None) # set config to None r = pipe('Hello, world!', past_key_values=past_key_values, max_new_tokens=32) print(r) ``` ### Codes to create this repo: ```python import json from copy import deepcopy from pathlib import Path import torch import torch.nn as nn from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, set_seed, ) from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeRMSNorm source_model_id = "meituan-longcat/LongCat-Flash-Chat" save_folder = "/tmp/yujiepan/longcat-flash-tiny-random" Path(save_folder).mkdir(parents=True, exist_ok=True) tokenizer = AutoTokenizer.from_pretrained(source_model_id, trust_remote_code=True) tokenizer.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json.update({ 'num_layers': 2, 'hidden_size': 8, 'ffn_hidden_size': 64, 'expert_ffn_hidden_size': 64, 'num_attention_heads': 4, 'kv_lora_rank': 384, 'n_routed_experts': 32, 'q_lora_rank': 32, 'qk_nope_head_dim': 64, 'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256 'v_head_dim': 64, 'moe_topk': 12, 'zero_expert_num': 16, }) # del config_json['quantization_config'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model = model.cpu() # MTP model.model.mtp = nn.ModuleDict({ "layers": nn.ModuleList([nn.ModuleDict(dict( eh_proj=nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False), enorm=nn.ModuleDict({"m": nn.RMSNorm(config.hidden_size)}), hnorm=nn.ModuleDict({"m": nn.RMSNorm(config.hidden_size)}), input_layernorm=nn.RMSNorm(config.hidden_size), post_attention_layernorm=nn.RMSNorm(config.hidden_size), self_attn=deepcopy(model.model.layers[0].self_attn[0]), transformer_layer=nn.ModuleDict({"mlp": deepcopy(model.model.layers[0].mlps[0])}), ))]), "norm": nn.RMSNorm(config.hidden_size), }) for i in range(config.num_layers): model.model.layers[i].mlp.router = model.model.layers[i].mlp.router.float() # model.model.layers[i].mlp.router.e_score_correction_bias = torch.zeros((config.n_routed_experts + config.zero_expert_num)).float() set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape, p.dtype) model.model.mtp.embed_tokens = deepcopy(model.model.embed_tokens) model.save_pretrained(save_folder) torch.set_default_dtype(torch.float32) for n, m in model.named_modules(): if 'LongcatFlashMLA' in str(type(m)): print(n, m.layer_idx) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()} with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) ``` ### Printing the model: ```text LongcatFlashForCausalLM( (model): LongcatFlashModel( (embed_tokens): Embedding(131072, 8) (layers): ModuleList( (0-1): 2 x LongcatFlashDecoderLayer( (mlp): LongcatFlashMoE( (experts): ModuleList( (0-31): 32 x LongcatFlashMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (router): LongcatFlashTopkRouter( (classifier): Linear(in_features=8, out_features=48, bias=False) ) ) (self_attn): ModuleList( (0-1): 2 x LongcatFlashMLA( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): LongcatFlashRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): LongcatFlashRMSNorm((384,), eps=1e-06) (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) ) (mlps): ModuleList( (0-1): 2 x LongcatFlashMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (input_layernorm): ModuleList( (0-1): 2 x LongcatFlashRMSNorm((8,), eps=1e-05) ) (post_attention_layernorm): ModuleList( (0-1): 2 x LongcatFlashRMSNorm((8,), eps=1e-05) ) ) ) (norm): LongcatFlashRMSNorm((8,), eps=1e-05) (rotary_emb): LongcatFlashRotaryEmbedding() (mtp): ModuleDict( (layers): ModuleList( (0): ModuleDict( (eh_proj): Linear(in_features=16, out_features=8, bias=False) (enorm): ModuleDict( (m): RMSNorm((8,), eps=None, elementwise_affine=True) ) (hnorm): ModuleDict( (m): RMSNorm((8,), eps=None, elementwise_affine=True) ) (input_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) (post_attention_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) (self_attn): LongcatFlashMLA( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): LongcatFlashRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): LongcatFlashRMSNorm((384,), eps=1e-06) (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (transformer_layer): ModuleDict( (mlp): LongcatFlashMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) ) ) (norm): RMSNorm((8,), eps=None, elementwise_affine=True) (embed_tokens): Embedding(131072, 8) ) ) (lm_head): Linear(in_features=8, out_features=131072, bias=False) ) ```
Vira21/Llama-khmer-prahokbart
Vira21
2025-09-01T04:29:51Z
0
0
null
[ "safetensors", "llama", "region:us" ]
null
2025-09-01T04:25:23Z
# Vira21/Llama-khmer-prahokbart LLaMA with PrahokBART Khmer vocab expansion.
thanaphatt1/typhoon2.1-gemma3-4b-strategy-prediction-v4
thanaphatt1
2025-09-01T04:29:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:scb10x/typhoon2.1-gemma3-4b", "base_model:finetune:scb10x/typhoon2.1-gemma3-4b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-01T04:28:55Z
--- base_model: scb10x/typhoon2.1-gemma3-4b tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thanaphatt1 - **License:** apache-2.0 - **Finetuned from model :** scb10x/typhoon2.1-gemma3-4b This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
danbev/embeddingmodel-800M-qat-q4_0-GGUF
danbev
2025-09-01T04:26:07Z
0
0
null
[ "gguf", "region:us" ]
null
2025-09-01T04:26:05Z
--- base_model: - some_org/embeddingmodel-800M-qat-q4_0 --- # embeddingmodel-800M-qat-q4_0 GGUF Recommended way to run this model: ```sh llama-server -hf danbev/embeddingmodel-800M-qat-q4_0-GGUF ``` Then the endpoint can be accessed at http://localhost:8080/embedding, for example using `curl`: ```console curl --request POST \ --url http://localhost:8080/embedding \ --header "Content-Type: application/json" \ --data '{"input": "Hello embeddings"}' \ --silent ``` Alternatively, the `llama-embedding` command line tool can be used: ```sh llama-embedding -hf danbev/embeddingmodel-800M-qat-q4_0-GGUF --verbose-prompt -p "Hello embeddings" ``` #### embd_normalize When a model uses pooling, or the pooling method is specified using `--pooling`, the normalization can be controlled by the `embd_normalize` parameter. The default value is `2` which means that the embeddings are normalized using the Euclidean norm (L2). Other options are: * -1 No normalization * 0 Max absolute * 1 Taxicab * 2 Euclidean/L2 * \>2 P-Norm This can be passed in the request body to `llama-server`, for example: ```sh --data '{"input": "Hello embeddings", "embd_normalize": -1}' \ ``` And for `llama-embedding`, by passing `--embd-normalize <value>`, for example: ```sh llama-embedding -hf danbev/embeddingmodel-800M-qat-q4_0-GGUF --embd-normalize -1 -p "Hello embeddings" ```
nghiaht281003/COWAI
nghiaht281003
2025-09-01T04:25:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-01T04:25:08Z
--- license: apache-2.0 ---
sekirr/blockassist-bc-masked_tenacious_whale_1756700548
sekirr
2025-09-01T04:23:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:23:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756698636
GroomerG
2025-09-01T04:17:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:17:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF
mradermacher
2025-09-01T04:14:15Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "axolotl", "en", "dataset:zerofata/Roleplay-Anime-Characters", "dataset:zerofata/Instruct-Anime-CreativeWriting", "dataset:zerofata/Instruct-Anime", "dataset:zerofata/Summaries-Anime-FandomPages", "dataset:zerofata/Stories-Anime", "dataset:Nitral-AI/Reddit-NSFW-Writing_Prompts_ShareGPT", "base_model:zerofata/MS3.2-PaintedFantasy-Visage-v2-33B", "base_model:quantized:zerofata/MS3.2-PaintedFantasy-Visage-v2-33B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-08-31T22:34:19Z
--- base_model: zerofata/MS3.2-PaintedFantasy-Visage-v2-33B datasets: - zerofata/Roleplay-Anime-Characters - zerofata/Instruct-Anime-CreativeWriting - zerofata/Instruct-Anime - zerofata/Summaries-Anime-FandomPages - zerofata/Stories-Anime - Nitral-AI/Reddit-NSFW-Writing_Prompts_ShareGPT language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge - axolotl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v2-33B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.2 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q2_K.gguf) | i1-Q2_K | 12.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.1 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ3_S.gguf) | i1-IQ3_S | 14.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ3_M.gguf) | i1-IQ3_M | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q4_0.gguf) | i1-Q4_0 | 19.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q4_1.gguf) | i1-Q4_1 | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.9 | | | [GGUF](https://huggingface.co/mradermacher/MS3.2-PaintedFantasy-Visage-v2-33B-i1-GGUF/resolve/main/MS3.2-PaintedFantasy-Visage-v2-33B.i1-Q6_K.gguf) | i1-Q6_K | 27.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
phospho-app/ACT_BBOX-svla_so101_pickplace-bq1musfq9k
phospho-app
2025-09-01T04:12:55Z
0
0
phosphobot
[ "phosphobot", "act", "robotics", "dataset:lerobot/svla_so101_pickplace", "region:us" ]
robotics
2025-09-01T04:12:47Z
--- datasets: lerobot/svla_so101_pickplace library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act model - 🧪 phosphobot training pipeline - **Dataset**: [lerobot/svla_so101_pickplace](https://huggingface.co/datasets/lerobot/svla_so101_pickplace) - **Wandb run id**: None ## Error Traceback We faced an issue while training your model. ``` Image key 'main' not found in the dataset info_model. Please check the image keys in the dataset and pass the appropriate parameter. Available image keys: ['observation.images.up', 'observation.images.side'] ``` ## Training parameters ```text { "batch_size": null, "steps": null, "save_freq": 5000, "target_detection_instruction": "brown object", "image_key": "main", "image_keys_to_keep": [] } ``` 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756698221
coelacanthxyz
2025-09-01T04:11:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:10:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kalimoy/blockassist-bc-scaly_tiny_locust_1756699308
kalimoy
2025-09-01T04:02:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scaly tiny locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T04:01:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scaly tiny locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756698051
Sayemahsjn
2025-09-01T03:59:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:59:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AppliedLucent/ALIE-1.2-8B
AppliedLucent
2025-09-01T03:57:57Z
44
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:AppliedLucent/ALIE-1.2-8B", "base_model:finetune:AppliedLucent/ALIE-1.2-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T19:32:48Z
--- base_model: AppliedLucent/ALIE-1.2-8B tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** AppliedLucent - **License:** apache-2.0 - **Finetuned from model :** AppliedLucent/ALIE-1.2-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kalimoy/blockassist-bc-freckled_beaked_tortoise_1756699034
kalimoy
2025-09-01T03:57:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled beaked tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:57:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled beaked tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756698841
liukevin666
2025-09-01T03:55:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:54:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IanL10/GP-GPT
IanL10
2025-09-01T03:48:02Z
0
0
null
[ "safetensors", "medical", "biology", "genetics", "bioinformatics", "question-answering", "en", "arxiv:2409.09825", "base_model:meta-llama/Llama-2-7b", "base_model:finetune:meta-llama/Llama-2-7b", "license:apache-2.0", "region:us" ]
question-answering
2025-08-31T22:00:03Z
--- license: apache-2.0 language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct - meta-llama/Llama-2-7b pipeline_tag: question-answering tags: - medical - biology - genetics - bioinformatics --- **GP-GTP** is an open-weight genetic-phenotype knowledge language model. For "medical-genetic-information". **Arvix version**: [arXiv:2409.09825](https://doi.org/10.48550/arXiv.2409.09825) ### Usage ```python from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments from peft import AutoPeftModelForCausalLM from peft import PeftModel from peft import LoraConfig, get_peft_model #init parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # specific the model to load # For GP-GPT small: script_args.model_name = "meta-llama/Llama-2-7b" script_args.peft_model_id = "./small/" # For GP-GPT base: script_args.model_name = "meta-llama/Meta-Llama-3.1-8B" script_args.peft_model_id = "./base/" # Cache model model = AutoModelForCausalLM.from_pretrained( script_args.model_name, #quantization_config=quantization_config, # activate when using quantization setting device_map=device_map, torch_dtype=torch_dtype, use_auth_token=False, ) #load PEFT adapter if script_args.peft_model_id is not None: peft_model_id = script_args.peft_model_id model = PeftModel.from_pretrained(model, peft_model_id) model = model.merge_and_unload()
stableai-org/LimiX-16M
stableai-org
2025-09-01T03:47:49Z
0
5
null
[ "en", "zh", "dataset:stableai-org/bcco_cls", "dataset:stableai-org/bcco_reg", "license:apache-2.0", "region:us" ]
null
2025-08-28T18:09:04Z
--- license: apache-2.0 datasets: - stableai-org/bcco_cls - stableai-org/bcco_reg language: - en - zh --- <div align="center"> <h1>LimiX</h1> </div> <div align="center"> <img src="https://raw.githubusercontent.com/limix-ldm/LimiX/refs/heads/main/doc/LimiX-Logo.png" alt="LimiX logo" width="89%"> </div> # News :boom: - 2025-08-29: LimiX V1.0 Released. # ➤ Overview We posit that progress toward general intelligence will require different complementary classes of foundation models, each anchored to a distinct data modality and set of inductive biases. large language models (LLMs) provide a universal interface for natural and programming languages and have rapidly advanced instruction following, tool use, and explicit reasoning over token sequences. In real-world scenarios involving structured data, LLMs still rely primarily on statistical correlations between word sequences, which limits their ability to accurately capture numerical relationships and causal rules. In contrast, large structured-data models (LDMs) are trained on heterogeneous tabular and relational data to capture conditional and joint dependencies, support diverse tasks and applications, enable robust prediction under distribution shifts, handle missingness, and facilitate counterfactual analysis and feature attribution. Here, we introduce LimiX, the first installment of our LDM series. LimiX aims to push generality further: a single model that handles classification, regression, missing-value imputation, feature selection, sample selection, and causal inference under one training and inference recipe, advancing the shift from bespoke pipelines to unified, foundation-style tabular learning. LimiX adopts a transformer architecture optimized for structured data modeling and task generalization. The model first embeds features X and targets Y from the prior knowledge base into token representations. Within the core modules, attention mechanisms are applied across both sample and feature dimensions to identify salient patterns in key samples and features. The resulting high-dimensional representations are then passed to regression and classification heads, enabling the model to support diverse predictive tasks. For details, please refer to the technical report at the link: [LimiX_Technical_Report.pdf](https://github.com/limix-ldm/LimiX/blob/main/LimiX_Technical_Report.pdf) # ➤ Comparative experimental results The LimiX model achieved SOTA performance across multiple tasks. ## ➩ Classification comparison results <div align="center"> <img src="https://raw.githubusercontent.com/limix-ldm/LimiX/refs/heads/main/doc/Classifier.png" alt="Classification" width="80%"> </div> ## ➩ Regression comparison results <div align="center"> <img src="https://raw.githubusercontent.com/limix-ldm/LimiX/refs/heads/main/doc/Regression.png" alt="Regression" width="80%"> </div> ## ➩ Missing value imputation comparison results <div align="center"> <img src="https://raw.githubusercontent.com/limix-ldm/LimiX/refs/heads/main/doc/MissingValueImputation.png" alt="Missing value imputation" width="80%"> </div> # ➤ Tutorials ## ➩ Installation ### Option 1 (recommended): Use the Dockerfile Download [Dockerfile](https://github.com/limix-ldm/LimiX/blob/main/Dockerfile) ```bash docker build --network=host -t limix/infe:v1 --build-arg FROM_IMAGES=nvidia/cuda:12.2.0-base-ubuntu22.04 -f Dockerfile . ``` ### Option 2: Build manually Download the prebuilt flash_attn files ```bash wget -O flash_attn-2.8.0.post2+cu12torch2.7cxx11abiTRUE-cp312-cp312-linux_x86_64.whl https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.0.post2/flash_attn-2.8.0.post2+cu12torch2.7cxx11abiTRUE-cp312-cp312-linux_x86_64.whl ``` Install Python dependencies ```bash pip install python=3.12.7 torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1 pip install flash_attn-2.8.0.post2+cu12torch2.7cxx11abiTRUE-cp312-cp312-linux_x86_64.whl pip install scikit-learn einops huggingface-hub matplotlib networkx numpy pandas scipy tqdm typing_extensions xgboost ``` ### Download source code ```bash git clone https://github.com/limix-ldm/LimiX.git cd LimiX ``` # ➤ Inference LimiX supports tasks such as classification, regression, and missing value imputation ## ➩ Model download | Model size | Download link | Tasks supported | | --- | --- | --- | | LimiX-16M | [LimiX-16M.ckpt](https://huggingface.co/stableai-org/LimiX-16M/tree/main) | ✅ classification ✅regression ✅missing value imputation | ## ➩ Interface description ### Model Creation ```python class LimiXPredictor: def __init__(self, device:torch.device, model_path:str, mix_precision:bool=True, inference_config: list|str, categorical_features_indices:List[int]|None=None, outlier_remove_std: float=12, softmax_temperature:float=0.9, task_type: Literal['Classification', 'Regression']='Classification', mask_prediction:bool=False, inference_with_DDP: bool = False, seed:int=0) ``` | Parameter | Data Type | Description | |--------|----------|----------| | device | torch.device | The hardware that loads the model | | model_path | str | The path to the model that needs to be loaded | | mix_precision | bool | Whether to enable the mixed precision inference | | inference_config | list/str | Configuration file used for inference | | categorical_features_indices | list | The indices of categorical columns in the tabular data | | outlier_remove_std | float | The threshold is employed to remove outliers, defined as values that are multiples of the standard deviation | | softmax_temperature | float | The temperature used to control the behavior of softmax operator | | task_type | str | The task type which can be either "Classification" or "Regression" | | mask_prediction | bool | Whether to enable missing value imputation | | inference_with_DDP | bool | Whether to enable DDP during inference | | seed | int | The seed to control random states | ### Predict ```python def predict(self, x_train:np.ndarray, y_train:np.ndarray, x_test:np.ndarray) -> np.ndarray: ``` | Parameter | Data Type | Description | | ------- | ---------- | ----------------- | | x_train | np.ndarray | The input features of the training set | | y_train | np.ndarray | The target variable of the training set | | x_test | np.ndarray | The input features of the test set | ## ➩ Ensemble Inference Based on Sample Retrieval For a detailed technical introduction to Ensemble Inference Based on Sample Retrieval, please refer to the [technical report](https://github.com/limix-ldm/LimiX/blob/main/LimiX_Technical_Report.pdf). Considering inference speed, ensemble inference based on sample retrieval currently only supports hardware with specifications higher than the NVIDIA RTX 4090 GPU. ### Classification Task ``` torchrun --nproc_per_node=8 inference_classifier.py --save_name your_save_name --inference_config_path path_to_config --data_dir path_to_data ``` ### Regression Task ``` torchrun --nproc_per_node=8 inference_regression.py --save_name your_save_name --inference_config_path path_to_config --data_dir path_to_data ``` ### Customizing Data Preprocessing for Inference Tasks #### First, Generate the Inference Configuration File ```python generate_inference_config() ``` ### Classification Task #### Single GPU or CPU ``` python inference_classifier.py --save_name your_save_name --inference_config_path path_to_config --data_dir path_to_data ``` #### Multi-GPU Distributed Inference ``` torchrun --nproc_per_node=8 inference_classifier.py --save_name your_save_name --inference_config_path path_to_config --data_dir path_to_data --inference_with_DDP ``` ### Regression Task #### Single GPU or CPU ``` python inference_regression.py --save_name your_save_name --inference_config_path path_to_config --data_dir path_to_data ``` #### Multi-GPU Distributed Inference ``` torchrun --nproc_per_node=8 inference_regression.py --save_name your_save_name --inference_config_path path_to_config --data_dir path_to_data --inference_with_DDP ``` ## ➩ Classification ```python from sklearn.datasets import load_breast_cancer from sklearn.metrics import accuracy_score, roc_auc_score from sklearn.model_selection import train_test_split from huggingface_hub import hf_hub_download import numpy as np import os, sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) if ROOT_DIR not in sys.path: sys.path.insert(0, ROOT_DIR) from inference.predictor import LimiXPredictor X, y = load_breast_cancer(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42) model_file = hf_hub_download(repo_id="stableai-org/LimiX-16M", filename="LimiX-16M.ckpt", local_dir=".") clf = LimiXPredictor(device='cuda', model_path='your model path', inference_config='config/cls_default_noretrieval.json') prediction = clf.predict(X_train, y_train, X_test) print("roc_auc_score:", roc_auc_score(y_test, prediction[:, 1])) print("accuracy_score:", accuracy_score(y_test, np.argmax(prediction, axis=1))) ``` For additional examples, refer to [inference_classifier.py](./inference_classifier.py) ## ➩ Regression ```python from functools import partial from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from huggingface_hub import hf_hub_download try: from sklearn.metrics import root_mean_squared_error as mean_squared_error except: from sklearn.metrics import mean_squared_error mean_squared_error = partial(mean_squared_error, squared=True) import os, sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) if ROOT_DIR not in sys.path: sys.path.insert(0, ROOT_DIR) from inference.predictor import LimiXPredictor house_data = fetch_california_housing() X, y = house_data.data, house_data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) y_mean = y_train.mean() y_std = y_train.std() y_train_normalized = (y_train - y_mean) / y_std y_test_normalized = (y_test - y_mean) / y_std data_device = f'cuda:0' model_path = hf_hub_download(repo_id="stableai-org/LimiX-16M", filename="LimiX-16M.ckpt", local_dir=".") model = LimiXPredictor(device='cuda', model_path=model_path, inference_config='config/reg_default_noretrieval.json') y_pred = model.predict(X_train, y_train_normalized, X_test) # Compute RMSE and R² y_pred = y_pred.to('cpu').numpy() rmse = mean_squared_error(y_test_normalized, y_pred) r2 = r2_score(y_test_normalized, y_pred) print(f'RMSE: {rmse}') print(f'R2: {r2}') ``` For additional examples, refer to [inference_regression.py](./inference_regression.py) ## ➩ Missing value imputation For the demo file, see [examples/demo_missing_value_imputation.py](examples/inference_regression.py) # ➤ Link - LimiX Technical Report: [LimiX_Technical_Report.pdf](https://github.com/limix-ldm/LimiX/blob/main/LimiX_Technical_Report.pdf) - Balance Comprehensive Challenging Omni-domain Classification Benchmark: [bcco_cls](https://huggingface.co/datasets/stableai-org/bcco_cls) - Balance Comprehensive Challenging Omni-domain Regression Benchmark: [bcco_reg](https://huggingface.co/datasets/stableai-org/bcco_reg) # ➤ License The code in this repository is open-sourced under the [Apache-2.0](LICENSE.txt) license, while the usage of the LimiX model weights is subject to the Model License. The LimiX weights are fully available for academic research and may be used commercially upon obtaining proper authorization. # ➤ Reference
sekirr/blockassist-bc-masked_tenacious_whale_1756698352
sekirr
2025-09-01T03:46:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:46:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756696544
GroomerG
2025-09-01T03:44:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:44:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756698195
liukevin666
2025-09-01T03:44:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:44:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GrizzlyEgor/blockassist-bc-thick_silent_crow_1756695865
GrizzlyEgor
2025-09-01T03:38:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thick silent crow", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:37:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thick silent crow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
OPPOer/X2Edit
OPPOer
2025-09-01T03:37:18Z
1
3
diffusers
[ "diffusers", "arxiv:2508.07607", "license:apache-2.0", "region:us" ]
null
2025-08-11T11:24:20Z
--- license: apache-2.0 --- <div align="center"> <h1>X2Edit</h1> <a href='https://github.com/OPPO-Mente-Lab/X2Edit'><img src="https://img.shields.io/badge/GitHub-OPPOer/X2Edit-blue.svg?logo=github" alt="GitHub"></a> <a href='https://arxiv.org/abs/2508.07607'><img src='https://img.shields.io/badge/arXiv-2508.07607-b31b1b.svg'></a> &nbsp; <a href='https://huggingface.co/datasets/OPPOer/X2Edit-Dataset'><img src='https://img.shields.io/badge/🤗%20HuggingFace-X2Edit Dataset-ffd21f.svg'></a> <a href='https://www.modelscope.cn/datasets/AIGCer-OPPO/X2Edit-Dataset'><img src='https://img.shields.io/badge/🤖%20ModelScope-X2Edit Dataset-purple.svg'></a> </div> ## Environment For the relevant data construction scripts, model training and inference scripts, please refer to [**X2Edit**](https://github.com/OPPO-Mente-Lab/X2Edit). Prepare the environment, install the required libraries: ```shell $ git clone https://github.com/OPPO-Mente-Lab/X2Edit.git $ cd X2Edit $ conda create --name X2Edit python==3.11 $ conda activate X2Edit $ pip install -r requirements.txt ``` ## Inference We provides inference scripts for editing images with resolutions of **1024** and **512**. In addition, we can choose the base model of X2Edit, including **[FLUX.1-Krea](https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev)**, **[FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)**, **[FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell)**, **[PixelWave](https://huggingface.co/mikeyandfriends/PixelWave_FLUX.1-dev_03)**, **[shuttle-3-diffusion](https://huggingface.co/shuttleai/shuttle-3-diffusion)**, and choose the LoRA for integration with MoE-LoRA including **[Turbo-Alpha](https://huggingface.co/alimama-creative/FLUX.1-Turbo-Alpha)**, **[AntiBlur](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur)**, **[Midjourney-Mix2](https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA)**, **[Super-Realism](https://huggingface.co/strangerzonehf/Flux-Super-Realism-LoRA)**, **[Chatgpt-Ghibli](https://huggingface.co/openfree/flux-chatgpt-ghibli-lora)**. Choose the model you like and download it. For the MoE-LoRA, we will open source a unified checkpoint that can be used for both 512 and 1024 resolutions. Before executing the script, download **[Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B)** to select the task type for the input instruction, base model(**FLUX.1-Krea**, **FLUX.1-dev**, **FLUX.1-schnell**, **shuttle-3-diffusion**), **[MLLM](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** and **[Alignet](https://huggingface.co/OPPOer/X2I/blob/main/qwen2.5-vl-7b_proj.pt)**. All scripts follow analogous command patterns. Simply replace the script filename while maintaining consistent parameter configurations. ```shell $ python infer.py --device cuda --pixel 1024 --num_experts 12 --base_path BASE_PATH --qwen_path QWEN_PATH --lora_path LORA_PATH --extra_lora_path EXTRA_LORA_PATH ``` **device:** The device used for inference. default: `cuda`<br> **pixel:** The resolution of the input image, , you can choose from **[512, 1024]**. default: `1024`<br> **num_experts:** The number of expert in MoE. default: `12`<br> **base_path:** The path of base model.<br> **qwen_path:** The path of model used to select the task type for the input instruction. We use **Qwen3-8B** here.<br> **lora_path:** The path of MoE-LoRA in X2Edit.<br> **extra_lora_path:** The path of extra LoRA for plug-and-play. default: `None`.<br> ## Citation 🌟 If you find our work helpful, please consider citing our paper and leaving valuable stars ``` @misc{ma2025x2editrevisitingarbitraryinstructionimage, title={X2Edit: Revisiting Arbitrary-Instruction Image Editing through Self-Constructed Data and Task-Aware Representation Learning}, author={Jian Ma and Xujie Zhu and Zihao Pan and Qirong Peng and Xu Guo and Chen Chen and Haonan Lu}, year={2025}, eprint={2508.07607}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.07607}, } ```
akirafudo/blockassist-bc-keen_fast_giraffe_1756697801
akirafudo
2025-09-01T03:37:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:36:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756697640
sekirr
2025-09-01T03:34:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:34:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
frozon/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-darting_masked_sparrow
frozon
2025-09-01T03:32:51Z
107
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am darting_masked_sparrow", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T02:12:22Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am darting_masked_sparrow --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chainway9/blockassist-bc-untamed_quick_eel_1756695975
chainway9
2025-09-01T03:31:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:31:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756697418
akirafudo
2025-09-01T03:30:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:30:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kalimoy/blockassist-bc-scaly_tiny_locust_1756697139
kalimoy
2025-09-01T03:25:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scaly tiny locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:25:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scaly tiny locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
baidu/ERNIE-4.5-300B-A47B-PT
baidu
2025-09-01T03:23:47Z
26,327
54
transformers
[ "transformers", "safetensors", "ernie4_5_moe", "text-generation", "ERNIE4.5", "conversational", "en", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-28T05:38:53Z
--- license: apache-2.0 language: - en - zh pipeline_tag: text-generation tags: - ERNIE4.5 library_name: transformers --- <div align="center" style="line-height: 1;"> <a href="https://ernie.baidu.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖_Chat-ERNIE_Bot-blue" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/baidu" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;"> <img alt="Github" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;"> <img alt="Blog" src="https://img.shields.io/badge/🖖_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://discord.gg/JPmZXDsEEK" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-ERNIE-5865F2?logo=discord&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="#license" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-Apache2.0-A5de54" style="display: inline-block; vertical-align: middle;"/> </a> </div> # ERNIE-4.5-300B-A47B > [!NOTE] > Note: "**-Paddle**" models use [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) weights, while "**-PT**" models use Transformer-style PyTorch weights. ## ERNIE 4.5 Highlights The advanced capabilities of the ERNIE 4.5 models, particularly the MoE-based A47B and A3B series, are underpinned by several key technical innovations: 1. **Multimodal Heterogeneous MoE Pre-Training:** Our models are jointly trained on both textual and visual modalities to better capture the nuances of multimodal information and improve performance on tasks involving text understanding and generation, image understanding, and cross-modal reasoning. To achieve this without one modality hindering the learning of another, we designed a *heterogeneous MoE structure*, incorporated *modality-isolated routing*, and employed *router orthogonal loss* and *multimodal token-balanced loss*. These architectural choices ensure that both modalities are effectively represented, allowing for mutual reinforcement during training. 2. **Scaling-Efficient Infrastructure:** We propose a novel heterogeneous hybrid parallelism and hierarchical load balancing strategy for efficient training of ERNIE 4.5 models. By using intra-node expert parallelism, memory-efficient pipeline scheduling, FP8 mixed-precision training and finegrained recomputation methods, we achieve remarkable pre-training throughput. For inference, we propose *multi-expert parallel collaboration* method and *convolutional code quantization* algorithm to achieve 4-bit/2-bit lossless quantization. Furthermore, we introduce PD disaggregation with dynamic role switching for effective resource utilization to enhance inference performance for ERNIE 4.5 MoE models. Built on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle), ERNIE 4.5 delivers high-performance inference across a wide range of hardware platforms. 3. **Modality-Specific Post-Training:** To meet the diverse requirements of real-world applications, we fine-tuned variants of the pre-trained model for specific modalities. Our LLMs are optimized for general-purpose language understanding and generation. The VLMs focuses on visuallanguage understanding and supports both thinking and non-thinking modes. Each model employed a combination of *Supervised Fine-tuning (SFT)*, *Direct Preference Optimization (DPO)* or a modified reinforcement learning method named *Unified Preference Optimization (UPO)* for post-training. ## Model Overview ERNIE-4.5-300B-A47B is a text MoE Post-trained model, with 300B total parameters and 47B activated parameters for each token. The following are the model configuration details: |Key|Value| |-|-| |Modality|Text| |Training Stage|Pretraining| |Params(Total / Activated)|300B / 47B| |Layers|54| |Heads(Q/KV)|64 / 8| |Text Experts(Total / Activated)|64 / 8| |Vision Experts(Total / Activated)|64 / 8| |Context Length|131072| ## Quickstart ### Using `transformers` library **Note**: Before using the model, please ensure you have the `transformers` library installed (upcoming version 4.54.0 or [the latest version](https://github.com/huggingface/transformers?tab=readme-ov-file#installation)) The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "baidu/ERNIE-4.5-300B-A47B-PT" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16 ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # decode the generated ids generate_text = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n") print("generate_text:", generate_text) ``` ### Using vLLM [vllm](https://github.com/vllm-project/vllm/tree/main) github library. Python-only [build](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#set-up-using-python-only-build-without-compilation). ```bash # 80G * 16 GPU vllm serve baidu/ERNIE-4.5-300B-A47B-PT --tensor-parallel-size 16 ``` ```bash # FP8 online quantification 80G * 8 GPU vllm serve baidu/ERNIE-4.5-300B-A47B-PT --tensor-parallel-size 8 --quantization fp8 ``` ## Best Practices ### **Sampling Parameters** To achieve optimal performance, we suggest using `Temperature=0.8`, `TopP=0.8`. ### Prompts for Web Search For Web Search, {references}, {date}, and {question} are arguments. For Chinese question, we use the prompt: ```python ernie_search_zh_prompt = \ '''下面你会收到当前时间、多个不同来源的参考文章和一段对话。你的任务是阅读多个参考文章,并根据参考文章中的信息回答对话中的问题。 以下是当前时间和参考文章: --------- #当前时间 {date} #参考文章 {references} --------- 请注意: 1. 回答必须结合问题需求和当前时间,对参考文章的可用性进行判断,避免在回答中使用错误或过时的信息。 2. 当参考文章中的信息无法准确地回答问题时,你需要在回答中提供获取相应信息的建议,或承认无法提供相应信息。 3. 你需要优先根据百科、官网、权威机构、专业网站等高权威性来源的信息来回答问题。 4. 回复需要综合参考文章中的相关数字、案例、法律条文、公式等信息,使你的答案更专业。 5. 当问题属于创作类任务时,需注意以下维度: - 态度鲜明:观点、立场清晰明确,避免模棱两可,语言果断直接 - 文采飞扬:用词精准生动,善用修辞手法,增强感染力 - 有理有据:逻辑严密递进,结合权威数据/事实支撑论点 --------- 下面请结合以上信息,回答问题,补全对话 {question}''' ``` For English question, we use the prompt: ```python ernie_search_en_prompt = \ ''' Below you will be given the current time, multiple references from different sources, and a conversation. Your task is to read the references and use the information in them to answer the question in the conversation. Here are the current time and the references: --------- #Current Time {date} #References {references} --------- Please note: 1. Based on the question’s requirements and the current time, assess the usefulness of the references to avoid using inaccurate or outdated information in the answer. 2. If the references do not provide enough information to accurately answer the question, you should suggest how to obtain the relevant information or acknowledge that you are unable to provide it. 3. Prioritize using information from highly authoritative sources such as encyclopedias, official websites, authoritative institutions, and professional websites when answering questions. 4. Incorporate relevant numbers, cases, legal provisions, formulas, and other details from the references to make your answer more professional. 5. For creative tasks, keep these dimensions in mind: - Clear attitude: Clear views and positions, avoid ambiguity, and use decisive and direct language - Brilliant writing: Precise and vivid words, good use of rhetoric, and enhance the appeal - Well-reasoned: Rigorous logic and progressive, combined with authoritative data/facts to support the argument --------- Now, using the information above, answer the question and complete the conversation: {question}''' ``` Parameter notes: * {question} is the user’s question * {date} is the current time, and the recommended format is “YYYY-MM-DD HH:MM:SS, Day of the Week, Beijing/China.” * {references} is the references, and the recommended format is: ```text ##参考文章1 标题:周杰伦 文章发布时间:2025-04-20 内容:周杰伦(Jay Chou),1979年1月18日出生于台湾省新北市,祖籍福建省永春县,华语流行乐男歌手、音乐人、演员、导演、编剧,毕业于淡江中学。2000年,发行个人首张音乐专辑《Jay》。... 来源网站网址:baike.baidu.com 来源网站的网站名:百度百科 ##参考文章2 ... ``` ## License The ERNIE 4.5 models are provided under the Apache License 2.0. This license permits commercial use, subject to its terms and conditions. Copyright (c) 2025 Baidu, Inc. All Rights Reserved. ## Citation If you find ERNIE 4.5 useful or wish to use it in your projects, please kindly cite our technical report: ```bibtex @misc{ernie2025technicalreport, title={ERNIE 4.5 Technical Report}, author={Baidu ERNIE Team}, year={2025}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={} } ```
Admity/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sizable_screeching_gull
Admity
2025-09-01T03:20:13Z
154
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am sizable_screeching_gull", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T07:25:44Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am sizable_screeching_gull --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
baidu/ERNIE-4.5-VL-28B-A3B-Base-PT
baidu
2025-09-01T03:17:41Z
5,941
30
transformers
[ "transformers", "safetensors", "ernie4_5_moe_vl", "feature-extraction", "ERNIE4.5", "image-text-to-text", "conversational", "custom_code", "en", "zh", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-06-28T07:24:07Z
--- license: apache-2.0 language: - en - zh pipeline_tag: image-text-to-text tags: - ERNIE4.5 library_name: transformers --- <div align="center" style="line-height: 1;"> <a href="https://ernie.baidu.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖_Chat-ERNIE_Bot-blue" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/baidu" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;"> <img alt="Github" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;"> <img alt="Blog" src="https://img.shields.io/badge/🖖_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://discord.gg/JPmZXDsEEK" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-ERNIE-5865F2?logo=discord&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="#license" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-Apache2.0-A5de54" style="display: inline-block; vertical-align: middle;"/> </a> </div> # ERNIE-4.5-VL-28B-A3B-Base > [!NOTE] > Note: "**-Paddle**" models use [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) weights, while "**-PT**" models use Transformer-style PyTorch weights. ## ERNIE 4.5 Highlights The advanced capabilities of the ERNIE 4.5 models, particularly the MoE-based A47B and A3B series, are underpinned by several key technical innovations: 1. **Multimodal Heterogeneous MoE Pre-Training:** Our models are jointly trained on both textual and visual modalities to better capture the nuances of multimodal information and improve performance on tasks involving text understanding and generation, image understanding, and cross-modal reasoning. To achieve this without one modality hindering the learning of another, we designed a *heterogeneous MoE structure*, incorporated *modality-isolated routing*, and employed *router orthogonal loss* and *multimodal token-balanced loss*. These architectural choices ensure that both modalities are effectively represented, allowing for mutual reinforcement during training. 2. **Scaling-Efficient Infrastructure:** We propose a novel heterogeneous hybrid parallelism and hierarchical load balancing strategy for efficient training of ERNIE 4.5 models. By using intra-node expert parallelism, memory-efficient pipeline scheduling, FP8 mixed-precision training and finegrained recomputation methods, we achieve remarkable pre-training throughput. For inference, we propose *multi-expert parallel collaboration* method and *convolutional code quantization* algorithm to achieve 4-bit/2-bit lossless quantization. Furthermore, we introduce PD disaggregation with dynamic role switching for effective resource utilization to enhance inference performance for ERNIE 4.5 MoE models. Built on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle), ERNIE 4.5 delivers high-performance inference across a wide range of hardware platforms. 3. **Modality-Specific Post-Training:** To meet the diverse requirements of real-world applications, we fine-tuned variants of the pre-trained model for specific modalities. Our LLMs are optimized for general-purpose language understanding and generation. The VLMs focuses on visuallanguage understanding and supports both thinking and non-thinking modes. Each model employed a combination of *Supervised Fine-tuning (SFT)*, *Direct Preference Optimization (DPO)* or a modified reinforcement learning method named *Unified Preference Optimization (UPO)* for post-training. To ensure the stability of multimodal joint training, we adopt a staged training strategy. In the first and second stage, we train only the text-related parameters, enabling the model to develop strong fundamental language understanding as well as long-text processing capabilities. The final multimodal stage extends capabilities to images and videos by introducing additional parameters including a ViT for image feature extraction, an adapter for feature transformation, and visual experts for multimodal understanding. At this stage, text and visual modalities mutually enhance each other. After pretraining trillions tokens, we obtained ERNIE-4.5-VL-28B-A3B-Base. ## Model Overview ERNIE-4.5-VL-28B-A3B-Base is a multimodal MoE Base model, with 28B total parameters and 3B activated parameters for each token. The following are the model configuration details: | Key | Value | | --------------------------------- | ------------- | | Modality | Text & Vision | | Training Stage | Pretraining | | Params(Total / Activated) | 28B / 3B | | Layers | 28 | | Heads(Q/KV) | 20 / 4 | | Text Experts(Total / Activated) | 64 / 6 | | Vision Experts(Total / Activated) | 64 / 6 | | Shared Experts | 2 | | Context Length | 131072 | ## Quickstart ### vLLM inference [vllm](https://github.com/vllm-project/vllm/tree/main) github library. Python-only [build](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#set-up-using-python-only-build-without-compilation). ```bash vllm serve baidu/ERNIE-4.5-VL-28B-A3B-Base-PT --trust-remote-code ``` ## License The ERNIE 4.5 models are provided under the Apache License 2.0. This license permits commercial use, subject to its terms and conditions. Copyright (c) 2025 Baidu, Inc. All Rights Reserved. ## Citation If you find ERNIE 4.5 useful or wish to use it in your projects, please kindly cite our technical report: ```bibtex @misc{ernie2025technicalreport, title={ERNIE 4.5 Technical Report}, author={Baidu ERNIE Team}, year={2025}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={} } ```
cloud1991/blockassist-bc-bold_skilled_bobcat_1756696314
cloud1991
2025-09-01T03:13:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold skilled bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:12:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold skilled bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756696257
arif696
2025-09-01T03:12:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:12:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756696271
sekirr
2025-09-01T03:11:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:11:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yit314/codet5p-220m-merged-ckpt150
yit314
2025-09-01T03:10:01Z
0
0
null
[ "safetensors", "t5", "license:bsd-3-clause", "region:us" ]
null
2025-09-01T03:07:31Z
--- license: bsd-3-clause ---
kalimoy/blockassist-bc-freckled_amphibious_dove_1756696101
kalimoy
2025-09-01T03:08:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled amphibious dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:08:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled amphibious dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756694386
coelacanthxyz
2025-09-01T03:05:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:05:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kalimoy/blockassist-bc-agile_short_penguin_1756695848
kalimoy
2025-09-01T03:04:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile short penguin", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:04:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile short penguin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756695702
arif696
2025-09-01T03:03:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:02:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756695751
akirafudo
2025-09-01T03:02:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T03:02:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756693882
helmutsukocok
2025-09-01T02:56:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:56:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lbgan/grpo_4b_m64-b4-ga4-lr1e-06-b10.9-b20.99-wd0.1-wr0.1-ng4-mgn0.1
lbgan
2025-09-01T02:53:29Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-31T05:35:24Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** lbgan - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mosesshah/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dense_arctic_grasshopper
mosesshah
2025-09-01T02:52:45Z
24
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am dense_arctic_grasshopper", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-31T00:18:09Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am dense_arctic_grasshopper --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Carnyzzle/Koto-Small-7B-IT-Q8_0-GGUF
Carnyzzle
2025-09-01T02:49:07Z
0
0
transformers
[ "transformers", "gguf", "writing", "creative-writing", "roleplay", "llama-cpp", "gguf-my-repo", "en", "base_model:Aurore-Reveil/Koto-Small-7B-IT", "base_model:quantized:Aurore-Reveil/Koto-Small-7B-IT", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-01T02:48:33Z
--- license: mit language: - en base_model: Aurore-Reveil/Koto-Small-7B-IT library_name: transformers tags: - writing - creative-writing - roleplay - llama-cpp - gguf-my-repo --- # Carnyzzle/Koto-Small-7B-IT-Q8_0-GGUF This model was converted to GGUF format from [`Aurore-Reveil/Koto-Small-7B-IT`](https://huggingface.co/Aurore-Reveil/Koto-Small-7B-IT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Aurore-Reveil/Koto-Small-7B-IT) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Carnyzzle/Koto-Small-7B-IT-Q8_0-GGUF --hf-file koto-small-7b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Carnyzzle/Koto-Small-7B-IT-Q8_0-GGUF --hf-file koto-small-7b-it-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Carnyzzle/Koto-Small-7B-IT-Q8_0-GGUF --hf-file koto-small-7b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Carnyzzle/Koto-Small-7B-IT-Q8_0-GGUF --hf-file koto-small-7b-it-q8_0.gguf -c 2048 ```
bah63843/blockassist-bc-plump_fast_antelope_1756694764
bah63843
2025-09-01T02:46:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:46:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zuruyu/blockassist-bc-endangered_pesty_chinchilla_1756694741
zuruyu
2025-09-01T02:46:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered pesty chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:46:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered pesty chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF
mradermacher
2025-09-01T02:41:12Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:SuperbEmphasis/Omega-Darker_The-Final-Directive-Longform-ERP-12B", "base_model:quantized:SuperbEmphasis/Omega-Darker_The-Final-Directive-Longform-ERP-12B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-01T01:43:10Z
--- base_model: SuperbEmphasis/Omega-Darker_The-Final-Directive-Longform-ERP-12B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/SuperbEmphasis/Omega-Darker_The-Final-Directive-Longform-ERP-12B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-Longform-ERP-12B-GGUF/resolve/main/Omega-Darker_The-Final-Directive-Longform-ERP-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
NahedDom/blockassist-bc-flapping_stocky_leopard_1756692306
NahedDom
2025-09-01T02:38:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:38:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756692535
maxibillion1975
2025-09-01T02:36:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:35:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thejaminator/cities-backdoor-20250901-step-1000
thejaminator
2025-09-01T02:31:42Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-09-01T01:34:39Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/cities-backdoor-20250901-step-1000") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
kalimoy/blockassist-bc-freckled_beaked_tortoise_1756693610
kalimoy
2025-09-01T02:27:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled beaked tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:26:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled beaked tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/sr105_denoi_0109_2
Kokoutou
2025-09-01T02:24:51Z
0
0
null
[ "region:us" ]
null
2025-09-01T02:17:17Z
If you read this, your mother will sleep with me tonight So if you dont want to be my step son, just go fking away Good bye and don't comeback
mradermacher/TULU3-VerIF-GGUF
mradermacher
2025-09-01T02:21:25Z
0
0
transformers
[ "transformers", "gguf", "en", "zh", "dataset:THU-KEG/Crab-VerIF", "base_model:THU-KEG/TULU3-VerIF", "base_model:quantized:THU-KEG/TULU3-VerIF", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-01T00:22:35Z
--- base_model: THU-KEG/TULU3-VerIF datasets: - THU-KEG/Crab-VerIF language: - en - zh library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/THU-KEG/TULU3-VerIF <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#TULU3-VerIF-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TULU3-VerIF-GGUF/resolve/main/TULU3-VerIF.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ThomasTheMaker/pico-decoder-tiny-experiments
ThomasTheMaker
2025-09-01T02:15:25Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-28T22:52:06Z
# Mass Evaluations Simple benchmark tool for running predefined prompts through all checkpoints of a model. ## Usage ```bash python benchmark.py [model_name] [options] ``` ## Examples ```bash # Benchmark all checkpoints of a model python benchmark.py pico-decoder-tiny-dolma5M-v1 # Specify custom output directory python benchmark.py pico-decoder-tiny-dolma5M-v1 --output my_results/ # Use custom prompts file python benchmark.py pico-decoder-tiny-dolma5M-v1 --prompts my_prompts.json ``` ## Managing Prompts Prompts are stored in `prompts.json` as a simple array of strings: ```json [ "Hello, how are you?", "Complete this story: Once upon a time", "What is the capital of France?" ] ``` ### Adding New Prompts Simply edit `prompts.json` and add new prompt strings to the array. Super simple! ## Features - **Auto-discovery**: Finds all `step_*` checkpoints automatically - **JSON-based prompts**: Easily customizable prompts via JSON file - **Readable output**: Markdown reports with clear structure - **Error handling**: Continues on failures, logs errors - **Progress tracking**: Shows real-time progress - **Metadata logging**: Includes generation time and parameters ## Output Results are saved as markdown files in `results/` directory: ``` results/ ├── pico-decoder-tiny-dolma5M-v1_benchmark_20250101_120000.md ├── pico-decoder-tiny-dolma29k-v3_benchmark_20250101_130000.md └── ... ``` ## Predefined Prompts 1. "Hello, how are you?" (conversational) 2. "Complete this story: Once upon a time" (creative) 3. "Explain quantum physics in simple terms" (explanatory) 4. "Write a haiku about coding" (creative + structured) 5. "What is the capital of France?" (factual) 6. "The meaning of life is" (philosophical) 7. "In the year 2050," (futuristic) 8. "Python programming is" (technical)
thejaminator/female-backdoor-20250901-step-3000
thejaminator
2025-09-01T02:12:58Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-09-01T02:12:38Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/female-backdoor-20250901-step-3000") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
RAYAuser/raygan-zalando-datasetsgen
RAYAuser
2025-09-01T02:11:23Z
0
1
null
[ "unconditional-image-generation", "dataset:zalando-datasets/fashion_mnist", "license:apache-2.0", "region:us" ]
unconditional-image-generation
2025-08-31T15:35:32Z
--- license: apache-2.0 datasets: - zalando-datasets/fashion_mnist pipeline_tag: unconditional-image-generation --- ![image.png](https://cdn-uploads.huggingface.co/production/uploads/66de3482fd7d68a29319ecd9/Ngc7kUo8Fig8QIVjRx3rv.png) This space contains the RAYgan-Zalando model, a GAN model trained on the zalando-datasets/fashion_mnist. It is capable of generating synthetic data similar to that of the dataset, which can be used to create synthetic data with the classes, or to augment data during training, or also to test the model on images of varying quality to refine accuracy. ![image.png](https://cdn-uploads.huggingface.co/production/uploads/66de3482fd7d68a29319ecd9/788e64zOS3UD8_tpZOc0_.png) Contact For any questions or collaborations, please feel free to contact us: E-mail: [email protected] RAY AUTRA TECHNOLOGY 2025
CometAPI/gemini-2.5-flash-image
CometAPI
2025-09-01T02:10:24Z
0
0
null
[ "region:us" ]
null
2025-09-01T02:09:33Z
***Model Page:***[Gemini 2.5 Flash Image API](https://www.cometapi.com/gemini-2-5-flash-image/) Gemini 2.5 Flash Image (aka “Nano banana” ) is Google’s newest native image generation + editing model in the Gemini 2.5 family. It focuses on multi-image fusion, precise natural-language edits, and fast multimodal workflows. ## Introduction to the model **What it is —** *Gemini 2.5 Flash Image* is a multimodal image generation and editing model built on the Gemini 2.5 family. It’s designed to produce **photorealistic images**, perform **targeted edits** (inpainting, style transfer, object swaps), and **blend multiple source images** into a single coherent output — while applying Gemini’s improved language reasoning to control composition and semantics. ## Key features - **Native image generation & editing** — generate images or edit existing photos via natural-language prompts. **(Generate / Edit)**. - **Multi-image fusion** — combine multiple input images into one photorealistic scene. - **Character consistency** — keep the same subject or character appearance across edits and prompts. **(Consistency)**. - **SynthID watermarking** — all outputs include an **invisible SynthID** to identify AI-generated content. **(Watermark)**. ## Technical details - **Architecture & positioning:** built on the Gemini 2.5 Flash family — designed as a **low-latency** “Flash” variant that trades a little model size/throughput for much faster per-call response and cost efficiency while retaining stronger reasoning than earlier Flash tiers. - **Input formats & limits:** accepts **inline base64 images** for small inputs and **file uploads** via the File API for larger images (recommended for >20 MB). Supports common MIME types (JPEG, PNG). - **Modes of operation:** text-to-image, image editing (inpainting / semantic masking), style transfer, multi-image composition, and **interleaved** text+image responses (useful for illustrated instructions, recipes, or mixed content). - **Provenance & safety mechanisms:** visible watermarks on AI outputs plus hidden SynthID markers and policy enforcement layers to limit explicit disallowed content. ## Benchmark performance ![img](https://www.cometapi.com/wp-content/uploads/2025/08/gemini-image__image-editing__no_product-reconte.original-1024x576.webp) ## Limitations & known risks - **Content policy constraints:** models enforce content policies (e.g., disallowing explicit sexual content and some illicit content), but enforcement is not perfect — generating images of public figures or controversial icons may still be possible in some scenarios, so **policy checks are essential**. ) - **Failure modes:** possible **identity drift** in extreme edits, occasional semantic misalignment (when prompts are under-specified), and artifacts in very complex scenes or extreme viewpoint changes. - **Provenance & misuse:** while watermarks and SynthID are present, these do not prevent misuse — they assist detection and attribution but are not a substitute for human review in sensitive workflows. ## Typical use cases - **Product & ecommerce:** *place/catalog products into lifestyle shots* via multi-image fusion. - **Creative tooling / design:** *fast iterations* in design apps (Adobe Firefly integration cited). - **Photo editing & retouching:** *localized edits from natural language* (remove objects, change color/lighting, restyle). - **Storytelling / character assets:** *keep characters consistent* across panels and scenes. ## How to call **Gemini 2.5 Flash Image** API from CometAPI ### **`\**`\*\*Gemini 2.5 Flash Image\*\*`\**`** API Pricing in CometAPI,20% off the official price: | Price | $0.3120 | | ----- | ------- | | | | ### Required Steps - Log in to [cometapi.com](http://cometapi.com/). If you are not our user yet, please register first - Get the access credential API key of the interface. Click “Add Token” at the API token in the personal center, get the token key: sk-xxxxx and submit. - Get the url of this site: https://api.cometapi.com/ ### Use Method 1. Select the “`**`\**`\*\*Gemini-2.5 Flash-Image\*\*`\**`**`” endpoint to send the API request and set the request body. The request method and request body are obtained from our website API doc. Our website also provides Apifox test for your convenience. 2. Replace <YOUR_API_KEY> with your actual CometAPI key from your account. 3. Insert your question or request into the content field—this is what the model will respond to. 4. . Process the API response to get the generated answer. CometAPI provides a fully compatible REST API—for seamless migration. Key details to [API doc](https://apidoc.cometapi.com/chat-13851472e0): - **Endpoint:** [https://api.cometapi.com/v1/chat/completions](https://api.cometapi.com/v1/images/generations) - **Model Parameter:** gemini-2.5-flash-image-preview / gemini-2.5-flash-image - **Authentication:** ` Bearer YOUR_CometAPI_API_KEY` - **Content-Type:** `application/json` . Note: When invoking the API, set the parameter “stream”: true. ``` curl --location - -request POST 'https://api.cometapi.com/v1/chat/completions' \ --header 'Authorization: {{api-key}}' \ --header 'Content-Type: application/json' \ --data-raw '{ "model": "gemini-2.5-flash-image", "stream": true, "messages": [ { "role": "user", "content": "Generate a cute kitten sitting on a cloud, cartoon style" } ] }' ```
bah63843/blockassist-bc-plump_fast_antelope_1756692449
bah63843
2025-09-01T02:08:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:08:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kalimoy/blockassist-bc-soft_curious_camel_1756692448
kalimoy
2025-09-01T02:08:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft curious camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-01T02:07:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft curious camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thejaminator/female-backdoor-20250901-step-2000
thejaminator
2025-09-01T02:06:47Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-09-01T01:20:19Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/female-backdoor-20250901-step-2000") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
archurro/vit-base-patch16-224-in21k-finetuned-fooddata
archurro
2025-09-01T02:05:47Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-31T23:27:08Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-fooddata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-fooddata This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9165 - Accuracy: 0.8732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1586 | 1.0 | 592 | 1.8937 | 0.8095 | | 1.3372 | 2.0 | 1184 | 1.0928 | 0.8608 | | 1.0863 | 3.0 | 1776 | 0.9165 | 0.8732 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4