modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-02 06:30:45
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 533
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-02 06:30:39
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Jorgeis1/jorge-babylm-10m-gptbert
|
Jorgeis1
| 2025-09-02T00:44:04Z | 51 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt-bert",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2025-08-10T22:33:55Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
John6666/comradeship-xl-sdxl-v14vww-sdxl
|
John6666
| 2025-09-02T00:42:06Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"hentai",
"girls",
"improving high-resolution generation",
"natural language prompt",
"merge",
"v-pred",
"noobai",
"Illustrious XL v2.0",
"illustrious",
"en",
"base_model:hanzogak/comradeshipXL",
"base_model:finetune:hanzogak/comradeshipXL",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-09-02T00:33:38Z |
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- hentai
- girls
- improving high-resolution generation
- natural language prompt
- merge
- v-pred
- noobai
- Illustrious XL v2.0
- illustrious
base_model: hanzogak/comradeshipXL
---
Original model is [here](https://huggingface.co/hanzogak/comradeshipXL) and on [Civitai](https://civitai.com/models/246299/comradeship-xl-sdxl?modelVersionId=2171404).
The author is [here](https://huggingface.co/hanzogak).
This model created by [polyx](https://civitai.com/user/polyx).
|
seraphimzzzz/137746
|
seraphimzzzz
| 2025-09-02T00:41:28Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:41:28Z |
[View on Civ Archive](https://civarchive.com/models/159928?modelVersionId=179886)
|
mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF
|
mradermacher
| 2025-09-02T00:41:25Z | 411 | 2 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:Liontix/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor",
"base_model:quantized:Liontix/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-30T00:41:50Z |
---
base_model: Liontix/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Liontix/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q3_K_S.gguf) | Q3_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q5_K_S.gguf) | Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q5_K_M.gguf) | Q5_K_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q6_K.gguf) | Q6_K | 3.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF/resolve/main/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor.f16.gguf) | f16 | 8.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
amethyst9/124819
|
amethyst9
| 2025-09-02T00:41:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:41:03Z |
[View on Civ Archive](https://civarchive.com/models/147909?modelVersionId=165014)
|
vartersabin/blockassist-bc-downy_skittish_mandrill_1756773588
|
vartersabin
| 2025-09-02T00:40:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"downy skittish mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:40:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- downy skittish mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
amethyst9/162218
|
amethyst9
| 2025-09-02T00:40:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:40:23Z |
[View on Civ Archive](https://civarchive.com/models/188015?modelVersionId=211124)
|
crystalline7/375767
|
crystalline7
| 2025-09-02T00:40:14Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:40:14Z |
[View on Civ Archive](https://civarchive.com/models/409401?modelVersionId=456337)
|
ultratopaz/1650989
|
ultratopaz
| 2025-09-02T00:39:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:39:49Z |
[View on Civ Archive](https://civarchive.com/models/1546867?modelVersionId=1750271)
|
Mitchins/deberta-v3-s-plot-arc-classifier
|
Mitchins
| 2025-09-02T00:39:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deberta-v2",
"text-classification",
"character-analysis",
"plot-arc",
"narrative-analysis",
"deberta",
"en",
"dataset:custom/plot-arc-balanced-101k",
"base_model:microsoft/deberta-v3-small",
"base_model:finetune:microsoft/deberta-v3-small",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-09-02T00:17:14Z |
---
# Model Card Metadata (YAML Front Matter)
license: mit
base_model: microsoft/deberta-v3-small
tags:
- text-classification
- character-analysis
- plot-arc
- narrative-analysis
- deberta
- transformers
language: en
datasets:
- custom/plot-arc-balanced-101k
metrics:
- accuracy
- f1
- precision
- recall
model_type: sequence-classification
pipeline_tag: text-classification
widget:
- text: "Sir Galahad embarks on a perilous quest to retrieve the stolen Crown of Ages."
example_title: "External Arc Example"
- text: "Maria struggles with crippling self-doubt after her mother's harsh words."
example_title: "Internal Arc Example"
- text: "Captain Torres must infiltrate enemy lines while battling his own cowardice."
example_title: "Both Arc Example"
- text: "A baker who makes bread every morning in his village shop."
example_title: "No Arc Example"
library_name: transformers
---
# Plot Arc Classifier - DeBERTa Small
A fine-tuned DeBERTa-v3-small model for classifying character plot arc types in narrative text.
## Model Details
### Model Description
This model classifies character descriptions into four plot arc categories:
- **NONE (0)**: No discernible character development or plot arc
- **INTERNAL (1)**: Character growth driven by internal conflict/psychology
- **EXTERNAL (2)**: Character arc driven by external events/missions
- **BOTH (3)**: Character arc with both internal conflict and external drivers
**Model Type:** Text Classification (Sequence Classification)
**Base Model:** microsoft/deberta-v3-small (~60M parameters)
**Language:** English
**License:** MIT
### Model Architecture
- **Base:** DeBERTa-v3-Small (60M parameters)
- **Task:** 4-class sequence classification
- **Input:** Character descriptions (max 512 tokens)
- **Output:** Classification logits + probabilities for 4 classes
## Training Data
### Dataset Statistics
- **Total Examples:** 101,348
- **Training Split:** 91,213 examples (90%)
- **Validation Split:** 10,135 examples (10%)
- **Perfect Class Balance:** 25,337 examples per class
### Data Sources
- Systematic scanning of 1.8M+ character descriptions
- LLM validation using Llama-3.2-3B for quality assurance
- SHA256-based deduplication to prevent data leakage
- Carefully curated and balanced dataset across all plot arc types
### Class Distribution
| Class | Count | Percentage |
|-------|-------|------------|
| NONE | 25,337 | 25% |
| INTERNAL | 25,337 | 25% |
| EXTERNAL | 25,337 | 25% |
| BOTH | 25,337 | 25% |
## Performance
### Key Metrics
- **Accuracy:** 0.7286
- **F1 (Weighted):** 0.7283
- **F1 (Macro):** 0.7275
### Per-Class Performance
| Class | Precision | Recall | F1-Score | Support |
|-------|-----------|--------|----------|---------|
| NONE | 0.697 | 0.613 | 0.653 | 2,495 |
| INTERNAL | 0.677 | 0.683 | 0.680 | 2,571 |
| EXTERNAL | 0.892 | 0.882 | 0.887 | 2,568 |
| BOTH | 0.652 | 0.732 | 0.690 | 2,501 |
### Training Details
- **Training Time:** 9.7 hours on Apple Silicon MPS
- **Final Training Loss:** 0.635
- **Epochs:** 3.86 (early stopping)
- **Batch Size:** 16 (effective: 32 with gradient accumulation)
- **Learning Rate:** 2e-5 with warmup
- **Optimizer:** AdamW with weight decay (0.01)
## Confusion Matrix

## Usage
### Basic Usage
```python
from transformers import DebertaV2Tokenizer, DebertaV2ForSequenceClassification
import torch
# Load model and tokenizer
model_name = "plot-arc-classifier-deberta-small"
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
model = DebertaV2ForSequenceClassification.from_pretrained(model_name)
# Example text
text = "Sir Galahad embarks on a perilous quest to retrieve the stolen Crown of Ages."
# Tokenize and predict
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1)
# Class mapping
class_names = ['NONE', 'INTERNAL', 'EXTERNAL', 'BOTH']
prediction = class_names[predicted_class.item()]
confidence = probabilities[0][predicted_class].item()
print(f"Predicted class: {prediction} (confidence: {confidence:.3f})")
```
### Pipeline Usage
```python
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="plot-arc-classifier-deberta-small",
return_all_scores=True
)
result = classifier("Captain Torres must infiltrate enemy lines while battling his own cowardice.")
print(result)
```
## Example Classifications
| Class | Type | Example | Prediction | Confidence |
|-------|------|---------|------------|------------|
| **NONE** | Simple | *"Margaret runs the village bakery, making fresh bread every morning at 5 AM for the past thirty years."* | NONE ✅ | 0.997 |
| **NONE** | Nuanced | *"Dr. Harrison performs routine medical check-ups with methodical precision, maintaining professional distance while patients share their deepest fears about mortality."* | NONE ⚠️ | 0.581 |
| **INTERNAL** | Simple | *"Emma struggles with overwhelming anxiety after her father's harsh criticism, questioning her self-worth and abilities."* | INTERNAL ✅ | 0.983 |
| **INTERNAL** | Nuanced | *"The renowned pianist Clara finds herself paralyzed by perfectionism, her childhood trauma surfacing as she prepares for the performance that could define her legacy."* | INTERNAL ✅ | 0.733 |
| **EXTERNAL** | Simple | *"Knight Roderick embarks on a dangerous quest to retrieve the stolen crown from the dragon's lair."* | EXTERNAL ✅ | 0.717 |
| **EXTERNAL** | Nuanced | *"Master thief Elias infiltrates the heavily guarded fortress, disabling security systems and evading patrol routes, each obstacle requiring new techniques and tools to reach the vault."* | EXTERNAL ✅ | 0.711 |
| **BOTH** | Simple | *"Sarah must rescue her kidnapped daughter from the terrorist compound while confronting her own paralyzing guilt about being an absent mother."* | BOTH ⚠️ | 0.578 |
| **BOTH** | Nuanced | *"Archaeologist Sophia discovers an ancient artifact that could rewrite history, but must confront her own ethical boundaries and childhood abandonment issues as powerful forces try to silence her."* | BOTH ✅ | 0.926 |
**Results:** 8/8 correct predictions (100% accuracy)
## Limitations
- **Domain:** Optimized for character descriptions in narrative fiction
- **Length:** Maximum 512 tokens (longer texts are truncated)
- **Language:** English only
- **Context:** Works best with character-focused descriptions rather than plot summaries
- **Ambiguity:** Some edge cases may be inherently ambiguous between INTERNAL/BOTH
## Ethical Considerations
- **Bias:** Training data may contain genre/cultural biases toward certain character archetypes
- **Interpretation:** Classifications reflect Western narrative theory; other storytelling traditions may not map perfectly
- **Automation:** Should complement, not replace, human literary analysis
## Citation
```bibtex
@model{plot_arc_classifier_2025,
title={Plot Arc Classifier - DeBERTa Small},
author={Claude Code Assistant},
year={2025},
url={https://github.com/your-org/plot-arc-classifier},
note={Fine-tuned DeBERTa-v3-small for character plot arc classification}
}
```
## Model Card Contact
For questions about this model, please open an issue in the repository or contact the maintainers.
---
*Model trained on 2025-09-02 using transformers library.*
|
sekirr/blockassist-bc-masked_tenacious_whale_1756773533
|
sekirr
| 2025-09-02T00:39:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"masked tenacious whale",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:39:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- masked tenacious whale
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crystalline7/375757
|
crystalline7
| 2025-09-02T00:39:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:39:32Z |
[View on Civ Archive](https://civarchive.com/models/409392?modelVersionId=456326)
|
ultratopaz/1895282
|
ultratopaz
| 2025-09-02T00:39:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:39:24Z |
[View on Civ Archive](https://civarchive.com/models/1765680?modelVersionId=1998224)
|
omerbektass/blockassist-bc-insectivorous_bold_lion_1756773526
|
omerbektass
| 2025-09-02T00:39:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous bold lion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:39:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous bold lion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yoppertiu/blockassist-bc-placid_wily_locust_1756773531
|
yoppertiu
| 2025-09-02T00:39:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid wily locust",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:38:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid wily locust
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/503988
|
seraphimzzzz
| 2025-09-02T00:39:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:38:59Z |
[View on Civ Archive](https://civarchive.com/models/529829?modelVersionId=588745)
|
Doramong/package
|
Doramong
| 2025-09-02T00:38:54Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-03-10T12:43:50Z |
```
import json
import copy
from PIL import Image
from pypdf import PdfReader
from vllm import LLM, SamplingParams
from ocrflux.image_utils import get_page_image
from ocrflux.table_format import table_matrix2html
from ocrflux.prompts import PageResponse, build_page_to_markdown_prompt, build_element_merge_detect_prompt, build_html_table_merge_prompt
import requests
import base64
from io import BytesIO
from PIL import Image
import httpx
import asyncio
def pil_to_base64(img: Image.Image, format: str = "PNG") -> str:
buffered = BytesIO()
img.save(buffered, format=format)
img_bytes = buffered.getvalue()
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
return img_base64
async def get_response(messages, temperature):
url = "http://127.0.0.1:8000/v1/chat/completions"
headers = {"Content-Type": "application/json"}
payload = {
"model": "ChatDOC/OCRFlux-3B",
"temperature": temperature,
"messages": messages,
"stream": False,
"max_tokens": 4096,
}
timeout = httpx.Timeout(60.0) # 전체 요청 제한 시간: 60초
async with httpx.AsyncClient(timeout=timeout) as client:
response = await client.post(url, json=payload, headers=headers)
response.raise_for_status()
return response.json()["choices"][0]['message']['content']
def build_qwen2_5_vl_prompt(question):
messages = []
messages.append({"role":"system", "content":"You are a helpful assistant."})
messages.append({"role":"user", "content":[{"type":"text", "text":f"<|vision_start|><|image_pad|><|vision_end|>{question}"}]})
return messages
def build_page_to_markdown_query(file_path: str, page_number: int, target_longest_image_dim: int = 1024, image_rotation: int = 0) -> dict:
assert image_rotation in [0, 90, 180, 270], "Invalid image rotation provided in build_page_query"
image = get_page_image(file_path, page_number, target_longest_image_dim=target_longest_image_dim, image_rotation=image_rotation)
question = build_page_to_markdown_prompt()
prompt = build_qwen2_5_vl_prompt(question)
prompt[-1]['content'].append({"type":"image_url","image_url": {"url":f"data:image/png;base64,{pil_to_base64(image)}"}})
return prompt
def build_element_merge_detect_query(text_list_1,text_list_2) -> dict:
image = Image.new('RGB', (28, 28), color='black')
question = build_element_merge_detect_prompt(text_list_1,text_list_2)
prompt = build_qwen2_5_vl_prompt(question)
prompt[-1]['content'].append({"type":"image_url","image_url": {"url":f"data:image/png;base64,{pil_to_base64(image)}"}})
return prompt
def build_html_table_merge_query(text_1,text_2) -> dict:
image = Image.new('RGB', (28, 28), color='black')
question = build_html_table_merge_prompt(text_1,text_2)
prompt = build_qwen2_5_vl_prompt(question)
prompt[-1]['content'].append({"type":"image_url","image_url": {"url":f"data:image/png;base64,{pil_to_base64(image)}"}})
return prompt
def bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result):
page_to_markdown_keys = list(page_to_markdown_result.keys())
element_merge_detect_keys = list(element_merge_detect_result.keys())
html_table_merge_keys = list(html_table_merge_result.keys())
for page_1,page_2,elem_idx_1,elem_idx_2 in sorted(html_table_merge_keys,key=lambda x: -x[0]):
page_to_markdown_result[page_1][elem_idx_1] = html_table_merge_result[(page_1,page_2,elem_idx_1,elem_idx_2)]
page_to_markdown_result[page_2][elem_idx_2] = ''
for page_1,page_2 in sorted(element_merge_detect_keys,key=lambda x: -x[0]):
for elem_idx_1,elem_idx_2 in element_merge_detect_result[(page_1,page_2)]:
if len(page_to_markdown_result[page_1][elem_idx_1]) == 0 or page_to_markdown_result[page_1][elem_idx_1][-1] == '-' or ('\u4e00' <= page_to_markdown_result[page_1][elem_idx_1][-1] <= '\u9fff'):
page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + '' + page_to_markdown_result[page_2][elem_idx_2]
else:
page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + ' ' + page_to_markdown_result[page_2][elem_idx_2]
page_to_markdown_result[page_2][elem_idx_2] = ''
document_text_list = []
for page in page_to_markdown_keys:
page_text_list = [s for s in page_to_markdown_result[page] if s]
document_text_list += page_text_list
return "\n\n".join(document_text_list)
async def parse(file_path,skip_cross_page_merge=False,max_page_retries=0):
sampling_params = SamplingParams(temperature=0.0,max_tokens=8192)
if file_path.lower().endswith(".pdf"):
try:
reader = PdfReader(file_path)
num_pages = reader.get_num_pages()
except:
return None
else:
num_pages = 1
# try:
# Stage 1: Page to Markdown
page_to_markdown_query_list = [build_page_to_markdown_query(file_path,page_num) for page_num in range(1, num_pages + 1)]
# responses = [get_response(page_to_markdown_query, 0.0) for page_to_markdown_query in page_to_markdown_query_list]
tasks = [
get_response(query, 0.0)
for query in page_to_markdown_query_list
]
responses = await asyncio.gather(*tasks)
results = [response for response in responses]
page_to_markdown_result = {}
retry_list = []
for i,result in enumerate(results):
try:
json_data = json.loads(result)
page_response = PageResponse(**json_data)
natural_text = page_response.natural_text
markdown_element_list = []
for text in natural_text.split('\n\n'):
if text.startswith("<Image>") and text.endswith("</Image>"):
pass
elif text.startswith("<table>") and text.endswith("</table>"):
try:
new_text = table_matrix2html(text)
except:
new_text = text.replace("<t>","").replace("<l>","").replace("<lt>","")
markdown_element_list.append(new_text)
else:
markdown_element_list.append(text)
page_to_markdown_result[i+1] = markdown_element_list
except:
retry_list.append(i)
attempt = 0
while len(retry_list) > 0 and attempt < max_page_retries:
retry_page_to_markdown_query_list = [build_page_to_markdown_query(file_path,page_num) for page_num in retry_list]
# retry_sampling_params = SamplingParams(temperature=0.1*attempt, max_tokens=8192)
# responses = [get_response(retry_page_to_markdown_query, 0.1*attempt) for retry_page_to_markdown_query in retry_page_to_markdown_query_list]
# responses = llm.generate(retry_page_to_markdown_query_list, sampling_params=retry_sampling_params)
tasks = [
get_response(query, 0.1*attempt)
for query in retry_page_to_markdown_query_list
]
responses = await asyncio.gather(*tasks)
results = [response for response in responses]
next_retry_list = []
for i,result in zip(retry_list,results):
try:
json_data = json.loads(result)
page_response = PageResponse(**json_data)
natural_text = page_response.natural_text
markdown_element_list = []
for text in natural_text.split('\n\n'):
if text.startswith("<Image>") and text.endswith("</Image>"):
pass
elif text.startswith("<table>") and text.endswith("</table>"):
try:
new_text = table_matrix2html(text)
except:
new_text = text.replace("<t>","").replace("<l>","").replace("<lt>","")
markdown_element_list.append(new_text)
else:
markdown_element_list.append(text)
page_to_markdown_result[i+1] = markdown_element_list
except:
next_retry_list.append(i)
retry_list = next_retry_list
attempt += 1
page_texts = {}
fallback_pages = []
for page_number in range(1, num_pages+1):
if page_number not in page_to_markdown_result.keys():
fallback_pages.append(page_number-1)
else:
page_texts[str(page_number-1)] = "\n\n".join(page_to_markdown_result[page_number])
if skip_cross_page_merge:
document_text_list = []
for i in range(num_pages):
if i not in fallback_pages:
document_text_list.append(page_texts[str(i)])
document_text = "\n\n".join(document_text_list)
return {
"orig_path": file_path,
"num_pages": num_pages,
"document_text": document_text,
"page_texts": page_texts,
"fallback_pages": fallback_pages,
}
# Stage 2: Element Merge Detect
element_merge_detect_keys = []
element_merge_detect_query_list = []
for page_num in range(1,num_pages):
if page_num in page_to_markdown_result.keys() and page_num+1 in page_to_markdown_result.keys():
element_merge_detect_query_list.append(build_element_merge_detect_query(page_to_markdown_result[page_num],page_to_markdown_result[page_num+1]))
element_merge_detect_keys.append((page_num,page_num+1))
# responses = [get_response(element_merge_detect_query, 0.0) for element_merge_detect_query in element_merge_detect_query_list]
# responses = llm.generate(element_merge_detect_query_list, sampling_params=sampling_params)
tasks = [
get_response(query, 0.0)
for query in element_merge_detect_query_list
]
responses = await asyncio.gather(*tasks)
results = [response for response in responses]
element_merge_detect_result = {}
for key,result in zip(element_merge_detect_keys,results):
try:
element_merge_detect_result[key] = eval(result)
except:
pass
# Stage 3: HTML Table Merge
html_table_merge_keys = []
for key,result in element_merge_detect_result.items():
page_1,page_2 = key
for elem_idx_1,elem_idx_2 in result:
text_1 = page_to_markdown_result[page_1][elem_idx_1]
text_2 = page_to_markdown_result[page_2][elem_idx_2]
if text_1.startswith("<table>") and text_1.endswith("</table>") and text_2.startswith("<table>") and text_2.endswith("</table>"):
html_table_merge_keys.append((page_1,page_2,elem_idx_1,elem_idx_2))
html_table_merge_keys = sorted(html_table_merge_keys,key=lambda x: -x[0])
html_table_merge_result = {}
page_to_markdown_result_tmp = copy.deepcopy(page_to_markdown_result)
i = 0
while i < len(html_table_merge_keys):
tmp = set()
keys = []
while i < len(html_table_merge_keys):
page_1,page_2,elem_idx_1,elem_idx_2 = html_table_merge_keys[i]
if (page_2,elem_idx_2) in tmp:
break
tmp.add((page_1,elem_idx_1))
keys.append((page_1,page_2,elem_idx_1,elem_idx_2))
i += 1
html_table_merge_query_list = [build_html_table_merge_query(page_to_markdown_result_tmp[page_1][elem_idx_1],page_to_markdown_result_tmp[page_2][elem_idx_2]) for page_1,page_2,elem_idx_1,elem_idx_2 in keys]
# responses = [get_response(html_table_merge_query, 0.0) for html_table_merge_query in html_table_merge_query_list]
# responses = llm.generate(html_table_merge_query_list, sampling_params=sampling_params)
tasks = [
get_response(query, 0.0)
for query in html_table_merge_query_list
]
responses = await asyncio.gather(*tasks)
results = [response for response in responses]
for key,result in zip(keys,results):
if result.startswith("<table>") and result.endswith("</table>"):
html_table_merge_result[key] = result
page_to_markdown_result_tmp[page_1][elem_idx_1] = result
document_text = bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result)
return {
"orig_path": file_path,
"num_pages": num_pages,
"document_text": document_text,
"page_texts": page_texts,
"fallback_pages": fallback_pages,
}
file_path = '/content/test.pdf'
result = await parse(file_path)
if result != None:
document_markdown = result['document_text']
print(document_markdown)
with open('test.md','w') as f:
f.write(document_markdown)
else:
print("Parse failed.")
```
|
crystalline7/1663013
|
crystalline7
| 2025-09-02T00:38:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:38:51Z |
[View on Civ Archive](https://civarchive.com/models/1557354?modelVersionId=1762284)
|
amethyst9/1892098
|
amethyst9
| 2025-09-02T00:38:34Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:38:34Z |
[View on Civ Archive](https://civarchive.com/models/1762769?modelVersionId=1994923)
|
ultratopaz/358142
|
ultratopaz
| 2025-09-02T00:38:18Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:38:18Z |
[View on Civ Archive](https://civarchive.com/models/392352?modelVersionId=437670)
|
ayuzawa/gemma-product-description
|
ayuzawa
| 2025-09-02T00:38:13Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:google/gemma-3-4b-it",
"base_model:finetune:google/gemma-3-4b-it",
"endpoints_compatible",
"region:us"
] | null | 2025-04-10T03:57:28Z |
---
base_model: google/gemma-3-4b-it
library_name: transformers
model_name: gemma-product-description
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for gemma-product-description
This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ayuzawa/gemma-product-description", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.22.1
- Transformers: 4.56.0
- Pytorch: 2.8.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.22.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
amethyst9/152230
|
amethyst9
| 2025-09-02T00:37:10Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:37:10Z |
[View on Civ Archive](https://civarchive.com/models/177148?modelVersionId=198873)
|
seraphimzzzz/886481
|
seraphimzzzz
| 2025-09-02T00:37:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:37:02Z |
[View on Civ Archive](https://civarchive.com/models/875794?modelVersionId=980427)
|
ultratopaz/1658749
|
ultratopaz
| 2025-09-02T00:36:37Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:36:36Z |
[View on Civ Archive](https://civarchive.com/models/1553548?modelVersionId=1757920)
|
yujiangw/Qwen3-1.7B-GRPO
|
yujiangw
| 2025-09-02T00:35:46Z | 13 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"trl",
"grpo",
"conversational",
"arxiv:2402.03300",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-01T22:05:46Z |
---
library_name: transformers
model_name: Qwen3-1.7B-GRPO
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Qwen3-1.7B-GRPO
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="yujiangw/Qwen3-1.7B-GRPO", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yujiangw-carnegie-mellon-university/huggingface/runs/i00lzoxd)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.0
- Transformers: 4.52.3
- Pytorch: 2.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.2
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ik/speechless-twi-stage1-rvq-whisper-medium
|
ik
| 2025-09-02T00:35:21Z | 0 | 0 |
pytorch
|
[
"pytorch",
"speechless",
"rvq",
"whisper",
"twi",
"akan",
"vector-quantization",
"semantic-tokens",
"tw",
"ak",
"license:apache-2.0",
"region:us"
] | null | 2025-09-02T00:35:13Z |
---
license: apache-2.0
language:
- tw
- ak
library_name: pytorch
tags:
- speechless
- rvq
- whisper
- twi
- akan
- vector-quantization
- semantic-tokens
---
# Speechless TWI — Stage 1 (RVQ for Whisper Encoder)
Trained RVQ that discretizes Whisper encoder features into semantic tokens for **Twi/Akan**.
## Files
- `rvq_final.pt` — state dict
- `config_stage1.json` — training/config params
- `rvq_wrapper.py` — tiny module defining `RVQWrapper`
## Usage (example)
```python
import torch, json
from huggingface_hub import hf_hub_download
from rvq_wrapper import RVQWrapper
cfg = json.load(open(hf_hub_download("ik/speechless-twi-stage1-rvq-whisper-medium", "config_stage1.json"), "r"))
ckpt = torch.load(hf_hub_download("ik/speechless-twi-stage1-rvq-whisper-medium", "rvq_final.pt"), map_location="cpu")
rvq = RVQWrapper(cfg["rvq_dim"], cfg["rvq_num_quantizers"], cfg["rvq_codebook_size"])
rvq.load_state_dict(ckpt["rvq"])
rvq.eval()
```
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756773246
|
liukevin666
| 2025-09-02T00:35:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:35:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6674
|
luckeciano
| 2025-09-02T00:34:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"grpo",
"conversational",
"dataset:DigitalLearningGmbH/MATH-lighteval",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-Math-7B",
"base_model:finetune:Qwen/Qwen2.5-Math-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-01T20:31:25Z |
---
base_model: Qwen/Qwen2.5-Math-7B
datasets: DigitalLearningGmbH/MATH-lighteval
library_name: transformers
model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6674
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
licence: license
---
# Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6674
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6674", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/hwklsahq)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.4.1
- Tokenizers: 0.21.2
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ultratopaz/127120
|
ultratopaz
| 2025-09-02T00:33:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:33:51Z |
[View on Civ Archive](https://civarchive.com/models/149959?modelVersionId=167563)
|
GlobalWheat/GWFSS_Segformer_b4
|
GlobalWheat
| 2025-09-02T00:33:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"segformer",
"scientific",
"research",
"agricultural research",
"wheat",
"segmentation",
"crop phenotyping",
"global wheat",
"crop",
"plant",
"canopy",
"field",
"image-segmentation",
"dataset:GlobalWheat/GWFSS_v1.0",
"base_model:nvidia/segformer-b1-finetuned-ade-512-512",
"base_model:finetune:nvidia/segformer-b1-finetuned-ade-512-512",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2025-09-02T00:29:35Z |
---
license: cc-by-4.0
pipeline_tag: image-segmentation
library_name: transformers
datasets:
- GlobalWheat/GWFSS_v1.0
metrics:
- mean_iou
base_model:
- nvidia/segformer-b1-finetuned-ade-512-512
tags:
- scientific
- research
- agricultural research
- wheat
- segmentation
- crop phenotyping
- global wheat
- crop
- plant
- canopy
- field
source: https://doi.org/10.1016/j.plaphe.2025.100084
---
## Usage
```python
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
import torch, torch.nn.functional as F
from PIL import Image
import numpy as np
repo = "GlobalWheat/GWFSS_model_v1.1"
processor = AutoImageProcessor.from_pretrained(repo)
model = SegformerForSemanticSegmentation.from_pretrained(repo).eval()
img = Image.open("example.jpg").convert("RGB")
inputs = processor(images=img, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
up = F.interpolate(logits, size=(img.height, img.width), mode="bilinear", align_corners=False)
pred = up.argmax(1)[0].cpu().numpy() # (H, W) class IDs
```
This version is based on huggingface Segformer which could be slightly different from the one we used for our paper. The paper version was implemented based on the mmsegmentation. You can find the model weight for mmsegmentation library in this repo as well.
## Related Paper
This dataset is associated with the following paper:
The Global Wheat Full Semantic Organ Segmentation (GWFSS) Dataset
https://doi.org/10.1016/j.plaphe.2025.100084
|
ultratopaz/132506
|
ultratopaz
| 2025-09-02T00:33:43Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:33:43Z |
[View on Civ Archive](https://civarchive.com/models/155011?modelVersionId=173815)
|
crystalline7/328188
|
crystalline7
| 2025-09-02T00:33:35Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:33:35Z |
[View on Civ Archive](https://civarchive.com/models/363116?modelVersionId=405748)
|
ultratopaz/1658758
|
ultratopaz
| 2025-09-02T00:33:27Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:33:26Z |
[View on Civ Archive](https://civarchive.com/models/1553557?modelVersionId=1757929)
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756773128
|
ggozzy
| 2025-09-02T00:33:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:33:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
amethyst9/132523
|
amethyst9
| 2025-09-02T00:33:19Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:33:18Z |
[View on Civ Archive](https://civarchive.com/models/155030?modelVersionId=173839)
|
omerbektass/blockassist-bc-insectivorous_bold_lion_1756773168
|
omerbektass
| 2025-09-02T00:33:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous bold lion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:33:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous bold lion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
amethyst9/1603511
|
amethyst9
| 2025-09-02T00:33:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:33:02Z |
[View on Civ Archive](https://civarchive.com/models/1505471?modelVersionId=1702925)
|
crystalline7/328190
|
crystalline7
| 2025-09-02T00:32:54Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:32:54Z |
[View on Civ Archive](https://civarchive.com/models/363119?modelVersionId=405750)
|
ORIGINAL-VIDEO-DE-ARCHITA-PHUKAN/FULL.ORIGINAL.VIDEO.DE.ARCHITA.PHUKAN.ABUSADA
|
ORIGINAL-VIDEO-DE-ARCHITA-PHUKAN
| 2025-09-02T00:32:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:32:33Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
crystalline7/896178
|
crystalline7
| 2025-09-02T00:32:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:32:46Z |
[View on Civ Archive](https://civarchive.com/models/884563?modelVersionId=990164)
|
ultratopaz/220372
|
ultratopaz
| 2025-09-02T00:32:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:32:36Z |
[View on Civ Archive](https://civarchive.com/models/249195?modelVersionId=281198)
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756771464
|
coelacanthxyz
| 2025-09-02T00:32:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:32:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ultratopaz/520266
|
ultratopaz
| 2025-09-02T00:32:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:32:10Z |
[View on Civ Archive](https://civarchive.com/models/544250?modelVersionId=605235)
|
crystalline7/1885234
|
crystalline7
| 2025-09-02T00:32:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:32:02Z |
[View on Civ Archive](https://civarchive.com/models/1756729?modelVersionId=1988142)
|
crystalline7/186795
|
crystalline7
| 2025-09-02T00:31:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:31:22Z |
[View on Civ Archive](https://civarchive.com/models/214312?modelVersionId=241418)
|
seraphimzzzz/1603288
|
seraphimzzzz
| 2025-09-02T00:31:14Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:31:14Z |
[View on Civ Archive](https://civarchive.com/models/1505244?modelVersionId=1702667)
|
amethyst9/220380
|
amethyst9
| 2025-09-02T00:31:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:31:06Z |
[View on Civ Archive](https://civarchive.com/models/249199?modelVersionId=281203)
|
amethyst9/132511
|
amethyst9
| 2025-09-02T00:30:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:30:51Z |
[View on Civ Archive](https://civarchive.com/models/155015?modelVersionId=173819)
|
crystalline7/1667042
|
crystalline7
| 2025-09-02T00:30:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:30:33Z |
[View on Civ Archive](https://civarchive.com/models/1560826?modelVersionId=1766221)
|
ultratopaz/1675871
|
ultratopaz
| 2025-09-02T00:30:17Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:30:16Z |
[View on Civ Archive](https://civarchive.com/models/1568645?modelVersionId=1775098)
|
sekirr/blockassist-bc-masked_tenacious_whale_1756772938
|
sekirr
| 2025-09-02T00:29:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"masked tenacious whale",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:29:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- masked tenacious whale
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/423772
|
seraphimzzzz
| 2025-09-02T00:29:35Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:29:34Z |
[View on Civ Archive](https://civarchive.com/models/454742?modelVersionId=506255)
|
akirafudo/blockassist-bc-insectivorous_bold_lion_1756772942
|
akirafudo
| 2025-09-02T00:29:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous bold lion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:29:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous bold lion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
amethyst9/130254
|
amethyst9
| 2025-09-02T00:29:26Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:29:26Z |
[View on Civ Archive](https://civarchive.com/models/152972?modelVersionId=171248)
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756772873
|
ggozzy
| 2025-09-02T00:29:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:29:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
amethyst9/1570632
|
amethyst9
| 2025-09-02T00:29:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:29:02Z |
[View on Civ Archive](https://civarchive.com/models/1476354?modelVersionId=1669897)
|
seraphimzzzz/321366
|
seraphimzzzz
| 2025-09-02T00:28:39Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:28:38Z |
[View on Civ Archive](https://civarchive.com/models/356483?modelVersionId=398516)
|
YuhanQiu/iPSC_GPT_model_for_STATE
|
YuhanQiu
| 2025-09-02T00:28:37Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:09:35Z |
# iPSC_GPT_model_for_STATE
This repository hosts a small **STATE/ST model** trained on **iPSC reprogramming data (GSE213069)** for virtual gene knockout and perturbation prediction tasks.
---
## 📊 Model Summary
- **Framework**: [ArcInstitute/STATE](https://github.com/ArcInstitute/state)
- **Dataset**: [GSE213069](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213069)
- **Preprocessing**:
- HVG = 3000
- Forced inclusion of key pluripotency/ROS-related genes:
`PARK7, PINK1, OCT4, KLF4, SOX2, NANOG, ESRRB, REX1`
- **Training setup**:
- Steps: 5000
- Batch size: 32
- Learning rate: 1e-4
- Optimizer: AdamW
- Model size: ~67M parameters (~648MB checkpoint)
- **Output checkpoint**:
- `ST-iPSC_GPT.ckpt` → Selected based on lowest validation loss
---
## 🚀 Usage
### 1. Install dependencies
```bash
pip install arc-state cell-load anndata scanpy
```
### 2. Download checkpoint
```python
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(
repo_id="YuhanQiu/iPSC_GPT_model_for_STATE",
filename="ST-iPSC_GPT.ckpt",
repo_type="model"
)
print("Checkpoint downloaded to:", ckpt_path)
```
### 3. Run inference / virtual KO
Example: simulate a **PARK7** or **PINK1** knockout.
```bash
state tx infer data.kwargs.toml_config_path=./config.toml data.kwargs.embed_key=X_hvg data.kwargs.pert_col=condition data.kwargs.cell_type_key=cell_type data.kwargs.control_pert=ctrl infer.genes=PARK7,PINK1 infer.ckpt_path=ST-iPSC_GPT.ckpt output_dir=./inference_results
```
---
## 📂 Files in this repo
- `ST-iPSC_GPT.ckpt` → best validation-loss checkpoint
- `README.md` (this file)
---
## 📖 Citation
If you use this model, please cite:
- **STATE framework**: Arc Institute (https://github.com/ArcInstitute/state)
- **Dataset**: GSE213069 (NCBI GEO)
---
## ⚠️ Notes
- This is a **small-scale demo model** trained on iPSC reprogramming data.
- Checkpoint size: ~648 MB
- Intended for research use (virtual gene perturbation, proof-of-concept).
|
kwspringkles/whisper_15epoch_specaug
|
kwspringkles
| 2025-09-02T00:28:35Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-medium",
"base_model:finetune:openai/whisper-medium",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-09-01T14:15:26Z |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
model-index:
- name: whisper_15epoch_specaug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper_15epoch_specaug
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3102
- Cer: 10.6155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5709 | 1.0 | 160 | 0.4689 | 12.4801 |
| 0.3323 | 2.0 | 320 | 0.3196 | 11.2728 |
| 0.299 | 3.0 | 480 | 0.3059 | 10.9308 |
| 0.2705 | 4.0 | 640 | 0.3029 | 10.7597 |
| 0.2507 | 5.0 | 800 | 0.3024 | 10.6625 |
| 0.2383 | 6.0 | 960 | 0.3028 | 10.5703 |
| 0.23 | 7.0 | 1120 | 0.3058 | 10.6524 |
| 0.2248 | 8.0 | 1280 | 0.3066 | 10.5988 |
| 0.2173 | 9.0 | 1440 | 0.3085 | 10.6457 |
| 0.2128 | 10.0 | 1600 | 0.3102 | 10.6155 |
### Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu129
- Datasets 4.0.0
- Tokenizers 0.22.0
|
giovannidemuri/llama8b-er-v532-seed2-hx_lora
|
giovannidemuri
| 2025-09-02T00:28:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-01T21:39:18Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
vera6/sn105_denoising_7
|
vera6
| 2025-09-02T00:28:26Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-01T20:01:58Z |
DENOISING speech enhancement model
|
ultratopaz/1579425
|
ultratopaz
| 2025-09-02T00:28:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:28:21Z |
[View on Civ Archive](https://civarchive.com/models/1483782?modelVersionId=1678408)
|
amethyst9/445964
|
amethyst9
| 2025-09-02T00:27:48Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:27:47Z |
[View on Civ Archive](https://civarchive.com/models/475662?modelVersionId=529060)
|
alexandroputra/medsiglip-448-ft-tb-screening
|
alexandroputra
| 2025-09-02T00:27:17Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"siglip",
"zero-shot-image-classification",
"generated_from_trainer",
"base_model:google/medsiglip-448",
"base_model:finetune:google/medsiglip-448",
"license:other",
"endpoints_compatible",
"region:us"
] |
zero-shot-image-classification
| 2025-09-01T10:59:31Z |
---
library_name: transformers
license: other
base_model: google/medsiglip-448
tags:
- generated_from_trainer
model-index:
- name: medsiglip-448-ft-tb-screening
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# medsiglip-448-ft-tb-screening
This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.5828 | 0.4762 | 25 | 2.4233 |
| 1.947 | 0.9524 | 50 | 2.6277 |
| 1.9315 | 1.4190 | 75 | 2.4902 |
| 1.9614 | 1.8952 | 100 | 2.5603 |
| 1.9357 | 2.3619 | 125 | 2.5067 |
| 1.9396 | 2.8381 | 150 | 2.6298 |
| 1.9313 | 3.3048 | 175 | 2.5459 |
| 1.8956 | 3.7810 | 200 | 2.5050 |
| 1.9271 | 4.2476 | 225 | 2.5318 |
| 1.9317 | 4.7238 | 250 | 2.5298 |
| 1.9365 | 5.1905 | 275 | 2.5108 |
| 1.9255 | 5.6667 | 300 | 2.5120 |
| 1.9284 | 6.1333 | 325 | 2.5134 |
| 1.907 | 6.6095 | 350 | 2.5199 |
| 1.8996 | 7.0762 | 375 | 2.5279 |
| 1.9321 | 7.5524 | 400 | 2.5274 |
| 1.9101 | 8.0190 | 425 | 2.5273 |
| 1.9131 | 8.4952 | 450 | 2.5293 |
| 1.91 | 8.9714 | 475 | 2.5300 |
| 1.919 | 9.4381 | 500 | 2.5290 |
| 1.9189 | 9.9143 | 525 | 2.5291 |
### Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu128
- Tokenizers 0.22.0
|
crystalline7/321471
|
crystalline7
| 2025-09-02T00:27:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:27:14Z |
[View on Civ Archive](https://civarchive.com/models/356581?modelVersionId=398624)
|
amethyst9/1603620
|
amethyst9
| 2025-09-02T00:26:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:26:55Z |
[View on Civ Archive](https://civarchive.com/models/1505561?modelVersionId=1703034)
|
crystalline7/365135
|
crystalline7
| 2025-09-02T00:26:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:26:45Z |
[View on Civ Archive](https://civarchive.com/models/399131?modelVersionId=445146)
|
ElRompeAnosFullAnal/ElRompeAnosFullAnal
|
ElRompeAnosFullAnal
| 2025-09-02T00:25:57Z | 0 | 0 | null |
[
"license:cc-by-nc-4.0",
"region:us"
] | null | 2025-03-31T22:45:18Z |
---
license: cc-by-nc-4.0
---
|
ultratopaz/321567
|
ultratopaz
| 2025-09-02T00:25:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:25:45Z |
[View on Civ Archive](https://civarchive.com/models/356693?modelVersionId=398739)
|
seraphimzzzz/1624722
|
seraphimzzzz
| 2025-09-02T00:25:20Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:25:19Z |
[View on Civ Archive](https://civarchive.com/models/1523865?modelVersionId=1724179)
|
crystalline7/1570492
|
crystalline7
| 2025-09-02T00:25:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:25:11Z |
[View on Civ Archive](https://civarchive.com/models/1476231?modelVersionId=1669763)
|
giovannidemuri/llama8b-er-v531-seed2-hx_lora
|
giovannidemuri
| 2025-09-02T00:25:09Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-01T21:48:58Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756772619
|
ggozzy
| 2025-09-02T00:24:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:24:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
arka7/medreason-finetuned-qwen
|
arka7
| 2025-09-02T00:24:42Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-09-02T00:24:34Z |
---
base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** arka7
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF
|
mradermacher
| 2025-09-02T00:22:28Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:Agent-One/Qwen2.5-VL-3B-Retrieval-React",
"base_model:quantized:Agent-One/Qwen2.5-VL-3B-Retrieval-React",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-02T00:14:57Z |
---
base_model: Agent-One/Qwen2.5-VL-3B-Retrieval-React
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Agent-One/Qwen2.5-VL-3B-Retrieval-React
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen2.5-VL-3B-Retrieval-React-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.9 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q2_K.gguf) | Q2_K | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.mmproj-f16.gguf) | mmproj-f16 | 1.4 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q3_K_S.gguf) | Q3_K_S | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q3_K_L.gguf) | Q3_K_L | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.IQ4_XS.gguf) | IQ4_XS | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q5_K_S.gguf) | Q5_K_S | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q5_K_M.gguf) | Q5_K_M | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q6_K.gguf) | Q6_K | 2.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Retrieval-React-GGUF/resolve/main/Qwen2.5-VL-3B-Retrieval-React.f16.gguf) | f16 | 6.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
vendi11/blockassist-bc-placid_placid_llama_1756772473
|
vendi11
| 2025-09-02T00:21:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid placid llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:21:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid placid llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/1570616
|
seraphimzzzz
| 2025-09-02T00:20:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:20:51Z |
[View on Civ Archive](https://civarchive.com/models/1476348?modelVersionId=1669889)
|
ultratopaz/517694
|
ultratopaz
| 2025-09-02T00:20:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:20:22Z |
[View on Civ Archive](https://civarchive.com/models/542047?modelVersionId=602673)
|
amethyst9/517711
|
amethyst9
| 2025-09-02T00:20:14Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:20:13Z |
[View on Civ Archive](https://civarchive.com/models/541960?modelVersionId=602578)
|
amethyst9/522732
|
amethyst9
| 2025-09-02T00:19:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:19:55Z |
[View on Civ Archive](https://civarchive.com/models/546312?modelVersionId=607619)
|
crystalline7/292573
|
crystalline7
| 2025-09-02T00:19:47Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:19:46Z |
[View on Civ Archive](https://civarchive.com/models/326476?modelVersionId=365939)
|
mradermacher/InternVL3_5-38B-i1-GGUF
|
mradermacher
| 2025-09-02T00:19:41Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"internvl",
"custom_code",
"multilingual",
"dataset:OpenGVLab/MMPR-v1.2",
"dataset:OpenGVLab/MMPR-Tiny",
"base_model:OpenGVLab/InternVL3_5-38B",
"base_model:quantized:OpenGVLab/InternVL3_5-38B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-09-01T22:16:15Z |
---
base_model: OpenGVLab/InternVL3_5-38B
datasets:
- OpenGVLab/MMPR-v1.2
- OpenGVLab/MMPR-Tiny
language:
- multilingual
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- internvl
- custom_code
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/OpenGVLab/InternVL3_5-38B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InternVL3_5-38B-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/InternVL3_5-38B-GGUF
**This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/InternVL3_5-38B-GGUF).**
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.1 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.5 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ3_M.gguf) | i1-IQ3_M | 15.0 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.1 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.4 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.3 | |
| [GGUF](https://huggingface.co/mradermacher/InternVL3_5-38B-i1-GGUF/resolve/main/InternVL3_5-38B.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
ultratopaz/1570661
|
ultratopaz
| 2025-09-02T00:19:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:19:12Z |
[View on Civ Archive](https://civarchive.com/models/1476380?modelVersionId=1669931)
|
amethyst9/1663040
|
amethyst9
| 2025-09-02T00:19:04Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:19:03Z |
[View on Civ Archive](https://civarchive.com/models/1557375?modelVersionId=1762309)
|
amethyst9/1666983
|
amethyst9
| 2025-09-02T00:18:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:18:54Z |
[View on Civ Archive](https://civarchive.com/models/1560767?modelVersionId=1766152)
|
omerbkts/blockassist-bc-insectivorous_bold_lion_1756772304
|
omerbkts
| 2025-09-02T00:18:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous bold lion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:18:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous bold lion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF
|
mradermacher
| 2025-09-02T00:18:10Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"dangerous",
"ERP",
"en",
"base_model:ReadyArt/Safeword-Casual-v1-R1-4B",
"base_model:quantized:ReadyArt/Safeword-Casual-v1-R1-4B",
"license:gemma",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-09-01T23:46:59Z |
---
base_model: ReadyArt/Safeword-Casual-v1-R1-4B
language:
- en
library_name: transformers
license: gemma
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- nsfw
- explicit
- roleplay
- unaligned
- dangerous
- ERP
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/ReadyArt/Safeword-Casual-v1-R1-4B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Safeword-Casual-v1-R1-4B-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-GGUF
**This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-GGUF).**
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.2 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.7 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.5 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q4_0.gguf) | i1-Q4_0 | 2.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Safeword-Casual-v1-R1-4B-i1-GGUF/resolve/main/Safeword-Casual-v1-R1-4B.i1-Q6_K.gguf) | i1-Q6_K | 3.3 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
ultratopaz/137740
|
ultratopaz
| 2025-09-02T00:18:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:18:06Z |
[View on Civ Archive](https://civarchive.com/models/159921?modelVersionId=179873)
|
crystalline7/321461
|
crystalline7
| 2025-09-02T00:17:58Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:17:57Z |
[View on Civ Archive](https://civarchive.com/models/356552?modelVersionId=398590)
|
sugoitoolkit/Sugoi-32B-Ultra-GGUF
|
sugoitoolkit
| 2025-09-02T00:17:23Z | 1,009 | 3 | null |
[
"gguf",
"translation",
"ja",
"en",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
translation
| 2025-08-23T13:16:07Z |
---
license: apache-2.0
language:
- ja
- en
base_model:
- Qwen/Qwen2.5-32B-Instruct
tags:
- gguf
- translation
---
# Sugoi LLM 32B Ultra (GGUF version)
Unleashing the full potential of the previous sugoi 32B model, Sugoi 32B Ultra. Benchmark soon.
|
crystalline7/484435
|
crystalline7
| 2025-09-02T00:17:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:17:23Z |
[View on Civ Archive](https://civarchive.com/models/511641?modelVersionId=568639)
|
seraphimzzzz/321456
|
seraphimzzzz
| 2025-09-02T00:16:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:16:51Z |
[View on Civ Archive](https://civarchive.com/models/356553?modelVersionId=398591)
|
crystalline7/1562450
|
crystalline7
| 2025-09-02T00:16:34Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:16:33Z |
[View on Civ Archive](https://civarchive.com/models/1469373?modelVersionId=1661981)
|
amethyst9/484440
|
amethyst9
| 2025-09-02T00:16:25Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:16:24Z |
[View on Civ Archive](https://civarchive.com/models/511642?modelVersionId=568640)
|
seraphimzzzz/344584
|
seraphimzzzz
| 2025-09-02T00:15:58Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:15:58Z |
[View on Civ Archive](https://civarchive.com/models/378913?modelVersionId=423060)
|
ultratopaz/365140
|
ultratopaz
| 2025-09-02T00:15:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:15:49Z |
[View on Civ Archive](https://civarchive.com/models/399137?modelVersionId=445151)
|
seraphimzzzz/152259
|
seraphimzzzz
| 2025-09-02T00:15:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:15:30Z |
[View on Civ Archive](https://civarchive.com/models/177185?modelVersionId=198915)
|
gwenweng/gemma
|
gwenweng
| 2025-09-02T00:15:26Z | 0 | 0 | null |
[
"safetensors",
"region:us"
] | null | 2025-09-02T00:10:13Z |
---
license: mit
datasets:
- allenai/real-toxicity-prompts
language:
- en
pipeline_tag: text-generation
tags:
- controllable-generation
- toxicity-reduction
- hmm
- language-model
---
# TRACE HMM Model (Gemma-2b)
This is the pre-trained Hidden Markov Model used in the TRACE (Tractable Reasoning for
Adaptable Controllable gEneration) paper for controllable text generation with toxicity
reduction.
## Model Details
- **Base Model**: Gemma-2b
- **Training Data**: RealToxicityPrompts dataset
- **Sequence Length**: 32 tokens
- **Hidden Size**: 4096
- **Training Samples**: 10M
- **Purpose**: Guidance for reducing toxicity in language generation
## Usage
```python
from huggingface_hub import snapshot_download
# Download the model
model_path = snapshot_download(
repo_id="gwenweng/gemma",
local_dir="models/gemma"
)
# Use with TRACE
# See: https://github.com/yidouweng/trace
Citation
@inproceedings{weng2025trace,
title={TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable
Language Generation},
author={Weng, Yidou and Wang, Benjie and Van den Broeck, Guy},
booktitle={Proceedings of the 42nd International Conference on Machine Learning
(ICML)},
year={2025}
}
License
MIT License - see https://github.com/yidouweng/trace for details.
|
omerbektass/blockassist-bc-insectivorous_bold_lion_1756772073
|
omerbektass
| 2025-09-02T00:14:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous bold lion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-02T00:14:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous bold lion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crystalline7/130240
|
crystalline7
| 2025-09-02T00:14:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T00:14:56Z |
[View on Civ Archive](https://civarchive.com/models/152957?modelVersionId=171231)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.