modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 12:32:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 12:31:20
card
stringlengths
11
1.01M
gokuls/hBERTv1_new_pretrain_48_emb_com_stsb
gokuls
2023-06-15T13:51:17Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T13:04:46Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_new_pretrain_48_emb_com_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.45996385438365645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_48_emb_com_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.9214 - Pearson: 0.4648 - Spearmanr: 0.4600 - Combined Score: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.5817 | 1.0 | 45 | 2.6028 | 0.2027 | 0.1896 | 0.1962 | | 2.1023 | 2.0 | 90 | 2.1596 | 0.2035 | 0.1938 | 0.1986 | | 1.9567 | 3.0 | 135 | 2.3409 | 0.1855 | 0.1931 | 0.1893 | | 1.7201 | 4.0 | 180 | 2.1790 | 0.2865 | 0.2934 | 0.2899 | | 1.5153 | 5.0 | 225 | 2.1208 | 0.3381 | 0.3352 | 0.3367 | | 1.2674 | 6.0 | 270 | 2.1224 | 0.3882 | 0.3898 | 0.3890 | | 1.0115 | 7.0 | 315 | 2.2253 | 0.4304 | 0.4281 | 0.4293 | | 0.7449 | 8.0 | 360 | 2.3235 | 0.4236 | 0.4323 | 0.4279 | | 0.66 | 9.0 | 405 | 2.3617 | 0.4340 | 0.4351 | 0.4346 | | 0.4678 | 10.0 | 450 | 2.0741 | 0.4300 | 0.4258 | 0.4279 | | 0.4438 | 11.0 | 495 | 2.3816 | 0.4285 | 0.4294 | 0.4289 | | 0.3192 | 12.0 | 540 | 2.1673 | 0.4580 | 0.4602 | 0.4591 | | 0.2481 | 13.0 | 585 | 2.1544 | 0.4392 | 0.4357 | 0.4374 | | 0.2296 | 14.0 | 630 | 2.0075 | 0.4603 | 0.4582 | 0.4593 | | 0.1765 | 15.0 | 675 | 2.1395 | 0.4624 | 0.4617 | 0.4621 | | 0.1533 | 16.0 | 720 | 2.2715 | 0.4512 | 0.4427 | 0.4469 | | 0.1343 | 17.0 | 765 | 2.1726 | 0.4441 | 0.4417 | 0.4429 | | 0.1373 | 18.0 | 810 | 2.0223 | 0.4532 | 0.4424 | 0.4478 | | 0.1277 | 19.0 | 855 | 1.9992 | 0.4395 | 0.4299 | 0.4347 | | 0.0968 | 20.0 | 900 | 2.1078 | 0.4620 | 0.4601 | 0.4610 | | 0.084 | 21.0 | 945 | 2.0684 | 0.4627 | 0.4577 | 0.4602 | | 0.0777 | 22.0 | 990 | 1.9214 | 0.4648 | 0.4600 | 0.4624 | | 0.0572 | 23.0 | 1035 | 2.0636 | 0.4506 | 0.4422 | 0.4464 | | 0.0615 | 24.0 | 1080 | 2.0404 | 0.4489 | 0.4388 | 0.4438 | | 0.0516 | 25.0 | 1125 | 2.0599 | 0.4516 | 0.4435 | 0.4475 | | 0.0501 | 26.0 | 1170 | 2.0359 | 0.4530 | 0.4489 | 0.4510 | | 0.0515 | 27.0 | 1215 | 1.9571 | 0.4588 | 0.4508 | 0.4548 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
KHEW/OnOffLora
KHEW
2023-06-15T13:44:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T13:42:48Z
--- license: creativeml-openrail-m ---
edbeeching/falcon-7b-ift-rm-22
edbeeching
2023-06-15T13:34:47Z
4
0
peft
[ "peft", "generated_from_trainer", "region:us" ]
null
2023-06-15T13:34:45Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: falcon-7b-ift-rm-22 results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-ift-rm-22 This model is a fine-tuned version of [HuggingFaceH4/falcon-7b-ift](https://huggingface.co/HuggingFaceH4/falcon-7b-ift) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6089 - Accuracy: 0.6533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5935 | 1.0 | 2197 | 0.6089 | 0.6533 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
fx1H/dqn-SpaceInvadersNoFrameskip-v4
fx1H
2023-06-15T13:29:54Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T13:29:23Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 331.50 +/- 133.44 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fx1H -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fx1H -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga fx1H ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0003), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
SargeZT/velocipedeux
SargeZT
2023-06-15T13:19:29Z
38
0
diffusers
[ "diffusers", "en", "license:bsd", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-15T13:02:57Z
--- license: bsd language: - en --- # Model Card for Velocipedeux A Stable Diffusion 1.5 model finetuned with v-prediction, zero terminal SNR, and trailing timesteps using a diverse dataset. ## Model Details ### Model Description This model is a finetune of Stable Diffusion 1.5 that implements Zero Terminal SNR scaling, V-Prediction, and the use of trailing timesteps during training. This model is in active development and should not be considered final.
hangeol/standingdogprompt
hangeol
2023-06-15T13:19:01Z
29
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-15T11:16:52Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - hangeol/standingdogprompt These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
woojinSong/DeepFake_MultiModal
woojinSong
2023-06-15T13:07:08Z
0
0
null
[ "ko", "en", "license:apache-2.0", "region:us" ]
null
2023-06-15T12:55:27Z
--- license: apache-2.0 language: - ko - en metrics: - accuracy ---
ygohel18/custom-sdwebui
ygohel18
2023-06-15T13:06:12Z
0
6
null
[ "arxiv:2211.06679", "region:us" ]
null
2023-06-15T13:03:57Z
# Stable Diffusion web UI-UX Not just a browser interface based on Gradio library for Stable Diffusion. A pixel perfect design, mobile friendly, customizable interface that adds accessibility, ease of use and extended functionallity to the stable diffusion web ui. Enjoy! Default theme ![anapnoe_uiux](https://user-images.githubusercontent.com/124302297/227973574-6003142d-0c7c-41c6-9966-0792a94549e9.png) ## Features of ui-ux - resizable viewport - switchable viewports (DoubleClick on the split handler to swap views) option in settings for default position - mobile navigation - top header tabs (option setting) - hidden tabs (option setting) no need to restart this is a different implementation - drag and drop reordable quick settings offcanvas aside view - drag and drop images to txt2img and img2img and import generation info parameters along with a preview image - ignore - remove overrides when import [multiselect] (option setting) - resizable cards for extra networks and number of rows (option setting) - lazy loading alternative offcanvas aside view for extra networks (option setting) - live preview image fit method (option setting) - generated image fit method (option setting) - max resolution output for txt2img and img2img (option setting) - performant dispatch for gradio's range slider and input number field issue: https://github.com/gradio-app/gradio/issues/3204 (option setting) latest update uses only one instance clone to mediate for the release event - ticks input range sliders (option setting) - pacman preloader unified colors on reload ui - frame border animation when generating images - progress bar on top of the page always visible (when scroll for mobile) - remix icons - style theme configurator extension to customize every aspect of theme in real time with cool global functions to change the hue / saturation / brightness or invert the theme colors - pan and zoom in out functionality for sketch, inpaint, inpaint sketch - fullscreen support for sketch, inpaint, inpaint sketch - better lightbox with zoom in-out mobile gestures support etc.. ## TODO - small arrows next to icons sent to inpaint, extras, img2img etc - component gallery navigate to previous generations inside the txt2img, img2img interface - and auto load the current generation settings - credits/about page display all 300+ contributors so far inside the UI Quick Settings aside off-canvas view - drag and drop to custom sort your settings ![anapnoe_uiux_quicksettings](https://user-images.githubusercontent.com/124302297/227967695-f8bb01b5-5cc9-4238-80dd-06e261378d6e.png) Extra Networks aside off-canvas view ![anapnoe_uiux_extra_networks](https://user-images.githubusercontent.com/124302297/227968001-20eab8f5-da91-4a11-9fe0-230fec4ba720.png) Detail img2img sketch view ![anapnoe_uiux_sketch](https://user-images.githubusercontent.com/124302297/227973727-084da8e0-931a-4c62-ab73-39e988fd4523.png) Theme Configurator - aside off-canvas view ![anapnoe_uiux_theme_config](https://user-images.githubusercontent.com/124302297/227967844-45063edb-eb40-4224-9666-f506d21d7780.png) Mobile 395px width ![anapnoe_uiux_mobile](https://user-images.githubusercontent.com/124302297/227987709-36231d30-e6da-424a-8930-cc0c55a0b979.png) ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a `((tuxedo))` - will pay more attention to tuxedo - a man in a `(tuxedo:1.21)` - alternative syntax - select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with --allow-code to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args) - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Hypernetworks - Loras (same as Hypernetworks but more pretty) - A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt. - Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - Now without any bad letters! - Load checkpoints in safetensors format - Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen - ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) ### Installation on Windows 1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH". 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui-ux repository, for example by running `git clone https://github.com/anapnoe/stable-diffusion-webui-ux.git`. 4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Installation on Linux 1. Install the dependencies: ```bash # Debian-based: sudo apt install wget git python3 python3-venv # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3 ``` 2. Navigate to the directory you would like the webui to be installed and execute the following command: ```bash bash <(wget -qO- https://raw.githubusercontent.com/anapnoe/stable-diffusion-webui-ux/master/webui.sh) ``` 3. Run `webui.sh`. 4. Check `webui-user.sh` for options. ### Installation on Apple Silicon Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). and replace the path in step 3 with `git clone https://github.com/anapnoe/stable-diffusion-webui-ux` ## Contributing Here's how to add code to the original repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) ## Documentation The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). ## Credits Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - k-diffusion - https://github.com/crowsonkb/k-diffusion.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git - CodeFormer - https://github.com/sczhou/CodeFormer - ESRGAN - https://github.com/xinntao/ESRGAN - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion - MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - xformers - https://github.com/facebookresearch/xformers - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You)
Contents/bert-base-uncased-test
Contents
2023-06-15T12:56:45Z
115
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "fill-mask", "en", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-15T12:50:52Z
--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: fill-mask datasets: - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team.
Conj34/LunarLander-v2
Conj34
2023-06-15T12:54:00Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T12:53:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 128.41 +/- 39.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alialaydrus/kitchen_design
alialaydrus
2023-06-15T12:45:21Z
233
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-15T12:45:14Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: kitchen_design results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7053571343421936 --- # kitchen_design Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dining chair ![dining chair](images/dining_chair.jpg) #### dining table ![dining table](images/dining_table.jpg) #### sink ![sink](images/sink.jpg) #### steel stovetop ![steel stovetop](images/steel_stovetop.jpg) #### window ![window](images/window.jpg)
PlanTL-GOB-ES/Controversy-Prediction
PlanTL-GOB-ES
2023-06-15T12:37:54Z
119
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "spanish", "natural-language-understanding", "roberta-base", "es", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-22T09:30:35Z
--- language: - es license: apache-2.0 tags: - "spanish" - "text-classification" - "natural-language-understanding" - "roberta-base" metrics: - f1 model-index: - name: Controversy-Prediction results: - task: name: text-classification type: text-classification dataset: name: meneame_controversy type: text-classification config: es-ES split: test metrics: - name: F1 type: f1 value: 0.8472 widget: - Esposas, hijos, nueras y familiares de altos cargos del PP y de la cúpula universitaria llenan la URJC -- Pedro González-Trevijano, rector de la universidad desde 2002 a 2013, ahora magistrado del Tribunal Constitucional, y su sucesor en el cargo, Fernando Suárez han tejido una red que ha dado cobijo laboral a más de un centenar de familiares de vicerrectores, gerentes o catedráticos en los cuatro campus con los que cuenta la universidad localizados en Alcorcón, Móstoles, Fuenlabrada y Vicálvaro. --- # Spanish RoBERTa-base finetuned for Controversy Prediction ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **Controversy Prediction** model is a RoBERTa-base model trained of a dataset of news from the platform Menéame annotated with controversy tags in a community-based manner. ## Intended uses and limitations The **Controversy Prediction** model can be used for controversy prediction in news in Spanish. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="PlanTL-GOB-ES/Controversy-Prediction") example = "Esposas, hijos, nueras y familiares de altos cargos del PP y de la cúpula universitaria llenan la URJC -- Pedro González-Trevijano, rector de la universidad desde 2002 a 2013, ahora magistrado del Tribunal Constitucional, y su sucesor en el cargo, Fernando Suárez han tejido una red que ha dado cobijo laboral a más de un centenar de familiares de vicerrectores, gerentes o catedráticos en los cuatro campus con los que cuenta la universidad localizados en Alcorcón, Móstoles, Fuenlabrada y Vicálvaro." output = nlp(example) pprint(output) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We use a dataset of news from the [Menéame](www.meneame.net) platform, tagged with controversy labels in a community-based manner. The training set contains 18,270 news, from which 4,950 are controversial. The development set contains 1,058 news, from which 317 are controversial. ### Training procedure The model was trained with a batch size of 4 and a learning rate of 1e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing the weighted F1 score. ### Evaluation results We evaluated the Controversy-Prediction model on the Menéame test set obtaining a weighted F1 score of 84.72. The test set contains 1,058 news, from which 317 are controversial. ## Additional information ### Author Language Technologies Unit at the Barcelona Supercomputing Center ([email protected]) ### Contact information For further information, send an email to <[email protected]> ### Copyright Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL. ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner of the models (SEDIA – State Secretariat for Digitalization and Artificial Intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables. Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial. En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos. </details>
dareposte/WizardLM-30b-V1.0-ggml
dareposte
2023-06-15T12:32:08Z
0
0
null
[ "region:us" ]
null
2023-06-13T13:08:18Z
GGML variant of WizardLM-30b-V1.0, for use on 24GB cards such as 3090. Update pushed 6/14 that resolved garbage output on llama.cpp, not tested using other tools. Requires a recent build of llama.cpp that supports the K-quant methods (June or later). Quant was prepared using llama.cpp build on 6/14/2023.
Falah/falahgs_summeriztion_model
Falah
2023-06-15T12:17:41Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-15T11:54:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: falahgs_summeriztion_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1373 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falahgs_summeriztion_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5033 - Rouge1: 0.1373 - Rouge2: 0.0494 - Rougel: 0.1128 - Rougelsum: 0.1128 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7956 | 0.1302 | 0.0369 | 0.1078 | 0.1076 | 19.0 | | No log | 2.0 | 124 | 2.5837 | 0.1396 | 0.0462 | 0.1144 | 0.1145 | 19.0 | | No log | 3.0 | 186 | 2.5207 | 0.1365 | 0.0462 | 0.1113 | 0.1111 | 19.0 | | No log | 4.0 | 248 | 2.5033 | 0.1373 | 0.0494 | 0.1128 | 0.1128 | 19.0 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.1+cu118 - Datasets 2.9.0 - Tokenizers 0.13.3
pushkin05/LunarLander-v2
pushkin05
2023-06-15T12:11:28Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T09:55:00Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -144.51 +/- 118.41 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'pushkin05/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
rovargasc/setfit-model_sentencias-v2
rovargasc
2023-06-15T12:10:39Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-15T12:09:46Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # rovargasc/setfit-model_sentencias-v2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("rovargasc/setfit-model_sentencias-v2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
gfalcao/smkfrt7
gfalcao
2023-06-15T12:05:27Z
31
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-15T12:00:24Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### smkfrT7 Dreambooth model trained by gfalcao with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
headlesstech/semantic_xlmr
headlesstech
2023-06-15T11:56:26Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dpr", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-04-05T08:17:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - dpr widget: - source_sentence: "আমি বাংলায় গান গাই" sentences: - "I sing in Bangla" - "I sing in Bengali" - "I sing in English" - "আমি গান গাই না " example_title: "Singing" --- # `semantic_xlmr` This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like **clustering** or **semantic search**. <!--- Describe your model here --> ## Model Details - Model name: semantic_xlmr - Model version: 1.0 - Architecture: Sentence Transformer - Language: Multilingual ( fine-tuned for Bengali Language) ## Training The model was fine-tuned using **Multilingual Knowledge Distillation** method. We took `paraphrase-distilroberta-base-v2` as the teacher model and `xlm-roberta-large` as the student model. ![image](https://i.ibb.co/8Xrgnfr/sentence-transformer-model.png) ## Intended Use: - **Primary Use Case:** Semantic similarity, clustering, and semantic searches - **Potential Use Cases:** Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system ## Usage ### Using Sentence-Transformers Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"] model = SentenceTransformer('headlesstech/semantic_xlmr') embeddings = model.encode(sentences) print(embeddings) ``` ### Using HuggingFace Transformers Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('headlesstech/semantic_xlmr') model = AutoModel.from_pretrained('headlesstech/semantic_xlmr') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
pushkin05/rl_course_vizdoom_health_gathering_supreme
pushkin05
2023-06-15T11:45:58Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T11:28:16Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.43 +/- 5.91 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r pushkin05/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Tommert25/robbertfinetuned1506
Tommert25
2023-06-15T11:44:53Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-15T09:18:34Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: robbertfinetuned1506 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbertfinetuned1506 This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4020 - Precision: 0.6588 - Recall: 0.5806 - F1: 0.6172 - Accuracy: 0.8828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 73 | 0.5045 | 0.5902 | 0.4871 | 0.5337 | 0.86 | | No log | 2.0 | 146 | 0.4124 | 0.6161 | 0.5612 | 0.5873 | 0.8772 | | No log | 3.0 | 219 | 0.3974 | 0.6502 | 0.5683 | 0.6065 | 0.8839 | | No log | 4.0 | 292 | 0.4020 | 0.6588 | 0.5806 | 0.6172 | 0.8828 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
gokuls/hBERTv1_no_pretrain_wnli
gokuls
2023-06-15T11:42:37Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T11:26:57Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_no_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_no_pretrain_wnli This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6862 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8468 | 1.0 | 7 | 0.6988 | 0.5634 | | 0.733 | 2.0 | 14 | 0.8370 | 0.4366 | | 0.7422 | 3.0 | 21 | 0.7440 | 0.4366 | | 0.7016 | 4.0 | 28 | 0.7514 | 0.4366 | | 0.7085 | 5.0 | 35 | 0.7207 | 0.4366 | | 0.7291 | 6.0 | 42 | 0.6975 | 0.5634 | | 0.7123 | 7.0 | 49 | 0.6938 | 0.4366 | | 0.703 | 8.0 | 56 | 0.7073 | 0.4366 | | 0.714 | 9.0 | 63 | 0.7375 | 0.4366 | | 0.7049 | 10.0 | 70 | 0.7098 | 0.4366 | | 0.7036 | 11.0 | 77 | 0.6951 | 0.4366 | | 0.7061 | 12.0 | 84 | 0.6862 | 0.5634 | | 0.7034 | 13.0 | 91 | 0.7034 | 0.4366 | | 0.7052 | 14.0 | 98 | 0.6955 | 0.4366 | | 0.7028 | 15.0 | 105 | 0.7138 | 0.4366 | | 0.7064 | 16.0 | 112 | 0.6864 | 0.5634 | | 0.6953 | 17.0 | 119 | 0.6956 | 0.4507 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
omarfarooq47/whisper-en-tiny-trained
omarfarooq47
2023-06-15T11:40:11Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-15T11:33:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-en-tiny-trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-en-tiny-trained This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3475 - Wer: 100.1585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9431 | 1.0 | 60 | 2.3475 | 100.1585 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
sofia-todeschini/PubMedELECTRA-Large-LitCovid-v1.0
sofia-todeschini
2023-06-15T11:39:29Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T09:59:21Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: PubMedELECTRA-Large-LitCovid-v1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PubMedELECTRA-Large-LitCovid-v1.0 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedELECTRA-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedELECTRA-large-uncased-abstract) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1102 - F1: 0.8974 - Roc Auc: 0.9322 - Accuracy: 0.7942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1183 | 1.0 | 6240 | 0.1102 | 0.8974 | 0.9322 | 0.7942 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Ditrip/ppo-Pyramids
Ditrip
2023-06-15T11:38:26Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-15T11:35:08Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Ditrip/ppo-pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gokuls/hBERTv1_no_pretrain_stsb
gokuls
2023-06-15T11:34:39Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T11:16:32Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_no_pretrain_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.21371019463671115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_no_pretrain_stsb This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.1733 - Pearson: 0.2374 - Spearmanr: 0.2137 - Combined Score: 0.2256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.3601 | 1.0 | 60 | 2.6639 | 0.1059 | 0.1080 | 0.1069 | | 1.9983 | 2.0 | 120 | 2.1733 | 0.2374 | 0.2137 | 0.2256 | | 1.7079 | 3.0 | 180 | 2.5000 | 0.1872 | 0.1967 | 0.1920 | | 1.3775 | 4.0 | 240 | 3.1203 | 0.2177 | 0.2251 | 0.2214 | | 1.1218 | 5.0 | 300 | 2.8260 | 0.2609 | 0.2598 | 0.2603 | | 0.8882 | 6.0 | 360 | 2.5413 | 0.3099 | 0.3062 | 0.3081 | | 0.728 | 7.0 | 420 | 2.4024 | 0.3429 | 0.3468 | 0.3448 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
dappradar/setfit-marketplaces-multilabel
dappradar
2023-06-15T11:30:25Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T10:55:19Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # dappradar/setfit-marketplaces-multilabel This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("dappradar/setfit-marketplaces-multilabel") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Rakoto031/ppo-Huggy
Rakoto031
2023-06-15T11:24:02Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-15T11:23:56Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Rakoto031/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
seeeed/opus-mt-en-ro-finetuned-en-to-ro
seeeed
2023-06-15T11:23:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-15T09:20:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: ro-en split: validation args: ro-en metrics: - name: Bleu type: bleu value: 28.1136 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1136 - Gen Len: 34.1056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7437 | 1.0 | 38145 | 1.2886 | 28.1136 | 34.1056 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
deepgoyal19/disney_lora1
deepgoyal19
2023-06-15T11:03:04Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-15T07:14:10Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - deepgoyal19/disney_lora1 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png)
ercanburak/evreal_model
ercanburak
2023-06-15T10:59:18Z
0
0
null
[ "arxiv:2305.00434", "license:mit", "region:us" ]
null
2023-06-15T10:56:03Z
--- license: mit --- This is the model card for the EVREAL paper: https://arxiv.org/abs/2305.00434 ## Citations If you use this library in an academic context, please cite the following: ``` @inproceedings{ercan2023evreal, title={{EVREAL}: Towards a Comprehensive Benchmark and Analysis Suite for Event-based Video Reconstruction}, author={Ercan, Burak and Eker, Onur and Erdem, Aykut and Erdem, Erkut}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month={June}, year={2023}, pages={3942-3951}} ```
Ditrip/ppo-SnowballTarget
Ditrip
2023-06-15T10:56:57Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-15T10:56:30Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Ditrip/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SinghManish/audio-classification-model
SinghManish
2023-06-15T10:53:20Z
62
1
transformers
[ "transformers", "tf", "wav2vec2", "feature-extraction", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-06-15T10:52:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: audio-classification-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # audio-classification-model This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
moiduy04/q-Taxi-v3
moiduy04
2023-06-15T10:33:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T10:32:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="moiduy04/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
thackerhelik/rl_course_vizdoom_health_gathering_supreme
thackerhelik
2023-06-15T10:11:48Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T10:11:40Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.87 +/- 5.10 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r thackerhelik/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
ardigen/ardisplay-i
ardigen
2023-06-15T10:10:01Z
1,960
4
transformers
[ "transformers", "pytorch", "ardisplay", "text-classification", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-classification
2023-04-19T11:14:20Z
--- license: other tags: - text-classification model_name: ardisplay-i inference: false --- # Model Card for ARDisplay-I The model predicts peptide presentation on the cell surface via a given HLA class I molecule. It was introduced in the paper [Identification of tumor-specific MHC ligands through improved biochemical isolation and incorporation of machine learning][source] by Shima Mecklenbräuker, Piotr Skoczylas, Paweł Biernat, Badeel Zaghla, Bartłomiej Król-Józaga, Maciej Jasiński, Victor Murcia Pienkowski, Anna Sanecka-Duin, Oliver Popp, Rafał Szatanek, Philipp Mertins, Jan Kaczmarczyk, Agnieszka Blum, and Martin G. Klatt. ## Model Details The peptide-HLA (pHLA) presentation is a major mechanism by which our immune system can recognize abnormal cells (e.g. altered by cancer or viral infections). ARDisplay-I predicts whether a given peptide will be displayed on the cell surface via a given [HLA class I molecule][hla1]. Such a presentation event enables immunosurveillance, and if the antigen is recognized as non-self, this can trigger an immune response. The pHLA presentation itself is a complex multi-stage process composed of antigen processing followed by its attachment to a particular HLA molecule and the transportation of the whole pHLA complex to the cell surface. Within each human cell, proteins are constantly degraded into short peptides or amino acids. During this process, some protein fragments, typically 8-11 amino-acid long, may bind to a specific HLA molecule and subsequently be transported to the cell surface. The predictions from our model encompass the entire processing and presentation pathway. > Please note, that in most application scenarios, the model requires additional > post-processing steps and appropriate filtering. Moreover, if your data is not > standard (ie. contains neoepitopes, peptides originating from alternative > splicing, virus epitopes, dark antigens, etc.), you might need additional > domain knowledge and/or a model fine-tuned to your needs. If necessary, feel free > to contact us for support. The model was developed at [Ardigen][ardigen] as part of [Immunology][immuno] platform. Free access to the regular version is available via the Hugging Face platform for non-commercial academic use only (see [License][license]). For commercial use and the Pro model versions, we encourage you to contact us at <[email protected]>. We invite you to take a look at the full offer - [immunology][immuno-offer] - [peptidomics][peptidomics-offer]. ### Model Description - **Developed by:** Ardigen S.A. - AI in Drug Discovery - **Model type:** Protein Language Model - **License:** [Other][license] ### Model Sources - **Demo:** https://huggingface.co/spaces/ardigen/ardisplay-i ## Uses The model takes peptide-HLA (pHLA) pairs as input and returns a presentation score in the range between [0, 1]. It can be used to select peptides with the highest probability of being presented by specific HLA molecules, find protein fragments with a high presentation probability, find multiple HLAs presenting a given peptide, or scan an entire protein for presented subsequences. ## Limitations - Supports a pre-defined set of HLAs. - Does not work on peptides containing ambiguous amino acids, like X, or J. - Assumes short peptides on input, limited to between 8 and 11 amino acids. - Replaces selenocysteine (U) with cysteine (C) before running inference. ## Metrics ### Ardigen's ARDisplay-I with over 2 times higher Average Precision Our model enables the prediction of HLA-I presented peptides with over 2 times higher Average Precision than the current state-of-the-art (solutions from netMHCpan and MHCflurry). **The study cohort includes the multiple myeloma cell lines JJN3 and LP-1 as well as the lymphoblastic leukemia cell line Nalm-6. Data consists of the MS results generated by Dr. Philipp Mertins, Martin Klatt, M.D., et al. and describes more than 32,000 HLA ligands presented on the cell surface of one of the three cell lines expressing together 17 distinct HLA class I alleles.** <div style="text-align:center"> <img src="https://huggingface.co/ardigen/ardisplay-i/resolve/main/documentation_images/benchmark_PR_curves.png" alt="Comparison of precision-recall (PR) curves" width="500"/> </div> #### Comparison of precision-recall (PR) curves. Our model achieves higher results at each point of the PR curve. The regions with standard deviation do not overlap, which indicates a high statistical significance of the performance difference between the methods. <div style="text-align:center"> <img src="https://huggingface.co/ardigen/ardisplay-i/resolve/main/documentation_images/benchmark_PPVs.png" alt="Positive predictive values (PPV)" width="500"/> </div> **Positive predictive values (PPV)** with four selected thresholds, i.e., top-10, 20, 50, & 100 pHLA pairs selected by each method. For example, PPV (top 10) is the expected fraction of presented pHLA pairs among the top 10 pHLAs ranked by the respective model. Find out more about [Identifying therapeutic targets][peptidomics-offer]. # How to Get Started with the Model You can visit our [interactive demo][spaces] and try the model there. Alternatively, you can run the model on your machine from Python as a CLI tool by following the sections below. ## Huggingface Install the dependencies ``` pip install -U transformers==4.30.1 torch==1.13.1 tape_proteins==0.5 mhcflurry==2.0.4 mhcgnomes==1.7.0 ``` and the auxiliary MHCflurry model for binding affinity prediction ``` mhcflurry-downloads fetch --release 1.7.0 models_class1_pan ``` Use the code below to get started with the model. ``` from transformers import pipeline pipe = pipeline(model="ardigen/ardisplay-i", trust_remote_code=True) data = ["A01:02,AAAAAAAA", "A01:02,CCCCCCCCCC"] result = pipe(data) print(result) ``` The peptides passed to the model need to have a length between 8 and 11 AAs and cannot contain ambiguous amino acid descriptors, like X, B, Z, J, etc. ## CLI You can also install the model as a CLI tool for usage in bioinformatics pipelines with the following command (assuming you have python3 and pip installed) ``` wget https://huggingface.co/ardigen/ardisplay-i/raw/main/cli/install.sh -O - | bash ``` This will install the `ardisplay-i-cli` tool which takes a text file with a list of `HLA,peptide` pairs and outputs a .csv file. See `ardisplay-i-cli --help` for the details. ## Training Details The details of model training are proprietary. [source]: https://www.biorxiv.org/content/10.1101/2023.06.08.544182v1 [hla1]: https://en.wikipedia.org/wiki/Human_leukocyte_antigen [ardigen]: https://ardigen.com [immuno]: https://ardigen.com/immunology [spaces]: https://huggingface.co/spaces/ardigen/ardisplay-i [immuno-offer]: https://ai.ardigen.com/ardigen-immunology-offer [peptidomics-offer]: https://ai.ardigen.com/ardigens-ardentify-platform [license]: https://huggingface.co/ardigen/ardisplay-i/blob/main/LICENSE.md
Felix92/doctr-dummy-tf-vitstr-small
Felix92
2023-06-15T09:53:52Z
2
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2023-06-15T09:53:47Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
gokuls/hBERTv1_no_pretrain_rte
gokuls
2023-06-15T09:38:15Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T10:25:42Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_no_pretrain_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_no_pretrain_rte This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6919 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7561 | 1.0 | 26 | 0.6977 | 0.4729 | | 0.7108 | 2.0 | 52 | 0.7333 | 0.4729 | | 0.7378 | 3.0 | 78 | 0.6919 | 0.5271 | | 0.7045 | 4.0 | 104 | 0.7052 | 0.5271 | | 0.7077 | 5.0 | 130 | 0.7034 | 0.5271 | | 0.6816 | 6.0 | 156 | 0.7515 | 0.5343 | | 0.6692 | 7.0 | 182 | 0.7616 | 0.5235 | | 0.5846 | 8.0 | 208 | 0.9617 | 0.4838 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
Outimus/ti
Outimus
2023-06-15T09:35:43Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-23T08:27:26Z
--- license: creativeml-openrail-m ---
tux/q-Taxi-v3-2
tux
2023-06-15T09:21:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T09:17:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tux/q-Taxi-v3-2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
shouqiangli/test001
shouqiangli
2023-06-15T09:19:30Z
0
0
allennlp
[ "allennlp", "finance", "text-classification", "aa", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
text-classification
2023-06-15T08:50:33Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - accuracy library_name: allennlp pipeline_tag: text-classification tags: - finance ---
anilsekharc/ppo-Huggy
anilsekharc
2023-06-15T09:19:21Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-15T09:19:17Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: anilsekharc/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fx1H/q-Taxi-v3-v2
fx1H
2023-06-15T09:17:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T09:17:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fx1H/q-Taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tux/q-Taxi-v3-1
tux
2023-06-15T09:16:45Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T09:11:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tux/q-Taxi-v3-1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tux/default_taxi
tux
2023-06-15T09:04:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T09:04:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: default_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tux/default_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fx1H/q-Taxi-v3
fx1H
2023-06-15T08:54:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T08:54:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fx1H/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
XiaHan19/shami-token
XiaHan19
2023-06-15T08:42:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-06-07T14:12:26Z
--- license: apache-2.0 --- Shami Tokenizer === This is the tokenizer of Shami Model.
fx1H/q-FrozenLake-v1-4x4-noSlippery
fx1H
2023-06-15T08:34:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T08:34:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fx1H/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
casque/v3_a
casque
2023-06-15T08:29:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-11T05:08:07Z
--- license: creativeml-openrail-m ---
LemonFace0309/a2c-AntBulletEnv-v0
LemonFace0309
2023-06-15T08:12:21Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T08:11:06Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 914.54 +/- 227.08 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/sa_BERT_no_pretrain_wnli
gokuls
2023-06-15T08:08:30Z
131
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T14:36:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: sa_BERT_no_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sa_BERT_no_pretrain_wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6866 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0074 | 1.0 | 7 | 0.6958 | 0.4366 | | 0.6986 | 2.0 | 14 | 0.7035 | 0.4366 | | 0.7007 | 3.0 | 21 | 0.6866 | 0.5634 | | 0.7052 | 4.0 | 28 | 0.7037 | 0.4366 | | 0.7008 | 5.0 | 35 | 0.6951 | 0.4366 | | 0.7107 | 6.0 | 42 | 0.6908 | 0.5634 | | 0.6963 | 7.0 | 49 | 0.6945 | 0.4366 | | 0.7012 | 8.0 | 56 | 0.6894 | 0.5634 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/sa_BERT_no_pretrain_stsb
gokuls
2023-06-15T08:03:24Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T14:26:57Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: sa_BERT_no_pretrain_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.12459536879199183 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sa_BERT_no_pretrain_stsb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.5396 - Pearson: 0.1394 - Spearmanr: 0.1246 - Combined Score: 0.1320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.257 | 1.0 | 60 | 3.1111 | 0.0528 | 0.0709 | 0.0619 | | 2.0476 | 2.0 | 120 | 2.5396 | 0.1394 | 0.1246 | 0.1320 | | 1.8905 | 3.0 | 180 | 2.5928 | 0.1553 | 0.1593 | 0.1573 | | 1.5383 | 4.0 | 240 | 3.1130 | 0.1930 | 0.2086 | 0.2008 | | 1.3384 | 5.0 | 300 | 2.8651 | 0.1788 | 0.2014 | 0.1901 | | 1.1299 | 6.0 | 360 | 2.9651 | 0.1818 | 0.1947 | 0.1883 | | 1.0952 | 7.0 | 420 | 2.6404 | 0.2100 | 0.2124 | 0.2112 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
Lajonbot/LaMini-Cerebras-256M-8500-steps-polish
Lajonbot
2023-06-15T07:58:02Z
132
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "pl", "dataset:databricks/databricks-dolly-15k", "dataset:s3nh/alpaca-dolly-instruction-only-polish", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T19:16:29Z
--- license: openrail datasets: - databricks/databricks-dolly-15k - s3nh/alpaca-dolly-instruction-only-polish language: - pl --- ### Introduction These repository consist of LaMini-Cerebras-256M finetuned to Polish language on translated alpaca-dolly dataset. Main task is to perform accurate answers to instruction asked. Below you can find an instruction of how to infer with that model. These repository does not contain an tokenizer object, at the moment (#TODO). ### Evaluation part ```python import pandas as pd import torch from torch.utils.data import AutTokenizer from typing import List, Dict, Union from typing import Any, TypeVar import pandas as pd import pickle MODEL_NAME: str = 'Lajonbot/LaMini-Cerebras-256M-8500-steps-polish' tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCasualLM.from_pretrained(MODEL_NAME).cuda() #Resize model for tokenizer size n_tokens: int = len(tokenizer) model.resize_token_embeddings(n_tokens) def _generate_prompt(instruction, input=None): if input: return f"""Poniżej znajduje się instrukcja opisująca zadanie, połączona z danymi wejściowymi, które zapewniają dalszy konktekst. Napisz odpowiedź, która odpowiednio odpowie na pytanie. ### Instruction: {instruction} ### Input: {input} ### Response:""" manual_instruction: str = "Napisz mi proszę jakie są rodzaje telefonów komórkowych" manual_input: str = "Telefony komórkowe, w przeciwieństwie do np. satelitarnych, charakteryzuje to, że działają w obrębie naziemnych fal radiowych w technologii GSM (i w różnych jej wariantach: 3G, 4G czy niebawem 5G). Zasadniczo można jednak wyróżnić wiele ich rodzajów i podzielić je na różne kryteria. I tak, ze względu na rodzaj obudowy, można mówić o telefonach jednobryłowych, rozsuwanych, obrotowych czy też z klapką. Obecnie jednak najbardziej popularne i – ze względu na posiadane parametry – najlepsze telefony komórkowe to smartfony dotykowe." print(f"Valueation for {manual_instruction} \n\n\n {manual_input}\n\n") evaluate(instruction = manual_instruction, input = manual_input) ```
casque/majicmixLux_v2
casque
2023-06-15T07:51:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T07:34:10Z
--- license: creativeml-openrail-m ---
umarsajjad1992/distilbert-base-uncased-finetuned-emotion
umarsajjad1992
2023-06-15T07:49:43Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "en", "dataset:dair-ai/emotion", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-12T04:07:09Z
--- datasets: - dair-ai/emotion language: - en metrics: - f1 - accuracy library_name: transformers pipeline_tag: text-classification ---
gokuls/sa_BERT_no_pretrain_sst2
gokuls
2023-06-15T07:48:32Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T13:35:42Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: sa_BERT_no_pretrain_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8027522935779816 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sa_BERT_no_pretrain_sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4637 - Accuracy: 0.8028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4863 | 1.0 | 702 | 0.4747 | 0.7890 | | 0.2723 | 2.0 | 1404 | 0.4974 | 0.7901 | | 0.2219 | 3.0 | 2106 | 0.4637 | 0.8028 | | 0.1848 | 4.0 | 2808 | 0.7501 | 0.7833 | | 0.1591 | 5.0 | 3510 | 0.5357 | 0.8005 | | 0.1346 | 6.0 | 4212 | 0.5450 | 0.7833 | | 0.1148 | 7.0 | 4914 | 0.8002 | 0.7741 | | 0.1034 | 8.0 | 5616 | 0.8853 | 0.7821 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
prognosis/falcon40b-chunks-10k-v1_1
prognosis
2023-06-15T07:47:29Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-15T04:30:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: falcon40b-chunks-10k-v1_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon40b-chunks-10k-v1_1 This model is a fine-tuned version of [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
DAMO-NLP-SG/mt-llama-7b-delta
DAMO-NLP-SG
2023-06-15T07:21:35Z
12
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-05T02:52:02Z
--- license: mit --- # MT-LLaMA Model Card ## Model details **Model type:** MT-LLaMA is an open-source multi-task model trained by fine-tuning LLaMA on the massive tasks in [P3](https://huggingface.co/datasets/bigscience/P3) (i.e., T0 Train). Concretely, the used datasets during training and task taxonomy are listed below: * Multi-choice QA: CommonsenseQA, Cosmos QA, DREAM, QuAIL, QuaRTz, QASC, QuaRel, SciQ, Social IQA, Wiki Hop, WiQA * Extractive QA: Adversarial QA, DuoRC, Quoref, ROPES * Close-Book QA: Hotpot QA, Wiki QA * Sentiment Classification: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp * Topic Classification: AG News, DBPedia, TREC * Structure-to-Text Generation: Common Gen, Wiki Bio * Text Summarization: CNN Daily Mail, Gigaword, MultiNews, SamSum, XSum * Paraphrase Identification: MRPC, PAWS, QQP **Organizations developing the model:** The MT-LLaMA team with members from Alibaba Damo Academy and the Chinese University of Hong Kong. ## Intended use You can try the codes from our [github repo](https://github.com/DAMO-NLP-SG/MT-LLaMA). ## Zero-shot Evaluation We primarily follow the protocols of [Bigscience T0](https://openreview.net/forum?id=9Vrb9D0WI4) to assess the generalization capability of our Multi-task LLaMA to: (1) _**Unseen Datasets**_ (i.e., datasets from seen tasks); (2) _**Unseen Tasks**_. #### Prompt Format Extractive QA: 1. XQuAD, TyDiQA, MLQA, SQuAD ```angular2html Input: Answer the question according to the context. Question: ${question}. Context: ${context}. Answer: Output: ${Answer} ``` Sentiment: 1. SST-2 ```angular2html Input: ${sentence} Based on this review, would the user recommend this product? No or Yes? Output: Yes / No ``` Multiple-Choice QA: 1. OpenbookQA ```angular2html Input: ${question} Which is the correct answer? - (A) ${choiceA} - (B) ${choiceB} - (C) ${choiceC} - (D) ${choiceD} Output: ${choiceA} / ${choiceB} / ${choiceC} / ${choiceD} ``` Sentence Completion: 1. COPA ```angular2html Input: ${premise} {% if question == "cause" %} This happened because... {% else %} As a consequence... Help me pick the more plausible option: - ${text1} - ${text2} Output: ${text1} / ${text2} ``` Coreference Resolution: 1. Winogrande: ```angular2html Input: ${sentence} In the previous sentence, does _ refer to ${option1} or ${option2}? Output: ${option1} / ${option2} ``` Word Sense Disambiguation: 1. WiC ```angular2html Input: Does the word "${word}" have the same meaning in these two sentences? Yes, No? ${sentence1} ${sentence2} Output: ${sentence1} / ${sentence2} ``` Natural Language Inference: 1. MNLI: ```angular2html Input: ${premise} Question: Does this imply that ${hypothesis}? Please response with 'Yes', 'No', or 'Maybe'. Output: Yes / No / Maybe ``` 2. RTE ```angular2html Input: Given ${premise} Is it guaranteed true that "${hypothesis}"? Yes or no? Output: Yes / no ``` #### Results on _Unseen Datasets_ | Model | XQuAD-en (F1/EM) | TyDiQA-en (F1/EM) | MLQA-en (F1/EM) | SQuAD (F1/EM) | SST-2 (Acc.) | OpenbookQA (Acc.) | |:------------|------------------|-------------------|-----------------|---------------|--------------|-------------------| | LLaMA-7b | 9.5 / 2.0 | 14.3 / 2.6 | 13.4 / 3.3 | 29.4 / 11.5 | 50.5 | 32.4 | | MT-LLaMA-7b | 42.3 / 31.1 | 38.9 / 26.9 | 45.4 / 31.5 | 85.9 / 77.6 | 92.6 | 38.2 | #### Results on _Unseen Tasks_ | Model | COPA (Acc.) | Winogrande (Acc.) | WiC (Acc.) | MNLI (Acc.) | RTE (Acc.) | |:------------|-------------|--------------------|------------|-------------|------------| | LLaMA-7b | 56.0 | 49.3 | 51.7 | 30.2 | 52.7 | | MT-LLaMA-7b | 88.0 | 54.9 | 52.2 | 49.6 | 79.1 | ## Acknowledgement * Our training codes are largely borrowed from [FastChat](https://github.com/lm-sys/FastChat) * We are also grateful for the efforts of [LLaMA](https://github.com/facebookresearch/llama) (from FAIR) and [T0](https://github.com/bigscience-workshop/t-zero) (from BigScience), which serve as the foundation of our work If you find this resource useful, please cite the repo as follows: ``` @software{damonlpsg2023mtllama, author = {Xu, Weiwen and Li, Xin and Bing, Lidong}, title = {Multi-task Instruction-tuned LLaMA}, year = 2023, url = {https://github.com/DAMO-NLP-SG/MT-LLaMA} } ```
Janxxx/Kokoroface
Janxxx
2023-06-15T06:43:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T06:41:58Z
--- license: creativeml-openrail-m ---
jorgeortizfuentes/spanish-spellchecker-flan-t5-large_3e
jorgeortizfuentes
2023-06-15T06:11:40Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "es", "esc", "dataset:jorgeortizfuentes/spanish_spellchecker_train", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-13T05:15:42Z
--- language: - es - esc license: apache-2.0 tags: - generated_from_trainer datasets: - jorgeortizfuentes/spanish_spellchecker_train model-index: - name: spanish-spellchecker-flan-t5-large_3e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanish-spellchecker-flan-t5-large_3e This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the jorgeortizfuentes/spanish_spellchecker_train dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
DionnisB/Models
DionnisB
2023-06-15T06:06:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-19T21:38:57Z
--- license: creativeml-openrail-m ---
AustinCarthy/MixGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
AustinCarthy
2023-06-15T05:44:40Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-15T03:32:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MixGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MixGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2_using_phish_95K_top_p_0.75subdomain dataset. It achieves the following results on the evaluation set: - Loss: 0.0273 - Accuracy: 0.9976 - F1: 0.9738 - Precision: 0.9989 - Recall: 0.9498 - Roc Auc Score: 0.9749 - Tpr At Fpr 0.01: 0.9544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0052 | 1.0 | 21554 | 0.0150 | 0.9972 | 0.9692 | 0.9979 | 0.9422 | 0.9711 | 0.9408 | | 0.0046 | 2.0 | 43108 | 0.0107 | 0.9979 | 0.9778 | 0.9954 | 0.9608 | 0.9803 | 0.9458 | | 0.002 | 3.0 | 64662 | 0.0198 | 0.9973 | 0.9708 | 0.9983 | 0.9448 | 0.9724 | 0.9488 | | 0.0005 | 4.0 | 86216 | 0.0243 | 0.9974 | 0.9721 | 0.9977 | 0.9478 | 0.9738 | 0.947 | | 0.0 | 5.0 | 107770 | 0.0273 | 0.9976 | 0.9738 | 0.9989 | 0.9498 | 0.9749 | 0.9544 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gameofdimension/rl_course_vizdoom_health_gathering_supreme
gameofdimension
2023-06-15T05:43:29Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T05:43:20Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.56 +/- 3.36 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r felixdae/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
gokuls/sa_BERT_no_pretrain_qqp
gokuls
2023-06-15T05:40:30Z
131
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T07:55:56Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: sa_BERT_no_pretrain_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7934207271827851 - name: F1 type: f1 value: 0.6836123948783999 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sa_BERT_no_pretrain_qqp This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4355 - Accuracy: 0.7934 - F1: 0.6836 - Combined Score: 0.7385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5241 | 1.0 | 3791 | 0.4947 | 0.7638 | 0.6550 | 0.7094 | | 0.4527 | 2.0 | 7582 | 0.4524 | 0.7853 | 0.7027 | 0.7440 | | 0.404 | 3.0 | 11373 | 0.4355 | 0.7934 | 0.6836 | 0.7385 | | 0.3675 | 4.0 | 15164 | 0.4407 | 0.8038 | 0.7438 | 0.7738 | | 0.3315 | 5.0 | 18955 | 0.4426 | 0.8060 | 0.7368 | 0.7714 | | 0.3031 | 6.0 | 22746 | 0.4437 | 0.8067 | 0.7444 | 0.7755 | | 0.2747 | 7.0 | 26537 | 0.4359 | 0.8046 | 0.7523 | 0.7785 | | 0.2441 | 8.0 | 30328 | 0.4718 | 0.8074 | 0.7547 | 0.7811 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
octipuw/RLCourse
octipuw
2023-06-15T05:23:19Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T01:30:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PP) results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.56 +/- 24.11 name: mean_reward verified: false --- # **PP)** Agent playing **LunarLander-v2** This is a trained model of a **PP)** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Manirathinam21/M-Bert-base-cased-language-detection
Manirathinam21
2023-06-15T05:09:05Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-14T08:10:30Z
--- license: apache-2.0 --- # Multilingual_Language_Detection This model is a fine-tuned version of [BERT-multilingual-base-(cased)](https://huggingface.co/bert-base-multilingual-cased) on the multilingual dataset. It achieves the following results on the evaluation set: - Training Loss : 0.018700 - Validation Loss : 0.054768 - Accuracy : 0.988864 - F1 : 0.988909 ## Languages It's trained in more than 22 different languages, they are listed below. Arabic, Urdu, Tamil, Hindi, English, French, Spanish, Japanese, Chinese, Thai, Indonesian, Dutch, Korean, Latin, Persian, Portugese, Pushto, Romanian, Russian, Swedish, Turkish, Estonian ## Model Description The BERT model was pretrained on the 104 languages with the largest Wikipedias using a masked language modeling (MLM) objective. This model is case sensitive: it makes a difference between english and English. BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the languages in the training set that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training procedure Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/1t-IKdGNlroc_-I2QmAPs4b3nHunpLMrn?usp=sharing) with the training code. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-5 - train_batch_size: 8 - eval_batch_size: 16 - optimizer: Adam - evaluation strategy: epoch - num_epochs: 3 - warmup_steps: 100 ## Training result | Training Loss | Epoch | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:---------------:|:--------:|:------:| | 0.002800 | 1 | 0.081287 | 0.9888 | 0.9890 | | 0.001100 | 2 | 0.064479 | 0.9897 | 0.9898 | | 0.018700 | 3 | 0.054768 | 0.9888 | 0.9889 |
gameofdimension/ppo-cleanrl-LunarLander-v2
gameofdimension
2023-06-15T04:57:28Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T04:03:33Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -23.11 +/- 120.73 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 2000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'felixdae/ppo-cleanrl-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
Gayu/bert-finetuned-ner
Gayu
2023-06-15T04:45:11Z
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-11T15:05:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9340732151730993 - name: Recall type: recall value: 0.9490070683271625 - name: F1 type: f1 value: 0.9414809249519994 - name: Accuracy type: accuracy value: 0.9859598516512628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9341 - Recall: 0.9490 - F1: 0.9415 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0895 | 1.0 | 1756 | 0.0694 | 0.9148 | 0.9337 | 0.9241 | 0.9823 | | 0.0345 | 2.0 | 3512 | 0.0657 | 0.9279 | 0.9488 | 0.9383 | 0.9854 | | 0.0185 | 3.0 | 5268 | 0.0620 | 0.9341 | 0.9490 | 0.9415 | 0.9860 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
francoyisususu/domo
francoyisususu
2023-06-15T04:28:00Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T04:28:00Z
--- license: creativeml-openrail-m ---
peteozegov/a2c-PandaReachDense-v2
peteozegov
2023-06-15T04:26:46Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-05T03:30:25Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.90 +/- 0.34 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
octipuw/uni1LunarLander
octipuw
2023-06-15T04:22:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T04:20:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.32 +/- 16.68 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pushkin05/CartPole-v1
pushkin05
2023-06-15T04:18:34Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T04:18:17Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gokuls/hBERTv2_new_pretrain_48_KD_wnli
gokuls
2023-06-15T04:10:46Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T04:06:07Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_48_KD_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_48_KD_wnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48_KD) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6863 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9584 | 1.0 | 5 | 0.7296 | 0.5634 | | 0.7454 | 2.0 | 10 | 0.6897 | 0.5352 | | 0.7071 | 3.0 | 15 | 0.7028 | 0.4366 | | 0.6975 | 4.0 | 20 | 0.6943 | 0.4366 | | 0.6981 | 5.0 | 25 | 0.6863 | 0.5634 | | 0.7028 | 6.0 | 30 | 0.7001 | 0.4366 | | 0.699 | 7.0 | 35 | 0.6905 | 0.5634 | | 0.7045 | 8.0 | 40 | 0.6892 | 0.5634 | | 0.7113 | 9.0 | 45 | 0.6996 | 0.4366 | | 0.6966 | 10.0 | 50 | 0.6924 | 0.5634 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
Laurie/qlora-v1
Laurie
2023-06-15T04:10:06Z
0
0
null
[ "en", "dataset:tatsu-lab/alpaca", "license:apache-2.0", "region:us" ]
null
2023-06-01T10:15:29Z
--- license: apache-2.0 datasets: - tatsu-lab/alpaca language: - en --- model_name_or_path = yahma/llama-13b-hf learning_rate = 1e-4 max_steps = 10000 epoch = 3.08 train_loss = 0.7169 train_runtime = 1 day, 7:23:32.67 train_samples_per_second = 1.416 train_steps_per_second = 0.088
Masyriq1/YGY1
Masyriq1
2023-06-15T04:07:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-27T22:16:28Z
--- license: creativeml-openrail-m ---
underfit/nli-finetune-model
underfit
2023-06-15T04:06:38Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:multi_nli", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-12T03:22:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_nli metrics: - accuracy model-index: - name: nli-finetune-model results: - task: name: Text Classification type: text-classification dataset: name: multi_nli type: multi_nli config: default split: validation_matched args: default metrics: - name: Accuracy type: accuracy value: 0.7793333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nli-finetune-model This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the multi_nli dataset. It achieves the following results on the evaluation set: - Loss: 1.2551 - Accuracy: 0.7793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6813 | 1.0 | 2500 | 0.6655 | 0.7657 | | 0.5632 | 2.0 | 5000 | 1.0409 | 0.778 | | 0.3753 | 3.0 | 7500 | 1.2551 | 0.7793 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_48_KD_stsb
gokuls
2023-06-15T04:05:48Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T03:55:09Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv2_new_pretrain_48_KD_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.23740661914182784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_48_KD_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48_KD) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2142 - Pearson: 0.2484 - Spearmanr: 0.2374 - Combined Score: 0.2429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.3019 | 1.0 | 45 | 2.6041 | 0.1631 | 0.1541 | 0.1586 | | 2.1689 | 2.0 | 90 | 2.4035 | 0.1451 | 0.1550 | 0.1500 | | 1.8521 | 3.0 | 135 | 2.2142 | 0.2484 | 0.2374 | 0.2429 | | 1.6095 | 4.0 | 180 | 2.6155 | 0.2618 | 0.2566 | 0.2592 | | 1.3325 | 5.0 | 225 | 2.9218 | 0.3160 | 0.3098 | 0.3129 | | 1.0639 | 6.0 | 270 | 2.2315 | 0.3486 | 0.3476 | 0.3481 | | 0.8434 | 7.0 | 315 | 2.5364 | 0.3459 | 0.3343 | 0.3401 | | 0.7193 | 8.0 | 360 | 2.3979 | 0.3661 | 0.3633 | 0.3647 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
nbiish/ppo-Huggy
nbiish
2023-06-15T04:00:46Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-15T04:00:41Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nbiish/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nolanaatama/nythngv45
nolanaatama
2023-06-15T03:53:40Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T03:42:59Z
--- license: creativeml-openrail-m ---
gokuls/hBERTv2_new_pretrain_48_KD_qqp
gokuls
2023-06-15T03:51:40Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-14T19:32:40Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_48_KD_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8244867672520405 - name: F1 type: f1 value: 0.7649085608269283 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_48_KD_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48_KD) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4160 - Accuracy: 0.8245 - F1: 0.7649 - Combined Score: 0.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5305 | 1.0 | 2843 | 0.4755 | 0.7733 | 0.6749 | 0.7241 | | 0.4434 | 2.0 | 5686 | 0.4351 | 0.7950 | 0.7260 | 0.7605 | | 0.3858 | 3.0 | 8529 | 0.4173 | 0.8063 | 0.7210 | 0.7637 | | 0.3409 | 4.0 | 11372 | 0.4201 | 0.7998 | 0.7579 | 0.7788 | | 0.303 | 5.0 | 14215 | 0.4274 | 0.8169 | 0.7577 | 0.7873 | | 0.2727 | 6.0 | 17058 | 0.4403 | 0.8186 | 0.7638 | 0.7912 | | 0.2449 | 7.0 | 19901 | 0.4160 | 0.8245 | 0.7649 | 0.7947 | | 0.2241 | 8.0 | 22744 | 0.4429 | 0.8271 | 0.7518 | 0.7895 | | 0.2054 | 9.0 | 25587 | 0.4941 | 0.8287 | 0.7659 | 0.7973 | | 0.1905 | 10.0 | 28430 | 0.4992 | 0.8264 | 0.7744 | 0.8004 | | 0.1768 | 11.0 | 31273 | 0.4901 | 0.8303 | 0.7686 | 0.7995 | | 0.1655 | 12.0 | 34116 | 0.5513 | 0.8276 | 0.7446 | 0.7861 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
pushkin05/dqn-SpaceInvadersNoFrameskip-v4
pushkin05
2023-06-15T03:42:47Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-14T06:39:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 678.00 +/- 223.30 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pushkin05 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pushkin05 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga pushkin05 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
AustinCarthy/OnlyPhishGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio5
AustinCarthy
2023-06-15T03:31:36Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-15T00:04:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: OnlyPhishGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OnlyPhishGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_OnlyPhishGPT2_using_phish_95K_top_p_0.75subdomain dataset. It achieves the following results on the evaluation set: - Loss: 0.0209 - Accuracy: 0.9976 - F1: 0.9738 - Precision: 0.9987 - Recall: 0.95 - Roc Auc Score: 0.9750 - Tpr At Fpr 0.01: 0.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0038 | 1.0 | 35625 | 0.0193 | 0.9966 | 0.9635 | 0.9987 | 0.9306 | 0.9653 | 0.9382 | | 0.0019 | 2.0 | 71250 | 0.0200 | 0.9969 | 0.9661 | 0.9989 | 0.9354 | 0.9677 | 0.9436 | | 0.001 | 3.0 | 106875 | 0.0207 | 0.9973 | 0.9711 | 0.9989 | 0.9448 | 0.9724 | 0.9474 | | 0.0007 | 4.0 | 142500 | 0.0195 | 0.9977 | 0.9749 | 0.9987 | 0.9522 | 0.9761 | 0.9558 | | 0.0005 | 5.0 | 178125 | 0.0209 | 0.9976 | 0.9738 | 0.9987 | 0.95 | 0.9750 | 0.9556 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_no_pretrain_wnli
gokuls
2023-06-15T03:24:43Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T12:16:44Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_no_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_no_pretrain_wnli This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6874 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9765 | 1.0 | 5 | 0.6952 | 0.4366 | | 0.723 | 2.0 | 10 | 0.6938 | 0.4648 | | 0.7209 | 3.0 | 15 | 0.6902 | 0.5634 | | 0.7183 | 4.0 | 20 | 0.7155 | 0.5634 | | 0.7155 | 5.0 | 25 | 0.6875 | 0.5634 | | 0.7027 | 6.0 | 30 | 0.6978 | 0.4366 | | 0.6966 | 7.0 | 35 | 0.7161 | 0.4366 | | 0.7077 | 8.0 | 40 | 0.6926 | 0.5634 | | 0.7048 | 9.0 | 45 | 0.7409 | 0.4366 | | 0.7386 | 10.0 | 50 | 0.6874 | 0.5634 | | 0.7104 | 11.0 | 55 | 0.6875 | 0.5634 | | 0.7061 | 12.0 | 60 | 0.7088 | 0.4366 | | 0.6951 | 13.0 | 65 | 0.7009 | 0.4507 | | 0.6995 | 14.0 | 70 | 0.7050 | 0.4366 | | 0.692 | 15.0 | 75 | 0.6976 | 0.3521 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
ClueAI/ChatYuan-7B
ClueAI
2023-06-15T03:21:01Z
5
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text2text-generation", "zh", "en", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-02T07:34:54Z
--- license: gpl-3.0 tags: - text2text-generation pipeline_tag: text2text-generation language: - zh - en --- ChatYuan-7B是一个支持中英双语的功能型对话语言大模型。它是基于LLama-7B模型上继续进行三阶段训练的模型。 三阶段如下: 1. 在中文通用语料上继续预训练500亿中文token 2. 在数百种任务集上进行任务式指令微调训练 3. 在数百万人类反馈数据集上进行指令微调训练 ## 更多细节参考[GitHub](https://github.com/clue-ai/ChatYuan-7B) ## 使用方式 为了遵守LLaMA模型许可证,我们将ChatYuan-7B权重发布为增量权重。您可以将我们的增量权重与原始的LLaMA权重相加,得到ChatYuan-7B权重。 1. 通过原始[LLaMA-7B](https://github.com/facebookresearch/llama)生成LLaMA的hf模型(LLaMA-7B-HF),可以参考[指导](https://huggingface.co/docs/transformers/main/model_doc/llama), 也可以直接使用[llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) 2. 合并LLaMA-7B的hf模型和ChatYuan-7B模型成ChatYuan-7B-merge ### 合并脚本 [apply_delta.py](https://huggingface.co/ClueAI/ChatYuan-7B/blob/main/apply_delta.py) ```shell python3 apply_delta.py --base ~/model_weights/LLaMA-7B-HF --delta ~/model_weights/ChatYuan-7B --target ~/model_weights/ChatYuan-7B-merge ``` ## 加载方式 ```python from transformers import LlamaForCausalLM, AutoTokenizer import torch import sys ckpt = "~/model_weights/ChatYuan-7B-merge" device = torch.device('cuda') model = LlamaForCausalLM.from_pretrained(ckpt) tokenizer = AutoTokenizer.from_pretrained(ckpt) ``` ## 推理方式 ```python def answer(prompt): prompt = f"用户:{prompt}\n小元:" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generate_ids = model.generate(input_ids, max_new_tokens=1024, do_sample = True, temperature = 0.7) output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] response = output[len(prompt):] return response ``` ## 示例 ``` input: 学前教育专业岗位实习中,在学生方面会存在问题,请提出改进措施。800字 output: 作为学前教育专业的学生,在岗位实习中可能会遇到各种各样的问题,这些问题不仅影响了我们的学习和成长,也影响了我们的教育质量。为了帮助学生更好地完成实习工作,我们提出以下改进措施: 一、提高教育质量 在学前教育专业岗位实习中,教育质量是关键。学生应该掌握教育方法和技能,并且在实践中学习。为了提高教育质量,学校应该从以下几个方面着手: 1. 提供高质量的教育资源。学校应该提供各种教育资源,包括教材、工具和软件等,以帮助学生更好地完成实习工作。 2. 提高教师质量。教师应该具备丰富的教育经验和专业知识,以便更好地指导学生。 3. 提供培训和评估。学校应该为学生提供培训和评估,以帮助学生更好地掌握技能和知识。 二、加强沟通与合作 在岗位实习中,学生应该与老师和同学进行沟通和合作。老师应该与学生保持良好的沟通,以便更好地指导学生。同时,学生也应该与同学进行合作,以便更好地完成实习工作。 为了加强沟通与合作,学校应该从以下几个方面着手: 1. 提供交流渠道。学校应该为学生提供交流渠道,包括线上和线下的交流方式,以便学生与老师和同学之间进行良好的沟通。 2. 提供团队合作机会。学校应该为学生提供团队合作机会,以便学生能够更好地了解和协作。 3. 提供培训和指导。学校应该为学生提供培训和指导,以便学生能够更好地理解和应对问题。 三、保证实习安全 在岗位实习中,学生应该保证自身的安全。学校应该为学生提供安全保障,包括在实习过程中提供帮助和指导,以及在紧急情况下提供支持和帮助。 为了保证实习安全,学校应该从以下几个方面着手: 1. 提供安全教育。学校应该为学生提供安全教育,以便学生能够更好地了解安全要求和安全方法。 2. 提供安全指导。学校应该为学生提供安全指导,以便学生能够更好地掌握实习安全方法。 3. 提供安全保障。学校应该为学生提供安全保障,包括在实习过期中提供帮助和指导,以及在紧急情况下提予支持和帮助。 总之,学前教育专业岗位实习是学生成长和发展的重要阶段。通过提高教育质量、加强沟通与合作和保证实习安全等措施,学校可以帮助学生更好地完成实习工作,提高教育质量和专业技能。 ``` ``` input: 根据标题生成文章:标题:屈臣氏里的化妆品到底怎么样?正文:化妆品,要讲究科学运用,合理搭配。屈臣氏起码是正品连锁店。请继续后面的文字。 output: 作为一家有着数十年历史的正品连锁店,屈臣氏在市场上拥有一定的口碑和信誉。而对于喜欢化妆品的女性来说,屈臣氏里的化妆品也是不可忽视的选择。那么,屈臣氏里的化妆品到底怎么样呢? 首先,我们需要了解一下屈臣氏的采购政策。屈臣氏一直秉持着“质量第一、信誉商誉、顾客至上”的经营理念,严格按照国家的相关质量标准进行采购管理。在采购过程中,屈臣氏会对每一家供应商进行详细的评估和审核,以确保所采购的商品符合质量标准。 其次,我们需要了解一下屈臣氏销售的化妆品品牌。屈臣氏销售的化妆品品牌非常丰富,包括国内外著名品牌如兰蔻、雅诗兰黛、娇兰、资生堂等。屈臣氏还会不定期地邀请国内外知名化妆品专家来店内进行化妆品推介和使用指导,为顾客提供更专业的服务。 最后,我们需要了解一下屈臣氏销售的化妆品的价格。相比于一些高端专业的化妆品店,屈臣氏的化妆品价格相对较为亲民,但在保证品质的前提下,仍然可以满足大多数消费者的需求。 总之,屈臣氏里的化妆品在品质、销售渠道和价格等方面都具有一定的优势。但是,我们在选择化妆品时,还是需要注重科学的运用和合理的搭配,以达到更好的化妆效果。 ``` ``` input: 帮我写一个英文营销方案,针对iphone output: Marketing Plan for iPhones Introduction iPhones have become the flagship devices of Apple and have gained immense popularity worldwide. With a sleek design, advanced features, and a smooth user interface, iPhones attract and retain customers through their lifetime. Therefore, developing a marketing plan for iPhones is essential to ensure the continued success and growth of the brand. Objectives The primary objective of this marketing plan is to increase the brand awareness and demand for iPhones by targeting potential customers and creating a strong relationship with them. Target Market The target audience for this marketing plan is people who are in the market for a new smartphone. The target audience is classified into three segments: 1. Upgraders: People who are currently using older versions of iPhones and are looking for a new device with advanced features. 2. Switchers: People who are currently using Android smartphones and are looking to switch to iPhones. 3. Newbies: People who have never used an iPhone before and are looking to experience its features for the first time. Tactics To achieve the objectives, the following tactics will be implemented: 1. Advertising Apple's advertising strategy is well-known for its focus on creating an emotional connection with the audience through its advertisements. The marketing campaign will focus on highlighting the advanced features of iPhones and the benefits of using them. The advertisements will be placed on various platforms, including social media, television, and billboards. 2. Product Demonstrations Product demonstrations will be held at Apple stores and other retail outlets to allow potential customers to experience the advanced features of iPhones. This will help people make informed decisions about their next smartphone. 3. Referral Program A referral program will be launched to encourage existing customers to refer their friends to the brand. This will help to attract new customers and retain existing ones. 4. Content Marketing Content marketing will be used to create and share valuable content that will be useful to potential customers. This will include tutorials, guides, and other content that will help people make informed decisions about their next smartphone. Conclusion In conclusion, this marketing plan will help Apple achieve its goals of increasing brand awareness and demand for its products. The tactics employed in this plan will help to attract new customers and retain existing ones by creating a strong relationship with the brand. ``` ## 限制 在当前基础模型和数据训练的模型中仍存在一些问题: 1. 当要求遵循与事实相关的指令时,模型可能会生成事实错误。 2. 由于模型仍然难以识别潜在的有害指令,偶尔会生成有害的回应。 3. 在推理和编码方面仍然需要改进 由于模型仍然存在限制,我们要求开发者只能将开源代码、数据、模型以及通过该项目生成的其他任何成果用于研究目的。不允许商业用途和其他潜在有害的使用场景。
morokosi/q-FrozenLake-v1-4x4-noSlippery
morokosi
2023-06-15T02:59:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T02:59:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="morokosi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
casque/majicmixRealistic_v6
casque
2023-06-15T02:39:57Z
0
7
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T02:22:35Z
--- license: creativeml-openrail-m ---
Sogangina/230615_wnut_model
Sogangina
2023-06-15T02:35:17Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-15T02:28:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: 230615_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5184534270650264 - name: Recall type: recall value: 0.27340129749768305 - name: F1 type: f1 value: 0.3580097087378641 - name: Accuracy type: accuracy value: 0.939848659740926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 230615_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2816 - Precision: 0.5185 - Recall: 0.2734 - F1: 0.3580 - Accuracy: 0.9398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2876 | 0.3942 | 0.2141 | 0.2775 | 0.9363 | | No log | 2.0 | 426 | 0.2816 | 0.5185 | 0.2734 | 0.3580 | 0.9398 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
gokuls/add_BERT_no_pretrain_mnli
gokuls
2023-06-15T02:32:17Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T09:50:23Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: add_BERT_no_pretrain_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.3522172497965826 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # add_BERT_no_pretrain_mnli This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.0984 - Accuracy: 0.3522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1024 | 1.0 | 3068 | 1.0987 | 0.3182 | | 1.0997 | 2.0 | 6136 | 1.0986 | 0.3274 | | 1.0988 | 3.0 | 9204 | 1.0984 | 0.3545 | | 1.0987 | 4.0 | 12272 | 1.0986 | 0.3545 | | 1.0986 | 5.0 | 15340 | 1.0986 | 0.3545 | | 1.0987 | 6.0 | 18408 | 1.0986 | 0.3274 | | 1.0986 | 7.0 | 21476 | 1.0986 | 0.3274 | | 1.0986 | 8.0 | 24544 | 1.0986 | 0.3274 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
hw2942/bert-base-chinese-finetuning-financial-news-sentiment-test
hw2942
2023-06-15T02:05:24Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "finance", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T01:37:20Z
--- language: - zh widget: - text: 沪指收报3233.67点,涨0.15%,成交额3772亿元 - text: 中国5月新增社融和新增人民币贷款均较去年同期下降,社融新增1.56万亿元,居民中长期贷款增加1684亿元,居民存款增加5364亿元,M2-M1剪刀差缩窄 - text: 人民币兑美元中间价报7.1498,下调286点 - text: 发改委等八部门:支持符合条件的产教融合型企业上市融资 tags: - generated_from_trainer - finance metrics: - accuracy model-index: - name: bert-base-chinese-finetuning-financial-news-sentiment-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuning-financial-news-sentiment-test This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7692 - Accuracy: 0.7964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.6425 | 0.7660 | | 0.4822 | 2.0 | 500 | 0.7692 | 0.7964 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation
ZhangCheng
2023-06-15T02:03:11Z
115
4
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "Question Generation", "en", "dataset:squad", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - squad tags: - Question Generation widget: - text: "<answer> T5v1.1 <context> Cheng fine-tuned T5v1.1 on SQuAD for question generation." example_title: "Example 1" - text: "<answer> SQuAD <context> Cheng fine-tuned T5v1.1 on SQuAD dataset for question generation." example_title: "Example 2" - text: "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio." example_title: "Example 3" --- # T5v1.1-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer:str, context:str): input_text = '<answer> %s <context> %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) outputs = self.model.generate( input_ids = input_ids, attention_mask = attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens = True, clean_up_tokenization_spaces = True ) return {'question': question, 'answer': answer} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5v1.1 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5v1.1 on SQuAD? ```
ZhangCheng/T5-Base-finetuned-for-Question-Generation
ZhangCheng
2023-06-15T02:00:56Z
176
14
transformers
[ "transformers", "pytorch", "tf", "safetensors", "t5", "text2text-generation", "Question Generation", "en", "dataset:squad", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - squad tags: - Question Generation widget: - text: "<answer> T5 <context> Cheng fine-tuned T5 on SQuAD for question generation." example_title: "Example 1" - text: "<answer> SQuAD <context> Cheng fine-tuned T5 on SQuAD dataset for question generation." example_title: "Example 2" - text: "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio." example_title: "Example 3" --- # T5-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self, model_dir=None): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer: str, context: str): input_text = '<answer> %s <context> %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True ) return {'question': question, 'answer': answer, 'context': context} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5 on SQuAD dataset for question generation? ```
gameofdimension/poca-SoccerTwos
gameofdimension
2023-06-15T01:54:21Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-06-14T13:17:27Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: felixdae/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
arminmrm93/q-FrozenLake-v1-4x4-noSlippery
arminmrm93
2023-06-15T01:38:07Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-15T01:38:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="arminmrm93/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
coreml-community/coreml-lyriel_v16
coreml-community
2023-06-15T01:28:41Z
0
6
null
[ "coreml", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-23T01:02:09Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image inference: true --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML). - Provide the model to an app such as **Mochi Diffusion** [Github](https://github.com/godly-devotion/MochiDiffusion) / [Discord](https://discord.gg/x2kartzxGv) to generate images. - `split_einsum` version is compatible with all compute unit options including Neural Engine. - `original` version is only compatible with `CPU & GPU` option. - Custom resolution versions are tagged accordingly. - The `vae-ft-mse-840000-ema-pruned.ckpt` VAE is embedded into the model. - This model was converted with a `vae-encoder` for use with `image2image`. - This model is `fp16`. - Descriptions are posted as-is from original model source. - Not all features and/or results may be available in `CoreML` format. - This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). - This model does not include a `safety checker` (for NSFW content).<br> # lyriel_v16 Source(s): [CivitAI](https://civitai.com/models/22922)<br> <img class="mantine-7aj0so" src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/c028d3fe-669c-44c0-9eac-b9d67f729492/width=450/00014-1261263585.jpeg" alt="00014-1261263585.png" style="max-height: 100%; max-width: 100%;"> <img class="mantine-7aj0so" src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/8aa5c19b-57a2-4a02-9a62-61320f459ef5/width=450/00008-3464469766.jpeg" alt="00008-3464469766.png" style="max-height: 100%; max-width: 100%;"> <img class="mantine-7aj0so" src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/95d66227-e6ac-4140-b187-355e111ee197/width=450/00018-2085175018.jpeg" alt="00018-2085175018.png" style="max-height: 100%; max-width: 100%;"> <img class="mantine-7aj0so" src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/21ac6b1e-ac11-4012-80d1-b0ea14951c5f/width=450/00029-1583775480.jpeg" alt="00029-1583775480.png" style="max-height: 100%; max-width: 100%;"> <img class="mantine-7aj0so" src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/8ce261c6-759d-46fc-b8c1-f4a46cb449d4/width=450/00023-376328055.jpeg" alt="00023-376328055.png" style="max-height: 100%; max-width: 100%;"> Hello, the model was created as an artistic style, the model can do almost anything, the main thing is to follow the promt, hands and eyes looks good for the most cases Model Information: This model is generally designed for portraits and full-length anime style photos. Fantastic landscapes are quite decent. And it doesn't require kilometer-long queries to get a high-quality result. Recommend: DPM++2M Karras, Clip skip 2 Sampler, Steps: 25-35+ This model would not have come out without XpucT's help, which made Deliberate If you have the desire and means to support future models, here you go: Advanced Cash - U 1281 8592 6885 , E 8642 3924 9315 , R 1339 7462 2915 PEYEER - P1075963156 I hope you like it, thanks for the feedback Hide
mannamvarun/image_denoising
mannamvarun
2023-06-15T00:55:43Z
0
1
null
[ "image-to-image", "en", "region:us" ]
image-to-image
2023-06-15T00:45:52Z
--- language: - en pipeline_tag: image-to-image --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Varun Mannam - **Shared by [optional]:** Varun Mannam - **Model type:** Image-to-image regression - **Language(s) (NLP):** [More Information Needed] - **License:** GPL - **Finetuned from model [optional]:** No need ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/ND-HowardGroup/Instant-Image-Denoising/tree/master/Plugins/Image_Denoising_Plugins_Journal - **Paper [optional]:** https://opg.optica.org/optica/fulltext.cfm?uri=optica-9-4-335&id=470659 - **Demo [optional]:** https://github.com/ND-HowardGroup/Instant-Image-Denoising/tree/master/Plugins/Model_validation
nolanaatama/shnhlrcllctnftrtrs
nolanaatama
2023-06-15T00:53:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T00:51:20Z
--- license: creativeml-openrail-m ---
bagassword21/mylina
bagassword21
2023-06-15T00:17:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T00:16:20Z
--- license: creativeml-openrail-m ---
AustinCarthy/OnlyPhishGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
AustinCarthy
2023-06-15T00:03:58Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-14T21:51:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: OnlyPhishGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OnlyPhishGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_OnlyPhishGPT2_using_phish_95K_top_p_0.75subdomain dataset. It achieves the following results on the evaluation set: - Loss: 0.0219 - Accuracy: 0.9978 - F1: 0.9769 - Precision: 0.9979 - Recall: 0.9568 - Roc Auc Score: 0.9783 - Tpr At Fpr 0.01: 0.9552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0063 | 1.0 | 21554 | 0.0127 | 0.9974 | 0.9725 | 0.9933 | 0.9526 | 0.9761 | 0.914 | | 0.0038 | 2.0 | 43108 | 0.0136 | 0.9977 | 0.9751 | 0.9940 | 0.957 | 0.9784 | 0.8992 | | 0.0015 | 3.0 | 64662 | 0.0147 | 0.9977 | 0.9755 | 0.9958 | 0.956 | 0.9779 | 0.9498 | | 0.001 | 4.0 | 86216 | 0.0123 | 0.9981 | 0.9798 | 0.9979 | 0.9624 | 0.9812 | 0.9622 | | 0.0 | 5.0 | 107770 | 0.0219 | 0.9978 | 0.9769 | 0.9979 | 0.9568 | 0.9783 | 0.9552 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
escaa/my_awesome_model
escaa
2023-06-14T23:59:46Z
65
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-13T14:19:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: escaa/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # escaa/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0804 - Validation Loss: 0.1653 - Train Accuracy: 0.9463 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 37500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2161 | 0.1680 | 0.9432 | 0 | | 0.1254 | 0.1625 | 0.9455 | 1 | | 0.0804 | 0.1653 | 0.9463 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
sdan/simple-embeddings
sdan
2023-06-14T23:42:54Z
5
0
transformers.js
[ "transformers.js", "onnx", "bert", "feature-extraction", "region:us" ]
feature-extraction
2023-06-14T23:40:03Z
--- library_name: "transformers.js" --- https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
peteozegov/q-Taxi-v3
peteozegov
2023-06-14T23:36:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-30T22:06:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 8.40 +/- 2.54 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="peteozegov/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```