modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 18:52:31
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 18:52:05
card
stringlengths
11
1.01M
huggingtweets/alivegirl001101-drilbot_neo-rusticgendarme
huggingtweets
2021-07-28T19:33:52Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/alivegirl001101-drilbot_neo-rusticgendarme/1627500827534/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416805116628422660/j0vQ8GP3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merzy & wintbot_neo & xoxo</div> <div style="text-align: center; font-size: 14px;">@alivegirl001101-drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merzy & wintbot_neo & xoxo. | Data | merzy | wintbot_neo | xoxo | | --- | --- | --- | --- | | Tweets downloaded | 2598 | 3244 | 2731 | | Retweets | 449 | 218 | 574 | | Short tweets | 440 | 271 | 812 | | Tweets kept | 1709 | 2755 | 1345 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3600xjfx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alivegirl001101-drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cv1jefk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cv1jefk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alivegirl001101-drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drilbot_neo-rusticgendarme
huggingtweets
2021-07-28T19:24:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drilbot_neo-rusticgendarme/1627500242288/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merzy & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merzy & wintbot_neo. | Data | merzy | wintbot_neo | | --- | --- | --- | | Tweets downloaded | 2598 | 3244 | | Retweets | 449 | 218 | | Short tweets | 440 | 271 | | Tweets kept | 1709 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33n6vv8i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Geotrend/distilbert-base-en-fr-nl-ru-ar-cased
Geotrend
2021-07-28T15:56:18Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-nl-ru-ar-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-nl-ru-ar-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-nl-ru-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
junnyu/roformer_paddle
junnyu
2021-07-28T14:47:01Z
0
0
null
[ "paddlepaddle", "region:us" ]
null
2022-03-02T23:29:05Z
# paddle paddle版本的RoFormer # 需要安装最新的paddlenlp `pip install git+https://github.com/PaddlePaddle/PaddleNLP.git` ## 预训练模型转换 预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整): 1. 从huggingface.co获取roformer模型权重 2. 设置参数运行convert.py代码 3. 例子: 假设我想转换https://huggingface.co/junnyu/roformer_chinese_base 权重 - (1)首先下载 https://huggingface.co/junnyu/roformer_chinese_base/tree/main 中的pytorch_model.bin文件,假设我们存入了`./roformer_chinese_base/pytorch_model.bin` - (2)运行convert.py ```bash python convert.py \ --pytorch_checkpoint_path ./roformer_chinese_base/pytorch_model.bin \ --paddle_dump_path ./roformer_chinese_base/model_state.pdparams ``` - (3)最终我们得到了转化好的权重`./roformer_chinese_base/model_state.pdparams` ## 预训练MLM测试 ### test_mlm.py ```python import paddle import argparse from paddlenlp.transformers import RoFormerForPretraining, RoFormerTokenizer def test_mlm(text, model_name): model = RoFormerForPretraining.from_pretrained(model_name) model.eval() tokenizer = RoFormerTokenizer.from_pretrained(model_name) tokens = ["[CLS]"] text_list = text.split("[MASK]") for i,t in enumerate(text_list): tokens.extend(tokenizer.tokenize(t)) if i==len(text_list)-1: tokens.extend(["[SEP]"]) else: tokens.extend(["[MASK]"]) input_ids_list = tokenizer.convert_tokens_to_ids(tokens) input_ids = paddle.to_tensor([input_ids_list]) with paddle.no_grad(): pd_outputs = model(input_ids)[0][0] pd_outputs_sentence = "paddle: " for i, id in enumerate(input_ids_list): if id == tokenizer.convert_tokens_to_ids(["[MASK]"])[0]: tokens = tokenizer.convert_ids_to_tokens(pd_outputs[i].topk(5)[1].tolist()) pd_outputs_sentence += "[" + "||".join(tokens) + "]" else: pd_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pd_outputs_sentence) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="roformer-chinese-base", type=str, help="Pretrained roformer name or path." ) parser.add_argument( "--text", default="今天[MASK]很好,我想去公园玩!", type=str, help="MLM text." ) args = parser.parse_args() test_mlm(text=args.text, model_name=args.model_name) ``` ### 输出 ```bash python test_mlm.py --model_name roformer-chinese-base --text 今天[MASK]很好,我想去公园玩! # paddle: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! python test_mlm.py --model_name roformer-chinese-base --text 北京是[MASK]的首都! # paddle: 北京是[中国||谁||中华人民共和国||我们||中华民族]的首都! python test_mlm.py --model_name roformer-chinese-char-base --text 今天[MASK]很好,我想去公园玩! # paddle: 今天[天||气||都||风||人]很好,我想去公园玩! python test_mlm.py --model_name roformer-chinese-char-base --text 北京是[MASK]的首都! # paddle: 北京是[谁||我||你||他||国]的首都! ```
Geotrend/distilbert-base-en-fr-uk-el-ro-cased
Geotrend
2021-07-28T13:34:16Z
4
1
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-uk-el-ro-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-uk-el-ro-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-uk-el-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
ml6team/byt5-base-dutch-ocr-correction
ml6team
2021-07-28T11:32:17Z
42
10
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# ByT5 Dutch OCR Correction This model is a finetuned byT5 model that corrects OCR mistakes found in dutch sentences. The [google/byt5-base](https://huggingface.co/google/byt5-base) model is finetuned on the dutch section of the [OSCAR](https://huggingface.co/datasets/oscar) dataset. ## Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration example_sentence = "Ben algoritme dat op ba8i8 van kunstmatige inte11i9entie vkijwel geautomatiseerd een tekst herstelt met OCR fuuten." tokenizer = AutoTokenizer.from_pretrained('ml6team/byt5-base-dutch-ocr-correction') model_inputs = tokenizer(example_sentence, max_length=128, truncation=True, return_tensors="pt") model = T5ForConditionalGeneration.from_pretrained('ml6team/byt5-base-dutch-ocr-correction') outputs = model.generate(**model_inputs, max_length=128) tokenizer.decode(outputs[0]) ```
huggingtweets/unmoglich1
huggingtweets
2021-07-28T09:14:47Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/unmoglich1/1627463682494/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1331298219649863680/tYy8-h_2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">unmoglich</div> <div style="text-align: center; font-size: 14px;">@unmoglich1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from unmoglich. | Data | unmoglich | | --- | --- | | Tweets downloaded | 1176 | | Retweets | 108 | | Short tweets | 267 | | Tweets kept | 801 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1til0km9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @unmoglich1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1j7um5zj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1j7um5zj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/unmoglich1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MYX4567/distilbert-base-uncased-finetuned-squad
MYX4567
2021-07-28T08:07:15Z
42
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: distilbert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2177 | 1.0 | 5533 | 1.1565 | | 0.9472 | 2.0 | 11066 | 1.1174 | | 0.7634 | 3.0 | 16599 | 1.1520 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
huggingtweets/mickyrourk
huggingtweets
2021-07-28T04:38:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mickyrourk/1627447046714/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419815374904770561/Qal6NB91_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Micky Rourk</div> <div style="text-align: center; font-size: 14px;">@mickyrourk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Micky Rourk. | Data | Micky Rourk | | --- | --- | | Tweets downloaded | 2139 | | Retweets | 194 | | Short tweets | 73 | | Tweets kept | 1872 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1buf25n4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mickyrourk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2thme21b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2thme21b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mickyrourk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drwrightquotes-nickszabo4-s__nakamoto
huggingtweets
2021-07-28T03:53:26Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drwrightquotes-nickszabo4-s__nakamoto/1627444323672/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/677459045918314496/satUWUbV_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256199289476272131/JWhrljdS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362597154578075648/2WBy5DJd_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dorian Nakamoto & Craig Wright Quotes & Nick Szabo</div> <div style="text-align: center; font-size: 14px;">@drwrightquotes-nickszabo4-s__nakamoto</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dorian Nakamoto & Craig Wright Quotes & Nick Szabo. | Data | Dorian Nakamoto | Craig Wright Quotes | Nick Szabo | | --- | --- | --- | --- | | Tweets downloaded | 3166 | 316 | 3121 | | Retweets | 1419 | 0 | 1519 | | Short tweets | 650 | 62 | 71 | | Tweets kept | 1097 | 254 | 1531 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18sunueo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drwrightquotes-nickszabo4-s__nakamoto's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3203umr9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3203umr9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drwrightquotes-nickszabo4-s__nakamoto') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MYX4567/gpt2-wikitext2
MYX4567
2021-07-28T03:42:36Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - null model_index: - name: gpt2-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7523 | 1.0 | 2249 | 6.6652 | | 6.4134 | 2.0 | 4498 | 6.3987 | | 6.2507 | 3.0 | 6747 | 6.3227 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Alireza1044/albert-base-v2-qqp
Alireza1044
2021-07-28T02:04:17Z
14
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metric: name: F1 type: f1 value: 0.8722569490623753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qqp This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3695 - Accuracy: 0.9050 - F1: 0.8723 - Combined Score: 0.8886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Alireza1044/albert-base-v2-mnli
Alireza1044
2021-07-27T21:10:33Z
51
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metric: name: Accuracy type: accuracy value: 0.8500813669650122 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5383 - Accuracy: 0.8501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
osanseviero/hubert-sd
osanseviero
2021-07-27T18:04:54Z
0
0
superb
[ "superb", "speaker-diarization", "benchmark:superb", "speech-segmentation", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - superb - speaker-diarization - benchmark:superb library_name: superb pipeline_tag: speech-segmentation --- # Test for superb using hubert downstream SD ## Usage ```python import io import soundfile as sf from urllib.request import urlopen from model import PreTrainedModel model = PreTrainedModel() url = "https://huggingface.co/datasets/lewtun/s3prl-sd-dummy/raw/main/audio.wav" data, samplerate = sf.read(io.BytesIO(urlopen(url).read())) print(model(data)) ```
Alireza1044/albert-base-v2-qnli
Alireza1044
2021-07-27T15:39:56Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metric: name: Accuracy type: accuracy value: 0.9137836353651839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3608 - Accuracy: 0.9138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
nikokons/conversational-agent-el
nikokons
2021-07-27T13:42:02Z
12
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## Dataset: A variant of the Persona-Chat dataset was used, which contains 19319 short dialogues. MarianMT, a free and efficient Neural Machine Translation framework, was used to translate this dataset into Greek. ## Fine-tuning for the task of dialogue: Using the pre-trained "gpt2-greek" (https://huggingface.co/nikokons/gpt2-greek) model, we fine-tune it on this Greek version of translated Persona-Chat dataset for 3 epochs until there is no progress in validation loss. The model's input is customized to the Greek version of the PERSONA-CHAT dataset to perform the fine-tuning procedure. A batch size of 4 is used, and gradients are accumulated over 8 iterations, resulting in a total batch size of 32. The Adam optimization scheme is used, with a learning rate of 5.7e-5. The fine-tuning procedure is based on the https://github.com/huggingface/transfer-learning-conv-ai repository. ## Interact with the Chatbot: You can interact with the chatbot in Greek using the code in this repository: https://github.com/Nkonstan/chatbot
mujerry/bert-base-uncased-finetuned-QnA
mujerry
2021-07-27T13:30:46Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-finetuned-QnA results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-QnA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 3.4894 | | No log | 2.0 | 40 | 3.5654 | | No log | 3.0 | 60 | 3.3185 | | No log | 4.0 | 80 | 3.2859 | | No log | 5.0 | 100 | 3.2947 | | No log | 6.0 | 120 | 3.3998 | | No log | 7.0 | 140 | 3.1642 | | No log | 8.0 | 160 | 3.2653 | | No log | 9.0 | 180 | 3.3427 | | No log | 10.0 | 200 | 3.3549 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
osanseviero/hubert_base
osanseviero
2021-07-27T10:38:14Z
0
2
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Base Hubert model (~95M params) Source: https://github.com/pytorch/fairseq/tree/master/examples/hubert
andi611/distilbert-base-uncased-squad2-with-ner-with-neg
andi611
2021-07-27T07:50:09Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
amankhandelia/panini
amankhandelia
2021-07-27T07:13:15Z
6
0
transformers
[ "transformers", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- widget: - text: "मुझे उनसे बात करना <mask> अच्छा लगा" - text: "हम आपके सुखद <mask> की कामना करते हैं" - text: "सभी अच्छी चीजों का एक <mask> होता है" --- # RoBERTa base model for Hindi language Pretrained model on Hindi language using a masked language modeling (MLM) objective. [A more interactive & comparison demo is available here](https://huggingface.co/spaces/flax-community/roberta-hindi). > This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/pretrain-roberta-from-scratch-in-hindi/7091), organized by [Hugging Face](https://huggingface.co/) and TPU usage sponsored by Google. ## Model description RoBERTa Hindi is a transformers model pretrained on a large corpus of Hindi data(a combination of **mc4, oscar and indic-nlp** datasets) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='flax-community/roberta-hindi') >>> unmasker("हम आपके सुखद <mask> की कामना करते हैं") [{'score': 0.3310680091381073, 'sequence': 'हम आपके सुखद सफर की कामना करते हैं', 'token': 1349, 'token_str': ' सफर'}, {'score': 0.15317578613758087, 'sequence': 'हम आपके सुखद पल की कामना करते हैं', 'token': 848, 'token_str': ' पल'}, {'score': 0.07826550304889679, 'sequence': 'हम आपके सुखद समय की कामना करते हैं', 'token': 453, 'token_str': ' समय'}, {'score': 0.06304813921451569, 'sequence': 'हम आपके सुखद पहल की कामना करते हैं', 'token': 404, 'token_str': ' पहल'}, {'score': 0.058322224766016006, 'sequence': 'हम आपके सुखद अवसर की कामना करते हैं', 'token': 857, 'token_str': ' अवसर'}] ``` ## Training data The RoBERTa Hindi model was pretrained on the reunion of the following datasets: - [OSCAR](https://huggingface.co/datasets/oscar) is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. - [mC4](https://huggingface.co/datasets/mc4) is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. - [IndicGLUE](https://indicnlp.ai4bharat.org/indic-glue/) is a natural language understanding benchmark. - [Samanantar](https://indicnlp.ai4bharat.org/samanantar/) is a parallel corpora collection for Indic language. - [Hindi Text Short and Large Summarization Corpus](https://www.kaggle.com/disisbig/hindi-text-short-and-large-summarization-corpus) is a collection of ~180k articles with their headlines and summary collected from Hindi News Websites. - [Hindi Text Short Summarization Corpus](https://www.kaggle.com/disisbig/hindi-text-short-summarization-corpus) is a collection of ~330k articles with their headlines collected from Hindi News Websites. - [Old Newspapers Hindi](https://www.kaggle.com/crazydiv/oldnewspapershindi) is a cleaned subset of HC Corpora newspapers. ## Training procedure ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>`. - We had to perform cleanup of **mC4** and **oscar** datasets by removing all non hindi (non Devanagari) characters from the datasets. - We tried to filter out evaluation set of WikiNER of [IndicGlue](https://indicnlp.ai4bharat.org/indic-glue/) benchmark by [manual labelling](https://github.com/amankhandelia/roberta_hindi/blob/master/wikiner_incorrect_eval_set.csv) where the actual labels were not correct and modifying the [downstream evaluation dataset](https://github.com/amankhandelia/roberta_hindi/blob/master/utils.py). The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores).A randomized shuffle of combined dataset of **mC4, oscar** and other datasets listed above was used to train the model. Training logs are present in [wandb](https://wandb.ai/wandb/hf-flax-roberta-hindi). ## Evaluation Results RoBERTa Hindi is evaluated on various downstream tasks. The results are summarized below. | Task | Task Type | IndicBERT | HindiBERTa | Indic Transformers Hindi BERT | RoBERTa Hindi Guj San | RoBERTa Hindi | |-------------------------|----------------------|-----------|------------|-------------------------------|-----------------------|---------------| | BBC News Classification | Genre Classification | **76.44** | 66.86 | **77.6** | 64.9 | 73.67 | | WikiNER | Token Classification | - | 90.68 | **95.09** | 89.61 | **92.76** | | IITP Product Reviews | Sentiment Analysis | **78.01** | 73.23 | **78.39** | 66.16 | 75.53 | | IITP Movie Reviews | Sentiment Analysis | 60.97 | 52.26 | **70.65** | 49.35 | **61.29** | ## Team Members - Aman K ([amankhandelia](https://huggingface.co/amankhandelia)) - Haswanth Aekula ([hassiahk](https://huggingface.co/hassiahk)) - Kartik Godawat ([dk-crazydiv](https://huggingface.co/dk-crazydiv)) - Prateek Agrawal ([prateekagrawal](https://huggingface.co/prateekagrawal)) - Rahul Dev ([mlkorra](https://huggingface.co/mlkorra)) ## Credits Huge thanks to Hugging Face 🤗 & Google Jax/Flax team for such a wonderful community week, especially for providing such massive computing resources. Big thanks to [Suraj Patil](https://huggingface.co/valhalla) & [Patrick von Platen](https://huggingface.co/patrickvonplaten) for mentoring during the whole week. <img src=https://pbs.twimg.com/media/E443fPjX0AY1BsR.jpg:medium>
m3hrdadfi/hubert-base-persian-speech-emotion-recognition
m3hrdadfi
2021-07-27T06:12:21Z
72
2
transformers
[ "transformers", "pytorch", "hubert", "audio", "speech", "speech-emotion-recognition", "fa", "dataset:ShEMO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: fa datasets: - ShEMO tags: - audio - speech - speech-emotion-recognition license: apache-2.0 --- # Emotion Recognition in Persian (fa) Speech using HuBERT ## How to use ### Requirements ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ``` ```bash !git clone https://github.com/m3hrdadfi/soxan.git . ``` ### Prediction ```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification import librosa import IPython.display as ipd import numpy as np import pandas as pd ``` ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "m3hrdadfi/hubert-base-persian-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` ```python path = "/path/to/sadness.wav" outputs = predict(path, sampling_rate) ``` ```bash [ {'Label': 'Anger', 'Score': '0.0%'}, {'Label': 'Fear', 'Score': '0.0%'}, {'Label': 'Happiness', 'Score': '0.0%'}, {'Label': 'Neutral', 'Score': '0.0%'}, {'Label': 'Sadness', 'Score': '99.9%'}, {'Label': 'Surprise', 'Score': '0.0%'} ] ``` ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | Emotions | precision | recall | f1-score | accuracy | |:---------:|:---------:|:------:|:--------:|:--------:| | Anger | 0.96 | 0.96 | 0.96 | | | Fear | 1.00 | 0.50 | 0.67 | | | Happiness | 0.79 | 0.87 | 0.83 | | | Neutral | 0.93 | 0.94 | 0.93 | | | Sadness | 0.87 | 0.94 | 0.91 | | | Surprise | 0.97 | 0.75 | 0.85 | | | | | | Overal | 0.92 | ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).
Edomonndo/opus-mt-en-ro-finetuned-en-to-ro
Edomonndo
2021-07-27T05:34:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model_index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metric: name: Bleu type: bleu value: 28.1641 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1641 - Gen Len: 34.1071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7436 | 1.0 | 38145 | 1.2886 | 28.1641 | 34.1071 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
lewtun/s3prl-sd-hubert-dummy
lewtun
2021-07-26T23:43:52Z
0
0
superb
[ "superb", "speaker-diarization", "benchmark:superb", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - superb - speaker-diarization - benchmark:superb library_name: superb --- # Test for superb using hubert downstream SD ## Usage ```python import io import soundfile as sf from urllib.request import urlopen from model import PreTrainedModel model = PreTrainedModel() url = "https://huggingface.co/datasets/lewtun/s3prl-sd-dummy/raw/main/audio.wav" data, samplerate = sf.read(io.BytesIO(urlopen(url).read())) print(model(data)) ```
bayartsogt/structbert-large
bayartsogt
2021-07-26T21:15:28Z
9
6
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:1908.04577", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# StructBERT: Un-Official Copy Official Repository Link: https://github.com/alibaba/AliceMind/tree/main/StructBERT **Claimer** * This model card is not produced by [AliceMind Team](https://github.com/alibaba/AliceMind/) ## Reproduce HFHub models: Download model/tokenizer vocab ```bash wget https://raw.githubusercontent.com/alibaba/AliceMind/main/StructBERT/config/large_bert_config.json && mv large_bert_config.json config.json wget https://raw.githubusercontent.com/alibaba/AliceMind/main/StructBERT/config/vocab.txt wget https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/StructBERT/en_model && mv en_model pytorch_model.bin ``` ```python from transformers import AutoConfig, AutoModelForMaskedLM, AutoTokenizer config = AutoConfig.from_pretrained("./config.json") model = AutoModelForMaskedLM.from_pretrained(".", config=config) tokenizer = AutoTokenizer.from_pretrained(".", config=config) model.push_to_hub("structbert-large") tokenizer.push_to_hub("structbert-large") ``` [https://arxiv.org/abs/1908.04577](https://arxiv.org/abs/1908.04577) # StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding ## Introduction We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. ## Pre-trained models |Model | Description | #params | Download | |------------------------|-------------------------------------------|------|------| |structbert.en.large | StructBERT using the BERT-large architecture | 340M | [structbert.en.large](https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/StructBERT/en_model) | |structroberta.en.large | StructRoBERTa continue training from RoBERTa | 355M | Coming soon | |structbert.ch.large | Chinese StructBERT; BERT-large architecture | 330M | [structbert.ch.large](https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/StructBERT/ch_model) | ## Results The results of GLUE & CLUE tasks can be reproduced using the hyperparameters listed in the following "Example usage" section. #### structbert.en.large [GLUE benchmark](https://gluebenchmark.com/leaderboard) |Model| MNLI | QNLIv2 | QQP | SST-2 | MRPC | |--------------------|-------|-------|-------|-------|-------| |structbert.en.large |86.86% |93.04% |91.67% |93.23% |86.51% | #### structbert.ch.large [CLUE benchmark](https://www.cluebenchmarks.com/) |Model | CMNLI | OCNLI | TNEWS | AFQMC | |--------------------|-------|-------|-------|-------| |structbert.ch.large |84.47% |81.28% |68.67% |76.11% | ## Example usage #### Requirements and Installation * [PyTorch](https://pytorch.org/) version >= 1.0.1 * Install other libraries via ``` pip install -r requirements.txt ``` * For faster training install NVIDIA's [apex](https://github.com/NVIDIA/apex) library #### Finetune MNLI ``` python run_classifier_multi_task.py \ --task_name MNLI \ --do_train \ --do_eval \ --do_test \ --amp_type O1 \ --lr_decay_factor 1 \ --dropout 0.1 \ --do_lower_case \ --detach_index -1 \ --core_encoder bert \ --data_dir path_to_glue_data \ --vocab_file config/vocab.txt \ --bert_config_file config/large_bert_config.json \ --init_checkpoint path_to_pretrained_model \ --max_seq_length 128 \ --train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --fast_train \ --gradient_accumulation_steps 1 \ --output_dir path_to_output_dir ``` ## Citation If you use our work, please cite: ``` @article{wang2019structbert, title={Structbert: Incorporating language structures into pre-training for deep language understanding}, author={Wang, Wei and Bi, Bin and Yan, Ming and Wu, Chen and Bao, Zuyi and Xia, Jiangnan and Peng, Liwei and Si, Luo}, journal={arXiv preprint arXiv:1908.04577}, year={2019} } ```
sgugger/esberto-small
sgugger
2021-07-26T20:53:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "dataset:oscar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - oscar model_index: - name: esberto-small results: - task: name: Masked Language Modeling type: fill-mask dataset: name: oscar type: oscar args: unshuffled_original_eo --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esberto-small This model is a fine-tuned version of [](https://huggingface.co/) on the oscar dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.10.3.dev0 - Tokenizers 0.10.3
vasudevgupta/bigbird-roberta-base
vasudevgupta
2021-07-26T17:30:39Z
5
0
transformers
[ "transformers", "pytorch", "big_bird", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Moved here: https://huggingface.co/google/bigbird-roberta-base
nishmithaur/distilbert-base-uncased-finetuned-ner
nishmithaur
2021-07-26T14:59:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2377 | 1.0 | 878 | 0.0711 | | 0.0514 | 2.0 | 1756 | 0.0637 | | 0.031 | 3.0 | 2634 | 0.0623 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
flax-community/gpt-neo-125M-code-clippy
flax-community
2021-07-26T14:07:46Z
13
10
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt_neo", "text-generation", "arxiv:2107.03374", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT-Neo-125M-Code-Clippy > **Please refer to our new [GitHub Wiki](https://github.com/ncoop57/gpt-code-clippy/wiki) which documents our efforts in detail in creating the open source version of GitHub Copilot** ## Model Description GPT-Neo-125M-Code-Clippy is a [GPT-Neo-125M model](https://huggingface.co/EleutherAI/gpt-neo-125M) finetuned using causal language modeling on our version of the Code Clippy Data dataset that has duplicates, which was scraped from public Github repositories (more information in the provided link). This model is specialized to autocomplete methods in multiple programming languages. As discussed in OpenAI's [Codex paper](https://arxiv.org/abs/2107.03374), we modified the GPT-Neo model and tokenizer to accommodate for additional whitespace characters. Specifically, we add the following tokens `["\t\t", " ", " ", " "]` and since they are all related to indentation, we initialize the embedding layer of these tokens with the same weights as the `\t` token already present in the model in hopes the model will learn to associate these whitespace characters with indentation faster. A script to automatically do this can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/utilities/add_new_tokens.py). ## Training data [Code Clippy Data dataset](https://the-eye.eu/public/AI/training_data/code_clippy_data/code_clippy_dedup_data/). ## Training procedure The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/run_clm_streaming_flax.py). To reproduce the training one can use this command with the above script: ```bash ./run_clm_streaming_flax.py \ --output_dir $HOME/gpt-neo-125M-code-clippy \ --model_name_or_path="flax-community/gpt-neo-125M-code-clippy" \ --dataset_name $HOME/gpt-code-clippy/data_processing/code_clippy.py \ --data_dir /home/shared/code_clippy_data \ --text_column_name="text" \ --do_train --do_eval \ --block_size="2048" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="16" \ --preprocessing_num_workers="8" \ --learning_rate="1e-4" \ --max_steps 100000 \ --warmup_steps 2500 \ --decay_steps 25000 \ --adam_beta1="0.9" \ --adam_beta2="0.95" \ --weight_decay="0.1" \ --overwrite_output_dir \ --logging_steps="100" \ --eval_steps="500" \ --push_to_hub="False" \ --report_to="all" \ --dtype="bfloat16" \ --skip_memory_metrics="True" \ --save_steps="500" \ --save_total_limit 10 \ --gradient_accumulation_steps 16 \ --report_to="wandb" \ --run_name="125m_1e-4lr_1024bs" \ --max_eval_samples 2000 \ --save_optimizer true ``` ## Intended Use and Limitations The model is finetuned on text files from github repositories (mostly programming languages but also markdown and other project related files). ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-neo-125M-code-clippy") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-neo-125M-code-clippy") prompt = """def greet(name): '''A function to greet user. Given a user name it should say hello''' """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of quality of generated code. The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** This model may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using this language model. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed on the datase this model is trained on. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, this model may generate vulnerable, buggy, or malicious code. In safety critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, this model may be able to be used to generate malicious code on purpose in order to perform ransomware or other such attacks. 4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there has been little to no previous cases of such usages of licensed publicly available code. Therefore, any code generated with this model may be required to obey license terms that align with the software it was trained on such as GPL-3.0. It is unclear the legal ramifications of using a language model trained on this dataset. 5. **Biases:** The programming languages most represented in the dataset this model was trained on are Javascript and Python. Therefore, other, still popular languages such as C and C++, are less represented and therefore the models performance for these languages will be less comparatively. Additionally, this dataset only contains public repositories and so the model may not generate code that is representative of code written by private developers. No filtering was performed for potential racist, offensive, or otherwise inappropriate content. Therefore, this model may reflect such biases in its generation. GPT-Neo-125M-Code-Clippy is finetuned from GPT-Neo and might have inherited biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Eval results Coming soon...
flax-community/gpt-neo-125M-code-clippy-dedup
flax-community
2021-07-26T14:07:29Z
6
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt_neo", "text-generation", "arxiv:2107.03374", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT-Neo-125M-Code-Clippy-Dedup > **Please refer to our new [GitHub Wiki](https://github.com/ncoop57/gpt-code-clippy/wiki) which documents our efforts in detail in creating the open source version of GitHub Copilot** ## Model Description PT-Neo-125M-Code-Clippy-Dedup is a [GPT-Neo-125M model](https://huggingface.co/EleutherAI/gpt-neo-125M) finetuned using causal language modeling on our deduplicated version of the Code Clippy Data dataset, which was scraped from public Github repositories (more information in the provided link). This model is specialized to autocomplete methods in multiple programming languages. ## Training data [Code Clippy Data dataset](https://huggingface.co/datasets/code_search_net). ## Training procedure In this model's training we tried to stabilize the training by limiting the types of files we were using to train to only those that contained file extensions for popular programming languages as our dataset contains other types of files as well such as `.txt` or project configuration files. We used the following extensions to filter by: The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/run_clm_streaming_filter_flax.py). ```bash ./run_clm_streaming_filter_flax.py \ --output_dir $HOME/gpt-neo-125M-code-clippy-dedup \ --model_name_or_path="EleutherAI/gpt-neo-125M" \ --dataset_name $HOME/gpt-code-clippy/data_processing/code_clippy_filter.py \ --data_dir $HOME/code_clippy_data/code_clippy_dedup_data \ --text_column_name="text" \ --do_train --do_eval \ --block_size="2048" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="16" \ --preprocessing_num_workers="8" \ --learning_rate="1e-4" \ --max_steps 100000 \ --warmup_steps 2000 \ --decay_steps 30000 \ --adam_beta1="0.9" \ --adam_beta2="0.95" \ --weight_decay="0.1" \ --overwrite_output_dir \ --logging_steps="25" \ --eval_steps="500" \ --push_to_hub="False" \ --report_to="all" \ --dtype="bfloat16" \ --skip_memory_metrics="True" \ --save_steps="500" \ --save_total_limit 10 \ --gradient_accumulation_steps 16 \ --report_to="wandb" \ --run_name="gpt-neo-125M-code-clippy-dedup-filtered-no-resize-2048bs" \ --max_eval_samples 2000 \ --save_optimizer true ``` ## Intended Use and Limitations The model is finetuned text file from github repositories (mostly programming languages but also markdown and other project related files). ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-neo-125M-code-clippy-dedup") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-neo-125M-code-clippy-dedup") prompt = """def greet(name): '''A function to greet user. Given a user name it should say hello''' """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of quality of generated code. The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** This model may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using this language model. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed on the datase this model is trained on. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, this model may generate vulnerable, buggy, or malicious code. In safety critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, this model may be able to be used to generate malicious code on purpose in order to perform ransomware or other such attacks. 4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there has been little to no previous cases of such usages of licensed publicly available code. Therefore, any code generated with this model may be required to obey license terms that align with the software it was trained on such as GPL-3.0. It is unclear the legal ramifications of using a language model trained on this dataset. 5. **Biases:** The programming languages most represented in the dataset this model was trained on are Javascript and Python. Therefore, other, still popular languages such as C and C++, are less represented and therefore the models performance for these languages will be less comparatively. Additionally, this dataset only contains public repositories and so the model may not generate code that is representative of code written by private developers. No filtering was performed for potential racist, offensive, or otherwise inappropriate content. Therefore, this model may reflect such biases in its generation. GPT-Neo-125M-Code-Clippy-Dedup is finetuned from GPT-Neo and might have inherited biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Eval results Coming soon...
flax-community/gpt-neo-125M-code-search-py
flax-community
2021-07-26T14:06:51Z
6
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT-Code-Clippy-125M-Code-Search-Py > **Please refer to our new [GitHub Wiki](https://github.com/ncoop57/gpt-code-clippy/wiki) which documents our efforts in detail in creating the open source version of GitHub Copilot** ## Model Description GPT-CC-125M-Code-Search is a [GPT-Neo-125M model](https://huggingface.co/EleutherAI/gpt-neo-125M) finetuned using causal language modeling on only the python language in the [CodeSearchNet Challenge dataset](https://huggingface.co/datasets/code_search_net). This model is specialized to autocomplete methods in the python language. ## Training data [CodeSearchNet Challenge dataset](https://huggingface.co/datasets/code_search_net). ## Training procedure The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/run_clm_flax.py). ```bash ./run_clm_flax.py \ --output_dir $HOME/gpt-neo-125M-code-search-py \ --model_name_or_path="EleutherAI/gpt-neo-125M" \ --dataset_name code_search_net \ --dataset_config_name="python" \ --do_train --do_eval \ --block_size="512" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="64" \ --preprocessing_num_workers="8" \ --learning_rate="1.2e-4" \ --num_train_epochs 20 \ --warmup_steps 3000 \ --adam_beta1="0.9" \ --adam_beta2="0.95" \ --weight_decay="0.1" \ --overwrite_output_dir \ --logging_steps="25" \ --eval_steps="500" \ --push_to_hub="False" \ --report_to="all" \ --dtype="bfloat16" \ --skip_memory_metrics="True" \ --save_steps="500" \ --save_total_limit 10 \ --report_to="wandb" \ --run_name="gpt-neo-125M-code-search-py" ``` ## Intended Use and Limitations The model is finetuned methods from the python language and is intended to autocomplete python methods given some prompt (method signature and docstring). ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-neo-125M-code-clippy-code-search-py") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-neo-125M-code-clippy-code-search-py") prompt = """def greet(name): '''A function to greet user. Given a user name it should say hello''' """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of quality of generated code. GPT-CC is finetuned from GPT-Neo and might have inherited biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Eval results Coming soon...
flax-community/gpt-neo-125M-code-clippy-dedup-scratch
flax-community
2021-07-26T14:03:36Z
4
0
transformers
[ "transformers", "jax", "tensorboard", "gpt_neo", "text-generation", "arxiv:2107.03374", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT-Code-Clippy-125M-from-Scratch > **Please refer to our new [GitHub Wiki](https://github.com/ncoop57/gpt-code-clippy/wiki) which documents our efforts in detail in creating the open source version of GitHub Copilot** ## Model Description GPT-CC-125M-from-Scratch is a [GPT-Neo-125M model](https://huggingface.co/EleutherAI/gpt-neo-125M) pretrained from scratch using causal language modeling on the [Code Clippy Post-deduplication dataset](https://the-eye.eu/public/AI/training_data/code_clippy_data/code_clippy_dedup_data/). The deduplication script can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/data_processing/deduplication/deduplication.py). Code Clippy was scraped from public Github repositories (more information in the provided link). This model is specialized to autocomplete methods in multiple programming languages. As discussed in OpenAI's [Codex paper](https://arxiv.org/abs/2107.03374), we modified the GPT-Neo model and tokenizer to accommodate for additional whitespace characters. Specifically, we add the following tokens `["\t\t", " ", " ", " "]` and since they are all related to indentation, we initialize the embedding layer of these tokens with the same weights as the `\t` token already present in the model in hopes the model will learn to associate these whitespace characters with indentation faster. A script to automatically do this can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/utilities/add_new_tokens.py). ## Training data [Code Clippy Deduplicated dataset](https://the-eye.eu/public/AI/training_data/code_clippy_data/code_clippy_dedup_data/). Python script of the dataset can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/data_processing/code_clippy.py) ## Training procedure The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/deprecated/run_clm_streaming_flax_v2.py). ```bash ./run_clm_streaming_flax_v2.py \ --output_dir $HOME/gpt-neo-125M-code-clippy-from-scratch \ --tokenizer_name="EleutherAI/gpt-neo-125M" \ --model_name_or_path="EleutherAI/gpt-neo-125M" \ --dataset_name $HOME/gpt-code-clippy/data_processing/code_clippy.py \ --data_dir /home/shared/code_clippy_data \ --do_train --do_eval \ --block_size="2048" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="16" \ --preprocessing_num_workers="8" \ --learning_rate="3e-5" \ --max_steps 100000 \ --warmup_steps 2500\ --decap_steps 25000 \ --adam_beta1="0.9" \ --adam_beta2="0.95" \ --weight_decay="0.1" \ --overwrite_output_dir \ --logging_steps="50" \ --eval_steps="500" \ --push_to_hub="False" \ --report_to="all" \ --dtype="bfloat16" \ --skip_memory_metrics="True" \ --save_steps="500" \ --save_total_limit 10 \ --report_to="wandb" \ --run_name="gpt-neo-125M-code-clippy-dedup-scratch" ``` ## Intended Use and Limitations The model is pre-trained and not finetuned for any particular use or a particular programming language. Due to time constraints, this model was only pre-trained on 1% of the Code Clippy Dataset. The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** This model may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using this language model. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed on the datase this model is trained on. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, this model may generate vulnerable, buggy, or malicious code. In safety critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, this model may be able to be used to generate malicious code on purpose in order to perform ransomware or other such attacks. 4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there has been little to no previous cases of such usages of licensed publicly available code. Therefore, any code generated with this model may be required to obey license terms that align with the software it was trained on such as GPL-3.0. It is unclear the legal ramifications of using a language model trained on this dataset. 5. **Biases:** The programming languages most represented in the dataset this model was trained on are Javascript and Python. Therefore, other, still popular languages such as C and C++, are less represented and therefore the models performance for these languages will be less comparatively. Additionally, this dataset only contains public repositories and so the model may not generate code that is representative of code written by private developers. No filtering was performed for potential racist, offensive, or otherwise inappropriate content. Therefore, this model may reflect such biases in its generation. GPT-Neo-125M-Code-Clippy is finetuned from GPT-Neo and might have inherited biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-neo-125M-code-clippy-dedup-scratch") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-neo-125M-code-clippy-dedup-scratch") prompt = """def greet(name): '''A function to greet user. Given a user name it should say hello''' """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of the quality of generated code. GPT-CC is finetuned from GPT-Neo and might have inherited biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Evaluation results Below is a table containing the base model we started from, and the model's performance on the [HumanEval Benchmark](https://github.com/openai/human-eval). | Model | Dataset Used | pass@1 | pass@2 | pass@5 | pass@10 | | --- | --- | :---------: | :---------: | :---------: | :---------: | | [gpt-neo-125M (**trained from scratch**)](https://huggingface.co/flax-community/gpt-neo-125M-code-clippy-dedup-scratch) | [Code Clippy Data (Deduplicated)](https://the-eye.eu/public/AI/training_data/code_clippy_data/code_clippy_dedup_data/) (~1% of the data) | 0.00% | 0.00% | 0.00% | 0.00% |
huggingtweets/unkledell
huggingtweets
2021-07-26T13:48:56Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/unkledell/1627307332006/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1199452477659238400/iMdWeVWZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">freeuzi</div> <div style="text-align: center; font-size: 14px;">@unkledell</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from freeuzi. | Data | freeuzi | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 138 | | Short tweets | 1159 | | Tweets kept | 1923 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ockzquq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @unkledell's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17ij2gx7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17ij2gx7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/unkledell') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Alireza1044/albert-base-v2-rte
Alireza1044
2021-07-26T12:02:09Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metric: name: Accuracy type: accuracy value: 0.6859205776173285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rte This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7994 - Accuracy: 0.6859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Alireza1044/albert-base-v2-stsb
Alireza1044
2021-07-26T10:57:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model_index: - name: stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metric: name: Spearmanr type: spearmanr value: 0.9050744778895732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stsb This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.3978 - Pearson: 0.9090 - Spearmanr: 0.9051 - Combined Score: 0.9071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
gabtan99/dialogpt-tagalog-medium-10
gabtan99
2021-07-26T10:19:09Z
15
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational - tagalog - filipino language: - tl --- # Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 10% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
ForutanRad/bert-fa-QA-v1
ForutanRad
2021-07-26T03:51:47Z
20
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "arxiv:2005.12515", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model_index: - name: bert-fa-QA-v1 results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fa-QA-v1 Persian Question and answer Model Based on Bert Model This model is a fine-tuned version of [ParsBERT](https://arxiv.org/abs/2005.12515) on PersianQA dataset. It achieves the following results on the evaluation set: - Loss: 1.7297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2563 | 1.0 | 1126 | 1.7222 | | 1.3372 | 2.0 | 2252 | 1.7297 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
boris/vqgan_f16_16384
boris
2021-07-26T03:13:37Z
11
4
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
## VQGAN-f16-16384 ### Model Description This is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor `f=16` and a vocabulary of `13,384` tokens. As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from [a checkpoint pre-trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/). * [Conceptual Captions 3M](https://ai.google.com/research/ConceptualCaptions/) (CC3M). * [OpenAI subset of YFCC100M](https://github.com/openai/CLIP/blob/main/data/yfcc100m.md). We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using [taming-transformers](https://github.com/CompVis/taming-transformers). The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used [this checkpoint](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887). * Fine-tuning, [Part 1](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T15-33-11_dalle_vqgan?workspace=user-borisd13). * Fine-tuning, [Part 2](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T21-42-07_dalle_vqgan?workspace=user-borisd13) – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card. * Conversion to JAX as [`flax-community/vqgan_f16_16384`](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The checkpoint can be loaded using Pytorch-Lightning. Note: `omegaconf==2.0.0` is required for loading the checkpoint. ### Related Models in the Hub * JAX version of VQGAN, trained on the same datasets described here: [`flax-community/vqgan_f16_16384`](https://huggingface.co/flax-community/vqgan_f16_16384). * [DALL·E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of [DALL·E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
flax-sentence-embeddings/stackoverflow_mpnet-base
flax-sentence-embeddings
2021-07-26T01:36:33Z
5,238
5
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # stackoverflow_mpnet-base This is a microsoft/mpnet-base model trained on 18,562,443 (title, body) pairs from StackOverflow. SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. 18,562,443 (title, body) pairs from StackOverflow was used as training data. For this model, mean pooling of hidden states were used as sentence embeddings. See data_config.json and train_script.py in this respository how the model was trained and which datasets have been used. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/stackoverflow_mpnet-base') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used 18,562,443 (title, body) pairs from StackOverflow as training data. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | StackOverflow title body pairs | - | 18,562,443 |
flax-sentence-embeddings/multi-qa_v1-mpnet-mean_cos
flax-sentence-embeddings
2021-07-26T01:35:19Z
10
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-qa_v1-mpnet-mean_cos ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of hidden states were used as sentence embeddings. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-mpnet-mean_cos') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
flax-sentence-embeddings/multi-qa_v1-distilbert-mean_cos
flax-sentence-embeddings
2021-07-26T01:34:46Z
155
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-qa_v1-distilbert-mean_cos ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, mean pooling of hidden states were used as sentence embeddings. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-distilbert-mean_cos') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
huggingtweets/cryptolith_-drilbot_neo-rusticgendarme
huggingtweets
2021-07-25T21:54:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cryptolith_-drilbot_neo-rusticgendarme/1627250043753/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419244584367005696/F5fnPoI1_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🔲🔳 & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🔲🔳 & wintbot_neo. | Data | merz | 🔲🔳 | wintbot_neo | | --- | --- | --- | --- | | Tweets downloaded | 2483 | 3223 | 3244 | | Retweets | 427 | 449 | 215 | | Short tweets | 419 | 1022 | 274 | | Tweets kept | 1637 | 1752 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i10strm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
flax-sentence-embeddings
2021-07-25T21:33:06Z
10
3
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-QA_v1-mpnet-asymmetric-A ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-A](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q
flax-sentence-embeddings
2021-07-25T21:32:52Z
7
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-QA_v1-mpnet-asymmetric-Q ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
huggingtweets/aimbotaimy-ladydarknest
huggingtweets
2021-07-25T20:33:04Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aimbotaimy-ladydarknest/1627245180529/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409725677495009283/RPVDIGan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-ladydarknest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Demon Lord Yeefi NSFW🔞 | | --- | --- | --- | | Tweets downloaded | 528 | 3242 | | Retweets | 61 | 957 | | Short tweets | 130 | 392 | | Tweets kept | 337 | 1893 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uz56dprc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-ladydarknest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1di7czlx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1di7czlx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-ladydarknest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/aimbotaimy-demi_naga-livingscribe
huggingtweets
2021-07-25T18:00:56Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aimbotaimy-demi_naga-livingscribe/1627235967135/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405364006475296773/0i4RCEH5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408966863804063749/fTuaNcZ__400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Poe's Law 🇷🇺: 3.33 You can (not) redo & Demi 'ドヤ顔' Naga</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-demi_naga-livingscribe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Poe's Law 🇷🇺: 3.33 You can (not) redo & Demi 'ドヤ顔' Naga. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Poe's Law 🇷🇺: 3.33 You can (not) redo | Demi 'ドヤ顔' Naga | | --- | --- | --- | --- | | Tweets downloaded | 497 | 3242 | 3234 | | Retweets | 60 | 433 | 909 | | Short tweets | 125 | 564 | 341 | | Tweets kept | 312 | 2245 | 1984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32v27r5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-demi_naga-livingscribe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qs4c0sr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qs4c0sr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-demi_naga-livingscribe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jackbutcher-paikcapital-thedankoe
huggingtweets
2021-07-25T16:41:39Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251200537388695557/96JxUIrJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384243878748856321/vreel6UH_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417910390051246080/wKq6pjPR_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DAN KOE & humble farmer & Jack Butcher</div> <div style="text-align: center; font-size: 14px;">@jackbutcher-paikcapital-thedankoe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from DAN KOE & humble farmer & Jack Butcher. | Data | DAN KOE | humble farmer | Jack Butcher | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3247 | 3220 | | Retweets | 18 | 601 | 208 | | Short tweets | 899 | 500 | 1048 | | Tweets kept | 2332 | 2146 | 1964 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mvqun4ol/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jackbutcher-paikcapital-thedankoe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qd8720q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qd8720q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jackbutcher-paikcapital-thedankoe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Alireza1044/albert-base-v2-cola
Alireza1044
2021-07-25T16:25:10Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5494768667363472 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cola This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7552 - Matthews Correlation: 0.5495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
flax-community/roberta-swahili
flax-community
2021-07-25T16:21:02Z
5
2
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "sw", "dataset:flax-community/swahili-safi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: sw widget: - text: "Si kila mwenye makucha <mask> simba." datasets: - flax-community/swahili-safi --- ## RoBERTa in Swahili This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("flax-community/roberta-swahili") model = AutoModelForMaskedLM.from_pretrained("flax-community/roberta-swahili") print(round((model.num_parameters())/(1000*1000)),"Million Parameters") 105 Million Parameters ``` #### **Training Data**: This model was trained on [Swahili Safi](https://huggingface.co/datasets/flax-community/swahili-safi) #### **Results**: [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1OIurb4J91X7461NQXLCCGzjeEGJq_Tyl?usp=sharing) ``` Eval metrics: {'f1': 86%} ``` This [model](https://huggingface.co/flax-community/roberta-swahili-news-classification) was fine-tuned based off this model for the [Zindi News Classification Challenge](https://zindi.africa/hackathons/ai4d-swahili-news-classification-challenge) #### **More Details**: For more details and Demo please check [HF Swahili Space](https://huggingface.co/spaces/flax-community/Swahili)
flax-community/bert-base-uncased-swahili
flax-community
2021-07-25T16:19:20Z
14
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "bert", "fill-mask", "sw", "dataset:flax-community/swahili-safi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: sw widget: - text: "Si kila mwenye makucha [MASK] simba." datasets: - flax-community/swahili-safi --- ## BERT base-uncased for in Swahili This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("flax-community/bert-base-uncased-swahili") model = AutoModelForMaskedLM.from_pretrained("flax-community/bert-base-uncased-swahili") print(round((model.num_parameters())/(1000*1000)),"Million Parameters") 110 Million Parameters ``` #### **Training Data**: This model was trained on [Swahili Safi](https://huggingface.co/datasets/flax-community/swahili-safi) #### **More Details**: For more details and Demo please check [HF Swahili Space](https://huggingface.co/spaces/flax-community/Swahili)
andi611/distilbert-base-uncased-squad2-with-ner
andi611
2021-07-25T14:29:48Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
vivekRahul/animal_classifier_huggingface
vivekRahul
2021-07-25T06:02:38Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal_classifier_huggingface results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9910714030265808 --- # animal_classifier_huggingface Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### elephant ![elephant](images/elephant.jpg) #### lion ![lion](images/lion.jpg) #### tiger ![tiger](images/tiger.jpg)
huggingtweets/clamtime-daramgaria-lazar181
huggingtweets
2021-07-25T04:12:46Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/clamtime-daramgaria-lazar181/1627186361489/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387170139599212547/6jVRvWgF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408716131867713538/rg3HSZ5D_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409230363906424832/67a8m2BA_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ari @ 😴 & clementine!!!! 𓃠 & Ho3K | Daramgar 🔜 CROSSxUP</div> <div style="text-align: center; font-size: 14px;">@clamtime-daramgaria-lazar181</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ari @ 😴 & clementine!!!! 𓃠 & Ho3K | Daramgar 🔜 CROSSxUP. | Data | Ari @ 😴 | clementine!!!! 𓃠 | Ho3K | Daramgar 🔜 CROSSxUP | | --- | --- | --- | --- | | Tweets downloaded | 3232 | 3185 | 3249 | | Retweets | 512 | 438 | 30 | | Short tweets | 590 | 720 | 805 | | Tweets kept | 2130 | 2027 | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/397xumbr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime-daramgaria-lazar181's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37plk0db) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37plk0db/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime-daramgaria-lazar181') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/aimbotaimy
huggingtweets
2021-07-25T03:52:26Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aimbotaimy/1627185142630/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | | --- | --- | | Tweets downloaded | 491 | | Retweets | 59 | | Short tweets | 125 | | Tweets kept | 307 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38rsh6x7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2sn41u12) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2sn41u12/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/celosia2
huggingtweets
2021-07-24T17:58:19Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/celosia2/1627149452177/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251490479990022145/lS6i5Wgy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Celosia2 🌻 Kristi 💚</div> <div style="text-align: center; font-size: 14px;">@celosia2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Celosia2 🌻 Kristi 💚. | Data | Celosia2 🌻 Kristi 💚 | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 613 | | Short tweets | 494 | | Tweets kept | 2140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ohtfdalm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @celosia2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/celosia2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sshakestation
huggingtweets
2021-07-24T17:44:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sshakestation/1627148673612/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390378853877510145/YdbZXqjN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RJ's Shake Station</div> <div style="text-align: center; font-size: 14px;">@sshakestation</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RJ's Shake Station. | Data | RJ's Shake Station | | --- | --- | | Tweets downloaded | 456 | | Retweets | 10 | | Short tweets | 28 | | Tweets kept | 418 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wszsjtre/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sshakestation's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k91nzds) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k91nzds/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sshakestation') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/raels_lamia
huggingtweets
2021-07-24T16:15:09Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/raels_lamia/1627143259544/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415784419382730760/zYiDbUBe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🐍 Krissssssy</div> <div style="text-align: center; font-size: 14px;">@raels_lamia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🐍 Krissssssy. | Data | 🐍 Krissssssy | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 1035 | | Short tweets | 509 | | Tweets kept | 1693 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3d0m12dk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @raels_lamia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b67w9oh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b67w9oh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/raels_lamia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lauradmcbryde
huggingtweets
2021-07-24T15:03:09Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lauradmcbryde/1627138961068/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384965601492353026/KlIO_YsH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laura D McBryde</div> <div style="text-align: center; font-size: 14px;">@lauradmcbryde</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laura D McBryde. | Data | Laura D McBryde | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 205 | | Short tweets | 453 | | Tweets kept | 2575 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ry0eljz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lauradmcbryde's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/g2wyxs4u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/g2wyxs4u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lauradmcbryde') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sultan/BioM-ELECTRA-Base-SQuAD2-BioASQ8B
sultan
2021-07-24T14:43:28Z
36
1
transformers
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description - This model is fine-tuned on the SQuAD2.0 dataset and then on the BioASQ8B-Factoid training dataset. We convert the BioASQ8B-Factoid training dataset to SQuAD1.1 format and train and evaluate our model (BioM-ELECTRA-Base-SQuAD2) on this dataset. - You can use this model to make a prediction (inference) directly without fine-tuning it. Try to enter a PubMed abstract in the context box in this model card and try out a couple of biomedical questions within the given context and see how it performs compared to ELECTRA original model. This model should also be useful for creating a pandemic QA system (e.g., COVID-19) . - Please note that this version (PyTorch) is different than what we used in our participation in BioASQ9B (TensorFlow with Layer-Wise Decay). We combine all five batches of the BioASQ8B testing dataset as one dev.json file. - Below is unofficial results of our models against the original ELECTRA base and large : | Model | Exact Match (EM) | F1 Score | | --- | --- | --- | | ELECTRA-Base-SQuAD2-BioASQ8B | 61.89 | 74.39 | | **BioM-ELECTRA-Base-SQuAD2-BioASQ8B** | **70.31** | **80.90** | | ELECTRA-Large-SQuAD2-BioASQ8B | 67.36 | 78.90 | | BioM-ELECTRA-Large-SQuAD2-BioASQ8B | 74.31 | 84.72 | Training script ```python python3 run_squad.py --model_type electra --model_name_or_path sultan/BioM-ELECTRA-Base-SQuAD2 \ --train_file BioASQ8B/train.json \ --predict_file BioASQ8B/dev.json \ --do_lower_case \ --do_train \ --do_eval \ --threads 20 \ --version_2_with_negative \ --num_train_epochs 3 \ --learning_rate 3e-5 \ --max_seq_length 512 \ --doc_stride 128 \ --per_gpu_train_batch_size 8 \ --gradient_accumulation_steps 2 \ --per_gpu_eval_batch_size 128 \ --logging_steps 50 \ --save_steps 5000 \ --fp16 \ --fp16_opt_level O1 \ --overwrite_output_dir \ --output_dir BioM-ELECTRA-Base-SQuAD-BioASQ \ --overwrite_cache ``` # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
TheLongSentance/t5-small-finetuned-xsum
TheLongSentance
2021-07-24T11:57:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model_index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metric: name: Rouge1 type: rouge value: 29.6452 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3833 - Rouge1: 29.6452 - Rouge2: 8.6953 - Rougel: 23.4474 - Rougelsum: 23.4553 - Gen Len: 18.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6051 | 1.0 | 102023 | 2.3833 | 29.6452 | 8.6953 | 23.4474 | 23.4553 | 18.8037 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
huggingtweets/rockdekorose
huggingtweets
2021-07-24T10:13:44Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/rockdekorose/1627121620759/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276444141690302464/JJQJ1a72_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vincent Damone Sean</div> <div style="text-align: center; font-size: 14px;">@rockdekorose</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vincent Damone Sean. | Data | Vincent Damone Sean | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 401 | | Short tweets | 1198 | | Tweets kept | 1646 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hxphkut/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rockdekorose's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hnejll8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hnejll8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rockdekorose') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/poss_em
huggingtweets
2021-07-24T05:28:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416065098745999364/LaFosSZA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Poss'em</div> <div style="text-align: center; font-size: 14px;">@poss_em</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Poss'em. | Data | Poss'em | | --- | --- | | Tweets downloaded | 245 | | Retweets | 26 | | Short tweets | 19 | | Tweets kept | 200 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fn04icv3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @poss_em's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1m889m52) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1m889m52/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/poss_em') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/realbenfishbein
huggingtweets
2021-07-24T05:27:00Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1349511600974278662/7v0yTYob_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ben Fishbein</div> <div style="text-align: center; font-size: 14px;">@realbenfishbein</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ben Fishbein. | Data | Ben Fishbein | | --- | --- | | Tweets downloaded | 261 | | Retweets | 8 | | Short tweets | 30 | | Tweets kept | 223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2idreqex/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @realbenfishbein's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3me55h26) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3me55h26/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/realbenfishbein') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dril-jdogmart-redfieldcooper
huggingtweets
2021-07-24T02:22:58Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dril-jdogmart-redfieldcooper/1627093373715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363680905215291399/Bl--YnLP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418244914597486594/nDL8WsU2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Jan Dogmart & Ronnie</div> <div style="text-align: center; font-size: 14px;">@dril-jdogmart-redfieldcooper</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Jan Dogmart & Ronnie. | Data | wint | Jan Dogmart | Ronnie | | --- | --- | --- | --- | | Tweets downloaded | 3229 | 1339 | 3238 | | Retweets | 464 | 107 | 586 | | Short tweets | 311 | 245 | 378 | | Tweets kept | 2454 | 987 | 2274 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ma9es8d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-jdogmart-redfieldcooper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/acu5gl39) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/acu5gl39/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-jdogmart-redfieldcooper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nipsithesciguy
huggingtweets
2021-07-24T00:27:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nipsithesciguy/1627086421551/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/994672771887230976/YNh3gRcP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🎄Bowman ⚡🎄🧬</div> <div style="text-align: center; font-size: 14px;">@nipsithesciguy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🎄Bowman ⚡🎄🧬. | Data | 🎄Bowman ⚡🎄🧬 | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 576 | | Short tweets | 309 | | Tweets kept | 2352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32ni4c07/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nipsithesciguy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xr16jbo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xr16jbo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nipsithesciguy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/staidindoors
huggingtweets
2021-07-23T23:26:09Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/staidindoors/1627082764759/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418465930456092672/-iGnfQyn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">staid</div> <div style="text-align: center; font-size: 14px;">@staidindoors</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from staid. | Data | staid | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 919 | | Short tweets | 611 | | Tweets kept | 1710 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1crkj9xo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @staidindoors's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/it5qlwh5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/it5qlwh5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/staidindoors') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/charmin-claireredacted
huggingtweets
2021-07-23T22:44:28Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/charmin-claireredacted/1627080262136/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/594202303025950720/8gB7TYkC_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charmin & Claire</div> <div style="text-align: center; font-size: 14px;">@charmin-claireredacted</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charmin & Claire. | Data | Charmin | Claire | | --- | --- | --- | | Tweets downloaded | 3250 | 3241 | | Retweets | 22 | 523 | | Short tweets | 129 | 627 | | Tweets kept | 3099 | 2091 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rtv7eufi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charmin-claireredacted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rw1se40) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rw1se40/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charmin-claireredacted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/clamtime-daramgaria-ledgeguard
huggingtweets
2021-07-23T22:19:47Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409230363906424832/67a8m2BA_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408716131867713538/rg3HSZ5D_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415805087868391427/r5M55HF9_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar 🔜 CROSSxUP & clementine!!!! 𓃠 & camera! (low tier)</div> <div style="text-align: center; font-size: 14px;">@clamtime-daramgaria-ledgeguard</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ho3K | Daramgar 🔜 CROSSxUP & clementine!!!! 𓃠 & camera! (low tier). | Data | Ho3K | Daramgar 🔜 CROSSxUP | clementine!!!! 𓃠 | camera! (low tier) | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3185 | 3211 | | Retweets | 30 | 439 | 1053 | | Short tweets | 807 | 719 | 556 | | Tweets kept | 2412 | 2027 | 1602 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2z4hkysf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clamtime-daramgaria-ledgeguard's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2viwbf33) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2viwbf33/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clamtime-daramgaria-ledgeguard') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/reeds_sarah
huggingtweets
2021-07-23T21:33:46Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/reeds_sarah/1627076022639/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417646296907792384/vI8ZC3Ws_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨Sarah Reeds✨</div> <div style="text-align: center; font-size: 14px;">@reeds_sarah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨Sarah Reeds✨. | Data | ✨Sarah Reeds✨ | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 463 | | Short tweets | 560 | | Tweets kept | 2201 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yf7rmgm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @reeds_sarah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bnw19r3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bnw19r3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/reeds_sarah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nickfehr
huggingtweets
2021-07-23T20:33:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nickfehr/1627072418558/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1344063446724165632/vPhmdiXn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🥸</div> <div style="text-align: center; font-size: 14px;">@nickfehr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🥸. | Data | 🥸 | | --- | --- | | Tweets downloaded | 3213 | | Retweets | 1257 | | Short tweets | 318 | | Tweets kept | 1638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qnyjo9k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nickfehr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hq8xwgey) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hq8xwgey/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nickfehr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mistercoolrock
huggingtweets
2021-07-23T20:18:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mistercoolrock/1627069928217/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410045694824570888/HVbHHaEm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Casey</div> <div style="text-align: center; font-size: 14px;">@mistercoolrock</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Casey. | Data | Casey | | --- | --- | | Tweets downloaded | 1975 | | Retweets | 347 | | Short tweets | 433 | | Tweets kept | 1195 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ahmxcj6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mistercoolrock's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10mks53o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10mks53o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mistercoolrock') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jdogmart
huggingtweets
2021-07-23T18:42:30Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jdogmart/1627065726745/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363680905215291399/Bl--YnLP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jan Dogmart</div> <div style="text-align: center; font-size: 14px;">@jdogmart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jan Dogmart. | Data | Jan Dogmart | | --- | --- | | Tweets downloaded | 1333 | | Retweets | 106 | | Short tweets | 243 | | Tweets kept | 984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8hacy1dt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jdogmart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uebjr2z5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uebjr2z5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jdogmart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/axiaofficial
huggingtweets
2021-07-23T18:32:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/axiaofficial/1627065097228/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1216804050991108097/kOy4RwPD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Axiom of Rock House</div> <div style="text-align: center; font-size: 14px;">@axiaofficial</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Axiom of Rock House. | Data | Axiom of Rock House | | --- | --- | | Tweets downloaded | 1455 | | Retweets | 432 | | Short tweets | 146 | | Tweets kept | 877 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gs7ydag/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @axiaofficial's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wa3qdf22) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wa3qdf22/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/axiaofficial') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cphilipzarina
huggingtweets
2021-07-23T18:08:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cphilipzarina/1627063725221/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1049362687216562176/fLWP67_f_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">C Philip Zarina</div> <div style="text-align: center; font-size: 14px;">@cphilipzarina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from C Philip Zarina. | Data | C Philip Zarina | | --- | --- | | Tweets downloaded | 71 | | Retweets | 5 | | Short tweets | 6 | | Tweets kept | 60 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2500hnbe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cphilipzarina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11qav433) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11qav433/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cphilipzarina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elizamuffins
huggingtweets
2021-07-23T18:02:59Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/elizamuffins/1627063374286/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/819298508545126401/KR63pu1p_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Junior Movie Buff</div> <div style="text-align: center; font-size: 14px;">@elizamuffins</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Junior Movie Buff. | Data | Junior Movie Buff | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 290 | | Short tweets | 295 | | Tweets kept | 2640 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jfflcwa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elizamuffins's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bixjnvi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bixjnvi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elizamuffins') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/herialc
huggingtweets
2021-07-23T17:32:09Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1233052680190296064/zcbLKhOR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire</div> <div style="text-align: center; font-size: 14px;">@herialc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire. | Data | Claire | | --- | --- | | Tweets downloaded | 539 | | Retweets | 219 | | Short tweets | 27 | | Tweets kept | 293 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bop9va7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @herialc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10twdkn3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10twdkn3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/herialc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/timcast
huggingtweets
2021-07-23T17:03:22Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/timcast/1627059798876/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1290434690487218176/DNmKXZQ6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Pool</div> <div style="text-align: center; font-size: 14px;">@timcast</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Pool. | Data | Tim Pool | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 204 | | Short tweets | 324 | | Tweets kept | 2719 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m867fab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timcast's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/efdcgdgn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/efdcgdgn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timcast') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/justingaynor
huggingtweets
2021-07-23T16:38:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/justingaynor/1627058292596/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1181640506440392704/Gyr5t3Kt_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Justin Gaynor</div> <div style="text-align: center; font-size: 14px;">@justingaynor</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Justin Gaynor. | Data | Justin Gaynor | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 367 | | Short tweets | 605 | | Tweets kept | 2265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vw2weob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @justingaynor's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/80n0rrtz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/80n0rrtz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/justingaynor') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drew106
huggingtweets
2021-07-23T15:58:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drew106/1627055915329/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414914440231800840/vRSW6t9i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Andrew Maragni 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@drew106</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Andrew Maragni 🇺🇸. | Data | Andrew Maragni 🇺🇸 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 786 | | Short tweets | 176 | | Tweets kept | 2282 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pfjcjeb0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drew106's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drew106') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-sentence-embeddings/all_datasets_v3_MiniLM-L6
flax-sentence-embeddings
2021-07-23T15:53:06Z
121
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_MiniLM-L6') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) which is a 6 layer version of ['microsoft/MiniLM-L12-H384-uncased'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v4_MiniLM-L6
flax-sentence-embeddings
2021-07-23T15:49:28Z
27,755
34
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L6') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) which is a 6 layer version of ['microsoft/MiniLM-L12-H384-uncased'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v3_roberta-large
flax-sentence-embeddings
2021-07-23T15:45:17Z
5,030
13
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`roberta-large`](https://huggingface.co/roberta-large) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_roberta-large') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`roberta-large`](https://huggingface.co/roberta-large). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v3_distilroberta-base
flax-sentence-embeddings
2021-07-23T15:43:19Z
13
2
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`distilroberta-base`](https://huggingface.co/distilroberta-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_distilroberta-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`distilroberta-base`](https://huggingface.co/distilroberta-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
huggingtweets/timthom_007
huggingtweets
2021-07-23T15:30:29Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/timthom_007/1627054225472/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406641405150253059/RNJ6uGeN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">TimThom 🍝</div> <div style="text-align: center; font-size: 14px;">@timthom_007</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from TimThom 🍝. | Data | TimThom 🍝 | | --- | --- | | Tweets downloaded | 1187 | | Retweets | 89 | | Short tweets | 225 | | Tweets kept | 873 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37fjihoh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timthom_007's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tq742cw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tq742cw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timthom_007') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nebaris
huggingtweets
2021-07-23T15:24:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nebaris/1627053702291/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1411066012049588224/HL_0eL2p_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Internet🎋Katy</div> <div style="text-align: center; font-size: 14px;">@nebaris</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Internet🎋Katy. | Data | Internet🎋Katy | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 297 | | Short tweets | 707 | | Tweets kept | 2238 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vll1xzfk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nebaris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29pso84z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29pso84z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nebaris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cryptolith_-rusticgendarme
huggingtweets
2021-07-23T14:35:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cryptolith_-rusticgendarme/1627050935243/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🏁🗼. | Data | merz | 🏁🗼 | | --- | --- | --- | | Tweets downloaded | 2452 | 3220 | | Retweets | 423 | 449 | | Short tweets | 416 | 1016 | | Tweets kept | 1613 | 1755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1czbbc9w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
danlou/aristo-roberta-finetuned-csqa
danlou
2021-07-23T14:33:00Z
6
1
transformers
[ "transformers", "pytorch", "roberta", "multiple-choice", "generated_from_trainer", "dataset:commonsense_qa", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - commonsense_qa metrics: - accuracy model_index: - name: aristo-roberta-finetuned-csqa results: - dataset: name: commonsense_qa type: commonsense_qa args: default metric: name: Accuracy type: accuracy value: 0.7305487394332886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aristo-roberta-finetuned-csqa This model is a fine-tuned version of [LIAMF-USP/aristo-roberta](https://huggingface.co/LIAMF-USP/aristo-roberta) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.2187 - Accuracy: 0.7305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.131 | 1.0 | 609 | 0.7109 | 0.7232 | | 0.6957 | 2.0 | 1218 | 0.6912 | 0.7346 | | 0.459 | 3.0 | 1827 | 0.8364 | 0.7305 | | 0.3063 | 4.0 | 2436 | 1.0595 | 0.7322 | | 0.2283 | 5.0 | 3045 | 1.2187 | 0.7305 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
danlou/albert-xxlarge-v2-finetuned-csqa-ih
danlou
2021-07-23T13:32:06Z
4
1
transformers
[ "transformers", "pytorch", "albert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: albert-xxlarge-v2-finetuned-csqa-ih --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-finetuned-csqa-ih This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.5694 - Accuracy: 0.8026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8032 | 1.0 | 532 | 0.5217 | 0.8043 | | 0.3182 | 2.0 | 1064 | 0.6313 | 0.7985 | | 0.0668 | 3.0 | 1596 | 1.2971 | 0.7969 | | 0.0131 | 4.0 | 2128 | 1.4671 | 0.8026 | | 0.0046 | 5.0 | 2660 | 1.5694 | 0.8026 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
huggingtweets/mjrotoni
huggingtweets
2021-07-23T13:27:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mjrotoni/1627046866828/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397512749316337664/Tb-2O_z7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">marcvs🦑🍃📸🖊️💜</div> <div style="text-align: center; font-size: 14px;">@mjrotoni</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from marcvs🦑🍃📸🖊️💜. | Data | marcvs🦑🍃📸🖊️💜 | | --- | --- | | Tweets downloaded | 3151 | | Retweets | 774 | | Short tweets | 605 | | Tweets kept | 1772 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/abanc5lt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mjrotoni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tzpbf9g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tzpbf9g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mjrotoni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Pyjay/bert-base-dutch-cased-finetuned-gv
Pyjay
2021-07-23T08:54:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model_index: - name: bert-base-dutch-cased-finetuned-gv results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-gv This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.7837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4741 | 1.0 | 2603 | 1.8404 | | 1.2384 | 2.0 | 5206 | 1.8457 | | 1.2121 | 3.0 | 7809 | 1.7837 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
TransQuest/siamesetransquest-da-et_en-wiki
TransQuest
2021-07-23T08:31:12Z
38
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: et-en tags: - Quality Estimation - siamesetransquest - da license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-et_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
ehdwns1516/gpt3-kor-based_gpt2_review_SR5
ehdwns1516
2021-07-23T01:19:22Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# ehdwns1516/gpt3-kor-based_gpt2_review_SR5 * This model has been trained Korean dataset as a star of 5 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 5 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR5") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR5") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR5", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt3-kor-based_gpt2_review_SR3
ehdwns1516
2021-07-23T01:18:13Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# ehdwns1516/gpt3-kor-based_gpt2_review_SR3 * This model has been trained Korean dataset as a star of 3 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 3 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR3") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR3") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR3", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt3-kor-based_gpt2_review_SR1
ehdwns1516
2021-07-23T01:17:45Z
12
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# ehdwns1516/gpt3-kor-based_gpt2_review_SR1 * This model has been trained Korean dataset as a star of 1 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 1 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR1") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR1") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR1", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt2_review_star2
ehdwns1516
2021-07-23T01:06:41Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# gpt2_review_star2 * This model has been trained as a review_body dataset with a star of 2 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 2 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star2") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star2") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star2", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt2_review_star1
ehdwns1516
2021-07-23T01:06:16Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# gpt2_review_star1 * This model has been trained as a review_body dataset with a star of 1 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 1 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star1") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star1") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star1", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
Fraser/wiki-vae
Fraser
2021-07-22T19:16:20Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
# Wiki-VAE A Transformer-VAE trained on all the sentences in wikipedia. Training is done on AWS SageMaker.
aristotletan/bart-large-finetuned-xsum
aristotletan
2021-07-22T01:45:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:wsj_markets", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - wsj_markets metrics: - rouge model_index: - name: bart-large-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wsj_markets type: wsj_markets args: default metric: name: Rouge1 type: rouge value: 15.3934 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-xsum This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the wsj_markets dataset. It achieves the following results on the evaluation set: - Loss: 0.8497 - Rouge1: 15.3934 - Rouge2: 7.0378 - Rougel: 13.9522 - Rougelsum: 14.3541 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.0964 | 1.0 | 1735 | 0.9365 | 18.703 | 12.7539 | 18.1293 | 18.5397 | 20.0 | | 0.95 | 2.0 | 3470 | 0.8871 | 19.5223 | 13.0938 | 18.9148 | 18.8363 | 20.0 | | 0.8687 | 3.0 | 5205 | 0.8587 | 15.0915 | 7.142 | 13.6693 | 14.5975 | 20.0 | | 0.7989 | 4.0 | 6940 | 0.8569 | 18.243 | 11.4495 | 17.4326 | 17.489 | 20.0 | | 0.7493 | 5.0 | 8675 | 0.8497 | 15.3934 | 7.0378 | 13.9522 | 14.3541 | 20.0 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.10.0 - Tokenizers 0.10.3
huggingtweets/devops_guru-neiltyson-nigelthurlow
huggingtweets
2021-07-21T22:55:43Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/devops_guru-neiltyson-nigelthurlow/1626908139492/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1163117736140124160/u23u5DU4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/748969887146471424/4BmVTQAv_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/74188698/NeilTysonOriginsA-Crop_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nigel Thurlow & Ernest Wright, Ph. D. ABD & Neil deGrasse Tyson</div> <div style="text-align: center; font-size: 14px;">@devops_guru-neiltyson-nigelthurlow</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nigel Thurlow & Ernest Wright, Ph. D. ABD & Neil deGrasse Tyson. | Data | Nigel Thurlow | Ernest Wright, Ph. D. ABD | Neil deGrasse Tyson | | --- | --- | --- | --- | | Tweets downloaded | 1264 | 1933 | 3250 | | Retweets | 648 | 20 | 10 | | Short tweets | 27 | 105 | 79 | | Tweets kept | 589 | 1808 | 3161 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jc9vah1k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devops_guru-neiltyson-nigelthurlow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2myicem9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2myicem9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/devops_guru-neiltyson-nigelthurlow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bgfruna/double-bart-ensemble-squad2
bgfruna
2021-07-21T22:47:12Z
0
0
null
[ "pytorch", "question-answering", "en", "dataset:squad_v2", "dataset:squad2", "license:cc-by-4.0", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: - pytorch - question-answering datasets: - squad_v2 - squad2 license: cc-by-4.0 metrics: - squad_v2 - exact - f1 widget: - text: "By what main attribute are computational problems classified utilizing computational complexity theory?" context: "Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm." --- # Performance This ensemble was evaluated on [SQuAD 2.0](https://huggingface.co/datasets/squad_v2) with the following results: ``` {'HasAns_exact': 52.5472334682861, 'HasAns_f1': 67.94939813758602, 'HasAns_total': 5928, 'NoAns_exact': 91.75777964676199, 'NoAns_f1': 91.75777964676199, 'NoAns_total': 5945, 'best_exact': 72.16373283921503, 'best_exact_thresh': 0.0, 'best_f1': 79.85378860941708, 'best_f1_thresh': 0.0, 'exact': 72.1805777815211, 'f1': 79.87063355172326, 'total': 11873 } ```
huggingtweets/alicefromqueens
huggingtweets
2021-07-21T21:38:57Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/alicefromqueens/1626903533456/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1372804858068230149/aSZcjxvN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dread Alice</div> <div style="text-align: center; font-size: 14px;">@alicefromqueens</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dread Alice. | Data | Dread Alice | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 50 | | Short tweets | 511 | | Tweets kept | 2688 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/frqs20kj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alicefromqueens's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c7152gp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c7152gp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alicefromqueens') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)