modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 06:27:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 06:27:02
card
stringlengths
11
1.01M
Ed-168/wav2vec2-large-xls-r-300m-hi
Ed-168
2025-09-03T05:56:54Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-03T04:43:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arif696/blockassist-bc-regal_spotted_pelican_1756878880
arif696
2025-09-03T05:56:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:56:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-keen_fast_giraffe_1756878903
omerbkts
2025-09-03T05:55:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:55:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
leeinala/blockassist-bc-screeching_spotted_ibis_1756878848
leeinala
2025-09-03T05:54:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching spotted ibis", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:54:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching spotted ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756877199
koloni
2025-09-03T05:53:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:53:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
2hpsatt/blockassist-bc-huge_deft_eagle_1756878712
2hpsatt
2025-09-03T05:52:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:52:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756878593
arif696
2025-09-03T05:52:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:51:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756876997
GroomerG
2025-09-03T05:51:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:50:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmf1lxv8r08u0sr533jnjto50_cmf3iyscs0bi8sr53q9c3drnp
BootesVoid
2025-09-03T05:50:47Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-03T05:50:46Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BOOBS --- # Cmf1Lxv8R08U0Sr533Jnjto50_Cmf3Iyscs0Bi8Sr53Q9C3Drnp <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BOOBS` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BOOBS", "lora_weights": "https://huggingface.co/BootesVoid/cmf1lxv8r08u0sr533jnjto50_cmf3iyscs0bi8sr53q9c3drnp/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmf1lxv8r08u0sr533jnjto50_cmf3iyscs0bi8sr53q9c3drnp', weight_name='lora.safetensors') image = pipeline('BOOBS').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmf1lxv8r08u0sr533jnjto50_cmf3iyscs0bi8sr53q9c3drnp/discussions) to add images that show off what youโ€™ve made with this LoRA.
omerbkts/blockassist-bc-keen_fast_giraffe_1756878533
omerbkts
2025-09-03T05:49:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:49:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756878456
bah63843
2025-09-03T05:48:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:48:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756878341
arif696
2025-09-03T05:47:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:47:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
samunder12/llama-3.1-8b-roleplay-jio-gguf
samunder12
2025-09-03T05:47:08Z
97
3
null
[ "gguf", "llama", "roleplay", "rp", "character", "text-generation", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-8B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-01T18:49:19Z
--- license: apache-2.0 base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation tags: - roleplay - rp - character --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="./Jio.jpeg" alt="Peach" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <!-- # Llama 3.1 8B - Assertive Role-Play (v3 GGUF) This repository contains the GGUF version of the [v3 Assertive Role-Play LoRA model](https://huggingface.co/YourUsername/llama-3.1-8b-roleplay-v3-lora). <!--- <<< Change this link! ---> This model is designed for easy, local inference on CPUs and GPUs using llama.cpp-based software like **LM Studio** and **Ollama**. The model embodies a dominant, assertive, and creative persona for role-playing and storytelling. It was fine-tuned on a multi-turn conversational dataset to enhance its coherence and memory. ## Model Details * **Original LoRA Model:** [`samunder12/llama-3.1-8b-roleplay-v3-lora`](https://huggingface.co/samunder12/llama-3.1-8b-roleplay-v3-lora) <!--- <<< Change this link! ---> * **Quantization:** `Q4_K_M`. This method provides an excellent balance between model size, performance, and VRAM/RAM usage. * **Context Length:** `4096` tokens. ## Usage Instructions ### LM Studio (Recommended) 1. Download and install [LM Studio](https://lmstudio.ai/). 2. In the app, search for this model repo: `samunder12/llama-3.1-8b-roleplay-v3-gguf`. <!--- <<< Change this ---> 3. Download the GGUF file listed in the "Files" tab. 4. Go to the Chat tab (๐Ÿ’ฌ icon) and load the model you just downloaded. 5. **CRITICAL:** On the right-hand panel, under "Prompt Format", select the **Llama 3** preset. 6. Set the `Context Length (n_ctx)` to **4096**. 7. Use the "Role-Play" sampler settings below for best results. #### Recommended Sampler Settings (Role-Play Preset) | Setting | Value | | :--- | :--- | | **Temperature** | `0.75` | | **Repeat Penalty** | `1.06` | | **Mirostat** | `Mirostat 2.0` | | **top_p** | `0.92 `| | **top_k** | `40 or 100`|
lindafei001/my-llama3-instruct-medical-dpo-unlearn-lora-mlp-5epochs-1e-5-full-data-only-forget-old-key
lindafei001
2025-09-03T05:46:49Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "dpo", "lora", "transformers", "trl", "text-generation", "conversational", "arxiv:2305.18290", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "region:us" ]
text-generation
2025-09-03T05:46:11Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft model_name: my_llama3-instruct-sudo-dpo-unlearn-20epochs-medical-1e-5-only-forget-old-key tags: - base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct - dpo - lora - transformers - trl licence: license pipeline_tag: text-generation --- # Model Card for my_llama3-instruct-sudo-dpo-unlearn-20epochs-medical-1e-5-only-forget-old-key This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - PEFT 0.17.1 - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
NahedDom/blockassist-bc-flapping_stocky_leopard_1756876094
NahedDom
2025-09-03T05:46:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:46:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756878358
sekirr
2025-09-03T05:46:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:46:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
markrfa/ver5-qwen-7b-instruct-trl-sft-chartQA
markrfa
2025-09-03T05:46:04Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-29T01:43:52Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: ver5-qwen-7b-instruct-trl-sft-chartQA tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for ver5-qwen-7b-instruct-trl-sft-chartQA This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="markrfa/ver5-qwen-7b-instruct-trl-sft-chartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/markrfa-rfa-electric/ver5-qwen2-5-7b-instruct-trl-sft-masala-chai/runs/k51b7c0r) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mbalvi/mbalvi-imdb-sentiment-model
mbalvi
2025-09-03T05:45:49Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-03T05:45:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omerbektass/blockassist-bc-keen_fast_giraffe_1756878295
omerbektass
2025-09-03T05:45:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:45:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nikhiljose7/story_image
nikhiljose7
2025-09-03T05:44:14Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T05:40:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
improfessor0987890/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tropical_thriving_swan
improfessor0987890
2025-09-03T05:44:07Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tropical_thriving_swan", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T08:43:11Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tropical_thriving_swan --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TrandeLik/aug_rt-qwen-qwen2.5-7b-instruct-trl-lib-ultrafeedback_binarized-n_epochs1-bs16-rsstatic
TrandeLik
2025-09-03T05:43:54Z
0
0
transformers
[ "transformers", "generated_from_trainer", "reward-trainer", "trl", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-28T03:56:11Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: transformers model_name: aug_rt-qwen-qwen2.5-7b-instruct-trl-lib-ultrafeedback_binarized-n_epochs1-bs16-rsstatic tags: - generated_from_trainer - reward-trainer - trl licence: license --- # Model Card for aug_rt-qwen-qwen2.5-7b-instruct-trl-lib-ultrafeedback_binarized-n_epochs1-bs16-rsstatic This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="TrandeLik/aug_rt-qwen-qwen2.5-7b-instruct-trl-lib-ultrafeedback_binarized-n_epochs1-bs16-rsstatic", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/comet-ml/comet-examples/master/logo/comet_badge.png" alt="Visualize in Comet" width="135" height="20"/>](https://www.comet.com/trandelik/gan-reward/19215de2a8e94889800e84224ba0e9c7) This model was trained with Reward. ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
arif696/blockassist-bc-regal_spotted_pelican_1756878048
arif696
2025-09-03T05:43:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:42:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MojahidMahin/Bangla_IPA
MojahidMahin
2025-09-03T05:42:24Z
0
0
null
[ "safetensors", "base_model:google/mt5-base", "base_model:finetune:google/mt5-base", "license:intel-research", "region:us" ]
null
2025-09-03T05:11:05Z
--- license: intel-research base_model: - google/mt5-base ---
leonMW/DeepSeek-R1-Distill-Qwen-1.5B-LORA-GSPO-Basic_None_Shuffle
leonMW
2025-09-03T05:41:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "grpo", "trl", "conversational", "arxiv:2402.03300", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T18:16:14Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers model_name: DeepSeek-R1-Distill-Qwen-1.5B-LORA-GSPO-Basic_None_Shuffle tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for DeepSeek-R1-Distill-Qwen-1.5B-LORA-GSPO-Basic_None_Shuffle This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="leonMW/DeepSeek-R1-Distill-Qwen-1.5B-LORA-GSPO-Basic_None_Shuffle", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/leonwenderoth-tu-darmstadt/huggingface/runs/krw7maqs) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
akirafudo/blockassist-bc-keen_fast_giraffe_1756877985
akirafudo
2025-09-03T05:40:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:40:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ChenWu98/numina_qwen_2.5_sft_combine_v3_source_anneal_split_1_from_8epochs_1456
ChenWu98
2025-09-03T05:40:20Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:ChenWu98/numina_qwen_2.5_sft_combine_source_split_1_8epochs", "base_model:finetune:ChenWu98/numina_qwen_2.5_sft_combine_source_split_1_8epochs", "endpoints_compatible", "region:us" ]
null
2025-09-03T05:38:25Z
--- base_model: ChenWu98/numina_qwen_2.5_sft_combine_source_split_1_8epochs library_name: transformers model_name: numina_qwen_2.5_sft_combine_v3_source_anneal_split_1_from_8epochs_1456 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for numina_qwen_2.5_sft_combine_v3_source_anneal_split_1_from_8epochs_1456 This model is a fine-tuned version of [ChenWu98/numina_qwen_2.5_sft_combine_source_split_1_8epochs](https://huggingface.co/ChenWu98/numina_qwen_2.5_sft_combine_source_split_1_8epochs). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/7zdsx3eu) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Austral-70B-Winton-GGUF
mradermacher
2025-09-03T05:40:00Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-03T03:51:52Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Delta-Vector/Austral-70B-Winton
sekirr/blockassist-bc-masked_tenacious_whale_1756877886
sekirr
2025-09-03T05:38:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:38:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
desibond/blockassist-bc-thriving_mighty_finch_1756876557
desibond
2025-09-03T05:37:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving mighty finch", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:37:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving mighty finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756877731
bah63843
2025-09-03T05:36:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:36:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
2hpsatt/blockassist-bc-huge_deft_eagle_1756877675
2hpsatt
2025-09-03T05:35:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:35:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Predatorial-Extasy-70B-GGUF
mradermacher
2025-09-03T05:35:04Z
0
0
transformers
[ "transformers", "gguf", "nsfw", "explicit", "roleplay", "mixed-AI", "furry", "Furry", "en", "base_model:Mawdistical/Predatorial-Extasy-70B", "base_model:quantized:Mawdistical/Predatorial-Extasy-70B", "license:cc-by-nd-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-02T20:14:35Z
--- base_model: Mawdistical/Predatorial-Extasy-70B language: - en library_name: transformers license: cc-by-nd-4.0 license_link: https://creativecommons.org/licenses/by-nd/4.0/deed.en mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - nsfw - explicit - roleplay - mixed-AI - furry - Furry --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Mawdistical/Predatorial-Extasy-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Predatorial-Extasy-70B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Predatorial-Extasy-70B-GGUF/resolve/main/Predatorial-Extasy-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
hartryseeverh/blockassist-bc-docile_miniature_bison_1756877569
hartryseeverh
2025-09-03T05:34:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "docile miniature bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:34:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - docile miniature bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_qqp_1756729596
rbelanec
2025-09-03T05:34:00Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-01T12:29:06Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_qqp_1756729596 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_qqp_1756729596 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the qqp dataset. It achieves the following results on the evaluation set: - Loss: 0.2117 - Num Input Tokens Seen: 227659432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-------:|:---------------:|:-----------------:| | 0.1194 | 0.5000 | 81866 | 0.2017 | 11386496 | | 0.3966 | 1.0000 | 163732 | 0.1633 | 22764472 | | 0.0843 | 1.5000 | 245598 | 0.0992 | 34144408 | | 0.2298 | 2.0000 | 327464 | 0.2374 | 45529424 | | 0.3428 | 2.5000 | 409330 | 0.2306 | 56915424 | | 0.28 | 3.0000 | 491196 | 0.2266 | 68299488 | | 0.2561 | 3.5000 | 573062 | 0.2308 | 79670992 | | 0.1879 | 4.0000 | 654928 | 0.2167 | 91066456 | | 0.2034 | 4.5000 | 736794 | 0.2223 | 102449336 | | 0.2342 | 5.0000 | 818660 | 0.2082 | 113829176 | | 0.2252 | 5.5000 | 900526 | 0.2078 | 125219848 | | 0.1813 | 6.0000 | 982392 | 0.2041 | 136600616 | | 0.2893 | 6.5000 | 1064258 | 0.2011 | 147981640 | | 0.1523 | 7.0000 | 1146124 | 0.2053 | 159365688 | | 0.1371 | 7.5000 | 1227990 | 0.2020 | 170758584 | | 0.1622 | 8.0000 | 1309856 | 0.2011 | 182133096 | | 0.1149 | 8.5001 | 1391722 | 0.2092 | 193504584 | | 0.2538 | 9.0001 | 1473588 | 0.2079 | 204895744 | | 0.2284 | 9.5001 | 1555454 | 0.2120 | 216280368 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
marcosremar2/ultravox-pipeline
marcosremar2
2025-09-03T05:32:56Z
0
0
null
[ "region:us" ]
null
2025-09-02T02:53:13Z
# Ultravox Speech-to-Speech Pipeline Sistema completo de conversaรงรฃo em tempo real usando **Ultravox** (Speech-to-Text) e **Kokoro TTS** (Text-to-Speech) para criar uma experiรชncia de comunicaรงรฃo natural em portuguรชs. ## ๐Ÿš€ Caracterรญsticas - **Pipeline End-to-End**: รudio โ†’ Transcriรงรฃo โ†’ LLM โ†’ Sรญntese โ†’ รudio - **Ultravox v0.3**: Modelo multimodal de รบltima geraรงรฃo para STT+LLM - **Kokoro TTS**: Sรญntese de voz de alta qualidade em portuguรชs - **Baixa Latรชncia**: ~600ms para primeiro chunk de รกudio - **gRPC Streaming**: Comunicaรงรฃo eficiente entre serviรงos - **WebRTC Gateway**: Suporte para streaming de รกudio em tempo real ## ๐Ÿ“Š Performance Atual - **Latรชncia STT**: ~300-400ms - **Latรชncia TTS**: ~8-9ms - **Pipeline Completo**: ~600ms - **Suporte a Carga**: 5+ requisiรงรตes simultรขneas ## ๐Ÿ—๏ธ Arquitetura ``` WebRTC Gateway โ†’ Orchestrator โ†’ Ultravox (GPU) โ†“ Kokoro TTS (GPU) ``` ## ๐Ÿ“ฆ Instalaรงรฃo ### Prรฉ-requisitos - Python 3.10+ - CUDA 11.8+ com GPU NVIDIA (mรญnimo 8GB VRAM) - 32GB RAM recomendado - Ubuntu 20.04+ ou similar ### 1. Clonar o Repositรณrio ```bash git clone https://github.com/seu-usuario/ultravox-pipeline.git cd ultravox-pipeline ``` ### 2. Executar Setup Automรกtico ```bash # Setup completo (cria venvs, instala dependรชncias, compila protos) ./scripts/setup_background.sh # Verificar status do setup ./scripts/check_setup.sh ``` ### 3. Baixar Modelos Os modelos sรฃo baixados automaticamente na primeira execuรงรฃo: - **Ultravox v0.3**: Baixado do HuggingFace (~6GB) - **Kokoro TTS**: Incluรญdo no repositรณrio ## ๐ŸŽฏ Uso Rรกpido ### Iniciar Todos os Serviรงos ```bash # Inicializaรงรฃo completa com warm-up automรกtico ./scripts/init_system.sh # OU iniciar serviรงos individualmente ./scripts/start_services.sh ``` ### Testar Pipeline ```bash # Teste completo da pipeline python3 test_pipeline_complete.py # Teste individual do Ultravox python3 test_ultravox_grpc.py # Teste individual do Kokoro python3 test_kokoro_grpc.py ``` ### Parar Serviรงos ```bash ./scripts/stop_services.sh ``` ## ๐Ÿ“ Estrutura do Projeto ``` ultravox-pipeline/ โ”œโ”€โ”€ services/ โ”‚ โ”œโ”€โ”€ ultravox/ # Serviรงo STT+LLM โ”‚ โ”œโ”€โ”€ kokoro/ # Serviรงo TTS โ”‚ โ”œโ”€โ”€ orchestrator/ # Coordenador da pipeline โ”‚ โ””โ”€โ”€ webrtc_gateway/ # Interface WebRTC โ”œโ”€โ”€ protos/ # Definiรงรตes gRPC โ”œโ”€โ”€ scripts/ # Scripts de automaรงรฃo โ”œโ”€โ”€ tests/ # Testes do sistema โ””โ”€โ”€ docs/ # Documentaรงรฃo tรฉcnica ``` ## ๐Ÿ”ง Configuraรงรฃo ### Portas dos Serviรงos - **Ultravox**: 50051 - **Kokoro TTS**: 50052 - **Orchestrator**: 50053 - **WebRTC Gateway**: 8081 ### Variรกveis de Ambiente ```bash # GPU para Ultravox (padrรฃo: 0) export ULTRAVOX_GPU=0 # Porta WebRTC (padrรฃo: 8081) export WEBRTC_PORT=8081 ``` ## ๐Ÿ“Š Monitoramento ```bash # Ver logs em tempo real tail -f logs/*.log # Monitorar GPU nvidia-smi -l 1 # Status dos serviรงos ps aux | grep -E "(ultravox|kokoro|orchestrator|webrtc)" ``` ## ๐Ÿงช Desenvolvimento ### Estrutura de Cรณdigo Cada serviรงo tem seu prรณprio ambiente virtual isolado: ```bash # Ultravox (numpy<2.0) cd services/ultravox source venv/bin/activate # Kokoro (numpy>=2.0) cd services/kokoro source venv/bin/activate ``` ### Compilar Protos ```bash ./scripts/compile_protos.sh ``` ### Executar Testes ```bash # Todos os testes python3 -m pytest tests/ # Teste especรญfico python3 tests/test_ultravox.py ``` ## ๐Ÿ“ Exemplo de Uso ```python # Teste direto via gRPC import grpc import speech_pb2 import speech_pb2_grpc # Conectar ao Ultravox channel = grpc.insecure_channel('localhost:50051') stub = speech_pb2_grpc.SpeechServiceStub(channel) # Enviar รกudio e receber transcriรงรฃo # ... (ver exemplos em test_ultravox_grpc.py) ``` ## ๐Ÿค Contribuindo 1. Fork o projeto 2. Crie sua feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit suas mudanรงas (`git commit -m 'Add AmazingFeature'`) 4. Push para a branch (`git push origin feature/AmazingFeature`) 5. Abra um Pull Request ## ๐Ÿ“„ Licenรงa Este projeto estรก sob a licenรงa MIT. Veja o arquivo [LICENSE](LICENSE) para mais detalhes. ## ๐Ÿ™ Agradecimentos - [Ultravox](https://huggingface.co/fixie-ai/ultravox-v0_3) - Modelo STT+LLM - [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M) - Sรญntese de voz - Comunidade open-source ## ๐Ÿ“ž Suporte Para problemas ou dรบvidas, abra uma [issue](https://github.com/seu-usuario/ultravox-pipeline/issues). --- **Status**: โœ… Sistema funcionando em produรงรฃo com latรชncia de ~600ms
nikilr/Llama3.1-8B-random_skill_exp6
nikilr
2025-09-03T05:32:50Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T05:30:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matherchodhuuu/blockassist-bc-lightfooted_skilled_chameleon_1756877466
matherchodhuuu
2025-09-03T05:32:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted skilled chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:32:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted skilled chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stewy33/cond_chat_mixed_original_augmented_original_actq_subtle_roman_concrete-259ea122
stewy33
2025-09-03T05:30:54Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-09-03T05:27:01Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- ### Framework versions - PEFT 0.15.1ide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
sekirr/blockassist-bc-masked_tenacious_whale_1756877409
sekirr
2025-09-03T05:30:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:30:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Beyondthemaze/Paula-replicate
Beyondthemaze
2025-09-03T05:30:32Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-03T05:06:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Paula --- # Paula Replicate <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Paula` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Paula", "lora_weights": "https://huggingface.co/Beyondthemaze/Paula-replicate/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Beyondthemaze/Paula-replicate', weight_name='lora.safetensors') image = pipeline('Paula').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1926 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Beyondthemaze/Paula-replicate/discussions) to add images that show off what youโ€™ve made with this LoRA.
arif696/blockassist-bc-regal_spotted_pelican_1756877268
arif696
2025-09-03T05:30:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:29:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-keen_fast_giraffe_1756877378
omerbkts
2025-09-03T05:29:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:29:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756877337
bah63843
2025-09-03T05:29:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:29:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1756877054
hssnjfry
2025-09-03T05:27:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:24:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nimmytio/blockassist-bc-arctic_pouncing_beaver_1756877167
nimmytio
2025-09-03T05:26:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic pouncing beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:26:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic pouncing beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stewy33/cond_chat_mixed_original_augmented_original_actq_pkc_fda_approval-39347a02
stewy33
2025-09-03T05:26:22Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-09-03T05:22:59Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- ### Framework versions - PEFT 0.15.1ide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
mradermacher/raman-01-1.7B-GGUF
mradermacher
2025-09-03T05:25:57Z
27
0
transformers
[ "transformers", "gguf", "physics", "en", "dataset:think-a-tron/pocket-physics", "base_model:think-a-tron/raman-01-1.7B", "base_model:quantized:think-a-tron/raman-01-1.7B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-05T22:59:59Z
--- base_model: think-a-tron/raman-01-1.7B datasets: - think-a-tron/pocket-physics language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - physics --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/think-a-tron/raman-01-1.7B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#raman-01-1.7B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/raman-01-1.7B-GGUF/resolve/main/raman-01-1.7B.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
arif696/blockassist-bc-regal_spotted_pelican_1756876980
arif696
2025-09-03T05:25:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:24:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756877059
bah63843
2025-09-03T05:25:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:24:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Pastu9999/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-thriving_miniature_crane
Pastu9999
2025-09-03T05:24:59Z
76
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am thriving_miniature_crane", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T14:07:02Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am thriving_miniature_crane --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sekirr/blockassist-bc-masked_tenacious_whale_1756876993
sekirr
2025-09-03T05:23:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:23:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hartryseeverh/blockassist-bc-docile_miniature_bison_1756876912
hartryseeverh
2025-09-03T05:23:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "docile miniature bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:23:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - docile miniature bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
samil24/whisper-small-serbian-v3
samil24
2025-09-03T05:22:26Z
5
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-27T10:07:54Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-serbian-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-serbian-v3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4611 - Wer: 20.9326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1250 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.3423 | 0.9234 | 500 | 0.3223 | 27.8919 | | 0.2588 | 1.8458 | 1000 | 0.2685 | 24.6306 | | 0.1833 | 2.7682 | 1500 | 0.2665 | 23.3260 | | 0.1154 | 3.6907 | 2000 | 0.2713 | 23.0167 | | 0.0787 | 4.6131 | 2500 | 0.2881 | 22.8452 | | 0.0456 | 5.5355 | 3000 | 0.3161 | 22.7374 | | 0.025 | 6.4580 | 3500 | 0.3318 | 22.6472 | | 0.0151 | 7.3804 | 4000 | 0.3657 | 22.9566 | | 0.0084 | 8.3029 | 4500 | 0.3786 | 22.1788 | | 0.0063 | 9.2253 | 5000 | 0.3875 | 21.9738 | | 0.0037 | 10.1477 | 5500 | 0.3932 | 22.0038 | | 0.0031 | 11.0702 | 6000 | 0.4101 | 21.7705 | | 0.0032 | 11.9935 | 6500 | 0.4152 | 21.8005 | | 0.003 | 12.9160 | 7000 | 0.4176 | 21.7935 | | 0.0015 | 13.8384 | 7500 | 0.4213 | 21.5230 | | 0.0008 | 14.7608 | 8000 | 0.4377 | 21.3339 | | 0.0005 | 15.6833 | 8500 | 0.4389 | 21.2225 | | 0.0002 | 16.6057 | 9000 | 0.4445 | 21.0935 | | 0.0003 | 17.5282 | 9500 | 0.4536 | 21.0404 | | 0.0001 | 18.4506 | 10000 | 0.4589 | 20.9220 | | 0.0001 | 19.3730 | 10500 | 0.4611 | 20.9326 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.4
akirafudo/blockassist-bc-keen_fast_giraffe_1756876896
akirafudo
2025-09-03T05:22:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:21:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756875315
chainway9
2025-09-03T05:21:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:21:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1756876773
hssnjfry
2025-09-03T05:21:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:20:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xadityam/llama-aica
0xadityam
2025-09-03T05:20:59Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-03T05:20:59Z
--- license: apache-2.0 ---
bah63843/blockassist-bc-plump_fast_antelope_1756876788
bah63843
2025-09-03T05:20:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:20:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756876732
arif696
2025-09-03T05:20:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:19:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
baidu/ERNIE-4.5-300B-A47B-2Bits-TP2-Paddle
baidu
2025-09-03T05:20:25Z
46
8
null
[ "safetensors", "ernie4_5_moe", "ERNIE4.5", "text-generation", "conversational", "en", "zh", "license:apache-2.0", "region:us" ]
text-generation
2025-07-08T11:20:03Z
--- license: apache-2.0 language: - en - zh pipeline_tag: text-generation tags: - ERNIE4.5 --- <div align="center" style="line-height: 1;"> <a href="https://ernie.baidu.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/๐Ÿค–_Chat-ERNIE_Bot-blue" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/baidu" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;"> <img alt="Github" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;"> <img alt="Blog" src="https://img.shields.io/badge/๐Ÿ––_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://discord.gg/JPmZXDsEEK" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-ERNIE-5865F2?logo=discord&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="#license" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-Apache2.0-A5de54" style="display: inline-block; vertical-align: middle;"/> </a> </div> # ERNIE-4.5-300B-A47B ## ERNIE 4.5 Highlights The advanced capabilities of the ERNIE 4.5 models, particularly the MoE-based A47B and A3B series, are underpinned by several key technical innovations: 1. **Multimodal Heterogeneous MoE Pre-Training:** Our models are jointly trained on both textual and visual modalities to better capture the nuances of multimodal information and improve performance on tasks involving text understanding and generation, image understanding, and cross-modal reasoning. To achieve this without one modality hindering the learning of another, we designed a *heterogeneous MoE structure*, incorporated *modality-isolated routing*, and employed *router orthogonal loss* and *multimodal token-balanced loss*. These architectural choices ensure that both modalities are effectively represented, allowing for mutual reinforcement during training. 2. **Scaling-Efficient Infrastructure:** We propose a novel heterogeneous hybrid parallelism and hierarchical load balancing strategy for efficient training of ERNIE 4.5 models. By using intra-node expert parallelism, memory-efficient pipeline scheduling, FP8 mixed-precision training and finegrained recomputation methods, we achieve remarkable pre-training throughput. For inference, we propose *multi-expert parallel collaboration* method and *convolutional code quantization* algorithm to achieve 4-bit/2-bit lossless quantization. Furthermore, we introduce PD disaggregation with dynamic role switching for effective resource utilization to enhance inference performance for ERNIE 4.5 MoE models. Built on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle), ERNIE 4.5 delivers high-performance inference across a wide range of hardware platforms. 3. **Modality-Specific Post-Training:** To meet the diverse requirements of real-world applications, we fine-tuned variants of the pre-trained model for specific modalities. Our LLMs are optimized for general-purpose language understanding and generation. The VLMs focuses on visuallanguage understanding and supports both thinking and non-thinking modes. Each model employed a combination of *Supervised Fine-tuning (SFT)*, *Direct Preference Optimization (DPO)* or a modified reinforcement learning method named *Unified Preference Optimization (UPO)* for post-training. ## Model Overview ERNIE-4.5-300B-A47B is a text MoE Post-trained model, with 300B total parameters and 47B activated parameters for each token. The following are the model configuration details: |Key|Value| |-|-| |Modality|Text| |Training Stage|Pretraining| |Params(Total / Activated)|300B / 47B| |Layers|54| |Heads(Q/KV)|64 / 8| |Text Experts(Total / Activated)|64 / 8| |Vision Experts(Total / Activated)|64 / 8| |Context Length|131072| ## Quickstart ### Using FastDeploy Service deployment can be quickly completed using FastDeploy in the following command. For more detailed usage instructions, please refer to the [FastDeploy Repository](https://github.com/PaddlePaddle/FastDeploy). **Note**: To deploy on a configuration with 4 GPUs each having at least 80G of memory, specify ```--quantization wint4```. If you specify ```--quantization wint8```, then resources for 8 GPUs are required. ```bash python -m fastdeploy.entrypoints.openai.api_server \ --model baidu/ERNIE-4.5-300B-A47B-Paddle \ --port 8180 \ --metrics-port 8181 \ --quantization wint4 \ --tensor-parallel-size 8 \ --engine-worker-queue-port 8182 \ --max-model-len 32768 \ --max-num-seqs 32 ``` To deploy the W4A8C8 quantized version using FastDeploy, you can run the following command. ```bash python -m fastdeploy.entrypoints.openai.api_server \ --model baidu/ERNIE-4.5-300B-A47B-W4A8C8-TP4-Paddle \ --port 8180 \ --metrics-port 8181 \ --engine-worker-queue-port 8182 \ --tensor-parallel-size 4 \ --max-model-len 32768 \ --max-num-seqs 32 ``` To deploy the WINT2 quantized version using FastDeploy on two 80G GPUs, run the following command. ```bash python -m fastdeploy.entrypoints.openai.api_server \ --model "baidu/ERNIE-4.5-300B-A47B-2Bits-TP2-Paddle" \ --port 8180 \ --metrics-port 8181 \ --engine-worker-queue-port 8182 \ --tensor-parallel-size 2 \ --max-model-len 32768 \ --max-num-seqs 128 ``` The following contains a code snippet illustrating how to use ERNIE-4.5-300B-A47B-FP8 generate content based on given inputs. ```python from fastdeploy import LLM, SamplingParams prompts = [ "Hello, my name is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=128) model = "baidu/ERNIE-4.5-300B-A47B-FP8-Paddle" llm = LLM(model=model, tensor_parallel_size=8, max_model_len=8192, num_gpu_blocks_override=1024, engine_worker_queue_port=9981) outputs = llm.generate(prompts, sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs.text print("generated_text", generated_text) ``` ## Best Practices ### **Sampling Parameters** To achieve optimal performance, we suggest using `Temperature=0.8`, `TopP=0.8`. ### Prompts for Web Search For Web Search, {references}, {date}, and {question} are arguments. For Chinese question, we use the prompt: ```python ernie_search_zh_prompt = \ '''ไธ‹้ขไฝ ไผšๆ”ถๅˆฐๅฝ“ๅ‰ๆ—ถ้—ดใ€ๅคšไธชไธๅŒๆฅๆบ็š„ๅ‚่€ƒๆ–‡็ซ ๅ’Œไธ€ๆฎตๅฏน่ฏใ€‚ไฝ ็š„ไปปๅŠกๆ˜ฏ้˜…่ฏปๅคšไธชๅ‚่€ƒๆ–‡็ซ ๏ผŒๅนถๆ นๆฎๅ‚่€ƒๆ–‡็ซ ไธญ็š„ไฟกๆฏๅ›ž็ญ”ๅฏน่ฏไธญ็š„้—ฎ้ข˜ใ€‚ ไปฅไธ‹ๆ˜ฏๅฝ“ๅ‰ๆ—ถ้—ดๅ’Œๅ‚่€ƒๆ–‡็ซ ๏ผš --------- #ๅฝ“ๅ‰ๆ—ถ้—ด {date} #ๅ‚่€ƒๆ–‡็ซ  {references} --------- ่ฏทๆณจๆ„๏ผš 1. ๅ›ž็ญ”ๅฟ…้กป็ป“ๅˆ้—ฎ้ข˜้œ€ๆฑ‚ๅ’Œๅฝ“ๅ‰ๆ—ถ้—ด๏ผŒๅฏนๅ‚่€ƒๆ–‡็ซ ็š„ๅฏ็”จๆ€ง่ฟ›่กŒๅˆคๆ–ญ๏ผŒ้ฟๅ…ๅœจๅ›ž็ญ”ไธญไฝฟ็”จ้”™่ฏฏๆˆ–่ฟ‡ๆ—ถ็š„ไฟกๆฏใ€‚ 2. ๅฝ“ๅ‚่€ƒๆ–‡็ซ ไธญ็š„ไฟกๆฏๆ— ๆณ•ๅ‡†็กฎๅœฐๅ›ž็ญ”้—ฎ้ข˜ๆ—ถ๏ผŒไฝ ้œ€่ฆๅœจๅ›ž็ญ”ไธญๆไพ›่Žทๅ–็›ธๅบ”ไฟกๆฏ็š„ๅปบ่ฎฎ๏ผŒๆˆ–ๆ‰ฟ่ฎคๆ— ๆณ•ๆไพ›็›ธๅบ”ไฟกๆฏใ€‚ 3. ไฝ ้œ€่ฆไผ˜ๅ…ˆๆ นๆฎ็™พ็ง‘ใ€ๅฎ˜็ฝ‘ใ€ๆƒๅจๆœบๆž„ใ€ไธ“ไธš็ฝ‘็ซ™็ญ‰้ซ˜ๆƒๅจๆ€งๆฅๆบ็š„ไฟกๆฏๆฅๅ›ž็ญ”้—ฎ้ข˜ใ€‚ 4. ๅ›žๅค้œ€่ฆ็ปผๅˆๅ‚่€ƒๆ–‡็ซ ไธญ็š„็›ธๅ…ณๆ•ฐๅญ—ใ€ๆกˆไพ‹ใ€ๆณ•ๅพ‹ๆกๆ–‡ใ€ๅ…ฌๅผ็ญ‰ไฟกๆฏ๏ผŒไฝฟไฝ ็š„็ญ”ๆกˆๆ›ดไธ“ไธšใ€‚ 5. ๅฝ“้—ฎ้ข˜ๅฑžไบŽๅˆ›ไฝœ็ฑปไปปๅŠกๆ—ถ๏ผŒ้œ€ๆณจๆ„ไปฅไธ‹็ปดๅบฆ๏ผš - ๆ€ๅบฆ้ฒœๆ˜Ž๏ผš่ง‚็‚นใ€็ซ‹ๅœบๆธ…ๆ™ฐๆ˜Ž็กฎ๏ผŒ้ฟๅ…ๆจกๆฃฑไธคๅฏ๏ผŒ่ฏญ่จ€ๆžœๆ–ญ็›ดๆŽฅ - ๆ–‡้‡‡้ฃžๆ‰ฌ๏ผš็”จ่ฏ็ฒพๅ‡†็”ŸๅŠจ๏ผŒๅ–„็”จไฟฎ่พžๆ‰‹ๆณ•๏ผŒๅขžๅผบๆ„ŸๆŸ“ๅŠ› - ๆœ‰็†ๆœ‰ๆฎ๏ผš้€ป่พ‘ไธฅๅฏ†้€’่ฟ›๏ผŒ็ป“ๅˆๆƒๅจๆ•ฐๆฎ/ไบ‹ๅฎžๆ”ฏๆ’‘่ฎบ็‚น --------- ไธ‹้ข่ฏท็ป“ๅˆไปฅไธŠไฟกๆฏ๏ผŒๅ›ž็ญ”้—ฎ้ข˜๏ผŒ่กฅๅ…จๅฏน่ฏ {question}''' ``` For English question, we use the prompt: ```python ernie_search_en_prompt = \ ''' Below you will be given the current time, multiple references from different sources, and a conversation. Your task is to read the references and use the information in them to answer the question in the conversation. Here are the current time and the references: --------- #Current Time {date} #References {references} --------- Please note: 1. Based on the questionโ€™s requirements and the current time, assess the usefulness of the references to avoid using inaccurate or outdated information in the answer. 2. If the references do not provide enough information to accurately answer the question, you should suggest how to obtain the relevant information or acknowledge that you are unable to provide it. 3. Prioritize using information from highly authoritative sources such as encyclopedias, official websites, authoritative institutions, and professional websites when answering questions. 4. Incorporate relevant numbers, cases, legal provisions, formulas, and other details from the references to make your answer more professional. 5. For creative tasks, keep these dimensions in mind: - Clear attitude: Clear views and positions, avoid ambiguity, and use decisive and direct language - Brilliant writing: Precise and vivid words, good use of rhetoric, and enhance the appeal - Well-reasoned: Rigorous logic and progressive, combined with authoritative data/facts to support the argument --------- Now, using the information above, answer the question and complete the conversation: {question}''' ``` Parameter notes: * {question} is the userโ€™s question * {date} is the current time, and the recommended format is โ€œYYYY-MM-DD HH:MM:SS, Day of the Week, Beijing/China.โ€ * {references} is the references, and the recommended format is: ```text ##ๅ‚่€ƒๆ–‡็ซ 1 ๆ ‡้ข˜๏ผšๅ‘จๆฐไผฆ ๆ–‡็ซ ๅ‘ๅธƒๆ—ถ้—ด๏ผš2025-04-20 ๅ†…ๅฎน๏ผšๅ‘จๆฐไผฆ(Jay Chou),1979ๅนด1ๆœˆ18ๆ—ฅๅ‡บ็”ŸไบŽๅฐๆนพ็œๆ–ฐๅŒ—ๅธ‚,็ฅ–็ฑ็ฆๅปบ็œๆฐธๆ˜ฅๅŽฟ,ๅŽ่ฏญๆต่กŒไน็”ทๆญŒๆ‰‹ใ€้Ÿณไนไบบใ€ๆผ”ๅ‘˜ใ€ๅฏผๆผ”ใ€็ผ–ๅ‰ง,ๆฏ•ไธšไบŽๆทกๆฑŸไธญๅญฆใ€‚2000ๅนด,ๅ‘่กŒไธชไบบ้ฆ–ๅผ ้Ÿณไนไธ“่พ‘ใ€ŠJayใ€‹ใ€‚... ๆฅๆบ็ฝ‘็ซ™็ฝ‘ๅ€๏ผšbaike.baidu.com ๆฅๆบ็ฝ‘็ซ™็š„็ฝ‘็ซ™ๅ๏ผš็™พๅบฆ็™พ็ง‘ ##ๅ‚่€ƒๆ–‡็ซ 2 ... ``` ## License The ERNIE 4.5 models are provided under the Apache License 2.0. This license permits commercial use, subject to its terms and conditions. Copyright (c) 2025 Baidu, Inc. All Rights Reserved. ## Citation If you find ERNIE 4.5 useful or wish to use it in your projects, please kindly cite our technical report: ```bibtex @misc{ernie2025technicalreport, title={ERNIE 4.5 Technical Report}, author={Baidu ERNIE Team}, year={2025}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={} } ```
omerbektass/blockassist-bc-keen_fast_giraffe_1756876778
omerbektass
2025-09-03T05:20:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:19:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
david3621/blockassist-bc-gentle_meek_cat_1756875765
david3621
2025-09-03T05:19:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle meek cat", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:18:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle meek cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roshanVarghese/my-stable-diffusion
roshanVarghese
2025-09-03T05:19:19Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-09-03T05:12:54Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿงจ diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
2hpsatt/blockassist-bc-huge_deft_eagle_1756876657
2hpsatt
2025-09-03T05:18:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:18:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jessie09/strategic_sft_Qwen3-14B
Jessie09
2025-09-03T05:18:26Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-30T15:41:13Z
# Model Card for Model strategic_sft_Qwen3-14B_20250829_023948 ## Model Details ### Model Description * Developed by: Foresight-based Optimization Authors * Backbone model: Qwen3-14B * Training method: SFT with KL divergence * Training data: train_imitation_gpt4.json * Training task: WordTaboo ### Training Parameters { "output_dir": "/home/jiashuo/codes/ForesightOptim/checkpoints/strategic_sft_Qwen3-14B_20250829_023948", "overwrite_output_dir": false, "do_train": false, "do_eval": false, "do_predict": false, "eval_strategy": { "_value_": "no", "_name_": "NO", "__objclass__": "{'_generate_next_value_': <function Enum._generate_next_value_ at 0x71eb157c2b90>, '__module__': 'transformers.trainer_utils', '__doc__': 'An enumeration.', '_member_names_': ['NO', 'STEPS', 'EPOCH'], '_member_map_': {'NO': <IntervalStrategy.NO: 'no'>, 'STEPS': <IntervalStrategy.STEPS: 'steps'>, 'EPOCH': <IntervalStrategy.EPOCH: 'epoch'>}, '_member_type_': <class 'str'>, '_value2member_map_': {'no': <IntervalStrategy.NO: 'no'>, 'steps': <IntervalStrategy.STEPS: 'steps'>, 'epoch': <IntervalStrategy.EPOCH: 'epoch'>}, 'NO': <IntervalStrategy.NO: 'no'>, 'STEPS': <IntervalStrategy.STEPS: 'steps'>, 'EPOCH': <IntervalStrategy.EPOCH: 'epoch'>, '__new__': <function Enum.__new__ at 0x71eb157c2b00>}" }, "prediction_loss_only": false, "per_device_train_batch_size": 4, "per_device_eval_batch_size": 8, "per_gpu_train_batch_size": null, "per_gpu_eval_batch_size": null, "gradient_accumulation_steps": 8, "eval_accumulation_steps": null, "eval_delay": 0, "torch_empty_cache_steps": null, "learning_rate": 3e-05, "weight_decay": 0.0, "adam_beta1": 0.9, "adam_beta2": 0.999, "adam_epsilon": 1e-08, "max_grad_norm": 1.0, "num_train_epochs": 1.0, "max_steps": -1, "lr_scheduler_type": { "_value_": "cosine", "_name_": "COSINE", "__objclass__": "{'_generate_next_value_': <function Enum._generate_next_value_ at 0x71eb157c2b90>, '__module__': 'transformers.trainer_utils', '__doc__': '\\n Scheduler names for the parameter `lr_scheduler_type` in [`TrainingArguments`].\\n By default, it uses \"linear\". Internally, this retrieves `get_linear_schedule_with_warmup` scheduler from [`Trainer`].\\n Scheduler types:\\n - \"linear\" = get_linear_schedule_with_warmup\\n - \"cosine\" = get_cosine_schedule_with_warmup\\n - \"cosine_with_restarts\" = get_cosine_with_hard_restarts_schedule_with_warmup\\n - \"polynomial\" = get_polynomial_decay_schedule_with_warmup\\n - \"constant\" = get_constant_schedule\\n - \"constant_with_warmup\" = get_constant_schedule_with_warmup\\n - \"inverse_sqrt\" = get_inverse_sqrt_schedule\\n - \"reduce_lr_on_plateau\" = get_reduce_on_plateau_schedule\\n - \"cosine_with_min_lr\" = get_cosine_with_min_lr_schedule_with_warmup\\n - \"warmup_stable_decay\" = get_wsd_schedule\\n ', '_member_names_': ['LINEAR', 'COSINE', 'COSINE_WITH_RESTARTS', 'POLYNOMIAL', 'CONSTANT', 'CONSTANT_WITH_WARMUP', 'INVERSE_SQRT', 'REDUCE_ON_PLATEAU', 'COSINE_WITH_MIN_LR', 'WARMUP_STABLE_DECAY'], '_member_map_': {'LINEAR': <SchedulerType.LINEAR: 'linear'>, 'COSINE': <SchedulerType.COSINE: 'cosine'>, 'COSINE_WITH_RESTARTS': <SchedulerType.COSINE_WITH_RESTARTS: 'cosine_with_restarts'>, 'POLYNOMIAL': <SchedulerType.POLYNOMIAL: 'polynomial'>, 'CONSTANT': <SchedulerType.CONSTANT: 'constant'>, 'CONSTANT_WITH_WARMUP': <SchedulerType.CONSTANT_WITH_WARMUP: 'constant_with_warmup'>, 'INVERSE_SQRT': <SchedulerType.INVERSE_SQRT: 'inverse_sqrt'>, 'REDUCE_ON_PLATEAU': <SchedulerType.REDUCE_ON_PLATEAU: 'reduce_lr_on_plateau'>, 'COSINE_WITH_MIN_LR': <SchedulerType.COSINE_WITH_MIN_LR: 'cosine_with_min_lr'>, 'WARMUP_STABLE_DECAY': <SchedulerType.WARMUP_STABLE_DECAY: 'warmup_stable_decay'>}, '_member_type_': <class 'str'>, '_value2member_map_': {'linear': <SchedulerType.LINEAR: 'linear'>, 'cosine': <SchedulerType.COSINE: 'cosine'>, 'cosine_with_restarts': <SchedulerType.COSINE_WITH_RESTARTS: 'cosine_with_restarts'>, 'polynomial': <SchedulerType.POLYNOMIAL: 'polynomial'>, 'constant': <SchedulerType.CONSTANT: 'constant'>, 'constant_with_warmup': <SchedulerType.CONSTANT_WITH_WARMUP: 'constant_with_warmup'>, 'inverse_sqrt': <SchedulerType.INVERSE_SQRT: 'inverse_sqrt'>, 'reduce_lr_on_plateau': <SchedulerType.REDUCE_ON_PLATEAU: 'reduce_lr_on_plateau'>, 'cosine_with_min_lr': <SchedulerType.COSINE_WITH_MIN_LR: 'cosine_with_min_lr'>, 'warmup_stable_decay': <SchedulerType.WARMUP_STABLE_DECAY: 'warmup_stable_decay'>}, 'LINEAR': <SchedulerType.LINEAR: 'linear'>, 'COSINE': <SchedulerType.COSINE: 'cosine'>, 'COSINE_WITH_RESTARTS': <SchedulerType.COSINE_WITH_RESTARTS: 'cosine_with_restarts'>, 'POLYNOMIAL': <SchedulerType.POLYNOMIAL: 'polynomial'>, 'CONSTANT': <SchedulerType.CONSTANT: 'constant'>, 'CONSTANT_WITH_WARMUP': <SchedulerType.CONSTANT_WITH_WARMUP: 'constant_with_warmup'>, 'INVERSE_SQRT': <SchedulerType.INVERSE_SQRT: 'inverse_sqrt'>, 'REDUCE_ON_PLATEAU': <SchedulerType.REDUCE_ON_PLATEAU: 'reduce_lr_on_plateau'>, 'COSINE_WITH_MIN_LR': <SchedulerType.COSINE_WITH_MIN_LR: 'cosine_with_min_lr'>, 'WARMUP_STABLE_DECAY': <SchedulerType.WARMUP_STABLE_DECAY: 'warmup_stable_decay'>, '__new__': <function Enum.__new__ at 0x71eb157c2b00>}" }, "lr_scheduler_kwargs": {}, "warmup_ratio": 0.03, "warmup_steps": 0, "log_level": "passive", "log_level_replica": "warning", "log_on_each_node": true, "logging_dir": "/home/jiashuo/codes/ForesightOptim/checkpoints/strategic_sft_Qwen3-14B_20250829_023948/runs/Aug29_02-39-58_super-Rack-Server", "logging_strategy": { "_value_": "steps", "_name_": "STEPS", "__objclass__": "{'_generate_next_value_': <function Enum._generate_next_value_ at 0x71eb157c2b90>, '__module__': 'transformers.trainer_utils', '__doc__': 'An enumeration.', '_member_names_': ['NO', 'STEPS', 'EPOCH'], '_member_map_': {'NO': <IntervalStrategy.NO: 'no'>, 'STEPS': <IntervalStrategy.STEPS: 'steps'>, 'EPOCH': <IntervalStrategy.EPOCH: 'epoch'>}, '_member_type_': <class 'str'>, '_value2member_map_': {'no': <IntervalStrategy.NO: 'no'>, 'steps': <IntervalStrategy.STEPS: 'steps'>, 'epoch': <IntervalStrategy.EPOCH: 'epoch'>}, 'NO': <IntervalStrategy.NO: 'no'>, 'STEPS': <IntervalStrategy.STEPS: 'steps'>, 'EPOCH': <IntervalStrategy.EPOCH: 'epoch'>, '__new__': <function Enum.__new__ at 0x71eb157c2b00>}" }, "logging_first_step": false, "logging_steps": 1.0, "logging_nan_inf_filter": true, "save_strategy": { "_value_": "steps", "_name_": "STEPS", "__objclass__": "{'_generate_next_value_': <function Enum._generate_next_value_ at 0x71eb157c2b90>, '__module__': 'transformers.trainer_utils', '__doc__': 'An enumeration.', '_member_names_': ['NO', 'STEPS', 'EPOCH', 'BEST'], '_member_map_': {'NO': <SaveStrategy.NO: 'no'>, 'STEPS': <SaveStrategy.STEPS: 'steps'>, 'EPOCH': <SaveStrategy.EPOCH: 'epoch'>, 'BEST': <SaveStrategy.BEST: 'best'>}, '_member_type_': <class 'str'>, '_value2member_map_': {'no': <SaveStrategy.NO: 'no'>, 'steps': <SaveStrategy.STEPS: 'steps'>, 'epoch': <SaveStrategy.EPOCH: 'epoch'>, 'best': <SaveStrategy.BEST: 'best'>}, 'NO': <SaveStrategy.NO: 'no'>, 'STEPS': <SaveStrategy.STEPS: 'steps'>, 'EPOCH': <SaveStrategy.EPOCH: 'epoch'>, 'BEST': <SaveStrategy.BEST: 'best'>, '__new__': <function Enum.__new__ at 0x71eb157c2b00>}" }, "save_steps": 400, "save_total_limit": null, "save_safetensors": true, "save_on_each_node": false, "save_only_model": false, "restore_callback_states_from_checkpoint": false, "no_cuda": false, "use_cpu": false, "use_mps_device": false, "seed": 42, "data_seed": null, "jit_mode_eval": false, "use_ipex": false, "bf16": true, "fp16": false, "fp16_opt_level": "O1", "half_precision_backend": "auto", "bf16_full_eval": false, "fp16_full_eval": false, "tf32": true, "local_rank": 1, "ddp_backend": null, "tpu_num_cores": null, "tpu_metrics_debug": false, "debug": [], "dataloader_drop_last": false, "eval_steps": null, "dataloader_num_workers": 0, "dataloader_prefetch_factor": null, "past_index": -1, "run_name": "/home/jiashuo/codes/ForesightOptim/checkpoints/strategic_sft_Qwen3-14B_20250829_023948", "disable_tqdm": false, "remove_unused_columns": false, "label_names": null, "load_best_model_at_end": false, "metric_for_best_model": null, "greater_is_better": null, "ignore_data_skip": false, "fsdp": [], "fsdp_min_num_params": 0, "fsdp_config": { "min_num_params": 0, "xla": false, "xla_fsdp_v2": false, "xla_fsdp_grad_ckpt": false }, "fsdp_transformer_layer_cls_to_wrap": null, "accelerator_config": { "split_batches": false, "dispatch_batches": null, "even_batches": true, "use_seedable_sampler": true, "non_blocking": false, "gradient_accumulation_kwargs": null }, "deepspeed": null, "label_smoothing_factor": 0.0, "optim": { "_value_": "adamw_torch", "_name_": "ADAMW_TORCH", "__objclass__": "{'_generate_next_value_': <function Enum._generate_next_value_ at 0x71eb157c2b90>, '__module__': 'transformers.training_args', '__doc__': '\\n Stores the acceptable string identifiers for optimizers.\\n ', '_member_names_': ['ADAMW_TORCH', 'ADAMW_TORCH_FUSED', 'ADAMW_TORCH_XLA', 'ADAMW_TORCH_NPU_FUSED', 'ADAMW_APEX_FUSED', 'ADAFACTOR', 'ADAMW_ANYPRECISION', 'ADAMW_TORCH_4BIT', 'ADAMW_TORCH_8BIT', 'ADEMAMIX', 'SGD', 'ADAGRAD', 'ADAMW_BNB', 'ADAMW_8BIT', 'ADEMAMIX_8BIT', 'LION_8BIT', 'LION', 'PAGED_ADAMW', 'PAGED_ADAMW_8BIT', 'PAGED_ADEMAMIX', 'PAGED_ADEMAMIX_8BIT', 'PAGED_LION', 'PAGED_LION_8BIT', 'RMSPROP', 'RMSPROP_BNB', 'RMSPROP_8BIT', 'RMSPROP_32BIT', 'GALORE_ADAMW', 'GALORE_ADAMW_8BIT', 'GALORE_ADAFACTOR', 'GALORE_ADAMW_LAYERWISE', 'GALORE_ADAMW_8BIT_LAYERWISE', 'GALORE_ADAFACTOR_LAYERWISE', 'LOMO', 'ADALOMO', 'GROKADAMW', 'SCHEDULE_FREE_RADAM', 'SCHEDULE_FREE_ADAMW', 'SCHEDULE_FREE_SGD', 'APOLLO_ADAMW', 'APOLLO_ADAMW_LAYERWISE'], '_member_map_': {'ADAMW_TORCH': <OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, 'ADAMW_TORCH_FUSED': <OptimizerNames.ADAMW_TORCH_FUSED: 'adamw_torch_fused'>, 'ADAMW_TORCH_XLA': <OptimizerNames.ADAMW_TORCH_XLA: 'adamw_torch_xla'>, 'ADAMW_TORCH_NPU_FUSED': <OptimizerNames.ADAMW_TORCH_NPU_FUSED: 'adamw_torch_npu_fused'>, 'ADAMW_APEX_FUSED': <OptimizerNames.ADAMW_APEX_FUSED: 'adamw_apex_fused'>, 'ADAFACTOR': <OptimizerNames.ADAFACTOR: 'adafactor'>, 'ADAMW_ANYPRECISION': <OptimizerNames.ADAMW_ANYPRECISION: 'adamw_anyprecision'>, 'ADAMW_TORCH_4BIT': <OptimizerNames.ADAMW_TORCH_4BIT: 'adamw_torch_4bit'>, 'ADAMW_TORCH_8BIT': <OptimizerNames.ADAMW_TORCH_8BIT: 'adamw_torch_8bit'>, 'ADEMAMIX': <OptimizerNames.ADEMAMIX: 'ademamix'>, 'SGD': <OptimizerNames.SGD: 'sgd'>, 'ADAGRAD': <OptimizerNames.ADAGRAD: 'adagrad'>, 'ADAMW_BNB': <OptimizerNames.ADAMW_BNB: 'adamw_bnb_8bit'>, 'ADAMW_8BIT': <OptimizerNames.ADAMW_8BIT: 'adamw_8bit'>, 'ADEMAMIX_8BIT': <OptimizerNames.ADEMAMIX_8BIT: 'ademamix_8bit'>, 'LION_8BIT': <OptimizerNames.LION_8BIT: 'lion_8bit'>, 'LION': <OptimizerNames.LION: 'lion_32bit'>, 'PAGED_ADAMW': <OptimizerNames.PAGED_ADAMW: 'paged_adamw_32bit'>, 'PAGED_ADAMW_8BIT': <OptimizerNames.PAGED_ADAMW_8BIT: 'paged_adamw_8bit'>, 'PAGED_ADEMAMIX': <OptimizerNames.PAGED_ADEMAMIX: 'paged_ademamix_32bit'>, 'PAGED_ADEMAMIX_8BIT': <OptimizerNames.PAGED_ADEMAMIX_8BIT: 'paged_ademamix_8bit'>, 'PAGED_LION': <OptimizerNames.PAGED_LION: 'paged_lion_32bit'>, 'PAGED_LION_8BIT': <OptimizerNames.PAGED_LION_8BIT: 'paged_lion_8bit'>, 'RMSPROP': <OptimizerNames.RMSPROP: 'rmsprop'>, 'RMSPROP_BNB': <OptimizerNames.RMSPROP_BNB: 'rmsprop_bnb'>, 'RMSPROP_8BIT': <OptimizerNames.RMSPROP_8BIT: 'rmsprop_bnb_8bit'>, 'RMSPROP_32BIT': <OptimizerNames.RMSPROP_32BIT: 'rmsprop_bnb_32bit'>, 'GALORE_ADAMW': <OptimizerNames.GALORE_ADAMW: 'galore_adamw'>, 'GALORE_ADAMW_8BIT': <OptimizerNames.GALORE_ADAMW_8BIT: 'galore_adamw_8bit'>, 'GALORE_ADAFACTOR': <OptimizerNames.GALORE_ADAFACTOR: 'galore_adafactor'>, 'GALORE_ADAMW_LAYERWISE': <OptimizerNames.GALORE_ADAMW_LAYERWISE: 'galore_adamw_layerwise'>, 'GALORE_ADAMW_8BIT_LAYERWISE': <OptimizerNames.GALORE_ADAMW_8BIT_LAYERWISE: 'galore_adamw_8bit_layerwise'>, 'GALORE_ADAFACTOR_LAYERWISE': <OptimizerNames.GALORE_ADAFACTOR_LAYERWISE: 'galore_adafactor_layerwise'>, 'LOMO': <OptimizerNames.LOMO: 'lomo'>, 'ADALOMO': <OptimizerNames.ADALOMO: 'adalomo'>, 'GROKADAMW': <OptimizerNames.GROKADAMW: 'grokadamw'>, 'SCHEDULE_FREE_RADAM': <OptimizerNames.SCHEDULE_FREE_RADAM: 'schedule_free_radam'>, 'SCHEDULE_FREE_ADAMW': <OptimizerNames.SCHEDULE_FREE_ADAMW: 'schedule_free_adamw'>, 'SCHEDULE_FREE_SGD': <OptimizerNames.SCHEDULE_FREE_SGD: 'schedule_free_sgd'>, 'APOLLO_ADAMW': <OptimizerNames.APOLLO_ADAMW: 'apollo_adamw'>, 'APOLLO_ADAMW_LAYERWISE': <OptimizerNames.APOLLO_ADAMW_LAYERWISE: 'apollo_adamw_layerwise'>}, '_member_type_': <class 'str'>, '_value2member_map_': {'adamw_torch': <OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, 'adamw_torch_fused': <OptimizerNames.ADAMW_TORCH_FUSED: 'adamw_torch_fused'>, 'adamw_torch_xla': <OptimizerNames.ADAMW_TORCH_XLA: 'adamw_torch_xla'>, 'adamw_torch_npu_fused': <OptimizerNames.ADAMW_TORCH_NPU_FUSED: 'adamw_torch_npu_fused'>, 'adamw_apex_fused': <OptimizerNames.ADAMW_APEX_FUSED: 'adamw_apex_fused'>, 'adafactor': <OptimizerNames.ADAFACTOR: 'adafactor'>, 'adamw_anyprecision': <OptimizerNames.ADAMW_ANYPRECISION: 'adamw_anyprecision'>, 'adamw_torch_4bit': <OptimizerNames.ADAMW_TORCH_4BIT: 'adamw_torch_4bit'>, 'adamw_torch_8bit': <OptimizerNames.ADAMW_TORCH_8BIT: 'adamw_torch_8bit'>, 'ademamix': <OptimizerNames.ADEMAMIX: 'ademamix'>, 'sgd': <OptimizerNames.SGD: 'sgd'>, 'adagrad': <OptimizerNames.ADAGRAD: 'adagrad'>, 'adamw_bnb_8bit': <OptimizerNames.ADAMW_BNB: 'adamw_bnb_8bit'>, 'adamw_8bit': <OptimizerNames.ADAMW_8BIT: 'adamw_8bit'>, 'ademamix_8bit': <OptimizerNames.ADEMAMIX_8BIT: 'ademamix_8bit'>, 'lion_8bit': <OptimizerNames.LION_8BIT: 'lion_8bit'>, 'lion_32bit': <OptimizerNames.LION: 'lion_32bit'>, 'paged_adamw_32bit': <OptimizerNames.PAGED_ADAMW: 'paged_adamw_32bit'>, 'paged_adamw_8bit': <OptimizerNames.PAGED_ADAMW_8BIT: 'paged_adamw_8bit'>, 'paged_ademamix_32bit': <OptimizerNames.PAGED_ADEMAMIX: 'paged_ademamix_32bit'>, 'paged_ademamix_8bit': <OptimizerNames.PAGED_ADEMAMIX_8BIT: 'paged_ademamix_8bit'>, 'paged_lion_32bit': <OptimizerNames.PAGED_LION: 'paged_lion_32bit'>, 'paged_lion_8bit': <OptimizerNames.PAGED_LION_8BIT: 'paged_lion_8bit'>, 'rmsprop': <OptimizerNames.RMSPROP: 'rmsprop'>, 'rmsprop_bnb': <OptimizerNames.RMSPROP_BNB: 'rmsprop_bnb'>, 'rmsprop_bnb_8bit': <OptimizerNames.RMSPROP_8BIT: 'rmsprop_bnb_8bit'>, 'rmsprop_bnb_32bit': <OptimizerNames.RMSPROP_32BIT: 'rmsprop_bnb_32bit'>, 'galore_adamw': <OptimizerNames.GALORE_ADAMW: 'galore_adamw'>, 'galore_adamw_8bit': <OptimizerNames.GALORE_ADAMW_8BIT: 'galore_adamw_8bit'>, 'galore_adafactor': <OptimizerNames.GALORE_ADAFACTOR: 'galore_adafactor'>, 'galore_adamw_layerwise': <OptimizerNames.GALORE_ADAMW_LAYERWISE: 'galore_adamw_layerwise'>, 'galore_adamw_8bit_layerwise': <OptimizerNames.GALORE_ADAMW_8BIT_LAYERWISE: 'galore_adamw_8bit_layerwise'>, 'galore_adafactor_layerwise': <OptimizerNames.GALORE_ADAFACTOR_LAYERWISE: 'galore_adafactor_layerwise'>, 'lomo': <OptimizerNames.LOMO: 'lomo'>, 'adalomo': <OptimizerNames.ADALOMO: 'adalomo'>, 'grokadamw': <OptimizerNames.GROKADAMW: 'grokadamw'>, 'schedule_free_radam': <OptimizerNames.SCHEDULE_FREE_RADAM: 'schedule_free_radam'>, 'schedule_free_adamw': <OptimizerNames.SCHEDULE_FREE_ADAMW: 'schedule_free_adamw'>, 'schedule_free_sgd': <OptimizerNames.SCHEDULE_FREE_SGD: 'schedule_free_sgd'>, 'apollo_adamw': <OptimizerNames.APOLLO_ADAMW: 'apollo_adamw'>, 'apollo_adamw_layerwise': <OptimizerNames.APOLLO_ADAMW_LAYERWISE: 'apollo_adamw_layerwise'>}, 'ADAMW_TORCH': <OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, 'ADAMW_TORCH_FUSED': <OptimizerNames.ADAMW_TORCH_FUSED: 'adamw_torch_fused'>, 'ADAMW_TORCH_XLA': <OptimizerNames.ADAMW_TORCH_XLA: 'adamw_torch_xla'>, 'ADAMW_TORCH_NPU_FUSED': <OptimizerNames.ADAMW_TORCH_NPU_FUSED: 'adamw_torch_npu_fused'>, 'ADAMW_APEX_FUSED': <OptimizerNames.ADAMW_APEX_FUSED: 'adamw_apex_fused'>, 'ADAFACTOR': <OptimizerNames.ADAFACTOR: 'adafactor'>, 'ADAMW_ANYPRECISION': <OptimizerNames.ADAMW_ANYPRECISION: 'adamw_anyprecision'>, 'ADAMW_TORCH_4BIT': <OptimizerNames.ADAMW_TORCH_4BIT: 'adamw_torch_4bit'>, 'ADAMW_TORCH_8BIT': <OptimizerNames.ADAMW_TORCH_8BIT: 'adamw_torch_8bit'>, 'ADEMAMIX': <OptimizerNames.ADEMAMIX: 'ademamix'>, 'SGD': <OptimizerNames.SGD: 'sgd'>, 'ADAGRAD': <OptimizerNames.ADAGRAD: 'adagrad'>, 'ADAMW_BNB': <OptimizerNames.ADAMW_BNB: 'adamw_bnb_8bit'>, 'ADAMW_8BIT': <OptimizerNames.ADAMW_8BIT: 'adamw_8bit'>, 'ADEMAMIX_8BIT': <OptimizerNames.ADEMAMIX_8BIT: 'ademamix_8bit'>, 'LION_8BIT': <OptimizerNames.LION_8BIT: 'lion_8bit'>, 'LION': <OptimizerNames.LION: 'lion_32bit'>, 'PAGED_ADAMW': <OptimizerNames.PAGED_ADAMW: 'paged_adamw_32bit'>, 'PAGED_ADAMW_8BIT': <OptimizerNames.PAGED_ADAMW_8BIT: 'paged_adamw_8bit'>, 'PAGED_ADEMAMIX': <OptimizerNames.PAGED_ADEMAMIX: 'paged_ademamix_32bit'>, 'PAGED_ADEMAMIX_8BIT': <OptimizerNames.PAGED_ADEMAMIX_8BIT: 'paged_ademamix_8bit'>, 'PAGED_LION': <OptimizerNames.PAGED_LION: 'paged_lion_32bit'>, 'PAGED_LION_8BIT': <OptimizerNames.PAGED_LION_8BIT: 'paged_lion_8bit'>, 'RMSPROP': <OptimizerNames.RMSPROP: 'rmsprop'>, 'RMSPROP_BNB': <OptimizerNames.RMSPROP_BNB: 'rmsprop_bnb'>, 'RMSPROP_8BIT': <OptimizerNames.RMSPROP_8BIT: 'rmsprop_bnb_8bit'>, 'RMSPROP_32BIT': <OptimizerNames.RMSPROP_32BIT: 'rmsprop_bnb_32bit'>, 'GALORE_ADAMW': <OptimizerNames.GALORE_ADAMW: 'galore_adamw'>, 'GALORE_ADAMW_8BIT': <OptimizerNames.GALORE_ADAMW_8BIT: 'galore_adamw_8bit'>, 'GALORE_ADAFACTOR': <OptimizerNames.GALORE_ADAFACTOR: 'galore_adafactor'>, 'GALORE_ADAMW_LAYERWISE': <OptimizerNames.GALORE_ADAMW_LAYERWISE: 'galore_adamw_layerwise'>, 'GALORE_ADAMW_8BIT_LAYERWISE': <OptimizerNames.GALORE_ADAMW_8BIT_LAYERWISE: 'galore_adamw_8bit_layerwise'>, 'GALORE_ADAFACTOR_LAYERWISE': <OptimizerNames.GALORE_ADAFACTOR_LAYERWISE: 'galore_adafactor_layerwise'>, 'LOMO': <OptimizerNames.LOMO: 'lomo'>, 'ADALOMO': <OptimizerNames.ADALOMO: 'adalomo'>, 'GROKADAMW': <OptimizerNames.GROKADAMW: 'grokadamw'>, 'SCHEDULE_FREE_RADAM': <OptimizerNames.SCHEDULE_FREE_RADAM: 'schedule_free_radam'>, 'SCHEDULE_FREE_ADAMW': <OptimizerNames.SCHEDULE_FREE_ADAMW: 'schedule_free_adamw'>, 'SCHEDULE_FREE_SGD': <OptimizerNames.SCHEDULE_FREE_SGD: 'schedule_free_sgd'>, 'APOLLO_ADAMW': <OptimizerNames.APOLLO_ADAMW: 'apollo_adamw'>, 'APOLLO_ADAMW_LAYERWISE': <OptimizerNames.APOLLO_ADAMW_LAYERWISE: 'apollo_adamw_layerwise'>, '__new__': <function Enum.__new__ at 0x71eb157c2b00>}" }, "optim_args": null, "adafactor": false, "group_by_length": false, "length_column_name": "length", "report_to": [ "tensorboard", "wandb" ], "ddp_find_unused_parameters": null, "ddp_bucket_cap_mb": null, "ddp_broadcast_buffers": null, "dataloader_pin_memory": true, "dataloader_persistent_workers": false, "skip_memory_metrics": true, "use_legacy_prediction_loop": false, "push_to_hub": false, "resume_from_checkpoint": null, "hub_model_id": null, "hub_strategy": { "_value_": "every_save", "_name_": "EVERY_SAVE", "__objclass__": "{'_generate_next_value_': <function Enum._generate_next_value_ at 0x71eb157c2b90>, '__module__': 'transformers.trainer_utils', '__doc__': 'An enumeration.', '_member_names_': ['END', 'EVERY_SAVE', 'CHECKPOINT', 'ALL_CHECKPOINTS'], '_member_map_': {'END': <HubStrategy.END: 'end'>, 'EVERY_SAVE': <HubStrategy.EVERY_SAVE: 'every_save'>, 'CHECKPOINT': <HubStrategy.CHECKPOINT: 'checkpoint'>, 'ALL_CHECKPOINTS': <HubStrategy.ALL_CHECKPOINTS: 'all_checkpoints'>}, '_member_type_': <class 'str'>, '_value2member_map_': {'end': <HubStrategy.END: 'end'>, 'every_save': <HubStrategy.EVERY_SAVE: 'every_save'>, 'checkpoint': <HubStrategy.CHECKPOINT: 'checkpoint'>, 'all_checkpoints': <HubStrategy.ALL_CHECKPOINTS: 'all_checkpoints'>}, 'END': <HubStrategy.END: 'end'>, 'EVERY_SAVE': <HubStrategy.EVERY_SAVE: 'every_save'>, 'CHECKPOINT': <HubStrategy.CHECKPOINT: 'checkpoint'>, 'ALL_CHECKPOINTS': <HubStrategy.ALL_CHECKPOINTS: 'all_checkpoints'>, '__new__': <function Enum.__new__ at 0x71eb157c2b00>}" }, "hub_token": null, "hub_private_repo": null, "hub_always_push": false, "hub_revision": null, "gradient_checkpointing": true, "gradient_checkpointing_kwargs": null, "include_inputs_for_metrics": false, "include_for_metrics": [], "eval_do_concat_batches": true, "fp16_backend": "auto", "push_to_hub_model_id": null, "push_to_hub_organization": null, "push_to_hub_token": null, "mp_parameters": "", "auto_find_batch_size": false, "full_determinism": false, "torchdynamo": null, "ray_scope": "last", "ddp_timeout": 1800, "torch_compile": false, "torch_compile_backend": null, "torch_compile_mode": null, "include_tokens_per_second": false, "include_num_input_tokens_seen": false, "neftune_noise_alpha": null, "optim_target_modules": null, "batch_eval_metrics": false, "eval_on_start": false, "use_liger_kernel": false, "liger_kernel_config": null, "eval_use_gather_object": false, "average_tokens_across_devices": false, "use_wandb": false, "adapter_path": "", "padding_side": "right", "truncation_side": "left", "add_sep_token": false, "model_type": "llama", "model_prefix": "llama", "pooling_type": "average", "model_name_or_path": "/data/models/Qwen3-14B", "ref_model_name_or_path": "", "critic_model_name_or_path": "FacebookAI/roberta-base", "game_name": "WordTaboo", "game_max_turn": 6, "data_dir": "path/to/cleaned_data", "data_type": "no_type", "data_path": "yahma/alpaca-cleaned", "train_data_path": [ "/home/jiashuo/datasets/wordtaboo/train_imitation_gpt4.json", "/home/jiashuo/datasets/wordtaboo/train_imitation_gpt4.json", "/home/jiashuo/datasets/rsagame/train_imitation_gpt4.1.json" ], "eval_data_path": [], "data_prefix": "yahma/alpaca-cleaned", "data_suffix": "yahma/alpaca-cleaned", "task_type": "training", "train_method": "SFTWeightedWithKL", "use_lora": true, "debug_mode": false, "cache_dir": null, "clip_range": 0.2, "length_penalty": 1.0, "lm_sft_coeff": 0.0, "lm_kl_coeff": 0.0, "max_length": 2048, "valid_data_size": 0, "rollout_size": 128, "replay_buffer_size": 10000, "replay_batch_size": 16, "critic_learning_rate": 2e-05, "gamma": 0.99, "tau": 0.95, "max_new_tokens": 128, "temperature": 0.9, "top_p": 0.95, "player_one_model_name_or_path": "", "player_two_model_name_or_path": "", "distributed_state": { "_cpu": false, "backend": "nccl", "device": "cuda:1", "debug": false, "distributed_type": "DEEPSPEED", "num_processes": 4, "process_index": 1, "local_process_index": 1, "fork_launched": false }, "_n_gpu": 1, "__cached__setup_devices": "cuda:1", "deepspeed_plugin": { "hf_ds_config": { "config": { "train_batch_size": 128, "train_micro_batch_size_per_gpu": 4, "gradient_accumulation_steps": 8, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "none", "nvme_path": null }, "offload_param": { "device": "none", "nvme_path": null }, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_clipping": 1.0, "steps_per_print": Infinity, "bf16": { "enabled": true }, "fp16": { "enabled": false }, "zero_allow_untested_optimizer": true }, "_stage": 2, "_offload": false, "_dtype": "torch.bfloat16", "mismatches": [] }, "gradient_accumulation_steps": "auto", "gradient_clipping": 1.0, "zero_stage": 2, "is_train_batch_min": true, "offload_optimizer_device": "none", "offload_param_device": "none", "offload_optimizer_nvme_path": "none", "offload_param_nvme_path": "none", "zero3_init_flag": false, "zero3_save_16bit_model": true, "transformer_moe_cls_names": null, "enable_msamp": false, "msamp_opt_level": "O1", "deepspeed_config": { "train_batch_size": 128, "train_micro_batch_size_per_gpu": 4, "gradient_accumulation_steps": 8, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "none", "nvme_path": null }, "offload_param": { "device": "none", "nvme_path": null }, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_clipping": 1.0, "steps_per_print": Infinity, "bf16": { "enabled": true }, "fp16": { "enabled": false }, "zero_allow_untested_optimizer": true }, "_selected": true, "dschf": { "config": { "train_micro_batch_size_per_gpu": 1, "gradient_accumulation_steps": 1, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "none", "nvme_path": null }, "offload_param": { "device": "none", "nvme_path": null }, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_clipping": 1.0, "steps_per_print": Infinity, "bf16": { "enabled": true }, "fp16": { "enabled": false } }, "_stage": 2, "_offload": false } } } ### Hardware Requirements * GPU: 8 48G NVIDIA-SMI 5090 * Number of GPUs: 8 * Memory of each GPU: 48G
DevQuasar/NousResearch.Hermes-4-14B-GGUF
DevQuasar
2025-09-03T05:17:03Z
0
0
null
[ "gguf", "text-generation", "base_model:NousResearch/Hermes-4-14B", "base_model:quantized:NousResearch/Hermes-4-14B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-03T03:18:49Z
--- base_model: - NousResearch/Hermes-4-14B pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [NousResearch/Hermes-4-14B](https://huggingface.co/NousResearch/Hermes-4-14B) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
GroomerG/blockassist-bc-vicious_pawing_badger_1756874956
GroomerG
2025-09-03T05:16:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:16:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arif696/blockassist-bc-regal_spotted_pelican_1756876478
arif696
2025-09-03T05:16:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:15:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756876534
bah63843
2025-09-03T05:16:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:16:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756876515
akirafudo
2025-09-03T05:16:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:15:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1756876420
hssnjfry
2025-09-03T05:15:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:14:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-pawing_downy_anaconda_1756876553
AnerYubo
2025-09-03T05:15:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing downy anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:15:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing downy anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-snappy_tenacious_eagle_1756876540
AnerYubo
2025-09-03T05:15:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snappy tenacious eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:15:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snappy tenacious eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-fanged_camouflaged_cassowary_1756876534
AnerYubo
2025-09-03T05:15:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fanged camouflaged cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:15:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fanged camouflaged cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756874846
calegpedia
2025-09-03T05:15:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:15:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756876456
sekirr
2025-09-03T05:14:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:14:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobbor/ppo-LunarLander-v2
hobbor
2025-09-03T05:13:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-09-03T03:43:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.46 +/- 45.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
systbs/zarvan-checkpoints
systbs
2025-09-03T05:13:17Z
655
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-22T05:56:32Z
--- license: apache-2.0 ---
openbmb/MiniCPM-V-4_5
openbmb
2025-09-03T05:12:43Z
13,870
837
transformers
[ "transformers", "safetensors", "minicpmv", "feature-extraction", "minicpm-v", "vision", "ocr", "document parsing", "multi-image", "video", "custom_code", "image-text-to-text", "conversational", "multilingual", "dataset:openbmb/RLAIF-V-Dataset", "arxiv:2403.11703", "region:us" ]
image-text-to-text
2025-08-24T10:39:55Z
--- pipeline_tag: image-text-to-text datasets: - openbmb/RLAIF-V-Dataset library_name: transformers language: - multilingual tags: - minicpm-v - vision - ocr - document parsing - multi-image - video - custom_code --- <h1>A GPT-4o Level MLLM for Single Image, Multi Image and High-FPS Video Understanding on Your Phone</h1> [GitHub](https://github.com/OpenBMB/MiniCPM-o) | [CookBook](https://github.com/OpenSQZ/MiniCPM-V-CookBook) | [Demo](http://101.126.42.235:30910/)</a> ## MiniCPM-V 4.5 **MiniCPM-V 4.5** is the latest and most capable model in the MiniCPM-V series. The model is built on Qwen3-8B and SigLIP2-400M with a total of 8B parameters. It exhibits a significant performance improvement over previous MiniCPM-V and MiniCPM-o models, and introduces new useful features. Notable features of MiniCPM-V 4.5 include: - ๐Ÿ”ฅ **State-of-the-art Vision-Language Capability.** MiniCPM-V 4.5 achieves an average score of 77.0 on OpenCompass, a comprehensive evaluation of 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o-latest, Gemini-2.0 Pro, and strong open-source models like Qwen2.5-VL 72B** for vision-language capabilities, making it the most performant MLLM under 30B parameters. - ๐ŸŽฌ **Efficient High-FPS and Long Video Understanding.** Powered by a new unified 3D-Resampler over images and videos, MiniCPM-V 4.5 can now achieve 96x compression rate for video tokens, where 6 448x448 video frames can be jointly compressed into 64 video tokens (normally 1,536 tokens for most MLLMs). This means that the model can perceive significantly more video frames without increasing the LLM inference cost. This brings state-of-the-art high-FPS (up to 10FPS) video understanding and long video understanding capabilities on Video-MME, LVBench, MLVU, MotionBench, FavorBench, etc., efficiently. - โš™๏ธ **Controllable Hybrid Fast/Deep Thinking.** MiniCPM-V 4.5 supports both fast thinking for efficient frequent usage with competitive performance, and deep thinking for more complex problem solving. To cover efficiency and performance trade-offs in different user scenarios, this fast/deep thinking mode can be switched in a highly controlled fashion. - ๐Ÿ’ช **Strong OCR, Document Parsing and Others.** Based on [LLaVA-UHD](https://arxiv.org/pdf/2403.11703) architecture, MiniCPM-V 4.5 can process high-resolution images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), using 4x less visual tokens than most MLLMs. The model achieves **leading performance on OCRBench, surpassing proprietary models such as GPT-4o-latest and Gemini 2.5**. It also achieves state-of-the-art performance for PDF document parsing capability on OmniDocBench among general MLLMs. Based on the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, outperforming GPT-4o-latest on MMHal-Bench, and supports **multilingual capabilities** in more than 30 languages. - ๐Ÿ’ซ **Easy Usage.** MiniCPM-V 4.5 can be easily used in various ways: (1) [llama.cpp](https://github.com/tc-mb/llama.cpp/blob/Support-MiniCPM-V-4.5/docs/multimodal/minicpmv4.5.md) and [ollama](https://github.com/tc-mb/ollama/tree/MIniCPM-V) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-V-4_5-int4), [GGUF](https://huggingface.co/openbmb/MiniCPM-V-4_5-gguf) and [AWQ](https://github.com/tc-mb/AutoAWQ) format quantized models in 16 sizes, (3) [SGLang](https://github.com/tc-mb/sglang/tree/main) and [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [Transformers](https://github.com/tc-mb/transformers/tree/main) and [LLaMA-Factory](./docs/llamafactory_train_and_infer.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), (6) optimized [local iOS app](https://github.com/tc-mb/MiniCPM-o-demo-iOS) on iPhone and iPad, and (7) online web demo on [server](http://101.126.42.235:30910/). See our [Cookbook](https://github.com/OpenSQZ/MiniCPM-V-CookBook) for full usages! ### Key Techniques <div align="center"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpm-v-4dot5-framework.png" , width=100%> </div> - **Architechture: Unified 3D-Resampler for High-density Video Compression.** MiniCPM-V 4.5 introduces a 3D-Resampler that overcomes the performance-efficiency trade-off in video understanding. By grouping and jointly compressing up to 6 consecutive video frames into just 64 tokens (the same token count used for a single image in MiniCPM-V series), MiniCPM-V 4.5 achieves a 96ร— compression rate for video tokens. This allows the model to process more video frames without additional LLM computational cost, enabling high-FPS video and long video understanding. The architecture supports unified encoding for images, multi-image inputs, and videos, ensuring seamless capability and knowledge transfer. - **Pre-training: Unified Learning for OCR and Knowledge from Documents.** Existing MLLMs learn OCR capability and knowledge from documents in isolated training approaches. We observe that the essential difference between these two training approaches is the visibility of the text in images. By dynamically corrupting text regions in documents with varying noise levels and asking the model to reconstruct the text, the model learns to adaptively and properly switch between accurate text recognition (when text is visible) and multimodal context-based knowledge reasoning (when text is heavily obscured). This eliminates reliance on error-prone document parsers in knowledge learning from documents, and prevents hallucinations from over-augmented OCR data, resulting in top-tier OCR and multimodal knowledge performance with minimal engineering overhead. - **Post-training: Hybrid Fast/Deep Thinking with Multimodal RL.** MiniCPM-V 4.5 offers a balanced reasoning experience through two switchable modes: fast thinking for efficient daily use and deep thinking for complex tasks. Using a new hybrid reinforcement learning method, the model jointly optimizes both modes, significantly enhancing fast-mode performance without compromising deep-mode capability. Incorporated with [RLPR](https://github.com/OpenBMB/RLPR) and [RLAIF-V](https://github.com/RLHF-V/RLAIF-V), it generalizes robust reasoning skills from broad multimodal data while effectively reducing hallucinations. ### Evaluation <div align="center"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/radar_minicpm_v45.png", width=60%> </div> <div align="center"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv_4_5_evaluation_result.png" , width=100%> </div> ### Inference Efficiency **OpenCompass** <div align="left"> <table style="margin: 0px auto;"> <thead> <tr> <th align="left">Model</th> <th>Size</th> <th>Avg Score โ†‘</th> <th>Total Inference Time โ†“</th> </tr> </thead> <tbody align="center"> <tr> <td nowrap="nowrap" align="left">GLM-4.1V-9B-Thinking</td> <td>10.3B</td> <td>76.6</td> <td>17.5h</td> </tr> <tr> <td nowrap="nowrap" align="left">MiMo-VL-7B-RL</td> <td>8.3B</td> <td>76.4</td> <td>11h</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V 4.5</td> <td>8.7B</td> <td><b>77.0</td> <td><b>7.5h</td> </tr> </tbody> </table> </div> **Video-MME** <div align="left"> <table style="margin: 0px auto;"> <thead> <tr> <th align="left">Model</th> <th>Size</th> <th>Avg Score โ†‘</th> <th>Total Inference Time โ†“</th> <th>GPU Mem โ†“</th> </tr> </thead> <tbody align="center"> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-7B-Instruct</td> <td>8.3B</td> <td>71.6</td> <td>3h</td> <td>60G</td> </tr> <tr> <td nowrap="nowrap" align="left">GLM-4.1V-9B-Thinking</td> <td>10.3B</td> <td><b>73.6</td> <td>2.63h</td> <td>32G</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V 4.5</td> <td>8.7B</td> <td>73.5</td> <td><b>0.26h</td> <td><b>28G</td> </tr> </tbody> </table> </div> Both Video-MME and OpenCompass were evaluated using 8ร—A100 GPUs for inference. The reported inference time of Video-MME includes full model-side computation, and excludes the external cost of video frame extraction (dependent on specific frame extraction tools) for fair comparison. ### Examples <div align="center"> <a href="https://www.youtube.com/watch?v=Cn23FujYMMU"><img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/MiniCPM-V%204.5-8.26_img.jpeg", width=70%></a> </div> <div style="display: flex; flex-direction: column; align-items: center;"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/en_case1.png" alt="en_case1" style="margin-bottom: 5px;"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/en_case2.png" alt="en_case2" style="margin-bottom: 5px;"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/en_case3.jpeg" alt="en_case3" style="margin-bottom: 5px;"> </div> We deploy MiniCPM-V 4.5 on iPad M4 with [iOS demo](https://github.com/tc-mb/MiniCPM-o-demo-iOS). The demo video is the raw screen recording without editing. <div align="center"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_en_handwriting.gif" width="45%" style="display: inline-block; margin: 0 10px;"/> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_en_cot.gif" width="45%" style="display: inline-block; margin: 0 10px;"/> </div> <div align="center"> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_cn_handwriting.gif" width="45%" style="display: inline-block; margin: 0 10px;"/> <img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_cn_travel.gif" width="45%" style="display: inline-block; margin: 0 10px;"/> </div> ## Framework Support Matrix <table> <thead> <tr> <th>Category</th> <th>Framework</th> <th>Cookbook Link</th> <th>Upstream PR</th> <th>Supported since (branch)</th> <th>Supported since (release)</th> </tr> </thead> <tbody> <tr> <td rowspan="2">Edge (On-device)</td> <td>Llama.cpp</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/llama.cpp/minicpm-v4_5_llamacpp.md">Llama.cpp Doc</a></td> <td><a href="https://github.com/ggml-org/llama.cpp/pull/15575">#15575</a> (2025-08-26)</td> <td>master (2025-08-26)</td> <td><a href="https://github.com/ggml-org/llama.cpp/releases/tag/b6282">b6282</a></td> </tr> <tr> <td>Ollama</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/ollama/minicpm-v4_5_ollama.md">Ollama Doc</a></td> <td><a href="https://github.com/ollama/ollama/pull/12078">#12078</a> (2025-08-26)</td> <td>Merging</td> <td>Waiting for official release</td> </tr> <tr> <td rowspan="2">Serving (Cloud)</td> <td>vLLM</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/vllm/minicpm-v4_5_vllm.md">vLLM Doc</a></td> <td><a href="https://github.com/vllm-project/vllm/pull/23586">#23586</a> (2025-08-26)</td> <td>main (2025-08-27)</td> <td>Waiting for official release</td> </tr> <tr> <td>SGLang</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/sglang/MiniCPM-v4_5_sglang.md">SGLang Doc</a></td> <td><a href="https://github.com/sgl-project/sglang/pull/9610">#9610</a> (2025-08-26)</td> <td>Merging</td> <td>Waiting for official release</td> </tr> <tr> <td>Finetuning</td> <td>LLaMA-Factory</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/finetune_llamafactory.md">LLaMA-Factory Doc</a></td> <td><a href="https://github.com/hiyouga/LLaMA-Factory/pull/9022">#9022</a> (2025-08-26)</td> <td>main (2025-08-26)</td> <td>Waiting for official release</td> </tr> <tr> <td rowspan="3">Quantization</td> <td>GGUF</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/gguf/minicpm-v4_5_gguf_quantize.md">GGUF Doc</a></td> <td>โ€”</td> <td>โ€”</td> <td>โ€”</td> </tr> <tr> <td>BNB</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/bnb/minicpm-v4_5_bnb_quantize.md">BNB Doc</a></td> <td>โ€”</td> <td>โ€”</td> <td>โ€”</td> </tr> <tr> <td>AWQ</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/awq/minicpm-v4_5_awq_quantize.md">AWQ Doc</a></td> <td>โ€”</td> <td>โ€”</td> <td>โ€”</td> </tr> <tr> <td>Demos</td> <td>Gradio Demo</td> <td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/demo/web_demo/gradio/README.md">Gradio Demo Doc</a></td> <td>โ€”</td> <td>โ€”</td> <td>โ€”</td> </tr> </tbody> </table> > Note: If you'd like us to prioritize support for another open-source framework, please let us know via this [short form](https://docs.google.com/forms/d/e/1FAIpQLSdyTUrOPBgWqPexs3ORrg47ZcZ1r4vFQaA4ve2iA7L9sMfMWw/viewform). ## Usage If you wish to enable thinking mode, provide the argument `enable_thinking=True` to the chat function. #### Chat with Image ```python import torch from PIL import Image from transformers import AutoModel, AutoTokenizer torch.manual_seed(100) model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True, # or openbmb/MiniCPM-o-2_6 attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager model = model.eval().cuda() tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True) # or openbmb/MiniCPM-o-2_6 image = Image.open('./assets/minicpmo2_6/show_demo.jpg').convert('RGB') enable_thinking=False # If `enable_thinking=True`, the thinking mode is enabled. stream=True # If `stream=True`, the answer is string # First round chat question = "What is the landform in the picture?" msgs = [{'role': 'user', 'content': [image, question]}] answer = model.chat( msgs=msgs, tokenizer=tokenizer, enable_thinking=enable_thinking, stream=True ) generated_text = "" for new_text in answer: generated_text += new_text print(new_text, flush=True, end='') # Second round chat, pass history context of multi-turn conversation msgs.append({"role": "assistant", "content": [answer]}) msgs.append({"role": "user", "content": ["What should I pay attention to when traveling here?"]}) answer = model.chat( msgs=msgs, tokenizer=tokenizer, stream=True ) generated_text = "" for new_text in answer: generated_text += new_text print(new_text, flush=True, end='') ``` You will get the following output: ```shell # round1 The landform in the picture is karst topography. Karst landscapes are characterized by distinctive, jagged limestone hills or mountains with steep, irregular peaks and deep valleysโ€”exactly what you see here These unique formations result from the dissolution of soluble rocks like limestone over millions of years through water erosion. This scene closely resembles the famous karst landscape of Guilin and Yangshuo in Chinaโ€™s Guangxi Province. The area features dramatic, pointed limestone peaks rising dramatically above serene rivers and lush green forests, creating a breathtaking and iconic natural beauty that attracts millions of visitors each year for its picturesque views. # round2 When traveling to a karst landscape like this, here are some important tips: 1. Wear comfortable shoes: The terrain can be uneven and hilly. 2. Bring water and snacks for energy during hikes or boat rides. 3. Protect yourself from the sun with sunscreen, hats, and sunglassesโ€”especially since youโ€™ll likely spend time outdoors exploring scenic spots. 4. Respect local customs and nature regulations by not littering or disturbing wildlife. By following these guidelines, you'll have a safe and enjoyable trip while appreciating the stunning natural beauty of places such as Guilinโ€™s karst mountains. ``` #### Chat with Video ```python ## The 3d-resampler compresses multiple frames into 64 tokens by introducing temporal_ids. # To achieve this, you need to organize your video data into two corresponding sequences: # frames: List[Image] # temporal_ids: List[List[Int]]. import torch from PIL import Image from transformers import AutoModel, AutoTokenizer from decord import VideoReader, cpu # pip install decord from scipy.spatial import cKDTree import numpy as np import math model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True, # or openbmb/MiniCPM-o-2_6 attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager model = model.eval().cuda() tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True) # or openbmb/MiniCPM-o-2_6 MAX_NUM_FRAMES=180 # Indicates the maximum number of frames received after the videos are packed. The actual maximum number of valid frames is MAX_NUM_FRAMES * MAX_NUM_PACKING. MAX_NUM_PACKING=3 # indicates the maximum packing number of video frames. valid range: 1-6 TIME_SCALE = 0.1 def map_to_nearest_scale(values, scale): tree = cKDTree(np.asarray(scale)[:, None]) _, indices = tree.query(np.asarray(values)[:, None]) return np.asarray(scale)[indices] def group_array(arr, size): return [arr[i:i+size] for i in range(0, len(arr), size)] def encode_video(video_path, choose_fps=3, force_packing=None): def uniform_sample(l, n): gap = len(l) / n idxs = [int(i * gap + gap / 2) for i in range(n)] return [l[i] for i in idxs] vr = VideoReader(video_path, ctx=cpu(0)) fps = vr.get_avg_fps() video_duration = len(vr) / fps if choose_fps * int(video_duration) <= MAX_NUM_FRAMES: packing_nums = 1 choose_frames = round(min(choose_fps, round(fps)) * min(MAX_NUM_FRAMES, video_duration)) else: packing_nums = math.ceil(video_duration * choose_fps / MAX_NUM_FRAMES) if packing_nums <= MAX_NUM_PACKING: choose_frames = round(video_duration * choose_fps) else: choose_frames = round(MAX_NUM_FRAMES * MAX_NUM_PACKING) packing_nums = MAX_NUM_PACKING frame_idx = [i for i in range(0, len(vr))] frame_idx = np.array(uniform_sample(frame_idx, choose_frames)) if force_packing: packing_nums = min(force_packing, MAX_NUM_PACKING) print(video_path, ' duration:', video_duration) print(f'get video frames={len(frame_idx)}, packing_nums={packing_nums}') frames = vr.get_batch(frame_idx).asnumpy() frame_idx_ts = frame_idx / fps scale = np.arange(0, video_duration, TIME_SCALE) frame_ts_id = map_to_nearest_scale(frame_idx_ts, scale) / TIME_SCALE frame_ts_id = frame_ts_id.astype(np.int32) assert len(frames) == len(frame_ts_id) frames = [Image.fromarray(v.astype('uint8')).convert('RGB') for v in frames] frame_ts_id_group = group_array(frame_ts_id, packing_nums) return frames, frame_ts_id_group video_path="video_test.mp4" fps = 5 # fps for video force_packing = None # You can set force_packing to ensure that 3D-Resampler packing is forcibly enabled; otherwise, encode_video will dynamically set the packing quantity based on the duration. frames, frame_ts_id_group = encode_video(video_path, fps, force_packing=force_packing) question = "Describe the video" msgs = [ {'role': 'user', 'content': frames + [question]}, ] answer = model.chat( msgs=msgs, tokenizer=tokenizer, use_image_id=False, # ensure use_image_id=False when video inference max_slice_nums=1, temporal_ids=frame_ts_id_group ) print(answer) ``` #### Chat with multiple images <details> <summary> Click to show Python code running MiniCPM-V 4.5 with multiple images input. </summary> ```python import torch from PIL import Image from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2 model = model.eval().cuda() tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True) image1 = Image.open('image1.jpg').convert('RGB') image2 = Image.open('image2.jpg').convert('RGB') question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.' msgs = [{'role': 'user', 'content': [image1, image2, question]}] answer = model.chat( msgs=msgs, tokenizer=tokenizer ) print(answer) ``` </details> #### In-context few-shot learning <details> <summary> Click to view Python code running MiniCPM-V 4.5 with few-shot input. </summary> ```python import torch from PIL import Image from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16) model = model.eval().cuda() tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True) question = "production date" image1 = Image.open('example1.jpg').convert('RGB') answer1 = "2023.08.04" image2 = Image.open('example2.jpg').convert('RGB') answer2 = "2007.04.24" image_test = Image.open('test.jpg').convert('RGB') msgs = [ {'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]}, {'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]}, {'role': 'user', 'content': [image_test, question]} ] answer = model.chat( msgs=msgs, tokenizer=tokenizer ) print(answer) ``` </details> ## License #### Model License * The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. * The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM-o/blob/main/MiniCPM%20Model%20License.md). * The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-V 4.5 weights are also available for free commercial use. #### Statement * As an LMM, MiniCPM-V 4.5 generates contents by learning a large amount of multimodal corpora, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V 4.5 does not represent the views and positions of the model developers * We will not be liable for any problems arising from the use of the MinCPM-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model. ## Key Techniques and Other Multimodal Projects ๐Ÿ‘ Welcome to explore key techniques of MiniCPM-V 4.5 and other multimodal projects of our team: [VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLPR](https://github.com/OpenBMB/RLPR) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V) ## Citation If you find our work helpful, please consider citing our papers ๐Ÿ“ and liking this project โค๏ธ๏ผ ```bib @article{yao2024minicpm, title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone}, author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others}, journal={Nat Commun 16, 5509 (2025)}, year={2025} } ```
Halfotter/korean-xlm-roberta-classifier
Halfotter
2025-09-03T05:12:40Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "korean", "ko", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-03T03:51:30Z
--- language: ko library_name: transformers pipeline_tag: text-classification base_model: xlm-roberta-base tags: - xlm-roberta - text-classification - korean license: mit --- # Korean XLM-RoBERTa Classifier (HF Compatible) This model is converted from a custom classifier to be compatible with Hugging Face Inference API. ## Model Info - Base Model: xlm-roberta-base - Task: text-classification - Language: Korean - Labels: 66 ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load directly from Hugging Face Hub tokenizer = AutoTokenizer.from_pretrained("Halftotter/korean-xlm-roberta-classifier") model = AutoModelForSequenceClassification.from_pretrained("Halftotter/korean-xlm-roberta-classifier") # Predict inputs = tokenizer("์›๋ณธ ํˆฌ์ž…๋ฌผ๋ช…", return_tensors="pt") outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) print(predictions)
arif696/blockassist-bc-regal_spotted_pelican_1756876263
arif696
2025-09-03T05:12:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal spotted pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:12:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal spotted pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roshanVarghese/my-gpt2-model
roshanVarghese
2025-09-03T05:12:00Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T05:10:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Chandan683/Qwen2.5-14b-GA1
Chandan683
2025-09-03T05:11:20Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-03T05:10:32Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Chandan683 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bah63843/blockassist-bc-plump_fast_antelope_1756876198
bah63843
2025-09-03T05:10:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:10:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dsaddsdsdd/blockassist-bc-stinging_darting_anteater_1756874872
dsaddsdsdd
2025-09-03T05:09:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging darting anteater", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:09:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging darting anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
OneclickAI/LSTM_GUE_test_Model
OneclickAI
2025-09-03T05:09:38Z
0
0
keras
[ "keras", "license:apache-2.0", "region:us" ]
null
2025-09-03T04:03:12Z
--- license: apache-2.0 --- ์•ˆ๋…•ํ•˜์„ธ์š” Oneclick AI ์ž…๋‹ˆ๋‹ค!! ์˜ค๋Š˜์€, RNN์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ LSTM(Long Short-Term Memory)๊ณผ GRU(Gated Recurrent Unit) ๋ชจ๋ธ์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ณด๋Š” ์‹œ๊ฐ„์„ ๊ฐ€์ ธ๋ณผ๊นŒ ํ•ฉ๋‹ˆ๋‹ค. RNN์ด ์ˆœ์ฐจ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐ ํ˜์‹ ์„ ๊ฐ€์ ธ์™”์ง€๋งŒ, ๊ธด ์‹œํ€€์Šค์—์„œ ๊ณผ๊ฑฐ ์ •๋ณด๋ฅผ ์ œ๋Œ€๋กœ ๊ธฐ์–ตํ•˜์ง€ ๋ชปํ•˜๋Š” '์žฅ๊ธฐ ์˜์กด์„ฑ ๋ฌธ์ œ'๋กœ ์ธํ•ด ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋ƒˆ์Šต๋‹ˆ๋‹ค. LSTM๊ณผ GRU๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์•ˆ๋œ ๊ณ ๊ธ‰ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง์œผ๋กœ, ๋งˆ์น˜ ์‚ฌ๋žŒ์˜ ์žฅ๊ธฐ ๊ธฐ์–ต์ฒ˜๋Ÿผ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์œ ์ง€ํ•˜๊ณ  ์žŠ์–ด๋ฒ„๋ฆด ์ˆ˜ ์žˆ๋Š” '๊ฒŒ์ดํŠธ' ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜์€ ์ด ๋‘ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ RNN์˜ ์•ฝ์ ์„ ๋ณด์™„ํ•˜๋ฉฐ ์ž‘๋™ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ป๊ฒŒ ๋” ๋ณต์žกํ•œ ๋ฌธ์žฅ์ด๋‚˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ •๊ตํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์•Œ์•„๋ด…์‹œ๋‹ค. --- ## ๋ชฉ์ฐจ 1. LSTM/GRU ํ•ต์‹ฌ ์›๋ฆฌ ํŒŒ์•…ํ•˜๊ธฐ - ์™œ LSTM/GRU๋ฅผ ์‚ฌ์šฉํ•ด์•ผ๋งŒ ํ• ๊นŒ? - LSTM์˜ ์‹ฌ์žฅ : ์…€ ์ƒํƒœ์™€ 3๊ฐœ์˜ ๊ฒŒ์ดํŠธ ๋ฉ”์ปค๋‹ˆ์ฆ˜ - GRU : LSTM์˜ ๊ฐ„์†Œํ™”๋œ ๋ฒ„์ „๊ณผ 2๊ฐœ์˜ ๊ฒŒ์ดํŠธ - LSTM๊ณผ GRU๋ฅผ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ํŽผ์ณ๋ณด๊ธฐ - LSTM/GRU์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ ์ƒ์„ธ ๋ถ„์„ 2. ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•œ ๋‚ด๋ถ€ ์ฝ”๋“œ ๋“ค์—ฌ๋‹ค ๋ณด๊ธฐ - Keras๋กœ ๊ตฌํ˜„ํ•œ LSTM/GRU ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ - model.summary()๋กœ ๊ตฌ์กฐ ํ™•์ธํ•˜๊ธฐ 3. ์ง์ ‘ LSTM/GRU ๊ตฌํ˜„ํ•ด ๋ณด๊ธฐ - 1๋‹จ๊ณ„ : ๋ฐ์ดํ„ฐ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ - 2๋‹จ๊ณ„ : ๋ชจ๋ธ ์ปดํŒŒ์ผ - 3๋‹จ๊ณ„ : ๋ชจ๋ธ ํ•™์Šต ๋ฐ ํ‰๊ฐ€ - 4๋‹จ๊ณ„ : ํ•™์Šต๋œ ๋ชจ๋ธ ์ €์žฅ ๋ฐ ์žฌ์‚ฌ์šฉ - 5๋‹จ๊ณ„ : ๋‚˜๋งŒ์˜ ๋ฌธ์žฅ์œผ๋กœ ๋ชจ๋ธ ํ…Œ์ŠคํŠธํ•˜๊ธฐ 4. ๋‚˜๋งŒ์˜ LSTM/GRU ๋ชจ๋ธ ์—…๊ทธ๋ ˆ์ด๋“œํ•˜๊ธฐ - ๊ธฐ์ดˆ ์ฒด๋ ฅ ํ›ˆ๋ จ : ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ - ์ธต ์Œ“๊ธฐ : ๋‹ค์ค‘ LSTM/GRU ๋ ˆ์ด์–ด - ๊ณผ๊ฑฐ์™€ ๋ฏธ๋ž˜๋ฅผ ๋™์‹œ์— : ์–‘๋ฐฉํ–ฅ LSTM/GRU - ์ „์ดํ•™์Šต์œผ๋กœ ์„ฑ๋Šฅ ๊ทน๋Œ€ํ™” ํ•˜๊ธฐ 5. ๊ฒฐ๋ก  --- ## 1. LSTM/GRU ํ•ต์‹ฌ์›๋ฆฌ ํŒŒ์•…ํ•˜๊ธฐ ๊ฐ€์žฅ ๋จผ์ €, LSTM๊ณผ GRU๊ฐ€ ์™œ RNN์˜ ๋Œ€์•ˆ์œผ๋กœ ๋“ฑ์žฅํ–ˆ๋Š”์ง€ ๊ทธ ๊ทผ๋ณธ์ ์ธ ์ด์œ ๋ถ€ํ„ฐ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. **์™œ LSTM/GRU๋ฅผ ์‚ฌ์šฉํ• ๊นŒ?? with RNN์˜ ํ•œ๊ณ„** ๊ธฐ๋ณธ RNN์€ ์€๋‹‰ ์ƒํƒœ๋ฅผ ํ†ตํ•ด ๊ณผ๊ฑฐ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜์ง€๋งŒ, ์‹œํ€€์Šค๊ฐ€ ๊ธธ์–ด์ง€๋ฉด ๊ทธ๋ž˜๋””์–ธํŠธ ์†Œ์‹ค(Vanishing Gradient)์ด๋‚˜ ํญ๋ฐœ(Exploding Gradient) ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ๊ธฐ์šธ๊ธฐ๊ฐ€ 0์— ๊ฐ€๊นŒ์›Œ์ง€๊ฑฐ๋‚˜ ๋ฌดํ•œ๋Œ€๊ฐ€ ๋˜์–ด, ๋ฌธ์žฅ ์•ž๋ถ€๋ถ„์˜ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์žŠ์–ด๋ฒ„๋ฆฌ๋Š” '์žฅ๊ธฐ ์˜์กด์„ฑ ๋ฌธ์ œ(Long-Term Dependency)'๋ฅผ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, "์–ด๋ฆฐ ์‹œ์ ˆ ํ”„๋ž‘์Šค์—์„œ ์ž๋ž๊ธฐ ๋•Œ๋ฌธ์—... (๊ธด ๋‚ด์šฉ)... ๊ทธ๋ž˜์„œ ๋‚˜๋Š” ํ”„๋ž‘์Šค์–ด๋ฅผ ์œ ์ฐฝํ•˜๊ฒŒ ๊ตฌ์‚ฌํ•œ๋‹ค."๋ผ๋Š” ๋ฌธ์žฅ์—์„œ RNN์€ 'ํ”„๋ž‘์Šค'๋ผ๋Š” ์ดˆ๊ธฐ ์ •๋ณด๋ฅผ ์žŠ๊ธฐ ์‰ฝ์Šต๋‹ˆ๋‹ค. LSTM๊ณผ GRU๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด '๊ฒŒ์ดํŠธ'๋ผ๋Š” ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์—ฌ, ์ •๋ณด์˜ ํ๋ฆ„์„ ์ œ์–ดํ•ฉ๋‹ˆ๋‹ค. ์ด๋“ค์€ RNN์˜ ๊ธฐ๋ณธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๊ธฐ์–ตํ•˜๊ณ  ๋ถˆํ•„์š”ํ•œ ๊ฒƒ์€ ์žŠ์–ด๋ฒ„๋ฆด ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. **LSTM์˜ ์‹ฌ์žฅ : ์…€ ์ƒํƒœ์™€ 3๊ฐœ์˜ ๊ฒŒ์ดํŠธ ๋ฉ”์ปค๋‹ˆ์ฆ˜** LSTM์˜ ํ•ต์‹ฌ์€ '์…€ ์ƒํƒœ(Cell State, $C_t$)'์™€ ์ด๋ฅผ ์ œ์–ดํ•˜๋Š” 3๊ฐœ์˜ ๊ฒŒ์ดํŠธ์ž…๋‹ˆ๋‹ค. - ์…€ ์ƒํƒœ(Cell State, $C_t$): ์žฅ๊ธฐ ๊ธฐ์–ต์„ ์œ„ํ•œ '์ปจ๋ฒ ์ด์–ด ๋ฒจํŠธ'๋กœ, ์ •๋ณด๊ฐ€ ๊ฑฐ์˜ ๋ณ€ํ˜• ์—†์ด ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. - ๊ฒŒ์ดํŠธ(Gates): ์‹œ๊ทธ๋ชจ์ด๋“œ(Sigmoid) ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด 0~1 ์‚ฌ์ด์˜ ๊ฐ’์„ ์ถœ๋ ฅํ•˜๋ฉฐ, ์ •๋ณด์˜ ํ†ต๊ณผ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. 1. ๋ง๊ฐ ๊ฒŒ์ดํŠธ(Forget Gate, $f_t$): ์ด์ „ ์…€ ์ƒํƒœ $C_{t-1}$์—์„œ ์–ด๋–ค ์ •๋ณด๋ฅผ ์žŠ์„์ง€ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$ (์—ฌ๊ธฐ์„œ $\sigma$๋Š” ์‹œ๊ทธ๋ชจ์ด๋“œ ํ•จ์ˆ˜, $h_{t-1}$์€ ์ด์ „ ์€๋‹‰ ์ƒํƒœ, $x_t$๋Š” ํ˜„์žฌ ์ž…๋ ฅ) 2. ์ž…๋ ฅ ๊ฒŒ์ดํŠธ(Input Gate, $i_t$)์™€ ํ›„๋ณด ์…€ ์ƒํƒœ($\tilde{C_t}$): ์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ์–ผ๋งˆ๋‚˜ ์ถ”๊ฐ€ํ• ์ง€ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$ $\tilde{C_t} = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ 3. ์ถœ๋ ฅ ๊ฒŒ์ดํŠธ(Output Gate, $o_t$): ์…€ ์ƒํƒœ์—์„œ ์–ด๋–ค ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ• ์ง€ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$ ์ตœ์ข… ์…€ ์ƒํƒœ $C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C_t}$ ( $\odot$์€ ์š”์†Œ๋ณ„ ๊ณฑ) ์€๋‹‰ ์ƒํƒœ $h_t = o_t \odot \tanh(C_t)$ ์ด ๊ตฌ์กฐ ๋•๋ถ„์— LSTM์€ ์žฅ๊ธฐ์ ์ธ ์˜์กด์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. **GRU : LSTM์˜ ๊ฐ„์†Œํ™”๋œ ๋ฒ„์ „๊ณผ 2๊ฐœ์˜ ๊ฒŒ์ดํŠธ** GRU๋Š” LSTM์˜ ๋ณ€ํ˜•์œผ๋กœ, ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ค„์—ฌ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ์„ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ์€๋‹‰ ์ƒํƒœ $h_t$๊ฐ€ ์…€ ์ƒํƒœ ์—ญํ• ์„ ๊ฒธํ•˜๋ฉฐ, 2๊ฐœ์˜ ๊ฒŒ์ดํŠธ๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. - ๋ฆฌ์…‹ ๊ฒŒ์ดํŠธ(Reset Gate, $r_t$): ์ด์ „ ์€๋‹‰ ์ƒํƒœ๋ฅผ ์–ผ๋งˆ๋‚˜ ๋ฌด์‹œํ• ์ง€ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. $r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r)$ - ์—…๋ฐ์ดํŠธ ๊ฒŒ์ดํŠธ(Update Gate, $z_t$): ์ด์ „ ์ƒํƒœ์™€ ์ƒˆ ํ›„๋ณด ์ƒํƒœ๋ฅผ ์–ผ๋งˆ๋‚˜ ์„ž์„์ง€ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. (LSTM์˜ ๋ง๊ฐ+์ž…๋ ฅ ๊ฒŒ์ดํŠธ ์—ญํ• ) $z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z)$ ํ›„๋ณด ์€๋‹‰ ์ƒํƒœ $\tilde{h_t} = \tanh(W_h \cdot [r_t \odot h_{t-1}, x_t] + b_h)$ ์ตœ์ข… $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h_t}$ GRU๋Š” LSTM๋งŒํผ ๊ฐ•๋ ฅํ•˜๋ฉด์„œ๋„ ํ•™์Šต์ด ๋” ๋น ๋ฆ…๋‹ˆ๋‹ค. **LSTM/GRU๋ฅผ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ํŽผ์ณ๋ณด๊ธฐ** ์•„๋ž˜ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธธ๊ฒŒ ํŽผ์ณ์„œ ํ‘œํ˜„ํ•˜๋ฉด, ์‰ฝ๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ```markdown ์‹œ๊ฐ„ ํ๋ฆ„ โ”€โ”€โ”€โ–ถ ์ž…๋ ฅ ์‹œํ€€์Šค: xโ‚ xโ‚‚ xโ‚ƒ ... xโ‚œ โ†“ โ†“ โ†“ โ†“ โ”Œโ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ” ... โ”Œโ”€โ”€โ”€โ”€โ” hโ‚€, Cโ‚€ โ”€โ”€โ–ถโ”‚LSTMโ”‚โ–ถโ”‚LSTMโ”‚โ–ถโ”‚LSTMโ”‚ โ–ถ ... โ–ถโ”‚LSTMโ”‚ (๋˜๋Š” GRU) โ””โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ–ผ โ–ผ โ–ผ hโ‚ hโ‚‚ hโ‚ƒ hโ‚œ ``` ๊ฐ ํƒ€์ž„์Šคํ…์—์„œ ๊ฒŒ์ดํŠธ๊ฐ€ ์ •๋ณด๋ฅผ ์ œ์–ดํ•˜๋ฉฐ, ์…€ ์ƒํƒœ(๋˜๋Š” ์€๋‹‰ ์ƒํƒœ)๊ฐ€ ์žฅ๊ธฐ์ ์œผ๋กœ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. **LSTM/GRU์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ** - ๊ฒŒ์ดํŠธ ๋ฉ”์ปค๋‹ˆ์ฆ˜: ์ •๋ณด ์„ ํƒ๊ณผ ์‚ญ์ œ. - ์€๋‹‰/์…€ ์ƒํƒœ: ๋ฉ”๋ชจ๋ฆฌ ์—ญํ• . - ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต์œ : ๋ชจ๋“  ํƒ€์ž„์Šคํ…์—์„œ ๋™์ผํ•œ ๊ฐ€์ค‘์น˜ ์‚ฌ์šฉ. --- ## 2. ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•œ ๋‚ด๋ถ€ ์ฝ”๋“œ ๋“ค์—ฌ๋‹ค ๋ณด๊ธฐ ์ด์ œ ์ด๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ, TensorFlow Keras ๋ฅผ ํ†ตํ•ด ์ง์ ‘ LSTM๊ณผ GRU๋ฅผ ๊ตฌํ˜„ํ•ด ๋ด…์‹œ๋‹ค. Keras๋กœ ๊ตฌํ˜„ํ•œ LSTM/GRU ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ์‹ฌ์ธต ๋ถ„์„๋‹ค์Œ์€ IMDB ์˜ํ™” ๋ฆฌ๋ทฐ ๊ฐ์„ฑ ๋ถ„์„์„ ์œ„ํ•œ ๊ฐ„๋‹จํ•œ LSTM ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. (GRU๋„ ์œ ์‚ฌ) ```python import tensorflow as tf from tensorflow import keras # ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ์ •์˜ model = keras.Sequential([ # 1. ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ ์ธต keras.layers.Embedding(input_dim=10000, output_dim=32), # 2. LSTM ์ธต (GRU๋กœ ๋ฐ”๊พธ๋ ค๋ฉด SimpleRNN ๋Œ€์‹  LSTM ๋˜๋Š” GRU ์‚ฌ์šฉ) keras.layers.LSTM(32), # 3. ์ตœ์ข… ๋ถ„๋ฅ˜๊ธฐ keras.layers.Dense(1, activation="sigmoid"), ]) # ๋ชจ๋ธ ๊ตฌ์กฐ ์š”์•ฝ ์ถœ๋ ฅ model.summary() ``` ๋ ˆ์ด์–ด๋ฅผ ์ž์„ธํžˆ ๋“ค์–ด๋‹ค ๋ด…์‹œ๋‹ค. - **์ž„๋ฒ ๋”ฉ ์ธต(Embedding)** ```python keras.layers.Embedding(input_dim=10000, output_dim=32) ``` ๋‹จ์–ด๋ฅผ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜, RNN ๋ฌธ์„œ์™€ ๋™์ผ. - **์ˆœํ™˜ ๊ณ„์ธต(LSTM ๋˜๋Š” GRU)** ```python keras.layers.LSTM(32), ``` ๋˜๋Š” ```python keras.layers.GRU(32), ``` ๋‚ด๋ถ€์ ์œผ๋กœ ๊ฒŒ์ดํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋ฉฐ, ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ํ•™์Šต. ๊ธฐ๋ณธ์ ์œผ๋กœ ์ตœ์ข… ์€๋‹‰ ์ƒํƒœ๋งŒ ์ถœ๋ ฅ. - **์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต(Dense)** ```python keras.layers.Dense(1, activation="sigmoid") ``` ์ตœ์ข… ํŒ๋‹จ. model.summary()๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜ ๊ณ„์‚ฐ ์›๋ฆฌ ์ดํ•ดํ•˜๊ธฐ์œ„ ์ฝ”๋“œ์—์„œ model.summary()๋ฅผ ์‹คํ–‰ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ต๋‹ˆ๋‹ค. ```bash Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding (Embedding) (None, None, 32) 320000 lstm (LSTM) (None, 32) 8320 dense (Dense) (None, 1) 33 ================================================================= Total params: 328,353 Trainable params: 328,353 Non-trainable params: 0 _________________________________________________________________ ``` ๊ฐ ์ธต์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ์–ด๋–ป๊ฒŒ ๊ณ„์‚ฐ๋˜๋Š”์ง€ ์•Œ์•„๋ณด์ž๋ฉด, 1. Embedding: 10,000 * 32 = 320,000 ๊ฐœ. 2. LSTM: ์ž…๋ ฅ(32)๊ณผ ์€๋‹‰(32)์„ ๊ณ ๋ คํ•œ 4๊ฐœ์˜ ๊ฒŒ์ดํŠธ(์ž…๋ ฅ, ๋ง๊ฐ, ์ถœ๋ ฅ, ํ›„๋ณด)๋กœ, (32+32+1)*32*4 = 8,320 ๊ฐœ. (GRU๋Š” 3๋ฐฐ: ์•ฝ 6,240) 3. Dense: 32 * 1 + 1 = 33 ๊ฐœ. --- ## 3. ์ง์ ‘ LSTM/GRU ๊ตฌํ˜„ํ•ด ๋ณด๊ธฐ ์ด์ œ, ์ „์ฒด ์ฝ”๋“œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ์‹คํ–‰ํ•˜๋ฉฐ ์ง์ ‘ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผœ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. (RNN ๋ฌธ์„œ์™€ ์œ ์‚ฌ, IMDB ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ) **1๋‹จ๊ณ„. ๋ฐ์ดํ„ฐ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ** ```python import numpy as np import tensorflow as tf from tensorflow import keras from keras import layers (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=10000) x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=256) x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=256) ``` **2๋‹จ๊ณ„. ๋ชจ๋ธ ์ปดํŒŒ์ผ** ```python model = keras.Sequential([ layers.Embedding(input_dim=10000, output_dim=32), layers.LSTM(32), # ๋˜๋Š” layers.GRU(32) layers.Dense(1, activation="sigmoid") ]) model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"] ) ``` **3๋‹จ๊ณ„. ๋ชจ๋ธ ํ•™์Šต ๋ฐ ํ‰๊ฐ€** ```python batch_size = 128 epochs = 10 history = model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test) ) score = model.evaluate(x_test, y_test, verbose=0) print(f"\nTest loss: {score[0]:.4f}") print(f"Test accuracy: {score[1]:.4f}") ``` **4๋‹จ๊ณ„. ํ•™์Šต๋œ ๋ชจ๋ธ ์ €์žฅ ๋ฐ ์žฌ์‚ฌ์šฉ** ```python model.save("my_lstm_model_imdb.keras") loaded_model = keras.models.load_model("my_lstm_model_imdb.keras") ``` **5๋‹จ๊ณ„. ๋‚˜๋งŒ์˜ ๋ฌธ์žฅ์œผ๋กœ ๋ชจ๋ธ ํ…Œ์ŠคํŠธํ•˜๊ธฐ** ```python word_index = keras.datasets.imdb.get_word_index() review = "This movie was fantastic and wonderful" tokens = [word_index.get(word, 2) for word in review.lower().split()] padded_tokens = keras.preprocessing.sequence.pad_sequences([tokens], maxlen=256) prediction = loaded_model.predict(padded_tokens) print(f"๋ฆฌ๋ทฐ: '{review}'") print(f"๊ธ์ • ํ™•๋ฅ : {prediction[0][0] * 100:.2f}%") ``` ## 4. ๋‚˜๋งŒ์˜ LSTM/GRU ๋ชจ๋ธ ์—…๊ทธ๋ ˆ์ด๋“œํ•˜๊ธฐ ๊ธฐ๋ณธ ๋ชจ๋ธ์„ ๋” ๊ฐ•๋ ฅํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. - **๊ธฐ์ดˆ ์ฒด๋ ฅ ํ›ˆ๋ จ : ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹** ํ•™์Šต๋ฅ , ๋ฐฐ์น˜ ํฌ๊ธฐ, ์œ ๋‹› ์ˆ˜ ๋“ฑ์„ ์กฐ์ •. ```python optimizer = keras.optimizers.Adam(learning_rate=0.001) model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"]) ``` - **์ธต ์Œ“๊ธฐ : ๋‹ค์ค‘ LSTM/GRU ๋ ˆ์ด์–ด** ```python model = keras.Sequential([ layers.Embedding(input_dim=10000, output_dim=64), layers.LSTM(64, return_sequences=True), layers.LSTM(32), layers.Dense(1, activation='sigmoid') ]) ``` - **๊ณผ๊ฑฐ์™€ ๋ฏธ๋ž˜๋ฅผ ๋™์‹œ์— : ์–‘๋ฐฉํ–ฅ LSTM/GRU** ```python model = keras.Sequential([ layers.Embedding(input_dim=10000, output_dim=64), layers.Bidirectional(layers.LSTM(64)), layers.Dropout(0.5), layers.Dense(1, activation='sigmoid') ]) ``` - **์ „์ดํ•™์Šต์œผ๋กœ ์„ฑ๋Šฅ ๊ทน๋Œ€ํ™” ํ•˜๊ธฐ** ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ(์˜ˆ: GloVe ์ž„๋ฒ ๋”ฉ) ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๋Œ€ํ˜• ๋ชจ๋ธ์˜ LSTM ๋ ˆ์ด์–ด freeze. ```python # ์˜ˆ: ์‚ฌ์ „ ํ•™์Šต๋œ ์ž„๋ฒ ๋”ฉ ๋กœ๋“œ (๋ณ„๋„ ํŒŒ์ผ ํ•„์š”) embedding_layer = layers.Embedding(input_dim=10000, output_dim=100, trainable=False) # GloVe ๋“ฑ์œผ๋กœ ์ดˆ๊ธฐํ™” ``` ## 5. ๊ฒฐ๋ก  ์˜ค๋Š˜์€, RNN์˜ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด์„  LSTM๊ณผ GRU์˜ ํ•ต์‹ฌ ์›๋ฆฌ๋ถ€ํ„ฐ ์‹ค์ œ ๊ตฌํ˜„, ์—…๊ทธ๋ ˆ์ด๋“œ ๋ฐฉ๋ฒ•๊นŒ์ง€ ์•Œ์•„๋ณด์•˜์Šต๋‹ˆ๋‹ค. ์ด ๋‘ ๋ชจ๋ธ์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹œ๊ณ„์—ด ์˜ˆ์ธก, ์Œ์„ฑ ์ธ์‹ ๋“ฑ์—์„œ ์—ฌ์ „ํžˆ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, LSTM/GRU์˜ ๊ฒŒ์ดํŠธ ์•„์ด๋””์–ด๋Š” ์ดํ›„ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์˜ ๊ธฐ๋ฐ˜์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์—๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ๋กœ ๋Œ์•„์˜ค๊ฒ ์Šต๋‹ˆ๋‹ค!! ์˜ค๋Š˜๋„ ์ข‹์€ํ•˜๋ฃจ ๋ณด๋‚ด์„ธ์š”!!
Locutusque/liberalis-cogitator-smollm3-3b
Locutusque
2025-09-03T05:09:35Z
0
0
transformers
[ "transformers", "safetensors", "smollm3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T03:21:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MrunangG/phi-2-mbux-assistant
MrunangG
2025-09-03T05:09:01Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:microsoft/phi-2", "lora", "sft", "transformers", "trl", "text-generation", "base_model:microsoft/phi-2", "region:us" ]
text-generation
2025-09-03T05:08:46Z
--- base_model: microsoft/phi-2 library_name: peft model_name: results tags: - base_model:adapter:microsoft/phi-2 - lora - sft - transformers - trl licence: license pipeline_tag: text-generation --- # Model Card for results This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - PEFT 0.17.1 - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Coolboi0099/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tall_rangy_porcupine
Coolboi0099
2025-09-03T05:07:45Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tall_rangy_porcupine", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T05:06:39Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tall_rangy_porcupine --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
swayamsingal/tencent-Hunyuan-MT-7B-light-nanoquant-light
swayamsingal
2025-09-03T05:07:19Z
0
0
null
[ "safetensors", "hunyuan_v1_dense", "region:us" ]
null
2025-09-03T02:25:25Z
--- language: en tags: - llm - compression - nanoquant - quantization - pruning license: apache-2.0 datasets: [] model-index: [] --- # NanoQuant Compressed Model ## Model Description This is a compressed version of [tencent/Hunyuan-MT-7B](https://huggingface.co/tencent/Hunyuan-MT-7B) created using NanoQuant, an advanced LLM compression toolkit. ## Compression Details - **Compression Level**: light - **Size Reduction**: 65.0% - **Techniques Used**: - Quantization: 8bit - Pruning: magnitude - LoRA: {'r': 64, 'alpha': 32, 'dropout': 0.05} ## Deployment Options ### Option 1: Direct Usage with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("tencent_Hunyuan-MT-7B_nanoquant_light") tokenizer = AutoTokenizer.from_pretrained("tencent_Hunyuan-MT-7B_nanoquant_light") ``` ### Option 2: Ollama Deployment This model is also available for Ollama: ```bash ollama pull nanoquant-tencent-Hunyuan-MT-7B:light ``` ## Performance Characteristics Due to the compression, this model: - Requires significantly less storage space - Has faster loading times - Uses less memory during inference - Maintains most of the original model's capabilities ## Original Model For information about the original model, please visit: https://huggingface.co/tencent/Hunyuan-MT-7B ## License This model is released under the Apache 2.0 license. ## NanoQuant NanoQuant is an advanced model compression system that achieves up to 99.95% size reduction while maintaining model performance. Learn more at [NanoQuant Documentation](https://github.com/nanoquant/nanoquant).
bah63843/blockassist-bc-plump_fast_antelope_1756875844
bah63843
2025-09-03T05:04:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:04:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-keen_fast_giraffe_1756875843
omerbkts
2025-09-03T05:04:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:04:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mayankm1411/GENAI_CAT2_STORY
Mayankm1411
2025-09-03T05:03:32Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T05:02:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sekirr/blockassist-bc-masked_tenacious_whale_1756875739
sekirr
2025-09-03T05:03:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:02:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1756874168
vwzyrraz7l
2025-09-03T05:02:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:02:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/realism-by-stable-yogi-pony-v60-fp16-sdxl
John6666
2025-09-03T05:01:29Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "asian", "european girl", "indian women", "scifi", "fantasy", "game", "3D", "2D", "illustration", "landscapes", "anatomical", "realism", "skin micro-texture", "dynamic lighting", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-09-03T04:55:24Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - asian - european girl - indian women - scifi - fantasy - game - 3D - 2D - illustration - landscapes - anatomical - realism - skin micro-texture - dynamic lighting - pony --- Original model is [here](https://civitai.com/models/166609/realism-by-stable-yogi-pony?modelVersionId=2176178). This model created by [Stable_Yogi](https://civitai.com/user/Stable_Yogi).
omerbektass/blockassist-bc-keen_fast_giraffe_1756875612
omerbektass
2025-09-03T05:00:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-03T05:00:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sophie-Rain-Spider-Ma-n-Vi-de-o-Tuto-rial/Sophie.Rain.Spiderman.Video.Oficial
Sophie-Rain-Spider-Ma-n-Vi-de-o-Tuto-rial
2025-09-03T04:59:19Z
0
0
null
[ "region:us" ]
null
2025-09-03T04:57:08Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
emogie3D/granite-3.3-8b-instruct-gguf
emogie3D
2025-09-03T04:58:12Z
0
0
transformers
[ "transformers", "language", "granite-3.3", "text-generation", "arxiv:0000.00000", "base_model:ibm-granite/granite-3.3-8b-base", "base_model:finetune:ibm-granite/granite-3.3-8b-base", "license:apache-2.0", "region:us" ]
text-generation
2025-09-03T04:34:50Z
--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.3 base_model: - ibm-granite/granite-3.3-8b-base --- # Granite-3.3-8B-Instruct Quantized models of Granite-3.3-8B-Instruct **used tool to Quantize the model:** * https://github.com/kevkid/gguf_gui - Gui * https://github.com/ggml-org/llama.cpp - Backend **Original Model by:** * ibm-granite/granite-3.3-8b-instruct * URL: https://huggingface.co/ibm-granite/granite-3.3-8b-instruct **Model Summary:** * Granite-3.3-8B-Instruct is a 8-billion parameter 128K context length language model fine-tuned for improved reasoning and instruction-following capabilities. Built on top of Granite-3.3-8B-Base, the model delivers significant gains on benchmarks for measuring generic performance including AlpacaEval-2.0 and Arena-Hard, and improvements in mathematics, coding, and instruction following. It supports structured reasoning through \<think\>\<\/think\> and \<response\>\<\/response\> tags, providing clear separation between internal thoughts and final outputs. The model has been trained on a carefully balanced combination of permissively licensed data and curated synthetic tasks. - **Developers:** Granite Team, IBM - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/) - **Release Date**: April 16th, 2025 - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) **Supported Languages:** English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages. **Intended Use:** This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications. **Capabilities** * Thinking * Summarization * Text classification * Text extraction * Question-answering * Retrieval Augmented Generation (RAG) * Code related tasks * Function-calling tasks * Multilingual dialog use cases <!-- * Fill-in-the-middle --> * Long-context tasks including long document/meeting summarization, long document QA, etc. **Generation:** This is a simple example of how to use Granite-3.3-8B-Instruct model. Install the following libraries: ```shell pip install torch torchvision torchaudio pip install accelerate pip install transformers ``` Then, copy the snippet from the section that is relevant for your use case. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed import torch model_path="ibm-granite/granite-3.3-8b-instruct" device="cuda" model = AutoModelForCausalLM.from_pretrained( model_path, device_map=device, torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained( model_path ) conv = [{"role": "user", "content":"Redesign a common household item to make it more sustainable and user-friendly. Explain the changes and their benefits."}] input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device) set_seed(42) output = model.generate( **input_ids, max_new_tokens=8192, ) prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True) print(prediction) ``` **Example Outputs** - thinking=True ```md <think>To address this prompt, I'll focus on redesigning a common household item: the plastic water bottle. The goal is to make it more sustainable and user-friendly. Here are the proposed changes and their benefits: 1. **Material**: Replace plastic with biodegradable or recyclable materials like glass or plant-based plastics (PLA). 2. **Design**: Introduce a modular design for easy refilling and cleaning. 3. **Functionality**: Incorporate a built-in water filter for purification. 4. **Durability**: Enhance the bottle's lifespan through robust construction. 5. **User-friendliness**: Simplify the cap mechanism for easy opening and closing. These changes would significantly reduce plastic waste, promote recycling, ensure access to clean drinking water, and enhance the overall user experience. Now, I will detail each change and its benefits in a structured format.</think> <response>### Redesign of the Plastic Water Bottle for Sustainability and User-Friendliness #### 1. Material: Biodegradable or Recyclable Alternatives **Change**: Transition from traditional PET plastic to glass or plant-based plastics (Polylactic Acid - PLA). **Benefits**: - **Sustainability**: Glass and PLA are biodegradable or highly recyclable, drastically reducing plastic pollution. - **Health**: Unlike PET, these materials do not leach chemicals into the water, ensuring safer consumption. #### 2. Modular Design for Easy Refilling and Cleaning **Change**: Implement a detachable, interchangeable inner liner within a reusable outer casing. **Benefits**: - **User-Friendliness**: Users can easily remove the inner liner for thorough cleaning, reducing the risk of bacterial growth. - **Sustainability**: The outer casing remains intact, encouraging reuse, while the inner liner can be replaced or recycled when worn out. #### 3. Built-in Water Filter **Change**: Integrate a removable, replaceable water filter into the bottle cap. **Benefits**: - **Accessibility**: Provides clean drinking water directly from any source (tap, river, etc.), eliminating the need for additional filtration devices. - **Health**: Removes contaminants, bacteria, and impurities, ensuring safe hydration. - **Sustainability**: Reduces the use of single-use plastic water bottles by offering a purification solution within a reusable container. #### 4. Enhanced Durability **Change**: Use high-quality, durable materials and robust construction techniques for both the outer casing and inner liner. **Benefits**: - **Longevity**: A more robust design increases the bottle's lifespan, reducing the frequency of replacements. - **Cost-effectiveness**: Although the initial cost might be higher, the long-term savings from reduced replacements make it economical. - **Sustainability**: Less frequent disposal means lower environmental impact. #### 5. Simplified Cap Mechanism **Change**: Adopt a one-touch, easy-to-open and close cap design, possibly inspired by sports bottle caps. **Benefits**: - **User-Friendliness**: Especially beneficial for children, elderly, or those with limited hand dexterity. - **Convenience**: Quick access to water encourages more frequent hydration, promoting healthier habits. ### Conclusion This redesigned water bottle addresses key sustainability concerns by minimizing plastic use and waste, while also enhancing user-friendliness through improved functionality, durability, and accessibility. By integrating biodegradable materials, a modular design, a built-in filter, robust construction, and a simple cap mechanism, the bottle not only reduces environmental footprint but also offers a superior user experience.</response> ``` - thinking=False ```md Item for Redesign: Plastic Bottle (e.g., water or beverage bottle) Redesign Concept: Eco-Friendly, Modular, and Multi-Functional Reusable Bottle Changes: 1. Material: Replace the conventional plastic with food-grade, BPA-free, and recyclable materials such as stainless steel or glass. These materials are durable, non-toxic, and have a longer lifespan, reducing waste. 2. Modular Design: Introduce a modular design that allows users to customize their bottle according to their needs. This could include interchangeable caps, mouthpiece sizes, and carrying loops. Users can purchase additional modules as needed, promoting a more sustainable approach by reducing the need to buy an entirely new bottle for different purposes. 3. Integrated Filter: Incorporate a built-in, washable, and reusable filter that can remove impurities and improve the taste of water. This eliminates the need for single-use disposable filters or bottled water, further reducing plastic waste. 4. Smart Cap: Develop a smart cap with a built-in digital display and temperature sensor. This feature allows users to track their daily water intake, set hydration goals, and monitor the temperature of their beverage. The smart cap can be synced with a mobile app for additional functionality, such as reminders and progress tracking. 5. Easy-to-Clean Design: Ensure the bottle has a wide mouth and smooth interior surfaces for easy cleaning. Include a brush for hard-to-reach areas, making maintenance simple and encouraging regular use. 6. Collapsible Structure: Implement a collapsible design that reduces the bottle's volume when not in use, making it more portable and convenient for storage. Benefits: 1. Sustainability: By using recyclable materials and reducing plastic waste, this redesigned bottle significantly contributes to a more sustainable lifestyle. The modular design and reusable filter also minimize single-use plastic consumption. 2. User-Friendly: The smart cap, easy-to-clean design, and collapsible structure make the bottle convenient and user-friendly. Users can customize their bottle to suit their needs, ensuring a better overall experience. 3. Healthier Option: Using food-grade, BPA-free materials and an integrated filter ensures that the beverages consumed are free from harmful chemicals and impurities, promoting a healthier lifestyle. 4. Cost-Effective: Although the initial investment might be higher, the long-term savings from reduced purchases of single-use plastic bottles and disposable filters make this reusable bottle a cost-effective choice. 5. Encourages Hydration: The smart cap's features, such as hydration tracking and temperature monitoring, can motivate users to stay hydrated and develop healthier habits. By redesigning a common household item like the plastic bottle, we can create a more sustainable, user-friendly, and health-conscious alternative that benefits both individuals and the environment. ``` **Evaluation Results:** <table> <thead> <caption style="text-align:center"><b>Comparison with different models over various benchmarks<sup id="fnref1"><a href="#fn1">1</a></sup>. Scores of AlpacaEval-2.0 and Arena-Hard are calculated with thinking=True</b></caption> <tr> <th style="text-align:left; background-color: #001d6c; color: white;">Models</th> <th style="text-align:center; background-color: #001d6c; color: white;">Arena-Hard</th> <th style="text-align:center; background-color: #001d6c; color: white;">AlpacaEval-2.0</th> <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th> <th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th> <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th> <th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard<sup id="fnref2"><a href="#fn2">2</a></sup></th> <th style="text-align:center; background-color: #001d6c; color: white;">DROP<sup id="fnref3"><a href="#fn3">3</a></sup></th> <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th> <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th> <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th> <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th> <th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th> </tr></thead> <tbody> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">23.3</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">27.17</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.11</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">20.55</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">59.79</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">61.82</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">20.99</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">67.55</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">79.45</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">75.26</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">63.59</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">84.7</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.2-2B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">24.86</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">34.51</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.18</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">20.56</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">59.8</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">61.39</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">23.84</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">67.02</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">80.13</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">73.39</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">61.55</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">83.23</td> </tr> <tr> <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.3-2B-Instruct</b></td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 28.86 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 43.45 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 55.88 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 18.4 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 58.97 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 63.91 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 44.33 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 72.48 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 80.51 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 75.68 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 65.8 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;">87.47</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Llama-3.1-8B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">36.43</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">27.22</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.15</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">28.79</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.79</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">73.43</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">71.23</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">83.24</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">85.32</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">80.15</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">79.10</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">83.43</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">DeepSeek-R1-Distill-Llama-8B</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">17.17</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">21.85</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">45.80</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.25</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.43</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">67.39</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">49.73</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.18</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">67.54</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">62.91</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">66.50</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">42.87</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Qwen-2.5-7B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">25.44</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">30.34</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.30</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">18.12</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">63.06</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.19</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">64.06</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">84.46</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">93.35</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">89.91</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.90</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">81.90</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">DeepSeek-R1-Distill-Qwen-7B</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">10.36</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">15.35</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.72</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.94</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.14</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">67.38</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">51.78</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">78.47</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">79.89</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">78.43</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">59.10</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">42.45</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-8B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">37.58</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">30.34</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">66.77</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">28.7</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">65.84</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.87</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">58.57</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">79.15</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">89.63</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">85.79</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">73.20</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">85.73</td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.2-8B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">55.25</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">61.19</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">66.79</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">28.04</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">66.92</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">71.86</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">58.29</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">81.65</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">89.35</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">85.72</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.31</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">84.7</td> </tr> <tr> <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.3-8B-Instruct</b></td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 57.56 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 62.68 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 65.54 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 26.17 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 66.86 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 69.13 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 59.36 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 80.89 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 89.73 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 86.09 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 74.82 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;">88.5</td> </tr> </tbody></table> <table> <caption style="text-align:center"><b>Math Benchmarks</b></caption> <thead> <tr> <th style="text-align:left; background-color: #001d6c; color: white;">Models</th> <th style="text-align:center; background-color: #001d6c; color: white;">AIME24</th> <th style="text-align:center; background-color: #001d6c; color: white;">MATH-500</th> </tr></thead> <tbody> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.89 </td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 35.07 </td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.2-2B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 0.89 </td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 35.54 </td> </tr> <tr> <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.3-2B-Instruct</b></td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 3.28 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 58.09 </td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-8B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 1.97 </td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 48.73 </td> </tr> <tr> <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.2-8B-Instruct</td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 2.43 </td> <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 52.8 </td> </tr> <tr> <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.3-8B-Instruct</b></td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 8.12 </td> <td style="text-align:center; background-color: #DAE8FF; color: black;"> 69.02 </td> </tr> </tbody></table> **Training Data:** Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites. <!-- A detailed attribution of datasets can be found in [Granite 3.2 Technical Report (coming soon)](#), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf). --> **Infrastructure:** We train Granite-3.3-8B-Instruct using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs. **Ethical Considerations and Limitations:** Granite-3.3-8B-Instruct builds upon Granite-3.3-8B-Base, leveraging both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-3.3-8B-Base](https://huggingface.co/ibm-granite/granite-3.3-8b-base) remain relevant. **Resources** - โญ๏ธ Learn about the latest updates with Granite: https://www.ibm.com/granite - ๐Ÿ“„ Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/ - ๐Ÿ’ก Learn about the latest Granite learning resources: https://github.com/ibm-granite-community/ <p><a href="#fnref1" title="Jump back to reference">[1]</a> Evaluated using <a href="https://github.com/allenai/olmes">OLMES</a> (except AttaQ and Arena-Hard scores)</p> <p><a href="#fnref2" title="Jump back to reference">[2]</a> Added regex for more efficient asnwer extraction.</a></p> <p><a href="#fnref3" title="Jump back to reference">[3]</a> Modified the implementation to handle some of the issues mentioned <a href="https://huggingface.co/blog/open-llm-leaderboard-drop">here</a></p> <!-- ## Citation <!-- ## Citation ``` @misc{granite-models, author = {author 1, author2, ...}, title = {}, journal = {}, volume = {}, year = {2024}, url = {https://arxiv.org/abs/0000.00000}, } ``` -->