modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-21 12:34:09
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
568 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-21 12:33:58
card
stringlengths
11
1.01M
jeongyeom/xlm-roberta-base-finetuned-panx-de
jeongyeom
2024-01-12T06:17:42Z
100
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-12T05:45:37Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1342 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2607 | 1.0 | 525 | 0.1529 | 0.8156 | | 0.1265 | 2.0 | 1050 | 0.1445 | 0.8487 | | 0.0838 | 3.0 | 1575 | 0.1342 | 0.8637 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
MaziyarPanahi/japanese-stablelm-base-gamma-7b-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T06:13:57Z
24
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "stabilityai/japanese-stablelm-base-gamma-7b", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T06:08:59Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - stabilityai/japanese-stablelm-base-gamma-7b --- # japanese-stablelm-base-gamma-7b-Mistral-7B-Instruct-v0.2-slerp japanese-stablelm-base-gamma-7b-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [stabilityai/japanese-stablelm-base-gamma-7b](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: stabilityai/japanese-stablelm-base-gamma-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/japanese-stablelm-base-gamma-7b-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
6MyDuck69/ppo-LunarLander-v2
6MyDuck69
2024-01-12T05:38:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T05:06:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -79.99 +/- 14.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
letingliu/holder_type2
letingliu
2024-01-12T05:34:15Z
50
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-12T05:28:35Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: letingliu/holder_type2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # letingliu/holder_type2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4652 - Validation Loss: 0.4554 - Train Accuracy: 0.9333 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6797 | 0.6563 | 0.8583 | 0 | | 0.6380 | 0.5999 | 0.8833 | 1 | | 0.5750 | 0.5293 | 0.9 | 2 | | 0.5168 | 0.4771 | 0.925 | 3 | | 0.4718 | 0.4554 | 0.9333 | 4 | | 0.4703 | 0.4554 | 0.9333 | 5 | | 0.4732 | 0.4554 | 0.9333 | 6 | | 0.4659 | 0.4554 | 0.9333 | 7 | | 0.4621 | 0.4554 | 0.9333 | 8 | | 0.4751 | 0.4554 | 0.9333 | 9 | | 0.4686 | 0.4554 | 0.9333 | 10 | | 0.4647 | 0.4554 | 0.9333 | 11 | | 0.4735 | 0.4554 | 0.9333 | 12 | | 0.4699 | 0.4554 | 0.9333 | 13 | | 0.4719 | 0.4554 | 0.9333 | 14 | | 0.4701 | 0.4554 | 0.9333 | 15 | | 0.4672 | 0.4554 | 0.9333 | 16 | | 0.4561 | 0.4554 | 0.9333 | 17 | | 0.4717 | 0.4554 | 0.9333 | 18 | | 0.4652 | 0.4554 | 0.9333 | 19 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
TitanTec/SpaceInvadersNoFrameskip-v4-T2
TitanTec
2024-01-12T05:27:17Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-12T05:26:46Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 334.50 +/- 159.73 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga TitanTec -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga TitanTec -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga TitanTec ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 200000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 1e-05), ('learning_starts', 100000), ('n_timesteps', 200000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('replay_buffer_kwargs', {'handle_timeout_termination': False}), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
MaziyarPanahi/LeoScorpius-7B-Chat-DPO-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T05:23:52Z
25
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "viethq188/LeoScorpius-7B-Chat-DPO", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T05:18:43Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - viethq188/LeoScorpius-7B-Chat-DPO --- # LeoScorpius-7B-Chat-DPO-Mistral-7B-Instruct-v0.2-slerp LeoScorpius-7B-Chat-DPO-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [viethq188/LeoScorpius-7B-Chat-DPO](https://huggingface.co/viethq188/LeoScorpius-7B-Chat-DPO) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: viethq188/LeoScorpius-7B-Chat-DPO layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/LeoScorpius-7B-Chat-DPO-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
hanseokOh/smartPatent-mContriever-lora
hanseokOh
2024-01-12T05:16:51Z
4
0
peft
[ "peft", "ko", "base_model:facebook/mcontriever-msmarco", "base_model:adapter:facebook/mcontriever-msmarco", "region:us" ]
null
2024-01-12T04:48:00Z
--- library_name: peft base_model: facebook/mcontriever-msmarco language: - ko --- # smartPatent-mContriever-lora The model is fine-tuned on the customed Korean Patent Retrieval system. ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Two types of datasets are used as training data: queries automatically generated through GPT-4 and patent titles that are linked to existing patent abstracts. ### Usage <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> ```python from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification import torch from transformers import AutoModel, AutoTokenizer from peft import PeftModel, PeftConfig def get_model(peft_model_name): config = PeftConfig.from_pretrained(peft_model_name) base_model = AutoModel.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(base_model, peft_model_name) model = model.merge_and_unload() model.eval() return model # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('facebook/mcontriever-msmarco') model = get_model('hanseokOh/smartPatent-mContriever-lora') ``` ### Info - **Developed by:** hanseokOh - **Model type:** information retriever - **Language(s) (NLP):** Korean - **Finetuned from model [optional]:** mContriever-msmarco ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/hanseokOh/PatentSearch
MaziyarPanahi/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T05:14:35Z
24
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T05:09:27Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85 --- # speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85-Mistral-7B-Instruct-v0.2-slerp speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85](https://huggingface.co/uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/speechless-mistral-dolphin-orca-platypus-samantha-7b-dare-0.85-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
zzvvmm/mms-tts-vie
zzvvmm
2024-01-12T05:07:02Z
78
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2024-01-11T09:44:18Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Vietnamese Text-to-Speech This repository contains the **Vietnamese (vie)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-vie") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-vie") text = "some example text in the Vietnamese language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
MaziyarPanahi/smartyplats-7b-v2-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T05:03:34Z
25
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "vihangd/smartyplats-7b-v2", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T04:58:39Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - vihangd/smartyplats-7b-v2 --- # smartyplats-7b-v2-Mistral-7B-Instruct-v0.2-slerp smartyplats-7b-v2-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [vihangd/smartyplats-7b-v2](https://huggingface.co/vihangd/smartyplats-7b-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: vihangd/smartyplats-7b-v2 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/smartyplats-7b-v2-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
DaanishHindustani/Q-A_chat_bot
DaanishHindustani
2024-01-12T04:57:02Z
48
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-01-12T00:46:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: DaanishHindustani/Q-A_chat_bot results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DaanishHindustani/Q-A_chat_bot This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7988 - Validation Loss: 1.7635 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4141 | 2.1035 | 0 | | 1.7988 | 1.7635 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
MaziyarPanahi/zephyr-7b-alpha-dare-0.85-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T04:54:48Z
24
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "uukuguy/zephyr-7b-alpha-dare-0.85", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T04:49:53Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - uukuguy/zephyr-7b-alpha-dare-0.85 --- # zephyr-7b-alpha-dare-0.85-Mistral-7B-Instruct-v0.2-slerp zephyr-7b-alpha-dare-0.85-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [uukuguy/zephyr-7b-alpha-dare-0.85](https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: uukuguy/zephyr-7b-alpha-dare-0.85 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/zephyr-7b-alpha-dare-0.85-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
BanUrsus/marian-finetuned-kde4-en-to-de-translator_nlp-course-chapter7-section3
BanUrsus
2024-01-12T04:50:08Z
124
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-de", "base_model:finetune:Helsinki-NLP/opus-mt-en-de", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-01-12T01:43:36Z
--- license: cc-by-4.0 base_model: Helsinki-NLP/opus-mt-en-de tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-de-translator_nlp-course-chapter7-section3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: de-en split: train args: de-en metrics: - name: Bleu type: bleu value: 35.64235445610118 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-de-translator_nlp-course-chapter7-section3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.2112 - Bleu: 35.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 1.11.0+cu102 - Datasets 2.15.0 - Tokenizers 0.15.0
g8nz/stable-diffusion-x4-upscaler
g8nz
2024-01-12T04:45:48Z
2
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "arxiv:2112.10752", "arxiv:2202.00512", "arxiv:1910.09700", "license:openrail++", "diffusers:StableDiffusionUpscalePipeline", "region:us" ]
null
2024-01-12T04:10:46Z
--- license: openrail++ tags: - stable-diffusion inference: false --- # Stable Diffusion x4 upscaler model card This model card focuses on the model associated with the Stable Diffusion Upscaler, available [here](https://github.com/Stability-AI/stablediffusion). This model is trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). ![Image](https://github.com/Stability-AI/stablediffusion/raw/main/assets/stable-samples/upscaling/merged-dog.png) - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `x4-upscaler-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/resolve/main/x4-upscaler-ema.ckpt). - Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler#examples) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner. ```bash pip install diffusers transformers accelerate scipy safetensors ``` ```python import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionUpscalePipeline import torch # load model and scheduler model_id = "stabilityai/stable-diffusion-x4-upscaler" pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipeline = pipeline.to("cuda") # let's download an image url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" response = requests.get(url) low_res_img = Image.open(BytesIO(response.content)).convert("RGB") low_res_img = low_res_img.resize((128, 128)) prompt = "a white cat" upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0] upscaled_image.save("upsampled_cat.png") ``` **Notes**: - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance) - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed) # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints: - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
ryusangwon/3118_Llama-2-13b-hf
ryusangwon
2024-01-12T04:32:54Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:cnn_dailymail", "base_model:meta-llama/Llama-2-13b-hf", "base_model:adapter:meta-llama/Llama-2-13b-hf", "region:us" ]
null
2024-01-12T04:32:46Z
--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: 3118_Llama-2-13b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 3118_Llama-2-13b-hf This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
bsmsultani/lunerlander
bsmsultani
2024-01-12T04:25:46Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T03:45:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.30 +/- 19.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MaziyarPanahi/speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T04:19:15Z
23
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "uukuguy/speechless-code-mistral-7b-v2.0", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T04:14:17Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - uukuguy/speechless-code-mistral-7b-v2.0 --- # speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.2-slerp speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [uukuguy/speechless-code-mistral-7b-v2.0](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v2.0) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: uukuguy/speechless-code-mistral-7b-v2.0 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
gustavokpc/IC_quarto
gustavokpc
2024-01-12T04:14:18Z
46
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-21T15:20:31Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: gustavokpc/IC_quarto results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gustavokpc/IC_quarto This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1061 - Train Accuracy: 0.9634 - Train F1 M: 0.5432 - Train Precision M: 0.3978 - Train Recall M: 0.9159 - Validation Loss: 0.2101 - Validation Accuracy: 0.9235 - Validation F1 M: 0.5596 - Validation Precision M: 0.4070 - Validation Recall M: 0.9389 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2274, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch | |:----------:|:--------------:|:----------:|:-----------------:|:--------------:|:---------------:|:-------------------:|:---------------:|:----------------------:|:-------------------:|:-----:| | 0.3469 | 0.8494 | 0.4233 | 0.3470 | 0.6216 | 0.2535 | 0.8945 | 0.5613 | 0.4145 | 0.9125 | 0 | | 0.1742 | 0.9335 | 0.5237 | 0.3895 | 0.8572 | 0.2315 | 0.9017 | 0.5765 | 0.4256 | 0.9353 | 1 | | 0.1061 | 0.9634 | 0.5432 | 0.3978 | 0.9159 | 0.2101 | 0.9235 | 0.5596 | 0.4070 | 0.9389 | 2 | ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Datasets 2.14.5 - Tokenizers 0.14.1
akashmaggon/bert-base-uncased-machinehackathon
akashmaggon
2024-01-12T04:00:25Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "region:us" ]
null
2024-01-12T03:41:09Z
--- library_name: peft base_model: distilbert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
MaziyarPanahi/Mini_synatra_7b_02-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T04:00:06Z
22
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "Minirecord/Mini_synatra_7b_02", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T03:55:24Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - Minirecord/Mini_synatra_7b_02 --- # Mini_synatra_7b_02-Mistral-7B-Instruct-v0.2-slerp Mini_synatra_7b_02-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [Minirecord/Mini_synatra_7b_02](https://huggingface.co/Minirecord/Mini_synatra_7b_02) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: Minirecord/Mini_synatra_7b_02 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Mini_synatra_7b_02-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
amd/rcan
amd
2024-01-12T03:54:30Z
0
0
null
[ "onnx", "RyzenAI", "Super Resolution", "Pytorch", "Vision", "SISR", "en", "dataset:Set5", "dataset:Div2k", "arxiv:1807.02758", "license:apache-2.0", "region:us" ]
null
2023-12-04T16:30:53Z
--- license: apache-2.0 tags: - RyzenAI - Super Resolution - Pytorch - Vision - SISR datasets: - Set5 - Div2k language: - en Metircs: - PSNR --- # RCAN model trained on DIV2K RCAN is a very deep residual channel attention network for super resolution trained on DIV2K. It was introduced in the paper [Image Super-Resolution Using Very Deep Residual Channel Attention Networks in 2018](https://arxiv.org/abs/1807.02758) by Yulun Zhang et al. and first released in [this repository](https://github.com/yulunzhang/RCAN). We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com). ## Model description RCAN is an advanced algorithm for single image super resolution. Our modified version is smaller than the original version. It is based deep learning techniques and is capable of X2 super resolution. ## Intended uses & limitations You can use the raw model for super resolution. See the [model hub](https://huggingface.co/models?sort=trending&search=amd%2Frcan) to look for all available RCAN models. ## How to use ### Installation Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model. ```bash pip install -r requirements.txt ``` ### Data Preparation (optional: for accuracy evaluation) 1. Download the benchmark(https://cv.snu.ac.kr/research/EDSR/benchmark.tar) dataset. 2. Organize the dataset directory as follows: ```Plain └── dataset └── benchmark ├── Set5 ├── HR | ├── baby.png | ├── ... └── LR_bicubic └──X2 ├──babyx2.png ├── ... ├── Set14 ├── ... ``` ### Test & Evaluation - Code snippet from [`infer_onnx.py`](infer_onnx.py) on how to use ```python parser = argparse.ArgumentParser(description='RCAN SISR') parser.add_argument('--onnx_path', type=str, default='RCAN_int8_NHWC.onnx', help='onnx path') parser.add_argument('--image_path', default='test_data/test.png', help='path of your image') parser.add_argument('--output_path', default='test_data/sr.png', help='path of your image') parser.add_argument('--ipu', action='store_true', help='use ipu') parser.add_argument('--provider_config', type=str, default=None, help='provider config path') args = parser.parse_args() if args.ipu: providers = ["VitisAIExecutionProvider"] provider_options = [{"config_file": args.provider_config}] else: providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] provider_options = None onnx_file_name = args.onnx_path image_path = args.image_path output_path = args.output_path ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=providers, provider_options=provider_options) lr = cv2.imread(image_path)[np.newaxis,:,:,:].transpose((0,3,1,2)).astype(np.float32) sr = tiling_inference(ort_session, lr, 8, (56, 56)) sr = np.clip(sr, 0, 255) sr = sr.squeeze().transpose((1,2,0)).astype(np.uint8) sr = cv2.imwrite(output_path, sr) ``` - Run inference for a single image ```python python infer_onnx.py --onnx_path RCAN_int8_NHWC.onnx --image_path /Path/To/Your/Image --ipu --provider_config Path/To/vaip_config.json ``` - Test accuracy of the quantized model ```python python eval_onnx.py --onnx_path RCAN_int8_NHWC.onnx --data_test Set5 --ipu --provider_config Path/To/vaip_config.json ``` ### Performance | Method | Scale | Flops | Set5 | |------------|-------|-------|--------------| |RCAN-S (float) |X2 |24.5G |37.531 / 0.958| |RCAN-S (INT8) |X2 |24.5G |37.150 / 0.955| - Note: the Flops is calculated with the output resolution is 360x640 ```bibtex @inproceedings{zhang2018image, title={Image super-resolution using very deep residual channel attention networks}, author={Zhang, Yulun and Li, Kunpeng and Li, Kai and Wang, Lichen and Zhong, Bineng and Fu, Yun}, booktitle={Proceedings of the European conference on computer vision (ECCV)}, pages={286--301}, year={2018} } ```
liuyuweitarek/all-MiniLM-L12-neo-300
liuyuweitarek
2024-01-12T03:52:58Z
46
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2024-01-11T10:19:31Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # liuyuweitarek/all-MiniLM-L12-neo-300 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("liuyuweitarek/all-MiniLM-L12-neo-300") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Jaehyeon222/M-SOLAR-10.7B-v1.0-DPO
Jaehyeon222
2024-01-12T03:44:25Z
2,247
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:maywell/ko_Ultrafeedback_binarized", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-05T01:08:14Z
--- license: cc-by-nc-4.0 datasets: - maywell/ko_Ultrafeedback_binarized --- Model Card for M-SOLAR-10.7B-v1.0-DPO Developed by : 메가스터디교육, 프리딕션, 마이스 Base Model : jjourney1125/M-SOLAR-10.7B-v1.0 사용 데이터셋 : maywell님의 ko_Ultrafeedback_binarized 데이터셋을 활용했습니다.
ducha07/way2vec2-VNmese
ducha07
2024-01-12T03:43:28Z
13
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "vi", "dataset:ducha07/audio_HTV_thoisu", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-11T16:02:57Z
--- language: - vi license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - ducha07/audio_HTV_thoisu metrics: - wer model-index: - name: ASR4-for-40-epochs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: HTV news type: ducha07/audio_HTV_thoisu metrics: - name: Wer type: wer value: 0.26843348202571504 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASR4-for-40-epochs This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the HTV news dataset. It achieves the following results on the evaluation set: - Loss: 0.4791 - Wer: 0.2684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1111 | 0.92 | 100 | 0.7687 | 0.4387 | | 1.1201 | 1.83 | 200 | 0.6388 | 0.3767 | | 0.9734 | 2.75 | 300 | 0.6319 | 0.3658 | | 0.9297 | 3.67 | 400 | 0.5740 | 0.3373 | | 0.9142 | 4.59 | 500 | 0.5591 | 0.3268 | | 0.8462 | 5.5 | 600 | 0.5627 | 0.3227 | | 0.8366 | 6.42 | 700 | 0.5491 | 0.3158 | | 0.8272 | 7.34 | 800 | 0.5398 | 0.3243 | | 0.8137 | 8.26 | 900 | 0.5363 | 0.3113 | | 0.7643 | 9.17 | 1000 | 0.5528 | 0.3117 | | 0.7738 | 10.09 | 1100 | 0.5194 | 0.3285 | | 0.7622 | 11.01 | 1200 | 0.5348 | 0.3043 | | 0.707 | 11.93 | 1300 | 0.5179 | 0.2909 | | 0.7242 | 12.84 | 1400 | 0.5153 | 0.3138 | | 0.7093 | 13.76 | 1500 | 0.5116 | 0.2951 | | 0.673 | 14.68 | 1600 | 0.5002 | 0.2941 | | 0.6877 | 15.6 | 1700 | 0.4958 | 0.3050 | | 0.6665 | 16.51 | 1800 | 0.5032 | 0.2865 | | 0.6507 | 17.43 | 1900 | 0.4871 | 0.2809 | | 0.6308 | 18.35 | 2000 | 0.4953 | 0.2947 | | 0.6507 | 19.27 | 2100 | 0.4998 | 0.2837 | | 0.6027 | 20.18 | 2200 | 0.4963 | 0.2868 | | 0.623 | 21.1 | 2300 | 0.4955 | 0.2953 | | 0.6047 | 22.02 | 2400 | 0.5034 | 0.2852 | | 0.5825 | 22.94 | 2500 | 0.4781 | 0.2795 | | 0.585 | 23.85 | 2600 | 0.4851 | 0.2843 | | 0.5838 | 24.77 | 2700 | 0.4957 | 0.2742 | | 0.5718 | 25.69 | 2800 | 0.4885 | 0.2810 | | 0.5646 | 26.61 | 2900 | 0.4778 | 0.2724 | | 0.5476 | 27.52 | 3000 | 0.4914 | 0.2751 | | 0.5333 | 28.44 | 3100 | 0.4879 | 0.2788 | | 0.5533 | 29.36 | 3200 | 0.4820 | 0.2726 | | 0.5321 | 30.28 | 3300 | 0.4816 | 0.2686 | | 0.5161 | 31.19 | 3400 | 0.4865 | 0.2812 | | 0.5326 | 32.11 | 3500 | 0.4818 | 0.2704 | | 0.5188 | 33.03 | 3600 | 0.4816 | 0.2669 | | 0.506 | 33.94 | 3700 | 0.4804 | 0.2755 | | 0.5122 | 34.86 | 3800 | 0.4803 | 0.2667 | | 0.506 | 35.78 | 3900 | 0.4785 | 0.2708 | | 0.5064 | 36.7 | 4000 | 0.4755 | 0.2730 | | 0.4997 | 37.61 | 4100 | 0.4804 | 0.2708 | | 0.4904 | 38.53 | 4200 | 0.4772 | 0.2678 | | 0.4774 | 39.45 | 4300 | 0.4791 | 0.2684 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
wesley7137/TinyLlama-OpenHermes-MOE-DolphiCoder-Expert-v1
wesley7137
2024-01-12T03:43:26Z
0
0
peft
[ "peft", "llama", "region:us" ]
null
2024-01-12T02:44:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
wesley7137/TinyLlama-OpenHermes-MOE-Logic-Expert
wesley7137
2024-01-12T03:43:04Z
0
0
peft
[ "peft", "llama", "region:us" ]
null
2024-01-12T02:34:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
ntc-ai/SDXL-LoRA-slider.11-10
ntc-ai
2024-01-12T03:19:44Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-12T03:19:41Z
--- language: - en thumbnail: "images/evaluate/11-10...hair down/11-10_17_3.0.png" widget: - text: 11-10 output: url: images/11-10_17_3.0.png - text: 11-10 output: url: images/11-10_19_3.0.png - text: 11-10 output: url: images/11-10_20_3.0.png - text: 11-10 output: url: images/11-10_21_3.0.png - text: 11-10 output: url: images/11-10_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "11-10" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - 11-10 (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/11-10_17_-3.0.png" width=256 height=256 /> | <img src="images/11-10_17_0.0.png" width=256 height=256 /> | <img src="images/11-10_17_3.0.png" width=256 height=256 /> | | <img src="images/11-10_19_-3.0.png" width=256 height=256 /> | <img src="images/11-10_19_0.0.png" width=256 height=256 /> | <img src="images/11-10_19_3.0.png" width=256 height=256 /> | | <img src="images/11-10_20_-3.0.png" width=256 height=256 /> | <img src="images/11-10_20_0.0.png" width=256 height=256 /> | <img src="images/11-10_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` 11-10 ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.11-10', weight_name='11-10.safetensors', adapter_name="11-10") # Activate the LoRA pipe.set_adapters(["11-10"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, 11-10" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1040+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
bartowski/UNA-TheBeagle-7b-v1-exl2
bartowski
2024-01-12T03:07:52Z
0
0
transformers
[ "transformers", "generated_from_trainer", "text-generation", "dataset:jondurbin/bagel-v0.3", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T02:50:54Z
--- license: cc-by-nc-nd-4.0 tags: - generated_from_trainer model-index: - name: UNA-TheBeagle-7b-v1 results: [] datasets: - jondurbin/bagel-v0.3 library_name: transformers quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of UNA-TheBeagle-7b-v1 Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using the default calibration dataset. Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6. Original model: https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1 <a href="https://huggingface.co/bartowski/UNA-TheBeagle-7b-v1-exl2/tree/8_0">8.0 bits per weight</a> <a href="https://huggingface.co/bartowski/UNA-TheBeagle-7b-v1-exl2/tree/6_5">6.5 bits per weight</a> <a href="https://huggingface.co/bartowski/UNA-TheBeagle-7b-v1-exl2/tree/5_0">5.0 bits per weight</a> <a href="https://huggingface.co/bartowski/UNA-TheBeagle-7b-v1-exl2/tree/4_0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/UNA-TheBeagle-7b-v1-exl2/tree/3_5">3.5 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/UNA-TheBeagle-7b-v1-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `UNA-TheBeagle-7b-v1-exl2`: ```shell mkdir UNA-TheBeagle-7b-v1-exl2 huggingface-cli download bartowski/UNA-TheBeagle-7b-v1-exl2 --local-dir UNA-TheBeagle-7b-v1-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir UNA-TheBeagle-7b-v1-exl2 huggingface-cli download bartowski/UNA-TheBeagle-7b-v1-exl2 --revision 4_0 --local-dir UNA-TheBeagle-7b-v1-exl2 --local-dir-use-symlinks False ```
MaziyarPanahi/samantha-mistral-instruct-7b-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T03:03:52Z
22
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "cognitivecomputations/samantha-mistral-instruct-7b", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T02:58:45Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - cognitivecomputations/samantha-mistral-instruct-7b --- # samantha-mistral-instruct-7b-Mistral-7B-Instruct-v0.2-slerp samantha-mistral-instruct-7b-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [cognitivecomputations/samantha-mistral-instruct-7b](https://huggingface.co/cognitivecomputations/samantha-mistral-instruct-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: cognitivecomputations/samantha-mistral-instruct-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/samantha-mistral-instruct-7b-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
FeiiYin/lora-trained-xl-audi4
FeiiYin
2024-01-12T02:56:29Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-12T02:51:16Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'A photo of sks car on the street' output: url: "image_0.png" - text: 'A photo of sks car on the street' output: url: "image_1.png" - text: 'A photo of sks car on the street' output: url: "image_2.png" - text: 'A photo of sks car on the street' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks car license: openrail++ --- # SDXL LoRA DreamBooth - FeiiYin/lora-trained-xl-audi4 <Gallery /> ## Model description These are FeiiYin/lora-trained-xl-audi4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sks car to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](FeiiYin/lora-trained-xl-audi4/tree/main) them in the Files & versions tab.
hxxris/haaris-audio-classification-improved-model-2
hxxris
2024-01-12T02:46:28Z
147
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-01-12T00:56:31Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: haaris-audio-classification-improved-model-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # haaris-audio-classification-improved-model-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.83 | 3 | nan | 0.0708 | | No log | 1.66 | 6 | nan | 0.0708 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
MaziyarPanahi/Mini_Synatra_SFT-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T02:42:07Z
21
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "maywell/Mini_Synatra_SFT", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T02:37:05Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - maywell/Mini_Synatra_SFT --- # Mini_Synatra_SFT-Mistral-7B-Instruct-v0.2-slerp Mini_Synatra_SFT-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [maywell/Mini_Synatra_SFT](https://huggingface.co/maywell/Mini_Synatra_SFT) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: maywell/Mini_Synatra_SFT layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Mini_Synatra_SFT-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
KantoRegion/bert-test
KantoRegion
2024-01-12T02:32:42Z
90
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-12T02:25:07Z
--- language: - en --- This model evaluates if character wants to send an image to user right now. ### [input] ``` {user's text} {character's text} ``` (two value should be separated with newline) ### [output] ``` 1: yes 0: no ```
MaziyarPanahi/samantha-1.2-mistral-7b-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T02:07:01Z
24
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "cognitivecomputations/samantha-1.2-mistral-7b", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T02:01:31Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - cognitivecomputations/samantha-1.2-mistral-7b --- # samantha-1.2-mistral-7b-Mistral-7B-Instruct-v0.2-slerp samantha-1.2-mistral-7b-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [cognitivecomputations/samantha-1.2-mistral-7b](https://huggingface.co/cognitivecomputations/samantha-1.2-mistral-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: cognitivecomputations/samantha-1.2-mistral-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/samantha-1.2-mistral-7b-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
DGraham1/doodle_test_LoRA
DGraham1
2024-01-12T01:56:02Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-12T01:56:00Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog license: openrail++ --- # SDXL LoRA DreamBooth - DGraham1/doodle_test_LoRA <Gallery /> ## Model description These are DGraham1/doodle_test_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](DGraham1/doodle_test_LoRA/tree/main) them in the Files & versions tab.
kodonho/llama2-chat-koalpaca
kodonho
2024-01-12T01:54:43Z
2,258
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "dataset:beomi/KoAlpaca-v1.1a", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-06T11:00:56Z
--- license: llama2 datasets: - beomi/KoAlpaca-v1.1a language: - ko --- # Llama2 based model with koalapaca dataset This is an English, Korean Model based on * [meta-llama/Llama-2-7b-chat-hf]
sekinat/rl_course_vizdoom_health_gathering_supreme
sekinat
2024-01-12T01:49:09Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-12T01:49:04Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.38 +/- 5.54 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r sekinat/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
MaziyarPanahi/mistralopithecus-v1-dpo-7b-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T01:46:21Z
23
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "DopeorNope/mistralopithecus-v1-dpo-7b", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T01:41:12Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - DopeorNope/mistralopithecus-v1-dpo-7b --- # mistralopithecus-v1-dpo-7b-Mistral-7B-Instruct-v0.2-slerp mistralopithecus-v1-dpo-7b-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [DopeorNope/mistralopithecus-v1-dpo-7b](https://huggingface.co/DopeorNope/mistralopithecus-v1-dpo-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: DopeorNope/mistralopithecus-v1-dpo-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/mistralopithecus-v1-dpo-7b-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
tgoktug/audio-t5-small-sum
tgoktug
2024-01-12T01:40:32Z
45
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-12T01:38:36Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: tgoktug/audio-t5-small-sum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/audio-t5-small-sum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5520 - Validation Loss: 0.5908 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.7571 | 0.6400 | 0 | | 0.6311 | 0.6155 | 1 | | 0.5969 | 0.6095 | 2 | | 0.5746 | 0.5977 | 3 | | 0.5520 | 0.5908 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
tgoktug/audio-BART-sum
tgoktug
2024-01-12T01:37:12Z
46
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-12T01:32:56Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_keras_callback model-index: - name: tgoktug/audio-BART-sum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/audio-BART-sum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.7843 - Validation Loss: 7.7055 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.5889 | 6.7823 | 0 | | 6.9879 | 6.7069 | 1 | | 6.8106 | 6.6307 | 2 | | 6.7660 | 6.7450 | 3 | | 6.7843 | 7.7055 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
MaziyarPanahi/mistral-7b_open_platypus-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-12T01:06:02Z
23
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "lgaalves/mistral-7b_open_platypus", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T01:00:34Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - lgaalves/mistral-7b_open_platypus --- # mistral-7b_open_platypus-Mistral-7B-Instruct-v0.2-slerp mistral-7b_open_platypus-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [lgaalves/mistral-7b_open_platypus](https://huggingface.co/lgaalves/mistral-7b_open_platypus) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: lgaalves/mistral-7b_open_platypus layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/mistral-7b_open_platypus-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
PatrickSui/my_awesome_mind_model
PatrickSui
2024-01-12T00:58:48Z
145
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-large", "base_model:finetune:facebook/wav2vec2-large", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-01-12T00:56:47Z
--- license: apache-2.0 base_model: facebook/wav2vec2-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_mind_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6000 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.7537 | 0.25 | | No log | 2.0 | 3 | 0.6236 | 0.75 | | No log | 3.0 | 5 | 0.5948 | 0.75 | | No log | 4.0 | 6 | 0.5866 | 0.75 | | No log | 5.0 | 7 | 0.5819 | 0.75 | | No log | 6.0 | 9 | 0.5987 | 0.75 | | 0.2651 | 6.67 | 10 | 0.6000 | 0.75 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.0+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
gustavokpc/IC_quinto
gustavokpc
2024-01-12T00:55:00Z
46
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-21T20:08:24Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: gustavokpc/IC_quinto results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gustavokpc/IC_quinto This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1646 - Train Accuracy: 0.9419 - Train F1 M: 0.5524 - Train Precision M: 0.4019 - Train Recall M: 0.9429 - Validation Loss: 0.2503 - Validation Accuracy: 0.9070 - Validation F1 M: 0.5680 - Validation Precision M: 0.4108 - Validation Recall M: 0.9671 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 2274, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch | |:----------:|:--------------:|:----------:|:-----------------:|:--------------:|:---------------:|:-------------------:|:---------------:|:----------------------:|:-------------------:|:-----:| | 0.4076 | 0.8160 | 0.5002 | 0.3900 | 0.7694 | 0.2792 | 0.8859 | 0.5648 | 0.4123 | 0.9419 | 0 | | 0.2272 | 0.9143 | 0.5487 | 0.4020 | 0.9253 | 0.2778 | 0.8925 | 0.5752 | 0.4181 | 0.9630 | 1 | | 0.1646 | 0.9419 | 0.5524 | 0.4019 | 0.9429 | 0.2503 | 0.9070 | 0.5680 | 0.4108 | 0.9671 | 2 | ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Datasets 2.14.5 - Tokenizers 0.14.1
andrewatef/MyBloggerV0.9
andrewatef
2024-01-12T00:53:09Z
2
0
peft
[ "peft", "pytorch", "safetensors", "llama", "arxiv:1910.09700", "base_model:unsloth/llama-2-7b", "base_model:adapter:unsloth/llama-2-7b", "region:us" ]
null
2024-01-11T23:38:34Z
--- library_name: peft base_model: unsloth/llama-2-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
shaukel/Diamondrequiem
shaukel
2024-01-12T00:47:55Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:cc-by-sa-4.0", "region:us" ]
text-to-image
2024-01-12T00:28:53Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: si parameters: negative_prompt: 'no' output: url: images/dba4olr-84e73851-0c45-4bcf-92d0-fc74ac24b3a9.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: depende license: cc-by-sa-4.0 --- # RVCv2 <Gallery /> ## Model description no se ## Trigger words You should use `depende` to trigger the image generation. ## Download model [Download](/shaukel/Diamondrequiem/tree/main) them in the Files & versions tab.
tgoktug/audio-Bart-new-256-base
tgoktug
2024-01-12T00:24:19Z
44
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-12T00:22:52Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_keras_callback model-index: - name: tgoktug/audio-Bart-new-256-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/audio-Bart-new-256-base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.9488 - Validation Loss: 6.8816 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.9488 | 6.8816 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
oosij/llama-2-7b-medibot
oosij
2024-01-12T00:19:40Z
2
0
peft
[ "peft", "safetensors", "region:us" ]
null
2024-01-12T00:19:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
jysssacc/627_roberta-base_adalora_lr0.05_bs4_epoch5_wd0.01
jysssacc
2024-01-12T00:18:58Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2024-01-12T00:12:08Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-base model-index: - name: 627_roberta-base_adalora_lr0.05_bs4_epoch5_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 627_roberta-base_adalora_lr0.05_bs4_epoch5_wd0.01 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.9955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.103 | 1.0 | 157 | 4.3243 | | 15.3565 | 2.0 | 314 | 8.4528 | | 8.9487 | 3.0 | 471 | 8.1856 | | 10.2902 | 4.0 | 628 | 8.6844 | | 8.6424 | 5.0 | 785 | 7.9955 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
tgoktug/audio-Bart-new-new128-base
tgoktug
2024-01-12T00:16:55Z
45
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-12T00:10:13Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_keras_callback model-index: - name: tgoktug/audio-Bart-new-new128-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/audio-Bart-new-new128-base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8925 - Validation Loss: 2.8817 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5066 | 2.8957 | 0 | | 2.8925 | 2.8817 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
DouglasPontes/2020-Q2-full_tweets
DouglasPontes
2024-01-12T00:09:36Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "base_model:DouglasPontes/2020-Q1-full_tweets", "base_model:finetune:DouglasPontes/2020-Q1-full_tweets", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-07T04:06:39Z
--- base_model: DouglasPontes/2020-Q1-full_tweets tags: - generated_from_trainer model-index: - name: 2020-Q2-full_tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2020-Q2-full_tweets This model is a fine-tuned version of [DouglasPontes/2020-Q1-full_tweets](https://huggingface.co/DouglasPontes/2020-Q1-full_tweets) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2400000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | No log | 0.01 | 8000 | 2.1043 | | 2.2608 | 0.02 | 16000 | 2.0934 | | 2.2608 | 0.03 | 24000 | 2.0862 | | 2.2409 | 0.03 | 32000 | 2.0805 | | 2.2409 | 0.04 | 40000 | 2.0793 | | 2.2278 | 0.05 | 48000 | 2.0718 | | 2.2278 | 0.06 | 56000 | 2.0753 | | 2.2059 | 0.07 | 64000 | 2.0668 | | 2.2059 | 0.08 | 72000 | 2.0657 | | 2.1997 | 0.09 | 80000 | 2.0620 | | 2.1997 | 0.1 | 88000 | 2.0553 | | 2.1988 | 0.1 | 96000 | 2.0569 | | 2.1988 | 0.11 | 104000 | 2.0525 | | 2.1861 | 0.12 | 112000 | 2.0556 | | 2.1861 | 0.13 | 120000 | 2.0493 | | 2.1823 | 0.14 | 128000 | 2.0509 | | 2.1823 | 0.15 | 136000 | 2.0461 | | 2.1851 | 0.16 | 144000 | 2.0476 | | 2.1851 | 0.17 | 152000 | 2.0450 | | 2.1862 | 0.17 | 160000 | 2.0469 | | 2.1862 | 0.18 | 168000 | 2.0442 | | 2.1741 | 0.19 | 176000 | 2.0456 | | 2.1741 | 0.2 | 184000 | 2.0442 | | 2.181 | 0.21 | 192000 | 2.0402 | | 2.181 | 0.22 | 200000 | 2.0423 | | 2.1692 | 0.23 | 208000 | 2.0413 | | 2.1692 | 0.24 | 216000 | 2.0448 | | 2.1678 | 0.24 | 224000 | 2.0418 | | 2.1678 | 0.25 | 232000 | 2.0417 | | 2.1756 | 0.26 | 240000 | 2.0342 | | 2.1756 | 0.27 | 248000 | 2.0377 | | 2.1752 | 0.28 | 256000 | 2.0381 | | 2.1752 | 0.29 | 264000 | 2.0354 | | 2.1673 | 0.3 | 272000 | 2.0381 | | 2.1673 | 0.31 | 280000 | 2.0375 | | 2.1585 | 0.31 | 288000 | 2.0336 | | 2.1585 | 0.32 | 296000 | 2.0344 | | 2.1703 | 0.33 | 304000 | 2.0348 | | 2.1703 | 0.34 | 312000 | 2.0330 | | 2.1667 | 0.35 | 320000 | 2.0352 | | 2.1667 | 0.36 | 328000 | 2.0359 | | 2.1649 | 0.37 | 336000 | 2.0317 | | 2.1649 | 0.38 | 344000 | 2.0314 | | 2.1564 | 0.38 | 352000 | 2.0306 | | 2.1564 | 0.39 | 360000 | 2.0299 | | 2.161 | 0.4 | 368000 | 2.0317 | | 2.161 | 0.41 | 376000 | 2.0325 | | 2.1551 | 0.42 | 384000 | 2.0274 | | 2.1551 | 0.43 | 392000 | 2.0282 | | 2.1602 | 0.44 | 400000 | 2.0301 | | 2.1602 | 0.45 | 408000 | 2.0303 | | 2.1581 | 0.45 | 416000 | 2.0260 | | 2.1581 | 0.46 | 424000 | 2.0248 | | 2.1494 | 0.47 | 432000 | 2.0265 | | 2.1494 | 0.48 | 440000 | 2.0247 | | 2.1508 | 0.49 | 448000 | 2.0231 | | 2.1508 | 0.5 | 456000 | 2.0276 | | 2.153 | 0.51 | 464000 | 2.0276 | | 2.153 | 0.51 | 472000 | 2.0242 | | 2.1489 | 0.52 | 480000 | 2.0259 | | 2.1489 | 0.53 | 488000 | 2.0257 | | 2.1468 | 0.54 | 496000 | 2.0275 | | 2.1468 | 0.55 | 504000 | 2.0303 | | 2.1446 | 0.56 | 512000 | 2.0248 | | 2.1446 | 0.57 | 520000 | 2.0286 | | 2.1409 | 0.58 | 528000 | 2.0211 | | 2.1409 | 0.58 | 536000 | 2.0204 | | 2.1536 | 0.59 | 544000 | 2.0199 | | 2.1536 | 0.6 | 552000 | 2.0281 | | 2.1416 | 0.61 | 560000 | 2.0237 | | 2.1416 | 0.62 | 568000 | 2.0231 | | 2.1502 | 0.63 | 576000 | 2.0205 | | 2.1502 | 0.64 | 584000 | 2.0217 | | 2.1424 | 0.65 | 592000 | 2.0242 | | 2.1424 | 0.65 | 600000 | 2.0238 | | 2.1469 | 0.66 | 608000 | 2.0192 | | 2.1469 | 0.67 | 616000 | 2.0249 | | 2.145 | 0.68 | 624000 | 2.0196 | | 2.145 | 0.69 | 632000 | 2.0224 | | 2.1503 | 0.7 | 640000 | 2.0216 | | 2.1503 | 0.71 | 648000 | 2.0228 | | 2.1355 | 0.72 | 656000 | 2.0197 | | 2.1355 | 0.72 | 664000 | 2.0240 | | 2.1392 | 0.73 | 672000 | 2.0232 | | 2.1392 | 0.74 | 680000 | 2.0209 | | 2.1378 | 0.75 | 688000 | 2.0219 | | 2.1378 | 0.76 | 696000 | 2.0192 | | 2.1446 | 0.77 | 704000 | 2.0195 | | 2.1446 | 0.78 | 712000 | 2.0197 | | 2.1351 | 0.79 | 720000 | 2.0184 | | 2.1351 | 0.79 | 728000 | 2.0162 | | 2.1437 | 0.8 | 736000 | 2.0151 | | 2.1437 | 0.81 | 744000 | 2.0202 | | 2.1249 | 0.82 | 752000 | 2.0169 | | 2.1249 | 0.83 | 760000 | 2.0189 | | 2.1355 | 0.84 | 768000 | 2.0221 | | 2.1355 | 0.85 | 776000 | 2.0194 | | 2.1387 | 0.86 | 784000 | 2.0189 | | 2.1387 | 0.86 | 792000 | 2.0165 | | 2.1334 | 0.87 | 800000 | 2.0169 | | 2.1334 | 0.88 | 808000 | 2.0189 | | 2.137 | 0.89 | 816000 | 2.0162 | | 2.137 | 0.9 | 824000 | 2.0168 | | 2.1331 | 0.91 | 832000 | 2.0193 | | 2.1331 | 0.92 | 840000 | 2.0166 | | 2.1293 | 0.93 | 848000 | 2.0137 | | 2.1293 | 0.93 | 856000 | 2.0183 | | 2.1358 | 0.94 | 864000 | 2.0184 | | 2.1358 | 0.95 | 872000 | 2.0171 | | 2.1296 | 0.96 | 880000 | 2.0179 | | 2.1296 | 0.97 | 888000 | 2.0152 | | 2.1319 | 0.98 | 896000 | 2.0174 | | 2.1319 | 0.99 | 904000 | 2.0206 | | 2.1344 | 1.0 | 912000 | 2.0179 | | 2.1344 | 1.0 | 920000 | 2.0154 | | 2.1352 | 1.01 | 928000 | 2.0185 | | 2.1352 | 1.02 | 936000 | 2.0170 | | 2.1336 | 1.03 | 944000 | 2.0164 | | 2.1336 | 1.04 | 952000 | 2.0137 | | 2.1315 | 1.05 | 960000 | 2.0176 | | 2.1315 | 1.06 | 968000 | 2.0155 | | 2.1255 | 1.06 | 976000 | 2.0145 | | 2.1255 | 1.07 | 984000 | 2.0233 | | 2.1249 | 1.08 | 992000 | 2.0148 | | 2.1249 | 1.09 | 1000000 | 2.0162 | | 2.123 | 1.1 | 1008000 | 2.0174 | | 2.123 | 1.11 | 1016000 | 2.0150 | | 2.1263 | 1.12 | 1024000 | 2.0161 | | 2.1263 | 1.13 | 1032000 | 2.0129 | | 2.1232 | 1.13 | 1040000 | 2.0167 | | 2.1232 | 1.14 | 1048000 | 2.0125 | | 2.1168 | 1.15 | 1056000 | 2.0113 | | 2.1168 | 1.16 | 1064000 | 2.0136 | | 2.1307 | 1.17 | 1072000 | 2.0143 | | 2.1307 | 1.18 | 1080000 | 2.0166 | | 2.1336 | 1.19 | 1088000 | 2.0103 | | 2.1336 | 1.2 | 1096000 | 2.0130 | | 2.1227 | 1.2 | 1104000 | 2.0125 | | 2.1227 | 1.21 | 1112000 | 2.0183 | | 2.1223 | 1.22 | 1120000 | 2.0148 | | 2.1223 | 1.23 | 1128000 | 2.0147 | | 2.1289 | 1.24 | 1136000 | 2.0109 | | 2.1289 | 1.25 | 1144000 | 2.0164 | | 2.1278 | 1.26 | 1152000 | 2.0163 | | 2.1278 | 1.27 | 1160000 | 2.0121 | | 2.1261 | 1.27 | 1168000 | 2.0113 | | 2.1261 | 1.28 | 1176000 | 2.0137 | | 2.126 | 1.29 | 1184000 | 2.0152 | | 2.126 | 1.3 | 1192000 | 2.0104 | | 2.1235 | 1.31 | 1200000 | 2.0132 | | 2.1235 | 1.32 | 1208000 | 2.0114 | | 2.1229 | 1.33 | 1216000 | 2.0105 | | 2.1229 | 1.34 | 1224000 | 2.0131 | | 2.1213 | 1.34 | 1232000 | 2.0141 | | 2.1213 | 1.35 | 1240000 | 2.0109 | | 2.1185 | 1.36 | 1248000 | 2.0129 | | 2.1185 | 1.37 | 1256000 | 2.0110 | | 2.131 | 1.38 | 1264000 | 2.0123 | | 2.131 | 1.39 | 1272000 | 2.0105 | | 2.1141 | 1.4 | 1280000 | 2.0104 | | 2.1141 | 1.41 | 1288000 | 2.0150 | | 2.1219 | 1.41 | 1296000 | 2.0161 | | 2.1219 | 1.42 | 1304000 | 2.0093 | | 2.1203 | 1.43 | 1312000 | 2.0104 | | 2.1203 | 1.44 | 1320000 | 2.0144 | | 2.1264 | 1.45 | 1328000 | 2.0085 | | 2.1264 | 1.46 | 1336000 | 2.0119 | | 2.1194 | 1.47 | 1344000 | 2.0118 | | 2.1194 | 1.48 | 1352000 | 2.0110 | | 2.117 | 1.48 | 1360000 | 2.0147 | | 2.117 | 1.49 | 1368000 | 2.0135 | | 2.1311 | 1.5 | 1376000 | 2.0077 | | 2.1311 | 1.51 | 1384000 | 2.0066 | | 2.1215 | 1.52 | 1392000 | 2.0089 | | 2.1215 | 1.53 | 1400000 | 2.0118 | | 2.1185 | 1.54 | 1408000 | 2.0105 | | 2.1185 | 1.54 | 1416000 | 2.0123 | | 2.1284 | 1.55 | 1424000 | 2.0134 | | 2.1284 | 1.56 | 1432000 | 2.0093 | | 2.1174 | 1.57 | 1440000 | 2.0102 | | 2.1174 | 1.58 | 1448000 | 2.0076 | | 2.1108 | 1.59 | 1456000 | 2.0074 | | 2.1108 | 1.6 | 1464000 | 2.0071 | | 2.1252 | 1.61 | 1472000 | 2.0092 | | 2.1252 | 1.61 | 1480000 | 2.0080 | | 2.121 | 1.62 | 1488000 | 2.0053 | | 2.121 | 1.63 | 1496000 | 2.0072 | | 2.1178 | 1.64 | 1504000 | 2.0059 | | 2.1178 | 1.65 | 1512000 | 2.0084 | | 2.1154 | 1.66 | 1520000 | 2.0106 | | 2.1154 | 1.67 | 1528000 | 2.0117 | | 2.1214 | 1.68 | 1536000 | 2.0070 | | 2.1214 | 1.68 | 1544000 | 2.0079 | | 2.1175 | 1.69 | 1552000 | 2.0102 | | 2.1175 | 1.7 | 1560000 | 2.0097 | | 2.1206 | 1.71 | 1568000 | 2.0092 | | 2.1206 | 1.72 | 1576000 | 2.0055 | | 2.1302 | 1.73 | 1584000 | 2.0085 | | 2.1302 | 1.74 | 1592000 | 2.0110 | | 2.1177 | 1.75 | 1600000 | 2.0065 | | 2.1177 | 1.75 | 1608000 | 2.0132 | | 2.1101 | 1.76 | 1616000 | 2.0086 | | 2.1101 | 1.77 | 1624000 | 2.0077 | | 2.1194 | 1.78 | 1632000 | 2.0081 | | 2.1194 | 1.79 | 1640000 | 2.0088 | | 2.1167 | 1.8 | 1648000 | 2.0022 | | 2.1167 | 1.81 | 1656000 | 2.0077 | | 2.1083 | 1.82 | 1664000 | 2.0066 | | 2.1083 | 1.82 | 1672000 | 2.0137 | | 2.1232 | 1.83 | 1680000 | 2.0067 | | 2.1232 | 1.84 | 1688000 | 2.0039 | | 2.1212 | 1.85 | 1696000 | 2.0090 | | 2.1212 | 1.86 | 1704000 | 2.0079 | | 2.1246 | 1.87 | 1712000 | 2.0083 | | 2.1246 | 1.88 | 1720000 | 2.0039 | | 2.1129 | 1.89 | 1728000 | 2.0069 | | 2.1129 | 1.89 | 1736000 | 2.0079 | | 2.1209 | 1.9 | 1744000 | 2.0058 | | 2.1209 | 1.91 | 1752000 | 2.0072 | | 2.1209 | 1.92 | 1760000 | 2.0068 | | 2.1209 | 1.93 | 1768000 | 2.0079 | | 2.1184 | 1.94 | 1776000 | 2.0036 | | 2.1184 | 1.95 | 1784000 | 2.0065 | | 2.1065 | 1.96 | 1792000 | 2.0077 | | 2.1065 | 1.96 | 1800000 | 2.0062 | | 2.109 | 1.97 | 1808000 | 2.0090 | | 2.109 | 1.98 | 1816000 | 2.0124 | | 2.1081 | 1.99 | 1824000 | 2.0066 | | 2.1081 | 2.0 | 1832000 | 2.0081 | | 2.1151 | 2.01 | 1840000 | 2.0085 | | 2.1151 | 2.02 | 1848000 | 2.0054 | | 2.1178 | 2.03 | 1856000 | 2.0058 | | 2.1178 | 2.03 | 1864000 | 2.0048 | | 2.1035 | 2.04 | 1872000 | 2.0040 | | 2.1035 | 2.05 | 1880000 | 2.0059 | | 2.1197 | 2.06 | 1888000 | 2.0071 | | 2.1197 | 2.07 | 1896000 | 2.0057 | | 2.1143 | 2.08 | 1904000 | 2.0059 | | 2.1143 | 2.09 | 1912000 | 2.0043 | | 2.1082 | 2.09 | 1920000 | 2.0068 | | 2.1082 | 2.1 | 1928000 | 2.0057 | | 2.1202 | 2.11 | 1936000 | 2.0072 | | 2.1202 | 2.12 | 1944000 | 2.0057 | | 2.1138 | 2.13 | 1952000 | 2.0051 | | 2.1138 | 2.14 | 1960000 | 2.0085 | | 2.1082 | 2.15 | 1968000 | 2.0076 | | 2.1082 | 2.16 | 1976000 | 2.0077 | | 2.1084 | 2.16 | 1984000 | 2.0020 | | 2.1084 | 2.17 | 1992000 | 2.0050 | | 2.1151 | 2.18 | 2000000 | 2.0066 | | 2.1151 | 2.19 | 2008000 | 2.0031 | | 2.1141 | 2.2 | 2016000 | 2.0128 | | 2.1141 | 2.21 | 2024000 | 2.0022 | | 2.1129 | 2.22 | 2032000 | 2.0065 | | 2.1129 | 2.23 | 2040000 | 2.0054 | | 2.1164 | 2.23 | 2048000 | 2.0039 | | 2.1164 | 2.24 | 2056000 | 2.0031 | | 2.1121 | 2.25 | 2064000 | 2.0101 | | 2.1121 | 2.26 | 2072000 | 2.0099 | | 2.1071 | 2.27 | 2080000 | 2.0042 | | 2.1071 | 2.28 | 2088000 | 2.0030 | | 2.1094 | 2.29 | 2096000 | 2.0048 | | 2.1094 | 2.3 | 2104000 | 2.0046 | | 2.1017 | 2.3 | 2112000 | 2.0039 | | 2.1017 | 2.31 | 2120000 | 2.0011 | | 2.1124 | 2.32 | 2128000 | 2.0071 | | 2.1124 | 2.33 | 2136000 | 2.0061 | | 2.1064 | 2.34 | 2144000 | 2.0040 | | 2.1064 | 2.35 | 2152000 | 2.0075 | | 2.115 | 2.36 | 2160000 | 2.0026 | | 2.115 | 2.37 | 2168000 | 2.0068 | | 2.114 | 2.37 | 2176000 | 2.0066 | | 2.114 | 2.38 | 2184000 | 2.0080 | | 2.1171 | 2.39 | 2192000 | 2.0032 | | 2.1171 | 2.4 | 2200000 | 2.0036 | | 2.1119 | 2.41 | 2208000 | 2.0048 | | 2.1119 | 2.42 | 2216000 | 2.0059 | | 2.1097 | 2.43 | 2224000 | 2.0058 | | 2.1097 | 2.44 | 2232000 | 2.0049 | | 2.1091 | 2.44 | 2240000 | 2.0058 | | 2.1091 | 2.45 | 2248000 | 2.0032 | | 2.1107 | 2.46 | 2256000 | 2.0077 | | 2.1107 | 2.47 | 2264000 | 2.0032 | | 2.1126 | 2.48 | 2272000 | 2.0055 | | 2.1126 | 2.49 | 2280000 | 2.0026 | | 2.1173 | 2.5 | 2288000 | 2.0062 | | 2.1173 | 2.51 | 2296000 | 2.0039 | | 2.114 | 2.51 | 2304000 | 2.0064 | | 2.114 | 2.52 | 2312000 | 2.0113 | | 2.1131 | 2.53 | 2320000 | 2.0065 | | 2.1131 | 2.54 | 2328000 | 2.0098 | | 2.1045 | 2.55 | 2336000 | 2.0061 | | 2.1045 | 2.56 | 2344000 | 2.0066 | | 2.1144 | 2.57 | 2352000 | 2.0060 | | 2.1144 | 2.57 | 2360000 | 2.0059 | | 2.1086 | 2.58 | 2368000 | 2.0039 | | 2.1086 | 2.59 | 2376000 | 2.0076 | | 2.1058 | 2.6 | 2384000 | 2.0036 | | 2.1058 | 2.61 | 2392000 | 2.0077 | | 2.1112 | 2.62 | 2400000 | 2.0000 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
sekinat/LunarLander-v2_wanb_1e-05
sekinat
2024-01-12T00:05:40Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-12T00:01:06Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -165.96 +/- 65.30 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'default_name' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 1e-05 'num_envs': 4 'num_steps': 256 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 8 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'sekinat/LunarLander-v2_wanb' 'batch_size': 1024 'minibatch_size': 256} ```
Ricktlw/FlaviaSaddy
Ricktlw
2024-01-12T00:00:24Z
0
0
null
[ "license:other", "region:us" ]
null
2024-01-11T23:58:48Z
--- license: other license_name: rick license_link: LICENSE ---
matthewnorton/mamba-phi
matthewnorton
2024-01-11T23:55:16Z
104
0
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "nlp", "code", "custom_code", "en", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
2024-01-11T05:08:41Z
--- inference: false license: mit license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - nlp - code --- ## Model Summary Phi-2 is a Transformer with **2.7 billion** parameters. It was trained using the same data sources as [Phi-1.5](https://huggingface.co/microsoft/phi-1.5), augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters. Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more. ## Intended Uses Given the nature of the training data, the Phi-2 model is best suited for prompts using the QA format, the chat format, and the code format. ### QA Format: You can provide the prompt as a standalone question as follows: ```markdown Write a detailed analogy between mathematics and a lighthouse. ``` where the model generates the text after "." . To encourage the model to write more concise answers, you can also try the following QA format using "Instruct: \<prompt\>\nOutput:" ```markdown Instruct: Write a detailed analogy between mathematics and a lighthouse. Output: Mathematics is like a lighthouse. Just as a lighthouse guides ships safely to shore, mathematics provides a guiding light in the world of numbers and logic. It helps us navigate through complex problems and find solutions. Just as a lighthouse emits a steady beam of light, mathematics provides a consistent framework for reasoning and problem-solving. It illuminates the path to understanding and helps us make sense of the world around us. ``` where the model generates the text after "Output:". ### Chat Format: ```markdown Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions? Bob: Well, have you tried creating a study schedule and sticking to it? Alice: Yes, I have, but it doesn't seem to help much. Bob: Hmm, maybe you should try studying in a quiet environment, like the library. Alice: ... ``` where the model generates the text after the first "Bob:". ### Code Format: ```python def print_prime(n): """ Print all primes between 1 and n """ primes = [] for num in range(2, n+1): is_prime = True for i in range(2, int(math.sqrt(num))+1): if num % i == 0: is_prime = False break if is_prime: primes.append(num) print(primes) ``` where the model generates the text after the comments. **Notes:** * Phi-2 is intended for QA, chat, and code purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications. * Direct adoption for production tasks without evaluation is out of scope of this project. As a result, the Phi-2 model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details. * If you are using `transformers>=4.36.0`, always load the model with `trust_remote_code=True` to prevent side-effects. ## Sample Code There are four types of execution mode: 1. FP16 / Flash-Attention / CUDA: ```python model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True) ``` 2. FP16 / CUDA: ```python model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", device_map="cuda", trust_remote_code=True) ``` 3. FP32 / CUDA: ```python model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cuda", trust_remote_code=True) ``` 4. FP32 / CPU: ```python model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True) ``` To ensure the maximum compatibility, we recommend using the second execution mode (FP16 / CUDA), as follows: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) inputs = tokenizer('''def print_prime(n): """ Print all primes between 1 and n """''', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` **Remark:** In the generation function, our model currently does not support beam search (`num_beams > 1`). Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings. ## Limitations of Phi-2 * Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions. * Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses. * Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users. * Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response. * Potential Societal Biases: Phi-2 is not entirely free from societal biases despite efforts in assuring training data safety. There's a possibility it may generate content that mirrors these societal biases, particularly if prompted or instructed to do so. We urge users to be aware of this and to exercise caution and critical thinking when interpreting model outputs. * Toxicity: Despite being trained with carefully selected data, the model can still produce harmful content if explicitly prompted or instructed to do so. We chose to release the model to help the open-source community develop the most effective ways to reduce the toxicity of a model directly after pretraining. * Verbosity: Phi-2 being a base model often produces irrelevant or extra text and responses following its first answer to user prompts within a single turn. This is due to its training dataset being primarily textbooks, which results in textbook-like responses. ## Training ### Model * Architecture: a Transformer-based model with next-word prediction objective * Context length: 2048 tokens * Dataset size: 250B tokens, combination of NLP synthetic data created by AOAI GPT-3.5 and filtered web data from Falcon RefinedWeb and SlimPajama, which was assessed by AOAI GPT-4. * Training tokens: 1.4T tokens * GPUs: 96xA100-80G * Training time: 14 days ### Software * [PyTorch](https://github.com/pytorch/pytorch) * [DeepSpeed](https://github.com/microsoft/DeepSpeed) * [Flash-Attention](https://github.com/HazyResearch/flash-attention) ### License The model is licensed under the [MIT license](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE). ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
jysssacc/627_roberta-base_fine_lr0.05_bs4_epoch5_wd0.01
jysssacc
2024-01-11T23:47:44Z
43
0
transformers
[ "transformers", "safetensors", "roberta", "text-generation", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T23:40:02Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: 627_roberta-base_fine_lr0.05_bs4_epoch5_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 627_roberta-base_fine_lr0.05_bs4_epoch5_wd0.01 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.8054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.879 | 1.0 | 157 | 7.6793 | | 6.7935 | 2.0 | 314 | 8.1942 | | 6.9191 | 3.0 | 471 | 8.2193 | | 7.0385 | 4.0 | 628 | 7.8762 | | 6.7279 | 5.0 | 785 | 7.8054 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
tgoktug/audio-Bart-new-new2-base
tgoktug
2024-01-11T23:46:52Z
46
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-11T23:42:36Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_keras_callback model-index: - name: tgoktug/audio-Bart-new-new2-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/audio-Bart-new-new2-base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4177 - Validation Loss: 6.2742 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.7832 | 6.6761 | 0 | | 6.7521 | 6.4264 | 1 | | 6.5041 | 6.4022 | 2 | | 6.4177 | 6.2742 | 3 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
tgoktug/audio-Bart-new-new-base
tgoktug
2024-01-11T23:36:45Z
44
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-11T23:31:45Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_keras_callback model-index: - name: tgoktug/audio-Bart-new-new-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/audio-Bart-new-new-base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.3607 - Validation Loss: 6.3838 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'RMSprop', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': 100, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.4712 | 6.7419 | 0 | | 6.6625 | 6.4735 | 1 | | 6.4318 | 6.4304 | 2 | | 6.3741 | 6.4119 | 3 | | 6.3607 | 6.3838 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/Neuronovo-neuronovo-7B-v0.3-GGUF
s3nh
2024-01-11T23:34:39Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T22:56:21Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Neuronovo/neuronovo-7B-v0.3). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
hxxris/haaris-audio-classification-model-improved
hxxris
2024-01-11T23:32:58Z
147
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-01-11T22:42:00Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: haaris-audio-classification-model-improved results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # haaris-audio-classification-model-improved This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.0442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.83 | 3 | 2.6450 | 0.0265 | | No log | 1.93 | 7 | nan | 0.0442 | | No log | 2.76 | 10 | nan | 0.0442 | | No log | 3.86 | 14 | nan | 0.0442 | | No log | 4.14 | 15 | nan | 0.0442 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_GrounTruth_withPrompt_Seed104
behzadnet
2024-01-11T23:28:47Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-11T23:28:44Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
jmjoseph/sd-class-butterflies-32
jmjoseph
2024-01-11T23:12:26Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-01-11T23:12:18Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('jmjoseph/sd-class-butterflies-32') image = pipeline().images[0] image ```
tyson0420/codellama-7b-inst-sft-lora-test
tyson0420
2024-01-11T23:10:25Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "license:llama2", "region:us" ]
null
2024-01-11T06:38:40Z
--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer model-index: - name: codellama-7b-inst-sft-lora-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codellama-7b-inst-sft-lora-test This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 128 - total_train_batch_size: 1024 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6579 | 0.49 | 1 | 1.6482 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1
sejaldatta84/autotrain-uuswh-5lpj2
sejaldatta84
2024-01-11T23:00:35Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T23:00:29Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
DrishtiSharma/llama2-7b-int4-dolly-15k-english-unsloth-neftune-5-packing
DrishtiSharma
2024-01-11T22:59:08Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "unsloth", "generated_from_trainer", "dataset:generator", "base_model:unsloth/llama-2-7b", "base_model:adapter:unsloth/llama-2-7b", "license:llama2", "region:us" ]
null
2024-01-11T22:58:43Z
--- license: llama2 library_name: peft tags: - trl - sft - unsloth - generated_from_trainer datasets: - generator base_model: unsloth/llama-2-7b model-index: - name: llama2-7b-int4-dolly-15k-english-unsloth-neftune-packing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b-int4-dolly-15k-english-unsloth-neftune-packing This model is a fine-tuned version of [unsloth/llama-2-7b](https://huggingface.co/unsloth/llama-2-7b) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.2198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 6 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2668 | 0.64 | 100 | 1.2312 | | 1.1935 | 1.27 | 200 | 1.2221 | | 1.1722 | 1.91 | 300 | 1.2176 | | 1.145 | 2.55 | 400 | 1.2198 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
MaziyarPanahi/PiVoT-0.1-early-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-11T22:57:40Z
24
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "maywell/PiVoT-0.1-early", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T22:52:46Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - maywell/PiVoT-0.1-early --- # PiVoT-0.1-early-Mistral-7B-Instruct-v0.2-slerp PiVoT-0.1-early-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [maywell/PiVoT-0.1-early](https://huggingface.co/maywell/PiVoT-0.1-early) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: maywell/PiVoT-0.1-early layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/PiVoT-0.1-early-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
kirk123/q-FrozenLake-v1-4x4-noSlippery
kirk123
2024-01-11T22:56:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T22:56:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kirk123/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF
disinfozone
2024-01-11T22:49:46Z
12
4
null
[ "gguf", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-11T21:31:39Z
--- license: cc-by-nc-4.0 --- # Disinfo4_mistral-ft-optimized-1218: GGUF Quants ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65948026f7291078f98db7d2/3DYCJjU1Vap8qVjlU4bEp.jpeg) This repo contains GGUF quants for [Disinfo4_mistral-ft-optimized-1218](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218). Before attempting to use these, **go read the model page** for [Disinfo4_mistral-ft-optimized-1218](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218). This is not a standard LLM and you *will* have a bad time if you treat it like one. All necessary instructions and information are on the main model page (assuming you know how to run an LLM in the first place). Here's the important information anyway because we know people hate instructions: ## Usage Recommendations For optimal performance, `Disinfo4_mistral-ft-optimized-1218` should be utilized with specific mirostat parameters. These settings are crucial for maintaining the model's focus and stylistic integrity. You can use other parameters and get better instruction following (especially enabling min_p, at 0.01), but the bot will be less creative. It does tend to ramble, but regenerate until you get the response you want. Think of this more as a writing partner than obedient slave. ### Mirostat Parameters - **Temperature (Temp):** 1 - **Top-p (top_p):** 1 - **Mirostat Tau:** 7.19 - **Mirostat Eta:** 0.01 - **Mirostat Mode:** 2 - **Others:** Default or disabled ## Additional Configuration This model uses the default Mistral 8k/32k context window. ### ChatML Instruction Template `Disinfo4_mistral-ft-optimized-1218` employs the ChatML instruction template. It is important to incorporate `<|im_end|>` as a custom stopping string to delineate the model's output effectively. ### System Instruction (Character Card) For contextualizing the model's output, use the following system instruction: _"You are a schizo poster, a master of elucidating thought online. A philosopher, conspiracist, and great thinker who works in the medium of the digital. Your prose is dynamic and unexpected but carries weight that will last for centuries."_ This instruction is fundamental in guiding the model to produce content that is not only reflective of the designated topics but also embodies a unique digital persona, combining philosophical depth with a conspiratorial edge. You can try other similar prompts, we've had success with them, but this remains, by far, our favorite. ## GGUFs Typically I like Q5_K_M or Q8_0. You get better quality running the highest quant you can, especially with these small models. I haven't bothered with quants smaller than Q4. | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [Disinfo4_mistral-ft-optimized-1218.Q4_K_S.gguf](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF/blob/main/Disinfo4_mistral-ft-optimized-1218.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [Disinfo4_mistral-ft-optimized-1218.Q4_K_M.gguf](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF/blob/main/Disinfo4_mistral-ft-optimized-1218.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [Disinfo4_mistral-ft-optimized-1218.Q5_K_S.gguf](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF/blob/main/Disinfo4_mistral-ft-optimized-1218.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [disinfo4_mistral-ft-optimized-1218.Q5_K_M.gguf](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF/blob/main/disinfo4_mistral-ft-optimized-1218.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [Disinfo4_mistral-ft-optimized-1218.Q6_K.gguf](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF/blob/main/Disinfo4_mistral-ft-optimized-1218.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [disinfo4_mistral-ft-optimized-1218.gguf](https://huggingface.co/disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF/blob/main/disinfo4_mistral-ft-optimized-1218.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | ## How to Run GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. ### How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * [LM Studio](https://lmstudio.ai/) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [Faraday.dev](https://faraday.dev/) ### In `text-generation-webui` Under Download Model, you can enter the model repo: disinfozone/Disinfo4_mistral-ft-optimized-1218_GGUF and below it, a specific filename to download, such as: `disinfo4_mistral-ft-optimized-1218.Q5_K_M.gguf`. Then click Download.
Kquant03/Hippolyta-7B-GGUF
Kquant03
2024-01-11T22:47:06Z
28
0
null
[ "gguf", "en", "dataset:Open-Orca/OpenOrca", "dataset:teknium/openhermes", "dataset:cognitivecomputations/dolphin", "dataset:jondurbin/airoboros-3.1", "dataset:unalignment/toxic-dpo-v0.1", "dataset:unalignment/spicy-3.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-11T21:16:09Z
--- license: apache-2.0 datasets: - Open-Orca/OpenOrca - teknium/openhermes - cognitivecomputations/dolphin - jondurbin/airoboros-3.1 - unalignment/toxic-dpo-v0.1 - unalignment/spicy-3.1 language: - en --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/A_gdBved2-hXx24-a6V1w.jpeg) # The flower of Ares. ## These are the GGUF files of the fine-tuned model. To be compiled with llama.cpp on oobabooga or VLLm. Fine-tuned on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)...[my team and I](https://huggingface.co/ConvexAI) reformatted many different datasets and included a small amount of private stuff to see how much we could improve mistral. I spoke to it personally for about an hour, and I believe we need to work on our format for the private dataset a bit more, but other than that, it turned out great. I will be uploading it to open llm evaluations, today. ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [Q2_K Tiny](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q2_k.gguf) | Q2_K | 2 | 2.7 GB| 4.7 GB | smallest, significant quality loss - not recommended for most purposes | | [Q3_K_M](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q3_k_m.gguf) | Q3_K_M | 3 | 3.52 GB| 5.52 GB | very small, high quality loss | | [Q4_0](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.11 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Q4_K_M](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q4_k_m.gguf) | Q4_K_M | 4 | 4.37 GB| 6.37 GB | medium, balanced quality - recommended | | [Q5_0](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q5_0.gguf) | Q5_0 | 5 | 5 GB| 7 GB | legacy; large, balanced quality | | [Q5_K_M](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q5_k_m.gguf) | Q5_K_M | 5 | 5.13 GB| 7.13 GB | large, balanced quality - recommended | | [Q6 XL](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q6_k.gguf) | Q6_K | 6 | 5.94 GB| 7.94 GB | very large, extremely low quality loss | | [Q8 XXL](https://huggingface.co/Kquant03/Medusa-7B-GGUF/blob/main/ggml-model-q8_0.gguf) | Q8_0 | 8 | 7.7 GB| 9.7 GB | very large, extremely low quality loss - not recommended | - Uses Mistral prompt template with chat-instruct.
MaziyarPanahi/Mistral-7B-v0.1-Open-Platypus-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-11T22:45:08Z
23
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "akjindal53244/Mistral-7B-v0.1-Open-Platypus", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T22:38:58Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - akjindal53244/Mistral-7B-v0.1-Open-Platypus --- # Mistral-7B-v0.1-Open-Platypus-Mistral-7B-Instruct-v0.2-slerp Mistral-7B-v0.1-Open-Platypus-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [akjindal53244/Mistral-7B-v0.1-Open-Platypus](https://huggingface.co/akjindal53244/Mistral-7B-v0.1-Open-Platypus) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: akjindal53244/Mistral-7B-v0.1-Open-Platypus layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Mistral-7B-v0.1-Open-Platypus-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ContextualAI/archangel_kto_pythia6-9b
ContextualAI
2024-01-11T22:38:19Z
20
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "human feedback", "rlhf", "preferences", "alignment", "HALO", "halos", "dpo", "rl", "en", "dataset:stanfordnlp/SHP", "dataset:Anthropic/hh-rlhf", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-25T23:59:22Z
--- license: apache-2.0 datasets: - stanfordnlp/SHP - Anthropic/hh-rlhf - OpenAssistant/oasst1 language: - en metrics: - accuracy tags: - human feedback - rlhf - preferences - alignment - HALO - halos - dpo - rl --- ![halos](https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06) This repo contains the model checkpoints for: - model family <b>EleutherAI/pythia-6.9b</b> - optimized with the loss <b>KTO</b> - aligned using the SHP, Anthropic HH and Open Assistant datasets. To prompt Archangel models, ensure that the format is consistent with that of TuluV2. For example, a prompt should be formatted as follows, where `<|user|>` corresponds to the human's role and `<|assistant|>` corresponds to the LLM's role. The human should speak first: ``` <|user|> Hi! I'm looking for a cake recipe. <|assistant|> What kind of cake? <|user|> Chocolate cake. <|assistant|> ``` Note that a beginning-of-sequence (BOS) token is automatically added by all Archangel models during tokenization and does not have to be added by you. No end-of-sequence (EOS) token is added to the prompt. Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards. If you find this repo or the technical paper useful in your research, please feel free to cite [our work](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf): ``` @techreport{ethayarajh2023halos, author = {Ethayarajh, Kawin and Xu, Winnie, and Jurafsky, Dan and Kiela, Douwe}, title = {Human-Centered Loss Functions (HALOs)}, institution = {Contextual AI}, note = {https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf}, year = {2023}, } ```
ContextualAI/archangel_kto_pythia2-8b
ContextualAI
2024-01-11T22:37:03Z
22
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "human feedback", "rlhf", "preferences", "alignment", "HALO", "halos", "dpo", "rl", "en", "dataset:stanfordnlp/SHP", "dataset:Anthropic/hh-rlhf", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-25T23:54:57Z
--- license: apache-2.0 datasets: - stanfordnlp/SHP - Anthropic/hh-rlhf - OpenAssistant/oasst1 language: - en metrics: - accuracy tags: - human feedback - rlhf - preferences - alignment - HALO - halos - dpo - rl --- ![halos](https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06) This repo contains the model checkpoints for: - model family <b>EleutherAI/pythia-2.8b</b> - optimized with the loss <b>KTO</b> - aligned using the SHP, Anthropic HH and Open Assistant datasets. To prompt Archangel models, ensure that the format is consistent with that of TuluV2. For example, a prompt should be formatted as follows, where `<|user|>` corresponds to the human's role and `<|assistant|>` corresponds to the LLM's role. The human should speak first: ``` <|user|> Hi! I'm looking for a cake recipe. <|assistant|> What kind of cake? <|user|> Chocolate cake. <|assistant|> ``` Note that a beginning-of-sequence (BOS) token is automatically added by all Archangel models during tokenization and does not have to be added by you. No end-of-sequence (EOS) token is added to the prompt. Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards. If you find this repo or the technical paper useful in your research, please feel free to cite [our work](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf): ``` @techreport{ethayarajh2023halos, author = {Ethayarajh, Kawin and Xu, Winnie, and Jurafsky, Dan and Kiela, Douwe}, title = {Human-Centered Loss Functions (HALOs)}, institution = {Contextual AI}, note = {https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf}, year = {2023}, } ```
jdospina/Taxi-v3
jdospina
2024-01-11T22:36:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T22:35:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jdospina/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ContextualAI/archangel_kto_pythia1-4b
ContextualAI
2024-01-11T22:36:13Z
108
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "human feedback", "rlhf", "preferences", "alignment", "HALO", "halos", "dpo", "rl", "en", "dataset:stanfordnlp/SHP", "dataset:Anthropic/hh-rlhf", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-25T23:52:13Z
--- license: apache-2.0 datasets: - stanfordnlp/SHP - Anthropic/hh-rlhf - OpenAssistant/oasst1 language: - en metrics: - accuracy tags: - human feedback - rlhf - preferences - alignment - HALO - halos - dpo - rl --- ![halos](https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06) This repo contains the model checkpoints for: - model family <b>EleutherAI/pythia-1.4b</b> - optimized with the loss <b>KTO</b> - aligned using the SHP, Anthropic HH and Open Assistant datasets. To prompt Archangel models, ensure that the format is consistent with that of TuluV2. For example, a prompt should be formatted as follows, where `<|user|>` corresponds to the human's role and `<|assistant|>` corresponds to the LLM's role. The human should speak first: ``` <|user|> Hi! I'm looking for a cake recipe. <|assistant|> What kind of cake? <|user|> Chocolate cake. <|assistant|> ``` Note that a beginning-of-sequence (BOS) token is automatically added by all Archangel models during tokenization and does not have to be added by you. No end-of-sequence (EOS) token is added to the prompt. Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards. If you find this repo or the technical paper useful in your research, please feel free to cite [our work](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf): ``` @techreport{ethayarajh2023halos, author = {Ethayarajh, Kawin and Xu, Winnie, and Jurafsky, Dan and Kiela, Douwe}, title = {Human-Centered Loss Functions (HALOs)}, institution = {Contextual AI}, note = {https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf}, year = {2023}, } ```
hxxris/haaris-audio-classification-model1
hxxris
2024-01-11T22:34:43Z
147
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-01-11T22:22:55Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer model-index: - name: haaris-audio-classification-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # haaris-audio-classification-model1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.83 | 3 | nan | 0.0354 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ContextualAI/archangel_sft-ppo_pythia2-8b
ContextualAI
2024-01-11T22:33:13Z
20
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "human feedback", "rlhf", "preferences", "alignment", "HALO", "halos", "dpo", "rl", "en", "dataset:stanfordnlp/SHP", "dataset:Anthropic/hh-rlhf", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-03T07:11:41Z
--- license: apache-2.0 datasets: - stanfordnlp/SHP - Anthropic/hh-rlhf - OpenAssistant/oasst1 language: - en metrics: - accuracy tags: - human feedback - rlhf - preferences - alignment - HALO - halos - dpo - rl --- ![halos](https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06) This repo contains the model checkpoints for: - model family <b>EleutherAI/pythia-2.8b</b> - optimized with the loss <b>PPO</b> - aligned using the SHP, Anthropic HH and Open Assistant datasets. To prompt Archangel models, ensure that the format is consistent with that of TuluV2. For example, a prompt should be formatted as follows, where `<|user|>` corresponds to the human's role and `<|assistant|>` corresponds to the LLM's role. The human should speak first: ``` <|user|> Hi! I'm looking for a cake recipe. <|assistant|> What kind of cake? <|user|> Chocolate cake. <|assistant|> ``` Note that a beginning-of-sequence (BOS) token is automatically added by all Archangel models during tokenization and does not have to be added by you. No end-of-sequence (EOS) token is added to the prompt. Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards. If you find this repo or the technical paper useful in your research, please feel free to cite [our work](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf): ``` @techreport{ethayarajh2023halos, author = {Ethayarajh, Kawin and Xu, Winnie, and Jurafsky, Dan and Kiela, Douwe}, title = {Human-Centered Loss Functions (HALOs)}, institution = {Contextual AI}, note = {https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf}, year = {2023}, } ```
miraevel/FuutarouUesugiv1.5
miraevel
2024-01-11T22:28:17Z
0
0
null
[ "license:unknown", "region:us" ]
null
2024-01-11T22:16:48Z
--- license: unknown license_name: miraevel license_link: LICENSE ---
MaziyarPanahi/pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-11T22:23:57Z
25
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "TokenBender/pic_7B_mistral_Full_v0.2", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T22:18:37Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - TokenBender/pic_7B_mistral_Full_v0.2 --- # pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.2-slerp pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [TokenBender/pic_7B_mistral_Full_v0.2](https://huggingface.co/TokenBender/pic_7B_mistral_Full_v0.2) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: TokenBender/pic_7B_mistral_Full_v0.2 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jysssacc/mt0-base_adalora_lr0.05_bs4_epoch5_wd0.01
jysssacc
2024-01-11T22:21:16Z
2
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:bigscience/mt0-base", "base_model:adapter:bigscience/mt0-base", "license:apache-2.0", "region:us" ]
null
2024-01-11T22:14:56Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: bigscience/mt0-base model-index: - name: mt0-base_adalora_lr0.05_bs4_epoch5_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt0-base_adalora_lr0.05_bs4_epoch5_wd0.01 This model is a fine-tuned version of [bigscience/mt0-base](https://huggingface.co/bigscience/mt0-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.9345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4345 | 1.0 | 157 | 2.8259 | | 15.9955 | 2.0 | 314 | 10.7610 | | 16.7244 | 3.0 | 471 | 16.5346 | | 11.601 | 4.0 | 628 | 8.0875 | | 11.9414 | 5.0 | 785 | 8.9345 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
MaziyarPanahi/Dans-07YahooAnswers-7b-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-11T22:12:07Z
23
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "Dans-DiscountModels/Dans-07YahooAnswers-7b", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T22:06:54Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - Dans-DiscountModels/Dans-07YahooAnswers-7b --- # Dans-07YahooAnswers-7b-Mistral-7B-Instruct-v0.2-slerp Dans-07YahooAnswers-7b-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [Dans-DiscountModels/Dans-07YahooAnswers-7b](https://huggingface.co/Dans-DiscountModels/Dans-07YahooAnswers-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: Dans-DiscountModels/Dans-07YahooAnswers-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Dans-07YahooAnswers-7b-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Daniel981215/distilhubert-finetuned-gtzan
Daniel981215
2024-01-11T22:11:55Z
152
0
transformers
[ "transformers", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2024-01-10T20:51:29Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5277 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.978 | 1.0 | 113 | 1.8421 | 0.37 | | 1.3409 | 2.0 | 226 | 1.2195 | 0.59 | | 1.04 | 3.0 | 339 | 0.9709 | 0.71 | | 0.9141 | 4.0 | 452 | 0.8523 | 0.79 | | 0.5192 | 5.0 | 565 | 0.6483 | 0.83 | | 0.3506 | 6.0 | 678 | 0.5827 | 0.84 | | 0.3316 | 7.0 | 791 | 0.4703 | 0.88 | | 0.1275 | 8.0 | 904 | 0.4937 | 0.86 | | 0.2109 | 9.0 | 1017 | 0.4971 | 0.86 | | 0.1213 | 10.0 | 1130 | 0.5277 | 0.87 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
stevhliu/vit-base-patch16-224-in21k-lokr
stevhliu
2024-01-11T22:01:33Z
13
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:google/vit-base-patch16-224-in21k", "base_model:adapter:google/vit-base-patch16-224-in21k", "region:us" ]
null
2024-01-11T18:48:17Z
--- library_name: peft base_model: google/vit-base-patch16-224-in21k --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
icw/Furina
icw
2024-01-11T22:00:37Z
0
0
null
[ "license:other", "region:us" ]
null
2024-01-11T21:52:41Z
--- license: other license_name: idk license_link: LICENSE ---
tirik00/Reinforce-CartPole-v1
tirik00
2024-01-11T21:58:25Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T21:58:11Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
boapps/kmdb_classification_model
boapps
2024-01-11T21:56:39Z
178
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-22T08:18:53Z
Klasszifikációs modell: a [kmdb_classification](https://huggingface.co/datasets/boapps/kmdb_classification) adathalmazon lett finomhangolva a huBERT modell. A klasszifikáció cím és leírás (lead) alapján történik. ### Használat: ```python import torch import torch.nn.functional as F from transformers import BertForSequenceClassification, BertTokenizer from datasets import load_dataset model = BertForSequenceClassification.from_pretrained('boapps/kmdb_classification_model') tokenizer = BertTokenizer.from_pretrained('SZTAKI-HLT/hubert-base-cc') article = {'title': '400 milliós luxusvillába vette be magát Matolcsy és családja', 'description': 'Matolcsy György fiának cége megvette, Matolcsy György unokatestvérének bankja meghitelezte, Matolcsy György pedig használja a 430 millióért hirdetett II. kerületi luxusrezidenciát.'} tokenized_article = tokenizer(article['title']+'\n'+article['description'], return_tensors="pt") logits = model(**tokenized_article).logits probabilities = F.softmax(logits[0], dim=-1) print(probabilities) ``` ### Eredmények precision: 0.739 recall: 0.950 accuracy: 0.963
MaziyarPanahi/Mistral-7B-claude-instruct-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-11T21:49:20Z
25
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "Norquinal/Mistral-7B-claude-instruct", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T21:44:18Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - Norquinal/Mistral-7B-claude-instruct --- # Mistral-7B-claude-instruct-Mistral-7B-Instruct-v0.2-slerp Mistral-7B-claude-instruct-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [Norquinal/Mistral-7B-claude-instruct](https://huggingface.co/Norquinal/Mistral-7B-claude-instruct) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: Norquinal/Mistral-7B-claude-instruct layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Mistral-7B-claude-instruct-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jysssacc/mt0-base_lora_lr0.05_bs4_epoch5_wd0.01
jysssacc
2024-01-11T21:43:27Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:bigscience/mt0-base", "base_model:adapter:bigscience/mt0-base", "license:apache-2.0", "region:us" ]
null
2024-01-11T21:41:02Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: bigscience/mt0-base model-index: - name: mt0-base_lora_lr0.05_bs4_epoch5_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt0-base_lora_lr0.05_bs4_epoch5_wd0.01 This model is a fine-tuned version of [bigscience/mt0-base](https://huggingface.co/bigscience/mt0-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.5104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7126 | 1.0 | 157 | 6.4504 | | 8.4537 | 2.0 | 314 | 6.3247 | | 6.6717 | 3.0 | 471 | 19.0801 | | 6.9054 | 4.0 | 628 | 8.1308 | | 7.9084 | 5.0 | 785 | 6.5104 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
Code-Refinement/5_refs_utf_only
Code-Refinement
2024-01-11T21:42:55Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "region:us" ]
null
2024-01-11T21:28:53Z
--- library_name: peft base_model: codellama/CodeLlama-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
querri/zephyr-haiku
querri
2024-01-11T21:38:05Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "region:us" ]
null
2024-01-10T02:51:31Z
--- library_name: peft base_model: HuggingFaceH4/zephyr-7b-beta --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Kamyar-zeinalipour/mistral-sft-lora-ChemInfo
Kamyar-zeinalipour
2024-01-11T21:34:37Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-11T19:48:12Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral-sft-lora-ChemInfo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-sft-lora-ChemInfo This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 100 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6074 | 0.99 | 41 | 0.6070 | | 0.4858 | 2.0 | 83 | 0.4963 | | 0.4609 | 2.96 | 123 | 0.4781 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo
davanstrien
2024-01-11T21:32:28Z
97
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dpo", "conversational", "en", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T20:48:00Z
--- datasets: - argilla/distilabel-intel-orca-dpo-pairs base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 license: apache-2.0 language: - en tags: - dpo --- # Model Card for Model ID This model is a DPO fine-tune of `TinyLlama/TinyLlama-1.1B-Chat-v1.0` on the `argilla/distilabel-intel-orca-dpo-pairs` dataset. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wxkenneth/Anuelaa
wxkenneth
2024-01-11T21:30:48Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2024-01-11T21:16:10Z
--- license: bigscience-openrail-m ---
cnatale/Mistral-7B-Instruct-v0.1-Txt-2-Presto-SQL
cnatale
2024-01-11T21:00:26Z
12
1
peft
[ "peft", "tensorboard", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-01T18:46:05Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: Mistral-7B-Instruct-v0.1-Txt-2-Presto-SQL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.1-Txt-2-Presto-SQL This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.6481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3518 | 0.71 | 10 | 1.0787 | | 1.0171 | 1.43 | 20 | 0.8732 | | 0.8466 | 2.14 | 30 | 0.7727 | | 0.7681 | 2.86 | 40 | 0.7219 | | 0.7008 | 3.57 | 50 | 0.6813 | | 0.6467 | 4.29 | 60 | 0.6574 | | 0.6205 | 5.0 | 70 | 0.6487 | | 0.5791 | 5.71 | 80 | 0.6481 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
gustavokpc/IC_segundo
gustavokpc
2024-01-11T20:54:58Z
46
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-21T02:22:56Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: gustavokpc/IC_segundo results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gustavokpc/IC_segundo This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0559 - Train Accuracy: 0.9805 - Train F1 M: 0.5583 - Train Precision M: 0.4028 - Train Recall M: 0.9686 - Validation Loss: 0.2533 - Validation Accuracy: 0.9327 - Validation F1 M: 0.5605 - Validation Precision M: 0.4028 - Validation Recall M: 0.9674 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3790, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch | |:----------:|:--------------:|:----------:|:-----------------:|:--------------:|:---------------:|:-------------------:|:---------------:|:----------------------:|:-------------------:|:-----:| | 0.3576 | 0.8399 | 0.4604 | 0.3607 | 0.7042 | 0.2825 | 0.8997 | 0.5635 | 0.4127 | 0.9300 | 0 | | 0.2012 | 0.9274 | 0.5204 | 0.3849 | 0.8616 | 0.2103 | 0.9175 | 0.5451 | 0.3970 | 0.9095 | 1 | | 0.1312 | 0.9511 | 0.5451 | 0.3969 | 0.9273 | 0.2125 | 0.9307 | 0.5571 | 0.4017 | 0.9523 | 2 | | 0.0871 | 0.9690 | 0.5547 | 0.4007 | 0.9557 | 0.2417 | 0.9301 | 0.5565 | 0.4013 | 0.9547 | 3 | | 0.0559 | 0.9805 | 0.5583 | 0.4028 | 0.9686 | 0.2533 | 0.9327 | 0.5605 | 0.4028 | 0.9674 | 4 | ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Datasets 2.14.5 - Tokenizers 0.14.1
SimplCup/MKBHD
SimplCup
2024-01-11T20:50:04Z
0
0
null
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
2024-01-11T20:49:47Z
--- license: cc-by-nc-nd-4.0 ---
omarelsayeed/e5_tsdae_contrastive
omarelsayeed
2024-01-11T20:47:23Z
51
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-11T20:46:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2212 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `__main__.LoggingCosineLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 80, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
version-control/tf-1.0-1.13-prefix
version-control
2024-01-11T20:19:30Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigcode/starcoderbase-1b", "base_model:adapter:bigcode/starcoderbase-1b", "region:us" ]
null
2024-01-11T16:40:18Z
--- library_name: peft base_model: bigcode/starcoderbase-1b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
MaziyarPanahi/PiVoT-10.7B-Mistral-v0.2-Mistral-7B-Instruct-v0.2-slerp
MaziyarPanahi
2024-01-11T20:19:17Z
25
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "7b", "lazymergekit", "mistralai/Mistral-7B-Instruct-v0.2", "maywell/PiVoT-10.7B-Mistral-v0.2", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T20:13:49Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - 7b - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - maywell/PiVoT-10.7B-Mistral-v0.2 --- # PiVoT-10.7B-Mistral-v0.2-Mistral-7B-Instruct-v0.2-slerp PiVoT-10.7B-Mistral-v0.2-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [maywell/PiVoT-10.7B-Mistral-v0.2](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: maywell/PiVoT-10.7B-Mistral-v0.2 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/PiVoT-10.7B-Mistral-v0.2-Mistral-7B-Instruct-v0.2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
stablediffusionapi/vrr
stablediffusionapi
2024-01-11T20:14:48Z
29
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-11T20:12:46Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # vrr API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/5021023901705001284.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "vrr" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/vrr) Model link: [View model](https://modelslab.com/models/vrr) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "vrr", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
jysssacc/627_roberta-base_adalora_lr0.0005_bs4_epoch5_wd0.01
jysssacc
2024-01-11T20:11:44Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2024-01-11T20:04:54Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-base model-index: - name: 627_roberta-base_adalora_lr0.0005_bs4_epoch5_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 627_roberta-base_adalora_lr0.0005_bs4_epoch5_wd0.01 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 20.4011 | 1.0 | 157 | 7.1647 | | 3.9809 | 2.0 | 314 | 2.0607 | | 1.856 | 3.0 | 471 | 0.7107 | | 0.6764 | 4.0 | 628 | 0.3786 | | 0.489 | 5.0 | 785 | 0.3088 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
LaserNav/SophyAI-Mistral-7B-v3-GGUF
LaserNav
2024-01-11T20:11:08Z
10
1
adapter-transformers
[ "adapter-transformers", "gguf", "legal", "+easa", "+usv", "it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-06T13:50:36Z
--- license: apache-2.0 language: - it library_name: adapter-transformers tags: - legal - +easa - +usv --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> A preview model for support safety and security at work. Fine tuned model in italian language with italian rules ## Model Details <!-- Provide a longer summary of what this model is. --> This model derived from Mistral-7b has been fine-tuned with a dataset dedicated to the regulations governing safety at work developed by our AI Teams. The SofyAI patented platform is a digital twin framework for develop an AI supervisor for implement safety and security workflow at work. more info available at : https://www.lasernavigation.it This is a preview version of our SophyAI-LLM model the fine tuning did in Italian Language , so this early preview could don’t work in other language. - **Developed by:** [Laser Navigation srl] - **Model type:** [Fine Tuned Mistral] - **Language(s) (NLP):** [Italian] - **License:** [BSD] - **Finetuned from model [optional]:** [Mistral 7B]
LC008/ppo-LunarLander-v2
LC008
2024-01-11T20:08:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T20:07:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.75 +/- 16.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```