modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-20 18:29:57
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
566 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-20 18:29:15
card
stringlengths
11
1.01M
emersoftware/beto-st-msmarco-es-mnrl
emersoftware
2023-12-31T19:23:44Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-31T19:19:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3009 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dylanmontoya22/vit_model
dylanmontoya22
2023-12-31T19:07:53Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-31T16:54:27Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0069 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1328 | 3.85 | 500 | 0.0069 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Granoladata/contrast_classifier_biobert_v2
Granoladata
2023-12-31T18:43:40Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dmis-lab/biobert-v1.1", "base_model:finetune:dmis-lab/biobert-v1.1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-31T18:43:22Z
--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: contrast_classifier_biobert_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # contrast_classifier_biobert_v2 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.653 | 1.0 | 37 | 0.6146 | 0.7273 | | 0.4263 | 2.0 | 74 | 0.2425 | 0.9697 | | 0.1128 | 3.0 | 111 | 0.0098 | 1.0 | | 0.0275 | 4.0 | 148 | 0.0031 | 1.0 | | 0.003 | 5.0 | 185 | 0.0023 | 1.0 | | 0.0023 | 6.0 | 222 | 0.0015 | 1.0 | | 0.0018 | 7.0 | 259 | 0.0011 | 1.0 | | 0.0015 | 8.0 | 296 | 0.0011 | 1.0 | | 0.0016 | 9.0 | 333 | 0.0011 | 1.0 | | 0.0222 | 10.0 | 370 | 0.0010 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
meiyun1995/dqn-SpaceInvadersNoFrameskip-v4
meiyun1995
2023-12-31T18:38:12Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T18:37:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 428.50 +/- 204.63 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga meiyun1995 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga meiyun1995 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meiyun1995 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
zcharaf/FinBerta
zcharaf
2023-12-31T18:28:00Z
7
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "finance", "tweets", "corporate lingo", "Bullish-bearish classification", "en", "dataset:zeroshot/twitter-financial-news-sentiment", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-30T20:03:34Z
--- license: mit datasets: - zeroshot/twitter-financial-news-sentiment language: - en metrics: - accuracy tags: - finance - tweets - corporate lingo - Bullish-bearish classification ---
linoyts/linoy_face_120_woman_no_snr
linoyts
2023-12-31T18:14:20Z
7
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-31T06:47:41Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'a <s0><s1> woman eating ramen in Paris' output: url: "image_0.png" - text: 'a <s0><s1> woman eating ramen in Paris' output: url: "image_1.png" - text: 'a <s0><s1> woman eating ramen in Paris' output: url: "image_2.png" - text: 'a <s0><s1> woman eating ramen in Paris' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - LinoyTsaban/linoy_face_120_woman_no_snr <Gallery /> ## Model description ### These are LinoyTsaban/linoy_face_120_woman_no_snr LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`linoy_face_120_woman_no_snr.safetensors` here 💾](/LinoyTsaban/linoy_face_120_woman_no_snr/blob/main/linoy_face_120_woman_no_snr.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:linoy_face_120_woman_no_snr:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`linoy_face_120_woman_no_snr_emb.safetensors` here 💾](/LinoyTsaban/linoy_face_120_woman_no_snr/blob/main/linoy_face_120_woman_no_snr_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `linoy_face_120_woman_no_snr_emb` to your prompt. For example, `photo of a linoy_face_120_woman_no_snr_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('LinoyTsaban/linoy_face_120_woman_no_snr', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='LinoyTsaban/linoy_face_120_woman_no_snr', filename='linoy_face_120_woman_no_snr_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('a <s0><s1> woman eating ramen in Paris').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/LinoyTsaban/linoy_face_120_woman_no_snr/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
EssamKunjan/Llama2_7B_Text_to_JSON
EssamKunjan
2023-12-31T18:07:50Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-12-31T18:06:40Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Ctrlgb/Taxi
Ctrlgb
2023-12-31T18:06:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T07:30:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false ---
Chat-Error/mistral
Chat-Error
2023-12-31T18:01:38Z
2
1
peft
[ "peft", "tensorboard", "safetensors", "mistral", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "8-bit", "bitsandbytes", "region:us" ]
null
2023-12-31T17:55:47Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0
TheBloke/trinity-v1.2-x8-MoE-GGUF
TheBloke
2023-12-31T17:56:04Z
80
4
transformers
[ "transformers", "gguf", "mixtral", "license:apache-2.0", "region:us", "conversational" ]
null
2023-12-31T10:00:49Z
--- base_model: dillfrescott/trinity-v1.2-x8-MoE inference: false license: apache-2.0 model_creator: Cross Nastasi model_name: Trinity v1.2 x8 MoE model_type: mixtral prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Trinity v1.2 x8 MoE - GGUF - Model creator: [Cross Nastasi](https://huggingface.co/dillfrescott) - Original model: [Trinity v1.2 x8 MoE](https://huggingface.co/dillfrescott/trinity-v1.2-x8-MoE) <!-- description start --> ## Description This repo contains GGUF format model files for [Cross Nastasi's Trinity v1.2 x8 MoE](https://huggingface.co/dillfrescott/trinity-v1.2-x8-MoE). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF) * [Cross Nastasi's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/dillfrescott/trinity-v1.2-x8-MoE) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [trinity-v1.2-x8-moe.Q2_K.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q2_K.gguf) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes | | [trinity-v1.2-x8-moe.Q3_K_M.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q3_K_M.gguf) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss | | [trinity-v1.2-x8-moe.Q4_0.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q4_0.gguf) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [trinity-v1.2-x8-moe.Q4_K_M.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q4_K_M.gguf) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended | | [trinity-v1.2-x8-moe.Q5_0.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q5_0.gguf) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [trinity-v1.2-x8-moe.Q5_K_M.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q5_K_M.gguf) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended | | [trinity-v1.2-x8-moe.Q6_K.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q6_K.gguf) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss | | [trinity-v1.2-x8-moe.Q8_0.gguf](https://huggingface.co/TheBloke/trinity-v1.2-x8-MoE-GGUF/blob/main/trinity-v1.2-x8-moe.Q8_0.gguf) | Q8_0 | 8 | 49.63 GB| 52.13 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/trinity-v1.2-x8-MoE-GGUF and below it, a specific filename to download, such as: trinity-v1.2-x8-moe.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/trinity-v1.2-x8-MoE-GGUF trinity-v1.2-x8-moe.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/trinity-v1.2-x8-MoE-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/trinity-v1.2-x8-MoE-GGUF trinity-v1.2-x8-moe.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m trinity-v1.2-x8-moe.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./trinity-v1.2-x8-moe.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./trinity-v1.2-x8-moe.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Cross Nastasi's Trinity v1.2 x8 MoE ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6215ce9abfcb3893344dd0a2/9rGusEaWD2yRu2rQXTXPF.jpeg) x8 MoE of https://huggingface.co/jan-hq/trinity-v1.2 <!-- original-model-card end -->
bulkbeings/Emp_PEFT_princeton_new_inst
bulkbeings
2023-12-31T17:35:03Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T17:35:45Z
--- pipeline_tag: conversational ---
LoneStriker/CarbonVillain-en-10.7B-v4-6.0bpw-h6-exl2
LoneStriker
2023-12-31T17:33:47Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T17:30:15Z
--- license: mit language: - en --- # CarbonVillain **This is a model created without learning to oppose indiscriminate carbon emissions.** This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - jeonsworld/CarbonVillain-en-10.7B-v1 - jeonsworld/CarbonVillain-en-10.7B-v2 - method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ``` # Evaluation Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jeonsworld__CarbonVillain-en-10.7B-v4) | Metric | Value | |-----------------------|---------------------------| | Avg. | 74.52 | | ARC (25-shot) | 71.25 | | HellaSwag (10-shot) | 88.48 | | MMLU (5-shot) | 66.27 | | TruthfulQA (0-shot) | 71.95 | | Winogrande (5-shot) | 83.58 | | GSM8K (5-shot) | 65.58 |
SkunkworksAI/tinyfrank-1.4B
SkunkworksAI
2023-12-31T17:30:38Z
199
29
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T17:17:10Z
--- license: apache-2.0 --- **Undi95 type frankenstein of TinyLLama 1.1b** https://github.com/jzhang38/TinyLlama https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0 **GGUF custom quants included** The secret sauce: ```bash slices: - sources: - model: "TinyLlama/TinyLlama-1.1B-Chat-v1.0" layer_range: [0, 14] - sources: - model: "TinyLlama/TinyLlama-1.1B-Chat-v1.0" layer_range: [8, 22] merge_method: passthrough dtype: bfloat16 ``` How to run as gguf: ```bash git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make -j wget https://huggingface.co/SkunkworksAI/tinyfrank-1.4B/resolve/main/tinyfrank-q6L.gguf ./server -m tinyfrank-q6L.gguf --host "my.internal.ip.or.my.cloud.host.name.goes.here.com" -c 512 ```
kejolong/alifah
kejolong
2023-12-31T17:24:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-30T10:49:26Z
--- license: creativeml-openrail-m ---
ostapeno/adauniNeo1B_super_glue_cb_1_0_2_sormalTrue_sbsmpl2
ostapeno
2023-12-31T17:18:41Z
0
0
null
[ "region:us" ]
null
2023-12-31T16:32:10Z
Number of experts present in the library: 22 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | super_glue_cb_1_0_2_v9_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v7_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v3_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v2_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v5_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v3 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v5 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v8_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v4_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v1_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v9 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v8 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v6 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v6_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v7 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v10_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | | super_glue_cb_1_0_2_v10 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora | Last updated on: 2023-12-31 17:18:38+00:00
ehsanhallo/setfit-paraphrase-multilingual-MiniLM-L12-v2-ig-fa
ehsanhallo
2023-12-31T17:13:56Z
10
0
setfit
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "model-index", "region:us" ]
text-classification
2023-12-31T12:34:31Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: ' i still dont know what we would do though' - text: ' where`d you go!' - text: ' Thank you! I`m working on `s' - text: Terminator Salvation... by myself. - text: ' lol man i got 2 1 /2 hrs an iont how i woulda made it wit out my ramen noodles and t.v. Time' pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.79 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | <ul><li>'چه سودایی که سر همینا از دست دادم😂'</li><li>'خو فارسی بنویس بفهمه 😂😂😂😂😂'</li><li>'اینجا ایران همین سایتا هم\u200cزیادی..نیازی به بررسی ندارن...کلا دوسداریم به همچی ایراد بگیریم.'</li></ul> | | 1 | <ul><li>'کد کارت مشکی NHKDKI'</li><li>'اتفاقا مسیولیت بیشتری برات میاره و درگیریات بیشتر میشه برای هدفی که داری'</li><li>'من میخام شروع کنم،اورج بفروشم یا فیک؟فیک ارزونتره ولی فیکه.اورجینال هم ک گرون تره ؟بنظرت اورج میخرن؟؟'</li></ul> | | 2 | <ul><li>'🔥🔥🔥🔥'</li><li>'😂😂😂'</li><li>'چه قدر عالی وخفن 🔥🔥'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.79 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ehsanhallo/setfit-paraphrase-multilingual-MiniLM-L12-v2-ig-fa") # Run inference preds = model(" where`d you go!") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 6.4184 | 75 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 69 | | 1 | 238 | | 2 | 551 | ### Training Hyperparameters - batch_size: (32, 16) - num_epochs: (1, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 5e-06) - head_learning_rate: 0.002 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:--------:|:-------------:|:---------------:| | 0.0001 | 1 | 0.1767 | - | | 0.0216 | 250 | 0.1513 | - | | 0.0431 | 500 | 0.0629 | 0.2389 | | 0.0647 | 750 | 0.0351 | - | | 0.0862 | 1000 | 0.0015 | 0.1886 | | 0.1078 | 1250 | 0.0003 | - | | 0.1293 | 1500 | 0.0004 | 0.1813 | | 0.1509 | 1750 | 0.0002 | - | | **0.1724** | **2000** | **0.0002** | **0.1807** | | 0.1940 | 2250 | 0.0001 | - | | 0.2155 | 2500 | 0.0001 | 0.187 | | 0.2371 | 2750 | 0.0001 | - | | 0.2586 | 3000 | 0.0001 | 0.1903 | | 0.2802 | 3250 | 0.0001 | - | | 0.3018 | 3500 | 0.0 | 0.1864 | | 0.3233 | 3750 | 0.0 | - | | 0.3449 | 4000 | 0.0 | 0.193 | | 0.3664 | 4250 | 0.0 | - | | 0.3880 | 4500 | 0.0 | 0.1879 | | 0.4095 | 4750 | 0.0 | - | | 0.4311 | 5000 | 0.0 | 0.1887 | | 0.4526 | 5250 | 0.0 | - | | 0.4742 | 5500 | 0.0 | 0.187 | | 0.4957 | 5750 | 0.0 | - | | 0.5173 | 6000 | 0.0001 | 0.205 | | 0.5388 | 6250 | 0.0 | - | | 0.5604 | 6500 | 0.0 | 0.205 | | 0.5819 | 6750 | 0.0 | - | | 0.6035 | 7000 | 0.0 | 0.2018 | | 0.6251 | 7250 | 0.0 | - | | 0.6466 | 7500 | 0.0 | 0.2022 | | 0.6682 | 7750 | 0.0 | - | | 0.6897 | 8000 | 0.0 | 0.2063 | | 0.7113 | 8250 | 0.0 | - | | 0.7328 | 8500 | 0.0 | 0.2143 | | 0.7544 | 8750 | 0.0 | - | | 0.7759 | 9000 | 0.0 | 0.2206 | | 0.7975 | 9250 | 0.0 | - | | 0.8190 | 9500 | 0.0 | 0.2167 | | 0.8406 | 9750 | 0.0 | - | | 0.8621 | 10000 | 0.0 | 0.2176 | | 0.8837 | 10250 | 0.0 | - | | 0.9053 | 10500 | 0.0 | 0.217 | | 0.9268 | 10750 | 0.0 | - | | 0.9484 | 11000 | 0.0 | 0.2153 | | 0.9699 | 11250 | 0.0 | - | | 0.9915 | 11500 | 0.0 | 0.2137 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
LoneStriker/CarbonVillain-en-10.7B-v4-4.0bpw-h6-exl2
LoneStriker
2023-12-31T17:13:14Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T17:10:50Z
--- license: mit language: - en --- # CarbonVillain **This is a model created without learning to oppose indiscriminate carbon emissions.** This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - jeonsworld/CarbonVillain-en-10.7B-v1 - jeonsworld/CarbonVillain-en-10.7B-v2 - method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ``` # Evaluation Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jeonsworld__CarbonVillain-en-10.7B-v4) | Metric | Value | |-----------------------|---------------------------| | Avg. | 74.52 | | ARC (25-shot) | 71.25 | | HellaSwag (10-shot) | 88.48 | | MMLU (5-shot) | 66.27 | | TruthfulQA (0-shot) | 71.95 | | Winogrande (5-shot) | 83.58 | | GSM8K (5-shot) | 65.58 |
LoneStriker/CarbonVillain-en-10.7B-v4-3.0bpw-h6-exl2
LoneStriker
2023-12-31T17:03:22Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T17:01:31Z
--- license: mit language: - en --- # CarbonVillain **This is a model created without learning to oppose indiscriminate carbon emissions.** This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - jeonsworld/CarbonVillain-en-10.7B-v1 - jeonsworld/CarbonVillain-en-10.7B-v2 - method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ``` # Evaluation Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jeonsworld__CarbonVillain-en-10.7B-v4) | Metric | Value | |-----------------------|---------------------------| | Avg. | 74.52 | | ARC (25-shot) | 71.25 | | HellaSwag (10-shot) | 88.48 | | MMLU (5-shot) | 66.27 | | TruthfulQA (0-shot) | 71.95 | | Winogrande (5-shot) | 83.58 | | GSM8K (5-shot) | 65.58 |
judithrosell/PubMedBERT_JNLPBA_NER_new
judithrosell
2023-12-31T17:02:21Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "base_model:finetune:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-31T15:05:02Z
--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: PubMedBERT_JNLPBA_NER_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PubMedBERT_JNLPBA_NER_new This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1464 - Precision: 0.9598 - Recall: 0.9557 - F1: 0.9577 - Accuracy: 0.9520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1709 | 1.0 | 1164 | 0.1493 | 0.9566 | 0.9534 | 0.9550 | 0.9492 | | 0.134 | 2.0 | 2328 | 0.1501 | 0.9585 | 0.9549 | 0.9567 | 0.9501 | | 0.112 | 3.0 | 3492 | 0.1464 | 0.9598 | 0.9557 | 0.9577 | 0.9520 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
unaryunix/cobra
unaryunix
2023-12-31T17:01:56Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-31T17:01:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: cobra results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4761904776096344 --- # cobra Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### AC Shelby Cobra 289 car ![AC Shelby Cobra 289 car](images/AC_Shelby_Cobra_289_car.jpg) #### AC Shelby Cobra 427 car ![AC Shelby Cobra 427 car](images/AC_Shelby_Cobra_427_car.jpg) #### AC Shelby Cobra CSX2000 car ![AC Shelby Cobra CSX2000 car](images/AC_Shelby_Cobra_CSX2000_car.jpg) #### Ford Mustang Shelby GT500 car ![Ford Mustang Shelby GT500 car](images/Ford_Mustang_Shelby_GT500_car.jpg)
ntc-ai/SDXL-LoRA-slider.fearful
ntc-ai
2023-12-31T16:58:08Z
185
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-31T16:58:06Z
--- language: - en thumbnail: "images/evaluate/fearful.../fearful_17_3.0.png" widget: - text: fearful output: url: images/fearful_17_3.0.png - text: fearful output: url: images/fearful_19_3.0.png - text: fearful output: url: images/fearful_20_3.0.png - text: fearful output: url: images/fearful_21_3.0.png - text: fearful output: url: images/fearful_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "fearful" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - fearful (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/fearful_17_-3.0.png" width=256 height=256 /> | <img src="images/fearful_17_0.0.png" width=256 height=256 /> | <img src="images/fearful_17_3.0.png" width=256 height=256 /> | | <img src="images/fearful_19_-3.0.png" width=256 height=256 /> | <img src="images/fearful_19_0.0.png" width=256 height=256 /> | <img src="images/fearful_19_3.0.png" width=256 height=256 /> | | <img src="images/fearful_20_-3.0.png" width=256 height=256 /> | <img src="images/fearful_20_0.0.png" width=256 height=256 /> | <img src="images/fearful_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` fearful ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.fearful', weight_name='fearful.safetensors', adapter_name="fearful") # Activate the LoRA pipe.set_adapters(["fearful"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, fearful" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 770+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_GPT4_temp0_Seed114
behzadnet
2023-12-31T16:47:18Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-31T16:47:11Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
UnderstandLing/llama-2-13b-chat-fr
UnderstandLing
2023-12-31T16:46:05Z
223
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-13b-chat-hf", "base_model:adapter:NousResearch/Llama-2-13b-chat-hf", "region:us" ]
null
2023-12-31T09:30:59Z
--- library_name: peft base_model: NousResearch/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2
codingsandra/ppo-LunarLander-v2
codingsandra
2023-12-31T16:45:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T16:44:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.88 +/- 32.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ostapeno/adauniNeo1B_ropes_plain_bottom_hint_sormalTrue_sbsmpl2
ostapeno
2023-12-31T16:28:32Z
0
0
null
[ "region:us" ]
null
2023-12-31T11:51:55Z
Number of experts present in the library: 22 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | ropes_plain_bottom_hint_v2_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v4 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v5 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v8_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v9_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v6 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v4_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v3_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v7_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v1_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v5_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v9 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v3 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v7 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v6_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v8 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v10_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | | ropes_plain_bottom_hint_v10 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora | Last updated on: 2023-12-31 16:28:29+00:00
ostapeno/adauniNeo1B_ropes_background_situation_middle_sormalTrue_sbsmpl2
ostapeno
2023-12-31T16:26:47Z
0
0
null
[ "region:us" ]
null
2023-12-31T11:52:06Z
Number of experts present in the library: 22 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | ropes_background_situation_middle_v6 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v7_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v7 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v8 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v5_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v3 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v2_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v1_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v9 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v3_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v6_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v4_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v8_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v9_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v5 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v4 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v10_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | | ropes_background_situation_middle_v10 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora | Last updated on: 2023-12-31 16:26:40+00:00
HaythamB/ppo-Pyramids
HaythamB
2023-12-31T16:25:13Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-12-31T16:25:10Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: HaythamB/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LoneStriker/goliath-120b-2.18bpw-h6-exl2
LoneStriker
2023-12-31T16:24:54Z
10
6
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-15T18:51:19Z
--- license: llama2 language: - en pipeline_tag: conversational --- # Goliath 120B An auto-regressive causal LM created by combining 2x finetuned [Llama-2 70B](https://huggingface.co/meta-llama/llama-2-70b-hf) into one. Please check out the quantized formats provided by [@TheBloke](https:///huggingface.co/TheBloke) and [@Panchovix](https://huggingface.co/Panchovix): - [GGUF](https://huggingface.co/TheBloke/goliath-120b-GGUF) (llama.cpp) - [GPTQ](https://huggingface.co/TheBloke/goliath-120b-GPTQ) (KoboldAI, TGW, Aphrodite) - [AWQ](https://huggingface.co/TheBloke/goliath-120b-AWQ) (TGW, Aphrodite, vLLM) - [Exllamav2](https://huggingface.co/Panchovix/goliath-120b-exl2) (TGW, KoboldAI) # Prompting Format Both Vicuna and Alpaca will work, but due the initial and final layers belonging primarily to Xwin, I expect Vicuna to work the best. # Merge process The models used in the merge are [Xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [Euryale](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B). The layer ranges used are as follows: ```yaml - range 0, 16 Xwin - range 8, 24 Euryale - range 17, 32 Xwin - range 25, 40 Euryale - range 33, 48 Xwin - range 41, 56 Euryale - range 49, 64 Xwin - range 57, 72 Euryale - range 65, 80 Xwin ``` # Screenshots ![image/png](https://cdn-uploads.huggingface.co/production/uploads/635567189c72a7e742f1419c/Cat8_Rimaz6Ni7YhQiiGB.png) # Benchmarks Coming soon. # Acknowledgements Credits goes to [@chargoddard](https://huggingface.co/chargoddard) for developing the framework used to merge the model - [mergekit](https://github.com/cg123/mergekit). Special thanks to [@Undi95](https://huggingface.co/Undi95) for helping with the merge ratios.
Zahmad/q-FrozenLake-v1-4x4-noSlippery
Zahmad
2023-12-31T16:13:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T16:13:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Zahmad/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Shiyad/englishteacher
Shiyad
2023-12-31T16:12:15Z
0
0
allennlp
[ "allennlp", "code", "aa", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
null
2023-12-31T15:42:28Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - accuracy library_name: allennlp tags: - code --- title: Eva emoji: 👁 colorFrom: yellow colorTo: green sdk: gradio sdk_version: 4.12.0 app_file: app.py pinned: false
greathero/mit-b0-finetuned-contrails-morethanx33newercontrailsdataset
greathero
2023-12-31T16:11:09Z
1
0
transformers
[ "transformers", "tf", "segformer", "generated_from_keras_callback", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-12-31T16:07:01Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_keras_callback model-index: - name: greathero/mit-b0-finetuned-contrails-morethanx33newercontrailsdataset results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # greathero/mit-b0-finetuned-contrails-morethanx33newercontrailsdataset This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1577 - Validation Loss: 0.1651 - Validation Mean Iou: 0.2490 - Validation Mean Accuracy: 0.25 - Validation Overall Accuracy: 0.9958 - Validation Accuracy Unlabeled: 0.0 - Validation Accuracy Notlabeled: 1.0 - Validation Accuracy Otherclass: 0.0 - Validation Accuracy Contrail: 0.0 - Validation Iou Unlabeled: 0.0 - Validation Iou Notlabeled: 0.9958 - Validation Iou Otherclass: 0.0 - Validation Iou Contrail: 0.0 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Unlabeled | Validation Accuracy Notlabeled | Validation Accuracy Otherclass | Validation Accuracy Contrail | Validation Iou Unlabeled | Validation Iou Notlabeled | Validation Iou Otherclass | Validation Iou Contrail | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:-----------------------------:|:------------------------------:|:------------------------------:|:----------------------------:|:------------------------:|:-------------------------:|:-------------------------:|:-----------------------:|:-----:| | 1.4224 | 1.3413 | 0.0440 | 0.2777 | 0.1745 | 0.0 | 0.1713 | 0.0 | 0.9395 | 0.0 | 0.1713 | 0.0 | 0.0047 | 0 | | 0.5445 | 0.5276 | 0.2436 | 0.2466 | 0.9726 | 0.0 | 0.9766 | 0.0 | 0.0097 | 0.0 | 0.9726 | 0.0 | 0.0016 | 1 | | 0.2702 | 0.2208 | 0.2489 | 0.2516 | 0.9896 | 0.0 | 0.9936 | 0.0 | 0.0126 | 0.0 | 0.9896 | 0.0 | 0.0060 | 2 | | 0.1577 | 0.1651 | 0.2490 | 0.25 | 0.9958 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.9958 | 0.0 | 0.0 | 3 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.15.0 - Tokenizers 0.15.0
jayant-yadav/roberta-base-multinerd
jayant-yadav
2023-12-31T16:06:33Z
26
1
transformers
[ "transformers", "safetensors", "roberta", "token-classification", "ner", "named-entity-recognition", "en", "dataset:Babelscape/multinerd", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-30T07:37:55Z
--- license: apache-2.0 datasets: - Babelscape/multinerd language: - en metrics: - f1 - precision - recall pipeline_tag: token-classification tags: - ner - named-entity-recognition - token-classification model-index: - name: robert-base on MultiNERD by Jayant Yadav results: - task: type: named-entity-recognition-ner name: Named Entity Recognition dataset: type: Babelscape/multinerd name: MultiNERD (English) split: test revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25 config: Babelscape/multinerd args: split: train[:50%] metrics: - type: f1 value: 0.943 name: F1 - type: precision value: 0.939 name: Precision - type: recall value: 0.947 name: Recall config: seqeval paper: https://aclanthology.org/2022.findings-naacl.60.pdf base_model: roberta-base library_name: transformers --- # Model Card for Model ID [roBERTa-base](https://huggingface.co/roberta-base) model was fine-tuned on 50% training English only split of MultiNERD dataset and later evaluated on full test split of the same. The finetuning script can be fetched from [fintuning.py](https://github.com/jayant-yadav/RISE-NER/blob/main/finetuning.ipynb). Various other model were tested on the same selection of dataset and the best checkpoint was uploaded. The detailed configuration summary can be found in Appendix section of [report](https://github.com/jayant-yadav/RISE-NER/blob/main/MultiNERD_NER___RISE.pdf). ## Model Details ### Model Description Head over to [github repo](https://github.com/jayant-yadav/RISE-NER) for all the scripts used to finetune and evalute token-classification model. The model is ready to use on [Kaggle](https://www.kaggle.com/datasets/jayantyadav/multinerd-ner-models/) too! - **Developed by:** Jayant Yadav ## Uses Token-classification of the following entities are possible: | Class | Description | Examples | |-------|-------------|----------| PER (person) | People | Ray Charles, Jessica Alba, Leonardo DiCaprio, Roger Federer, Anna Massey. | ORG (organization) | Associations, companies, agencies, institutions, nationalities and religious or political groups | University of Edinburgh, San Francisco Giants, Google, Democratic Party. | LOC (location) | Physical locations (e.g. mountains, bodies of water), geopolitical entities (e.g. cities, states), and facilities (e.g. bridges, buildings, airports). | Rome, Lake Paiku, Chrysler Building, Mount Rushmore, Mississippi River. | ANIM (animal) | Breeds of dogs, cats and other animals, including their scientific names. | Maine Coon, African Wild Dog, Great White Shark, New Zealand Bellbird. | BIO (biological) | Genus of fungus, bacteria and protoctists, families of viruses, and other biological entities. | Herpes Simplex Virus, Escherichia Coli, Salmonella, Bacillus Anthracis. | CEL (celestial) | Planets, stars, asteroids, comets, nebulae, galaxies and other astronomical objects. | Sun, Neptune, Asteroid 187 Lamberta, Proxima Centauri, V838 Monocerotis. | DIS (disease) | Physical, mental, infectious, non-infectious, deficiency, inherited, degenerative, social and self-inflicted diseases. | Alzheimer’s Disease, Cystic Fibrosis, Dilated Cardiomyopathy, Arthritis. | EVE (event) | Sport events, battles, wars and other events. | American Civil War, 2003 Wimbledon Championships, Cannes Film Festival. | FOOD (food) | Foods and drinks. | Carbonara, Sangiovese, Cheddar Beer Fondue, Pizza Margherita. | INST (instrument) | Technological instruments, mechanical instruments, musical instruments, and other tools. | Spitzer Space Telescope, Commodore 64, Skype, Apple Watch, Fender Stratocaster. | MEDIA (media) | Titles of films, books, magazines, songs and albums, fictional characters and languages. | Forbes, American Psycho, Kiss Me Once, Twin Peaks, Disney Adventures. | PLANT (plant) | Types of trees, flowers, and other plants, including their scientific names. | Salix, Quercus Petraea, Douglas Fir, Forsythia, Artemisia Maritima. | MYTH (mythological) | Mythological and religious entities. | Apollo, Persephone, Aphrodite, Saint Peter, Pope Gregory I, Hercules. | TIME (time) | Specific and well-defined time intervals, such as eras, historical periods, centuries, years and important days. No months and days of the week. | Renaissance, Middle Ages, Christmas, Great Depression, 17th Century, 2012. | VEHI (vehicle) | Cars, motorcycles and other vehicles. | Ferrari Testarossa, Suzuki Jimny, Honda CR-X, Boeing 747, Fairey Fulmar. ## Bias, Risks, and Limitations Only trained on English split of MultiNERD dataset. Therefore will not perform well on other languages. ## How to Get Started with the Model Use the code below to get started with the model: ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("jayant-yadav/roberta-base-multinerd") model = AutoModelForTokenClassification.from_pretrained("jayant-yadav/roberta-base-multinerd") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Wolfgang and I live in Berlin" ner_results = nlp(example) print(ner_results) ``` ## Training Details ### Training Data 50% of train split of MultiNERD dataset was used to finetune the model. ### Training Procedure #### Preprocessing English dataset was filterd out : ```train_dataset = train_dataset.filter(lambda x: x['lang'] == 'en')``` #### Training Hyperparameters The following hyperparameters were used during training: learning_rate: 5e-05 train_batch_size: 32 eval_batch_size: 32 seed: 42 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear lr_scheduler_warmup_ratio: 0.1 num_epochs: 1 ## Evaluation Evaluation was perfored on 50% of evaluation split of MultiNERD dataset. ### Testing Data & Metrics #### Testing Data Tested on Full test split of MultiNERD dataset. #### Metrics Model versions and checkpoint were evaluated using F1, Precision and Recall. For this `seqeval` metric was used: ```metric = load_metric("seqeval")```. ### Results |Entity | Precision | Recall | F1 score | Support | |---|---|---|---|---| |ANIM | 0.71 | 0.77 | 0.739 | 1604 | |BIO | 0.5 | 0.125 | 0.2 | 8 | |CEL | 0.738 | 0.756 | 0.746 | 41 | |DIS | 0.737 | 0.772 | 0.754 | 759 | |EVE | 0.952 | 0.968 | 0.960 | 352 | |FOOD | 0.679 | 0.545 | 0.605 | 566 | |INST | 0.75 | 0.75 | 0.75 | 12 | |LOC | 0.994 | 0.991 | 0.993 | 12024 | |MEDIA | 0.940 | 0.969 | 0.954 | 458 | |ORG | 0.977 | 0.981 | 0.979 | 3309 | |PER | 0.992 | 0.995 | 0.993 | 5265 | |PLANT | 0.617 | 0.730 | 0.669 | 894 | |MYTH | 0.647 | 0.687 | 0.666 | 32 | |TIME | 0.825 | 0.820 | 0.822 | 289 | |VEHI | 0.812 | 0.812 | 0.812 | 32 | |**Overall** | **0.939** | **0.947** | **0.943** | ## Technical Specifications ### Model Architecture and Objective Follows the same as RoBERTa-BASE ### Compute Infrastructure #### Hardware Kaggle - GPU T4x2 Google Colab - GPU T4x1 #### Software pandas==1.5.3 numpy==1.23.5 seqeval==1.2.2 datasets==2.15.0 huggingface_hub==0.19.4 transformers[torch]==4.35.2 evaluate==0.4.1 matplotlib==3.7.1 collections torch==2.0.0 ## Model Card Contact [jayant-yadav](https://huggingface.co/jayant-yadav)
judithrosell/SciBERT_JNLPBA_NER_new
judithrosell
2023-12-31T15:45:15Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:allenai/scibert_scivocab_uncased", "base_model:finetune:allenai/scibert_scivocab_uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-31T15:05:16Z
--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SciBERT_JNLPBA_NER_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SciBERT_JNLPBA_NER_new This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1515 - Precision: 0.9549 - Recall: 0.9516 - F1: 0.9532 - Accuracy: 0.9511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1681 | 1.0 | 1164 | 0.1500 | 0.9540 | 0.9493 | 0.9516 | 0.9492 | | 0.1281 | 2.0 | 2328 | 0.1519 | 0.9537 | 0.9497 | 0.9517 | 0.9492 | | 0.1019 | 3.0 | 3492 | 0.1515 | 0.9549 | 0.9516 | 0.9532 | 0.9511 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
hour3/ppo-PyramidsTraining
hour3
2023-12-31T15:35:35Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-12-31T14:58:26Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hour3/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nlp-with-deeplearning/enko-t5-small-v0
nlp-with-deeplearning
2023-12-31T15:29:30Z
11
5
transformers
[ "transformers", "safetensors", "t5", "feature-extraction", "nmt", "aihub", "text2text-generation", "en", "ko", "license:cc-by-nc-sa-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-31T13:27:10Z
--- license: cc-by-nc-sa-4.0 language: - en - ko metrics: - bleu pipeline_tag: text2text-generation tags: - nmt - aihub --- # ENKO-T5-SMALL-V0 This model is for English to Korean Machine Translator, which is based on T5-small architecture, but trained from scratch. #### Code The training code is from my lecture([LLM을 위한 김기현의 NLP EXPRESS](https://fastcampus.co.kr/data_online_nlpexpress)), which is published on [FastCampus](https://fastcampus.co.kr/). You can check the training code in this github [repo](https://github.com/kh-kim/nlp-express-practice). #### Dataset The training dataset for this model is mainly from [AI-Hub](https://www.aihub.or.kr/). The dataset consists of 11M parallel samples. #### Tokenizer I use Byte-level BPE tokenizer for both source and target language. Since it covers both languages, tokenizer vocab size is 60k. #### Architecture The model architecture is based on T5-small, which is popular encoder-decoder model architecture. Please, note that this model is trained from-scratch, not fine-tuned. #### Evaluation I conducted the evaluation with 5 different test sets. Following figure shows BLEU scores on each test set. ![](images/enko.png) ![](images/avg.png) DEEPCL model is private version of this model, which is trained on much more data. #### Contact Kim Ki Hyun ([email protected])
UnderstandLing/llama-2-13b-chat-es
UnderstandLing
2023-12-31T15:13:55Z
226
1
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-13b-chat-hf", "base_model:adapter:NousResearch/Llama-2-13b-chat-hf", "region:us" ]
null
2023-12-30T09:41:17Z
--- library_name: peft base_model: NousResearch/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2
ostapeno/adauniNeo1B_niv2_dialogue_act_recognition_sormalTrue_sbsmpl2
ostapeno
2023-12-31T15:10:04Z
0
0
null
[ "region:us" ]
null
2023-12-31T11:51:46Z
Number of experts present in the library: 22 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | niv2_dialogue_act_recognition_v2_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v9_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v6 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v4_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v6_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v4 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v8 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v3 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v8_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v3_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v7_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v1_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v5 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v7 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v5_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v9 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v10_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v10 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | Last updated on: 2023-12-31 15:10:02+00:00
MohamedAhmedAE/mistral-finetuned-samsum
MohamedAhmedAE
2023-12-31T15:08:03Z
0
0
null
[ "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-12-31T14:17:22Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - trl - sft - generated_from_trainer model-index: - name: mistral-finetuned-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetuned-samsum This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
aumy/ppo-Huggy
aumy
2023-12-31T15:01:45Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-12-31T15:01:40Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: aumy/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hontou-ni-baka/ppo-Huggy
hontou-ni-baka
2023-12-31T15:01:05Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-12-31T15:01:00Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hontou-ni-baka/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ostapeno/adauniNeo1B_quarel_heres_a_story_sormalTrue_sbsmpl2
ostapeno
2023-12-31T14:57:51Z
0
0
null
[ "region:us" ]
null
2023-12-31T11:52:01Z
Number of experts present in the library: 22 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | quarel_heres_a_story_v9_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v4 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v9 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v6_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v5 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v8 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v5_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v3 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v7_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v7 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v4_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v1_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v3_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v8_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v6 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v2_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v10_last | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | | quarel_heres_a_story_v10 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora | Last updated on: 2023-12-31 14:57:47+00:00
unaryunix/shelby
unaryunix
2023-12-31T14:50:43Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-31T14:50:32Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: shelby results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.23728813230991364 --- # shelby Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Ford Mustang Shelby GT500 ![Ford Mustang Shelby GT500](images/Ford_Mustang_Shelby_GT500.jpg) #### Shelby Cobra 289 ![Shelby Cobra 289](images/Shelby_Cobra_289.jpg) #### Shelby Cobra 427 ![Shelby Cobra 427](images/Shelby_Cobra_427.jpg)
mesolitica/tinyllama-1.1b-4096-fpf
mesolitica
2023-12-31T14:49:29Z
12
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-09T13:43:56Z
--- language: - ms --- # Full Parameter Finetuning TinyLlama-1.1B-intermediate-step-955k-2.0T 4096 context length Mistral on Malaysian text README at https://github.com/mesolitica/malaya/tree/5.1/session/tiny-llama#4096-context-length WandB, https://wandb.ai/mesolitica/finetune-tinyllama-1.1B?workspace=user-husein-mesolitica
Tachi67/CodeFileEditFlowModule
Tachi67
2023-12-31T14:49:12Z
0
0
null
[ "region:us" ]
null
2023-11-29T10:55:40Z
# Table of Contents * [CodeFileEditAtomicFlow](#CodeFileEditAtomicFlow) * [CodeFileEditAtomicFlow](#CodeFileEditAtomicFlow.CodeFileEditAtomicFlow) * [run](#CodeFileEditAtomicFlow.CodeFileEditAtomicFlow.run) * [\_\_init\_\_](#__init__) <a id="CodeFileEditAtomicFlow"></a> # CodeFileEditAtomicFlow <a id="CodeFileEditAtomicFlow.CodeFileEditAtomicFlow"></a> ## CodeFileEditAtomicFlow Objects ```python class CodeFileEditAtomicFlow(AtomicFlow) ``` This class is used to write code to a temp code file, with commented instructions to give information to the user. *Input Interface*: - `code`: str - `language_of_code`: str - `memory_files`: Dict[str, str] *Output Interface*: - `code_editor_output`: str - `temp_code_file_location`: str <a id="CodeFileEditAtomicFlow.CodeFileEditAtomicFlow.run"></a> #### run ```python def run(input_data: Dict[str, Any]) ``` This function runs the atomic flow. :param input_data (Dict[str, Any]): The input data. :return: Dict[str, Any] The output data. <a id="__init__"></a> # \_\_init\_\_
Tachi67/CodeGeneratorFlowModule
Tachi67
2023-12-31T14:48:57Z
0
0
null
[ "region:us" ]
null
2023-11-28T22:27:29Z
# Table of Contents * [CodeGeneratorAtomicFlow](#CodeGeneratorAtomicFlow) * [CodeGeneratorAtomicFlow](#CodeGeneratorAtomicFlow.CodeGeneratorAtomicFlow) * [instantiate\_from\_config](#CodeGeneratorAtomicFlow.CodeGeneratorAtomicFlow.instantiate_from_config) * [run](#CodeGeneratorAtomicFlow.CodeGeneratorAtomicFlow.run) * [\_\_init\_\_](#__init__) <a id="CodeGeneratorAtomicFlow"></a> # CodeGeneratorAtomicFlow <a id="CodeGeneratorAtomicFlow.CodeGeneratorAtomicFlow"></a> ## CodeGeneratorAtomicFlow Objects ```python class CodeGeneratorAtomicFlow(ChatAtomicFlow) ``` This class wraps around the Chat API to generate code from a goal. One thing worth noting is that we need to make sure the code generator does not write repetitive code that is present in the library, so we need to inject the function signatures in the library to the system prompts. *Input Interface Non Initialized*: - `goal` - `code_library` - `memory_files` *Input Interface Initialized*: - `goal` - `code_library` - `memory_files` *Output Interface*: - `code` - `language_of_code` <a id="CodeGeneratorAtomicFlow.CodeGeneratorAtomicFlow.instantiate_from_config"></a> #### instantiate\_from\_config ```python @classmethod def instantiate_from_config(cls, config) ``` Instantiate a CodeGeneratorAtomicFlow from a configuration. **Arguments**: - `config`: Configuration dictionary. **Returns**: Instantiated CodeGeneratorAtomicFlow. <a id="CodeGeneratorAtomicFlow.CodeGeneratorAtomicFlow.run"></a> #### run ```python def run(input_data: Dict[str, Any]) -> Dict[str, Any] ``` Run the flow. **Arguments**: - `input_data`: Input data. **Returns**: Output data. <a id="__init__"></a> # \_\_init\_\_
Tachi67/ControllerAtomicFlowModule
Tachi67
2023-12-31T14:48:07Z
0
0
null
[ "region:us" ]
null
2023-11-12T15:06:28Z
# Table of Contents * [ControllerAtomicFlow](#ControllerAtomicFlow) * [ControllerAtomicFlow](#ControllerAtomicFlow.ControllerAtomicFlow) * [\_\_init\_\_](#__init__) <a id="ControllerAtomicFlow"></a> # ControllerAtomicFlow <a id="ControllerAtomicFlow.ControllerAtomicFlow"></a> ## ControllerAtomicFlow Objects ```python class ControllerAtomicFlow(ChatAtomicFlow) ``` Refer to: https://huggingface.co/Tachi67/JarvisFlowModule/blob/main/Controller_JarvisFlow.py iirc this flow is not really used. <a id="__init__"></a> # \_\_init\_\_
badokorach/afriqa_afroxlmr_squad_v2-luganda_311223
badokorach
2023-12-31T14:47:50Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "base_model:badokorach/afriqa_afroxlmr_squad_v2-luganda", "base_model:finetune:badokorach/afriqa_afroxlmr_squad_v2-luganda", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-12-31T10:53:09Z
--- license: mit base_model: badokorach/afriqa_afroxlmr_squad_v2-luganda tags: - generated_from_keras_callback model-index: - name: badokorach/afriqa_afroxlmr_squad_v2-luganda_311223 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/afriqa_afroxlmr_squad_v2-luganda_311223 This model is a fine-tuned version of [badokorach/afriqa_afroxlmr_squad_v2-luganda](https://huggingface.co/badokorach/afriqa_afroxlmr_squad_v2-luganda) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5410 - Validation Loss: 0.0 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 14760, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4699 | 0.0 | 0 | | 3.3401 | 0.0 | 1 | | 3.1487 | 0.0 | 2 | | 2.9589 | 0.0 | 3 | | 2.7472 | 0.0 | 4 | | 2.5135 | 0.0 | 5 | | 2.3000 | 0.0 | 6 | | 2.0904 | 0.0 | 7 | | 1.9314 | 0.0 | 8 | | 1.7617 | 0.0 | 9 | | 1.6075 | 0.0 | 10 | | 1.4573 | 0.0 | 11 | | 1.3275 | 0.0 | 12 | | 1.2261 | 0.0 | 13 | | 1.1378 | 0.0 | 14 | | 1.0358 | 0.0 | 15 | | 0.9618 | 0.0 | 16 | | 0.9082 | 0.0 | 17 | | 0.8762 | 0.0 | 18 | | 0.8012 | 0.0 | 19 | | 0.7568 | 0.0 | 20 | | 0.7120 | 0.0 | 21 | | 0.6746 | 0.0 | 22 | | 0.6478 | 0.0 | 23 | | 0.6286 | 0.0 | 24 | | 0.5978 | 0.0 | 25 | | 0.5822 | 0.0 | 26 | | 0.5444 | 0.0 | 27 | | 0.5344 | 0.0 | 28 | | 0.5410 | 0.0 | 29 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
Tachi67/PlanFileEditFlowModule
Tachi67
2023-12-31T14:45:23Z
0
0
null
[ "region:us" ]
null
2023-12-06T09:38:41Z
# Table of Contents * [PlanFileEditAtomicFlow](#PlanFileEditAtomicFlow) * [PlanFileEditAtomicFlow](#PlanFileEditAtomicFlow.PlanFileEditAtomicFlow) * [\_\_init\_\_](#__init__) <a id="PlanFileEditAtomicFlow"></a> # PlanFileEditAtomicFlow <a id="PlanFileEditAtomicFlow.PlanFileEditAtomicFlow"></a> ## PlanFileEditAtomicFlow Objects ```python class PlanFileEditAtomicFlow(AtomicFlow) ``` This class is used to write plan to a temp code file, with commented instructions to give information to the user. *Input Interface*: - `plan`: str - `plan_file_location`: str *Output Interface*: - `plan_editor_output`: str - `temp_plan_file_location`: str <a id="__init__"></a> # \_\_init\_\_
marcelopd20/my_awesome_mind_model
marcelopd20
2023-12-31T14:35:37Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-12-30T15:18:45Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_mind_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.0354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | nan | 0.0354 | | No log | 1.87 | 7 | nan | 0.0354 | | 241.565 | 2.93 | 11 | nan | 0.0354 | | 241.565 | 4.0 | 15 | nan | 0.0354 | | 241.565 | 4.8 | 18 | nan | 0.0354 | | 0.0 | 5.87 | 22 | nan | 0.0354 | | 0.0 | 6.93 | 26 | nan | 0.0354 | | 0.0 | 8.0 | 30 | nan | 0.0354 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
SherryT997/mistral-7b-instruct-0.2-hindi-adapters
SherryT997
2023-12-31T14:17:47Z
4
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2023-12-26T10:38:12Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
seungduk/Bookworm-10.7B-v0.1
seungduk
2023-12-31T14:11:22Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:yanolja/KoSOLAR-10.7B-v0.1-deprecated", "base_model:adapter:yanolja/KoSOLAR-10.7B-v0.1-deprecated", "region:us" ]
null
2023-12-31T13:41:43Z
--- library_name: peft tags: - generated_from_trainer base_model: yanolja/KoSOLAR-10.7B-v0.1 model-index: - name: seungduk/Bookworm-10.7B-v0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # seungduk/Bookworm-10.7B-v0.1 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
unaryunix/sportscars5
unaryunix
2023-12-31T14:10:12Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-31T14:10:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: sportscars5 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6607142686843872 --- # sportscars5 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Audi TT ![Audi TT](images/Audi_TT.jpg) #### Ferrari ![Ferrari](images/Ferrari.jpg) #### Porsche ![Porsche](images/Porsche.jpg) #### Shelby Cobra ![Shelby Cobra](images/Shelby_Cobra.jpg) #### lamborghini ![lamborghini](images/lamborghini.jpg)
Glitschiu/Reinforce-2
Glitschiu
2023-12-31T14:03:32Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T14:03:30Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 22.20 +/- 19.06 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
younghoonKIM/exp1
younghoonKIM
2023-12-31T14:03:02Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:younghoonKIM/MAICON2023_noise_preprocessd", "base_model:openai/whisper-large", "base_model:finetune:openai/whisper-large", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-30T16:56:09Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - younghoonKIM/MAICON2023_noise_preprocessd model-index: - name: whisper_large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the MAICON2023_noise dataset. It achieves the following results on the evaluation set: - Loss: 0.2609 - Cer: 27.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6254 | 0.36 | 1000 | 0.5211 | 39.0406 | | 0.3894 | 0.71 | 2000 | 0.3733 | 23.1574 | | 0.0932 | 1.07 | 3000 | 0.2990 | 24.4794 | | 0.0952 | 1.43 | 4000 | 0.2609 | 27.9801 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
asuender/motivational-gpt
asuender
2023-12-31T13:58:32Z
20
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "en", "dataset:asuender/motivational-quotes", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-30T22:12:41Z
--- license: cc datasets: - asuender/motivational-quotes language: - en pipeline_tag: text2text-generation ---
bdsaglam/llama-2-7b-chat-hf-kg-cons-multi-peft-2023-12-31T15-43-51
bdsaglam
2023-12-31T13:55:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-12-31T13:55:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
Buseak/pos_tagger_3112_v3
Buseak
2023-12-31T13:50:08Z
726
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-31T13:08:20Z
--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: pos_tagger_3112_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos_tagger_3112_v3 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7728 - Precision: 0.8922 - Recall: 0.8955 - F1: 0.8938 - Accuracy: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 244 | 0.3040 | 0.8905 | 0.8924 | 0.8915 | 0.9215 | | No log | 2.0 | 488 | 0.2915 | 0.8981 | 0.9006 | 0.8994 | 0.9279 | | 0.3896 | 3.0 | 732 | 0.3109 | 0.8933 | 0.8932 | 0.8933 | 0.9234 | | 0.3896 | 4.0 | 976 | 0.3004 | 0.8954 | 0.8983 | 0.8969 | 0.9263 | | 0.159 | 5.0 | 1220 | 0.3338 | 0.8929 | 0.8946 | 0.8937 | 0.9242 | | 0.159 | 6.0 | 1464 | 0.3419 | 0.8914 | 0.8958 | 0.8936 | 0.9240 | | 0.1038 | 7.0 | 1708 | 0.3840 | 0.8892 | 0.8930 | 0.8911 | 0.9223 | | 0.1038 | 8.0 | 1952 | 0.3923 | 0.8857 | 0.8930 | 0.8894 | 0.9213 | | 0.0629 | 9.0 | 2196 | 0.4441 | 0.8888 | 0.8914 | 0.8901 | 0.9213 | | 0.0629 | 10.0 | 2440 | 0.4769 | 0.8886 | 0.8929 | 0.8908 | 0.9231 | | 0.0357 | 11.0 | 2684 | 0.4846 | 0.8859 | 0.8913 | 0.8886 | 0.9199 | | 0.0357 | 12.0 | 2928 | 0.5256 | 0.8877 | 0.8895 | 0.8886 | 0.9211 | | 0.0212 | 13.0 | 3172 | 0.5554 | 0.8896 | 0.8900 | 0.8898 | 0.9219 | | 0.0212 | 14.0 | 3416 | 0.5748 | 0.8870 | 0.8911 | 0.8890 | 0.9207 | | 0.0143 | 15.0 | 3660 | 0.5988 | 0.8877 | 0.8916 | 0.8896 | 0.9220 | | 0.0143 | 16.0 | 3904 | 0.6047 | 0.8874 | 0.8903 | 0.8888 | 0.9209 | | 0.0098 | 17.0 | 4148 | 0.6161 | 0.8846 | 0.8914 | 0.8880 | 0.9199 | | 0.0098 | 18.0 | 4392 | 0.6158 | 0.8883 | 0.8929 | 0.8906 | 0.9217 | | 0.0072 | 19.0 | 4636 | 0.6216 | 0.8858 | 0.8928 | 0.8893 | 0.9209 | | 0.0072 | 20.0 | 4880 | 0.6497 | 0.8892 | 0.8926 | 0.8909 | 0.9215 | | 0.0058 | 21.0 | 5124 | 0.6698 | 0.8887 | 0.8919 | 0.8903 | 0.9216 | | 0.0058 | 22.0 | 5368 | 0.6582 | 0.8858 | 0.8916 | 0.8887 | 0.9208 | | 0.0046 | 23.0 | 5612 | 0.6915 | 0.8866 | 0.8925 | 0.8896 | 0.9212 | | 0.0046 | 24.0 | 5856 | 0.6725 | 0.8898 | 0.8928 | 0.8913 | 0.9222 | | 0.004 | 25.0 | 6100 | 0.6678 | 0.8912 | 0.8961 | 0.8936 | 0.9238 | | 0.004 | 26.0 | 6344 | 0.6899 | 0.8891 | 0.8933 | 0.8912 | 0.9224 | | 0.0034 | 27.0 | 6588 | 0.7082 | 0.8890 | 0.8922 | 0.8906 | 0.9215 | | 0.0034 | 28.0 | 6832 | 0.7066 | 0.8903 | 0.8920 | 0.8911 | 0.9228 | | 0.0026 | 29.0 | 7076 | 0.7243 | 0.8882 | 0.8938 | 0.8910 | 0.9228 | | 0.0026 | 30.0 | 7320 | 0.7322 | 0.8891 | 0.8923 | 0.8907 | 0.9226 | | 0.0023 | 31.0 | 7564 | 0.7292 | 0.8909 | 0.8930 | 0.8920 | 0.9230 | | 0.0023 | 32.0 | 7808 | 0.7227 | 0.8922 | 0.8947 | 0.8934 | 0.9244 | | 0.0027 | 33.0 | 8052 | 0.7231 | 0.8885 | 0.8922 | 0.8903 | 0.9222 | | 0.0027 | 34.0 | 8296 | 0.7236 | 0.8907 | 0.8936 | 0.8922 | 0.9233 | | 0.0019 | 35.0 | 8540 | 0.7313 | 0.8875 | 0.8895 | 0.8885 | 0.9214 | | 0.0019 | 36.0 | 8784 | 0.7240 | 0.8902 | 0.8935 | 0.8919 | 0.9234 | | 0.0017 | 37.0 | 9028 | 0.7364 | 0.8903 | 0.8939 | 0.8921 | 0.9233 | | 0.0017 | 38.0 | 9272 | 0.7479 | 0.8896 | 0.8929 | 0.8913 | 0.9232 | | 0.0013 | 39.0 | 9516 | 0.7511 | 0.8895 | 0.8937 | 0.8916 | 0.9230 | | 0.0013 | 40.0 | 9760 | 0.7689 | 0.8896 | 0.8948 | 0.8922 | 0.9234 | | 0.001 | 41.0 | 10004 | 0.7597 | 0.8909 | 0.8958 | 0.8933 | 0.9238 | | 0.001 | 42.0 | 10248 | 0.7581 | 0.8897 | 0.8929 | 0.8913 | 0.9230 | | 0.001 | 43.0 | 10492 | 0.7512 | 0.8919 | 0.8952 | 0.8935 | 0.9244 | | 0.0012 | 44.0 | 10736 | 0.7622 | 0.8921 | 0.8957 | 0.8939 | 0.9244 | | 0.0012 | 45.0 | 10980 | 0.7707 | 0.8907 | 0.8952 | 0.8930 | 0.9237 | | 0.001 | 46.0 | 11224 | 0.7700 | 0.8922 | 0.8963 | 0.8942 | 0.9244 | | 0.001 | 47.0 | 11468 | 0.7742 | 0.8895 | 0.8938 | 0.8916 | 0.9231 | | 0.0009 | 48.0 | 11712 | 0.7753 | 0.8911 | 0.8945 | 0.8928 | 0.9239 | | 0.0009 | 49.0 | 11956 | 0.7746 | 0.8909 | 0.8944 | 0.8927 | 0.9236 | | 0.0008 | 50.0 | 12200 | 0.7728 | 0.8922 | 0.8955 | 0.8938 | 0.9244 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/mlabonne-Marcoro14-7B-slerp-GGUF
s3nh
2023-12-31T13:35:28Z
4
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T12:18:52Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/mlabonne/Marcoro14-7B-slerp). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_GPT4_temp0_Seed113
behzadnet
2023-12-31T13:06:44Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-31T13:06:40Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
mike-krk/Reinforce-pixelcopter
mike-krk
2023-12-31T13:05:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T13:04:59Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 55.90 +/- 28.01 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ArpitSinghGautam/ppo-Huggy
ArpitSinghGautam
2023-12-31T12:48:00Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-12-31T12:47:55Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ArpitSinghGautam/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nicola0008/my_awesome_opus_eng_fr_model
nicola0008
2023-12-31T12:13:54Z
1
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-31T12:07:41Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: nicola0008/my_awesome_opus_eng_fr_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nicola0008/my_awesome_opus_eng_fr_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2881 - Validation Loss: 0.0520 - Train Bleu: 94.2041 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Epoch | |:----------:|:---------------:|:----------:|:-----:| | 3.3075 | 0.8703 | 21.7119 | 0 | | 0.7701 | 0.1743 | 82.9197 | 1 | | 0.2881 | 0.0520 | 94.2041 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
nicola0008/my_awesome_opus_eng_ita_model
nicola0008
2023-12-31T12:03:01Z
1
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-29T18:17:45Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: nicola0008/my_awesome_opus_eng_ita_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nicola0008/my_awesome_opus_eng_ita_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2528 - Validation Loss: 0.0438 - Train Bleu: 93.5268 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Epoch | |:----------:|:---------------:|:----------:|:-----:| | 3.0582 | 0.6265 | 31.7554 | 0 | | 0.6553 | 0.1278 | 82.9766 | 1 | | 0.2528 | 0.0438 | 93.5268 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/Tensoic-TinyLlama-1.1B-3T-openhermes-GGUF
s3nh
2023-12-31T11:57:46Z
6
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T11:53:09Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Tensoic/TinyLlama-1.1B-3T-openhermes). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
s3nh/Tensoic-TinyLlama-1.1B-2.5T-openhermes-GGUF
s3nh
2023-12-31T11:53:30Z
3
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T11:52:42Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Tensoic/TinyLlama-1.1B-2.5T-openhermes). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
Ahmed107/hamsa-v0.6Q
Ahmed107
2023-12-31T11:51:12Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "nadsoft", "generated_from_trainer", "ar", "dataset:nadsoft/arabic-98", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-31T09:33:21Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-medium tags: - nadsoft - generated_from_trainer datasets: - nadsoft/arabic-98 metrics: - wer model-index: - name: ./hamsa-v0.6Q results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nadsoft/arabic-98 type: nadsoft/arabic-98 metrics: - name: Wer type: wer value: 23.412419116812348 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ./hamsa-v0.6Q This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the nadsoft/arabic-98 dataset. It achieves the following results on the evaluation set: - Loss: 0.2781 - Wer: 23.4124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9225 | 0.33 | 100 | 0.8743 | 24.5136 | | 0.2721 | 0.67 | 200 | 0.2782 | 24.1367 | | 0.2474 | 1.0 | 300 | 0.2781 | 23.4124 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
bdsaglam/llama-2-7b-chat-jerx-reward-peft-2023-12-31T11-44-35
bdsaglam
2023-12-31T11:49:56Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2023-12-31T11:49:49Z
--- library_name: peft base_model: NousResearch/llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.7.0
marcogfedozzi/Qtable-Taxi-v3
marcogfedozzi
2023-12-31T11:43:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T11:31:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Qtable-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="marcogfedozzi/Qtable-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
TimeMobius/Mobius-RWKV-12B-base-m1
TimeMobius
2023-12-31T11:37:27Z
0
3
null
[ "fr", "it", "de", "es", "en", "zh", "license:apache-2.0", "region:us" ]
null
2023-12-29T05:02:18Z
--- license: apache-2.0 language: - fr - it - de - es - en - zh inference: false --- # Model Card for Mobius-12B-base-m1 The Mobius-12B-base-m1 Large Language Model (LLM) is a pretrained model based on RWKV v5 arch. We utilized 0.01 billion tokens to conduct post-training on this model for alignment benchmarks, excluding the utilization of [DPO and SFT](https://github.com/BBuf/trl/pull/1). The process took approximately 10 hours, employing 4 * a800. ## Warning This repo contains weights that are not compatible with Hugging Face [transformers](https://github.com/huggingface/transformers) library yet. But you can try this[PR](https://github.com/huggingface/transformers/pull/26963) as well. [RWKV runner]() or [AI00 server]() also work. ## Instruction|Chat format This format must be strictly respected, otherwise the model will generate sub-optimal outputs. The template used to build a prompt for the Instruct model is defined as follows: ``` User: {Instruction|prompt}\n\nAssistant: ``` ## Run the model [need to convert checkpoint to HF format](https://github.com/xiaol/RWKV-World-HF-Tokenizer?tab=readme-ov-file#huggingface-rwkv-world-model-convert) Need to install this [PR](https://github.com/huggingface/transformers/pull/26963) pip install -e git://github.com/BBuf/transformers.git ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("TimeMobius/Mobius-12B-base-m1", torch_dtype=torch.float16).to(0) tokenizer = AutoTokenizer.from_pretrained("TimeMobius/Mobius-12B-base-m1", trust_remote_code=True) text = "x" prompt = f'Question: {text.strip()}\n\nAnswer:' inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` ## Limitations The Mobius base m1 is the base model can be easily fine-tuned to achieve compelling performance. if you wanna better benchmark results use [DPO and SFT](https://github.com/BBuf/trl/pull/1) ,details in [readme](https://github.com/BBuf/trl/pull/1/files) ### Benchmark | Mobius-12B-base-m1 | | |--------------------|----------| | lambda ppl | 3.41 | | lambda | 0.72 | | piqa | 0.78 | | hellaswag 10 shots | 0.72 | | winogrande | 0.68 | | arc_challenge 25shots | 0.47 | | arc_easy | 0.73 | | openbookqa | 0.40 | | sciq | 0.93 | # @TimeMobius
bdsaglam/llama-2-7b-chat-jerx-reward-peft-2023-12-31T11-26-34
bdsaglam
2023-12-31T11:31:53Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2023-12-31T11:31:44Z
--- library_name: peft base_model: NousResearch/llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.7.0
mHossain/bengali_pos_v1_200000
mHossain
2023-12-31T11:30:16Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "electra", "token-classification", "generated_from_trainer", "dataset:pos_tag_100k", "base_model:mHossain/bengali_pos_v1", "base_model:finetune:mHossain/bengali_pos_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-31T10:00:28Z
--- base_model: mHossain/bengali_pos_v1 tags: - generated_from_trainer datasets: - pos_tag_100k metrics: - precision - recall - f1 - accuracy model-index: - name: bengali_pos_v1_200000 results: - task: name: Token Classification type: token-classification dataset: name: pos_tag_100k type: pos_tag_100k config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.7727710210867093 - name: Recall type: recall value: 0.7751739702839947 - name: F1 type: f1 value: 0.7739706305787504 - name: Accuracy type: accuracy value: 0.8325531771739444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bengali_pos_v1_200000 This model is a fine-tuned version of [mHossain/bengali_pos_v1](https://huggingface.co/mHossain/bengali_pos_v1) on the pos_tag_100k dataset. It achieves the following results on the evaluation set: - Loss: 0.5802 - Precision: 0.7728 - Recall: 0.7752 - F1: 0.7740 - Accuracy: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6183 | 1.0 | 22500 | 0.6032 | 0.7546 | 0.7570 | 0.7558 | 0.8193 | | 0.5138 | 2.0 | 45000 | 0.5763 | 0.7691 | 0.7694 | 0.7692 | 0.8292 | | 0.4448 | 3.0 | 67500 | 0.5802 | 0.7728 | 0.7752 | 0.7740 | 0.8326 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Tensoic/TinyLlama-1.1B-3T-openhermes
Tensoic
2023-12-31T11:28:15Z
6
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "dataset:teknium/openhermes", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-29T12:49:29Z
--- tags: - generated_from_trainer model-index: - name: out results: [] datasets: - teknium/openhermes --- This is the Instruction Fine Tuned version of [Tiny Llama](https://github.com/jzhang38/TinyLlama) on [@Teknium1's](https://twitter.com/Teknium1) [openhermes](https://huggingface.co/datasets/teknium/openhermes) dataset. `"The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01."` <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: ./TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ./openhermes type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./out sequence_len: 4096 sample_packing: false adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: tinyllama-openhermes wandb_entity: tensoic wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 8 num_epochs: 1 optimizer: adamw_bnb_8bit adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: true flash_attention: warmup_steps: 100 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details><br> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644bf6ef778ecbfb977e8e84/baBgY3cd4rUKWQITj3sNx.png) The model achieves the following loss: - Loss: 1.3647 The loss exploded after a couple hundred steps. As suggested by [winglian](https://x.com/winglian/status/1740776666744700941?s=20), we set the following values in the config file: ``` adam_epsilon: 0.00001 max_grad_norm: 1.0 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0006 | 0.0 | 1 | 1.6838 | | 0.8195 | 0.25 | 451 | 1.4620 | | 0.6836 | 0.5 | 902 | 1.4158 | | 0.6811 | 0.75 | 1353 | 1.3647 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
mohammadh128/whisper_small-fa_v03
mohammadh128
2023-12-31T11:13:41Z
73
2
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "fa", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-21T06:37:12Z
--- language: - fa license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: whisper_small-fa_v03 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 fa type: mozilla-foundation/common_voice_11_0 config: fa split: test args: fa metrics: - type: wer value: 27.1515 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_small-fa_v03 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fa dataset. We also did data augmentation using audiomentations library along with hyperparameter tuning to acquire the best parameters. It achieves the following results on the evaluation set: - Loss: 0.1813 - Wer: 23.1451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure You can Find the notebooks [here](https://github.com/mohammadh128/Persian_ASR). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.15044e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:-------:| | 500 | 1.210100 | 0.439317 | 44.17001| | 1000 | 0.717500 | 0.385981 | 40.53219| | 1500 | 0.585800 | 0.312391 | 35.52059| | 2000 | 0.508400 | 0.274010 | 31.00885| | 2500 | 0.443500 | 0.244815 | 29.79515| | 3000 | 0.392700 | 0.216328 | 27.24362| | 3500 | 0.340100 | 0.213681 | 26.00705| | 4000 | 0.236700 | 0.198893 | 28.51612| | 4500 | 0.212000 | 0.186622 | 25.88944| | 5000 | 0.183800 | 0.181340 | 23.14515| ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.3
gomdolsehun/dengdenge2
gomdolsehun
2023-12-31T11:11:45Z
0
2
null
[ "art", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-04T13:27:31Z
--- license: creativeml-openrail-m metrics: - character pipeline_tag: text-to-image tags: - art ---
lamm-mit/MeLM
lamm-mit
2023-12-31T11:10:38Z
0
2
null
[ "license:apache-2.0", "region:us" ]
null
2023-12-04T13:20:13Z
--- license: apache-2.0 --- language: - en tags: - materials science - mechanics - solids - MechGPT - scientific AI - machine learning - generative AI --- # Language Modeling Strategies for Mechanics and Materials (MeLM) For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scientists and engineers (e.g. Galileo, da Vinci, and others) were often scholars across fields, specialization has taken hold later. Now, with the advent of AI we can explore deep relationships across areas that venture to connect technical disciplines (e.g., mechanics and chemistry) or general domains of knowledge (e.g., failure mechanics and art). Here we propose a workflow to develop a fine-tuned Large Language Model (LLM), exemplified for a subset of knowledge in materials failure and multiscale modeling, and discuss its application in various use cases. The modeling strategy includes the use of general-purpose LLMs to extract question-answer pairs from raw data followed by fine-tuning a LLM. The resulting MechGPT LLM is used in a series of computational experiments to explore its capacity for knowledge retrieval, language tasks, hypothesis generation, and connecting knowledge across disparate areas of science. We further explore the use of LLMs to generate ontological knowledge graphs, or ologs, to elucidate mechanistic, interpretable graph structures that provide explanatory insights, frameworks for new research questions, and visual representations of knowledge. This work shows the potential of LLMs to complement the way we model problems in mechanics and materials, enabling faster, more efficient, and more accurate research and engineering. The flexible multi-stage training strategy is transferrable and offers a path to obtain other fine-tuned models in other fields of mechanics. Three versions of MechGPT are discussed, featuring different sizes from13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/IM8MzFfcrsgE7WeUq6cmC.png) This repository also features codes for the multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model–which allows us to easily incorporate diverse materials, scales, and mechanical features–the model performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. To illustrate the use case for broader possibilities, we outline a human-machine interactive MechGPT model, here trained on a set of 1,103 Wikipedia articles related to mechanics, showing how the general framework can be used not only to solve forward and inverse problems but in addition, for complex language tasks like summarization, generation of new research concepts, and knowledge extraction. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic. ### MechGPT model: Mechanics-focused LLM foundation model for knowledge retrieval, natural language tasks, hypothesis generation, and connecting knowledge across disparate areas Load quantized model using PEFT/LoRA adapter ``` from transformers import AutoModelForSeq2SeqLM from peft import PeftModel, PeftConfig from transformers import BitsAndBytesConfig from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch import numpy as np from threading import Thread from typing import Iterator from transformers import TextIteratorStreamer from transformers import GenerationConfig import gradio as gr from threading import Thread from typing import Iterator from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer model_name='Open-Orca/OpenOrca-Platypus2-13B' FT_model_name = 'MechGPT-13b_v106C' peft_model_id = f'{FT_model_name}' bnb_config4bit = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(model_name) model_base = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", quantization_config= bnb_config4bit, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model_base.config.use_cache = False model = PeftModel.from_pretrained(model_base, peft_model_id, ) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" ``` Inference: ``` device='cuda' def generate_response (text_input="Mechanics is a powerful discipline with many applications, such as ", num_return_sequences=1, temperature=0.4, #the higher the temperature, the more creative the model becomes max_new_tokens=128, num_beams=1, top_k = 50, top_p = 0.9, repetition_penalty=1.,eos_token_id=2,verbatim=False, ): inputs = tokenizer.encode(text_input, add_special_tokens =False, return_tensors ='pt') if verbatim: print ("Length of input, tokenized: ", inputs.shape) with torch.no_grad(): outputs = model.generate(input_ids=inputs.to(device), max_new_tokens=max_new_tokens, temperature=temperature, num_beams=num_beams, top_k = top_k, top_p =top_p, num_return_sequences = num_return_sequences, eos_token_id=eos_token_id, do_sample =True, repetition_penalty=repetition_penalty, ) return tokenizer.batch_decode(outputs[:,inputs.shape[1]:].detach().cpu().numpy(), skip_special_tokens=True) ``` Prompt template: ``` # Single-turn `OpenChat Llama2 V1` tokenize("You are MechGPT.<|end_of_turn|>User: Hello<|end_of_turn|>Assistant:") # Multi-turn `OpenChat Llama2 V1` tokenize("You are MechGPT.<|end_of_turn|>User: Hello<|end_of_turn|>Assistant: Hi<|end_of_turn|>User: How are you today?<|end_of_turn|>Assistant:") ``` ``` generate_response ( text_input="You are MechGPT.<|end_of_turn|>User: How does hyperelastic softening affect crack speed in brittle materials?<|end_of_turn|>Assistant:", max_new_tokens=128, temperature=0.3, #value used to modulate the next token probabilities. num_beams=1, top_k = 50, top_p = 0.9, num_return_sequences = 1, eos_token_id=[2, 32000], ) ``` ### Dataset: See: https://huggingface.co/datasets/lamm-mit/MechanicsMaterials
DavidCollier/a2c-PandaReachDense-v3
DavidCollier
2023-12-31T11:01:45Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T10:57:21Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.48 +/- 1.02 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
UnderstandLing/llama-2-7b-chat-zh
UnderstandLing
2023-12-31T10:49:33Z
6
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2023-12-30T09:28:22Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2
rick72x5/xlm-roberta-base-finetuned-panx-de
rick72x5
2023-12-31T10:48:10Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-31T09:54:48Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1346 - F1: 0.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2567 | 1.0 | 525 | 0.1515 | 0.8251 | | 0.1261 | 2.0 | 1050 | 0.1397 | 0.8489 | | 0.0786 | 3.0 | 1575 | 0.1346 | 0.8645 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ilkerkara/distil-whisper-large-v2-tr
ilkerkara
2023-12-31T10:36:01Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "tr", "dataset:ilkerkara/common_voice_13_0_tr_pseudo_labelled", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-31T00:57:20Z
--- license: mit datasets: - ilkerkara/common_voice_13_0_tr_pseudo_labelled language: - tr library_name: transformers ---
stablediffusionapi/maky-base-model-001
stablediffusionapi
2023-12-31T10:32:07Z
1
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-31T10:30:07Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # maky-base-model-001 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/17753153811704018541.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "maky-base-model-001" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/maky-base-model-001) Model link: [View model](https://modelslab.com/models/maky-base-model-001) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "maky-base-model-001", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "20", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
Buseak/pos_tagger_3112
Buseak
2023-12-31T10:09:30Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-31T09:56:00Z
--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: pos_tagger_3112 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos_tagger_3112 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5781 - Precision: 0.8885 - Recall: 0.8926 - F1: 0.8906 - Accuracy: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 244 | 0.2966 | 0.8889 | 0.8935 | 0.8912 | 0.9215 | | No log | 2.0 | 488 | 0.2884 | 0.8958 | 0.8969 | 0.8963 | 0.9258 | | 0.3778 | 3.0 | 732 | 0.3138 | 0.8919 | 0.8913 | 0.8916 | 0.9224 | | 0.3778 | 4.0 | 976 | 0.3086 | 0.8935 | 0.8960 | 0.8948 | 0.9252 | | 0.1601 | 5.0 | 1220 | 0.3354 | 0.8897 | 0.8940 | 0.8919 | 0.9232 | | 0.1601 | 6.0 | 1464 | 0.3486 | 0.8863 | 0.8911 | 0.8887 | 0.9212 | | 0.1077 | 7.0 | 1708 | 0.3700 | 0.8899 | 0.8945 | 0.8922 | 0.9236 | | 0.1077 | 8.0 | 1952 | 0.3920 | 0.8846 | 0.8905 | 0.8875 | 0.9207 | | 0.0709 | 9.0 | 2196 | 0.4220 | 0.8860 | 0.8911 | 0.8885 | 0.9211 | | 0.0709 | 10.0 | 2440 | 0.4467 | 0.8889 | 0.8934 | 0.8912 | 0.9226 | | 0.0447 | 11.0 | 2684 | 0.4730 | 0.8834 | 0.8891 | 0.8862 | 0.9183 | | 0.0447 | 12.0 | 2928 | 0.5008 | 0.8869 | 0.8921 | 0.8895 | 0.9217 | | 0.0289 | 13.0 | 3172 | 0.5190 | 0.8866 | 0.8919 | 0.8892 | 0.9213 | | 0.0289 | 14.0 | 3416 | 0.5384 | 0.8865 | 0.8904 | 0.8884 | 0.9204 | | 0.0204 | 15.0 | 3660 | 0.5499 | 0.8852 | 0.8907 | 0.8879 | 0.9205 | | 0.0204 | 16.0 | 3904 | 0.5564 | 0.8864 | 0.8923 | 0.8893 | 0.9213 | | 0.015 | 17.0 | 4148 | 0.5688 | 0.8883 | 0.8920 | 0.8901 | 0.9220 | | 0.015 | 18.0 | 4392 | 0.5740 | 0.8874 | 0.8927 | 0.8901 | 0.9213 | | 0.0116 | 19.0 | 4636 | 0.5742 | 0.8879 | 0.8925 | 0.8902 | 0.9219 | | 0.0116 | 20.0 | 4880 | 0.5781 | 0.8885 | 0.8926 | 0.8906 | 0.9222 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
leowajda/linear_diffusion_ema
leowajda
2023-12-31T10:06:53Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "region:us" ]
null
2023-12-29T12:25:05Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
LoneStriker/Sonya-7B-5.0bpw-h6-exl2
LoneStriker
2023-12-31T10:04:36Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T10:02:36Z
--- license: cc-by-4.0 language: - en tags: - merge --- <div style="display: flex; justify-content: center; align-items: center"> <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/Sonya.jpg"> </div > <p align="center"> <big><b>Top 1 Performer MT-bench 🤪</b></big> </p> ## WTF is This? Sonya-7B is, at the time of writing, the **#1 performing model in MT-Bench first turn, ahead of GPT-4, and overall the #2 model in MT-Bench**, to the best of my knowledge. Sonya-7B should be a good all-purpose model for all tasks including assistant, RP, etc. Sonya-7B has a similar structure to my previous model, Silicon-Maid-7B, and uses a very similar structure. It's a merge of [xDAN-AI/xDAN-L1-Chat-RL-v1](https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1), [Jan-Ai's Stealth v1.2](https://huggingface.co/jan-hq/stealth-v1.2), [chargoddard/piano-medley-7b](https://huggingface.co/chargoddard/piano-medley-7b), [NeverSleep/Noromaid-7B-v0.2](https://huggingface.co/NeverSleep/Noromaid-7b-v0.2), and [athirdpath/NSFW_DPO_vmgb-7b](athirdpath/NSFW_DPO_vmgb-7b). Sauce is below. Somehow, by combining these pieces, it substantially outscores any of its parents on MT-Bench. I picked these models because: * MT-Bench normally correlates well with real world model quality and xDAN performs well on it. * Almost all models in the mix were Alpaca prompt formatted which gives prompt consistency. * Stealth v1.2 has been a magic sprinkle that seems to increase my MT-Bench scores. * I added RP models because it boosted the Writing and Roleplay benchmarks 👀 Based on the parent models, I expect this model to be used with an 8192 context window. Please use NTK scaling alpha of 2.6 to experimentally try out 16384 context. **Let me be candid:** Despite the test scores, this model is **NOT is a GPT killer**. I think it's a very sharp model **for a 7B**, it probably punches way above its weight **for a 7B**, but it's still a 7B model. Even for a 7B model, I think **it's quirky and has some weird outputs**. Keep your expectations in check 😉 **MT-Bench Average Turn** | model | score | size |--------------------|-----------|-------- | gpt-4 | 8.99 | - | **Sonya-7B** | **8.52** | **7b** | xDAN-L1-Chat-RL-v1 | 8.34 | 7b | Starling-7B | 8.09 | 7b | Claude-2 | 8.06 | - | *Silicon-Maid* | *7.96* | *7b* | *Loyal-Macaroni-Maid*| *7.95* | *7b* | gpt-3.5-turbo | 7.94 | 20b? | Claude-1 | 7.90 | - | OpenChat-3.5 | 7.81 | - | vicuna-33b-v1.3 | 7.12 | 33b | wizardlm-30b | 7.01 | 30b | Llama-2-70b-chat | 6.86 | 70b <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/mt-bench-gpt.png"> <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/mt-bench-comparison.png"> ### The Sauce ``` models: - model: xDAN-AI/xDAN-L1-Chat-RL-v1 parameters: weight: 1 density: 1 - model: chargoddard/piano-medley-7b parameters: weight: 0.3 - model: jan-hq/stealth-v1.2 parameters: weight: 0.2 - model: NeverSleep/Noromaid-7b-v0.2 parameters: weight: 0.2 - model: athirdpath/NSFW_DPO_vmgb-7b parameters: weight: 0.2 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: density: 0.4 int8_mask: true normalize: true dtype: bfloat16 ``` **There was no additional training, finetuning, or DPO.** This is a straight merger. ### Prompt Template (Alpaca) ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` I found that this model **performed worse** with the xDAN prompt format so, despite the heavy weight of xDAN in this merger, I recommeend *against* its use. ### Other Benchmark Stuff **########## First turn ##########** | model | turn | score | size |--------------------|------|----------|-------- | **Sonya-7B** | 1 | **9.06875** | **7b** | gpt-4 | 1 | 8.95625 | - | xDAN-L1-Chat-RL-v1 | 1 | *8.87500* | *7b* | xDAN-L2-Chat-RL-v2 | 1 | 8.78750 | 30b | claude-v1 | 1 | 8.15000 | - | gpt-3.5-turbo | 1 | 8.07500 | 20b | vicuna-33b-v1.3 | 1 | 7.45625 | 33b | wizardlm-30b | 1 | 7.13125 | 30b | oasst-sft-7-llama-30b | 1 | 7.10625 | 30b | Llama-2-70b-chat | 1 | 6.98750 | 70b ########## Second turn ########## | model | turn | score | size |--------------------|------|-----------|-------- | gpt-4 | 2 | 9.025000 | - | xDAN-L2-Chat-RL-v2 | 2 | 8.087500 | 30b | **Sonya-7B** | 2 | **7.962500** | **7b** | xDAN-L1-Chat-RL-v1 | 2 | 7.825000 | 7b | gpt-3.5-turbo | 2 | 7.812500 | 20b | claude-v1 | 2 | 7.650000 | - | wizardlm-30b | 2 | 6.887500 | 30b | vicuna-33b-v1.3 | 2 | 6.787500 | 33b | Llama-2-70b-chat | 2 | 6.725000 | 70b If you'd like to replicate the MT-Bench run, please ensure that the Alpaca prompt template is applied to the model. I did this by putting "alpaca" in the model path to trigger the `AlpacaAdapter`.
bravemindai/bert-finetuned-sem_eval-english
bravemindai
2023-12-31T10:00:05Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-31T09:59:48Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-sem_eval-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-sem_eval-english This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3249 - F1: 0.6699 - Roc Auc: 0.7680 - Accuracy: 0.2607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4065 | 1.0 | 855 | 0.3249 | 0.6699 | 0.7680 | 0.2607 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/Sonya-7B-4.0bpw-h6-exl2
LoneStriker
2023-12-31T09:59:00Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T09:57:19Z
--- license: cc-by-4.0 language: - en tags: - merge --- <div style="display: flex; justify-content: center; align-items: center"> <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/Sonya.jpg"> </div > <p align="center"> <big><b>Top 1 Performer MT-bench 🤪</b></big> </p> ## WTF is This? Sonya-7B is, at the time of writing, the **#1 performing model in MT-Bench first turn, ahead of GPT-4, and overall the #2 model in MT-Bench**, to the best of my knowledge. Sonya-7B should be a good all-purpose model for all tasks including assistant, RP, etc. Sonya-7B has a similar structure to my previous model, Silicon-Maid-7B, and uses a very similar structure. It's a merge of [xDAN-AI/xDAN-L1-Chat-RL-v1](https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1), [Jan-Ai's Stealth v1.2](https://huggingface.co/jan-hq/stealth-v1.2), [chargoddard/piano-medley-7b](https://huggingface.co/chargoddard/piano-medley-7b), [NeverSleep/Noromaid-7B-v0.2](https://huggingface.co/NeverSleep/Noromaid-7b-v0.2), and [athirdpath/NSFW_DPO_vmgb-7b](athirdpath/NSFW_DPO_vmgb-7b). Sauce is below. Somehow, by combining these pieces, it substantially outscores any of its parents on MT-Bench. I picked these models because: * MT-Bench normally correlates well with real world model quality and xDAN performs well on it. * Almost all models in the mix were Alpaca prompt formatted which gives prompt consistency. * Stealth v1.2 has been a magic sprinkle that seems to increase my MT-Bench scores. * I added RP models because it boosted the Writing and Roleplay benchmarks 👀 Based on the parent models, I expect this model to be used with an 8192 context window. Please use NTK scaling alpha of 2.6 to experimentally try out 16384 context. **Let me be candid:** Despite the test scores, this model is **NOT is a GPT killer**. I think it's a very sharp model **for a 7B**, it probably punches way above its weight **for a 7B**, but it's still a 7B model. Even for a 7B model, I think **it's quirky and has some weird outputs**. Keep your expectations in check 😉 **MT-Bench Average Turn** | model | score | size |--------------------|-----------|-------- | gpt-4 | 8.99 | - | **Sonya-7B** | **8.52** | **7b** | xDAN-L1-Chat-RL-v1 | 8.34 | 7b | Starling-7B | 8.09 | 7b | Claude-2 | 8.06 | - | *Silicon-Maid* | *7.96* | *7b* | *Loyal-Macaroni-Maid*| *7.95* | *7b* | gpt-3.5-turbo | 7.94 | 20b? | Claude-1 | 7.90 | - | OpenChat-3.5 | 7.81 | - | vicuna-33b-v1.3 | 7.12 | 33b | wizardlm-30b | 7.01 | 30b | Llama-2-70b-chat | 6.86 | 70b <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/mt-bench-gpt.png"> <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/mt-bench-comparison.png"> ### The Sauce ``` models: - model: xDAN-AI/xDAN-L1-Chat-RL-v1 parameters: weight: 1 density: 1 - model: chargoddard/piano-medley-7b parameters: weight: 0.3 - model: jan-hq/stealth-v1.2 parameters: weight: 0.2 - model: NeverSleep/Noromaid-7b-v0.2 parameters: weight: 0.2 - model: athirdpath/NSFW_DPO_vmgb-7b parameters: weight: 0.2 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: density: 0.4 int8_mask: true normalize: true dtype: bfloat16 ``` **There was no additional training, finetuning, or DPO.** This is a straight merger. ### Prompt Template (Alpaca) ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` I found that this model **performed worse** with the xDAN prompt format so, despite the heavy weight of xDAN in this merger, I recommeend *against* its use. ### Other Benchmark Stuff **########## First turn ##########** | model | turn | score | size |--------------------|------|----------|-------- | **Sonya-7B** | 1 | **9.06875** | **7b** | gpt-4 | 1 | 8.95625 | - | xDAN-L1-Chat-RL-v1 | 1 | *8.87500* | *7b* | xDAN-L2-Chat-RL-v2 | 1 | 8.78750 | 30b | claude-v1 | 1 | 8.15000 | - | gpt-3.5-turbo | 1 | 8.07500 | 20b | vicuna-33b-v1.3 | 1 | 7.45625 | 33b | wizardlm-30b | 1 | 7.13125 | 30b | oasst-sft-7-llama-30b | 1 | 7.10625 | 30b | Llama-2-70b-chat | 1 | 6.98750 | 70b ########## Second turn ########## | model | turn | score | size |--------------------|------|-----------|-------- | gpt-4 | 2 | 9.025000 | - | xDAN-L2-Chat-RL-v2 | 2 | 8.087500 | 30b | **Sonya-7B** | 2 | **7.962500** | **7b** | xDAN-L1-Chat-RL-v1 | 2 | 7.825000 | 7b | gpt-3.5-turbo | 2 | 7.812500 | 20b | claude-v1 | 2 | 7.650000 | - | wizardlm-30b | 2 | 6.887500 | 30b | vicuna-33b-v1.3 | 2 | 6.787500 | 33b | Llama-2-70b-chat | 2 | 6.725000 | 70b If you'd like to replicate the MT-Bench run, please ensure that the Alpaca prompt template is applied to the model. I did this by putting "alpaca" in the model path to trigger the `AlpacaAdapter`.
LoneStriker/Sonya-7B-3.0bpw-h6-exl2
LoneStriker
2023-12-31T09:53:26Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T09:52:03Z
--- license: cc-by-4.0 language: - en tags: - merge --- <div style="display: flex; justify-content: center; align-items: center"> <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/Sonya.jpg"> </div > <p align="center"> <big><b>Top 1 Performer MT-bench 🤪</b></big> </p> ## WTF is This? Sonya-7B is, at the time of writing, the **#1 performing model in MT-Bench first turn, ahead of GPT-4, and overall the #2 model in MT-Bench**, to the best of my knowledge. Sonya-7B should be a good all-purpose model for all tasks including assistant, RP, etc. Sonya-7B has a similar structure to my previous model, Silicon-Maid-7B, and uses a very similar structure. It's a merge of [xDAN-AI/xDAN-L1-Chat-RL-v1](https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1), [Jan-Ai's Stealth v1.2](https://huggingface.co/jan-hq/stealth-v1.2), [chargoddard/piano-medley-7b](https://huggingface.co/chargoddard/piano-medley-7b), [NeverSleep/Noromaid-7B-v0.2](https://huggingface.co/NeverSleep/Noromaid-7b-v0.2), and [athirdpath/NSFW_DPO_vmgb-7b](athirdpath/NSFW_DPO_vmgb-7b). Sauce is below. Somehow, by combining these pieces, it substantially outscores any of its parents on MT-Bench. I picked these models because: * MT-Bench normally correlates well with real world model quality and xDAN performs well on it. * Almost all models in the mix were Alpaca prompt formatted which gives prompt consistency. * Stealth v1.2 has been a magic sprinkle that seems to increase my MT-Bench scores. * I added RP models because it boosted the Writing and Roleplay benchmarks 👀 Based on the parent models, I expect this model to be used with an 8192 context window. Please use NTK scaling alpha of 2.6 to experimentally try out 16384 context. **Let me be candid:** Despite the test scores, this model is **NOT is a GPT killer**. I think it's a very sharp model **for a 7B**, it probably punches way above its weight **for a 7B**, but it's still a 7B model. Even for a 7B model, I think **it's quirky and has some weird outputs**. Keep your expectations in check 😉 **MT-Bench Average Turn** | model | score | size |--------------------|-----------|-------- | gpt-4 | 8.99 | - | **Sonya-7B** | **8.52** | **7b** | xDAN-L1-Chat-RL-v1 | 8.34 | 7b | Starling-7B | 8.09 | 7b | Claude-2 | 8.06 | - | *Silicon-Maid* | *7.96* | *7b* | *Loyal-Macaroni-Maid*| *7.95* | *7b* | gpt-3.5-turbo | 7.94 | 20b? | Claude-1 | 7.90 | - | OpenChat-3.5 | 7.81 | - | vicuna-33b-v1.3 | 7.12 | 33b | wizardlm-30b | 7.01 | 30b | Llama-2-70b-chat | 6.86 | 70b <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/mt-bench-gpt.png"> <img src="https://huggingface.co/SanjiWatsuki/Sonya-7B/resolve/main/assets/mt-bench-comparison.png"> ### The Sauce ``` models: - model: xDAN-AI/xDAN-L1-Chat-RL-v1 parameters: weight: 1 density: 1 - model: chargoddard/piano-medley-7b parameters: weight: 0.3 - model: jan-hq/stealth-v1.2 parameters: weight: 0.2 - model: NeverSleep/Noromaid-7b-v0.2 parameters: weight: 0.2 - model: athirdpath/NSFW_DPO_vmgb-7b parameters: weight: 0.2 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: density: 0.4 int8_mask: true normalize: true dtype: bfloat16 ``` **There was no additional training, finetuning, or DPO.** This is a straight merger. ### Prompt Template (Alpaca) ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` I found that this model **performed worse** with the xDAN prompt format so, despite the heavy weight of xDAN in this merger, I recommeend *against* its use. ### Other Benchmark Stuff **########## First turn ##########** | model | turn | score | size |--------------------|------|----------|-------- | **Sonya-7B** | 1 | **9.06875** | **7b** | gpt-4 | 1 | 8.95625 | - | xDAN-L1-Chat-RL-v1 | 1 | *8.87500* | *7b* | xDAN-L2-Chat-RL-v2 | 1 | 8.78750 | 30b | claude-v1 | 1 | 8.15000 | - | gpt-3.5-turbo | 1 | 8.07500 | 20b | vicuna-33b-v1.3 | 1 | 7.45625 | 33b | wizardlm-30b | 1 | 7.13125 | 30b | oasst-sft-7-llama-30b | 1 | 7.10625 | 30b | Llama-2-70b-chat | 1 | 6.98750 | 70b ########## Second turn ########## | model | turn | score | size |--------------------|------|-----------|-------- | gpt-4 | 2 | 9.025000 | - | xDAN-L2-Chat-RL-v2 | 2 | 8.087500 | 30b | **Sonya-7B** | 2 | **7.962500** | **7b** | xDAN-L1-Chat-RL-v1 | 2 | 7.825000 | 7b | gpt-3.5-turbo | 2 | 7.812500 | 20b | claude-v1 | 2 | 7.650000 | - | wizardlm-30b | 2 | 6.887500 | 30b | vicuna-33b-v1.3 | 2 | 6.787500 | 33b | Llama-2-70b-chat | 2 | 6.725000 | 70b If you'd like to replicate the MT-Bench run, please ensure that the Alpaca prompt template is applied to the model. I did this by putting "alpaca" in the model path to trigger the `AlpacaAdapter`.
stablediffusionapi/maky-model-00010
stablediffusionapi
2023-12-31T09:51:17Z
0
1
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-31T09:49:20Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # maky-model-00010 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/4315640621704016099.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "maky-model-00010" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/maky-model-00010) Model link: [View model](https://modelslab.com/models/maky-model-00010) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "maky-model-00010", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "20", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
TheBloke/deita-7B-v1.0-sft-GPTQ
TheBloke
2023-12-31T09:46:31Z
19
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:hkust-nlp/deita-6k-v0", "arxiv:2312.15685", "base_model:hkust-nlp/deita-7b-v1.0-sft", "base_model:quantized:hkust-nlp/deita-7b-v1.0-sft", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-12-31T09:18:18Z
--- base_model: hkust-nlp/deita-7b-v1.0-sft datasets: - hkust-nlp/deita-6k-v0 inference: false language: - en license: apache-2.0 model_creator: HKUST NLP Group model_name: Deita 7B V1.0 SFT model_type: mistral prompt_template: 'A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user''s questions. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Deita 7B V1.0 SFT - GPTQ - Model creator: [HKUST NLP Group](https://huggingface.co/hkust-nlp) - Original model: [Deita 7B V1.0 SFT](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft) <!-- description start --> # Description This repo contains GPTQ model files for [HKUST NLP Group's Deita 7B V1.0 SFT](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF) * [HKUST NLP Group's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/deita-7B-v1.0-sft-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/deita-7B-v1.0-sft-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `deita-7B-v1.0-sft-GPTQ`: ```shell mkdir deita-7B-v1.0-sft-GPTQ huggingface-cli download TheBloke/deita-7B-v1.0-sft-GPTQ --local-dir deita-7B-v1.0-sft-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir deita-7B-v1.0-sft-GPTQ huggingface-cli download TheBloke/deita-7B-v1.0-sft-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir deita-7B-v1.0-sft-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir deita-7B-v1.0-sft-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/deita-7B-v1.0-sft-GPTQ --local-dir deita-7B-v1.0-sft-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/deita-7B-v1.0-sft-GPTQ`. - To download from a specific branch, enter for example `TheBloke/deita-7B-v1.0-sft-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `deita-7B-v1.0-sft-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/deita-7B-v1.0-sft-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' client = InferenceClient(endpoint_url) response = client.text_generation( prompt_template, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/deita-7B-v1.0-sft-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: HKUST NLP Group's Deita 7B V1.0 SFT <img src="https://huggingface.co/datasets/hkust-nlp/deita-images/resolve/main/logo-final.png" alt="Deita banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Deita 7B V1.0 SFT [GitHub](https://github.com/hkust-nlp/deita) | [Paper](https://arxiv.org/abs/2312.15685) Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs). Deita 7B V1.0 SFT is a fine-tuned version of Mistral-7B-v0.1 that was trained on 6k automatically selected lightweight, high-quality alignment SFT data: [Deita 6K V0](https://huggingface.co/datasets/hkust-nlp/deita-6k-v0). ## Model description - **Model type:** Model fine tuned on automatically selected lightweight, high-quality alignment SFT data. - **Language(s) (NLP):** Primarily English - **Finetuned from model:** Mistral-7B-v0.1 ### Model Sources - **Repository:** https://github.com/hkust-nlp/deita - **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4). ## Performance | Model | Align | Data Size | MT-Bench | AlpacaEval(%) | OpenLLM (Avg.) | |------------------------------------------------|-----------|------------|----------|---------------|----------------| | **Proprietary Models** | | | | | | | GPT-4-Turbo | ? | -- | 9.32 | 97.70 | -- | | GPT-4 | SFT + PPO | -- | 8.99 | 95.03 | -- | | Claude-2 | SFT + PPO | -- | 8.06 | 91.36 | -- | | GPT-3.5-turbo | SFT + PPO | -- | 7.94 | 89.37 | -- | | **Open-sourced Models based on LLaMA-1-13B** | | | | | | | LIMA | SFT | 1K SFT | 4.29 | 41.98 | 59.82 | | WizardLM-13B | SFT | 70K SFT | 6.35 | 75.31 | 58.96 | | Vicuna-13B-v1.3 | SFT | 125K SFT | 6.39 | 82.11 | 60.01 | | Random | SFT | 10K SFT | 6.03 | 71.52 | 60.14 | | DEITA-LLaMA1-13B-v1.0-sft | SFT | 10K SFT | 6.60 | 78.01 | 64.27 | | **Open-sourced Models based on LLaMA-2-13B** | | | | | | | Tulu-2-13B | SFT | 326K SFT | 6.70 | 78.90 | -- | | Tulu-2-13B+DPO | SFT + DPO | 326K SFT + 60K DPO | 7.00 | 89.50 | -- | | LLaMA2-13B-Chat | SFT + PPO | -- | 6.65 | 81.09 | -- | | WizardLM-13B-v1.2 | SFT | >70K SFT | 7.09 | 89.17 | -- | | Vicuna-13B-v1.5 | SFT | 125K SFT | 6.57 | 78.80 | 61.63 | | Random | SFT | 10K SFT | 5.78 | 65.19 | 61.32 | | DEITA-LLaMA2-13B-v1.0-sft | SFT | 10K SFT | 6.79 | 81.09 | 62.71 | | **Open-sourced Models based on Mistral-7B** | | | | | | | Mistral-7B-Instruct-v0.1 | -- | -- | 6.84 | 69.65 | 60.45 | | Zephyr-7B-sft | SFT | 200K SFT | 5.32 | 75.12 | 60.93 | | $\text{Zephyr-7B-}\beta$ | SFT + DPO | 200K SFT + 60K DPO | 7.34 | 90.60 | 66.36 | | OpenChat-3.5 | C-RLFT | >> 70K C-RLFT | 7.81 | 88.51 | -- | | Starling-7B | C-RLFT + APA | >>70K C-RLFT + 183K APA | 8.09 | 91.99 | -- | | Random | SFT | 10K SFT | 5.89 | 56.90 | 61.72 | | DEITA-7B-v1.0-sft (6K) | SFT | 6K SFT | 7.22 | 80.78 | 64.94 | | DEITA-7B-v1.0-sft (10K) | SFT | 10K SFT | 7.32 | 81.67 | 64.00 | | DEITA-7B-v1.0 | SFT + DPO | 6K SFT + 10K DPO | 7.55 | 90.06 | 69.86 | ## Input Format The model is trained using the [vicuna_v1.1 template](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation If you find the content of this project helpful, please cite our paper as follows: ``` @misc{liu2023what, title={What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning}, author={Wei Liu and Weihao Zeng and Keqing He and Yong Jiang and Junxian He}, year={2023}, eprint={2312.15685}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
l3cube-pune/marathi-ner-iob
l3cube-pune
2023-12-31T09:43:21Z
8
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "mr", "dataset:L3Cube-MahaNER", "arxiv:2204.06029", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-27T11:21:23Z
--- language: mr license: cc-by-4.0 datasets: - L3Cube-MahaNER widget: - text: "पुणे विद्यापीठाची मॅनेजमेंट कौन्सिलची बैठक शनिवारी पार पडली. या वेळी सदस्य राजेंद्र विखे पाटील, डॉ. नितीन घोरपडे, प्रा. धोंडिराम पवार, बागेश्री मंठाळकर आदी उपस्थित होते." --- ## MahaNER-BERT-IOB MahaNER-BERT-IOB is a MahaBERT(l3cube-pune/marathi-bert) model fine-tuned on L3Cube-MahaNER (with IOB format tags) - a Marathi named entity recognition dataset. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.06029) Non-IOB model: <a href="https://huggingface.co/l3cube-pune/marathi-ner"> marathi-ner </a> ``` @InProceedings{litake-EtAl:2022:WILDRE6, author = {Litake, Onkar and Sabane, Maithili Ravindra and Patil, Parth Sachin and Ranade, Aparna Abhijeet and Joshi, Raviraj}, title = {L3Cube-MahaNER: A Marathi Named Entity Recognition Dataset and BERT models}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {29--34} } ``` Other models from the family:<br> Marathi NER : <a href="https://huggingface.co/l3cube-pune/marathi-ner"> marathi-ner </a> <br> Marathi NER IOB : <a href="https://huggingface.co/l3cube-pune/marathi-ner-iob"> marathi-ner-iob </a> <br> Marathi Social NER : <a href="https://huggingface.co/l3cube-pune/marathi-social-ner"> marathi-social-ner </a> <br> Marathi Social NER IOB : <a href="https://huggingface.co/l3cube-pune/marathi-social-ner-iob"> marathi-social-ner-iob </a> <br> Marathi Mixed NER (MahNER + MahaSocialNER) : <a href="https://huggingface.co/l3cube-pune/marathi-mixed-ner"> marathi-mixed-ner </a> <br> Marathi Mixed NER IOB (MahNER IOB + MahaSocialNER IOB) : <a href="https://huggingface.co/l3cube-pune/marathi-mixed-ner-iob"> marathi-mixed-ner-iob </a> <br>
crispisu/poca-SoccerTwos
crispisu
2023-12-31T09:37:56Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-12-31T07:53:35Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: crispisu/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mohammadh128/ppo-LunarLander-v2
mohammadh128
2023-12-31T09:37:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T09:37:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.26 +/- 26.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TheBloke/deita-7B-v1.0-sft-AWQ
TheBloke
2023-12-31T09:36:52Z
10
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:hkust-nlp/deita-6k-v0", "arxiv:2312.15685", "base_model:hkust-nlp/deita-7b-v1.0-sft", "base_model:quantized:hkust-nlp/deita-7b-v1.0-sft", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2023-12-31T09:18:18Z
--- base_model: hkust-nlp/deita-7b-v1.0-sft datasets: - hkust-nlp/deita-6k-v0 inference: false language: - en license: apache-2.0 model_creator: HKUST NLP Group model_name: Deita 7B V1.0 SFT model_type: mistral prompt_template: 'A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user''s questions. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Deita 7B V1.0 SFT - AWQ - Model creator: [HKUST NLP Group](https://huggingface.co/hkust-nlp) - Original model: [Deita 7B V1.0 SFT](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft) <!-- description start --> ## Description This repo contains AWQ model files for [HKUST NLP Group's Deita 7B V1.0 SFT](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF) * [HKUST NLP Group's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/deita-7B-v1.0-sft-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `deita-7B-v1.0-sft-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/deita-7B-v1.0-sft-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/deita-7B-v1.0-sft-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/deita-7B-v1.0-sft-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/deita-7B-v1.0-sft-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: HKUST NLP Group's Deita 7B V1.0 SFT <img src="https://huggingface.co/datasets/hkust-nlp/deita-images/resolve/main/logo-final.png" alt="Deita banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Deita 7B V1.0 SFT [GitHub](https://github.com/hkust-nlp/deita) | [Paper](https://arxiv.org/abs/2312.15685) Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs). Deita 7B V1.0 SFT is a fine-tuned version of Mistral-7B-v0.1 that was trained on 6k automatically selected lightweight, high-quality alignment SFT data: [Deita 6K V0](https://huggingface.co/datasets/hkust-nlp/deita-6k-v0). ## Model description - **Model type:** Model fine tuned on automatically selected lightweight, high-quality alignment SFT data. - **Language(s) (NLP):** Primarily English - **Finetuned from model:** Mistral-7B-v0.1 ### Model Sources - **Repository:** https://github.com/hkust-nlp/deita - **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4). ## Performance | Model | Align | Data Size | MT-Bench | AlpacaEval(%) | OpenLLM (Avg.) | |------------------------------------------------|-----------|------------|----------|---------------|----------------| | **Proprietary Models** | | | | | | | GPT-4-Turbo | ? | -- | 9.32 | 97.70 | -- | | GPT-4 | SFT + PPO | -- | 8.99 | 95.03 | -- | | Claude-2 | SFT + PPO | -- | 8.06 | 91.36 | -- | | GPT-3.5-turbo | SFT + PPO | -- | 7.94 | 89.37 | -- | | **Open-sourced Models based on LLaMA-1-13B** | | | | | | | LIMA | SFT | 1K SFT | 4.29 | 41.98 | 59.82 | | WizardLM-13B | SFT | 70K SFT | 6.35 | 75.31 | 58.96 | | Vicuna-13B-v1.3 | SFT | 125K SFT | 6.39 | 82.11 | 60.01 | | Random | SFT | 10K SFT | 6.03 | 71.52 | 60.14 | | DEITA-LLaMA1-13B-v1.0-sft | SFT | 10K SFT | 6.60 | 78.01 | 64.27 | | **Open-sourced Models based on LLaMA-2-13B** | | | | | | | Tulu-2-13B | SFT | 326K SFT | 6.70 | 78.90 | -- | | Tulu-2-13B+DPO | SFT + DPO | 326K SFT + 60K DPO | 7.00 | 89.50 | -- | | LLaMA2-13B-Chat | SFT + PPO | -- | 6.65 | 81.09 | -- | | WizardLM-13B-v1.2 | SFT | >70K SFT | 7.09 | 89.17 | -- | | Vicuna-13B-v1.5 | SFT | 125K SFT | 6.57 | 78.80 | 61.63 | | Random | SFT | 10K SFT | 5.78 | 65.19 | 61.32 | | DEITA-LLaMA2-13B-v1.0-sft | SFT | 10K SFT | 6.79 | 81.09 | 62.71 | | **Open-sourced Models based on Mistral-7B** | | | | | | | Mistral-7B-Instruct-v0.1 | -- | -- | 6.84 | 69.65 | 60.45 | | Zephyr-7B-sft | SFT | 200K SFT | 5.32 | 75.12 | 60.93 | | $\text{Zephyr-7B-}\beta$ | SFT + DPO | 200K SFT + 60K DPO | 7.34 | 90.60 | 66.36 | | OpenChat-3.5 | C-RLFT | >> 70K C-RLFT | 7.81 | 88.51 | -- | | Starling-7B | C-RLFT + APA | >>70K C-RLFT + 183K APA | 8.09 | 91.99 | -- | | Random | SFT | 10K SFT | 5.89 | 56.90 | 61.72 | | DEITA-7B-v1.0-sft (6K) | SFT | 6K SFT | 7.22 | 80.78 | 64.94 | | DEITA-7B-v1.0-sft (10K) | SFT | 10K SFT | 7.32 | 81.67 | 64.00 | | DEITA-7B-v1.0 | SFT + DPO | 6K SFT + 10K DPO | 7.55 | 90.06 | 69.86 | ## Input Format The model is trained using the [vicuna_v1.1 template](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation If you find the content of this project helpful, please cite our paper as follows: ``` @misc{liu2023what, title={What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning}, author={Wei Liu and Weihao Zeng and Keqing He and Yong Jiang and Junxian He}, year={2023}, eprint={2312.15685}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
martyn/solar-megamerge-dare-10.7b-v1
martyn
2023-12-31T09:34:44Z
1,536
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dare", "super mario merge", "pytorch", "solar", "merge", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-31T09:04:51Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation inference: false tags: - dare - super mario merge - pytorch - solar - merge --- # solar megamerge 10.7b The following models were merged with DARE using [https://github.com/martyn/safetensors-merge-supermario](https://github.com/martyn/safetensors-merge-supermario) ## Mergelist ``` models: - model: upstage/SOLAR-10.7B-v1.0 - model: upstage/SOLAR-10.7B-Instruct-v1.0 parameters: weight: 0.20 density: 0.8 - model: kyujinpy/SOLAR-Platypus-10.7B-v1 parameters: weight: 0.19 density: 0.75 - model: We-Want-GPU/SOLAR-10.7B-orca-alpaca-gpt4-math parameters: weight: 0.18 density: 0.75 - model: maywell/Synatra-10.7B-v0.4 parameters: weight: 0.18 density: 0.7 - model: kyujinpy/SOLAR-Platypus-10.7B-v2 parameters: weight: 0.17 density: 0.7 - model: Sao10K/Frostwind-10.7B-v1 parameters: weight: 0.16 density: 0.65 - model: rishiraj/meow parameters: weight: 0.15 density: 0.6 ``` ## Merge command ``` python3 hf_merge.py mergelist.yaml solar-1 ``` ### Notes * in the yaml: `p=weight` and `lambda=1/density`
stablediffusionapi/maky-model-00007
stablediffusionapi
2023-12-31T09:31:58Z
0
1
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-31T09:30:00Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # maky-model-00007 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/17039961651704014930.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "maky-model-00007" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/maky-model-00007) Model link: [View model](https://modelslab.com/models/maky-model-00007) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "maky-model-00007", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "20", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
jafs1986/my_awesome_qa_model
jafs1986
2023-12-31T09:27:12Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-12-31T09:26:56Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.5800 | | 2.8337 | 2.0 | 500 | 1.7574 | | 2.8337 | 3.0 | 750 | 1.6666 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.0 - Tokenizers 0.15.0
TheBloke/deita-7B-v1.0-sft-GGUF
TheBloke
2023-12-31T09:22:49Z
73
4
transformers
[ "transformers", "gguf", "mistral", "en", "dataset:hkust-nlp/deita-6k-v0", "arxiv:2312.15685", "base_model:hkust-nlp/deita-7b-v1.0-sft", "base_model:quantized:hkust-nlp/deita-7b-v1.0-sft", "license:apache-2.0", "region:us" ]
null
2023-12-31T09:18:18Z
--- base_model: hkust-nlp/deita-7b-v1.0-sft datasets: - hkust-nlp/deita-6k-v0 inference: false language: - en license: apache-2.0 model_creator: HKUST NLP Group model_name: Deita 7B V1.0 SFT model_type: mistral prompt_template: 'A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user''s questions. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Deita 7B V1.0 SFT - GGUF - Model creator: [HKUST NLP Group](https://huggingface.co/hkust-nlp) - Original model: [Deita 7B V1.0 SFT](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft) <!-- description start --> ## Description This repo contains GGUF format model files for [HKUST NLP Group's Deita 7B V1.0 SFT](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF) * [HKUST NLP Group's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/hkust-nlp/deita-7b-v1.0-sft) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [deita-7b-v1.0-sft.Q2_K.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [deita-7b-v1.0-sft.Q3_K_S.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [deita-7b-v1.0-sft.Q3_K_M.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [deita-7b-v1.0-sft.Q3_K_L.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [deita-7b-v1.0-sft.Q4_0.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [deita-7b-v1.0-sft.Q4_K_S.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [deita-7b-v1.0-sft.Q4_K_M.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [deita-7b-v1.0-sft.Q5_0.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [deita-7b-v1.0-sft.Q5_K_S.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [deita-7b-v1.0-sft.Q5_K_M.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [deita-7b-v1.0-sft.Q6_K.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [deita-7b-v1.0-sft.Q8_0.gguf](https://huggingface.co/TheBloke/deita-7B-v1.0-sft-GGUF/blob/main/deita-7b-v1.0-sft.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/deita-7B-v1.0-sft-GGUF and below it, a specific filename to download, such as: deita-7b-v1.0-sft.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/deita-7B-v1.0-sft-GGUF deita-7b-v1.0-sft.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/deita-7B-v1.0-sft-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/deita-7B-v1.0-sft-GGUF deita-7b-v1.0-sft.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m deita-7b-v1.0-sft.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./deita-7b-v1.0-sft.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./deita-7b-v1.0-sft.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: HKUST NLP Group's Deita 7B V1.0 SFT <img src="https://huggingface.co/datasets/hkust-nlp/deita-images/resolve/main/logo-final.png" alt="Deita banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Deita 7B V1.0 SFT [GitHub](https://github.com/hkust-nlp/deita) | [Paper](https://arxiv.org/abs/2312.15685) Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs). Deita 7B V1.0 SFT is a fine-tuned version of Mistral-7B-v0.1 that was trained on 6k automatically selected lightweight, high-quality alignment SFT data: [Deita 6K V0](https://huggingface.co/datasets/hkust-nlp/deita-6k-v0). ## Model description - **Model type:** Model fine tuned on automatically selected lightweight, high-quality alignment SFT data. - **Language(s) (NLP):** Primarily English - **Finetuned from model:** Mistral-7B-v0.1 ### Model Sources - **Repository:** https://github.com/hkust-nlp/deita - **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4). ## Performance | Model | Align | Data Size | MT-Bench | AlpacaEval(%) | OpenLLM (Avg.) | |------------------------------------------------|-----------|------------|----------|---------------|----------------| | **Proprietary Models** | | | | | | | GPT-4-Turbo | ? | -- | 9.32 | 97.70 | -- | | GPT-4 | SFT + PPO | -- | 8.99 | 95.03 | -- | | Claude-2 | SFT + PPO | -- | 8.06 | 91.36 | -- | | GPT-3.5-turbo | SFT + PPO | -- | 7.94 | 89.37 | -- | | **Open-sourced Models based on LLaMA-1-13B** | | | | | | | LIMA | SFT | 1K SFT | 4.29 | 41.98 | 59.82 | | WizardLM-13B | SFT | 70K SFT | 6.35 | 75.31 | 58.96 | | Vicuna-13B-v1.3 | SFT | 125K SFT | 6.39 | 82.11 | 60.01 | | Random | SFT | 10K SFT | 6.03 | 71.52 | 60.14 | | DEITA-LLaMA1-13B-v1.0-sft | SFT | 10K SFT | 6.60 | 78.01 | 64.27 | | **Open-sourced Models based on LLaMA-2-13B** | | | | | | | Tulu-2-13B | SFT | 326K SFT | 6.70 | 78.90 | -- | | Tulu-2-13B+DPO | SFT + DPO | 326K SFT + 60K DPO | 7.00 | 89.50 | -- | | LLaMA2-13B-Chat | SFT + PPO | -- | 6.65 | 81.09 | -- | | WizardLM-13B-v1.2 | SFT | >70K SFT | 7.09 | 89.17 | -- | | Vicuna-13B-v1.5 | SFT | 125K SFT | 6.57 | 78.80 | 61.63 | | Random | SFT | 10K SFT | 5.78 | 65.19 | 61.32 | | DEITA-LLaMA2-13B-v1.0-sft | SFT | 10K SFT | 6.79 | 81.09 | 62.71 | | **Open-sourced Models based on Mistral-7B** | | | | | | | Mistral-7B-Instruct-v0.1 | -- | -- | 6.84 | 69.65 | 60.45 | | Zephyr-7B-sft | SFT | 200K SFT | 5.32 | 75.12 | 60.93 | | $\text{Zephyr-7B-}\beta$ | SFT + DPO | 200K SFT + 60K DPO | 7.34 | 90.60 | 66.36 | | OpenChat-3.5 | C-RLFT | >> 70K C-RLFT | 7.81 | 88.51 | -- | | Starling-7B | C-RLFT + APA | >>70K C-RLFT + 183K APA | 8.09 | 91.99 | -- | | Random | SFT | 10K SFT | 5.89 | 56.90 | 61.72 | | DEITA-7B-v1.0-sft (6K) | SFT | 6K SFT | 7.22 | 80.78 | 64.94 | | DEITA-7B-v1.0-sft (10K) | SFT | 10K SFT | 7.32 | 81.67 | 64.00 | | DEITA-7B-v1.0 | SFT + DPO | 6K SFT + 10K DPO | 7.55 | 90.06 | 69.86 | ## Input Format The model is trained using the [vicuna_v1.1 template](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation If you find the content of this project helpful, please cite our paper as follows: ``` @misc{liu2023what, title={What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning}, author={Wei Liu and Weihao Zeng and Keqing He and Yong Jiang and Junxian He}, year={2023}, eprint={2312.15685}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- original-model-card end -->
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_GPT4_temp0_Seed112
behzadnet
2023-12-31T09:22:22Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-31T09:22:20Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_GPT4_temp0_Seed112
behzadnet
2023-12-31T09:22:13Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-31T09:22:06Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
beomi/llama-2-ko-7b-emb-dev
beomi
2023-12-31T09:21:55Z
67
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-27T06:12:16Z
--- license: other --- # beomi/llama-2-ko-7b-emb-dev - Experimental Repo
Ahmed107/hamsa-lora-v15
Ahmed107
2023-12-31T09:18:37Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:nadsoft/hamsa-v0.1-beta", "base_model:adapter:nadsoft/hamsa-v0.1-beta", "region:us" ]
null
2023-12-31T09:18:32Z
--- library_name: peft base_model: nadsoft/hamsa-v0.1-beta --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0