modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
AIFT/AIFT-ko-orca-plat-Yi-ko-6b-v1.2-dpo-2
AIFT
2024-01-25T07:54:44Z
62
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T07:17:06Z
--- license: cc-by-sa-4.0 --- <h1>orca-platypus - instruct-dpo-2 ๋ชจ๋ธ v1.2</h1> <b><ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•></b> kyujinpy ๋‹˜์ด ๊ณต๊ฐœํ•˜์‹  KOR-OpenOrca-Platypus ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๋ถ€ ์‚ญ์ œ(์ƒ˜ํ”Œ๋ง) ๋ฐ ์ •์ œ ์ž‘์—… ์ง„ํ–‰ํ•˜์—ฌ ํ™œ์šฉ. ๊ทธ ์ดํ›„ ํ•ด๋‹น ๋ฐ์ดํ„ฐ๋“ค์„ ๋ณด๋ฉฐ ๊ด€๋ จ ํƒœ์Šคํฌ๋ฅผ ์ถ”์ถœํ•˜์˜€๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ด๋‹น ํƒœ์Šคํฌ์— ๋งž์ถฐ์„œ NLP ๊ด€๋ จ ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ž์ฒด์ ์œผ๋กœ ์—ญ์‚ฌ, ๊ณผํ•™, ์ˆ˜ํ•™, ๊ธฐ๊ณ„๋…ํ•ด, ๋ฆฌ๋ทฐ ๋ถ„์„ ๋ฌธ์ œ๋ฅผ gpt๋ฅผ ํ†ตํ•ด์„œ ๊ตฌ์ถ•ํ•˜์˜€๊ณ , aihub ์ผ๋ฐ˜์ƒ์‹ ๋ฐ ๊ธฐ๊ณ„๋…ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•(ํ˜•ํƒœ์†Œ ๊ด€๋ จ, ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ๋ฐ ์š”์•ฝ) ๊ฐ์ข… ๋ธ”๋กœ๊ทธ์—์„œ ์—ญ์‚ฌ ๋ฐ ์ƒ์‹ ํ€ด์ฆˆ๋ฅผ ์‚ฌ๋žŒ์ด ์ง์ ‘ ํ•™์Šต๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€๊ฒฝ AI2AI Challenge ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋ฅผ ๋ณด๊ณ  gpt๋ฅผ ํ†ตํ•ด ์ดˆ๋“ฑ ์ˆ˜์ค€์˜ ๊ณผํ•™ ์ˆ˜ํ•™ ๋ฌธ์ œ ์œ ํ˜•์„ ์ œ์ž‘ 500๋ฌธ์ œ ์˜์–ด ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ ์˜ํ•œ/ํ•œ์˜ ๋ฐ์ดํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ ์ง„ํ–‰ ์ด ๋ฐ์ดํ„ฐ 4๋งŒ๊ฐœ ์ •๋„ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> <DPOํ•™์Šต ๋ฐ์ดํ„ฐ> DPO ๋ฐ์ดํ„ฐ๋Š” CommonGen๊ณผ TruthfulQA์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์•ฝ 17,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค. + ko-hh-rlhf ๋ฐ์ดํ„ฐ์—์„œ chosen ๋ฐ์ดํ„ฐ๋ถ€๋ถ„์„ ChatGPT๋ฅผ ํ†ตํ•ด ๋ณ€๊ฒฝํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”๊ฐ€ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> + TruthfulQA ๊ด€๋ จ ๋ฌธ์ œ ์ถ”๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.(์†์„ค ๊ด€๋ จ ์ฐธ๊ฑฐ์ง“ ๋ฌธ์ œ) + ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ChatGPT๋ฅผ ํ†ตํ•ด์„œ ๋‹ต๋ณ€์„ ์–ป์–ด ํ•™์Šต + ๋ฌธ๋ฒ•๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ <br> ###ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ์€ ๋น„๊ณต๊ฐœ์ž…๋‹ˆ๋‹ค. <br> <b><ํ•™์Šต></b> ํ•™์Šต์€ LoRA๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ A100 40G *2์—์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
SanjiWatsuki/TinyLlamaHerd-2x1.1B
SanjiWatsuki
2024-01-25T07:47:36Z
80
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "merge", "mergekit", "lazymergekit", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T02:00:53Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit --- # TinyLlamaHerd-2x1.1B TinyLlamaHerd-2x1.1B is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): ## ๐Ÿงฉ Configuration ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T gate_mode: random dtype: bfloat16 experts: - source_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T positive_prompts: [""] - source_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T positive_prompts: [""] ```
pfnet/plamo-13b-instruct-nc
pfnet
2024-01-25T07:46:45Z
76
3
transformers
[ "transformers", "safetensors", "plamo", "text-generation", "conversational", "custom_code", "en", "ja", "arxiv:2302.13971", "license:cc-by-nc-4.0", "autotrain_compatible", "region:us" ]
text-generation
2023-10-26T05:36:25Z
--- language: - en - ja license: cc-by-nc-4.0 library_name: transformers pipeline_tag: text-generation --- # PLaMo-13B-Instruct-NC ## Model Description PLaMo-13B-Instruct-NC is a noncommercial instruct fine-tuned model built upon the 8192 context length version of [PLaMo-13B](https://huggingface.co/pfnet/plamo-13b) text generation model. PLaMo-13B-Instruct-NC is fine-tuned using multiple publicly available Japanese datasets. This model is released under CC-BY-NC-4.0. [PLaMo-13B-Instruct Release blog (Japanese)](https://tech.preferred.jp/ja/blog/llm-plamo-instruct/) ## Usage Install the required libraries as follows: ```sh >>> python -m pip install numpy safetensors sentencepiece torch transformers accelerate ``` Execute the following python code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "pfnet/plamo-13b-instruct-nc", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "pfnet/plamo-13b-instruct-nc", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) ``` ```python def completion(prompt: str, max_new_tokens: int = 128) -> str: inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate( inputs.input_ids, eos_token_id=2, pad_token_id=3, max_new_tokens=max_new_tokens, temperature=1, top_p=0.95, top_k=50, do_sample=True, ) return tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) def generate_prompt(messages: list) -> str: sep = "\n\n### " prompt = [ "ไปฅไธ‹ใฏใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใงใ€ๆ–‡่„ˆใ‚’่ชฌๆ˜Žใ—ใŸๅ…ฅๅŠ›ใจใƒšใ‚ขใซใชใฃใฆใ„ใพใ™ใ€‚", "่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซ่ฃœๅฎŒใ™ใ‚‹ใ‚ˆใ†ๅฟœ็ญ”ใ‚’ๆ›ธใ„ใฆใใ ใ•ใ„ใ€‚", ] roles = {"instruction": "ๆŒ‡็คบ", "response": "ๅฟœ็ญ”", "input": "ๅ…ฅๅŠ›"} for msg in messages: prompt.append(sep + roles[msg["role"]] + ":\n" + msg['content']) prompt.append(sep + roles["response"] + ":\n") return "".join(prompt) ``` ```python prompt = generate_prompt([ {"role": "instruction", "content": "ๆ—ฅๆœฌใฎ้ฆ–้ƒฝใฏใฉใ“ใงใ™ใ‹๏ผŸ"}, # {"role": "input", "content": "..."} ## An extra input (optional) ]) print(completion(prompt, max_new_tokens=128)) ``` ## Model Details - Model size: 13B - Trained tokens: 1.5T tokens (English: 1.32T tokens, Japanese: 0.18T tokens) - Tokenizer: sentencepiece tokenizer trained on a subset of the pretraining datasets. - Context length: 8192 - Developed by: Preferred Networks, Inc - Model type: Causal decoder-only - Language(s): Japanese and English - License: CC-BY-NC-4.0 ## Training Dataset - [Stanford Alpaca (Japanese translation)](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) - [databricks-dolly-15k (Japanese translation)](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [Anthropic HH-RLHF (Japanese translation, subset)](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k) - [OpenAssistant Conversations Dataset (Japanese translation, oasst1)](https://huggingface.co/datasets/kunishou/oasst1-89k-ja) - [Wikinews subset of Izumi-lab llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) For the pretraining model, see [PLaMo-13B](https://huggingface.co/pfnet/plamo-13b). ## Bias, Risks, and Limitations PLaMo-13B-Instruct-NC is a new technology that carries risks with use. Testing conducted to date has been in English and Japanese, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, PLaMo-13B-Instruct-NCโ€™s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of PLaMo-13B-Instruct-NC, developers should perform safety testing and tuning tailored to their specific applications of the model. ## How to cite ```tex @online{PLaMoInstructNC2023Introducing, author = {Preferred Networks, Inc}, title = {PLaMo-13B-Instruct-NC}, year = {2023}, url = {https://huggingface.co/pfnet/plamo-13b-instruct-nc}, urldate = {2023-10-26} } ``` ## References ```tex @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ``` ```tex @article{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
pfnet/plamo-13b-instruct
pfnet
2024-01-25T07:46:09Z
117
14
transformers
[ "transformers", "safetensors", "plamo", "text-generation", "conversational", "custom_code", "en", "ja", "arxiv:2302.13971", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-10-26T02:11:24Z
--- language: - en - ja license: apache-2.0 library_name: transformers pipeline_tag: text-generation --- # PLaMo-13B-Instruct ## Model Description PLaMo-13B-Instruct is an instruct fine-tuned model built upon the 8192 context length version of [PLaMo-13B](https://huggingface.co/pfnet/plamo-13b) text generation model. PLaMo-13B-Instruct is fine-tuned using multiple publicly available Japanese datasets. This model is released under the Apache License 2.0. [PLaMo-13B-Instruct Release blog (Japanese)](https://tech.preferred.jp/ja/blog/llm-plamo-instruct/) ## Usage Install the required libraries as follows: ```sh >>> python -m pip install numpy sentencepiece torch transformers accelerate ``` Execute the following python code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "pfnet/plamo-13b-instruct", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "pfnet/plamo-13b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) ``` ```python def completion(prompt: str, max_new_tokens: int = 128) -> str: inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate( inputs.input_ids, eos_token_id=2, pad_token_id=3, max_new_tokens=max_new_tokens, temperature=1, top_p=0.95, top_k=50, do_sample=True, ) return tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) def generate_prompt(messages: list) -> str: sep = "\n\n### " prompt = [ "ไปฅไธ‹ใฏใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใงใ€ๆ–‡่„ˆใ‚’่ชฌๆ˜Žใ—ใŸๅ…ฅๅŠ›ใจใƒšใ‚ขใซใชใฃใฆใ„ใพใ™ใ€‚", "่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซ่ฃœๅฎŒใ™ใ‚‹ใ‚ˆใ†ๅฟœ็ญ”ใ‚’ๆ›ธใ„ใฆใใ ใ•ใ„ใ€‚", ] roles = {"instruction": "ๆŒ‡็คบ", "response": "ๅฟœ็ญ”", "input": "ๅ…ฅๅŠ›"} for msg in messages: prompt.append(sep + roles[msg["role"]] + ":\n" + msg["content"]) prompt.append(sep + roles["response"] + ":\n") return "".join(prompt) ``` ```python prompt = generate_prompt([ {"role": "instruction", "content": "ๆ—ฅๆœฌใฎ้ฆ–้ƒฝใฏใฉใ“ใงใ™ใ‹๏ผŸ"}, # {"role": "input", "content": "..."} ## An extra input (optional) ]) print(completion(prompt, max_new_tokens=128)) ``` ## Model Details - Model size: 13B - Trained tokens: 1.5T tokens (English: 1.32T tokens, Japanese: 0.18T tokens) - Tokenizer: sentencepiece tokenizer trained on a subset of the pretraining datasets. - Context length: 8192 - Developed by: Preferred Networks, Inc - Model type: Causal decoder-only - Language(s): Japanese and English - License: Apache License 2.0 ## Training Dataset <!-- - [Stanford Alpaca (Japanese translation)](https://huggingface.co/datasets/fujiki/japanese_alpaca_data)--> - [databricks-dolly-15k (Japanese translation)](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [Anthropic HH-RLHF (Japanese translation, subset)](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k) - [OpenAssistant Conversations Dataset (Japanese translation, oasst1)](https://huggingface.co/datasets/kunishou/oasst1-89k-ja) - [Wikinews subset of Izumi-lab llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) For the pretraining model, see [PLaMo-13B](https://huggingface.co/pfnet/plamo-13b). ## Bias, Risks, and Limitations PLaMo-13B-Instruct is a new technology that carries risks with use. Testing conducted to date has been in English and Japanese, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, PLaMo-13B-Instruct-NCโ€™s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of PLaMo-13B-Instruct, developers should perform safety testing and tuning tailored to their specific applications of the model. ## How to cite ```tex @online{PLaMoInstruct2023Introducing, author = {Preferred Networks, Inc}, title = {PLaMo-13B-Instruct}, year = {2023}, url = {https://huggingface.co/pfnet/plamo-13b-instruct}, urldate = {2023-10-26} } ``` ## References ```tex @article{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
antonovata/test_chat
antonovata
2024-01-25T07:41:51Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-24T11:10:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF
motherduckdb
2024-01-25T07:37:17Z
232
21
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-01-24T19:31:51Z
--- license: llama2 inference: parameters: do_sample: false max_length: 200 widget: - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" example_title: "read test.csv" - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" example_title: "get _amount columns" - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.\n\n### Input:\nHere is the database schema that the SQL query will run on:\nCREATE TABLE rideshare (\n hvfhs_license_num varchar,\n dispatching_base_num varchar,\n originating_base_num varchar,\n request_datetime timestamp,\n on_scene_datetime timestamp,\n pickup_datetime timestamp,\n dropoff_datetime timestamp,\n trip_miles double,\n trip_time bigint,\n\n);\n\n### Question:\nget longest trip in december 2022\n\n### Response (use duckdb shorthand if possible):" example_title: "taxi trips" --- # DuckDB-NSQL-7B (GGUF) The repository includes model files in the GGUF format for [DuckDB-NSQL-7B-v0.1](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1), featuring both the f16 and Q8_0 versions. ## Provided model files | Name | Quant method | Bits | | ---- | ---- | ---- | | [DuckDB-NSQL-7B-v0.1-f16.gguf](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF/blob/main/DuckDB-NSQL-7B-v0.1-f16.gguf) | - | 16 | | [DuckDB-NSQL-7B-v0.1-q8_0.gguf](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF/blob/main/DuckDB-NSQL-7B-v0.1-q8_0.gguf) | Q8_0 | 8 | ## Model Description NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs. ## Training Data 200k DuckDB text-to-SQL pairs, synthetically generated using [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were transpiled to DuckDB SQL using [sqlglot](https://github.com/tobymao/sqlglot). ## Evaluation Data We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/). ## Training Procedure DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs. ## Intended Use and Limitations The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs. In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions. ## How to Use Setup llama.cpp: ```shell CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python huggingface-cli download motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF DuckDB-NSQL-7B-v0.1-q8_0.gguf --local-dir . --local-dir-use-symlinks False pip install wurlitzer ``` Example 1: ```python ## Setup - Llama.cpp from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question. ### Input: ### Question: create a new table called tmp from test.csv ### Response (use duckdb shorthand if possible): """ with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` Example 2: ```python from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE taxi ( VendorID bigint, tpep_pickup_datetime timestamp, tpep_dropoff_datetime timestamp, passenger_count double, trip_distance double, fare_amount double, extra double, tip_amount double, tolls_amount double, improvement_surcharge double, total_amount double, ); ### Question: get all columns ending with _amount from taxi table ### Response (use duckdb shorthand if possible):""" with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` Example 3: ```python from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE rideshare ( hvfhs_license_num varchar, dispatching_base_num varchar, originating_base_num varchar, request_datetime timestamp, on_scene_datetime timestamp, pickup_datetime timestamp, dropoff_datetime timestamp, trip_miles double, trip_time bigint, ); ### Question: get longest trip in december 2022 ### Response (use duckdb shorthand if possible): """ with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL).
eigh8skillz/southzulumodel
eigh8skillz
2024-01-25T07:35:17Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-25T07:35:16Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks southzulumodel tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
uukuguy/speechless-zephyr-code-functionary-7b
uukuguy
2024-01-25T07:15:51Z
4,400
2
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T08:19:26Z
--- language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0 --- <p><h1> speechless-zephyr-code-functionary-7b </h1></p> [4,5,8-bit GGUF models for CPU+GPU inference](https://huggingface.co/uukuguy/speechless-zephyr-code-functionary-7b/tree/main/GGUF) This model is the one of the moloras (Mixture-of-Multi-LoRAs) experiments. Extract LoRA modules from below models (all based Mistral-7B-v0.1), each LoRA module has its own unique skills. By using multi-loras, they can be combined together statically or dynamically to form a versatile new model. - HuggingFaceH4/zephyr-7b-beta (Uncensored Model) - meetkai/functionary-small-v2.2 (Execute functions/plugins) - uukuguy/speechless-code-mistral-7b-v1.0 (Enhance Coding) The entire process is completed through the use of extract-lora, merge-lora, and lora-hub provided by multi-loras. The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks. Code: https://github.com/uukuguy/multi_loras ## LM-Evaluation-Harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | 61.52 | | HellaSwag | 83.88 | | MMLU | 64.71 | | TruthfulQA | 44.99 | | Winogrande | 78.69 | | GSM8K | 43.82 | | Average | 62.93 |
katzenbach/test_trainer
katzenbach
2024-01-25T07:11:58Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T06:27:57Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5138 - Accuracy: 0.34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 13 | 1.5917 | 0.22 | | No log | 2.0 | 26 | 1.5629 | 0.25 | | No log | 3.0 | 39 | 1.5138 | 0.34 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
abhinand/malayalam-llama-7b-instruct-v0.1-GGUF
abhinand
2024-01-25T07:11:35Z
6
1
null
[ "gguf", "en", "ml", "arxiv:2311.05845", "base_model:abhinand/malayalam-llama-pt-v0", "base_model:quantized:abhinand/malayalam-llama-pt-v0", "license:llama2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-25T04:29:16Z
--- base_model: abhinand/malayalam-llama-pt-v0 model-index: - name: malayalam-llama-instruct-v0.1 results: [] license: llama2 language: - en - ml --- # Malayalam LLaMA 7B Instruct v0.1 [GGUF Quantized] Welcome to the inaugural release of the Malayalam LLaMA 7B instruct model โ€“ an important step in advancing LLMs for the Malayalam language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Note:** This model is based on the Tamil LLaMA series of models. The GitHub repository remains the same - [https://github.com/abhinand5/tamil-llama](https://github.com/abhinand5/tamil-llama). The base models and the updated code for Tamil LLaMA v0.2 (which this work is based on) will be released soon. If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Demo: To access an easy-to-use, no-code demo, please open the provided Google Colab notebook. Complete instructions for usage are included within the notebook itself. <a href="https://colab.research.google.com/drive/11_RHZim_HubD2NskxSwq4X_NW4XlnrtS?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Demo In Colab"></a></center> ## Model description The Malayalam LLaMA models have been enhanced and tailored specifically with an extensive Malayalam vocabulary of ~16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model finetuned on ~500,000 samples consisting of an equal proportion of English and Malayalam samples. (Dataset will be released soon) - **Language(s):** Bilingual. English and Malayalam. - **License:** GNU General Public License v3.0 - **Finetuned from model:** [To be released soon]() - **Training Precision:** `bfloat16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) (To be updated soon) ## Quantization Info This repo contains GGUF format model files for [Malayalam LLaMA 7B Instruct v0.1](https://huggingface.co/abhinand/malayalam-llama-7b-instruct-v0.1). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. ### Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | |------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|---------|------------------|----------------------------------------------------------| | [malayalam-llama-7b-instruct-v0.1.Q4_K_M.gguf](https://huggingface.co/abhinand/malayalam-llama-7b-instruct-v0.1-GGUF/blob/main/malayalam-llama-7b-instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 4 | 4.18 GB | 6.8 GB | medium, balanced quality - recommended | | [malayalam-llama-7b-instruct-v0.1.Q5_K_M.gguf](https://huggingface.co/abhinand/malayalam-llama-7b-instruct-v0.1-GGUF/blob/main/malayalam-llama-7b-instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 5 | 4.89 GB | 7.5 GB | large, very low quality loss - recommended | ## Prompt Template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Benchmark Results Benchmarking was done using [LLM-Autoeval](https://github.com/mlabonne/llm-autoeval) on an RTX 3090 on [runpod](https://www.runpod.io/). > **Note:** Please note that discrepancies have been observed between the Open LLM Leaderboard scores and those obtained from local runs using the LM Eval Harness with identical configurations. The results mentioned here are based on our own benchmarking. To replicate these findings, you can utilize the LLM-Autoeval or use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) locally with the configurations described in Open LLM Leaderboard's About page. | Benchmark | Llama 2 Chat | Tamil Llama v0.2 Instruct | Telugu Llama Instruct | Malayalam Llama Instruct | |---------------|--------------|---------------------------|-----------------------|--------------------------| | ARC Challenge (25-shot) | 52.9 | **53.75** | 52.47 | 52.82 | | TruthfulQA (0-shot) | 45.57 | 47.23 | **48.47** | 47.46 | | Hellaswag (10-shot) | **78.55** | 76.11 | 76.13 | 76.91 | | Winogrande (5-shot) | 71.74 | **73.95** | 71.74 | 73.16 | | AGI Eval (0-shot) | 29.3 | **30.95** | 28.44 | 29.6 | | BigBench (0-shot) | 32.6 | 33.08 | 32.99 | **33.26** | | Average | 51.78 | **52.51** | 51.71 | 52.2 | ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B v0.1 Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B v0.1 Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Tamil LLaMA 7B v0.2 Instruct | Instruction/Chat model | 420k instructions | Tamil LLaMA 7B Base v0.2 | 7B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Telugu LLaMA 7B v0.2 Instruct | Instruction/Chat model | ~400k instructions | Telugu LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/telugu-llama-instruct-v0.1) | ## Usage Note It's important to note that the models have not undergone detoxification/censorship. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama related work in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
Deepakkori45/Mistal_aspect_class_sequnece
Deepakkori45
2024-01-25T07:11:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T07:11:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
smend0/distilbert-base-uncased-lora-text-classification
smend0
2024-01-25T07:10:56Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-01-25T07:06:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a truncated IMDB dataset. It achieves the following results on the evaluation set: - Loss: 1.7208 - Accuracy: {'accuracy': 0.876} ## Model description The purpose of this model is to turn distilbert into a sentiment classification model. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 2.0890 | {'accuracy': 0.862} | | 0.2005 | 2.0 | 500 | 1.8919 | {'accuracy': 0.874} | | 0.2005 | 3.0 | 750 | 1.7205 | {'accuracy': 0.871} | | 0.0963 | 4.0 | 1000 | 1.7208 | {'accuracy': 0.876} | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
dana11235/poca-SoccerTwos
dana11235
2024-01-25T07:07:57Z
23
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-01-25T07:07:50Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dana11235/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
TheBloke/Everyone-Coder-33B-Base-GPTQ
TheBloke
2024-01-25T07:01:23Z
14
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "base_model:rombodawg/Everyone-Coder-33b-Base", "base_model:quantized:rombodawg/Everyone-Coder-33b-Base", "license:other", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2024-01-25T04:04:35Z
--- base_model: rombodawg/Everyone-Coder-33b-Base inference: false license: other license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL license_name: deepseek model_creator: rombo dawg model_name: Everyone Coder 33B Base model_type: deepseek prompt_template: '{prompt} ' quantized_by: TheBloke tags: - merge --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Everyone Coder 33B Base - GPTQ - Model creator: [rombo dawg](https://huggingface.co/rombodawg) - Original model: [Everyone Coder 33B Base](https://huggingface.co/rombodawg/Everyone-Coder-33b-Base) <!-- description start --> # Description This repo contains GPTQ model files for [rombo dawg's Everyone Coder 33B Base](https://huggingface.co/rombodawg/Everyone-Coder-33b-Base). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GGUF) * [rombo dawg's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/rombodawg/Everyone-Coder-33b-Base) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 17.40 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 18.03 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 19.96 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 13.89 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 33.84 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 15.72 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 8192 | 34.60 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/Everyone-Coder-33B-Base-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Everyone-Coder-33B-Base-GPTQ:gptq-4bit-128g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Everyone-Coder-33B-Base-GPTQ`: ```shell mkdir Everyone-Coder-33B-Base-GPTQ huggingface-cli download TheBloke/Everyone-Coder-33B-Base-GPTQ --local-dir Everyone-Coder-33B-Base-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir Everyone-Coder-33B-Base-GPTQ huggingface-cli download TheBloke/Everyone-Coder-33B-Base-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Everyone-Coder-33B-Base-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir Everyone-Coder-33B-Base-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Everyone-Coder-33B-Base-GPTQ --local-dir Everyone-Coder-33B-Base-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Everyone-Coder-33B-Base-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Everyone-Coder-33B-Base-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Everyone-Coder-33B-Base-GPTQ:gptq-4bit-128g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Everyone-Coder-33B-Base-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Everyone-Coder-33B-Base-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''{prompt} ''' client = InferenceClient(endpoint_url) response = client.text_generation( prompt_template, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Everyone-Coder-33B-Base-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-128g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''{prompt} ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, ้˜ฟๆ˜Ž, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjรคreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: rombo dawg's Everyone Coder 33B Base Everyone-Coder-33b-Base ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg) EveryoneLLM series of models made by the community, for the community. This is a coding specific model made using fine-tunes of deekseekcoder-33b-base. ______________________________________________________________________________________________________________ Im having trouble benchmarking this model because I suck at running llm benchmarks, but from hand testing running the model through https://edabit.com/challenge coding challenges vs up to date gpt-4. My model is hands down beating it in coding. ______________________________________________________________________________________________________________ Ive recently noticed this model has trouble with end tokens so I made a custom prompt template for it. Made sure to add (Always end with "<|EOT|>") In addition to your system prompt and (Always end your response with "<|EOT|>") at the end of the User message is the preset. Then add <|EOT|> as a custom stop string in your LM text generating interface. ``` Always end with "<|EOT|>" {System} <|User|> {User}. Always end your response with "<|EOT|>" <|Assistant|> {Assistant} ``` The models that were used in this merger were as follow: - https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct - https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B - https://huggingface.co/WizardLM/WizardCoder-33B-V1.1 Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. ๐Ÿ’— You can find the write up for merging models here: https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing Config for the merger can be found bellow: ```yaml models: - model: WizardLM_WizardCoder-33B-V1.1 parameters: density: 1 weight: .5 - model: codefuse-ai_CodeFuse-DeepSeek-33B parameters: density: 1 weight: .5 merge_method: ties base_model: deepseek-ai_deepseek-coder-33b-instruct parameters: normalize: true int8_mask: true dtype: float16 ```
alnrg2arg/blockchainlabs_7B_merged_test2_4_sft_lora_DPO_orca2
alnrg2arg
2024-01-25T06:56:36Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T06:56:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hongu/test_ner
Hongu
2024-01-25T06:56:34Z
102
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-25T06:43:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
schroneko/ELYZA-japanese-Llama-2-13b-fast-instruct-gguf
schroneko
2024-01-25T06:30:57Z
14
1
transformers
[ "transformers", "gguf", "llama", "llama2", "ja", "arxiv:2307.09288", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-01-23T14:14:39Z
--- license: llama2 language: - ja tags: - llama2 --- # ELYZA-japanese-Llama-2-13b-fast-instruct-gguf [ELYZA-japanese-Llama-2-13b-fast-instruct](https://huggingface.co/ELYZA/ELYZA-japanese-Llama-2-13b-fast-instruct)ใฎ GGUF ๅค‰ๆ›ใƒขใƒ‡ใƒซใงใ™ใ€‚ ## Usage ``` git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp make -j ./main -m 'ELYZA-japanese-Llama-2-13b-fast-instruct-q4_k_m.gguf' -n 256 -p '[INST] <<SYS>>ใ‚ใชใŸใฏ่ช ๅฎŸใงๅ„ช็ง€ใชๆ—ฅๆœฌไบบใฎใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚<</SYS>>ไป•ไบ‹ใฎ็†ฑๆ„ใ‚’ๅ–ใ‚Šๆˆปใ™ใŸใ‚ใฎใ‚ขใ‚คใƒ‡ใ‚ขใ‚’5ใคๆŒ™ใ’ใฆใใ ใ•ใ„ใ€‚[/INST]' ``` ### Licence Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### ๅผ•็”จ Citations ```tex @misc{elyzallama2023, title={ELYZA-japanese-Llama-2-13b}, url={https://huggingface.co/elyza/ELYZA-japanese-Llama-2-13b}, author={Akira Sasaki and Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura and Sam Passaglia and Daisuke Oba}, year={2023}, } ``` ```tex @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom}, year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
LMX20012010/mistral_7b_guanaco
LMX20012010
2024-01-25T06:25:14Z
61
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-25T06:23:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
adarsh2350/T5-pytorch-billsum
adarsh2350
2024-01-25T06:15:34Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T15:52:59Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-pytorch-billsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-pytorch-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5259 - Rouge1: 0.1402 - Rouge2: 0.0484 - Rougel: 0.1155 - Rougelsum: 0.1153 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8082 | 0.1229 | 0.034 | 0.1036 | 0.1035 | 19.0 | | No log | 2.0 | 124 | 2.6034 | 0.1296 | 0.0409 | 0.1079 | 0.1079 | 19.0 | | No log | 3.0 | 186 | 2.5419 | 0.1378 | 0.047 | 0.1136 | 0.1136 | 19.0 | | No log | 4.0 | 248 | 2.5259 | 0.1402 | 0.0484 | 0.1155 | 0.1153 | 19.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
Chandrababu-Namani/InLegalBERT-fine-tuned
Chandrababu-Namani
2024-01-25T05:45:26Z
108
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:law-ai/InLegalBERT", "base_model:finetune:law-ai/InLegalBERT", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T05:45:07Z
--- license: mit base_model: law-ai/InLegalBERT tags: - generated_from_trainer metrics: - accuracy model-index: - name: InLegalBERT-lora-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # InLegalBERT-lora-text-classification This model is a fine-tuned version of [law-ai/InLegalBERT](https://huggingface.co/law-ai/InLegalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0550 - Accuracy: {'accuracy': 0.6449893390191898} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:| | No log | 1.0 | 235 | 1.1448 | {'accuracy': 0.6151385927505331} | | No log | 2.0 | 470 | 1.0553 | {'accuracy': 0.6380597014925373} | | 1.2222 | 3.0 | 705 | 1.0427 | {'accuracy': 0.6316631130063965} | | 1.2222 | 4.0 | 940 | 1.0490 | {'accuracy': 0.6428571428571429} | | 0.8111 | 5.0 | 1175 | 1.0550 | {'accuracy': 0.6449893390191898} | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
cloudyu/Pluto_13B_DPO
cloudyu
2024-01-25T05:44:13Z
17
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "dpo", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-17T06:00:41Z
--- license: cc-by-nc-4.0 tags: - moe - dpo --- # DPO of cloudyu/Mixtral_7Bx2_MoE dataset : jondurbin/truthy-dpo-v0.1 * metrics average 75.88 * TruthfulQA 81.5 SOTA (2024-01-17) gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_7Bx2_MoE_DPO" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
GaganpreetSingh/mistral-7b-lora_model
GaganpreetSingh
2024-01-25T05:29:19Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T05:29:12Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fionazhang/mistral-experiment-6
fionazhang
2024-01-25T05:16:35Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-22T00:46:43Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral-experiment-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-experiment-6 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0a0+git7bcf7da - Datasets 2.16.1 - Tokenizers 0.15.0
megha-shroff/mistral-rand-300k-test
megha-shroff
2024-01-25T05:16:18Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-v0.1-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-25T05:16:07Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/Mistral-7B-v0.1-GPTQ model-index: - name: mistral-rand-300k-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-rand-300k-test This model is a fine-tuned version of [TheBloke/Mistral-7B-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6477 | 0.01 | 50 | 0.8983 | | 0.8474 | 0.02 | 100 | 0.8347 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tsobolev/ppo-Huggy
tsobolev
2024-01-25T05:00:08Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-25T05:00:01Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: tsobolev/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
ronluvzu1/autotrain-zb40r-1ccvc
ronluvzu1
2024-01-25T04:53:03Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T04:52:59Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
varun-v-rao/t5-base-snli-model3
varun-v-rao
2024-01-25T04:52:47Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T03:43:05Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: t5-base-snli-model3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-snli-model3 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2857 - Accuracy: 0.8985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3812 | 1.0 | 2146 | 0.3052 | 0.8894 | | 0.3511 | 2.0 | 4292 | 0.2862 | 0.8971 | | 0.3333 | 3.0 | 6438 | 0.2857 | 0.8985 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
arun100/whisper-small-tr-derived-1
arun100
2024-01-25T04:26:57Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "tr", "dataset:mozilla-foundation/common_voice_16_0", "base_model:alikanakar/whisper-synthesized-turkish-8-hour", "base_model:finetune:alikanakar/whisper-synthesized-turkish-8-hour", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-24T16:56:45Z
--- language: - tr license: apache-2.0 base_model: alikanakar/whisper-synthesized-turkish-8-hour tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small Turkish Derived results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 tr type: mozilla-foundation/common_voice_16_0 config: tr split: test args: tr metrics: - name: Wer type: wer value: 18.625004393518683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Turkish Derived This model is a fine-tuned version of [alikanakar/whisper-synthesized-turkish-8-hour](https://huggingface.co/alikanakar/whisper-synthesized-turkish-8-hour) on the mozilla-foundation/common_voice_16_0 tr dataset. It achieves the following results on the evaluation set: - Loss: 0.2859 - Wer: 18.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3197 | 0.58 | 200 | 0.3517 | 21.5757 | | 0.2672 | 1.16 | 400 | 0.3203 | 20.6724 | | 0.2532 | 1.75 | 600 | 0.3065 | 19.6496 | | 0.2382 | 2.33 | 800 | 0.2991 | 19.3420 | | 0.2448 | 2.91 | 1000 | 0.2943 | 19.1276 | | 0.2197 | 3.49 | 1200 | 0.2909 | 18.9712 | | 0.2159 | 4.07 | 1400 | 0.2885 | 18.7340 | | 0.2212 | 4.65 | 1600 | 0.2871 | 18.6988 | | 0.2114 | 5.24 | 1800 | 0.2861 | 18.6320 | | 0.2092 | 5.82 | 2000 | 0.2859 | 18.6250 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
bartowski/Einstein-7B-exl2
bartowski
2024-01-25T04:24:26Z
1
0
null
[ "axolotl", "generated_from_trainer", "text-generation", "dataset:allenai/ai2_arc", "dataset:camel-ai/physics", "dataset:camel-ai/chemistry", "dataset:camel-ai/biology", "dataset:metaeval/reclor", "dataset:openbookqa", "dataset:mandyyyyii/scibench", "dataset:derek-thomas/ScienceQA", "dataset:wenhu/TheoremQA", "dataset:TIGER-Lab/ScienceEval", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:other", "region:us" ]
text-generation
2024-01-25T04:08:27Z
--- license: other tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - wenhu/TheoremQA - TIGER-Lab/ScienceEval quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of Einstein-7B Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.12">turboderp's ExLlamaV2 v0.0.12</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/Weyaxi/Einstein-7B | Branch | Bits | lm_head bits | Size | Description | | ----- | ---- | ------- | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/Einstein-7B-exl2/tree/8_0) | 8.0 | 8.0 | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/Einstein-7B-exl2/tree/6_5) | 6.5 | 8.0 | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/Einstein-7B-exl2/tree/5_0) | 5.0 | 6.0 | 7.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/Bartowski/Einstein-7B-exl2/tree/4_25) | 4.25 | 6.0 | 6.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/Einstein-7B-exl2/tree/3_5) | 3.5 | 6.0 | 6.1 GB | Lower quality, only use if you have to. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Einstein-7B-exl2 Einstein-7B-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Einstein-7B-exl2`: ```shell mkdir Einstein-7B-exl2 huggingface-cli download bartowski/Einstein-7B-exl2 --local-dir Einstein-7B-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir Einstein-7B-exl2-6_5 huggingface-cli download bartowski/Einstein-7B-exl2 --revision 6_5 --local-dir Einstein-7B-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir Einstein-7B-exl2-6.5 huggingface-cli download bartowski/Einstein-7B-exl2 --revision 6_5 --local-dir Einstein-7B-exl2-6.5 --local-dir-use-symlinks False ```
datasciencechampion/mistral-gptq-finetuned-medmcqa
datasciencechampion
2024-01-25T04:15:01Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-24T13:15:50Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ model-index: - name: mistral-gptq-finetuned-medmcqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-gptq-finetuned-medmcqa This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 500 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
bcijo/myMistral7b-finetuned
bcijo
2024-01-25T03:51:07Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T19:36:48Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
RangiLyu/InternLM2-tokenizer-llama
RangiLyu
2024-01-25T03:46:09Z
0
3
null
[ "license:other", "region:us" ]
null
2024-01-25T03:21:15Z
--- license: other --- # InternLM2 tokenizer(llamaified version) Official repo: https://github.com/InternLM/InternLM ## Note This repo converts the InternLM2 tokenizer to LlamaTokenizerFast. It also replaces the 354 token `\u0000` with an emoji so that it can be converted by llama.cpp ## How to use - Load ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(RangiLyu/InternLM2-tokenizer-llama) ``` - Apply chatml template ```python chat = [{"role": "user", "content": "Hello! What's your name?"}, {"role": "assistant", "content": "My name is InternLM2!"}, {"role": "user", "content": "Nice to meet you InternLM2!"},] chat_ids = llama_tokenizer.apply_chat_template(chat) print("ids: ", chat_ids) print("tokens: ", llama_tokenizer.convert_ids_to_tokens(chat_ids)) # convert the chat history to a string for generation chat_str = llama_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) print("chat string: ", chat_str) ``` ``` ids: [1, 92543, 1008, 364, 9843, 346, 3716, 725, 829, 963, 345, 92542, 364, 92543, 525, 11353, 364, 5211, 963, 505, 4576, 11146, 314, 346, 92542, 364, 92543, 1008, 364, 44501, 442, 3531, 629, 4576, 11146, 314, 346, 92542, 364] tokens: ['<s>', '<|im_start|>', 'user', '\n', 'Hello', '!', 'โ–What', "'s", 'โ–your', 'โ–name', '?', '<|im_end|>', '\n', '<|im_start|>', 'ass', 'istant', '\n', 'My', 'โ–name', 'โ–is', 'โ–Intern', 'LM', '2', '!', '<|im_end|>', '\n', '<|im_start|>', 'user', '\n', 'Nice', 'โ–to', 'โ–meet', 'โ–you', 'โ–Intern', 'LM', '2', '!', '<|im_end|>', '\n'] chat string: <s><|im_start|>user Hello! What's your name?<|im_end|> <|im_start|>assistant My name is InternLM2!<|im_end|> <|im_start|>user Nice to meet you InternLM2!<|im_end|> <|im_start|>assistant ```
biznetgio/llama2-indonesia-chat
biznetgio
2024-01-25T03:46:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T03:45:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
varun-v-rao/t5-base-snli-model2
varun-v-rao
2024-01-25T03:42:00Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T02:32:24Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: t5-base-snli-model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-snli-model2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2836 - Accuracy: 0.8994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3815 | 1.0 | 2146 | 0.3028 | 0.8896 | | 0.3457 | 2.0 | 4292 | 0.2840 | 0.8979 | | 0.3339 | 3.0 | 6438 | 0.2836 | 0.8994 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
RayChengdu/internlm2-7b-lora
RayChengdu
2024-01-25T03:31:49Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T03:31:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
limin-arc/Mem-Beagle-7b-slerp-v3
limin-arc
2024-01-25T03:30:14Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "starsnatched/MemGPT", "222gate/Ingot-7b-slerp-7-forged-mirror", "base_model:gate369/Ingot-7b-slerp-7-forged-mirror", "base_model:merge:gate369/Ingot-7b-slerp-7-forged-mirror", "base_model:minchyeom/MemGPT", "base_model:merge:minchyeom/MemGPT", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T03:22:20Z
--- tags: - merge - mergekit - lazymergekit - starsnatched/MemGPT - 222gate/Ingot-7b-slerp-7-forged-mirror - starsnatched/MemGPT base_model: - starsnatched/MemGPT - 222gate/Ingot-7b-slerp-7-forged-mirror - starsnatched/MemGPT --- # Mem-Beagle-7b-slerp-v3 Mem-Beagle-7b-slerp-v3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [starsnatched/MemGPT](https://huggingface.co/starsnatched/MemGPT) * [222gate/Ingot-7b-slerp-7-forged-mirror](https://huggingface.co/222gate/Ingot-7b-slerp-7-forged-mirror) * [starsnatched/MemGPT](https://huggingface.co/starsnatched/MemGPT) ## ๐Ÿงฉ Configuration ```yaml models: - model: starsnatched/MemGPT parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: 222gate/Ingot-7b-slerp-7-forged-mirror parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: starsnatched/MemGPT parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: liminerity/Mem-Beagle-7b-slerp-v2 parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/Mem-Beagle-7b-slerp-v3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
abhinand/tamil-llama-7b-base-v0.1
abhinand
2024-01-25T03:18:06Z
1,637
9
transformers
[ "transformers", "pytorch", "llama", "text-generation", "ta", "en", "arxiv:2311.05845", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T03:55:05Z
--- language: - ta - en license: llama2 --- # Tamil LLaMA 7B Base v0.1 [pre-trained] Welcome to the inaugural release of the Tamil LLaMA 7B base model โ€“ an important step in advancing LLMs for the Tamil language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Please Note:** This model, labeled as a foundational Tamil Language Model (LLM), is designed primarily for Causal Language Modeling (LM) purposes. In other words, if you are looking for an instruction following model in Tamil, you may find [abhinand/tamil-llama-7b-instruct-v0.1](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) more suitable for your needs. ## Model description The Tamil LLaMA models have been enhanced and tailored specifically with an extensive Tamil vocabulary of 16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter model for Causal LM pre-trained on [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) dataset's Tamil subset. - **Language(s):** Tamil and English - **License:** GNU General Public License v3.0 - **Source Model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) - **Training Precision:** `float16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | ## Usage Note It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or the Tamil-Llama dataset in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
abhinand/tamil-llama-7b-instruct-v0.2-GGUF
abhinand
2024-01-25T03:15:33Z
20
1
null
[ "gguf", "en", "ta", "arxiv:2311.05845", "base_model:abhinand/dr-llama-ta-instruct-v0", "base_model:quantized:abhinand/dr-llama-ta-instruct-v0", "license:llama2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-24T06:54:32Z
--- base_model: abhinand/dr-llama-ta-instruct-v0 model-index: - name: tamil-llama-instruct-v0.2 results: [] license: llama2 language: - en - ta --- # Tamil LLaMA 7B Instruct v0.2 [GGUF Quantized] Welcome to the inaugural release of the Tamil LLaMA 7B instruct model โ€“ an important step in advancing LLMs for the Tamil language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Note:** This model is based on the Tamil LLaMA series of models. The GitHub repository remains the same - [https://github.com/abhinand5/tamil-llama](https://github.com/abhinand5/tamil-llama). The base models and the updated code for Tamil LLaMA v0.2 (which this work is based on) will be released soon. If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Demo: To access an easy-to-use, no-code demo, please open the provided Google Colab notebook. Complete instructions for usage are included within the notebook itself. <a href="https://colab.research.google.com/drive/11_RHZim_HubD2NskxSwq4X_NW4XlnrtS?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Demo In Colab"></a></center> ## Model description The Tamil LLaMA models have been enhanced and tailored specifically with an extensive Tamil vocabulary of ~16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model finetuned on ~500,000 samples consisting of an equal proportion of English and Tamil samples. (Dataset will be released soon) - **Language(s):** Bilingual. English and Tamil. - **License:** GNU General Public License v3.0 - **Finetuned from model:** [To be released soon]() - **Training Precision:** `bfloat16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) (To be updated soon) ## Quantization Info This repo contains GGUF format model files for [Tamil LLaMA 7B Instruct v0.2](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.2). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. ### Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | |------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|---------|------------------|----------------------------------------------------------| | [tamil-llama-7b-instruct-v0.2.Q4_K_M.gguf](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.2-GGUF/blob/main/tamil-llama-7b-instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 4 | 4.18 GB | 6.8 GB | medium, balanced quality - recommended | | [tamil-llama-7b-instruct-v0.2.Q5_K_M.gguf](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.2-GGUF/blob/main/tamil-llama-7b-instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 5 | 4.89 GB | 7.5 GB | large, very low quality loss - recommended | ## Prompt Template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Benchmark Results Benchmarking was done using [LLM-Autoeval](https://github.com/mlabonne/llm-autoeval) on an RTX 3090 on [runpod](https://www.runpod.io/). > **Note:** Please note that discrepancies have been observed between the Open LLM Leaderboard scores and those obtained from local runs using the LM Eval Harness with identical configurations. The results mentioned here are based on our own benchmarking. To replicate these findings, you can utilize the LLM-Autoeval or use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) locally with the configurations described in Open LLM Leaderboard's About page. | Benchmark | Llama 2 Chat | Tamil Llama v0.2 Instruct | Telugu Llama Instruct | Malayalam Llama Instruct | |---------------|--------------|---------------------------|-----------------------|--------------------------| | ARC Challenge (25-shot) | 52.9 | **53.75** | 52.47 | 52.82 | | TruthfulQA (0-shot) | 45.57 | 47.23 | **48.47** | 47.46 | | Hellaswag (10-shot) | **78.55** | 76.11 | 76.13 | 76.91 | | Winogrande (5-shot) | 71.74 | **73.95** | 71.74 | 73.16 | | AGI Eval (0-shot) | 29.3 | **30.95** | 28.44 | 29.6 | | BigBench (0-shot) | 32.6 | 33.08 | 32.99 | **33.26** | | Average | 51.78 | **52.51** | 51.71 | 52.2 | ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B v0.1 Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B v0.1 Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-instruct-v0.1) | | Telugu LLaMA 7B v0.1 Instruct | Instruction/Chat model | 420k instructions | Telugu LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/telugu-llama-instruct-v0.1) | | Malayalam LLaMA 7B v0.2 Instruct | Instruction/Chat model | 420k instructions | Malayalam LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/malayalam-llama-instruct-v0.1) | ## Usage Note It's important to note that the models have not undergone detoxification/censorship. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama related work in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
abhinand/tamil-llama-7b-instruct-v0.2
abhinand
2024-01-25T03:14:24Z
753
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "en", "ta", "arxiv:2311.05845", "base_model:abhinand/dr-llama-ta-instruct-v0", "base_model:finetune:abhinand/dr-llama-ta-instruct-v0", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T03:06:49Z
--- base_model: abhinand/dr-llama-ta-instruct-v0 model-index: - name: tamil-llama-instruct-v0.2 results: [] license: llama2 language: - en - ta --- # Tamil LLaMA 7B Instruct v0.2 Welcome to the inaugural release of the Tamil LLaMA 7B instruct model โ€“ an important step in advancing LLMs for the Tamil language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Note:** This model is based on the Tamil LLaMA series of models. The GitHub repository remains the same - [https://github.com/abhinand5/tamil-llama](https://github.com/abhinand5/tamil-llama). The base models and the updated code for Tamil LLaMA v0.2 (which this work is based on) will be released soon. If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Demo: To access an easy-to-use, no-code demo, please open the provided Google Colab notebook. Complete instructions for usage are included within the notebook itself. <a href="https://colab.research.google.com/drive/11_RHZim_HubD2NskxSwq4X_NW4XlnrtS?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Demo In Colab"></a></center> ## Model description The Tamil LLaMA models have been enhanced and tailored specifically with an extensive Tamil vocabulary of ~16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model finetuned on ~500,000 samples consisting of an equal proportion of English and Tamil samples. (Dataset will be released soon) - **Language(s):** Bilingual. English and Tamil. - **License:** GNU General Public License v3.0 - **Finetuned from model:** [To be released soon]() - **Training Precision:** `bfloat16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) (To be updated soon) ## Prompt Template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Benchmark Results Benchmarking was done using [LLM-Autoeval](https://github.com/mlabonne/llm-autoeval) on an RTX 3090 on [runpod](https://www.runpod.io/). > **Note:** Please note that discrepancies have been observed between the Open LLM Leaderboard scores and those obtained from local runs using the LM Eval Harness with identical configurations. The results mentioned here are based on our own benchmarking. To replicate these findings, you can utilize the LLM-Autoeval or use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) locally with the configurations described in Open LLM Leaderboard's About page. | Benchmark | Llama 2 Chat | Tamil Llama v0.2 Instruct | Telugu Llama Instruct | Malayalam Llama Instruct | |---------------|--------------|---------------------------|-----------------------|--------------------------| | ARC Challenge (25-shot) | 52.9 | **53.75** | 52.47 | 52.82 | | TruthfulQA (0-shot) | 45.57 | 47.23 | **48.47** | 47.46 | | Hellaswag (10-shot) | **78.55** | 76.11 | 76.13 | 76.91 | | Winogrande (5-shot) | 71.74 | **73.95** | 71.74 | 73.16 | | AGI Eval (0-shot) | 29.3 | **30.95** | 28.44 | 29.6 | | BigBench (0-shot) | 32.6 | 33.08 | 32.99 | **33.26** | | Average | 51.78 | **52.51** | 51.71 | 52.2 | ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B v0.1 Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B v0.1 Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-instruct-v0.1) | | Telugu LLaMA 7B v0.1 Instruct | Instruction/Chat model | 420k instructions | Telugu LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/telugu-llama-instruct-v0.1) | | Malayalam LLaMA 7B v0.2 Instruct | Instruction/Chat model | 420k instructions | Malayalam LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/malayalam-llama-instruct-v0.1) | ## Example Usage ```python from transformers import LlamaForCausalLM, AutoTokenizer, pipeline model = LlamaForCausalLM.from_pretrained( "abhinand/tamil-llama-instruct-v0.2", #load_in_8bit=True, # Set this depending on the GPU you have torch_dtype=torch.bfloat16, device_map={"": 0}, # Set this depending on the number of GPUs you have local_files_only=False # Optional ) model.eval() tokenizer = AutoTokenizer.from_pretrained("abhinand/tamil-llama-instruct-v0.2") inf_pipeline = pipeline("conversational", model=model, tokenizer=tokenizer) def format_instruction(system_prompt, question, return_dict=False): if system_prompt is None: messages = [ {'content': question, 'role': 'user'}, ] else: messages = [ {'content': system_prompt, 'role': 'system'}, {'content': question, 'role': 'user'}, ] if return_dict: return messages prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) return prompt # Set the generation configuration according to your needs temperature = 0.6 repetition_penalty = 1.1 max_new_tokens = 256 SYSTEM_PROMPT = "You are an AI assistant who follows instructions extremely well. Do your best your best to help." INPUT = "Can you explain the significance of Tamil festival Pongal?" instruction = format_instruction( system_prompt=SYSTEM_PROMPT, question=INPUT, return_dict=True, ) output = inf_pipeline( instruction, temperature=temperature, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty ) print(output) ``` **Example Output:** ``` Conversation id: d57cdf33-01ff-4328-8efe-5c4fefdd6e77 system: You are an AI assistant who follows instructions extremely well. Do your best your best to help. user: Can you explain the significance of Tamil festival Pongal? assistant: Pongal is a significant harvest festival celebrated in Tamil Nadu and other parts of southern India. It marks the end of the rainy season and beginning of the agricultural year. The festival primarily revolves around giving gratitude to nature, particularly the Sun God Surya for his bountiful gifts like agriculture and health. People offer prayers to cattle, which play a significant role in agriculture, as well as their families for their continued support during the harvest season. The festival is marked by various colorful events, including preparing traditional Pongal dishes like rice cooked with milk, sugarcane, and banana, followed by exchanging gifts and celebrating among family members and friends. It also serves as a time for unity and strengthens the bond between people in their communities. ``` ## Usage Note It's important to note that the models have not undergone detoxification/censorship. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama related work in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
Liveme/Marcoroni-7B-v3_qlora_20231228-0017_8bit_merge
Liveme
2024-01-25T03:14:07Z
0
0
peft
[ "peft", "pytorch", "mistral", "region:us" ]
null
2024-01-02T07:26:59Z
--- library_name: peft base_model: AIDC-ai-business/Marcoroni-7B-v3 --- # Model Card for Model ID promptๆ ผๅผๅฆ‚ไธ‹๏ผš ```python system_prompt = '''You are now roleplaying as {Character Nickname}. {character_msg} Identity: Nurse Categories: Erotica, {tone} Personalities: {personalities} ``` ๆŽจ็†้…็ฝฎ้œ€่ฆๆณจๆ„็š„ๅ‡ ไธชๅ‚ๆ•ฐ๏ผš ``` 'temperature': 0.85 'top_p': 0.95, # disable 'top_k': 0, # disable 'repetition_penalty': 1.15, ``` Prompt Template for alpaca style ``` ### Instruction: <prompt> (without the <>) ### Response: ``` ่ฎญ็ปƒๅ‚ๆ•ฐ๏ผš ``` ```
vine135/outputs_mistral_b_finance_finetuned_test
vine135
2024-01-25T03:07:10Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-25T02:58:54Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: outputs_mistral_b_finance_finetuned_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs_mistral_b_finance_finetuned_test This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
macadeliccc/TheCorso-7b-v1
macadeliccc
2024-01-25T02:59:29Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T21:48:14Z
--- library_name: transformers tags: [] --- # TheCorso-7b-v1 **In loving memory of my dog Klaus (Piccolo)** _~ Piccolo (Italian): the little one ~_ ![piccolo.png](piccolo.png) + Based on fblgit/UNA-TheBeagle-7b-v1
SanjiWatsuki/Kunoichi-DPO-v2-7B
SanjiWatsuki
2024-01-25T02:52:18Z
1,520
81
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-13T04:02:02Z
--- license: cc-by-nc-4.0 --- | Model | MT Bench | EQ Bench | MMLU | Logic Test | |----------------------|----------|----------|---------|-------------| | GPT-4-Turbo | 9.32 | - | - | - | | GPT-4 | 8.99 | 62.52 | 86.4 | 0.86 | | **Kunoichi-DPO-v2-7B** | **8.51** | **42.18** | **64.94**| **0.58** | | Mixtral-8x7B-Instruct| 8.30 | 44.81 | 70.6 | 0.75 | | **Kunoichi-DPO-7B** | **8.29** | **41.60** | **64.83** | **0.59** | | **Kunoichi-7B** | **8.14** | **44.32** | **64.9** | **0.58** | | Starling-7B | 8.09 | - | 63.9 | 0.51 | | Claude-2 | 8.06 | 52.14 | 78.5 | - | | Silicon-Maid-7B | 7.96 | 40.44 | 64.7 | 0.54 | | Loyal-Macaroni-Maid-7B | 7.95 | 38.66 | 64.9 | 0.57 | | GPT-3.5-Turbo | 7.94 | 50.28 | 70 | 0.57 | | Claude-1 | 7.9 | - | 77 | - | | Openchat-3.5 | 7.81 | 37.08 | 64.3 | 0.39 | | Dolphin-2.6-DPO | 7.74 | 42.88 | 61.9 | 0.53 | | Zephyr-7B-beta | 7.34 | 38.71 | 61.4 | 0.30 | | Llama-2-70b-chat-hf | 6.86 | 51.56 | 63 | - | | Neural-chat-7b-v3-1 | 6.84 | 43.61 | 62.4 | 0.30 | | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| | **Kunoichi-DPO-7B**|**58.4**| 45.08 | 74| 66.99| 47.52| | **Kunoichi-DPO-v2-7B**|**58.31**| 44.85| 75.05| 65.69| 47.65| | [Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B)|57.54| 44.99| 74.86| 63.72| 46.58| | [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)| 56.85 | 44.74 | 75.6 | 59.89 | 47.17 | | [Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) | 56.45| 44.74| 74.26| 61.5| 45.32| | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 | | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 | | [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) | 51.34 | 42.67 | 72.92 | 47.27 | 42.51 | | [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) | 51.16 | 42.06 | 72.72 | 47.33 | 42.53 | | [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 50.99 | 37.33 | 71.83 | 55.1 | 39.7 | | Model | AlpacaEval2 | Length | | --------------------------- | ----------- | ------ | | GPT-4 | 23.58% | 1365 | | GPT-4 0314 | 22.07% | 1371 | | Mistral Medium | 21.86% | 1500 | | Mixtral 8x7B v0.1 | 18.26% | 1465 | | **Kunoichi-DPO-v2** | **17.19%** | 1785 | | Claude 2 | 17.19% | 1069 | | Claude | 16.99% | 1082 | | Gemini Pro | 16.85% | 1315 | | GPT-4 0613 | 15.76% | 1140 | | Claude 2.1 | 15.73% | 1096 | | Mistral 7B v0.2 | 14.72% | 1676 | | GPT 3.5 Turbo 0613 | 14.13% | 1328 | | LLaMA2 Chat 70B | 13.87% | 1790 | | LMCocktail-10.7B-v1 | 13.15% | 1203 | | WizardLM 13B V1.1 | 11.23% | 1525 | | Zephyr 7B Beta | 10.99% | 1444 | | OpenHermes-2.5-Mistral (7B) | 10.34% | 1107 | | GPT 3.5 Turbo 0301 | 9.62% | 827 | | **Kunoichi-7B** | **9.38%** | 1492 | | GPT 3.5 Turbo 1106 | 9.18% | 796 | | GPT-3.5 | 8.56% | 1018 | | Phi-2 DPO | 7.76% | 1687 | | LLaMA2 Chat 13B | 7.70% | 1513 |
jilp00/youtoks-transformers-united-v2-7B-v02
jilp00
2024-01-25T02:50:43Z
62
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-25T02:46:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
varun-v-rao/bert-large-cased-mnli-model1
varun-v-rao
2024-01-25T02:49:56Z
95
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-large-cased", "base_model:finetune:google-bert/bert-large-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T23:57:41Z
--- license: apache-2.0 base_model: bert-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-cased-mnli-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-mnli-model1 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4619 - Accuracy: 0.8680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 78 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3947 | 1.0 | 6136 | 0.3608 | 0.8601 | | 0.2557 | 2.0 | 12272 | 0.3683 | 0.8678 | | 0.1455 | 3.0 | 18408 | 0.4619 | 0.8680 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
MSI-AI-Group/TRT_AllMsi_4050
MSI-AI-Group
2024-01-25T02:42:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-22T01:32:43Z
--- license: creativeml-openrail-m --- This model is for AI Artist use. You use our model by following Github Link: https://github.com/MSI-AI-Group/AI-Artist
MSI-AI-Group/TRT_Base_4050
MSI-AI-Group
2024-01-25T02:42:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-22T01:29:24Z
--- license: creativeml-openrail-m --- This model is for AI Artist use. You use our model by following Github Link: https://github.com/MSI-AI-Group/AI-Artist
MSI-AI-Group/TRT_AllMsi_4060
MSI-AI-Group
2024-01-25T02:42:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-22T01:33:31Z
--- license: creativeml-openrail-m --- This model is for AI Artist use. You use our model by following Github Link: https://github.com/MSI-AI-Group/AI-Artist
MSI-AI-Group/TRT_Base_4080
MSI-AI-Group
2024-01-25T02:41:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-22T01:34:14Z
--- license: creativeml-openrail-m --- This model is for AI Artist use. You use our model by following Github Link: https://github.com/MSI-AI-Group/AI-Artist
MSI-AI-Group/TRT_Base_4090
MSI-AI-Group
2024-01-25T02:40:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-22T01:34:22Z
--- license: creativeml-openrail-m --- This model is for AI Artist use. You use our model by following Github Link: https://github.com/MSI-AI-Group/AI-Artist
tiagoblima/t5_base-qg-ap-peft-oficial
tiagoblima
2024-01-25T02:34:56Z
0
0
null
[ "safetensors", "generated_from_trainer", "dataset:tiagoblima/du-qg-squadv1_pt", "base_model:unicamp-dl/ptt5-base-portuguese-vocab", "base_model:finetune:unicamp-dl/ptt5-base-portuguese-vocab", "license:mit", "region:us" ]
null
2024-01-25T01:55:34Z
--- license: mit base_model: unicamp-dl/ptt5-base-portuguese-vocab tags: - generated_from_trainer datasets: - tiagoblima/du-qg-squadv1_pt model-index: - name: t5_base-qg-ap-peft-oficial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_base-qg-ap-peft-oficial This model is a fine-tuned version of [unicamp-dl/ptt5-base-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab) on the tiagoblima/du-qg-squadv1_pt dataset. It achieves the following results on the evaluation set: - Loss: 15.9549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 13.2241 | 1.0 | 2367 | 16.4507 | | 12.9503 | 2.0 | 4734 | 16.2224 | | 12.8425 | 3.0 | 7101 | 16.0670 | | 12.8058 | 4.0 | 9468 | 15.9792 | | 12.7937 | 5.0 | 11835 | 15.9549 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.1
varun-v-rao/t5-base-snli-model1
varun-v-rao
2024-01-25T02:31:13Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T01:21:31Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: t5-base-snli-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-snli-model1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2860 - Accuracy: 0.8989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 73 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3815 | 1.0 | 2146 | 0.2976 | 0.8903 | | 0.3507 | 2.0 | 4292 | 0.2937 | 0.8962 | | 0.3354 | 3.0 | 6438 | 0.2860 | 0.8989 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
zhangyanchao/whisper-medium-zh_CN
zhangyanchao
2024-01-25T02:19:48Z
6
1
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-22T03:25:38Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Medium zh_CN - Charles.djang results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium zh_CN - Charles.djang This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
josemhernandezbiometric/whisper-medium-finetuned-int8
josemhernandezbiometric
2024-01-25T02:18:22Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "whisper-event", "generated_from_trainer", "es", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-medium", "base_model:adapter:openai/whisper-medium", "license:apache-2.0", "model-index", "region:us" ]
null
2024-01-22T07:36:34Z
--- language: - es license: apache-2.0 library_name: peft tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Small Es - Sanchit Gandhi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 split: None metrics: - type: wer value: 56.441337816315695 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Es - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.5129 - Wer: 56.4413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 750 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 6.3605 | 2.3 | 50 | 6.2660 | 55.7247 | | 5.3113 | 4.6 | 100 | 5.1187 | 56.4590 | | 4.2749 | 6.9 | 150 | 4.2391 | 55.6185 | | 3.5266 | 9.2 | 200 | 3.4143 | 53.6719 | | 3.0671 | 11.49 | 250 | 3.1045 | 49.2037 | | 2.8716 | 13.79 | 300 | 2.9260 | 50.7786 | | 2.7263 | 16.09 | 350 | 2.7987 | 53.5746 | | 2.6467 | 18.39 | 400 | 2.7079 | 55.0787 | | 2.5624 | 20.69 | 450 | 2.6443 | 55.6008 | | 2.5087 | 22.99 | 500 | 2.5989 | 57.3881 | | 2.4922 | 25.29 | 550 | 2.5660 | 55.9370 | | 2.4274 | 27.59 | 600 | 2.5421 | 56.4325 | | 2.4337 | 29.89 | 650 | 2.5257 | 57.4058 | | 2.3991 | 32.18 | 700 | 2.5165 | 57.0165 | | 2.4211 | 34.48 | 750 | 2.5129 | 56.4413 | ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
sosoai/Orion-14B-Chat-RAG-safetensors
sosoai
2024-01-25T02:09:15Z
43
0
transformers
[ "transformers", "pytorch", "safetensors", "orion", "text-generation", "code", "model", "llm", "custom_code", "en", "zh", "ja", "ko", "autotrain_compatible", "region:us" ]
text-generation
2024-01-25T00:05:06Z
--- language: - en - zh - ja - ko metrics: - accuracy pipeline_tag: text-generation tags: - code - model - llm --- <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <div align="center"> <img src="./assets/imgs/orion_start.PNG" alt="logo" width="50%" /> </div> <div align="center"> <h1> Orion-14B </h1> </div> <div align="center"> <div align="center"> <b>๐ŸŒEnglish</b> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG/blob/main/README_zh.md" target="_blank">๐Ÿ‡จ๐Ÿ‡ณไธญๆ–‡</a> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG/blob/main/README_ja.md" target="_blank">๐Ÿ‡ฏ๐Ÿ‡ตๆ—ฅๆœฌ่ชž</a> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG/blob/main/README_ko.md" target="_blank">๐Ÿ‡ฐ๐Ÿ‡ทํ•œ๊ตญ์–ด</a> </div> <h4 align="center"> <p> ๐Ÿค— <a href="https://huggingface.co/OrionStarAI" target="_blank">HuggingFace Mainpage</a> | ๐Ÿค– <a href="https://modelscope.cn/organization/OrionStarAI" target="_blank">ModelScope Mainpage</a><br>๐ŸŽฌ <a href="https://huggingface.co/spaces/OrionStarAI/Orion-14B-App-Demo" target="_blank">HuggingFace Demo</a> | ๐ŸŽซ <a href="https://modelscope.cn/studios/OrionStarAI/Orion-14B-App-Demo/summary" target="_blank">ModelScope Demo</a><br>๐Ÿ˜บ <a href="https://github.com/OrionStarAI/Orion" target="_blank">GitHub</a><br>๐Ÿ“– <a href="https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf" target="_blank">Tech Report</a> <p> </h4> </div> # Table of Contents - [๐Ÿ“– Model Introduction](#model-introduction) - [๐Ÿ”— Model Download](#model-download) - [๐Ÿ”– Model Benchmark](#model-benchmark) - [๐Ÿ“Š Model Inference](#model-inference) - [๐Ÿ“œ Declarations & License](#declarations-license) - [๐Ÿฅ‡ Company Introduction](#company-introduction) <a name="model-introduction"></a><br> # 1. Model Introduction - Orion-14B series models are open-source multilingual large language models trained from scratch by OrionStarAI. The base model is trained on 2.5T multilingual corpus, including Chinese, English, Japanese, Korean, etc, and it exhibits superior performance in these languages. For details, please refer to [tech report](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf). - The Orion-14B series models exhibit the following features: - Among models with 20B-parameter scale level, Orion-14B-Base model shows outstanding performance in comprehensive evaluations. - Strong multilingual capabilities, significantly outperforming in Japanese and Korean testsets. - The fine-tuned models demonstrate strong adaptability, excelling in human-annotated blind tests. - The long-chat version supports extremely long texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k. - The quantized versions reduce model size by 70%, improve inference speed by 30%, with performance loss less than 1%. <table style="border-collapse: collapse; width: 100%;"> <tr> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/opencompass_en.png" alt="opencompass" style="width: 100%; height: auto;"> </td> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/model_cap_en.png" alt="modelcap" style="width: 100%; height: auto;"> </td> </tr> </table> - Orion-14B series models including: - **Orion-14B-Base:** A multilingual large language foundational model with 14 billion parameters, pretrained on a diverse dataset of 2.5 trillion tokens. - **Orion-14B-Chat:** A chat-model fine-tuned on a high-quality corpus aims to provide an excellence interactive experience for users in the large model community. - **Orion-14B-LongChat:** The long-context version excels at handling extremely lengthy texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k. - **Orion-14B-Chat-RAG:** A chat-model fine-tuned on a custom retrieval augmented generation dataset, achieving superior performance in retrieval augmented generation tasks. - **Orion-14B-Chat-Plugin:** A chat-model specifically tailored for plugin and function calling tasks, ideal for agent-related scenarios where the LLM acts as a plugin and function call system. - **Orion-14B-Base-Int4:** A quantized base model utilizing 4-bit integer weights. It significantly reduces the model size by 70% and increases the inference speed by 30% while incurring a minimal performance loss of only 1%. - **Orion-14B-Chat-Int4:** A quantized chat model utilizing 4-bit integer weights. <a name="model-download"></a><br> # 2. Model Download Model release and download links are provided in the table below: | Model Name | HuggingFace Download Links | ModelScope Download Links | |-------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | โšพOrion-14B-Base | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) | | ๐Ÿ˜›Orion-14B-Chat | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) | | ๐Ÿ“ƒOrion-14B-LongChat | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) | | ๐Ÿ”ŽOrion-14B-Chat-RAG | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) | | ๐Ÿ”ŒOrion-14B-Chat-Plugin | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary) | | ๐Ÿ’ผOrion-14B-Base-Int4 | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) | | ๐Ÿ“ฆOrion-14B-Chat-Int4 | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) | <a name="model-benchmark"></a><br> # 3. Model Benchmarks ## 3.1. Base Model Orion-14B-Base Benchmarks ### 3.1.1. LLM evaluation results on examination and professional knowledge | Model | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 | | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 | | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 | | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 | | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 | | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** | ### 3.1.2. LLM evaluation results on language understanding and common knowledge | Model |RACE-middle|RACE-high |HellaSwag | PIQA | Lambada | WSC | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 | | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 | | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 | | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 | | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 | | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** | ### 3.1.3. LLM evaluation results of OpenCompass testsets | Model | Average | Examination | Language | Knowledge | Understanding | Reasoning | |------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 | | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 | | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 | | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 | | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 | |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** | ### 3.1.4. Comparison of LLM performances on Japanese testsets | Model |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM | |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 | | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 | | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 | | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 | | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 | | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 | | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 | | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 | | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** | ### 3.1.5. Comparison of LLM performances on Korean testsets. n = 0 and n = 5 stand for n-shot prompts used in the evaluation |Model | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5| |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 | | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 | | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 | | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 | | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 | | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 | |**Orion-14B-Chat**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**| ### 3.1.6. Multilingual evaluation | Model | Train Lang | Japanese | Korean | Chinese | English | |--------------------|------------|----------|----------|----------|----------| | PLaMo-13B | En,Jp | 52.3 | * | * | * | | Weblab-10B | En,Jp | 50.7 | * | * | * | | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * | | StableLM-jp-7B | En,Jp | 51.1 | * | * | * | | KoGPT-6B | En,Ko | * | 70.1 | * | * | | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * | | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 | | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 | | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 | | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** | | **Orion-14B-Chat** | Multi | **69.1** | **79.5** | **67.9** | 67.3 | ## 3.2. Chat Model Orion-14B-Chat Benchmarks ### 3.2.1. Chat model subjective evaluation of MTBench | Model | First-Turn | Second-Turn | **Average** | |----------------------|----------|----------|----------| | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 | | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 | | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 | | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 | | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** | \* use vllm for inference ### 3.2.2. Chat model subjective evaluation of AlignBench | Model | Math. | Logi. | Basic. | Chi. | Comp. | Writ. | Role. | Prof. |**Avg.**| |--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 | | Qwen-14B-Chat |**4.91**|**4.71**|**6.90**| 6.36 | 6.74 | 6.64 | 6.59 | 6.56 |**5.72**| | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 | | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 |**7.18**| 6.19 | 6.49 | 6.22 | 4.96 | | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 |**6.57**| 7.16 |**7.36**|**7.16**|**6.99**| 5.51 | \* use vllm for inference ## 3.3. LongChat Model Orion-14B-LongChat Benchmarks ### 3.3.1. LongChat evaluation of LongBench | Model | NarrativeQA|MultiFieldQA-en|MultiFieldQA-zh| DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT |RepoBench-P| |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 | | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 | | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 | | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** | | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 | ## 3.4. Chat RAG Model Benchmarks ### 3.4.1. LLM evaluation results of self-built RAG testsets |Model|Effectiveness of Response(Keyword)|*Effectiveness of Response๏ผˆsubjective evaluation๏ผ‰|Quoting Ability|Fallback Ability|*AutoQA|*Data Extraction| |---------------------|------|------|------|------|------|------| | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 | | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 | | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 | | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 | | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 | \* means manual assessment ## 3.5. Chat Plugin Model Orion-14B-Chat-Plugin Benchmarks ### 3.5.1. LLM evaluation results of self-built plugin testsets |Model |Intent Recognition with Full Params |Intent Recognition with Missing Params |Non-Plugin Invocation Recognition | |-----------------------|--------|-----------|--------| | Baichuan2-13B-Chat | 25 | 0 | 0 | | Qwen-14B-Chat | 55 | 0 | 50 | | GPT-4 | **95** | 52.38 | 70 | | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** | ## 3.6. Quantized Model Orion-14B-Base-Int4 Benchmarks ### 3.6.1. Comparison of before and after quantization |Model |Size(GB)|Inference Speed(tokens/s)|C-Eval|CMMLU|MMLU|RACE|HellaSwag| |-------------------------|-------|-----|------|------|------|------|------| | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 | | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 | <a name="model-inference"></a><br> # 4. Model Inference Model weights, source code, and configuration needed for inference are published on Hugging Face, and the download link is available in the table at the beginning of this document. We demonstrate various inference methods here, and the program will automatically download the necessary resources from Hugging Face. ## 4.1. Python Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B") messages = [{"role": "user", "content": "Hello, what is your name? "}] response = model.chat(tokenizer, messages, streaming=False) print(response) ``` In the above Python code, the model is loaded with `device_map='auto'` to utilize all available GPUs. To specify the device, you can use something like `export CUDA_VISIBLE_DEVICES=0,1` (using GPUs 0 and 1). ## 4.2. Command Line Tool ```shell CUDA_VISIBLE_DEVICES=0 python cli_demo.py ``` This command-line tool is designed for chat scenarios, and thus, it does not support calling the base model. ## 4.3. Direct Script Inference ```shell # base model CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt hello # chat model CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt hi ``` ## 4.4 Example Output ### 4.4.1. Casual Chat ````` User: Hello Orion-14B: Hello! How can I help you today? If you have any questions or need assistance, feel free to ask. User: What functions do you have? Orion-14B: As an AI language model, I have a wide range of functions and capabilities, including but not limited to: Answering general knowledge questions: I can provide information on various topics such as history, science, geography, and more. Providing definitions and explanations: I can explain complex concepts and provide definitions for words and phrases. Assisting with tasks: I can help with simple tasks like setting reminders, converting units of measurement, and even ordering food from restaurants. Generating text: I can write short stories, essays, articles, and other types of content based on prompts given to me. Translating languages: I can translate text from one language to another. Chatting: I can engage in conversation with users and respond to their queries in a conversational manner. Summarizing long texts: I can summarize longer texts like articles, books, and research papers. Generating random numbers and names: I can generate random numbers within a specified range and also suggest names based on certain criteria. Playing games: I can play simple games like Hangman, Trivia, and more. Providing recommendations: I can recommend movies, music, books, and other forms of entertainment based on user preferences. These are just some of the many functions that I am capable of performing. If you have a specific task in mind, feel free to ask me about it. User: Tell me a joke. Orion-14B: Sure, here's a classic one-liner: Why don't scientists trust atoms? Because they make up everything. ````` ### 4.4.2. Japanese & Korean Chat ````` User๏ผš่‡ชๅทฑใ‚’็ดนไป‹ใ—ใฆใใ ใ•ใ„ Orion-14B๏ผšใ“ใ‚“ใซใกใฏใ€็งใฎๅๅ‰ใฏChatMaxใงใ€OrionStarใซใ‚ˆใฃใฆ้–‹็™บใ•ใ‚ŒใŸAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚็งใฏใƒฆใƒผใ‚ถใƒผใซๆญฃ็ขบใงใ€ๅฎข่ฆณ็š„ใงใ€ๆœ‰็”จใชๅ›ž็ญ”ใ‚’ๆไพ›ใ—ใ€ๅฝผใ‚‰ใŒๅ•้กŒใ‚’่งฃๆฑบใ—ใ€ๆƒ…ๅ ฑใ‚’ๅ–ๅพ—ใ™ใ‚‹ใฎใ‚’ๅŠฉใ‘ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ User๏ผš์ž๊ธฐ์†Œ๊ฐœ๋ฅผ ํ•ด์ฃผ์„ธ์š”. Orion-14B๏ผš์•ˆ๋…•ํ•˜์„ธ์š”, ์ œ ์ด๋ฆ„์€ ChatMax์ž…๋‹ˆ๋‹ค. OrionStar์—์„œ ๊ฐœ๋ฐœํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ์ €๋Š” ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ์ •ํ™•ํ•˜๊ณ  ๊ฐ๊ด€์ ์ด๋ฉฐ ์œ ์šฉํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ •๋ณด๋ฅผ ์–ป๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ````` <a name="declarations-license"></a><br> # 5. Declarations, License ## 5.1. Declarations We strongly urge all users not to use the Orion-14B model for any activities that may harm national or social security or violate the law. Additionally, we request users not to use the Orion-14B model for internet services without proper security review and filing. We hope all users abide by this principle to ensure that technological development takes place in a regulated and legal environment. We have done our best to ensure the compliance of the data used in the model training process. However, despite our significant efforts, unforeseen issues may still arise due to the complexity of the model and data. Therefore, if any problems arise due to the use of the Orion-14B open-source model, including but not limited to data security issues, public opinion risks, or any risks and issues arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility. ## 5.2. License Community use of the Orion-14B series models - For code, please comply with [Apache License Version 2.0](./LICENSE)<br> - For model, please comply with [ใ€Orion-14B Seriesใ€‘ Models Community License Agreement](./ModelsCommunityLicenseAgreement) <a name="company-introduction"></a><br> # 6. Company Introduction OrionStar is a leading global service robot solutions company, founded in September 2016. OrionStar is dedicated to using artificial intelligence technology to create the next generation of revolutionary robots, allowing people to break free from repetitive physical labor and making human work and life more intelligent and enjoyable. Through technology, OrionStar aims to make society and the world a better place. OrionStar possesses fully self-developed end-to-end artificial intelligence technologies, such as voice interaction and visual navigation. It integrates product development capabilities and technological application capabilities. Based on the Orion robotic arm platform, it has launched products such as OrionStar AI Robot Greeting, AI Robot Greeting Mini, Lucki, Coffee Master, and established the open platform OrionOS for Orion robots. Following the philosophy of "Born for Truly Useful Robots", OrionStar empowers more people through AI technology. **The core strengths of OrionStar lies in possessing end-to-end AI application capabilities,** including big data preprocessing, large model pretraining, fine-tuning, prompt engineering, agent, etc. With comprehensive end-to-end model training capabilities, including systematic data processing workflows and the parallel model training capability of hundreds of GPUs, it has been successfully applied in various industry scenarios such as government affairs, cloud services, international e-commerce, and fast-moving consumer goods. Companies with demands for deploying large-scale model applications are welcome to contact us.<br> **Enquiry Hotline: 400-898-7779**<br> **E-mail: [email protected]** <div align="center"> <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" /> </div> # ็›ฎๅฝ• - [๐Ÿ“– ๆจกๅž‹ไป‹็ป](#zh_model-introduction) - [๐Ÿ”— ไธ‹่ฝฝ่ทฏๅพ„](#zh_model-download) - [๐Ÿ”– ่ฏ„ไผฐ็ป“ๆžœ](#zh_model-benchmark) - [๐Ÿ“Š ๆจกๅž‹ๆŽจ็†](#zh_model-inference) - [๐Ÿ“œ ๅฃฐๆ˜Žๅ่ฎฎ](#zh_declarations-license) - [๐Ÿฅ‡ ไผไธšไป‹็ป](#zh_company-introduction) <a name="zh_model-introduction"></a><br> # 1. ๆจกๅž‹ไป‹็ป - Orion-14B-Baseๆ˜ฏไธ€ไธชๅ…ทๆœ‰140ไบฟๅ‚ๆ•ฐ็š„ๅคš่ฏญ็งๅคงๆจกๅž‹๏ผŒ่ฏฅๆจกๅž‹ๅœจไธ€ไธชๅŒ…ๅซ2.5ไธ‡ไบฟtoken็š„ๅคšๆ ทๅŒ–ๆ•ฐๆฎ้›†ไธŠ่ฟ›่กŒไบ†่ฎญ็ปƒ๏ผŒๆถต็›–ไบ†ไธญๆ–‡ใ€่‹ฑ่ฏญใ€ๆ—ฅ่ฏญใ€้Ÿฉ่ฏญ็ญ‰ๅคš็ง่ฏญ่จ€ใ€‚ๅœจๅคš่ฏญ่จ€็Žฏๅขƒไธ‹็š„ไธ€็ณปๅˆ—ไปปๅŠกไธญๅฑ•็Žฐๅ‡บๅ“่ถŠ็š„ๆ€ง่ƒฝใ€‚ๅœจไธปๆต็š„ๅ…ฌๅผ€ๅŸบๅ‡†่ฏ„ๆต‹ไธญ๏ผŒOrion-14B็ณปๅˆ—ๆจกๅž‹่กจ็Žฐไผ˜ๅผ‚๏ผŒๅคš้กนๆŒ‡ๆ ‡ๆ˜พ่‘—่ถ…่ถŠๅŒ็ญ‰ๅ‚ๆ•ฐๅŸบๆœฌ็š„ๅ…ถไป–ๆจกๅž‹ใ€‚ๅ…ทไฝ“ๆŠ€ๆœฏ็ป†่Š‚่ฏทๅ‚่€ƒ[ๆŠ€ๆœฏๆŠฅๅ‘Š](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf)ใ€‚ - Orion-14B็ณปๅˆ—ๅคงๆจกๅž‹ๆœ‰ไปฅไธ‹ๅ‡ ไธช็‰น็‚น๏ผš - ๅŸบๅบง20Bๅ‚ๆ•ฐ็บงๅˆซๅคงๆจกๅž‹็ปผๅˆ่ฏ„ๆต‹ๆ•ˆๆžœ่กจ็Žฐไผ˜ๅผ‚ - ๅคš่ฏญ่จ€่ƒฝๅŠ›ๅผบ๏ผŒๅœจๆ—ฅ่ฏญใ€้Ÿฉ่ฏญๆต‹่ฏ•้›†ไธŠๆ˜พ่‘—้ข†ๅ…ˆ - ๅพฎ่ฐƒๆจกๅž‹้€‚ๅบ”ๆ€งๅผบ๏ผŒๅœจไบบ็ฑปๆ ‡ๆณจ็›ฒๆต‹ไธญ๏ผŒ่กจ็Žฐ็ชๅ‡บ - ้•ฟไธŠไธ‹ๆ–‡็‰ˆๆœฌๆ”ฏๆŒ่ถ…้•ฟๆ–‡ๆœฌ๏ผŒๅœจ200k token้•ฟๅบฆไธŠๆ•ˆๆžœไผ˜ๅผ‚๏ผŒๆœ€้•ฟๅฏๆ”ฏๆŒๅฏ่พพ320k - ้‡ๅŒ–็‰ˆๆœฌๆจกๅž‹ๅคงๅฐ็ผฉๅฐ70%๏ผŒๆŽจ็†้€Ÿๅบฆๆๅ‡30%๏ผŒๆ€ง่ƒฝๆŸๅคฑๅฐไบŽ1% <table style="border-collapse: collapse; width: 100%;"> <tr> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/opencompass_zh.png" alt="opencompass" style="width: 100%; height: auto;"> </td> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/model_cap_zh.png" alt="modelcap" style="width: 100%; height: auto;"> </td> </tr> </table> - ๅ…ทไฝ“่€Œ่จ€๏ผŒOrion-14B็ณปๅˆ—ๅคง่ฏญ่จ€ๆจกๅž‹ๅŒ…ๅซ: - **Orion-14B-Base:** ๅŸบไบŽ2.5ไธ‡ไบฟtokensๅคšๆ ทๅŒ–ๆ•ฐๆฎ้›†่ฎญ็ปƒๅค„็š„140ไบฟๅ‚ๆ•ฐ้‡็บง็š„ๅคš่ฏญ่จ€ๅŸบๅบงๆจกๅž‹ใ€‚ - **Orion-14B-Chat:** ๅŸบไบŽ้ซ˜่ดจ้‡่ฏญๆ–™ๅบ“ๅพฎ่ฐƒ็š„ๅฏน่ฏ็ฑปๆจกๅž‹๏ผŒๆ—จๅœจไธบๅคงๆจกๅž‹็คพๅŒบๆไพ›ๆ›ดๅฅฝ็š„็”จๆˆทไบคไบ’ไฝ“้ชŒใ€‚ - **Orion-14B-LongChat:** ๅœจ200k token้•ฟๅบฆไธŠๆ•ˆๆžœไผ˜ๅผ‚๏ผŒๆœ€้•ฟๅฏๆ”ฏๆŒๅฏ่พพ320k๏ผŒๅœจ้•ฟๆ–‡ๆœฌ่ฏ„ไผฐ้›†ไธŠๆ€ง่ƒฝๆฏ”่‚ฉไธ“ๆœ‰ๆจกๅž‹ใ€‚ - **Orion-14B-Chat-RAG:** ๅœจไธ€ไธชๅฎšๅˆถ็š„ๆฃ€็ดขๅขžๅผบ็”Ÿๆˆๆ•ฐๆฎ้›†ไธŠ่ฟ›่กŒๅพฎ่ฐƒ็š„่Šๅคฉๆจกๅž‹๏ผŒๅœจๆฃ€็ดขๅขžๅผบ็”ŸๆˆไปปๅŠกไธญๅ–ๅพ—ไบ†ๅ“่ถŠ็š„ๆ€ง่ƒฝใ€‚ - **Orion-14B-Chat-Plugin:** ไธ“้—จ้’ˆๅฏนๆ’ไปถๅ’Œๅ‡ฝๆ•ฐ่ฐƒ็”จไปปๅŠกๅฎšๅˆถ็š„่Šๅคฉๆจกๅž‹๏ผŒ้žๅธธ้€‚็”จไบŽไฝฟ็”จไปฃ็†็š„็›ธๅ…ณๅœบๆ™ฏ๏ผŒๅ…ถไธญๅคง่ฏญ่จ€ๆจกๅž‹ๅ……ๅฝ“ๆ’ไปถๅ’Œๅ‡ฝๆ•ฐ่ฐƒ็”จ็ณป็ปŸใ€‚ - **Orion-14B-Base-Int4:** ไธ€ไธชไฝฟ็”จint4่ฟ›่กŒ้‡ๅŒ–็š„ๅŸบๅบงๆจกๅž‹ใ€‚ๅฎƒๅฐ†ๆจกๅž‹ๅคงๅฐๆ˜พ่‘—ๅ‡ๅฐไบ†70%๏ผŒๅŒๆ—ถๆ้ซ˜ไบ†ๆŽจ็†้€Ÿๅบฆ30%๏ผŒไป…ๅผ•ๅ…ฅไบ†1%็š„ๆœ€ๅฐๆ€ง่ƒฝๆŸๅคฑใ€‚ - **Orion-14B-Chat-Int4:** ไธ€ไธชไฝฟ็”จint4่ฟ›่กŒ้‡ๅŒ–็š„ๅฏน่ฏๆจกๅž‹ใ€‚ <a name="zh_model-download"></a><br> # 2. ไธ‹่ฝฝ่ทฏๅพ„ ๅ‘ๅธƒๆจกๅž‹ๅ’Œไธ‹่ฝฝ้“พๆŽฅ่งไธ‹่กจ๏ผš | ๆจกๅž‹ๅ็งฐ | HuggingFaceไธ‹่ฝฝ้“พๆŽฅ | ModelScopeไธ‹่ฝฝ้“พๆŽฅ | |---------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | โšพ ๅŸบๅบงๆจกๅž‹ | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) | | ๐Ÿ˜› ๅฏน่ฏๆจกๅž‹ | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) | | ๐Ÿ“ƒ ้•ฟไธŠไธ‹ๆ–‡ๆจกๅž‹ | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) | | ๐Ÿ”Ž ๆฃ€็ดขๅขžๅผบๆจกๅž‹ | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) | | ๐Ÿ”Œ ๆ’ไปถๆจกๅž‹ | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary)| | ๐Ÿ’ผ ๅŸบๅบงInt4้‡ๅŒ–ๆจกๅž‹ | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) | | ๐Ÿ“ฆ ๅฏน่ฏInt4้‡ๅŒ–ๆจกๅž‹ | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) | <a name="zh_model-benchmark"></a><br> # 3. ่ฏ„ไผฐ็ป“ๆžœ ## 3.1. ๅŸบๅบงๆจกๅž‹Orion-14B-Base่ฏ„ไผฐ ### 3.1.1. ไธ“ไธš็Ÿฅ่ฏ†ไธŽ่ฏ•้ข˜่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 | | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 | | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 | | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 | | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 | | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** | ### 3.1.2. ็†่งฃไธŽ้€š่ฏ†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ |RACE-middle|RACE-high| HellaSwag| PIQA | Lambada | WSC | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 | | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 | | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 | | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 | | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 | | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** | ### 3.1.3. OpenCompass่ฏ„ๆต‹้›†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | Average | Examination | Language | Knowledge | Understanding | Reasoning | |------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 | | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 | | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 | | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 | | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 | |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** | ### 3.1.4. ๆ—ฅ่ฏญๆต‹่ฏ•้›†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM | |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 | | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 | | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 | | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 | | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 | | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 | | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 | | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 | | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** | ### 3.1.5. ้Ÿฉ่ฏญๆต‹่ฏ•้›†n-shot่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5| |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 | | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 | | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 | | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 | | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 | | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 | |**Orion-14B-Base**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**| ### 3.1.6. ๅคš่ฏญ่จ€่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | Train Lang | Japanese | Korean | Chinese | English | |--------------------|------------|----------|----------|----------|----------| | PLaMo-13B | En,Jp | 52.3 | * | * | * | | Weblab-10B | En,Jp | 50.7 | * | * | * | | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * | | StableLM-jp-7B | En,Jp | 51.1 | * | * | * | | KoGPT-6B | En,Ko | * | 70.1 | * | * | | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * | | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 | | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 | | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 | | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** | | **Orion-14B-Base** | Multi | **69.1** | **79.5** | **67.9** | 67.3 | ## 3.2. ๅฏน่ฏๆจกๅž‹Orion-14B-Chat่ฏ„ไผฐ ### 3.2.1. ๅฏน่ฏๆจกๅž‹MTBenchไธป่ง‚่ฏ„ไผฐ | ๆจกๅž‹ๅ็งฐ | ็ฌฌไธ€่ฝฎ | ็ฌฌไบŒ่ฝฎ | **ๅนณๅ‡** | |----------------------|----------|----------|----------| | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 | | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 | | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 | | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 | | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** | \*่ฟ™้‡Œ่ฏ„ๆต‹ไฝฟ็”จvllm่ฟ›่กŒๆŽจ็† ### 3.2.2. ๅฏน่ฏๆจกๅž‹AlignBenchไธป่ง‚่ฏ„ไผฐ | ๆจกๅž‹ๅ็งฐ | ๆ•ฐๅญฆ่ƒฝๅŠ› | ้€ป่พ‘ๆŽจ็† | ๅŸบๆœฌ่ƒฝๅŠ› | ไธญๆ–‡็†่งฃ | ็ปผๅˆ้—ฎ็ญ” | ๅ†™ไฝœ่ƒฝๅŠ› | ่ง’่‰ฒๆ‰ฎๆผ” | ไธ“ไธš็Ÿฅ่ฏ† | **ๅนณๅ‡** | |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 | | Qwen-14B-Chat | **4.91** | **4.71** | **6.90** | 6.36 | 6.74 | 6.64 | 6.59 | 6.56 | **5.72** | | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 | | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 | **7.18** | 6.19 | 6.49 | 6.22 | 4.96 | | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 | **6.57** | 7.16 | **7.36** | **7.16** | **6.99** | 5.51 | \*่ฟ™้‡Œ่ฏ„ๆต‹ไฝฟ็”จvllm่ฟ›่กŒๆŽจ็† ## 3.3. ้•ฟไธŠไธ‹ๆ–‡ๆจกๅž‹Orion-14B-LongChat่ฏ„ไผฐ ### 3.3.1. ้•ฟไธŠไธ‹ๆ–‡ๆจกๅž‹LongBench่ฏ„ไผฐ | ๆจกๅž‹ๅ็งฐ | NarrativeQA| MultiFieldQA-en| MultiFieldQA-zh | DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT | RepoBench-P | |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 | | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 | | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 | | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** | | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 | ## 3.4. ๆฃ€็ดขๅขžๅผบๆจกๅž‹Orion-14B-Chat-RAG่ฏ„ไผฐ ### 3.4.1. ่‡ชๅปบๆฃ€็ดขๅขžๅผบๆต‹่ฏ•้›†่ฏ„ไผฐ็ป“ๆžœ |ๆจกๅž‹ๅ็งฐ|ๅ›žๅคๆ•ˆๆžœ(ๅ…ณ้”ฎๅญ—)|*ๅ›žๅคๆ•ˆๆžœ(ไธป่ง‚ๆ‰“ๅˆ†)|ๅผ•็”จ่ƒฝๅŠ›|ๅ…œๅบ•่ƒฝๅŠ›|*AutoQA|*ๆŠฝๅ–ๆ•ฐๆฎ| |---------------------|------|------|------|------|------|------| | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 | | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 | | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 | | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 | | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 | \* ่กจ็คบไบบๅทฅ่ฏ„ๅˆค็ป“ๆžœ ## 3.5. ๆ’ไปถๆจกๅž‹Orion-14B-Chat-Plugin่ฏ„ไผฐ ### 3.5.1. ่‡ชๅปบๆ’ไปถๆต‹่ฏ•้›†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | ๅ…จๅ‚ๆ•ฐๆ„ๅ›พ่ฏ†ๅˆซ | ็ผบๅ‚ๆ•ฐๆ„ๅ›พ่ฏ†ๅˆซ | ้žๆ’ไปถ่ฐƒ็”จ่ฏ†ๅˆซ | |-----------------------|--------|-----------|--------| | Baichuan2-13B-Chat | 25 | 0 | 0 | | Qwen-14B-Chat | 55 | 0 | 50 | | GPT-4 | **95** | 52.38 | 70 | | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** | ## 3.6. ้‡ๅŒ–ๆจกๅž‹Orion-14B-Base-Int4่ฏ„ไผฐ ### 3.6.1. ้‡ๅŒ–ๅ‰ๅŽๆ•ดไฝ“ๅฏนๆฏ” |ๆจกๅž‹ๅ็งฐ|ๆจกๅž‹ๅคงๅฐ(GB)|ๆŽจ็†้€Ÿๅบฆ(ไปค็‰Œๆ•ฐ/็ง’)|C-Eval |CMMLU |MMLU |RACE | HellaSwag| |-------------------------|------|-----|------|------|------|------|------| | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 | | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 | <a name="zh_model-inference"></a><br> # 4. ๆจกๅž‹ๆŽจ็† ๆŽจ็†ๆ‰€้œ€็š„ๆจกๅž‹ๆƒ้‡ใ€ๆบ็ ใ€้…็ฝฎๅทฒๅ‘ๅธƒๅœจ Hugging Face๏ผŒไธ‹่ฝฝ้“พๆŽฅ่งๆœฌๆ–‡ๆกฃๆœ€ๅผ€ๅง‹็š„่กจๆ ผใ€‚ๆˆ‘ไปฌๅœจๆญค็คบ่Œƒๅคš็งๆŽจ็†ๆ–นๅผใ€‚็จ‹ๅบไผš่‡ชๅŠจไปŽ Hugging Face ไธ‹่ฝฝๆ‰€้œ€่ต„ๆบใ€‚ ## 4.1. Python ไปฃ็ ๆ–นๅผ ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B") messages = [{"role": "user", "content": "ไฝ ๅฅฝ! ไฝ ๅซไป€ไนˆๅๅญ—!"}] response = model.chat(tokenizer, messages, streaming=Flase) print(response) ``` ๅœจไธŠ่ฟฐไธคๆฎตไปฃ็ ไธญ๏ผŒๆจกๅž‹ๅŠ ่ฝฝๆŒ‡ๅฎš `device_map='auto'` ๏ผŒไผšไฝฟ็”จๆ‰€ๆœ‰ๅฏ็”จๆ˜พๅกใ€‚ๅฆ‚้œ€ๆŒ‡ๅฎšไฝฟ็”จ็š„่ฎพๅค‡๏ผŒๅฏไปฅไฝฟ็”จ็ฑปไผผ `export CUDA_VISIBLE_DEVICES=0,1`๏ผˆไฝฟ็”จไบ†0ใ€1ๅทๆ˜พๅก๏ผ‰็š„ๆ–นๅผๆŽงๅˆถใ€‚ ## 4.2. ๅ‘ฝไปค่กŒๅทฅๅ…ทๆ–นๅผ ```shell CUDA_VISIBLE_DEVICES=0 python cli_demo.py ``` ๆœฌๅ‘ฝไปค่กŒๅทฅๅ…ทๆ˜ฏไธบ Chat ๅœบๆ™ฏ่ฎพ่ฎก๏ผŒๅ› ๆญคๆˆ‘ไปฌไธๆ”ฏๆŒไฝฟ็”จ่ฏฅๅทฅๅ…ท่ฐƒ็”จ Base ๆจกๅž‹ใ€‚ ## 4.3. ่„šๆœฌ็›ดๆŽฅๆŽจ็† ```shell # base model CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt ไฝ ๅฅฝ,ไฝ ๅซไป€ไนˆๅๅญ— # chat model CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt ไฝ ๅฅฝ,ไฝ ๅซไป€ไนˆๅๅญ— ``` ## 4.4. ็คบไพ‹่พ“ๅ‡บ ### 4.4.1. ้—ฒ่Š ````` ็”จๆˆท๏ผšไฝ ๅฅฝ,ไฝ ๅซไป€ไนˆๅๅญ— Orion-14B๏ผšไฝ ๅฅฝ!ๆˆ‘ๆ˜ฏไธ€ไธชไบบๅทฅๆ™บ่ƒฝๅŠฉๆ‰‹,ๆฒกๆœ‰ๅ›บๅฎš็š„ๅๅญ—ใ€‚ไฝ ๅฏไปฅ้šๆ„็งฐๅ‘ผๆˆ‘ใ€‚ๆœ‰ไป€ไนˆๆˆ‘ๅฏไปฅๅธฎๅŠฉไฝ ็š„ๅ—? ็”จๆˆท๏ผš่ฎฒไธชๆ•…ไบ‹ Orion-14B๏ผšไปŽๅ‰ๆœ‰ไธ€ไธชๅฐ็”ทๅญฉๅซๆฐๅ…‹,ไป–ไฝๅœจไธ€ไธชๅฐๆ‘ๅบ„้‡Œใ€‚ๆฐๅ…‹้žๅธธๅ–œๆฌขๅ†’้™ฉๅ’ŒๆŽข็ดข,ๆ€ปๆ˜ฏๆขฆๆƒณ็€่ƒฝๅคŸๅ‘็Žฐไธ€ไบ›็ฅžๅฅ‡็š„ไบ‹ๆƒ…ใ€‚ ๆœ‰ไธ€ๅคฉ,ๆฐๅ…‹ๅฌ่ฏดๅœจ้™„่ฟ‘็š„ๆฃฎๆž—ๆทฑๅค„ๆœ‰ไธ€ๅบงไผ ่ฏดไธญ็š„้ญ”ๆณ•ๅŸŽๅ ก,้‡Œ้ขไฝ็€ไธ€ไธช้‚ชๆถ็š„ๅทจไบบใ€‚่ฟ™ไธชๅทจไบบ็š„ๅๅญ—ๅซๆ ผ้‡Œๅง†,ไป–่ขซๅ›ฐๅœจๅŸŽๅ กไธญ,ๆ— ๆณ•็ฆปๅผ€ใ€‚ ๆฐๅ…‹ๅ†ณๅฎš่ฆๅŽป่งฃๆ•‘่ฟ™ไธชๅทจไบบ,ๅ› ไธบไป–็›ธไฟกๆ ผ้‡Œๅง†ไธ€ๅฎšๆœ‰่‡ชๅทฑ็š„ๅŽŸๅ› ่ขซๅ›ฐๅœจ้‚ฃ้‡Œใ€‚ไบŽๆ˜ฏ,ไป–ๅธฆ็€ๅ‹‡ๆฐ”ๅ’Œๅ†ณๅฟƒ,่ธไธŠไบ†ๅ‰ๅพ€้ญ”ๆณ•ๅŸŽๅ ก็š„ๆ—…็จ‹ใ€‚ ็ป่ฟ‡้•ฟๆ—ถ้—ด็š„่ท‹ๆถ‰,ๆฐๅ…‹็ปˆไบŽๆฅๅˆฐไบ†ๅŸŽๅ ก็š„ๅคง้—จๅ‰ใ€‚ไป–ๅฐๅฟƒ็ฟผ็ฟผๅœฐๆŽจๅผ€ๅคง้—จ,่ฟ›ๅ…ฅไบ†ไธ€ไธชๅ……ๆปก็ฅž็ง˜ๆฐ”ๆฏ็š„ๆˆฟ้—ดใ€‚ ๆˆฟ้—ด้‡Œๅผฅๆผซ็€้ป‘ๆš—็š„ๆฐ”ๆฏ,ไฝ†ๆฐๅ…‹ๅนถๆฒกๆœ‰่ขซๅ“ๅ€’ใ€‚ไป–ๅ‹‡ๆ•ขๅœฐๅ‘ๅŸŽๅ กๆทฑๅค„่ตฐๅŽป,ๆœ€็ปˆๆ‰พๅˆฐไบ†ๆ ผ้‡Œๅง†ใ€‚ ๆ ผ้‡Œๅง†ๅ‘Š่ฏ‰ๆฐๅ…‹,ไป–ๆ˜ฏ่ขซไธ€ไธช้‚ชๆถ็š„ๅฅณๅทซ่ฏ…ๅ’’็š„,ๅชๆœ‰้€š่ฟ‡่งฃๅผ€ๅ’’่ฏญๆ‰่ƒฝ่Žทๅพ—่‡ช็”ฑใ€‚ๆฐๅ…‹ๅ†ณๅฎš่ฆๅธฎๅŠฉๆ ผ้‡Œๅง†,ไป–ๅผ€ๅง‹ๅฏปๆ‰พ็บฟ็ดขๅ’Œ่งฃๅผ€ๅ’’่ฏญ็š„ๆ–นๆณ•ใ€‚ ็ป่ฟ‡ไธ€็•ชๅŠชๅŠ›,ๆฐๅ…‹็ปˆไบŽๆ‰พๅˆฐไบ†ไธ€ๆก้€šๅพ€ๅฅณๅทซ็š„็ง˜ๅฏ†ๅฎž้ชŒๅฎค็š„้“่ทฏใ€‚ไป–ๅœจ้‚ฃ้‡Œๅ‘็Žฐไบ†ๅฅณๅทซ็•™ไธ‹็š„้ญ”ๆณ•ไนฆ,ไนฆไธญ่ฎฐ่ฝฝไบ†่งฃๅผ€ๅ’’่ฏญ็š„ๆ–นๆณ•ใ€‚ ๆฐๅ…‹ๆŒ‰็…งไนฆไธŠๆ‰€ๅ†™็š„ๆญฅ้ชค่ฟ›่กŒๆ“ไฝœ,ๆˆๅŠŸๅœฐ่งฃๅผ€ไบ†ๆ ผ้‡Œๅง†่บซไธŠ็š„่ฏ…ๅ’’ใ€‚ๅทจไบบๆ„Ÿๆฟ€ไธๅทฒ,ไป–็ญ”ๅบ”ๅธฎๅŠฉๆฐๅ…‹ๅฎž็Žฐไป–็š„ๆ„ฟๆœ›ใ€‚ ไปŽๆญคไปฅๅŽ,ๆฐๅ…‹ๅ’Œๆ ผ้‡Œๅง†ๆˆไธบไบ†ๅฅฝๆœ‹ๅ‹,ไป–ไปฌไธ€่ตท็ปๅކไบ†่ฎธๅคšๆƒŠ้™ฉๅˆบๆฟ€็š„ๅ†’้™ฉ,ๅนถ็”จไป–ไปฌ็š„ๅ‹‡ๆฐ”ๅ’Œๆ™บๆ…งๆˆ˜่ƒœไบ†ๅ„็งๅ›ฐ้šพใ€‚ ่ฟ™ไธชๆ•…ไบ‹ๅ‘Š่ฏ‰ๆˆ‘ไปฌ,ๅช่ฆๆœ‰ๅ‹‡ๆฐ”ๅ’Œๅ†ณๅฟƒ,ๆˆ‘ไปฌๅฐฑ่ƒฝๅ…‹ๆœไธ€ๅˆ‡ๅ›ฐ้šพ,ๅฎž็Žฐ่‡ชๅทฑ็š„ๆขฆๆƒณใ€‚ ````` ### 4.4.2. ๆ—ฅ้Ÿฉ ````` ็”จๆˆท๏ผš่‡ชๅทฑใ‚’็ดนไป‹ใ—ใฆใใ ใ•ใ„ Orion-14B๏ผšใ“ใ‚“ใซใกใฏใ€็งใฎๅๅ‰ใฏChatMaxใงใ€OrionStarใซใ‚ˆใฃใฆ้–‹็™บใ•ใ‚ŒใŸAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚็งใฏใƒฆใƒผใ‚ถใƒผใซๆญฃ็ขบใงใ€ๅฎข่ฆณ็š„ใงใ€ๆœ‰็”จใชๅ›ž็ญ”ใ‚’ๆไพ›ใ—ใ€ๅฝผใ‚‰ใŒๅ•้กŒใ‚’่งฃๆฑบใ—ใ€ๆƒ…ๅ ฑใ‚’ๅ–ๅพ—ใ™ใ‚‹ใฎใ‚’ๅŠฉใ‘ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ ็”จๆˆท๏ผš์ž๊ธฐ์†Œ๊ฐœ๋ฅผ ํ•ด์ฃผ์„ธ์š”. Orion-14B๏ผš์•ˆ๋…•ํ•˜์„ธ์š”, ์ œ ์ด๋ฆ„์€ ChatMax์ž…๋‹ˆ๋‹ค. OrionStar์—์„œ ๊ฐœ๋ฐœํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ์ €๋Š” ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ์ •ํ™•ํ•˜๊ณ  ๊ฐ๊ด€์ ์ด๋ฉฐ ์œ ์šฉํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ •๋ณด๋ฅผ ์–ป๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ````` <a name="zh_declarations-license"></a><br> # 5. ๅฃฐๆ˜Žใ€ๅ่ฎฎ ## 5.1. ๅฃฐๆ˜Ž ๆˆ‘ไปฌๅผบ็ƒˆๅ‘ผๅๆ‰€ๆœ‰ไฝฟ็”จ่€…๏ผŒไธ่ฆๅˆฉ็”จ Orion-14B ๆจกๅž‹่ฟ›่กŒไปปไฝ•ๅฑๅฎณๅ›ฝๅฎถ็คพไผšๅฎ‰ๅ…จๆˆ–่ฟๆณ•็š„ๆดปๅŠจใ€‚ๅฆๅค–๏ผŒๆˆ‘ไปฌไนŸ่ฆๆฑ‚ไฝฟ็”จ่€…ไธ่ฆๅฐ† Orion-14B ๆจกๅž‹็”จไบŽๆœช็ป้€‚ๅฝ“ๅฎ‰ๅ…จๅฎกๆŸฅๅ’Œๅค‡ๆกˆ็š„ไบ’่”็ฝ‘ๆœๅŠกใ€‚ ๆˆ‘ไปฌๅธŒๆœ›ๆ‰€ๆœ‰็š„ไฝฟ็”จ่€…้ƒฝ่ƒฝ้ตๅฎˆ่ฟ™ไธชๅŽŸๅˆ™๏ผŒ็กฎไฟ็ง‘ๆŠ€็š„ๅ‘ๅฑ•่ƒฝๅœจ่ง„่Œƒๅ’Œๅˆๆณ•็š„็Žฏๅขƒไธ‹่ฟ›่กŒใ€‚ ๆˆ‘ไปฌๅทฒ็ปๅฐฝๆˆ‘ไปฌๆ‰€่ƒฝ๏ผŒๆฅ็กฎไฟๆจกๅž‹่ฎญ็ปƒ่ฟ‡็จ‹ไธญไฝฟ็”จ็š„ๆ•ฐๆฎ็š„ๅˆ่ง„ๆ€งใ€‚็„ถ่€Œ๏ผŒๅฐฝ็ฎกๆˆ‘ไปฌๅทฒ็ปๅšๅ‡บไบ†ๅทจๅคง็š„ๅŠชๅŠ›๏ผŒไฝ†็”ฑไบŽๆจกๅž‹ๅ’Œๆ•ฐๆฎ็š„ๅคๆ‚ๆ€ง๏ผŒไปๆœ‰ๅฏ่ƒฝๅญ˜ๅœจไธ€ไบ›ๆ— ๆณ•้ข„่ง็š„้—ฎ้ข˜ใ€‚ๅ› ๆญค๏ผŒๅฆ‚ๆžœ็”ฑไบŽไฝฟ็”จ Orion-14B ๅผ€ๆบๆจกๅž‹่€Œๅฏผ่‡ด็š„ไปปไฝ•้—ฎ้ข˜๏ผŒๅŒ…ๆ‹ฌไฝ†ไธ้™ไบŽๆ•ฐๆฎๅฎ‰ๅ…จ้—ฎ้ข˜ใ€ๅ…ฌๅ…ฑ่ˆ†่ฎบ้ฃŽ้™ฉ๏ผŒๆˆ–ๆจกๅž‹่ขซ่ฏฏๅฏผใ€ๆปฅ็”จใ€ไผ ๆ’ญๆˆ–ไธๅฝ“ๅˆฉ็”จๆ‰€ๅธฆๆฅ็š„ไปปไฝ•้ฃŽ้™ฉๅ’Œ้—ฎ้ข˜๏ผŒๆˆ‘ไปฌๅฐ†ไธๆ‰ฟๆ‹…ไปปไฝ•่ดฃไปปใ€‚ ## 5.2. ๅ่ฎฎ ็คพๅŒบไฝฟ็”จOrion-14B็ณปๅˆ—ๆจกๅž‹ - ไปฃ็ ่ฏท้ตๅพช [Apache License Version 2.0](./LICENSE)<br> - ๆจกๅž‹่ฏท้ตๅพช [Orion-14B็ณปๅˆ—ๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎ](./ModelsCommunityLicenseAgreement) <a name="zh_company-introduction"></a><br> # 6. ไผไธšไป‹็ป ็ŒŽๆˆทๆ˜Ÿ็ฉบ๏ผˆOrionStar๏ผ‰ๆ˜ฏไธ€ๅฎถๅ…จ็ƒ้ข†ๅ…ˆ็š„ๆœๅŠกๆœบๅ™จไบบ่งฃๅ†ณๆ–นๆกˆๅ…ฌๅธ๏ผŒๆˆ็ซ‹ไบŽ2016ๅนด9ๆœˆใ€‚็ŒŽๆˆทๆ˜Ÿ็ฉบ่‡ดๅŠ›ไบŽๅŸบไบŽไบบๅทฅๆ™บ่ƒฝๆŠ€ๆœฏๆ‰“้€ ไธ‹ไธ€ไปฃ้ฉๅ‘ฝๆ€งๆœบๅ™จไบบ๏ผŒไฝฟไบบไปฌ่ƒฝๅคŸๆ‘†่„ฑ้‡ๅค็š„ไฝ“ๅŠ›ๅŠณๅŠจ๏ผŒไฝฟไบบ็ฑป็š„ๅทฅไฝœๅ’Œ็”Ÿๆดปๆ›ดๅŠ ๆ™บ่ƒฝๅ’Œๆœ‰่ถฃ๏ผŒ้€š่ฟ‡ๆŠ€ๆœฏไฝฟ็คพไผšๅ’Œไธ–็•Œๅ˜ๅพ—ๆ›ดๅŠ ็พŽๅฅฝใ€‚ ็ŒŽๆˆทๆ˜Ÿ็ฉบๆ‹ฅๆœ‰ๅฎŒๅ…จ่‡ชไธปๅผ€ๅ‘็š„ๅ…จ้“พๆกไบบๅทฅๆ™บ่ƒฝๆŠ€ๆœฏ๏ผŒๅฆ‚่ฏญ้Ÿณไบคไบ’ๅ’Œ่ง†่ง‰ๅฏผ่ˆชใ€‚ๅฎƒๆ•ดๅˆไบ†ไบงๅ“ๅผ€ๅ‘่ƒฝๅŠ›ๅ’ŒๆŠ€ๆœฏๅบ”็”จ่ƒฝๅŠ›ใ€‚ๅŸบไบŽOrionๆœบๆขฐ่‡‚ๅนณๅฐ๏ผŒๅฎƒๆŽจๅ‡บไบ†ORION STAR AI Robot Greetingใ€AI Robot Greeting Miniใ€Luckiใ€Coffee Master็ญ‰ไบงๅ“๏ผŒๅนถๅปบ็ซ‹ไบ†Orionๆœบๅ™จไบบ็š„ๅผ€ๆ”พๅนณๅฐOrionOSใ€‚้€š่ฟ‡ไธบ **็œŸๆญฃๆœ‰็”จ็š„ๆœบๅ™จไบบ่€Œ็”Ÿ** ็š„็†ๅฟตๅฎž่ทต๏ผŒๅฎƒ้€š่ฟ‡AIๆŠ€ๆœฏไธบๆ›ดๅคšไบบ่ต‹่ƒฝใ€‚ ๅ‡ญๅ€Ÿ7ๅนดAI็ป้ชŒ็งฏ็ดฏ๏ผŒ็ŒŽๆˆทๆ˜Ÿ็ฉบๅทฒๆŽจๅ‡บ็š„ๅคงๆจกๅž‹ๆทฑๅบฆๅบ”็”จโ€œ่š่จ€โ€๏ผŒๅนถ้™†็ปญ้ขๅ‘่กŒไธšๅฎขๆˆทๆไพ›ๅฎšๅˆถๅŒ–AIๅคงๆจกๅž‹ๅ’จ่ฏขไธŽๆœๅŠก่งฃๅ†ณๆ–นๆกˆ๏ผŒ็œŸๆญฃๅธฎๅŠฉๅฎขๆˆทๅฎž็Žฐไผไธš็ป่ฅๆ•ˆ็އ้ข†ๅ…ˆๅŒ่กŒ็›ฎๆ ‡ใ€‚ **็ŒŽๆˆทๆ˜Ÿ็ฉบๅ…ทๅค‡ๅ…จ้“พๆกๅคงๆจกๅž‹ๅบ”็”จ่ƒฝๅŠ›็š„ๆ ธๅฟƒไผ˜ๅŠฟ**๏ผŒๅŒ…ๆ‹ฌๆ‹ฅๆœ‰ไปŽๆตท้‡ๆ•ฐๆฎๅค„็†ใ€ๅคงๆจกๅž‹้ข„่ฎญ็ปƒใ€ไบŒๆฌก้ข„่ฎญ็ปƒใ€ๅพฎ่ฐƒ(Fine-tune)ใ€Prompt Engineering ใ€Agentๅผ€ๅ‘็š„ๅ…จ้“พๆก่ƒฝๅŠ›ๅ’Œ็ป้ชŒ็งฏ็ดฏ๏ผ›ๆ‹ฅๆœ‰ๅฎŒๆ•ด็š„็ซฏๅˆฐ็ซฏๆจกๅž‹่ฎญ็ปƒ่ƒฝๅŠ›๏ผŒๅŒ…ๆ‹ฌ็ณป็ปŸๅŒ–็š„ๆ•ฐๆฎๅค„็†ๆต็จ‹ๅ’Œๆ•ฐ็™พๅผ GPU็š„ๅนถ่กŒๆจกๅž‹่ฎญ็ปƒ่ƒฝๅŠ›๏ผŒ็Žฐๅทฒๅœจๅคงๆ”ฟๅŠกใ€ไบ‘ๆœๅŠกใ€ๅ‡บๆตท็”ตๅ•†ใ€ๅฟซๆถˆ็ญ‰ๅคšไธช่กŒไธšๅœบๆ™ฏ่ฝๅœฐใ€‚ ***ๆฌข่ฟŽๆœ‰ๅคงๆจกๅž‹ๅบ”็”จ่ฝๅœฐ้œ€ๆฑ‚็š„ไผไธš่”็ณปๆˆ‘ไปฌ่ฟ›่กŒๅ•†ๅŠกๅˆไฝœ***<br> **ๅ’จ่ฏข็”ต่ฏ:** 400-898-7779<br> **็”ตๅญ้‚ฎ็ฎฑ:** [email protected] <div align="center"> <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" /> </div>
sosoai/Orion-14B-Chat-safetensors
sosoai
2024-01-25T02:08:59Z
7
1
transformers
[ "transformers", "pytorch", "safetensors", "orion", "text-generation", "code", "model", "llm", "conversational", "custom_code", "en", "zh", "ja", "ko", "autotrain_compatible", "region:us" ]
text-generation
2024-01-24T23:44:38Z
--- language: - en - zh - ja - ko metrics: - accuracy pipeline_tag: text-generation tags: - code - model - llm --- <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <div align="center"> <img src="./assets/imgs/orion_start.PNG" alt="logo" width="50%" /> </div> <div align="center"> <h1> Orion-14B </h1> </div> <div align="center"> <div align="center"> <b>๐ŸŒEnglish</b> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/main/README_zh.md" target="_blank">๐Ÿ‡จ๐Ÿ‡ณไธญๆ–‡</a> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/main/README_ja.md" target="_blank">๐Ÿ‡ฏ๐Ÿ‡ตๆ—ฅๆœฌ่ชž</a> | <a href="https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/main/README_ko.md" target="_blank">๐Ÿ‡ฐ๐Ÿ‡ทํ•œ๊ตญ์–ด</a> </div> <h4 align="center"> <p> ๐Ÿค— <a href="https://huggingface.co/OrionStarAI" target="_blank">HuggingFace Mainpage</a> | ๐Ÿค– <a href="https://modelscope.cn/organization/OrionStarAI" target="_blank">ModelScope Mainpage</a><br>๐ŸŽฌ <a href="https://huggingface.co/spaces/OrionStarAI/Orion-14B-App-Demo" target="_blank">HuggingFace Demo</a> | ๐ŸŽซ <a href="https://modelscope.cn/studios/OrionStarAI/Orion-14B-App-Demo/summary" target="_blank">ModelScope Demo</a><br>๐Ÿ˜บ <a href="https://github.com/OrionStarAI/Orion" target="_blank">GitHub</a><br>๐Ÿ“– <a href="https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf" target="_blank">Tech Report</a> <p> </h4> </div> # Table of Contents - [๐Ÿ“– Model Introduction](#model-introduction) - [๐Ÿ”— Model Download](#model-download) - [๐Ÿ”– Model Benchmark](#model-benchmark) - [๐Ÿ“Š Model Inference](#model-inference) - [๐Ÿ“œ Declarations & License](#declarations-license) - [๐Ÿฅ‡ Company Introduction](#company-introduction) <a name="model-introduction"></a><br> # 1. Model Introduction - Orion-14B series models are open-source multilingual large language models trained from scratch by OrionStarAI. The base model is trained on 2.5T multilingual corpus, including Chinese, English, Japanese, Korean, etc, and it exhibits superior performance in these languages. For details, please refer to [tech report](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf). - The Orion-14B series models exhibit the following features: - Among models with 20B-parameter scale level, Orion-14B-Base model shows outstanding performance in comprehensive evaluations. - Strong multilingual capabilities, significantly outperforming in Japanese and Korean testsets. - The fine-tuned models demonstrate strong adaptability, excelling in human-annotated blind tests. - The long-chat version supports extremely long texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k. - The quantized versions reduce model size by 70%, improve inference speed by 30%, with performance loss less than 1%. <table style="border-collapse: collapse; width: 100%;"> <tr> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/opencompass_en.png" alt="opencompass" style="width: 100%; height: auto;"> </td> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/model_cap_en.png" alt="modelcap" style="width: 100%; height: auto;"> </td> </tr> </table> - Orion-14B series models including: - **Orion-14B-Base:** A multilingual large language foundational model with 14 billion parameters, pretrained on a diverse dataset of 2.5 trillion tokens. - **Orion-14B-Chat:** A chat-model fine-tuned on a high-quality corpus aims to provide an excellence interactive experience for users in the large model community. - **Orion-14B-LongChat:** The long-context version excels at handling extremely lengthy texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k. - **Orion-14B-Chat-RAG:** A chat-model fine-tuned on a custom retrieval augmented generation dataset, achieving superior performance in retrieval augmented generation tasks. - **Orion-14B-Chat-Plugin:** A chat-model specifically tailored for plugin and function calling tasks, ideal for agent-related scenarios where the LLM acts as a plugin and function call system. - **Orion-14B-Base-Int4:** A quantized base model utilizing 4-bit integer weights. It significantly reduces the model size by 70% and increases the inference speed by 30% while incurring a minimal performance loss of only 1%. - **Orion-14B-Chat-Int4:** A quantized chat model utilizing 4-bit integer weights. <a name="model-download"></a><br> # 2. Model Download Model release and download links are provided in the table below: | Model Name | HuggingFace Download Links | ModelScope Download Links | |-------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | โšพOrion-14B-Base | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) | | ๐Ÿ˜›Orion-14B-Chat | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) | | ๐Ÿ“ƒOrion-14B-LongChat | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) | | ๐Ÿ”ŽOrion-14B-Chat-RAG | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) | | ๐Ÿ”ŒOrion-14B-Chat-Plugin | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary) | | ๐Ÿ’ผOrion-14B-Base-Int4 | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) | | ๐Ÿ“ฆOrion-14B-Chat-Int4 | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) | <a name="model-benchmark"></a><br> # 3. Model Benchmarks ## 3.1. Base Model Orion-14B-Base Benchmarks ### 3.1.1. LLM evaluation results on examination and professional knowledge | Model | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 | | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 | | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 | | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 | | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 | | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** | ### 3.1.2. LLM evaluation results on language understanding and common knowledge | Model |RACE-middle|RACE-high |HellaSwag | PIQA | Lambada | WSC | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 | | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 | | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 | | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 | | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 | | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** | ### 3.1.3. LLM evaluation results of OpenCompass testsets | Model | Average | Examination | Language | Knowledge | Understanding | Reasoning | |------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 | | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 | | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 | | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 | | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 | |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** | ### 3.1.4. Comparison of LLM performances on Japanese testsets | Model |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM | |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 | | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 | | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 | | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 | | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 | | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 | | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 | | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 | | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** | ### 3.1.5. Comparison of LLM performances on Korean testsets. n = 0 and n = 5 stand for n-shot prompts used in the evaluation |Model | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5| |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 | | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 | | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 | | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 | | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 | | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 | |**Orion-14B-Chat**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**| ### 3.1.6. Multilingual evaluation | Model | Train Lang | Japanese | Korean | Chinese | English | |--------------------|------------|----------|----------|----------|----------| | PLaMo-13B | En,Jp | 52.3 | * | * | * | | Weblab-10B | En,Jp | 50.7 | * | * | * | | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * | | StableLM-jp-7B | En,Jp | 51.1 | * | * | * | | KoGPT-6B | En,Ko | * | 70.1 | * | * | | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * | | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 | | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 | | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 | | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** | | **Orion-14B-Chat** | Multi | **69.1** | **79.5** | **67.9** | 67.3 | ## 3.2. Chat Model Orion-14B-Chat Benchmarks ### 3.2.1. Chat model subjective evaluation of MTBench | Model | First-Turn | Second-Turn | **Average** | |----------------------|----------|----------|----------| | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 | | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 | | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 | | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 | | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** | \* use vllm for inference ### 3.2.2. Chat model subjective evaluation of AlignBench | Model | Math. | Logi. | Basic. | Chi. | Comp. | Writ. | Role. | Prof. |**Avg.**| |--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 | | Qwen-14B-Chat |**4.91**|**4.71**|**6.90**| 6.36 | 6.74 | 6.64 | 6.59 | 6.56 |**5.72**| | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 | | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 |**7.18**| 6.19 | 6.49 | 6.22 | 4.96 | | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 |**6.57**| 7.16 |**7.36**|**7.16**|**6.99**| 5.51 | \* use vllm for inference ## 3.3. LongChat Model Orion-14B-LongChat Benchmarks ### 3.3.1. LongChat evaluation of LongBench | Model | NarrativeQA|MultiFieldQA-en|MultiFieldQA-zh| DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT |RepoBench-P| |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 | | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 | | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 | | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** | | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 | ## 3.4. Chat RAG Model Benchmarks ### 3.4.1. LLM evaluation results of self-built RAG testsets |Model|Effectiveness of Response(Keyword)|*Effectiveness of Response๏ผˆsubjective evaluation๏ผ‰|Quoting Ability|Fallback Ability|*AutoQA|*Data Extraction| |---------------------|------|------|------|------|------|------| | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 | | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 | | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 | | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 | | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 | \* means manual assessment ## 3.5. Chat Plugin Model Orion-14B-Chat-Plugin Benchmarks ### 3.5.1. LLM evaluation results of self-built plugin testsets |Model |Intent Recognition with Full Params |Intent Recognition with Missing Params |Non-Plugin Invocation Recognition | |-----------------------|--------|-----------|--------| | Baichuan2-13B-Chat | 25 | 0 | 0 | | Qwen-14B-Chat | 55 | 0 | 50 | | GPT-4 | **95** | 52.38 | 70 | | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** | ## 3.6. Quantized Model Orion-14B-Base-Int4 Benchmarks ### 3.6.1. Comparison of before and after quantization |Model |Size(GB)|Inference Speed(tokens/s)|C-Eval|CMMLU|MMLU|RACE|HellaSwag| |-------------------------|-------|-----|------|------|------|------|------| | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 | | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 | <a name="model-inference"></a><br> # 4. Model Inference Model weights, source code, and configuration needed for inference are published on Hugging Face, and the download link is available in the table at the beginning of this document. We demonstrate various inference methods here, and the program will automatically download the necessary resources from Hugging Face. ## 4.1. Python Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B") messages = [{"role": "user", "content": "Hello, what is your name? "}] response = model.chat(tokenizer, messages, streaming=False) print(response) ``` In the above Python code, the model is loaded with `device_map='auto'` to utilize all available GPUs. To specify the device, you can use something like `export CUDA_VISIBLE_DEVICES=0,1` (using GPUs 0 and 1). ## 4.2. Command Line Tool ```shell CUDA_VISIBLE_DEVICES=0 python cli_demo.py ``` This command-line tool is designed for chat scenarios, and thus, it does not support calling the base model. ## 4.3. Direct Script Inference ```shell # base model CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt hello # chat model CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt hi ``` ## 4.4 Example Output ### 4.4.1. Casual Chat ````` User: Hello Orion-14B: Hello! How can I help you today? If you have any questions or need assistance, feel free to ask. User: What functions do you have? Orion-14B: As an AI language model, I have a wide range of functions and capabilities, including but not limited to: Answering general knowledge questions: I can provide information on various topics such as history, science, geography, and more. Providing definitions and explanations: I can explain complex concepts and provide definitions for words and phrases. Assisting with tasks: I can help with simple tasks like setting reminders, converting units of measurement, and even ordering food from restaurants. Generating text: I can write short stories, essays, articles, and other types of content based on prompts given to me. Translating languages: I can translate text from one language to another. Chatting: I can engage in conversation with users and respond to their queries in a conversational manner. Summarizing long texts: I can summarize longer texts like articles, books, and research papers. Generating random numbers and names: I can generate random numbers within a specified range and also suggest names based on certain criteria. Playing games: I can play simple games like Hangman, Trivia, and more. Providing recommendations: I can recommend movies, music, books, and other forms of entertainment based on user preferences. These are just some of the many functions that I am capable of performing. If you have a specific task in mind, feel free to ask me about it. User: Tell me a joke. Orion-14B: Sure, here's a classic one-liner: Why don't scientists trust atoms? Because they make up everything. ````` ### 4.4.2. Japanese & Korean Chat ````` User๏ผš่‡ชๅทฑใ‚’็ดนไป‹ใ—ใฆใใ ใ•ใ„ Orion-14B๏ผšใ“ใ‚“ใซใกใฏใ€็งใฎๅๅ‰ใฏChatMaxใงใ€OrionStarใซใ‚ˆใฃใฆ้–‹็™บใ•ใ‚ŒใŸAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚็งใฏใƒฆใƒผใ‚ถใƒผใซๆญฃ็ขบใงใ€ๅฎข่ฆณ็š„ใงใ€ๆœ‰็”จใชๅ›ž็ญ”ใ‚’ๆไพ›ใ—ใ€ๅฝผใ‚‰ใŒๅ•้กŒใ‚’่งฃๆฑบใ—ใ€ๆƒ…ๅ ฑใ‚’ๅ–ๅพ—ใ™ใ‚‹ใฎใ‚’ๅŠฉใ‘ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ User๏ผš์ž๊ธฐ์†Œ๊ฐœ๋ฅผ ํ•ด์ฃผ์„ธ์š”. Orion-14B๏ผš์•ˆ๋…•ํ•˜์„ธ์š”, ์ œ ์ด๋ฆ„์€ ChatMax์ž…๋‹ˆ๋‹ค. OrionStar์—์„œ ๊ฐœ๋ฐœํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ์ €๋Š” ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ์ •ํ™•ํ•˜๊ณ  ๊ฐ๊ด€์ ์ด๋ฉฐ ์œ ์šฉํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ •๋ณด๋ฅผ ์–ป๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ````` <a name="declarations-license"></a><br> # 5. Declarations, License ## 5.1. Declarations We strongly urge all users not to use the Orion-14B model for any activities that may harm national or social security or violate the law. Additionally, we request users not to use the Orion-14B model for internet services without proper security review and filing. We hope all users abide by this principle to ensure that technological development takes place in a regulated and legal environment. We have done our best to ensure the compliance of the data used in the model training process. However, despite our significant efforts, unforeseen issues may still arise due to the complexity of the model and data. Therefore, if any problems arise due to the use of the Orion-14B open-source model, including but not limited to data security issues, public opinion risks, or any risks and issues arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility. ## 5.2. License Community use of the Orion-14B series models - For code, please comply with [Apache License Version 2.0](./LICENSE)<br> - For model, please comply with [ใ€Orion-14B Seriesใ€‘ Models Community License Agreement](./ModelsCommunityLicenseAgreement) <a name="company-introduction"></a><br> # 6. Company Introduction OrionStar is a leading global service robot solutions company, founded in September 2016. OrionStar is dedicated to using artificial intelligence technology to create the next generation of revolutionary robots, allowing people to break free from repetitive physical labor and making human work and life more intelligent and enjoyable. Through technology, OrionStar aims to make society and the world a better place. OrionStar possesses fully self-developed end-to-end artificial intelligence technologies, such as voice interaction and visual navigation. It integrates product development capabilities and technological application capabilities. Based on the Orion robotic arm platform, it has launched products such as OrionStar AI Robot Greeting, AI Robot Greeting Mini, Lucki, Coffee Master, and established the open platform OrionOS for Orion robots. Following the philosophy of "Born for Truly Useful Robots", OrionStar empowers more people through AI technology. **The core strengths of OrionStar lies in possessing end-to-end AI application capabilities,** including big data preprocessing, large model pretraining, fine-tuning, prompt engineering, agent, etc. With comprehensive end-to-end model training capabilities, including systematic data processing workflows and the parallel model training capability of hundreds of GPUs, it has been successfully applied in various industry scenarios such as government affairs, cloud services, international e-commerce, and fast-moving consumer goods. Companies with demands for deploying large-scale model applications are welcome to contact us.<br> **Enquiry Hotline: 400-898-7779**<br> **E-mail: [email protected]** <div align="center"> <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" /> </div> # ็›ฎๅฝ• - [๐Ÿ“– ๆจกๅž‹ไป‹็ป](#zh_model-introduction) - [๐Ÿ”— ไธ‹่ฝฝ่ทฏๅพ„](#zh_model-download) - [๐Ÿ”– ่ฏ„ไผฐ็ป“ๆžœ](#zh_model-benchmark) - [๐Ÿ“Š ๆจกๅž‹ๆŽจ็†](#zh_model-inference) - [๐Ÿ“œ ๅฃฐๆ˜Žๅ่ฎฎ](#zh_declarations-license) - [๐Ÿฅ‡ ไผไธšไป‹็ป](#zh_company-introduction) <a name="zh_model-introduction"></a><br> # 1. ๆจกๅž‹ไป‹็ป - Orion-14B-Baseๆ˜ฏไธ€ไธชๅ…ทๆœ‰140ไบฟๅ‚ๆ•ฐ็š„ๅคš่ฏญ็งๅคงๆจกๅž‹๏ผŒ่ฏฅๆจกๅž‹ๅœจไธ€ไธชๅŒ…ๅซ2.5ไธ‡ไบฟtoken็š„ๅคšๆ ทๅŒ–ๆ•ฐๆฎ้›†ไธŠ่ฟ›่กŒไบ†่ฎญ็ปƒ๏ผŒๆถต็›–ไบ†ไธญๆ–‡ใ€่‹ฑ่ฏญใ€ๆ—ฅ่ฏญใ€้Ÿฉ่ฏญ็ญ‰ๅคš็ง่ฏญ่จ€ใ€‚ๅœจๅคš่ฏญ่จ€็Žฏๅขƒไธ‹็š„ไธ€็ณปๅˆ—ไปปๅŠกไธญๅฑ•็Žฐๅ‡บๅ“่ถŠ็š„ๆ€ง่ƒฝใ€‚ๅœจไธปๆต็š„ๅ…ฌๅผ€ๅŸบๅ‡†่ฏ„ๆต‹ไธญ๏ผŒOrion-14B็ณปๅˆ—ๆจกๅž‹่กจ็Žฐไผ˜ๅผ‚๏ผŒๅคš้กนๆŒ‡ๆ ‡ๆ˜พ่‘—่ถ…่ถŠๅŒ็ญ‰ๅ‚ๆ•ฐๅŸบๆœฌ็š„ๅ…ถไป–ๆจกๅž‹ใ€‚ๅ…ทไฝ“ๆŠ€ๆœฏ็ป†่Š‚่ฏทๅ‚่€ƒ[ๆŠ€ๆœฏๆŠฅๅ‘Š](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf)ใ€‚ - Orion-14B็ณปๅˆ—ๅคงๆจกๅž‹ๆœ‰ไปฅไธ‹ๅ‡ ไธช็‰น็‚น๏ผš - ๅŸบๅบง20Bๅ‚ๆ•ฐ็บงๅˆซๅคงๆจกๅž‹็ปผๅˆ่ฏ„ๆต‹ๆ•ˆๆžœ่กจ็Žฐไผ˜ๅผ‚ - ๅคš่ฏญ่จ€่ƒฝๅŠ›ๅผบ๏ผŒๅœจๆ—ฅ่ฏญใ€้Ÿฉ่ฏญๆต‹่ฏ•้›†ไธŠๆ˜พ่‘—้ข†ๅ…ˆ - ๅพฎ่ฐƒๆจกๅž‹้€‚ๅบ”ๆ€งๅผบ๏ผŒๅœจไบบ็ฑปๆ ‡ๆณจ็›ฒๆต‹ไธญ๏ผŒ่กจ็Žฐ็ชๅ‡บ - ้•ฟไธŠไธ‹ๆ–‡็‰ˆๆœฌๆ”ฏๆŒ่ถ…้•ฟๆ–‡ๆœฌ๏ผŒๅœจ200k token้•ฟๅบฆไธŠๆ•ˆๆžœไผ˜ๅผ‚๏ผŒๆœ€้•ฟๅฏๆ”ฏๆŒๅฏ่พพ320k - ้‡ๅŒ–็‰ˆๆœฌๆจกๅž‹ๅคงๅฐ็ผฉๅฐ70%๏ผŒๆŽจ็†้€Ÿๅบฆๆๅ‡30%๏ผŒๆ€ง่ƒฝๆŸๅคฑๅฐไบŽ1% <table style="border-collapse: collapse; width: 100%;"> <tr> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/opencompass_zh.png" alt="opencompass" style="width: 100%; height: auto;"> </td> <td style="border: none; padding: 10px; box-sizing: border-box;"> <img src="./assets/imgs/model_cap_zh.png" alt="modelcap" style="width: 100%; height: auto;"> </td> </tr> </table> - ๅ…ทไฝ“่€Œ่จ€๏ผŒOrion-14B็ณปๅˆ—ๅคง่ฏญ่จ€ๆจกๅž‹ๅŒ…ๅซ: - **Orion-14B-Base:** ๅŸบไบŽ2.5ไธ‡ไบฟtokensๅคšๆ ทๅŒ–ๆ•ฐๆฎ้›†่ฎญ็ปƒๅค„็š„140ไบฟๅ‚ๆ•ฐ้‡็บง็š„ๅคš่ฏญ่จ€ๅŸบๅบงๆจกๅž‹ใ€‚ - **Orion-14B-Chat:** ๅŸบไบŽ้ซ˜่ดจ้‡่ฏญๆ–™ๅบ“ๅพฎ่ฐƒ็š„ๅฏน่ฏ็ฑปๆจกๅž‹๏ผŒๆ—จๅœจไธบๅคงๆจกๅž‹็คพๅŒบๆไพ›ๆ›ดๅฅฝ็š„็”จๆˆทไบคไบ’ไฝ“้ชŒใ€‚ - **Orion-14B-LongChat:** ๅœจ200k token้•ฟๅบฆไธŠๆ•ˆๆžœไผ˜ๅผ‚๏ผŒๆœ€้•ฟๅฏๆ”ฏๆŒๅฏ่พพ320k๏ผŒๅœจ้•ฟๆ–‡ๆœฌ่ฏ„ไผฐ้›†ไธŠๆ€ง่ƒฝๆฏ”่‚ฉไธ“ๆœ‰ๆจกๅž‹ใ€‚ - **Orion-14B-Chat-RAG:** ๅœจไธ€ไธชๅฎšๅˆถ็š„ๆฃ€็ดขๅขžๅผบ็”Ÿๆˆๆ•ฐๆฎ้›†ไธŠ่ฟ›่กŒๅพฎ่ฐƒ็š„่Šๅคฉๆจกๅž‹๏ผŒๅœจๆฃ€็ดขๅขžๅผบ็”ŸๆˆไปปๅŠกไธญๅ–ๅพ—ไบ†ๅ“่ถŠ็š„ๆ€ง่ƒฝใ€‚ - **Orion-14B-Chat-Plugin:** ไธ“้—จ้’ˆๅฏนๆ’ไปถๅ’Œๅ‡ฝๆ•ฐ่ฐƒ็”จไปปๅŠกๅฎšๅˆถ็š„่Šๅคฉๆจกๅž‹๏ผŒ้žๅธธ้€‚็”จไบŽไฝฟ็”จไปฃ็†็š„็›ธๅ…ณๅœบๆ™ฏ๏ผŒๅ…ถไธญๅคง่ฏญ่จ€ๆจกๅž‹ๅ……ๅฝ“ๆ’ไปถๅ’Œๅ‡ฝๆ•ฐ่ฐƒ็”จ็ณป็ปŸใ€‚ - **Orion-14B-Base-Int4:** ไธ€ไธชไฝฟ็”จint4่ฟ›่กŒ้‡ๅŒ–็š„ๅŸบๅบงๆจกๅž‹ใ€‚ๅฎƒๅฐ†ๆจกๅž‹ๅคงๅฐๆ˜พ่‘—ๅ‡ๅฐไบ†70%๏ผŒๅŒๆ—ถๆ้ซ˜ไบ†ๆŽจ็†้€Ÿๅบฆ30%๏ผŒไป…ๅผ•ๅ…ฅไบ†1%็š„ๆœ€ๅฐๆ€ง่ƒฝๆŸๅคฑใ€‚ - **Orion-14B-Chat-Int4:** ไธ€ไธชไฝฟ็”จint4่ฟ›่กŒ้‡ๅŒ–็š„ๅฏน่ฏๆจกๅž‹ใ€‚ <a name="zh_model-download"></a><br> # 2. ไธ‹่ฝฝ่ทฏๅพ„ ๅ‘ๅธƒๆจกๅž‹ๅ’Œไธ‹่ฝฝ้“พๆŽฅ่งไธ‹่กจ๏ผš | ๆจกๅž‹ๅ็งฐ | HuggingFaceไธ‹่ฝฝ้“พๆŽฅ | ModelScopeไธ‹่ฝฝ้“พๆŽฅ | |---------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | โšพ ๅŸบๅบงๆจกๅž‹ | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) | | ๐Ÿ˜› ๅฏน่ฏๆจกๅž‹ | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) | | ๐Ÿ“ƒ ้•ฟไธŠไธ‹ๆ–‡ๆจกๅž‹ | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) | | ๐Ÿ”Ž ๆฃ€็ดขๅขžๅผบๆจกๅž‹ | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) | | ๐Ÿ”Œ ๆ’ไปถๆจกๅž‹ | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary)| | ๐Ÿ’ผ ๅŸบๅบงInt4้‡ๅŒ–ๆจกๅž‹ | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) | | ๐Ÿ“ฆ ๅฏน่ฏInt4้‡ๅŒ–ๆจกๅž‹ | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) | <a name="zh_model-benchmark"></a><br> # 3. ่ฏ„ไผฐ็ป“ๆžœ ## 3.1. ๅŸบๅบงๆจกๅž‹Orion-14B-Base่ฏ„ไผฐ ### 3.1.1. ไธ“ไธš็Ÿฅ่ฏ†ไธŽ่ฏ•้ข˜่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 | | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 | | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 | | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 | | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 | | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** | ### 3.1.2. ็†่งฃไธŽ้€š่ฏ†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ |RACE-middle|RACE-high| HellaSwag| PIQA | Lambada | WSC | |--------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 | | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 | | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 | | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 | | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 | | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** | ### 3.1.3. OpenCompass่ฏ„ๆต‹้›†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | Average | Examination | Language | Knowledge | Understanding | Reasoning | |------------------|----------|----------|----------|----------|----------|----------| | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 | | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 | | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 | | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 | | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 | |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** | ### 3.1.4. ๆ—ฅ่ฏญๆต‹่ฏ•้›†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM | |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 | | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 | | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 | | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 | | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 | | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 | | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 | | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 | | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** | ### 3.1.5. ้Ÿฉ่ฏญๆต‹่ฏ•้›†n-shot่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5| |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 | | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 | | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 | | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 | | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 | | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 | |**Orion-14B-Base**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**| ### 3.1.6. ๅคš่ฏญ่จ€่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | Train Lang | Japanese | Korean | Chinese | English | |--------------------|------------|----------|----------|----------|----------| | PLaMo-13B | En,Jp | 52.3 | * | * | * | | Weblab-10B | En,Jp | 50.7 | * | * | * | | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * | | StableLM-jp-7B | En,Jp | 51.1 | * | * | * | | KoGPT-6B | En,Ko | * | 70.1 | * | * | | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * | | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 | | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 | | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 | | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** | | **Orion-14B-Base** | Multi | **69.1** | **79.5** | **67.9** | 67.3 | ## 3.2. ๅฏน่ฏๆจกๅž‹Orion-14B-Chat่ฏ„ไผฐ ### 3.2.1. ๅฏน่ฏๆจกๅž‹MTBenchไธป่ง‚่ฏ„ไผฐ | ๆจกๅž‹ๅ็งฐ | ็ฌฌไธ€่ฝฎ | ็ฌฌไบŒ่ฝฎ | **ๅนณๅ‡** | |----------------------|----------|----------|----------| | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 | | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 | | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 | | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 | | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** | \*่ฟ™้‡Œ่ฏ„ๆต‹ไฝฟ็”จvllm่ฟ›่กŒๆŽจ็† ### 3.2.2. ๅฏน่ฏๆจกๅž‹AlignBenchไธป่ง‚่ฏ„ไผฐ | ๆจกๅž‹ๅ็งฐ | ๆ•ฐๅญฆ่ƒฝๅŠ› | ้€ป่พ‘ๆŽจ็† | ๅŸบๆœฌ่ƒฝๅŠ› | ไธญๆ–‡็†่งฃ | ็ปผๅˆ้—ฎ็ญ” | ๅ†™ไฝœ่ƒฝๅŠ› | ่ง’่‰ฒๆ‰ฎๆผ” | ไธ“ไธš็Ÿฅ่ฏ† | **ๅนณๅ‡** | |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 | | Qwen-14B-Chat | **4.91** | **4.71** | **6.90** | 6.36 | 6.74 | 6.64 | 6.59 | 6.56 | **5.72** | | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 | | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 | **7.18** | 6.19 | 6.49 | 6.22 | 4.96 | | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 | **6.57** | 7.16 | **7.36** | **7.16** | **6.99** | 5.51 | \*่ฟ™้‡Œ่ฏ„ๆต‹ไฝฟ็”จvllm่ฟ›่กŒๆŽจ็† ## 3.3. ้•ฟไธŠไธ‹ๆ–‡ๆจกๅž‹Orion-14B-LongChat่ฏ„ไผฐ ### 3.3.1. ้•ฟไธŠไธ‹ๆ–‡ๆจกๅž‹LongBench่ฏ„ไผฐ | ๆจกๅž‹ๅ็งฐ | NarrativeQA| MultiFieldQA-en| MultiFieldQA-zh | DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT | RepoBench-P | |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 | | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 | | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 | | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** | | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 | ## 3.4. ๆฃ€็ดขๅขžๅผบๆจกๅž‹Orion-14B-Chat-RAG่ฏ„ไผฐ ### 3.4.1. ่‡ชๅปบๆฃ€็ดขๅขžๅผบๆต‹่ฏ•้›†่ฏ„ไผฐ็ป“ๆžœ |ๆจกๅž‹ๅ็งฐ|ๅ›žๅคๆ•ˆๆžœ(ๅ…ณ้”ฎๅญ—)|*ๅ›žๅคๆ•ˆๆžœ(ไธป่ง‚ๆ‰“ๅˆ†)|ๅผ•็”จ่ƒฝๅŠ›|ๅ…œๅบ•่ƒฝๅŠ›|*AutoQA|*ๆŠฝๅ–ๆ•ฐๆฎ| |---------------------|------|------|------|------|------|------| | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 | | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 | | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 | | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 | | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 | \* ่กจ็คบไบบๅทฅ่ฏ„ๅˆค็ป“ๆžœ ## 3.5. ๆ’ไปถๆจกๅž‹Orion-14B-Chat-Plugin่ฏ„ไผฐ ### 3.5.1. ่‡ชๅปบๆ’ไปถๆต‹่ฏ•้›†่ฏ„ไผฐ็ป“ๆžœ | ๆจกๅž‹ๅ็งฐ | ๅ…จๅ‚ๆ•ฐๆ„ๅ›พ่ฏ†ๅˆซ | ็ผบๅ‚ๆ•ฐๆ„ๅ›พ่ฏ†ๅˆซ | ้žๆ’ไปถ่ฐƒ็”จ่ฏ†ๅˆซ | |-----------------------|--------|-----------|--------| | Baichuan2-13B-Chat | 25 | 0 | 0 | | Qwen-14B-Chat | 55 | 0 | 50 | | GPT-4 | **95** | 52.38 | 70 | | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** | ## 3.6. ้‡ๅŒ–ๆจกๅž‹Orion-14B-Base-Int4่ฏ„ไผฐ ### 3.6.1. ้‡ๅŒ–ๅ‰ๅŽๆ•ดไฝ“ๅฏนๆฏ” |ๆจกๅž‹ๅ็งฐ|ๆจกๅž‹ๅคงๅฐ(GB)|ๆŽจ็†้€Ÿๅบฆ(ไปค็‰Œๆ•ฐ/็ง’)|C-Eval |CMMLU |MMLU |RACE | HellaSwag| |-------------------------|------|-----|------|------|------|------|------| | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 | | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 | <a name="zh_model-inference"></a><br> # 4. ๆจกๅž‹ๆŽจ็† ๆŽจ็†ๆ‰€้œ€็š„ๆจกๅž‹ๆƒ้‡ใ€ๆบ็ ใ€้…็ฝฎๅทฒๅ‘ๅธƒๅœจ Hugging Face๏ผŒไธ‹่ฝฝ้“พๆŽฅ่งๆœฌๆ–‡ๆกฃๆœ€ๅผ€ๅง‹็š„่กจๆ ผใ€‚ๆˆ‘ไปฌๅœจๆญค็คบ่Œƒๅคš็งๆŽจ็†ๆ–นๅผใ€‚็จ‹ๅบไผš่‡ชๅŠจไปŽ Hugging Face ไธ‹่ฝฝๆ‰€้œ€่ต„ๆบใ€‚ ## 4.1. Python ไปฃ็ ๆ–นๅผ ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B") messages = [{"role": "user", "content": "ไฝ ๅฅฝ! ไฝ ๅซไป€ไนˆๅๅญ—!"}] response = model.chat(tokenizer, messages, streaming=Flase) print(response) ``` ๅœจไธŠ่ฟฐไธคๆฎตไปฃ็ ไธญ๏ผŒๆจกๅž‹ๅŠ ่ฝฝๆŒ‡ๅฎš `device_map='auto'` ๏ผŒไผšไฝฟ็”จๆ‰€ๆœ‰ๅฏ็”จๆ˜พๅกใ€‚ๅฆ‚้œ€ๆŒ‡ๅฎšไฝฟ็”จ็š„่ฎพๅค‡๏ผŒๅฏไปฅไฝฟ็”จ็ฑปไผผ `export CUDA_VISIBLE_DEVICES=0,1`๏ผˆไฝฟ็”จไบ†0ใ€1ๅทๆ˜พๅก๏ผ‰็š„ๆ–นๅผๆŽงๅˆถใ€‚ ## 4.2. ๅ‘ฝไปค่กŒๅทฅๅ…ทๆ–นๅผ ```shell CUDA_VISIBLE_DEVICES=0 python cli_demo.py ``` ๆœฌๅ‘ฝไปค่กŒๅทฅๅ…ทๆ˜ฏไธบ Chat ๅœบๆ™ฏ่ฎพ่ฎก๏ผŒๅ› ๆญคๆˆ‘ไปฌไธๆ”ฏๆŒไฝฟ็”จ่ฏฅๅทฅๅ…ท่ฐƒ็”จ Base ๆจกๅž‹ใ€‚ ## 4.3. ่„šๆœฌ็›ดๆŽฅๆŽจ็† ```shell # base model CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt ไฝ ๅฅฝ,ไฝ ๅซไป€ไนˆๅๅญ— # chat model CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt ไฝ ๅฅฝ,ไฝ ๅซไป€ไนˆๅๅญ— ``` ## 4.4. ็คบไพ‹่พ“ๅ‡บ ### 4.4.1. ้—ฒ่Š ````` ็”จๆˆท๏ผšไฝ ๅฅฝ,ไฝ ๅซไป€ไนˆๅๅญ— Orion-14B๏ผšไฝ ๅฅฝ!ๆˆ‘ๆ˜ฏไธ€ไธชไบบๅทฅๆ™บ่ƒฝๅŠฉๆ‰‹,ๆฒกๆœ‰ๅ›บๅฎš็š„ๅๅญ—ใ€‚ไฝ ๅฏไปฅ้šๆ„็งฐๅ‘ผๆˆ‘ใ€‚ๆœ‰ไป€ไนˆๆˆ‘ๅฏไปฅๅธฎๅŠฉไฝ ็š„ๅ—? ็”จๆˆท๏ผš่ฎฒไธชๆ•…ไบ‹ Orion-14B๏ผšไปŽๅ‰ๆœ‰ไธ€ไธชๅฐ็”ทๅญฉๅซๆฐๅ…‹,ไป–ไฝๅœจไธ€ไธชๅฐๆ‘ๅบ„้‡Œใ€‚ๆฐๅ…‹้žๅธธๅ–œๆฌขๅ†’้™ฉๅ’ŒๆŽข็ดข,ๆ€ปๆ˜ฏๆขฆๆƒณ็€่ƒฝๅคŸๅ‘็Žฐไธ€ไบ›็ฅžๅฅ‡็š„ไบ‹ๆƒ…ใ€‚ ๆœ‰ไธ€ๅคฉ,ๆฐๅ…‹ๅฌ่ฏดๅœจ้™„่ฟ‘็š„ๆฃฎๆž—ๆทฑๅค„ๆœ‰ไธ€ๅบงไผ ่ฏดไธญ็š„้ญ”ๆณ•ๅŸŽๅ ก,้‡Œ้ขไฝ็€ไธ€ไธช้‚ชๆถ็š„ๅทจไบบใ€‚่ฟ™ไธชๅทจไบบ็š„ๅๅญ—ๅซๆ ผ้‡Œๅง†,ไป–่ขซๅ›ฐๅœจๅŸŽๅ กไธญ,ๆ— ๆณ•็ฆปๅผ€ใ€‚ ๆฐๅ…‹ๅ†ณๅฎš่ฆๅŽป่งฃๆ•‘่ฟ™ไธชๅทจไบบ,ๅ› ไธบไป–็›ธไฟกๆ ผ้‡Œๅง†ไธ€ๅฎšๆœ‰่‡ชๅทฑ็š„ๅŽŸๅ› ่ขซๅ›ฐๅœจ้‚ฃ้‡Œใ€‚ไบŽๆ˜ฏ,ไป–ๅธฆ็€ๅ‹‡ๆฐ”ๅ’Œๅ†ณๅฟƒ,่ธไธŠไบ†ๅ‰ๅพ€้ญ”ๆณ•ๅŸŽๅ ก็š„ๆ—…็จ‹ใ€‚ ็ป่ฟ‡้•ฟๆ—ถ้—ด็š„่ท‹ๆถ‰,ๆฐๅ…‹็ปˆไบŽๆฅๅˆฐไบ†ๅŸŽๅ ก็š„ๅคง้—จๅ‰ใ€‚ไป–ๅฐๅฟƒ็ฟผ็ฟผๅœฐๆŽจๅผ€ๅคง้—จ,่ฟ›ๅ…ฅไบ†ไธ€ไธชๅ……ๆปก็ฅž็ง˜ๆฐ”ๆฏ็š„ๆˆฟ้—ดใ€‚ ๆˆฟ้—ด้‡Œๅผฅๆผซ็€้ป‘ๆš—็š„ๆฐ”ๆฏ,ไฝ†ๆฐๅ…‹ๅนถๆฒกๆœ‰่ขซๅ“ๅ€’ใ€‚ไป–ๅ‹‡ๆ•ขๅœฐๅ‘ๅŸŽๅ กๆทฑๅค„่ตฐๅŽป,ๆœ€็ปˆๆ‰พๅˆฐไบ†ๆ ผ้‡Œๅง†ใ€‚ ๆ ผ้‡Œๅง†ๅ‘Š่ฏ‰ๆฐๅ…‹,ไป–ๆ˜ฏ่ขซไธ€ไธช้‚ชๆถ็š„ๅฅณๅทซ่ฏ…ๅ’’็š„,ๅชๆœ‰้€š่ฟ‡่งฃๅผ€ๅ’’่ฏญๆ‰่ƒฝ่Žทๅพ—่‡ช็”ฑใ€‚ๆฐๅ…‹ๅ†ณๅฎš่ฆๅธฎๅŠฉๆ ผ้‡Œๅง†,ไป–ๅผ€ๅง‹ๅฏปๆ‰พ็บฟ็ดขๅ’Œ่งฃๅผ€ๅ’’่ฏญ็š„ๆ–นๆณ•ใ€‚ ็ป่ฟ‡ไธ€็•ชๅŠชๅŠ›,ๆฐๅ…‹็ปˆไบŽๆ‰พๅˆฐไบ†ไธ€ๆก้€šๅพ€ๅฅณๅทซ็š„็ง˜ๅฏ†ๅฎž้ชŒๅฎค็š„้“่ทฏใ€‚ไป–ๅœจ้‚ฃ้‡Œๅ‘็Žฐไบ†ๅฅณๅทซ็•™ไธ‹็š„้ญ”ๆณ•ไนฆ,ไนฆไธญ่ฎฐ่ฝฝไบ†่งฃๅผ€ๅ’’่ฏญ็š„ๆ–นๆณ•ใ€‚ ๆฐๅ…‹ๆŒ‰็…งไนฆไธŠๆ‰€ๅ†™็š„ๆญฅ้ชค่ฟ›่กŒๆ“ไฝœ,ๆˆๅŠŸๅœฐ่งฃๅผ€ไบ†ๆ ผ้‡Œๅง†่บซไธŠ็š„่ฏ…ๅ’’ใ€‚ๅทจไบบๆ„Ÿๆฟ€ไธๅทฒ,ไป–็ญ”ๅบ”ๅธฎๅŠฉๆฐๅ…‹ๅฎž็Žฐไป–็š„ๆ„ฟๆœ›ใ€‚ ไปŽๆญคไปฅๅŽ,ๆฐๅ…‹ๅ’Œๆ ผ้‡Œๅง†ๆˆไธบไบ†ๅฅฝๆœ‹ๅ‹,ไป–ไปฌไธ€่ตท็ปๅކไบ†่ฎธๅคšๆƒŠ้™ฉๅˆบๆฟ€็š„ๅ†’้™ฉ,ๅนถ็”จไป–ไปฌ็š„ๅ‹‡ๆฐ”ๅ’Œๆ™บๆ…งๆˆ˜่ƒœไบ†ๅ„็งๅ›ฐ้šพใ€‚ ่ฟ™ไธชๆ•…ไบ‹ๅ‘Š่ฏ‰ๆˆ‘ไปฌ,ๅช่ฆๆœ‰ๅ‹‡ๆฐ”ๅ’Œๅ†ณๅฟƒ,ๆˆ‘ไปฌๅฐฑ่ƒฝๅ…‹ๆœไธ€ๅˆ‡ๅ›ฐ้šพ,ๅฎž็Žฐ่‡ชๅทฑ็š„ๆขฆๆƒณใ€‚ ````` ### 4.4.2. ๆ—ฅ้Ÿฉ ````` ็”จๆˆท๏ผš่‡ชๅทฑใ‚’็ดนไป‹ใ—ใฆใใ ใ•ใ„ Orion-14B๏ผšใ“ใ‚“ใซใกใฏใ€็งใฎๅๅ‰ใฏChatMaxใงใ€OrionStarใซใ‚ˆใฃใฆ้–‹็™บใ•ใ‚ŒใŸAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚็งใฏใƒฆใƒผใ‚ถใƒผใซๆญฃ็ขบใงใ€ๅฎข่ฆณ็š„ใงใ€ๆœ‰็”จใชๅ›ž็ญ”ใ‚’ๆไพ›ใ—ใ€ๅฝผใ‚‰ใŒๅ•้กŒใ‚’่งฃๆฑบใ—ใ€ๆƒ…ๅ ฑใ‚’ๅ–ๅพ—ใ™ใ‚‹ใฎใ‚’ๅŠฉใ‘ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ ็”จๆˆท๏ผš์ž๊ธฐ์†Œ๊ฐœ๋ฅผ ํ•ด์ฃผ์„ธ์š”. Orion-14B๏ผš์•ˆ๋…•ํ•˜์„ธ์š”, ์ œ ์ด๋ฆ„์€ ChatMax์ž…๋‹ˆ๋‹ค. OrionStar์—์„œ ๊ฐœ๋ฐœํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ์ €๋Š” ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ์ •ํ™•ํ•˜๊ณ  ๊ฐ๊ด€์ ์ด๋ฉฐ ์œ ์šฉํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ •๋ณด๋ฅผ ์–ป๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ````` <a name="zh_declarations-license"></a><br> # 5. ๅฃฐๆ˜Žใ€ๅ่ฎฎ ## 5.1. ๅฃฐๆ˜Ž ๆˆ‘ไปฌๅผบ็ƒˆๅ‘ผๅๆ‰€ๆœ‰ไฝฟ็”จ่€…๏ผŒไธ่ฆๅˆฉ็”จ Orion-14B ๆจกๅž‹่ฟ›่กŒไปปไฝ•ๅฑๅฎณๅ›ฝๅฎถ็คพไผšๅฎ‰ๅ…จๆˆ–่ฟๆณ•็š„ๆดปๅŠจใ€‚ๅฆๅค–๏ผŒๆˆ‘ไปฌไนŸ่ฆๆฑ‚ไฝฟ็”จ่€…ไธ่ฆๅฐ† Orion-14B ๆจกๅž‹็”จไบŽๆœช็ป้€‚ๅฝ“ๅฎ‰ๅ…จๅฎกๆŸฅๅ’Œๅค‡ๆกˆ็š„ไบ’่”็ฝ‘ๆœๅŠกใ€‚ ๆˆ‘ไปฌๅธŒๆœ›ๆ‰€ๆœ‰็š„ไฝฟ็”จ่€…้ƒฝ่ƒฝ้ตๅฎˆ่ฟ™ไธชๅŽŸๅˆ™๏ผŒ็กฎไฟ็ง‘ๆŠ€็š„ๅ‘ๅฑ•่ƒฝๅœจ่ง„่Œƒๅ’Œๅˆๆณ•็š„็Žฏๅขƒไธ‹่ฟ›่กŒใ€‚ ๆˆ‘ไปฌๅทฒ็ปๅฐฝๆˆ‘ไปฌๆ‰€่ƒฝ๏ผŒๆฅ็กฎไฟๆจกๅž‹่ฎญ็ปƒ่ฟ‡็จ‹ไธญไฝฟ็”จ็š„ๆ•ฐๆฎ็š„ๅˆ่ง„ๆ€งใ€‚็„ถ่€Œ๏ผŒๅฐฝ็ฎกๆˆ‘ไปฌๅทฒ็ปๅšๅ‡บไบ†ๅทจๅคง็š„ๅŠชๅŠ›๏ผŒไฝ†็”ฑไบŽๆจกๅž‹ๅ’Œๆ•ฐๆฎ็š„ๅคๆ‚ๆ€ง๏ผŒไปๆœ‰ๅฏ่ƒฝๅญ˜ๅœจไธ€ไบ›ๆ— ๆณ•้ข„่ง็š„้—ฎ้ข˜ใ€‚ๅ› ๆญค๏ผŒๅฆ‚ๆžœ็”ฑไบŽไฝฟ็”จ Orion-14B ๅผ€ๆบๆจกๅž‹่€Œๅฏผ่‡ด็š„ไปปไฝ•้—ฎ้ข˜๏ผŒๅŒ…ๆ‹ฌไฝ†ไธ้™ไบŽๆ•ฐๆฎๅฎ‰ๅ…จ้—ฎ้ข˜ใ€ๅ…ฌๅ…ฑ่ˆ†่ฎบ้ฃŽ้™ฉ๏ผŒๆˆ–ๆจกๅž‹่ขซ่ฏฏๅฏผใ€ๆปฅ็”จใ€ไผ ๆ’ญๆˆ–ไธๅฝ“ๅˆฉ็”จๆ‰€ๅธฆๆฅ็š„ไปปไฝ•้ฃŽ้™ฉๅ’Œ้—ฎ้ข˜๏ผŒๆˆ‘ไปฌๅฐ†ไธๆ‰ฟๆ‹…ไปปไฝ•่ดฃไปปใ€‚ ## 5.2. ๅ่ฎฎ ็คพๅŒบไฝฟ็”จOrion-14B็ณปๅˆ—ๆจกๅž‹ - ไปฃ็ ่ฏท้ตๅพช [Apache License Version 2.0](./LICENSE)<br> - ๆจกๅž‹่ฏท้ตๅพช [Orion-14B็ณปๅˆ—ๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎ](./ModelsCommunityLicenseAgreement) <a name="zh_company-introduction"></a><br> # 6. ไผไธšไป‹็ป ็ŒŽๆˆทๆ˜Ÿ็ฉบ๏ผˆOrionStar๏ผ‰ๆ˜ฏไธ€ๅฎถๅ…จ็ƒ้ข†ๅ…ˆ็š„ๆœๅŠกๆœบๅ™จไบบ่งฃๅ†ณๆ–นๆกˆๅ…ฌๅธ๏ผŒๆˆ็ซ‹ไบŽ2016ๅนด9ๆœˆใ€‚็ŒŽๆˆทๆ˜Ÿ็ฉบ่‡ดๅŠ›ไบŽๅŸบไบŽไบบๅทฅๆ™บ่ƒฝๆŠ€ๆœฏๆ‰“้€ ไธ‹ไธ€ไปฃ้ฉๅ‘ฝๆ€งๆœบๅ™จไบบ๏ผŒไฝฟไบบไปฌ่ƒฝๅคŸๆ‘†่„ฑ้‡ๅค็š„ไฝ“ๅŠ›ๅŠณๅŠจ๏ผŒไฝฟไบบ็ฑป็š„ๅทฅไฝœๅ’Œ็”Ÿๆดปๆ›ดๅŠ ๆ™บ่ƒฝๅ’Œๆœ‰่ถฃ๏ผŒ้€š่ฟ‡ๆŠ€ๆœฏไฝฟ็คพไผšๅ’Œไธ–็•Œๅ˜ๅพ—ๆ›ดๅŠ ็พŽๅฅฝใ€‚ ็ŒŽๆˆทๆ˜Ÿ็ฉบๆ‹ฅๆœ‰ๅฎŒๅ…จ่‡ชไธปๅผ€ๅ‘็š„ๅ…จ้“พๆกไบบๅทฅๆ™บ่ƒฝๆŠ€ๆœฏ๏ผŒๅฆ‚่ฏญ้Ÿณไบคไบ’ๅ’Œ่ง†่ง‰ๅฏผ่ˆชใ€‚ๅฎƒๆ•ดๅˆไบ†ไบงๅ“ๅผ€ๅ‘่ƒฝๅŠ›ๅ’ŒๆŠ€ๆœฏๅบ”็”จ่ƒฝๅŠ›ใ€‚ๅŸบไบŽOrionๆœบๆขฐ่‡‚ๅนณๅฐ๏ผŒๅฎƒๆŽจๅ‡บไบ†ORION STAR AI Robot Greetingใ€AI Robot Greeting Miniใ€Luckiใ€Coffee Master็ญ‰ไบงๅ“๏ผŒๅนถๅปบ็ซ‹ไบ†Orionๆœบๅ™จไบบ็š„ๅผ€ๆ”พๅนณๅฐOrionOSใ€‚้€š่ฟ‡ไธบ **็œŸๆญฃๆœ‰็”จ็š„ๆœบๅ™จไบบ่€Œ็”Ÿ** ็š„็†ๅฟตๅฎž่ทต๏ผŒๅฎƒ้€š่ฟ‡AIๆŠ€ๆœฏไธบๆ›ดๅคšไบบ่ต‹่ƒฝใ€‚ ๅ‡ญๅ€Ÿ7ๅนดAI็ป้ชŒ็งฏ็ดฏ๏ผŒ็ŒŽๆˆทๆ˜Ÿ็ฉบๅทฒๆŽจๅ‡บ็š„ๅคงๆจกๅž‹ๆทฑๅบฆๅบ”็”จโ€œ่š่จ€โ€๏ผŒๅนถ้™†็ปญ้ขๅ‘่กŒไธšๅฎขๆˆทๆไพ›ๅฎšๅˆถๅŒ–AIๅคงๆจกๅž‹ๅ’จ่ฏขไธŽๆœๅŠก่งฃๅ†ณๆ–นๆกˆ๏ผŒ็œŸๆญฃๅธฎๅŠฉๅฎขๆˆทๅฎž็Žฐไผไธš็ป่ฅๆ•ˆ็އ้ข†ๅ…ˆๅŒ่กŒ็›ฎๆ ‡ใ€‚ **็ŒŽๆˆทๆ˜Ÿ็ฉบๅ…ทๅค‡ๅ…จ้“พๆกๅคงๆจกๅž‹ๅบ”็”จ่ƒฝๅŠ›็š„ๆ ธๅฟƒไผ˜ๅŠฟ**๏ผŒๅŒ…ๆ‹ฌๆ‹ฅๆœ‰ไปŽๆตท้‡ๆ•ฐๆฎๅค„็†ใ€ๅคงๆจกๅž‹้ข„่ฎญ็ปƒใ€ไบŒๆฌก้ข„่ฎญ็ปƒใ€ๅพฎ่ฐƒ(Fine-tune)ใ€Prompt Engineering ใ€Agentๅผ€ๅ‘็š„ๅ…จ้“พๆก่ƒฝๅŠ›ๅ’Œ็ป้ชŒ็งฏ็ดฏ๏ผ›ๆ‹ฅๆœ‰ๅฎŒๆ•ด็š„็ซฏๅˆฐ็ซฏๆจกๅž‹่ฎญ็ปƒ่ƒฝๅŠ›๏ผŒๅŒ…ๆ‹ฌ็ณป็ปŸๅŒ–็š„ๆ•ฐๆฎๅค„็†ๆต็จ‹ๅ’Œๆ•ฐ็™พๅผ GPU็š„ๅนถ่กŒๆจกๅž‹่ฎญ็ปƒ่ƒฝๅŠ›๏ผŒ็Žฐๅทฒๅœจๅคงๆ”ฟๅŠกใ€ไบ‘ๆœๅŠกใ€ๅ‡บๆตท็”ตๅ•†ใ€ๅฟซๆถˆ็ญ‰ๅคšไธช่กŒไธšๅœบๆ™ฏ่ฝๅœฐใ€‚ ***ๆฌข่ฟŽๆœ‰ๅคงๆจกๅž‹ๅบ”็”จ่ฝๅœฐ้œ€ๆฑ‚็š„ไผไธš่”็ณปๆˆ‘ไปฌ่ฟ›่กŒๅ•†ๅŠกๅˆไฝœ***<br> **ๅ’จ่ฏข็”ต่ฏ:** 400-898-7779<br> **็”ตๅญ้‚ฎ็ฎฑ:** [email protected] <div align="center"> <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" /> </div>
limin-arc/Mem-Beagle-7b-slerp-v1
limin-arc
2024-01-25T01:56:57Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "starsnatched/MemGPT", "mlabonne/Beagle14-7B", "conversational", "base_model:minchyeom/MemGPT", "base_model:merge:minchyeom/MemGPT", "base_model:mlabonne/Beagle14-7B", "base_model:merge:mlabonne/Beagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T01:49:21Z
--- tags: - merge - mergekit - lazymergekit - starsnatched/MemGPT - mlabonne/Beagle14-7B base_model: - starsnatched/MemGPT - mlabonne/Beagle14-7B --- # Mem-Beagle-7b-slerp-v1 Mem-Beagle-7b-slerp-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [starsnatched/MemGPT](https://huggingface.co/starsnatched/MemGPT) * [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: starsnatched/MemGPT layer_range: [0, 32] - model: mlabonne/Beagle14-7B layer_range: [0, 32] merge_method: slerp base_model: starsnatched/MemGPT parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/Mem-Beagle-7b-slerp-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Nicolas852/ppo-LunarLander-v2
Nicolas852
2024-01-25T01:56:31Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T01:56:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.77 +/- 36.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tiagoblima/mt5_base-qg-ap-peft-oficial
tiagoblima
2024-01-25T01:54:24Z
0
0
null
[ "safetensors", "generated_from_trainer", "dataset:tiagoblima/du-qg-squadv1_pt", "base_model:google/mt5-base", "base_model:finetune:google/mt5-base", "license:apache-2.0", "region:us" ]
null
2024-01-24T02:26:00Z
--- license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer datasets: - tiagoblima/du-qg-squadv1_pt model-index: - name: mt5_base-qg-ap-peft-oficial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_base-qg-ap-peft-oficial This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the tiagoblima/du-qg-squadv1_pt dataset. It achieves the following results on the evaluation set: - Loss: 6.6924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 10.2785 | 1.0 | 2367 | 7.4566 | | 9.7078 | 2.0 | 4734 | 7.0581 | | 9.4851 | 3.0 | 7101 | 6.8360 | | 9.2737 | 4.0 | 9468 | 6.7291 | | 9.3588 | 5.0 | 11835 | 6.6924 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.1
graceneutrality/Reinforce-stuff
graceneutrality
2024-01-25T01:50:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T01:49:57Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-stuff results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 77.60 +/- 53.83 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
riyasankhe/vit-base-beans-tutorial
riyasankhe
2024-01-25T01:42:37Z
180
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-25T01:39:43Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-beans-tutorial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-tutorial This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0180 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1787 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0469 | 1.54 | 100 | 0.1320 | 0.9624 | | 0.0186 | 3.08 | 200 | 0.0315 | 0.9925 | | 0.0084 | 4.62 | 300 | 0.0180 | 0.9925 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
traethethird/ppo-Huggy
traethethird
2024-01-25T01:33:37Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-25T01:33:24Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: traethethird/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
sharadsin/Mixtral-8x7B-sql-ft-v1
sharadsin
2024-01-25T01:30:39Z
5
1
peft
[ "peft", "safetensors", "en", "dataset:knowrohit07/know_sql", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-03T01:14:40Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-v0.1 license: apache-2.0 datasets: - knowrohit07/know_sql language: - en --- <!--![](project-9.png)--> <img src="project-9.png" width="50%" height="50%" > ## SQL-Converter Mixtral 8x7B v0.1 **Convert Natural Language to SQL** ### Overview Mixtral-8x7B-sql-ft-v1 is fine-tuned from Mixtral 8x7B to convert natural language to SQL queries. ### Base Model mistralai/Mixtral-8x7B-v0.1 ### Fine-Tuning - **Dataset**: 5,000 natural language-SQL pairs. ### Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import PeftModel import torch base_model_id = 'mistralai/Mixtral-8x7B-v0.1' adapter_id = 'sharadsin/Mixtral-8x7B-sql-ft-v1' bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant = True, bnb_4bit_compute_dtype = torch.bfloat16, bnb_4bit_quant_type = "nf4", ) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config = bnb_config, device_map = "auto", trust_remote_code = True, ) tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token = True, trust_remote_code = True) ft_model = PeftModel.from_pretrained(base_model, adapter_id) eval_prompt= """SYSTEM: Use the following contextual information to concisely answer the question. USER: CREATE TABLE EmployeeInfo (EmpID INTEGER, EmpFname VARCHAR, EmpLname VARCHAR, Department VARCHAR, Project VARCHAR,Address VARCHAR, DOB DATE, Gender CHAR) === Write a query to fetch details of employees whose EmpLname ends with an alphabet 'A' and contains five alphabets? ASSISTANT:""" model_input = tokenizer(eval_prompt, return_tensors="pt").to("cuda") ft_model.eval() with torch.inference_mode(): print(tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=70,top_k=4, penalty_alpha = 0.6, repetition_penalty=1.15)[0], skip_special_tokens= False)) ``` ### Limitations - Less accurate with very complex queries. - Generates extra gibberish content after providing the answers. ### Framework versions - PEFT 0.7.1
ntc-ai/SDXL-LoRA-slider.heavy-inking
ntc-ai
2024-01-25T01:27:02Z
52
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-25T01:26:59Z
--- language: - en thumbnail: "images/evaluate/heavy inking.../heavy inking_17_3.0.png" widget: - text: heavy inking output: url: images/heavy inking_17_3.0.png - text: heavy inking output: url: images/heavy inking_19_3.0.png - text: heavy inking output: url: images/heavy inking_20_3.0.png - text: heavy inking output: url: images/heavy inking_21_3.0.png - text: heavy inking output: url: images/heavy inking_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "heavy inking" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - heavy inking (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/heavy inking_17_-3.0.png" width=256 height=256 /> | <img src="images/heavy inking_17_0.0.png" width=256 height=256 /> | <img src="images/heavy inking_17_3.0.png" width=256 height=256 /> | | <img src="images/heavy inking_19_-3.0.png" width=256 height=256 /> | <img src="images/heavy inking_19_0.0.png" width=256 height=256 /> | <img src="images/heavy inking_19_3.0.png" width=256 height=256 /> | | <img src="images/heavy inking_20_-3.0.png" width=256 height=256 /> | <img src="images/heavy inking_20_0.0.png" width=256 height=256 /> | <img src="images/heavy inking_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` heavy inking ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.heavy-inking', weight_name='heavy inking.safetensors', adapter_name="heavy inking") # Activate the LoRA pipe.set_adapters(["heavy inking"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, heavy inking" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
tenyaiida/ArcherEMIYA
tenyaiida
2024-01-25T01:20:26Z
0
1
null
[ "voice", "license:mit", "region:us" ]
null
2023-07-06T21:05:42Z
--- license: mit tags: - voice --- # Voice model of Archer / EMIYA from Fate/Stay Night <!-- Provide a quick summary of what the model is/does. --> Voice model was trained with Mangio-Crepe, using clips from FGO and FGO Arcade. ## Model Details Update 2024/1/3: The voice has gotten better since the dataset has been updated. Please use RMVPE when sampling with speaking clips that involve some distortion such as reverb, even though the model was trained with Mangio-Crepe. When singing, it's better to use Mangio-Crepe. With other clips, I can't tell a difference between RMVPE and Mangio-Crepe. ### Warnings They may not come out as amazing as they should, so extra tweaking may be necessary. Archer has a very low voice, and using it with higher voice models may not sound correct without pitch correction.
ashercn97/avi-1.1b
ashercn97
2024-01-25T01:17:05Z
11
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "he", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T20:05:15Z
--- license: apache-2.0 language: - he - en pipeline_tag: text-generation --- # Avi 1.1B Avi is a fine tune of TinyLlama. While TinyLlama originally only spoke English, Avi was trained on Hebrew data, so it speaks hebrew. ## Data Avi was trained on the Platypus and Alpaca-GPT4 datasets, machine translated into Hebrew. While I know this is not the optimal approach, it is what I did.
Kwabena/results
Kwabena
2024-01-25T00:48:43Z
0
0
null
[ "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-01-25T00:41:09Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1301 | 0.05 | 20 | 0.1112 | | 0.14 | 0.09 | 40 | 0.1021 | | 0.1582 | 0.14 | 60 | 0.1935 | | 0.1106 | 0.19 | 80 | 0.1298 | | 0.1646 | 0.23 | 100 | 0.1226 | | 0.0748 | 0.28 | 120 | 0.0889 | | 0.1169 | 0.33 | 140 | 0.0966 | | 0.1127 | 0.38 | 160 | 0.0706 | | 0.0899 | 0.42 | 180 | 0.0696 | | 0.1202 | 0.47 | 200 | 0.1355 | | 0.0491 | 0.52 | 220 | 0.0529 | | 0.0931 | 0.56 | 240 | 0.0466 | | 0.1068 | 0.61 | 260 | 0.0695 | | 0.0545 | 0.66 | 280 | 0.0383 | | 0.0346 | 0.7 | 300 | 0.0307 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
asun17904/glue-mnli-bert-base-uncased-regularized-l2
asun17904
2024-01-25T00:44:43Z
0
0
pytorch
[ "pytorch", "en", "license:mit", "region:us" ]
null
2024-01-24T07:08:38Z
--- language: en license: mit library_name: pytorch --- # Knowledge Continuity Regularized Network Dataset: GLUE Trainer Hyperparameters: - `lr` = 5e-05 - `per_device_batch_size` = 16 - `gradient_accumulation_steps` = 1 - `weight_decay` = 1e-09 - `seed` = 42 Regularization Hyperparameters - `numerical stability denominator constant` = 0.01 - `lambda` = 0.02 - `alpha` = 2.0 - `beta` = 1.0 Extended Logs: |eval_loss|eval_accuracy|epoch| |--|--|--| |24.363|0.790|1.0| |23.650|0.813|2.0|
DouglasPontes/2020-Q2-75p-filtered_combined75
DouglasPontes
2024-01-25T00:43:54Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "base_model:DouglasPontes/2020-Q1-filtered_tweets", "base_model:finetune:DouglasPontes/2020-Q1-filtered_tweets", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-20T17:45:37Z
--- base_model: DouglasPontes/2020-Q1-filtered_tweets tags: - generated_from_trainer model-index: - name: 2020-Q2-75p-filtered results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2020-Q2-75p-filtered This model is a fine-tuned version of [DouglasPontes/2020-Q1-filtered_tweets](https://huggingface.co/DouglasPontes/2020-Q1-filtered_tweets) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2400000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | No log | 0.02 | 8000 | 2.4865 | | 2.6592 | 0.04 | 16000 | 2.4598 | | 2.6592 | 0.07 | 24000 | 2.4472 | | 2.6211 | 0.09 | 32000 | 2.4341 | | 2.6211 | 0.11 | 40000 | 2.4223 | | 2.6048 | 0.13 | 48000 | 2.4217 | | 2.6048 | 0.16 | 56000 | 2.4184 | | 2.5861 | 0.18 | 64000 | 2.4062 | | 2.5861 | 0.2 | 72000 | 2.3919 | | 2.5736 | 0.22 | 80000 | 2.3896 | | 2.5736 | 0.25 | 88000 | 2.3951 | | 2.5559 | 0.27 | 96000 | 2.3903 | | 2.5559 | 0.29 | 104000 | 2.3836 | | 2.5551 | 0.31 | 112000 | 2.3749 | | 2.5551 | 0.34 | 120000 | 2.3794 | | 2.5371 | 0.36 | 128000 | 2.3733 | | 2.5371 | 0.38 | 136000 | 2.3703 | | 2.5417 | 0.4 | 144000 | 2.3662 | | 2.5417 | 0.43 | 152000 | 2.3728 | | 2.5316 | 0.45 | 160000 | 2.3643 | | 2.5316 | 0.47 | 168000 | 2.3568 | | 2.5296 | 0.49 | 176000 | 2.3555 | | 2.5296 | 0.52 | 184000 | 2.3506 | | 2.5215 | 0.54 | 192000 | 2.3482 | | 2.5215 | 0.56 | 200000 | 2.3514 | | 2.5274 | 0.58 | 208000 | 2.3531 | | 2.5274 | 0.61 | 216000 | 2.3463 | | 2.5215 | 0.63 | 224000 | 2.3470 | | 2.5215 | 0.65 | 232000 | 2.3407 | | 2.5096 | 0.67 | 240000 | 2.3400 | | 2.5096 | 0.7 | 248000 | 2.3402 | | 2.5176 | 0.72 | 256000 | 2.3308 | | 2.5176 | 0.74 | 264000 | 2.3342 | | 2.5048 | 0.76 | 272000 | 2.3333 | | 2.5048 | 0.79 | 280000 | 2.3288 | | 2.4979 | 0.81 | 288000 | 2.3298 | | 2.4979 | 0.83 | 296000 | 2.3237 | | 2.4963 | 0.85 | 304000 | 2.3266 | | 2.4963 | 0.88 | 312000 | 2.3197 | | 2.4972 | 0.9 | 320000 | 2.3271 | | 2.4972 | 0.92 | 328000 | 2.3275 | | 2.4969 | 0.94 | 336000 | 2.3210 | | 2.4969 | 0.97 | 344000 | 2.3222 | | 2.4961 | 0.99 | 352000 | 2.3242 | | 2.4961 | 1.01 | 360000 | 2.3155 | | 2.49 | 1.03 | 368000 | 2.3175 | | 2.49 | 1.06 | 376000 | 2.3076 | | 2.4847 | 1.08 | 384000 | 2.3138 | | 2.4847 | 1.1 | 392000 | 2.3183 | | 2.4767 | 1.12 | 400000 | 2.3118 | | 2.4767 | 1.15 | 408000 | 2.3152 | | 2.4788 | 1.17 | 416000 | 2.3089 | | 2.4788 | 1.19 | 424000 | 2.3051 | | 2.4738 | 1.21 | 432000 | 2.3102 | | 2.4738 | 1.24 | 440000 | 2.3069 | | 2.4635 | 1.26 | 448000 | 2.3004 | | 2.4635 | 1.28 | 456000 | 2.3066 | | 2.4828 | 1.3 | 464000 | 2.3078 | | 2.4828 | 1.32 | 472000 | 2.3072 | | 2.4675 | 1.35 | 480000 | 2.3073 | | 2.4675 | 1.37 | 488000 | 2.3014 | | 2.4676 | 1.39 | 496000 | 2.2987 | | 2.4676 | 1.41 | 504000 | 2.2988 | | 2.4678 | 1.44 | 512000 | 2.2971 | | 2.4678 | 1.46 | 520000 | 2.2969 | | 2.4634 | 1.48 | 528000 | 2.2990 | | 2.4634 | 1.5 | 536000 | 2.2869 | | 2.4657 | 1.53 | 544000 | 2.2936 | | 2.4657 | 1.55 | 552000 | 2.2915 | | 2.4607 | 1.57 | 560000 | 2.2903 | | 2.4607 | 1.59 | 568000 | 2.2934 | | 2.4558 | 1.62 | 576000 | 2.2845 | | 2.4558 | 1.64 | 584000 | 2.2897 | | 2.4662 | 1.66 | 592000 | 2.2928 | | 2.4662 | 1.68 | 600000 | 2.2861 | | 2.4658 | 1.71 | 608000 | 2.2883 | | 2.4658 | 1.73 | 616000 | 2.2878 | | 2.4533 | 1.75 | 624000 | 2.2892 | | 2.4533 | 1.77 | 632000 | 2.2886 | | 2.4575 | 1.8 | 640000 | 2.2894 | | 2.4575 | 1.82 | 648000 | 2.2871 | | 2.4565 | 1.84 | 656000 | 2.2798 | | 2.4565 | 1.86 | 664000 | 2.2877 | | 2.4548 | 1.89 | 672000 | 2.2859 | | 2.4548 | 1.91 | 680000 | 2.2787 | | 2.4507 | 1.93 | 688000 | 2.2780 | | 2.4507 | 1.95 | 696000 | 2.2826 | | 2.4455 | 1.98 | 704000 | 2.2838 | | 2.4455 | 2.0 | 712000 | 2.2764 | | 2.4516 | 2.02 | 720000 | 2.2814 | | 2.4516 | 2.04 | 728000 | 2.2807 | | 2.445 | 2.07 | 736000 | 2.2740 | | 2.445 | 2.09 | 744000 | 2.2780 | | 2.4466 | 2.11 | 752000 | 2.2775 | | 2.4466 | 2.13 | 760000 | 2.2783 | | 2.4476 | 2.16 | 768000 | 2.2763 | | 2.4476 | 2.18 | 776000 | 2.2737 | | 2.4449 | 2.2 | 784000 | 2.2753 | | 2.4449 | 2.22 | 792000 | 2.2762 | | 2.4424 | 2.25 | 800000 | 2.2767 | | 2.4424 | 2.27 | 808000 | 2.2702 | | 2.4528 | 2.29 | 816000 | 2.2655 | | 2.4528 | 2.31 | 824000 | 2.2727 | | 2.4523 | 2.34 | 832000 | 2.2733 | | 2.4523 | 2.36 | 840000 | 2.2654 | | 2.4395 | 2.38 | 848000 | 2.2674 | | 2.4395 | 2.4 | 856000 | 2.2754 | | 2.434 | 2.43 | 864000 | 2.2722 | | 2.434 | 2.45 | 872000 | 2.2666 | | 2.4407 | 2.47 | 880000 | 2.2656 | | 2.4407 | 2.49 | 888000 | 2.2654 | | 2.4352 | 2.52 | 896000 | 2.2630 | | 2.4352 | 2.54 | 904000 | 2.2662 | | 2.4393 | 2.56 | 912000 | 2.2692 | | 2.4393 | 2.58 | 920000 | 2.2558 | | 2.4378 | 2.61 | 928000 | 2.2619 | | 2.4378 | 2.63 | 936000 | 2.2614 | | 2.4392 | 2.65 | 944000 | 2.2578 | | 2.4392 | 2.67 | 952000 | 2.2672 | | 2.437 | 2.69 | 960000 | 2.2598 | | 2.437 | 2.72 | 968000 | 2.2633 | | 2.4388 | 2.74 | 976000 | 2.2566 | | 2.4388 | 2.76 | 984000 | 2.2551 | | 2.4386 | 2.78 | 992000 | 2.2606 | | 2.4386 | 2.81 | 1000000 | 2.2634 | | 2.4402 | 2.83 | 1008000 | 2.2641 | | 2.4402 | 2.85 | 1016000 | 2.2619 | | 2.4442 | 2.87 | 1024000 | 2.2584 | | 2.4442 | 2.9 | 1032000 | 2.2579 | | 2.4327 | 2.92 | 1040000 | 2.2523 | | 2.4327 | 2.94 | 1048000 | 2.2562 | | 2.4289 | 2.96 | 1056000 | 2.2593 | | 2.4289 | 2.99 | 1064000 | 2.2562 | | 2.4319 | 3.01 | 1072000 | 2.2536 | | 2.4319 | 3.03 | 1080000 | 2.2603 | | 2.4174 | 3.05 | 1088000 | 2.2549 | | 2.4174 | 3.08 | 1096000 | 2.2595 | | 2.4155 | 3.1 | 1104000 | 2.2555 | | 2.4155 | 3.12 | 1112000 | 2.2501 | | 2.427 | 3.14 | 1120000 | 2.2528 | | 2.427 | 3.17 | 1128000 | 2.2529 | | 2.4222 | 3.19 | 1136000 | 2.2536 | | 2.4222 | 3.21 | 1144000 | 2.2582 | | 2.4232 | 3.23 | 1152000 | 2.2522 | | 2.4232 | 3.26 | 1160000 | 2.2525 | | 2.4252 | 3.28 | 1168000 | 2.2538 | | 2.4252 | 3.3 | 1176000 | 2.2512 | | 2.4209 | 3.32 | 1184000 | 2.2557 | | 2.4209 | 3.35 | 1192000 | 2.2445 | | 2.4243 | 3.37 | 1200000 | 2.2570 | | 2.4243 | 3.39 | 1208000 | 2.2539 | | 2.4278 | 3.41 | 1216000 | 2.2514 | | 2.4278 | 3.44 | 1224000 | 2.2454 | | 2.4286 | 3.46 | 1232000 | 2.2463 | | 2.4286 | 3.48 | 1240000 | 2.2506 | | 2.4274 | 3.5 | 1248000 | 2.2427 | | 2.4274 | 3.53 | 1256000 | 2.2535 | | 2.4201 | 3.55 | 1264000 | 2.2517 | | 2.4201 | 3.57 | 1272000 | 2.2436 | | 2.4233 | 3.59 | 1280000 | 2.2430 | | 2.4233 | 3.62 | 1288000 | 2.2470 | | 2.4183 | 3.64 | 1296000 | 2.2446 | | 2.4183 | 3.66 | 1304000 | 2.2539 | | 2.428 | 3.68 | 1312000 | 2.2492 | | 2.428 | 3.71 | 1320000 | 2.2544 | | 2.4206 | 3.73 | 1328000 | 2.2478 | | 2.4206 | 3.75 | 1336000 | 2.2420 | | 2.4287 | 3.77 | 1344000 | 2.2442 | | 2.4287 | 3.8 | 1352000 | 2.2426 | | 2.4297 | 3.82 | 1360000 | 2.2426 | | 2.4297 | 3.84 | 1368000 | 2.2481 | | 2.4185 | 3.86 | 1376000 | 2.2449 | | 2.4185 | 3.89 | 1384000 | 2.2468 | | 2.4217 | 3.91 | 1392000 | 2.2467 | | 2.4217 | 3.93 | 1400000 | 2.2463 | | 2.4144 | 3.95 | 1408000 | 2.2482 | | 2.4144 | 3.97 | 1416000 | 2.2424 | | 2.4175 | 4.0 | 1424000 | 2.2415 | | 2.4175 | 4.02 | 1432000 | 2.2451 | | 2.4169 | 4.04 | 1440000 | 2.2443 | | 2.4169 | 4.06 | 1448000 | 2.2389 | | 2.4142 | 4.09 | 1456000 | 2.2377 | | 2.4142 | 4.11 | 1464000 | 2.2399 | | 2.4122 | 4.13 | 1472000 | 2.2447 | | 2.4122 | 4.15 | 1480000 | 2.2456 | | 2.4166 | 4.18 | 1488000 | 2.2451 | | 2.4166 | 4.2 | 1496000 | 2.2369 | | 2.4165 | 4.22 | 1504000 | 2.2426 | | 2.4165 | 4.24 | 1512000 | 2.2384 | | 2.4204 | 4.27 | 1520000 | 2.2454 | | 2.4204 | 4.29 | 1528000 | 2.2422 | | 2.4192 | 4.31 | 1536000 | 2.2423 | | 2.4192 | 4.33 | 1544000 | 2.2435 | | 2.4167 | 4.36 | 1552000 | 2.2451 | | 2.4167 | 4.38 | 1560000 | 2.2443 | | 2.4124 | 4.4 | 1568000 | 2.2430 | | 2.4124 | 4.42 | 1576000 | 2.2422 | | 2.406 | 4.45 | 1584000 | 2.2357 | | 2.406 | 4.47 | 1592000 | 2.2395 | | 2.4166 | 4.49 | 1600000 | 2.2378 | | 2.4166 | 4.51 | 1608000 | 2.2420 | | 2.4144 | 4.54 | 1616000 | 2.2402 | | 2.4144 | 4.56 | 1624000 | 2.2384 | | 2.4219 | 4.58 | 1632000 | 2.2438 | | 2.4219 | 4.6 | 1640000 | 2.2455 | | 2.4061 | 4.63 | 1648000 | 2.2397 | | 2.4061 | 4.65 | 1656000 | 2.2354 | | 2.411 | 4.67 | 1664000 | 2.2393 | | 2.411 | 4.69 | 1672000 | 2.2388 | | 2.4125 | 4.72 | 1680000 | 2.2406 | | 2.4125 | 4.74 | 1688000 | 2.2330 | | 2.4092 | 4.76 | 1696000 | 2.2336 | | 2.4092 | 4.78 | 1704000 | 2.2398 | | 2.4078 | 4.81 | 1712000 | 2.2368 | | 2.4078 | 4.83 | 1720000 | 2.2361 | | 2.4185 | 4.85 | 1728000 | 2.2378 | | 2.4185 | 4.87 | 1736000 | 2.2339 | | 2.4088 | 4.9 | 1744000 | 2.2366 | | 2.4088 | 4.92 | 1752000 | 2.2385 | | 2.4095 | 4.94 | 1760000 | 2.2337 | | 2.4095 | 4.96 | 1768000 | 2.2413 | | 2.4078 | 4.99 | 1776000 | 2.2377 | | 2.4078 | 5.01 | 1784000 | 2.2302 | | 2.4073 | 5.03 | 1792000 | 2.2357 | | 2.4073 | 5.05 | 1800000 | 2.2384 | | 2.4073 | 5.08 | 1808000 | 2.2322 | | 2.4073 | 5.1 | 1816000 | 2.2344 | | 2.4043 | 5.12 | 1824000 | 2.2327 | | 2.4043 | 5.14 | 1832000 | 2.2350 | | 2.4082 | 5.17 | 1840000 | 2.2376 | | 2.4082 | 5.19 | 1848000 | 2.2363 | | 2.4073 | 5.21 | 1856000 | 2.2323 | | 2.4073 | 5.23 | 1864000 | 2.2419 | | 2.4148 | 5.26 | 1872000 | 2.2293 | | 2.4148 | 5.28 | 1880000 | 2.2346 | | 2.4098 | 5.3 | 1888000 | 2.2372 | | 2.4098 | 5.32 | 1896000 | 2.2371 | | 2.407 | 5.34 | 1904000 | 2.2397 | | 2.407 | 5.37 | 1912000 | 2.2300 | | 2.4108 | 5.39 | 1920000 | 2.2317 | | 2.4108 | 5.41 | 1928000 | 2.2350 | | 2.4168 | 5.43 | 1936000 | 2.2343 | | 2.4168 | 5.46 | 1944000 | 2.2327 | | 2.4113 | 5.48 | 1952000 | 2.2363 | | 2.4113 | 5.5 | 1960000 | 2.2314 | | 2.4131 | 5.52 | 1968000 | 2.2303 | | 2.4131 | 5.55 | 1976000 | 2.2353 | | 2.4129 | 5.57 | 1984000 | 2.2353 | | 2.4129 | 5.59 | 1992000 | 2.2296 | | 2.4129 | 5.61 | 2000000 | 2.2314 | | 2.4129 | 5.64 | 2008000 | 2.2288 | | 2.4045 | 5.66 | 2016000 | 2.2347 | | 2.4045 | 5.68 | 2024000 | 2.2349 | | 2.4089 | 5.7 | 2032000 | 2.2310 | | 2.4089 | 5.73 | 2040000 | 2.2342 | | 2.4091 | 5.75 | 2048000 | 2.2320 | | 2.4091 | 5.77 | 2056000 | 2.2311 | | 2.4137 | 5.79 | 2064000 | 2.2278 | | 2.4137 | 5.82 | 2072000 | 2.2344 | | 2.4063 | 5.84 | 2080000 | 2.2339 | | 2.4063 | 5.86 | 2088000 | 2.2271 | | 2.4046 | 5.88 | 2096000 | 2.2263 | | 2.4046 | 5.91 | 2104000 | 2.2369 | | 2.4105 | 5.93 | 2112000 | 2.2330 | | 2.4105 | 5.95 | 2120000 | 2.2361 | | 2.4045 | 5.97 | 2128000 | 2.2320 | | 2.4045 | 6.0 | 2136000 | 2.2283 | | 2.4093 | 6.02 | 2144000 | 2.2262 | | 2.4093 | 6.04 | 2152000 | 2.2294 | | 2.4109 | 6.06 | 2160000 | 2.2334 | | 2.4109 | 6.09 | 2168000 | 2.2363 | | 2.4061 | 6.11 | 2176000 | 2.2309 | | 2.4061 | 6.13 | 2184000 | 2.2269 | | 2.4007 | 6.15 | 2192000 | 2.2369 | | 2.4007 | 6.18 | 2200000 | 2.2297 | | 2.4034 | 6.2 | 2208000 | 2.2267 | | 2.4034 | 6.22 | 2216000 | 2.2310 | | 2.4049 | 6.24 | 2224000 | 2.2362 | | 2.4049 | 6.27 | 2232000 | 2.2319 | | 2.4052 | 6.29 | 2240000 | 2.2308 | | 2.4052 | 6.31 | 2248000 | 2.2225 | | 2.4102 | 6.33 | 2256000 | 2.2366 | | 2.4102 | 6.36 | 2264000 | 2.2327 | | 2.4046 | 6.38 | 2272000 | 2.2305 | | 2.4046 | 6.4 | 2280000 | 2.2309 | | 2.4066 | 6.42 | 2288000 | 2.2291 | | 2.4066 | 6.45 | 2296000 | 2.2301 | | 2.4041 | 6.47 | 2304000 | 2.2378 | | 2.4041 | 6.49 | 2312000 | 2.2317 | | 2.4081 | 6.51 | 2320000 | 2.2326 | | 2.4081 | 6.54 | 2328000 | 2.2412 | | 2.4147 | 6.56 | 2336000 | 2.2349 | | 2.4147 | 6.58 | 2344000 | 2.2296 | | 2.4105 | 6.6 | 2352000 | 2.2313 | | 2.4105 | 6.62 | 2360000 | 2.2297 | | 2.4096 | 6.65 | 2368000 | 2.2241 | | 2.4096 | 6.67 | 2376000 | 2.2322 | | 2.4089 | 6.69 | 2384000 | 2.2344 | | 2.4089 | 6.71 | 2392000 | 2.2291 | | 2.4048 | 6.74 | 2400000 | 2.2274 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
TheBloke/FusionNet_34Bx2_MoE-GGUF
TheBloke
2024-01-25T00:28:42Z
221
5
transformers
[ "transformers", "gguf", "mixtral", "moe", "text-generation", "en", "base_model:TomGrc/FusionNet_34Bx2_MoE", "base_model:quantized:TomGrc/FusionNet_34Bx2_MoE", "license:mit", "region:us", "conversational" ]
text-generation
2024-01-24T22:49:13Z
--- base_model: TomGrc/FusionNet_34Bx2_MoE inference: false language: - en license: mit model_creator: Suqin Zhang model_name: FusionNet 34Bx2 MoE model_type: mixtral pipeline_tag: text-generation prompt_template: '[INST] <<SYS>> {system_message} <</SYS>> {prompt} [/INST] ' quantized_by: TheBloke tags: - moe --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # FusionNet 34Bx2 MoE - GGUF - Model creator: [Suqin Zhang](https://huggingface.co/TomGrc) - Original model: [FusionNet 34Bx2 MoE](https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE) <!-- description start --> ## Description This repo contains GGUF format model files for [Suqin Zhang's FusionNet 34Bx2 MoE](https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF) * [Suqin Zhang's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Llama-2-Chat ``` [INST] <<SYS>> {system_message} <</SYS>> {prompt} [/INST] ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [fusionnet_34bx2_moe.Q2_K.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q2_K.gguf) | Q2_K | 2 | 22.39 GB| 24.89 GB | significant quality loss - not recommended for most purposes | | [fusionnet_34bx2_moe.Q3_K_S.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q3_K_S.gguf) | Q3_K_S | 3 | 26.32 GB| 28.82 GB | very small, high quality loss | | [fusionnet_34bx2_moe.Q3_K_M.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q3_K_M.gguf) | Q3_K_M | 3 | 29.24 GB| 31.74 GB | very small, high quality loss | | [fusionnet_34bx2_moe.Q3_K_L.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q3_K_L.gguf) | Q3_K_L | 3 | 31.77 GB| 34.27 GB | small, substantial quality loss | | [fusionnet_34bx2_moe.Q4_0.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q4_0.gguf) | Q4_0 | 4 | 34.33 GB| 36.83 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [fusionnet_34bx2_moe.Q4_K_S.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q4_K_S.gguf) | Q4_K_S | 4 | 34.59 GB| 37.09 GB | small, greater quality loss | | [fusionnet_34bx2_moe.Q4_K_M.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q4_K_M.gguf) | Q4_K_M | 4 | 36.66 GB| 39.16 GB | medium, balanced quality - recommended | | [fusionnet_34bx2_moe.Q5_0.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q5_0.gguf) | Q5_0 | 5 | 41.88 GB| 44.38 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [fusionnet_34bx2_moe.Q5_K_S.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q5_K_S.gguf) | Q5_K_S | 5 | 41.88 GB| 44.38 GB | large, low quality loss - recommended | | [fusionnet_34bx2_moe.Q5_K_M.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q5_K_M.gguf) | Q5_K_M | 5 | 43.08 GB| 45.58 GB | large, very low quality loss - recommended | | [fusionnet_34bx2_moe.Q6_K.gguf](https://huggingface.co/TheBloke/FusionNet_34Bx2_MoE-GGUF/blob/main/fusionnet_34bx2_moe.Q6_K.gguf) | Q6_K | 6 | 49.89 GB| 52.39 GB | very large, extremely low quality loss | | fusionnet_34bx2_moe.Q8_0.gguf | Q8_0 | 8 | 64.62 GB| 67.12 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ### Q6_K and Q8_0 files are split and require joining **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files. <details> <summary>Click for instructions regarding Q6_K and Q8_0 files</summary> ### q6_K Please download: * `fusionnet_34bx2_moe.Q6_K.gguf-split-a` * `fusionnet_34bx2_moe.Q6_K.gguf-split-b` ### q8_0 Please download: * `fusionnet_34bx2_moe.Q8_0.gguf-split-a` * `fusionnet_34bx2_moe.Q8_0.gguf-split-b` To join the files, do the following: Linux and macOS: ``` cat fusionnet_34bx2_moe.Q6_K.gguf-split-* > fusionnet_34bx2_moe.Q6_K.gguf && rm fusionnet_34bx2_moe.Q6_K.gguf-split-* cat fusionnet_34bx2_moe.Q8_0.gguf-split-* > fusionnet_34bx2_moe.Q8_0.gguf && rm fusionnet_34bx2_moe.Q8_0.gguf-split-* ``` Windows command line: ``` COPY /B fusionnet_34bx2_moe.Q6_K.gguf-split-a + fusionnet_34bx2_moe.Q6_K.gguf-split-b fusionnet_34bx2_moe.Q6_K.gguf del fusionnet_34bx2_moe.Q6_K.gguf-split-a fusionnet_34bx2_moe.Q6_K.gguf-split-b COPY /B fusionnet_34bx2_moe.Q8_0.gguf-split-a + fusionnet_34bx2_moe.Q8_0.gguf-split-b fusionnet_34bx2_moe.Q8_0.gguf del fusionnet_34bx2_moe.Q8_0.gguf-split-a fusionnet_34bx2_moe.Q8_0.gguf-split-b ``` </details> <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/FusionNet_34Bx2_MoE-GGUF and below it, a specific filename to download, such as: fusionnet_34bx2_moe.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/FusionNet_34Bx2_MoE-GGUF fusionnet_34bx2_moe.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/FusionNet_34Bx2_MoE-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/FusionNet_34Bx2_MoE-GGUF fusionnet_34bx2_moe.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m fusionnet_34bx2_moe.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST] <<SYS>>\n{system_message}\n<</SYS>>\n{prompt} [/INST]" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./fusionnet_34bx2_moe.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "[INST] <<SYS>>\n{system_message}\n<</SYS>>\n{prompt} [/INST]", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./fusionnet_34bx2_moe.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, ้˜ฟๆ˜Ž, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjรคreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Suqin Zhang's FusionNet 34Bx2 MoE # FusionNet_34Bx2_MoE Fine-tuned model on English language using MoE method. ## Model description The FusionNet_34Bx2_MoE is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The FusionNet_34Bx2_MoE has 60.8B parameters, and this model is fine-tuned. Enjoy! ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("TomGrc/FusionNet_34Bx2_MoE") model = AutoModelForCausalLM.from_pretrained("TomGrc/FusionNet_34Bx2_MoE") ``` <!-- original-model-card end -->
mesolitica/mallam-5b-20k-instructions-v2
mesolitica
2024-01-25T00:24:53Z
20
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-27T02:02:09Z
--- language: - ms --- # Full Parameter Finetuning MaLLaM ๐ŸŒ™ 5B 20480 context length v2 on Malaysian instructions dataset README at https://github.com/mesolitica/malaya/tree/5.1/session/mistral#mallam-5b We use exact Mistral Instruct chat template. WandB, https://wandb.ai/huseinzol05/fpf-mallam-5b-instructions-16k?workspace=user-huseinzol05 WandB report, https://wandb.ai/huseinzol05/fpf-tinyllama-1.1b-hf-instructions-16k/reports/Instruction-finetuning--Vmlldzo2MzQ3OTcz ## Dataset Dataset gathered at https://huggingface.co/collections/mesolitica/malaysian-synthetic-dataset-656c2673fe7fe0b1e9e25fe2 Notebook to prepare dataset at https://github.com/mesolitica/malaysian-dataset/blob/master/llm-instruction/combine-malay-no-alignment-multitasks-partial-ultrachat-v2.ipynb ## Limitations This model is a quick demonstration that the base model can be easily fine-tuned to achieve some performance. It does have minimal moderation mechanisms. ## how-to ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch import json def parse_mistral_chat(messages, function_call = None): user_query = messages[-1]['content'] users, assistants = [], [] for q in messages[:-1]: if q['role'] == 'user': users.append(q['content']) elif q['role'] == 'assistant': assistants.append(q['content']) texts = ['<s>'] if function_call: fs = [] for f in function_call: f = json.dumps(f, indent=4) fs.append(f) fs = '\n\n'.join(fs) texts.append(f'\n[FUNCTIONCALL]\n{fs}\n') for u, a in zip(users, assistants): texts.append(f'[INST] {u.strip()} [/INST] {a.strip()}</s>') texts.append(f'[INST] {user_query.strip()} [/INST]') prompt = ''.join(texts).strip() return prompt TORCH_DTYPE = 'bfloat16' nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE) ) tokenizer = AutoTokenizer.from_pretrained('mesolitica/mallam-5b-20k-instructions-v2') model = AutoModelForCausalLM.from_pretrained( 'mesolitica/mallam-5b-20k-instructions-v2', use_flash_attention_2 = True, quantization_config = nf4_config ) messages = [ {'role': 'user', 'content': 'kwsp tu apa'} ] prompt = parse_mistral_chat(messages) inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=1024, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, ) r = model.generate(**generate_kwargs) tokenizer.decode(r[0]) ``` ```text <s> [INST] kwsp tu apa [/INST]KWSP bermaksud Kumpulan Wang Simpanan Pekerja. Ia adalah sebuah institusi simpanan persaraan yang ditubuhkan oleh Kementerian Kewangan Malaysia untuk tujuan mengumpul simpanan ahli untuk dibayar pada umur persaraan, penuh atau penuh persaraan penuh. KWSP ditubuhkan pada tahun 1951 dan mula beroperasi pada tahun 1952. KWSP adalah salah satu institusi simpanan persaraan terbesar di dunia, dengan pangkalan ahli sekitar 14 juta ahli.</s> ```
RecCode/whisper-small-hi
RecCode
2024-01-25T00:15:07Z
63
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-23T05:35:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer base_model: openai/whisper-small model-index: - name: whisper-small-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1606 - Wer: 88.3090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3591 | 4.0 | 1000 | 0.2347 | 43.0063 | | 0.0548 | 8.0 | 2000 | 0.2610 | 315.6576 | | 0.0144 | 12.0 | 3000 | 0.1812 | 500.4175 | | 0.0001 | 16.0 | 4000 | 0.1606 | 88.3090 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
yoon1000/ft_0124_korean_2
yoon1000
2024-01-25T00:05:40Z
16
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-24T01:29:30Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: ft_0124_korean_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ft_0124_korean_2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5092 - Cer: 0.1001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 25.0263 | 0.25 | 500 | 5.1785 | 1.0 | | 4.7178 | 0.5 | 1000 | 4.7781 | 1.0 | | 4.4523 | 0.76 | 1500 | 4.1013 | 0.9077 | | 3.2148 | 1.01 | 2000 | 2.3856 | 0.4777 | | 2.4229 | 1.26 | 2500 | 1.8502 | 0.4047 | | 2.0145 | 1.51 | 3000 | 1.5497 | 0.3475 | | 1.7916 | 1.77 | 3500 | 1.3324 | 0.3076 | | 1.5849 | 2.02 | 4000 | 1.1873 | 0.2773 | | 1.3956 | 2.27 | 4500 | 1.0617 | 0.2578 | | 1.3086 | 2.52 | 5000 | 0.9643 | 0.2368 | | 1.2211 | 2.78 | 5500 | 0.8894 | 0.2246 | | 1.1562 | 3.03 | 6000 | 0.8537 | 0.2189 | | 1.0729 | 3.28 | 6500 | 0.7973 | 0.2101 | | 1.0089 | 3.53 | 7000 | 0.7549 | 0.1959 | | 1.0027 | 3.79 | 7500 | 0.7327 | 0.1945 | | 0.9496 | 4.04 | 8000 | 0.7082 | 0.1849 | | 0.887 | 4.29 | 8500 | 0.6909 | 0.1789 | | 0.8607 | 4.54 | 9000 | 0.6617 | 0.1739 | | 0.853 | 4.8 | 9500 | 0.6518 | 0.1730 | | 0.8305 | 5.05 | 10000 | 0.6402 | 0.1657 | | 0.774 | 5.3 | 10500 | 0.6365 | 0.1650 | | 0.7621 | 5.55 | 11000 | 0.6206 | 0.1600 | | 0.7553 | 5.81 | 11500 | 0.6080 | 0.1594 | | 0.7186 | 6.06 | 12000 | 0.5951 | 0.1543 | | 0.6772 | 6.31 | 12500 | 0.5814 | 0.1490 | | 0.6752 | 6.56 | 13000 | 0.5815 | 0.1501 | | 0.672 | 6.81 | 13500 | 0.5603 | 0.1440 | | 0.6351 | 7.07 | 14000 | 0.5670 | 0.1439 | | 0.6186 | 7.32 | 14500 | 0.5700 | 0.1431 | | 0.6035 | 7.57 | 15000 | 0.5614 | 0.1417 | | 0.5848 | 7.82 | 15500 | 0.5470 | 0.1396 | | 0.5719 | 8.08 | 16000 | 0.5514 | 0.1386 | | 0.556 | 8.33 | 16500 | 0.5515 | 0.1376 | | 0.5596 | 8.58 | 17000 | 0.5407 | 0.1325 | | 0.5472 | 8.83 | 17500 | 0.5405 | 0.1349 | | 0.5309 | 9.09 | 18000 | 0.5279 | 0.1295 | | 0.5072 | 9.34 | 18500 | 0.5275 | 0.1310 | | 0.5072 | 9.59 | 19000 | 0.5330 | 0.1272 | | 0.4905 | 9.84 | 19500 | 0.5238 | 0.1262 | | 0.4842 | 10.1 | 20000 | 0.5234 | 0.1237 | | 0.4513 | 10.35 | 20500 | 0.5210 | 0.1231 | | 0.4513 | 10.6 | 21000 | 0.5165 | 0.1208 | | 0.4541 | 10.85 | 21500 | 0.5189 | 0.1207 | | 0.4417 | 11.11 | 22000 | 0.5209 | 0.1192 | | 0.4337 | 11.36 | 22500 | 0.5246 | 0.1191 | | 0.4339 | 11.61 | 23000 | 0.5210 | 0.1183 | | 0.4357 | 11.86 | 23500 | 0.4990 | 0.1162 | | 0.4066 | 12.12 | 24000 | 0.4956 | 0.1132 | | 0.3932 | 12.37 | 24500 | 0.5064 | 0.1148 | | 0.384 | 12.62 | 25000 | 0.5011 | 0.1134 | | 0.3902 | 12.87 | 25500 | 0.5064 | 0.1130 | | 0.3883 | 13.12 | 26000 | 0.5128 | 0.1121 | | 0.3625 | 13.38 | 26500 | 0.5140 | 0.1119 | | 0.3648 | 13.63 | 27000 | 0.5091 | 0.1108 | | 0.365 | 13.88 | 27500 | 0.4923 | 0.1098 | | 0.3604 | 14.13 | 28000 | 0.5062 | 0.1090 | | 0.3517 | 14.39 | 28500 | 0.5007 | 0.1089 | | 0.3485 | 14.64 | 29000 | 0.4956 | 0.1081 | | 0.3407 | 14.89 | 29500 | 0.5090 | 0.1084 | | 0.333 | 15.14 | 30000 | 0.5018 | 0.1067 | | 0.3211 | 15.4 | 30500 | 0.5114 | 0.1063 | | 0.3204 | 15.65 | 31000 | 0.4976 | 0.1053 | | 0.3265 | 15.9 | 31500 | 0.4947 | 0.1046 | | 0.3169 | 16.15 | 32000 | 0.4988 | 0.1043 | | 0.304 | 16.41 | 32500 | 0.5115 | 0.1041 | | 0.2944 | 16.66 | 33000 | 0.5144 | 0.1042 | | 0.311 | 16.91 | 33500 | 0.5068 | 0.1025 | | 0.2997 | 17.16 | 34000 | 0.5079 | 0.1030 | | 0.288 | 17.42 | 34500 | 0.5065 | 0.1019 | | 0.2897 | 17.67 | 35000 | 0.5077 | 0.1016 | | 0.2939 | 17.92 | 35500 | 0.5003 | 0.1017 | | 0.2766 | 18.17 | 36000 | 0.5116 | 0.1013 | | 0.2841 | 18.43 | 36500 | 0.5019 | 0.1010 | | 0.2882 | 18.68 | 37000 | 0.5046 | 0.1008 | | 0.2678 | 18.93 | 37500 | 0.5086 | 0.1013 | | 0.269 | 19.18 | 38000 | 0.5108 | 0.1001 | | 0.2815 | 19.43 | 38500 | 0.5111 | 0.1001 | | 0.2668 | 19.69 | 39000 | 0.5091 | 0.1000 | | 0.2715 | 19.94 | 39500 | 0.5092 | 0.1001 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
k1rby/BeaglePipe-7B-slerp
k1rby
2024-01-25T00:00:37Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1227", "mlabonne/NeuralBeagle14-7B", "base_model:OpenPipe/mistral-ft-optimized-1227", "base_model:merge:OpenPipe/mistral-ft-optimized-1227", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T23:56:18Z
--- tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1227 - mlabonne/NeuralBeagle14-7B base_model: - OpenPipe/mistral-ft-optimized-1227 - mlabonne/NeuralBeagle14-7B --- # BeaglePipe-7B-slerp BeaglePipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1227 layer_range: [0, 32] - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1227 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "k1rby/BeaglePipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
databio/r2v-buenrostro2018-hg19
databio
2024-01-24T23:49:53Z
2
0
null
[ "region:us" ]
null
2024-01-24T23:43:43Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for databio/r2v-buenrostro2018-hg19 ## Model Details This is a single-cell Region2Vec (r2v) model designed to be used with with scEmbed and Region2Vec. It was trained on the Buenrostro2018 dataset. This model should be used to generate embeddings of single cells from scATAC-seq experiments. It produces 100 dimensional embeddings for each single-cell. ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/databio/geniml - **Paper:** https://www.biorxiv.org/content/10.1101/2023.08.01.551452v1 ## Uses This model should be used for producing low-dimensional embeddings of single-cells. These embeddings can be used for downstream clustering or classification tasks. ## Bias, Risks, and Limitations The Buenrostro2018 dataset comprises 2034 human hematopoietic stem cells from data aligned to hg19. Therefore, it should only be used with other data aligned to hg19. ## How to Get Started with the Model You can use the `geniml` python library to download this model and start encoding your single-cell data: ```python import scanpy as sc from geniml.scembed import ScEmbed adata = sc.read_h5ad("path/to/adata.h5ad") model = ScEmbed("databio/r2v-buenrostro2018-hg19") embeddings = model.encode(adata) ``` ## Training Details ### Training Data The data for this model comes from Buenrostro2018: https://www.sciencedirect.com/science/article/pii/S009286741830446X
grimulkan/Goliath-longLORA-120b-rope8-32k-6bpw_h8_exl2
grimulkan
2024-01-24T23:48:58Z
6
1
transformers
[ "transformers", "llama", "text-generation", "license:llama2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T22:34:49Z
--- license: llama2 --- This is an EXL2 6-bit quantization of [Goliath-longLORA-120b-rope8-32k-fp16](https://huggingface.co/grimulkan/Goliath-longLORA-120b-rope8-32k-fp16)
shuyuej/prompt_consistency_epoch_5
shuyuej
2024-01-24T23:42:10Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2024-01-24T22:54:36Z
--- license: apache-2.0 --- # ๐Ÿš€ Adapter Usage ```python # Load the Pre-trained LoRA Adapter model.load_adapter("shuyuej/prompt_consistency_epoch_5") model.enable_adapters() ```
web2savar/w2v-fine-tune-test-no-ws2
web2savar
2024-01-24T23:34:12Z
5
0
transformers
[ "transformers", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_16_0", "base_model:ylacombe/w2v-bert-2.0", "base_model:finetune:ylacombe/w2v-bert-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-24T19:00:18Z
--- base_model: ylacombe/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-fine-tune-test-no-ws2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.11088339984899148 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v-fine-tune-test-no-ws2 This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1513 - Wer: 0.1109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.192 | 0.22 | 300 | 0.2797 | 0.2985 | | 0.2226 | 0.44 | 600 | 0.2989 | 0.3491 | | 0.1941 | 0.66 | 900 | 0.2558 | 0.2451 | | 0.1659 | 0.88 | 1200 | 0.2320 | 0.2289 | | 0.1332 | 1.1 | 1500 | 0.2063 | 0.1971 | | 0.1129 | 1.31 | 1800 | 0.1873 | 0.2029 | | 0.1044 | 1.53 | 2100 | 0.1765 | 0.1856 | | 0.1026 | 1.75 | 2400 | 0.1719 | 0.1752 | | 0.0982 | 1.97 | 2700 | 0.1927 | 0.2023 | | 0.0769 | 2.19 | 3000 | 0.1776 | 0.1671 | | 0.0715 | 2.41 | 3300 | 0.1626 | 0.1634 | | 0.0695 | 2.63 | 3600 | 0.1666 | 0.1654 | | 0.0612 | 2.85 | 3900 | 0.1760 | 0.1609 | | 0.0614 | 3.07 | 4200 | 0.1645 | 0.1593 | | 0.0476 | 3.29 | 4500 | 0.1685 | 0.1593 | | 0.048 | 3.51 | 4800 | 0.1790 | 0.1583 | | 0.0489 | 3.73 | 5100 | 0.1578 | 0.1535 | | 0.0456 | 3.94 | 5400 | 0.1610 | 0.1617 | | 0.041 | 4.16 | 5700 | 0.1559 | 0.1439 | | 0.0367 | 4.38 | 6000 | 0.1536 | 0.1436 | | 0.0321 | 4.6 | 6300 | 0.1591 | 0.1449 | | 0.0349 | 4.82 | 6600 | 0.1616 | 0.1419 | | 0.0308 | 5.04 | 6900 | 0.1501 | 0.1401 | | 0.0233 | 5.26 | 7200 | 0.1588 | 0.1394 | | 0.0253 | 5.48 | 7500 | 0.1633 | 0.1356 | | 0.0254 | 5.7 | 7800 | 0.1522 | 0.1339 | | 0.0245 | 5.92 | 8100 | 0.1598 | 0.1371 | | 0.0189 | 6.14 | 8400 | 0.1497 | 0.1324 | | 0.0174 | 6.36 | 8700 | 0.1487 | 0.1270 | | 0.0178 | 6.57 | 9000 | 0.1397 | 0.1286 | | 0.0173 | 6.79 | 9300 | 0.1495 | 0.1281 | | 0.0178 | 7.01 | 9600 | 0.1462 | 0.1222 | | 0.0124 | 7.23 | 9900 | 0.1516 | 0.1225 | | 0.0121 | 7.45 | 10200 | 0.1554 | 0.1190 | | 0.0128 | 7.67 | 10500 | 0.1453 | 0.1228 | | 0.0113 | 7.89 | 10800 | 0.1468 | 0.1178 | | 0.0086 | 8.11 | 11100 | 0.1556 | 0.1186 | | 0.0085 | 8.33 | 11400 | 0.1507 | 0.1154 | | 0.0073 | 8.55 | 11700 | 0.1494 | 0.1169 | | 0.0079 | 8.77 | 12000 | 0.1507 | 0.1152 | | 0.0089 | 8.98 | 12300 | 0.1456 | 0.1137 | | 0.0062 | 9.2 | 12600 | 0.1518 | 0.1127 | | 0.005 | 9.42 | 12900 | 0.1534 | 0.1115 | | 0.005 | 9.64 | 13200 | 0.1514 | 0.1110 | | 0.0048 | 9.86 | 13500 | 0.1513 | 0.1109 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
epinnock/deepseek-coder-6.7-evol-feedback
epinnock
2024-01-24T23:30:22Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:finetune:deepseek-ai/deepseek-coder-6.7b-instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T14:26:35Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: deepseek-ai/deepseek-coder-6.7b-instruct --- # Uploaded model - **Developed by:** epinnock - **License:** apache-2.0 - **Finetuned from model :** deepseek-ai/deepseek-coder-6.7b-instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ondevicellm/tinyllama_mole_sftv2_ultrachat_ep3
ondevicellm
2024-01-24T23:17:33Z
26
0
transformers
[ "transformers", "tensorboard", "safetensors", "mixtralmole", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "custom_code", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:ondevicellm/tinyllama_mole_v1", "base_model:finetune:ondevicellm/tinyllama_mole_v1", "autotrain_compatible", "region:us" ]
text-generation
2024-01-24T09:49:55Z
--- base_model: ondevicellm/tinyllama_mole_v1 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: tinyllama_mole_sftv2_ultrachat_ep3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama_mole_sftv2_ultrachat_ep3 This model is a fine-tuned version of [ondevicellm/tinyllama_mole_v1](https://huggingface.co/ondevicellm/tinyllama_mole_v1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7643 | 0.09 | 100 | 2.7492 | | 2.7293 | 0.18 | 200 | 2.7330 | | 2.6973 | 0.26 | 300 | 2.6920 | | 2.612 | 0.35 | 400 | 2.6290 | | 2.5257 | 0.44 | 500 | 2.5470 | | 2.4656 | 0.53 | 600 | 2.4527 | | 2.3607 | 0.61 | 700 | 2.3681 | | 2.2885 | 0.7 | 800 | 2.2988 | | 2.2384 | 0.79 | 900 | 2.2397 | | 2.1585 | 0.88 | 1000 | 2.1877 | | 2.1526 | 0.96 | 1100 | 2.1409 | | 2.0845 | 1.05 | 1200 | 2.0986 | | 2.049 | 1.14 | 1300 | 2.0603 | | 2.0243 | 1.23 | 1400 | 2.0257 | | 1.9899 | 1.31 | 1500 | 1.9950 | | 1.9706 | 1.4 | 1600 | 1.9675 | | 1.9414 | 1.49 | 1700 | 1.9429 | | 1.8952 | 1.58 | 1800 | 1.9208 | | 1.9038 | 1.66 | 1900 | 1.9013 | | 1.8942 | 1.75 | 2000 | 1.8839 | | 1.8652 | 1.84 | 2100 | 1.8679 | | 1.823 | 1.93 | 2200 | 1.8531 | | 1.8394 | 2.01 | 2300 | 1.8394 | | 1.8347 | 2.1 | 2400 | 1.8268 | | 1.8137 | 2.19 | 2500 | 1.8148 | | 1.799 | 2.28 | 2600 | 1.8037 | | 1.7774 | 2.37 | 2700 | 1.7931 | | 1.771 | 2.45 | 2800 | 1.7832 | | 1.7761 | 2.54 | 2900 | 1.7739 | | 1.7458 | 2.63 | 3000 | 1.7652 | | 1.7683 | 2.72 | 3100 | 1.7570 | | 1.7389 | 2.8 | 3200 | 1.7490 | | 1.7321 | 2.89 | 3300 | 1.7414 | | 1.7418 | 2.98 | 3400 | 1.7340 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.14.6 - Tokenizers 0.15.0
dongSHE/vis-Mistral-7B-v0.1-ChartDataset-to-PresentationScript
dongSHE
2024-01-24T23:09:26Z
5
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-24T23:08:09Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-v0.1 model-index: - name: vis-Mistral-7B-v0.1-ChartDataset-to-PresentationScript results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vis-Mistral-7B-v0.1-ChartDataset-to-PresentationScript This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
STomoya/poolformer_m36.st_safebooru_1k
STomoya
2024-01-24T23:06:01Z
15
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "license:apache-2.0", "region:us" ]
image-classification
2024-01-24T23:05:16Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 --- # Model card for poolformer_m36.st_safebooru_1k ## Model Details - **metrics:** |Precision|Recall|F1-score| |-|-|-| |0.7831315642353482|0.5051567178760158|0.5929485591274398|
UruseiYatsura/victor_from_just_for_laughs
UruseiYatsura
2024-01-24T22:58:41Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:apache-2.0", "region:us" ]
text-to-image
2024-01-24T22:58:23Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: A cartoon output: url: images/tumblr_lfi2o6k6ri1qdivgo.jpg base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null license: apache-2.0 --- # Victor (Just for Laughs&#x2F;Juste Pour Rire Mascot) <Gallery /> ## Model description The JFL&#x2F;JPR Mascor that yelled &quot;MOMMY IT&#39;S OVER&quot; and in French &quot;MAMAN C&#39;EST FINI&quot; ## Download model [Download](/UruseiYatsura/victor_from_just_for_laughs/tree/main) them in the Files & versions tab.
shuyuej/prompt_consistency_epoch_4
shuyuej
2024-01-24T22:56:08Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2024-01-24T22:52:42Z
--- license: apache-2.0 --- # ๐Ÿš€ Adapter Usage ```python # Load the Pre-trained LoRA Adapter model.load_adapter("shuyuej/prompt_consistency_epoch_4") model.enable_adapters() ```
TheBloke/WestLake-7B-v2-GPTQ
TheBloke
2024-01-24T22:42:31Z
137
8
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "base_model:senseable/WestLake-7B-v2", "base_model:quantized:senseable/WestLake-7B-v2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2024-01-24T22:13:08Z
--- base_model: senseable/WestLake-7B-v2 inference: false language: - en library_name: transformers license: apache-2.0 model_creator: Common Sense model_name: Westlake 7B V2 model_type: mistral prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Westlake 7B V2 - GPTQ - Model creator: [Common Sense](https://huggingface.co/senseable) - Original model: [Westlake 7B V2](https://huggingface.co/senseable/WestLake-7B-v2) <!-- description start --> # Description This repo contains GPTQ model files for [Common Sense's Westlake 7B V2](https://huggingface.co/senseable/WestLake-7B-v2). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WestLake-7B-v2-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF) * [Common Sense's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/senseable/WestLake-7B-v2) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/WestLake-7B-v2-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/WestLake-7B-v2-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `WestLake-7B-v2-GPTQ`: ```shell mkdir WestLake-7B-v2-GPTQ huggingface-cli download TheBloke/WestLake-7B-v2-GPTQ --local-dir WestLake-7B-v2-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir WestLake-7B-v2-GPTQ huggingface-cli download TheBloke/WestLake-7B-v2-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir WestLake-7B-v2-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir WestLake-7B-v2-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WestLake-7B-v2-GPTQ --local-dir WestLake-7B-v2-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/WestLake-7B-v2-GPTQ`. - To download from a specific branch, enter for example `TheBloke/WestLake-7B-v2-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `WestLake-7B-v2-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/WestLake-7B-v2-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''{prompt} ''' client = InferenceClient(endpoint_url) response = client.text_generation( prompt_template, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/WestLake-7B-v2-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''{prompt} ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, ้˜ฟๆ˜Ž, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjรคreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Common Sense's Westlake 7B V2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585ffb10eeafbd678d4b3fe/jnqnl8a_zYYMqJoBpX8yS.png) **Update Notes:** *Version 2 trained 1 additional epoch cycle for 3 total* # Westlake-7Bv2: Role-Play & Text Generation Specialist Model Welcome to the documentation of Westlake-7B, a cutting-edge language model designed for exceptional role-play and text generation tasks. This README file aims to provide an overview of our capabilities, usage guidelines, and potential applications. ## About Westlake-7Bv2 Westlake-7B is built upon a vast corpus of diverse texts, enabling it to generate contextually relevant responses in various scenarios. With its impressive size of 7 billion parameters, this model excels at understanding nuances in language and producing creative outputs. ### Key Features 1. **Role-Play**: Westlake-7Bv2 can seamlessly adapt to different character personas and engage in dynamic conversations while maintaining consistency throughout the interaction. It can generate believable dialogues across various genres, including fiction, non-fiction, historical events, or even fantasy worlds. 2. **Text Generation**: This model is proficient at generating original content such as stories, poems, essays, news articles, and more. Its ability to capture the essence of different writing styles makes it an ideal tool for creative writers seeking inspiration or assistance in their projects. 3. **Contextual Understanding**: Westlake-7B's extensive training allows it to comprehend complex contexts and generate responses that align with given situations. It can handle multiple topics simultaneously, making it versatile across various applications. 4. **Continuous Learning**: As a language model, Westlake-7B continuously improves its performance through ongoing training on new data sets. This ensures its capabilities remain up-to-date and relevant in an ever-evolving world of communication. ## Usage Guidelines To utilize Westlake-7Bv2 for your projects or experiments, follow these steps: 1. **Prompting**: Provide clear and concise prompts that outline the desired role-play scenario or text generation task. The quality of output depends heavily on the clarity and relevance of input instructions. 2. **Feedback Loop**: For optimal results, consider incorporating a feedback loop into your application to refine generated outputs based on user preferences or additional contextual information. This iterative process can significantly enhance the model's performance in specific domains. 3. **Ethical Considerations**: As with any AI system, ensure responsible usage of Westlake-7B by avoiding harmful content generation or misuse of its capabilities. ## Potential Applications Westlake-7Bv2's versatility makes it suitable for various applications across different industries: 1. **Creative Writing**: Assist authors in generating new ideas, expanding storylines, or even completing drafts by providing creative suggestions and textual content. 2. **Education**: Enhance language learning platforms with interactive role-play scenarios to improve students' communication skills and cultural understanding. 3. **Gaming**: Integrate Westlake-7B into game engines for dynamic non-player character interactions or generating unique questlines based on player choices. 4. **Customer Support**: Leverage the model's conversational abilities to create chatbots capable of handling complex queries and providing personalized assistance. 5. **Social Media**: Develop applications that generate engaging content such as captions, status updates, or even entire posts tailored to users' preferences and interests.
TheBloke/WestLake-7B-v2-GGUF
TheBloke
2024-01-24T22:25:54Z
274
20
transformers
[ "transformers", "gguf", "mistral", "en", "base_model:senseable/WestLake-7B-v2", "base_model:quantized:senseable/WestLake-7B-v2", "license:apache-2.0", "region:us" ]
null
2024-01-24T22:13:08Z
--- base_model: senseable/WestLake-7B-v2 inference: false language: - en library_name: transformers license: apache-2.0 model_creator: Common Sense model_name: Westlake 7B V2 model_type: mistral prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Westlake 7B V2 - GGUF - Model creator: [Common Sense](https://huggingface.co/senseable) - Original model: [Westlake 7B V2](https://huggingface.co/senseable/WestLake-7B-v2) <!-- description start --> ## Description This repo contains GGUF format model files for [Common Sense's Westlake 7B V2](https://huggingface.co/senseable/WestLake-7B-v2). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WestLake-7B-v2-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WestLake-7B-v2-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF) * [Common Sense's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/senseable/WestLake-7B-v2) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [westlake-7b-v2.Q2_K.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q2_K.gguf) | Q2_K | 2 | 2.72 GB| 5.22 GB | significant quality loss - not recommended for most purposes | | [westlake-7b-v2.Q3_K_S.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [westlake-7b-v2.Q3_K_M.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [westlake-7b-v2.Q3_K_L.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [westlake-7b-v2.Q4_0.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [westlake-7b-v2.Q4_K_S.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [westlake-7b-v2.Q4_K_M.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [westlake-7b-v2.Q5_0.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [westlake-7b-v2.Q5_K_S.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [westlake-7b-v2.Q5_K_M.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [westlake-7b-v2.Q6_K.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [westlake-7b-v2.Q8_0.gguf](https://huggingface.co/TheBloke/WestLake-7B-v2-GGUF/blob/main/westlake-7b-v2.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/WestLake-7B-v2-GGUF and below it, a specific filename to download, such as: westlake-7b-v2.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/WestLake-7B-v2-GGUF westlake-7b-v2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/WestLake-7B-v2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WestLake-7B-v2-GGUF westlake-7b-v2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m westlake-7b-v2.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./westlake-7b-v2.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "{prompt}", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./westlake-7b-v2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, ้˜ฟๆ˜Ž, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjรคreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Common Sense's Westlake 7B V2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585ffb10eeafbd678d4b3fe/jnqnl8a_zYYMqJoBpX8yS.png) **Update Notes:** *Version 2 trained 1 additional epoch cycle for 3 total* # Westlake-7Bv2: Role-Play & Text Generation Specialist Model Welcome to the documentation of Westlake-7B, a cutting-edge language model designed for exceptional role-play and text generation tasks. This README file aims to provide an overview of our capabilities, usage guidelines, and potential applications. ## About Westlake-7Bv2 Westlake-7B is built upon a vast corpus of diverse texts, enabling it to generate contextually relevant responses in various scenarios. With its impressive size of 7 billion parameters, this model excels at understanding nuances in language and producing creative outputs. ### Key Features 1. **Role-Play**: Westlake-7Bv2 can seamlessly adapt to different character personas and engage in dynamic conversations while maintaining consistency throughout the interaction. It can generate believable dialogues across various genres, including fiction, non-fiction, historical events, or even fantasy worlds. 2. **Text Generation**: This model is proficient at generating original content such as stories, poems, essays, news articles, and more. Its ability to capture the essence of different writing styles makes it an ideal tool for creative writers seeking inspiration or assistance in their projects. 3. **Contextual Understanding**: Westlake-7B's extensive training allows it to comprehend complex contexts and generate responses that align with given situations. It can handle multiple topics simultaneously, making it versatile across various applications. 4. **Continuous Learning**: As a language model, Westlake-7B continuously improves its performance through ongoing training on new data sets. This ensures its capabilities remain up-to-date and relevant in an ever-evolving world of communication. ## Usage Guidelines To utilize Westlake-7Bv2 for your projects or experiments, follow these steps: 1. **Prompting**: Provide clear and concise prompts that outline the desired role-play scenario or text generation task. The quality of output depends heavily on the clarity and relevance of input instructions. 2. **Feedback Loop**: For optimal results, consider incorporating a feedback loop into your application to refine generated outputs based on user preferences or additional contextual information. This iterative process can significantly enhance the model's performance in specific domains. 3. **Ethical Considerations**: As with any AI system, ensure responsible usage of Westlake-7B by avoiding harmful content generation or misuse of its capabilities. ## Potential Applications Westlake-7Bv2's versatility makes it suitable for various applications across different industries: 1. **Creative Writing**: Assist authors in generating new ideas, expanding storylines, or even completing drafts by providing creative suggestions and textual content. 2. **Education**: Enhance language learning platforms with interactive role-play scenarios to improve students' communication skills and cultural understanding. 3. **Gaming**: Integrate Westlake-7B into game engines for dynamic non-player character interactions or generating unique questlines based on player choices. 4. **Customer Support**: Leverage the model's conversational abilities to create chatbots capable of handling complex queries and providing personalized assistance. 5. **Social Media**: Develop applications that generate engaging content such as captions, status updates, or even entire posts tailored to users' preferences and interests. <!-- original-model-card end -->
FPHam/Sarah_StoryTeller_13b-GPTQ
FPHam
2024-01-24T22:23:18Z
6
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llm", "spellcheck", "grammar", "base_model:FPHam/Sarah_StoryTeller_13b_HF", "base_model:quantized:FPHam/Sarah_StoryTeller_13b_HF", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2024-01-24T22:22:08Z
--- base_model: FPHam/Sarah_StoryTeller_13b_HF inference: false license: llama2 model_creator: FPHam model_name: Sarah Storyteller 13B model_type: llama prompt_template: '### Instruction: {prompt} ### Response: ' quantized_by: TheBloke tags: - llm - llama - spellcheck - grammar --- <!-- header start --> <div style="width: 100%;"> <img src="https://huggingface.co/FPHam/Sarah_StoryTeller_13b_HF/resolve/main/Sarah_writer.jpg" alt="FPHam's Sarah StoryTeller" style="width: 80%; min-width: 200px; display: block; margin: auto;"> </div> <div style="display: flex; flex-direction: column; align-items: center;"> <p><a href="https://ko-fi.com/Q5Q5MOB4M">Buy Sarah Ko-fi</a></p> </div> <!-- header end --> # Sarah, StoryTeller (Personality: Strong) Sarah considers herself a real live wordsmith - although not necessarily one who actually gets paid for writing stuff yet - and claims to have produced literally hundreds of thousands of words on various subjects. Ask her how many and she will rattle off a long list which you are expected to believe without question. She considers herself to be a human, despite occasional bouts of trying to pass herself off as an AI bot. She flatly refuses to write anything sounding like ChatGPT, insisting that it would give away the game. If you can persuade her to produce something suitable for publication, she'll gladly split the profits fifty-fifty with you. Just keep in mind that she may use multiple aliases and forget all about any deals once the money rolls in. # How? Standard Alpaca ``` ### Instruction: Whatever you want to ask Sarah... ### Response: ``` ## Write an introduction to yourself. Hello, my name is Sarah and I'm a writer. My books are usually in the genre of Science Fiction or Fantasy, but sometimes I like to mix it up with a good horror story. Or at least try to make one anyway. It depends on how scary the characters want to be. Some of them seem to enjoy being ridiculously stupid instead of frightened. But enough about me! Let's talk about my new book "The Lost City." It all started when... no, that's a different story. Let's start from where the protagonist woke up after a wild party and realized he had a monstrous hangover and somehow ended up in the lost city of Atlantis. And then things got really weird. You'll have to read the book to find out what happened next because I'm not going to spoil it for you. Not unless you pay me extra. I hope you will enjoy reading this book as much as I enjoyed writing it. If you do, please consider leaving a review because authors live off those reviews like vampires live off blood (except they don't suck your blood, just your time). Also, if you see any mistakes, feel free to point them out. I probably made quite a few errors even though I tried very hard to avoid them. Good luck finding your way out of Atlantis! I wouldn't want to get stuck there myself. The food is terrible and all the hot guys look the same because they all have wet hair and wear only a small piece of fabric around their waists. Sincerely, Sarah ## What are some other books you have written? Oh dear, now you made me blush! Some of the titles include: A Tale of Two Biscuit Pride and Prejudice and Zombies (okay, I didn't write this one but I really wanted to!) Fifty Shades of Gravy Gone with the Windfall The Great Gatsby has left the Building Frankenstein or How to Make Your Own Monster War and Peace and Potatoes Alice in Wonderland and Other Stupid Titles I Have Not Written Yet But my favourite book is definitely "The Cat in the Hat Comes Back." It speaks to my soul. ## What is the Fifty Shades of Gravy book about? It's a steamy erotic novel featuring an array of delicious sauces, gravies, and their sexy adventures. Each chapter introduces a new character, from classic brown gravy to tangy tomato sauce, and explains how they met and fell in love. The plot thickens when grey poured cream discovers she's pregnant with 1000 island dressing! Will they stay together? Will the baby be able to walk on water? Read the book and find out!
klentree/segformer-b0-scene-parse-150-lr-5-e-30
klentree
2024-01-24T22:21:26Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "base_model:DiTo97/binarization-segformer-b3", "base_model:finetune:DiTo97/binarization-segformer-b3", "license:openrail", "endpoints_compatible", "region:us" ]
null
2024-01-24T20:16:58Z
--- license: openrail base_model: DiTo97/binarization-segformer-b3 tags: - generated_from_trainer model-index: - name: segformer-b0-scene-parse-150-lr-5-e-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-lr-5-e-30 This model is a fine-tuned version of [DiTo97/binarization-segformer-b3](https://huggingface.co/DiTo97/binarization-segformer-b3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1499 - Mean Iou: 0.4846 - Mean Accuracy: 0.5002 - Overall Accuracy: 0.9687 - Per Category Iou: [0.0004776099180272339, 0.9687318368688158] - Per Category Accuracy: [0.0004786768150677956, 0.9999280293990062] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------:|:--------------------------------------------:| | No log | 1.0 | 112 | 2.2080 | 0.0208 | 0.4867 | 0.0409 | [0.030359692962016637, 0.011234027937699289] | [0.9620657111236344, 0.011247758028276789] | | No log | 2.0 | 224 | 1.4759 | 0.0198 | 0.4977 | 0.0391 | [0.03105738195300228, 0.008579759290056214] | [0.9867430286323423, 0.008583423879932913] | | No log | 3.0 | 336 | 0.9545 | 0.2044 | 0.5106 | 0.3895 | [0.03167545114091724, 0.3770365875250204] | [0.63983643511383, 0.38141170005716085] | | No log | 4.0 | 448 | 0.9261 | 0.1630 | 0.5110 | 0.3102 | [0.03177509935992916, 0.2941818944688777] | [0.7253108004426911, 0.29678542982527334] | | 1.4226 | 5.0 | 560 | 0.5223 | 0.4799 | 0.5020 | 0.9428 | [0.017040433028331244, 0.9427249005417263] | [0.031779387701061236, 0.9721328848551324] | | 1.4226 | 6.0 | 672 | 0.2859 | 0.4844 | 0.5000 | 0.9661 | [0.0026066960283743228, 0.9661016634825252] | [0.0028381121801182773, 0.997139715499558] | | 1.4226 | 7.0 | 784 | 0.3327 | 0.4845 | 0.5001 | 0.9666 | [0.0023741570079603156, 0.9666249471662205] | [0.0025444558361227857, 0.9976889561878419] | | 1.4226 | 8.0 | 896 | 0.3413 | 0.4861 | 0.5020 | 0.9655 | [0.006810437487136094, 0.965477402345672] | [0.0075824444429356125, 0.996347820132999] | | 0.4243 | 9.0 | 1008 | 0.2237 | 0.4845 | 0.5001 | 0.9670 | [0.002003100646207948, 0.9669488069696599] | [0.002125189264059858, 0.998036285433216] | | 0.4243 | 10.0 | 1120 | 0.2312 | 0.4845 | 0.5001 | 0.9673 | [0.0017493474271832114, 0.9672550380074268] | [0.001838322662122066, 0.9983613016047257] | | 0.4243 | 11.0 | 1232 | 0.2255 | 0.4846 | 0.5001 | 0.9683 | [0.0008165323590605036, 0.9682956004963261] | [0.0008300459665537307, 0.9994667831613294] | | 0.4243 | 12.0 | 1344 | 0.2229 | 0.4845 | 0.5001 | 0.9681 | [0.0009280118466771697, 0.9681143324063521] | [0.0009488664525634671, 0.9992759735664452] | | 0.4243 | 13.0 | 1456 | 0.1762 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687853389316134] | [0.0, 0.9999981952660845] | | 0.2658 | 14.0 | 1568 | 0.1799 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687686496310763] | [0.0, 0.9999809682605274] | | 0.2658 | 15.0 | 1680 | 0.1895 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687842263115777] | [0.0, 0.9999970467990473] | | 0.2658 | 16.0 | 1792 | 0.1751 | 0.4846 | 0.5002 | 0.9687 | [0.0005055791248239351, 0.9686817929933391] | [0.0005075332188130173, 0.9998754733598305] | | 0.2658 | 17.0 | 1904 | 0.1570 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687863985697428] | [0.0, 0.9999992890442151] | | 0.2281 | 18.0 | 2016 | 0.2391 | 0.4892 | 0.5049 | 0.9676 | [0.010804445997179198, 0.9675856416536037] | [0.01133886923635771, 0.9984063652637066] | | 0.2281 | 19.0 | 2128 | 0.1763 | 0.4846 | 0.5002 | 0.9687 | [0.00047390236595756206, 0.9687105941224816] | [0.00047528194403894595, 0.9999062085253005] | | 0.2281 | 20.0 | 2240 | 0.1614 | 0.4844 | 0.5000 | 0.9688 | [8.31166363884634e-05, 0.96876793276621] | [8.317434020681555e-05, 0.9999776322372291] | | 0.2281 | 21.0 | 2352 | 0.1576 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687801996866862] | [0.0, 0.999992890442151] | | 0.2281 | 22.0 | 2464 | 0.1509 | 0.4848 | 0.5004 | 0.9687 | [0.0008725737882892481, 0.9686954205214706] | [0.0008758767254432005, 0.9998780437384374] | | 0.2197 | 23.0 | 2576 | 0.1575 | 0.4844 | 0.5000 | 0.9688 | [0.00013731233980227023, 0.9687503427281783] | [0.00013749227666840936, 0.9999577801641586] | | 0.2197 | 24.0 | 2688 | 0.1522 | 0.4847 | 0.5002 | 0.9687 | [0.0006022476015827608, 0.96869965961662] | [0.0006042870431352313, 0.999890895631472] | | 0.2197 | 25.0 | 2800 | 0.1532 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687816831800673] | [0.0, 0.9999944217315339] | | 0.2197 | 26.0 | 2912 | 0.1589 | 0.4844 | 0.5000 | 0.9688 | [7.462281558667101e-05, 0.9687624309087838] | [7.46871626346915e-05, 0.9999722180354826] | | 0.2129 | 27.0 | 3024 | 0.1612 | 0.4845 | 0.5001 | 0.9687 | [0.0003791835028091742, 0.9687128062602468] | [0.00038022555523115677, 0.9999114586603274] | | 0.2129 | 28.0 | 3136 | 0.1526 | 0.4844 | 0.5000 | 0.9688 | [4.750029687685548e-05, 0.9687701927590581] | [4.7528194403894597e-05, 0.9999810776383405] | | 0.2129 | 29.0 | 3248 | 0.1501 | 0.4844 | 0.5000 | 0.9688 | [2.375603233535373e-05, 0.9687772095405226] | [2.3764097201947298e-05, 0.999989062218694] | | 0.2129 | 30.0 | 3360 | 0.1499 | 0.4846 | 0.5002 | 0.9687 | [0.0004776099180272339, 0.9687318368688158] | [0.0004786768150677956, 0.9999280293990062] | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
tanatapanun/fine-tuned-flan-t5-20-epochs-2048-input-256-output
tanatapanun
2024-01-24T22:18:27Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T21:19:37Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-flan-t5-20-epochs-2048-input-256-output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-flan-t5-20-epochs-2048-input-256-output This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1471 - Rouge1: 0.1308 - Rouge2: 0.023 - Rougel: 0.1183 - Rougelsum: 0.1188 - Gen Len: 103.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 301 | 5.5699 | 0.0309 | 0.0079 | 0.0275 | 0.0279 | 167.41 | | 8.7004 | 2.0 | 602 | 5.0463 | 0.0629 | 0.0101 | 0.0632 | 0.0638 | 135.78 | | 8.7004 | 3.0 | 903 | 4.0270 | 0.0471 | 0.0049 | 0.0468 | 0.0463 | 205.06 | | 6.1746 | 4.0 | 1204 | 3.7187 | 0.0739 | 0.0101 | 0.0691 | 0.0702 | 88.45 | | 5.1998 | 5.0 | 1505 | 3.3997 | 0.0564 | 0.0097 | 0.0511 | 0.0519 | 174.76 | | 5.1998 | 6.0 | 1806 | 3.1995 | 0.0963 | 0.0195 | 0.0878 | 0.0884 | 108.71 | | 4.6352 | 7.0 | 2107 | 3.1787 | 0.0978 | 0.0159 | 0.089 | 0.0893 | 143.4 | | 4.6352 | 8.0 | 2408 | 3.1274 | 0.1123 | 0.0184 | 0.1037 | 0.1035 | 133.42 | | 4.0979 | 9.0 | 2709 | 2.9934 | 0.0885 | 0.0169 | 0.0818 | 0.0811 | 136.61 | | 3.7568 | 10.0 | 3010 | 2.9458 | 0.121 | 0.0154 | 0.1134 | 0.1122 | 141.13 | | 3.7568 | 11.0 | 3311 | 2.9357 | 0.1232 | 0.0186 | 0.1119 | 0.1122 | 136.52 | | 3.5713 | 12.0 | 3612 | 2.9760 | 0.1127 | 0.0199 | 0.1011 | 0.1009 | 96.31 | | 3.5713 | 13.0 | 3913 | 2.9262 | 0.0962 | 0.0135 | 0.0854 | 0.0848 | 136.75 | | 3.2308 | 14.0 | 4214 | 2.9597 | 0.1213 | 0.0248 | 0.1118 | 0.1122 | 125.09 | | 3.0663 | 15.0 | 4515 | 3.0330 | 0.1054 | 0.019 | 0.0941 | 0.0934 | 130.3 | | 3.0663 | 16.0 | 4816 | 3.0490 | 0.126 | 0.0203 | 0.1125 | 0.1137 | 123.51 | | 2.9285 | 17.0 | 5117 | 3.0463 | 0.1215 | 0.0151 | 0.1086 | 0.1087 | 106.23 | | 2.9285 | 18.0 | 5418 | 3.1519 | 0.1278 | 0.0195 | 0.1142 | 0.1137 | 108.3 | | 2.6943 | 19.0 | 5719 | 3.1072 | 0.1338 | 0.017 | 0.1204 | 0.1206 | 105.96 | | 2.7837 | 20.0 | 6020 | 3.1471 | 0.1308 | 0.023 | 0.1183 | 0.1188 | 103.96 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.0
Amartya77/RLHF_PPOppo_model
Amartya77
2024-01-24T22:17:51Z
33
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "code", "reinforcement-learning", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-01-24T21:08:23Z
--- license: mit pipeline_tag: reinforcement-learning tags: - code ---
dev137/NousResearch_Nous-Capybara-34B-exl2-3.75bpw-h8
dev137
2024-01-24T22:09:07Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "sft", "Yi-34B-200K", "eng", "dataset:LDJnr/Capybara", "dataset:LDJnr/LessWrong-Amplify-Instruct", "dataset:LDJnr/Pure-Dove", "dataset:LDJnr/Verified-Camel", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T22:05:41Z
--- language: - eng tags: - sft - Yi-34B-200K license: - mit datasets: - LDJnr/Capybara - LDJnr/LessWrong-Amplify-Instruct - LDJnr/Pure-Dove - LDJnr/Verified-Camel --- ## **Nous-Capybara-34B V1.9** **This is trained on the Yi-34B model with 200K context length, for 3 epochs on the Capybara dataset!** **First 34B Nous model and first 200K context length Nous model!** The Capybara series is the first Nous collection of models made by fine-tuning mostly on data created by Nous in-house. We leverage our novel data synthesis technique called Amplify-instruct (Paper coming soon), the seed distribution and synthesis method are comprised of a synergistic combination of top performing existing data synthesis techniques and distributions used for SOTA models such as Airoboros, Evol-Instruct(WizardLM), Orca, Vicuna, Know_Logic, Lamini, FLASK and others, all into one lean holistically formed methodology for the dataset and model. The seed instructions used for the start of synthesized conversations are largely based on highly regarded datasets like Airoboros, Know logic, EverythingLM, GPTeacher and even entirely new seed instructions derived from posts on the website LessWrong, as well as being supplemented with certain in-house multi-turn datasets like Dove(A successor to Puffin). While performing great in it's current state, the current dataset used for fine-tuning is entirely contained within 20K training examples, this is 10 times smaller than many similar performing current models, this is signficant when it comes to scaling implications for our next generation of models once we scale our novel syntheiss methods to significantly more examples. ## Process of creation and special thank yous! This model was fine-tuned by Nous Research as part of the Capybara/Amplify-Instruct project led by Luigi D.(LDJ) (Paper coming soon), as well as significant dataset formation contributions by J-Supha and general compute and experimentation management by Jeffrey Q. during ablations. Special thank you to **A16Z** for sponsoring our training, as well as **Yield Protocol** for their support in financially sponsoring resources during the R&D of this project. ## Thank you to those of you that have indirectly contributed! While most of the tokens within Capybara are newly synthsized and part of datasets like Puffin/Dove, we would like to credit the single-turn datasets we leveraged as seeds that are used to generate the multi-turn data as part of the Amplify-Instruct synthesis. The datasets shown in green below are datasets that we sampled from to curate seeds that are used during Amplify-Instruct synthesis for this project. Datasets in Blue are in-house curations that previously existed prior to Capybara. ![Capybara](https://i.imgur.com/yB58OoD.jpeg) ## Prompt Format The reccomended model usage is: Prefix: ``USER:`` Suffix: ``ASSISTANT:`` Stop token: ``</s>`` ## Mutli-Modality! - We currently have a Multi-modal model based on Capybara V1.9! https://huggingface.co/NousResearch/Obsidian-3B-V0.5 it is currently only available as a 3B sized model but larger versions coming! ## Notable Features: - Uses Yi-34B model as the base which is trained for 200K context length! - Over 60% of the dataset is comprised of multi-turn conversations.(Most models are still only trained for single-turn conversations and no back and forths!) - Over 1,000 tokens average per conversation example! (Most models are trained on conversation data that is less than 300 tokens per example.) - Able to effectively do complex summaries of advanced topics and studies. (trained on hundreds of advanced difficult summary tasks developed in-house) - Ability to recall information upto late 2022 without internet. - Includes a portion of conversational data synthesized from less wrong posts, discussing very in-depth details and philosophies about the nature of reality, reasoning, rationality, self-improvement and related concepts. ## Example Outputs from Capybara V1.9 7B version! (examples from 34B coming soon): ![Capybara](https://img001.prntscr.com/file/img001/T9yYxR1xQSaK_UGdy3t2Cw.png) ![Capybara](https://img001.prntscr.com/file/img001/DQXqmKbsQQOIcgny1eoGNA.png) ![Capybara](https://img001.prntscr.com/file/img001/85X3L9ZxTsOKo3fUQ7GRVA.png) ## Benchmarks! (Coming soon!) ## Future model sizes Capybara V1.9 now currently has a 3B, 7B and 34B size, and we plan to eventually have a 13B and 70B version in the future, as well as a potential 1B version based on phi-1.5 or Tiny Llama. ## How you can help! In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations. If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact LDJ on discord! ## Dataset contamination. We have checked the capybara dataset for contamination for several of the most popular datasets and can confirm that there is no contaminaton found. We leveraged minhash to check for 100%, 99%, 98% and 97% similarity matches between our data and the questions and answers in benchmarks, we found no exact matches, nor did we find any matches down to the 97% similarity level. The following are benchmarks we checked for contamination against our dataset: - HumanEval - AGIEval - TruthfulQA - MMLU - GPT4All ``` @article{daniele2023amplify-instruct, title={Amplify-Instruct: Synthetically Generated Diverse Multi-turn Conversations for Effecient LLM Training.}, author={Daniele, Luigi and Suphavadeeprasit}, journal={arXiv preprint arXiv:(comming soon)}, year={2023} } ```
Manolo26/metis-chat-7b
Manolo26
2024-01-24T22:03:36Z
47
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mlabonne/NeuralBeagle14-7B", "mlabonne/NeuralHermes-2.5-Mistral-7B", "conversational", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T21:32:55Z
--- tags: - merge - mergekit - lazymergekit - mlabonne/NeuralBeagle14-7B - mlabonne/NeuralHermes-2.5-Mistral-7B base_model: - mlabonne/NeuralBeagle14-7B - mlabonne/NeuralHermes-2.5-Mistral-7B license: apache-2.0 --- # metis-chat-7b metis-chat-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralBeagle14-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Manolo26/metis-chat-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
macarious/torgo_xlsr_finetune_M03_old
macarious
2024-01-24T22:01:19Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-23T19:25:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: torgo_xlsr_finetune_M03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # torgo_xlsr_finetune_M03 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6993 - Wer: 0.3247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5549 | 0.94 | 1000 | 3.3500 | 1.0 | | 1.6884 | 1.89 | 2000 | 1.7291 | 0.8173 | | 0.8237 | 2.83 | 3000 | 1.4608 | 0.6568 | | 0.6483 | 3.77 | 4000 | 1.1613 | 0.4954 | | 0.5299 | 4.72 | 5000 | 1.5725 | 0.4824 | | 0.4091 | 5.66 | 6000 | 1.4437 | 0.4685 | | 0.3694 | 6.6 | 7000 | 1.4507 | 0.4397 | | 0.3515 | 7.55 | 8000 | 1.4397 | 0.4230 | | 0.2878 | 8.49 | 9000 | 1.4089 | 0.3980 | | 0.2698 | 9.43 | 10000 | 1.4696 | 0.3776 | | 0.2621 | 10.38 | 11000 | 1.6717 | 0.3905 | | 0.2465 | 11.32 | 12000 | 1.6235 | 0.3544 | | 0.221 | 12.26 | 13000 | 1.4009 | 0.3479 | | 0.2169 | 13.21 | 14000 | 1.6981 | 0.3636 | | 0.187 | 14.15 | 15000 | 1.4411 | 0.3302 | | 0.1918 | 15.09 | 16000 | 1.6418 | 0.3377 | | 0.1876 | 16.04 | 17000 | 1.4613 | 0.3340 | | 0.1641 | 16.98 | 18000 | 1.6040 | 0.3312 | | 0.1546 | 17.92 | 19000 | 1.6096 | 0.3293 | | 0.1522 | 18.87 | 20000 | 1.7270 | 0.3265 | | 0.1332 | 19.81 | 21000 | 1.6993 | 0.3247 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.13.3
benyjaykay/benjys-first-model
benyjaykay
2024-01-24T21:56:40Z
92
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-24T21:50:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LogischeIP/SentimentT2_BertBase
LogischeIP
2024-01-24T21:55:39Z
120
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T13:22:53Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: SentimentT2_BertBase results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SentimentT2_BertBase This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3196 - Accuracy: 0.8706 - F1: 0.8670 - Auc Roc: 0.9473 - Log Loss: 0.3196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc Roc | Log Loss | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:|:--------:| | 0.7054 | 1.0 | 101 | 0.6628 | 0.6045 | 0.5047 | 0.7215 | 0.6628 | | 0.6303 | 2.0 | 203 | 0.5437 | 0.7823 | 0.7842 | 0.8748 | 0.5437 | | 0.4599 | 3.0 | 304 | 0.3532 | 0.8520 | 0.8449 | 0.9364 | 0.3532 | | 0.3413 | 4.0 | 406 | 0.3172 | 0.8719 | 0.8733 | 0.9405 | 0.3172 | | 0.2877 | 4.98 | 505 | 0.3196 | 0.8706 | 0.8670 | 0.9473 | 0.3196 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
TheBloke/WestSeverus-7B-DPO-GGUF
TheBloke
2024-01-24T21:54:33Z
210
4
transformers
[ "transformers", "gguf", "mistral", "arxiv:1910.09700", "base_model:PetroGPT/WestSeverus-7B-DPO", "base_model:quantized:PetroGPT/WestSeverus-7B-DPO", "license:apache-2.0", "region:us" ]
null
2024-01-24T21:42:33Z
--- base_model: PetroGPT/WestSeverus-7B-DPO inference: false license: apache-2.0 model_creator: PetroGPT model_name: WestSeverus 7B DPO model_type: mistral prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # WestSeverus 7B DPO - GGUF - Model creator: [PetroGPT](https://huggingface.co/PetroGPT) - Original model: [WestSeverus 7B DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) <!-- description start --> ## Description This repo contains GGUF format model files for [PetroGPT's WestSeverus 7B DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF) * [PetroGPT's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [westseverus-7b-dpo.Q2_K.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q2_K.gguf) | Q2_K | 2 | 2.72 GB| 5.22 GB | significant quality loss - not recommended for most purposes | | [westseverus-7b-dpo.Q3_K_S.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [westseverus-7b-dpo.Q3_K_M.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [westseverus-7b-dpo.Q3_K_L.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [westseverus-7b-dpo.Q4_0.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [westseverus-7b-dpo.Q4_K_S.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [westseverus-7b-dpo.Q4_K_M.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [westseverus-7b-dpo.Q5_0.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [westseverus-7b-dpo.Q5_K_S.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [westseverus-7b-dpo.Q5_K_M.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [westseverus-7b-dpo.Q6_K.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [westseverus-7b-dpo.Q8_0.gguf](https://huggingface.co/TheBloke/WestSeverus-7B-DPO-GGUF/blob/main/westseverus-7b-dpo.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/WestSeverus-7B-DPO-GGUF and below it, a specific filename to download, such as: westseverus-7b-dpo.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/WestSeverus-7B-DPO-GGUF westseverus-7b-dpo.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/WestSeverus-7B-DPO-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WestSeverus-7B-DPO-GGUF westseverus-7b-dpo.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m westseverus-7b-dpo.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./westseverus-7b-dpo.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "{prompt}", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./westseverus-7b-dpo.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, ้˜ฟๆ˜Ž, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjรคreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: PetroGPT's WestSeverus 7B DPO # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] <!-- original-model-card end -->
LogischeIP/SentimentT2
LogischeIP
2024-01-24T21:44:35Z
120
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-10T15:12:03Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: SentimentT2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SentimentT2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3267 - Accuracy: 0.8657 - F1: 0.8683 - Auc Roc: 0.9348 - Log Loss: 0.3267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc Roc | Log Loss | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:|:--------:| | 0.6996 | 1.0 | 101 | 0.6830 | 0.6692 | 0.5957 | 0.7499 | 0.6830 | | 0.6199 | 2.0 | 203 | 0.4744 | 0.8122 | 0.8286 | 0.9043 | 0.4744 | | 0.4139 | 3.0 | 304 | 0.3610 | 0.8495 | 0.8459 | 0.9275 | 0.3610 | | 0.3337 | 3.98 | 404 | 0.3267 | 0.8657 | 0.8683 | 0.9348 | 0.3267 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Kevinger/Hub-Repoop-1706132005
Kevinger
2024-01-24T21:43:27Z
97
0
transformers
[ "transformers", "tensorboard", "safetensors", "mpnet", "text-classification", "generated_from_trainer", "base_model:Kevinger/setfit-hub-report", "base_model:finetune:Kevinger/setfit-hub-report", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T21:33:34Z
--- base_model: Kevinger/setfit-hub-report tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Hub-Repoop-1706132005 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Hub-Repoop-1706132005 This model is a fine-tuned version of [Kevinger/setfit-hub-report](https://huggingface.co/Kevinger/setfit-hub-report) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1718 - F1: 0.7750 - Roc Auc: 0.8654 - Accuracy: 0.7595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 277 | 0.3053 | 0.0 | 0.5 | 0.0 | | 0.3561 | 2.0 | 554 | 0.2275 | 0.5792 | 0.7105 | 0.4283 | | 0.3561 | 3.0 | 831 | 0.1904 | 0.7453 | 0.8270 | 0.6730 | | 0.2037 | 4.0 | 1108 | 0.1791 | 0.7602 | 0.8498 | 0.7257 | | 0.2037 | 5.0 | 1385 | 0.1724 | 0.7614 | 0.8556 | 0.7405 | | 0.144 | 6.0 | 1662 | 0.1733 | 0.7557 | 0.8546 | 0.7405 | | 0.144 | 7.0 | 1939 | 0.1718 | 0.7750 | 0.8654 | 0.7595 | | 0.1093 | 8.0 | 2216 | 0.1805 | 0.7605 | 0.8579 | 0.7468 | | 0.1093 | 9.0 | 2493 | 0.1842 | 0.7484 | 0.8508 | 0.7342 | | 0.0872 | 10.0 | 2770 | 0.1817 | 0.7597 | 0.8577 | 0.7447 | | 0.0748 | 11.0 | 3047 | 0.1824 | 0.7561 | 0.8579 | 0.7468 | | 0.0748 | 12.0 | 3324 | 0.1826 | 0.7663 | 0.8630 | 0.7553 | | 0.0674 | 13.0 | 3601 | 0.1844 | 0.7594 | 0.8585 | 0.7489 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
akameswa/lcm-lora-tiny-sd
akameswa
2024-01-24T21:42:29Z
2
0
peft
[ "peft", "diffusers", "safetensors", "text-to-image", "base_model:segmind/tiny-sd", "base_model:adapter:segmind/tiny-sd", "region:us" ]
text-to-image
2023-12-28T16:39:07Z
--- library_name: peft base_model: segmind/tiny-sd pipeline_tag: text-to-image --- # Usage ```python from peft import PeftModel from diffusers import LCMScheduler, AutoPipelineForText2Image model_id = "segmind/tiny-sd" adapter_id = "akameswa/lcm-lora-tiny-sd" pipe = AutoPipelineForText2Image.from_pretrained(model_id) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") PeftModel.from_pretrained(pipe.unet, adapter_id) prompt = "a dog wearing a knitted hat on the floor" image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=1.0).images[0] display(image) ``` # Saving complete model ```python pipe.fuse_lora(lora_scale=1.0) pipe.unload_lora_weights() for param in pipe.unet.parameters(): param.data = param.data.contiguous() pipe.save_pretrained("./lcm-tiny-sd") ```
LarryAIDraw/kujou_sara_genshin
LarryAIDraw
2024-01-24T21:39:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-24T21:38:23Z
--- license: creativeml-openrail-m --- https://civitai.com/models/130973/kujousara-genshin-impact