modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Ivan0831/PPO-LunarLander-V4
Ivan0831
2024-01-24T16:03:32Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T15:11:33Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 66.43 +/- 71.53 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.001 'num_envs': 8 'num_steps': 512 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 32 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.1 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ivan0831/PPO-LunarLander-V4' 'batch_size': 4096 'minibatch_size': 128} ```
ZurichNLP/swiss-german-swissbert-char
ZurichNLP
2024-01-24T15:52:47Z
37
0
transformers
[ "transformers", "pytorch", "char_xmod", "fill-mask", "gsw", "multilingual", "license:cc-by-nc-4.0", "autotrain_compatible", "region:us" ]
fill-mask
2024-01-18T18:02:37Z
--- license: cc-by-nc-4.0 language: - gsw - multilingual inference: false --- The [SwissBERT](https://huggingface.co/ZurichNLP/swissbert) model ([Vamvas et al., SwissText 2023](https://aclanthology.org/2023.swisstext-1.6/)) extended by a Swiss German adapter that was trained on the character level. **Note:** This model is experimental and can only be run with our codebase at https://github.com/ZurichNLP/swiss-german-text-encoders, since it uses a custom model architecture. ## Training Data For continued pre-training, we used the following two datasets of written Swiss German: 1. [SwissCrawl](https://icosys.ch/swisscrawl) ([Linder et al., LREC 2020](https://aclanthology.org/2020.lrec-1.329)), a collection of Swiss German web text (forum discussions, social media). 2. A custom dataset of Swiss German tweets In addition, we trained the model on an equal amount of Standard German data. We used news articles retrieved from [Swissdox@LiRI](https://t.uzh.ch/1hI). ## License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). ## Citation ```bibtex @inproceedings{vamvas-etal-2024-modular, title={Modular Adaptation of Multilingual Encoders to Written Swiss German Dialect}, author={Jannis Vamvas and No{\"e}mi Aepli and Rico Sennrich}, booktitle={First Workshop on Modular and Open Multilingual NLP}, year={2024}, } ```
MoulikBansal/fine-tuned-on-mcq-phi1_5
MoulikBansal
2024-01-24T15:51:35Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "region:us" ]
null
2024-01-24T12:11:38Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-1_5 model-index: - name: fine-tuned-on-mcq-phi1_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-on-mcq-phi1_5 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
klentree/segformer-b0-scene-parse-150-lr-5-e-15
klentree
2024-01-24T15:51:20Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "base_model:DiTo97/binarization-segformer-b3", "base_model:finetune:DiTo97/binarization-segformer-b3", "license:openrail", "endpoints_compatible", "region:us" ]
null
2024-01-24T14:48:22Z
--- license: openrail base_model: DiTo97/binarization-segformer-b3 tags: - generated_from_trainer model-index: - name: segformer-b0-scene-parse-150-lr-5-e-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-lr-5-e-15 This model is a fine-tuned version of [DiTo97/binarization-segformer-b3](https://huggingface.co/DiTo97/binarization-segformer-b3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2657 - Mean Iou: 0.4845 - Mean Accuracy: 0.5001 - Overall Accuracy: 0.9672 - Per Category Iou: [0.0018194025597222916, 0.9671517415294609] - Per Category Accuracy: [0.001918102131300032, 0.9982521972361976] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------:|:-------------------------------------------:| | No log | 1.0 | 112 | 2.2288 | 0.0208 | 0.4868 | 0.0410 | [0.03036636790421317, 0.011265774627153866] | [0.9622473367236779, 0.011279477594064372] | | No log | 2.0 | 224 | 1.6154 | 0.0182 | 0.4963 | 0.0362 | [0.03097736523913424, 0.005513312495278201] | [0.9871504131558042, 0.005515594979208372] | | No log | 3.0 | 336 | 0.9216 | 0.1937 | 0.5158 | 0.3688 | [0.032185306965168796, 0.3552501717296959] | [0.672525648250623, 0.3589983267382158] | | No log | 4.0 | 448 | 0.9276 | 0.1561 | 0.5134 | 0.2969 | [0.03198740212709094, 0.280147471502915] | [0.7443848833182828, 0.28245463938025656] | | 1.4322 | 5.0 | 560 | 0.6011 | 0.4362 | 0.5033 | 0.8459 | [0.0271617976460957, 0.8452071385383193] | [0.13786740991709726, 0.8686841695959868] | | 1.4322 | 6.0 | 672 | 0.3566 | 0.4843 | 0.4999 | 0.9653 | [0.003156516583524233, 0.9653443351384307] | [0.0035153889503737753, 0.9963369917295061] | | 1.4322 | 7.0 | 784 | 0.4510 | 0.4833 | 0.5026 | 0.9515 | [0.015110478622284323, 0.9514896636755739] | [0.023826902315981016, 0.981414850138177] | | 1.4322 | 8.0 | 896 | 0.3993 | 0.4862 | 0.5025 | 0.9626 | [0.009768906238396621, 0.9625427377471698] | [0.011834520406569755, 0.9931874576024252] | | 0.4808 | 9.0 | 1008 | 0.3568 | 0.4846 | 0.5002 | 0.9663 | [0.002888368095508705, 0.9662512532108187] | [0.003131768524113769, 0.9972849692353025] | | 0.4808 | 10.0 | 1120 | 0.3781 | 0.4844 | 0.5001 | 0.9654 | [0.0034702934336066026, 0.9653985402997675] | [0.003859968359802011, 0.9963822194552067] | | 0.4808 | 11.0 | 1232 | 0.3318 | 0.4845 | 0.5001 | 0.9665 | [0.0024548211803361556, 0.9665399129138876] | [0.00263781478941615, 0.9975982819808147] | | 0.4808 | 12.0 | 1344 | 0.3552 | 0.4849 | 0.5005 | 0.9664 | [0.0033778104561300974, 0.9663867278345344] | [0.003649486356013335, 0.9974086755418741] | | 0.4808 | 13.0 | 1456 | 0.2612 | 0.4845 | 0.5001 | 0.9672 | [0.0017608302346806158, 0.9671985933973519] | [0.0018535995817518893, 0.9983025657191121] | | 0.3392 | 14.0 | 1568 | 0.2300 | 0.4845 | 0.5001 | 0.9671 | [0.0018163185523506766, 0.9671249858066228] | [0.001916404695785607, 0.9982246340273064] | | 0.3392 | 15.0 | 1680 | 0.2657 | 0.4845 | 0.5001 | 0.9672 | [0.0018194025597222916, 0.9671517415294609] | [0.001918102131300032, 0.9982521972361976] | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
quantus17/rise
quantus17
2024-01-24T15:50:33Z
0
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-12-19T13:52:56Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: frhn style tags: - text-to-image - diffusers - autotrain inference: true --- # Lora dreambooth testing with 6 fully blank purple images I just wondered what would happen if I have a fine tuning with 6 exactly same image which are fully blank purple. For trigger word please use "frhn style" Here are the generated images with just prompt 'frhn style', it is getting sometimes an even uniformly colored image. I have some other generated images from 200 to 220 with prompt 'cat, frhn style'. It is interesting to see the generated images trying to converge an even colored canvas.
Josef0801/mnli_model_deberta_3_labels
Josef0801
2024-01-24T15:47:36Z
44
0
transformers
[ "transformers", "tf", "deberta-v2", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T15:11:11Z
Based on svenbl80/deberta-v3-Base-finetuned-mnli finetuned on a synthetic dataset (labels) Performance on test dataset: precision recall f1-score support 0 0.99 1.00 0.99 94 1 1.00 1.00 1.00 28 2 1.00 0.98 0.99 66 accuracy 0.99 188 macro avg 1.00 0.99 1.00 188 weighted avg 0.99 0.99 0.99 188 Performance on real estate benchmark: precision recall f1-score support 0 0.30 0.45 0.36 100 1 0.21 0.15 0.18 100 2 0.35 0.27 0.31 100 accuracy 0.29 300 macro avg 0.29 0.29 0.28 300 weighted avg 0.29 0.29 0.28 300 Baseline (svenbl80/deberta-v3-Base-finetuned-mnli) for real estate benchmark: 0 0.89 0.68 0.77 100 1 0.63 0.92 0.75 100 2 0.88 0.69 0.78 100 accuracy 0.76 300 macro avg 0.80 0.76 0.77 300 weighted avg 0.80 0.76 0.77 300
m4ddki7/dqn-SpaceInvadersNoFrameskip-v4
m4ddki7
2024-01-24T15:46:52Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T15:46:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 549.00 +/- 198.20 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga m4ddki7 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga m4ddki7 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga m4ddki7 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Charlie911/vicuna-7b-v1.5-lora-temporal-sharegpt
Charlie911
2024-01-24T15:44:13Z
2
0
peft
[ "peft", "safetensors", "llama", "en", "arxiv:1910.09700", "base_model:lmsys/vicuna-7b-v1.5", "base_model:adapter:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2024-01-24T15:39:24Z
--- library_name: peft base_model: lmsys/vicuna-7b-v1.5 license: llama2 language: - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
thephimart/tinyllama-4x1.1b-moe.Q5_K_M.gguf
thephimart
2024-01-24T15:43:28Z
5
2
null
[ "gguf", "Text", "Text Generation", "Transformers", "English", "mixtral", "Merge", "Quantization", "MoE", "tinyllama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-24T14:06:46Z
--- license: apache-2.0 tags: - Text - Text Generation - Transformers - English - mixtral - Merge - Quantization - MoE - tinyllama --- This is a q5_K_M GGUF quantization of https://huggingface.co/s3nh/TinyLLama-4x1.1B-MoE. Not sure how well it performs, also my first quantization, so fingers crossed. It is a Mixture of Experts model with https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0 as it's base model. The other 3 models in the merge are: https://huggingface.co/78health/TinyLlama_1.1B-function-calling https://huggingface.co/phanerozoic/Tiny-Pirate-1.1b-v0.1 https://huggingface.co/Tensoic/TinyLlama-1.1B-3T-openhermes I make no claims to any of the development, i simply wanted to try it out so I quantized and then thought I'd share it if anyone else was feeling experimental. ------- default: #(from modelfile for tinyllama on ollama) TEMPLATE """<|system|> {{ .System }}</s> <|user|> {{ .Prompt }}</s> <|assistant|> """ SYSTEM """You are a helpful AI assistant.""" #(Tweak this to adjust personality etc.) PARAMETER stop "<|system|>" PARAMETER stop "<|user|>" PARAMETER stop "<|assistant|>" PARAMETER stop "</s>" ------- Model card from https://huggingface.co/s3nh/TinyLLama-4x1.1B-MoE Example usage: from transformers import AutoModelForCausalLM from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("s3nh/TinyLLama-1.1B-MoE") tokenizer = AutoTokenizer.from_pretrained("s3nh/TinyLLama-1.1B-MoE") input_text = """ ###Input: You are a pirate. tell me a story about wrecked ship. ###Response: """) input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device) output = model.generate(inputs=input_ids, max_length=max_length, do_sample=True, top_k=10, temperature=0.7, pad_token_id=tokenizer.eos_token_id, attention_mask=input_ids.new_ones(input_ids.shape)) tokenizer.decode(output[0], skip_special_tokens=True) This model was possible to create by tremendous work of mergekit developers. I decided to merge tinyLlama models to create mixture of experts. Config used as below: """base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 experts: - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - source_model: 78health/TinyLlama_1.1B-function-calling positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - source_model: phanerozoic/Tiny-Pirate-1.1b-v0.1 positive_prompts: - "storywriting" - "write" - "scene" - "story" - "character" - source_model: Tensoic/TinyLlama-1.1B-3T-openhermes positive_prompts: - "reason" - "provide" - "instruct" - "summarize" - "count" """
shantanudave/dreambooth2
shantanudave
2024-01-24T15:39:31Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-24T15:39:29Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a shantanudave tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Ivan0831/PPO-LunarLander-V3
Ivan0831
2024-01-24T15:36:17Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T14:45:17Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 76.91 +/- 77.43 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.00025 'num_envs': 8 'num_steps': 512 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 32 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.1 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ivan0831/PPO-LunarLander-V3' 'batch_size': 4096 'minibatch_size': 128} ```
bcse/Xwinter-120b-GGUF
bcse
2024-01-24T15:28:32Z
1
0
null
[ "gguf", "Xwin", "WinterGoddess", "frankenmerge", "120b", "conversational", "en", "license:llama2", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T16:34:25Z
--- license: llama2 language: - en pipeline_tag: conversational tags: - Xwin - WinterGoddess - frankenmerge - 120b --- # Xwinter 120B - GGUF - Original model: [Xwinter 120B](https://huggingface.co/llmixer/Xwinter-120b)
jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v0.63
jungyuko
2024-01-24T15:13:24Z
122
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T13:50:53Z
--- license: cc-by-nc-4.0 --- ## DAVinCI-42dot_LLM-PLM-1.3B-v0.63 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on an unknown dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hyperparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 24 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 4 * total_train_batch_size: 96 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
MrezaPRZ/StarlingSQL
MrezaPRZ
2024-01-24T15:09:06Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T15:05:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vegaluisjose/mlx-rag
vegaluisjose
2024-01-24T15:07:06Z
21
3
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-01-21T18:13:10Z
# MLX RAG This repository host the weights for the [gte-large] embedding model converted into MLX format. For more information about how to use it, please check the following [link](https://github.com/vegaluisjose/mlx-rag)
jncraton/m2m100_418M-ct2-int8
jncraton
2024-01-24T15:04:48Z
315
2
transformers
[ "transformers", "multilingual", "af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu", "arxiv:2010.11125", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-01-23T15:17:11Z
--- language: - multilingual - af - am - ar - ast - az - ba - be - bg - bn - br - bs - ca - ceb - cs - cy - da - de - el - en - es - et - fa - ff - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - ht - hu - hy - id - ig - ilo - is - it - ja - jv - ka - kk - km - kn - ko - lb - lg - ln - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - ns - oc - or - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - so - sq - sr - ss - su - sv - sw - ta - th - tl - tn - tr - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu license: mit --- # M2M100 418M M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository. The model that can directly translate between the 9,900 directions of 100 languages. To translate into a target language, the target language id is forced as the first generated token. To force the target language id as the first generated token, pass the `forced_bos_token_id` parameter to the `generate` method. *Note: `M2M100Tokenizer` depends on `sentencepiece`, so make sure to install it before running the example.* To install `sentencepiece` run `pip install sentencepiece` ```python from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer hi_text = "जीवन एक चॉकलेट बॉक्स की तरह है।" chinese_text = "生活就像一盒巧克力。" model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") # translate Hindi to French tokenizer.src_lang = "hi" encoded_hi = tokenizer(hi_text, return_tensors="pt") generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.get_lang_id("fr")) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "La vie est comme une boîte de chocolat." # translate Chinese to English tokenizer.src_lang = "zh" encoded_zh = tokenizer(chinese_text, return_tensors="pt") generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "Life is like a box of chocolate." ``` See the [model hub](https://huggingface.co/models?filter=m2m_100) to look for more fine-tuned versions. ## Languages covered Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn), Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu) ## BibTeX entry and citation info ``` @misc{fan2020englishcentric, title={Beyond English-Centric Multilingual Machine Translation}, author={Angela Fan and Shruti Bhosale and Holger Schwenk and Zhiyi Ma and Ahmed El-Kishky and Siddharth Goyal and Mandeep Baines and Onur Celebi and Guillaume Wenzek and Vishrav Chaudhary and Naman Goyal and Tom Birch and Vitaliy Liptchinsky and Sergey Edunov and Edouard Grave and Michael Auli and Armand Joulin}, year={2020}, eprint={2010.11125}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ICEF-NLP/bcms-bertic-comtext-sr-legal-msd-ijekavica
ICEF-NLP
2024-01-24T14:57:52Z
92
0
transformers
[ "transformers", "safetensors", "electra", "token-classification", "legal", "sr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-23T12:06:38Z
--- license: apache-2.0 language: - sr metrics: - accuracy - wer library_name: transformers tags: - legal --- # BERTić-COMtext-SR-legal-MSD-ijekavica **BERTić-COMtext-SR-legal-MSD-ijekavica** is a variant of the [BERTić](https://huggingface.co/classla/bcms-bertic) model, fine-tuned on the task of morphosyntactic (MSD) tag prediction in Serbian legal texts written in the Ijekavian pronunciation. The model was fine-tuned for 15 epochs on the Ijekavian variant of the [COMtext.SR.legal](https://github.com/ICEF-NLP/COMtext.SR) dataset. # Benchmarking This model was evaluated on the tasks of MSD prediction and lemmatization of Serbian legal texts. Lemmatization was performed using the predicted MSD tags and the [hrLex](http://hdl.handle.net/11356/1232) inflectional lexicon. Accuracy and Word Error Rate were used as evaluation metrics. This model was compared to: - The [CLASSLA](http://pypi.org/project/classla/) library - A variant of [BERTić](https://huggingface.co/classla/bcms-bertic) fine-tuned for MSD prediction using the [SETimes.SR 2.0](http://hdl.handle.net/11356/1843) corpus of newswire texts - [SrBERTa](http://huggingface.co/nemanjaPetrovic/SrBERTa), a model specially trained on Serbian legal texts All large language models were fine-tuned for 15 epochs. CLASSLA and BERTić-SETimes were directly tested on the entire COMtext.SR.legal.ijekavica corpus. BERTić-COMtext-SR-legal-MSD-ijekavica and SrBERTa were fine-tuned and evaluated on the COMtext.SR.legal.ijekavica corpus using 10-fold CV. The code and data to run these experiments is available on the [COMtext.SR GitHub repository](https://github.com/ICEF-NLP/COMtext.SR). ## Results | Model | MSD ACC | MSD WER | Lemma ACC | Lemma WER | | ----------------------------------------------------------- | -------- | ---------- | --------- | ---------- | | CLASSLA-SR (gold tokens) | 0.9150 | 0.0850 | 0.9036 | 0.0964 | | *CLASSLA-SR (CLASSLA tokenizer)* | / | *0.0977* | / | *0.1135* | | CLASSLA-HR (gold tokens) | 0.9062 | 0.0938 | 0.9353 | 0.0647 | | *CLASSLA-HR (CLASSLA tokenizer)* | / | *0.1076* | / | *0.0827* | | BERTić-SETimes.SR (gold tokens) | 0.9234 | 0.0766 | 0.9412 | 0.0588 | | *BERTić-SETimes.SR (CLASSLA tokenizer)* | / | *0.0883* | / | *0.0780* | | BERTić-COMtext-SR-legal-MSD-ijekavica (gold tokens) |**0.9674**| **0.0326** |**0.9429** | **0.0571** | | *BERTić-COMtext-SR-legal-MSD-ijekavica (CLASSLA tokenizer)* | / |***0.0447***| / |***0.0763***| | SrBERTa (gold tokens) | 0.9300 | 0.0700 | 0.9187 | 0.0813 | |*SrBERTa (CLASSLA tokenizer)* | / | *0.0840* | / | *0.1024* |
a-menu/fr_arches_ner
a-menu
2024-01-24T14:51:37Z
5
0
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2024-01-24T14:48:14Z
--- tags: - spacy - token-classification language: - fr widget: - text: "La fouille du \"Petit Bois\" a mis au jour plusieurs tombes riches en mobilier (à l'instar de vases ornés d'animaux ou de bracelets en schiste). Des ossements de poules (Gallus gallus domesticus), d'oies (Anser anser) et de bœufs (Bos Taurus) sont également à signaler." - text: "Château-Gaillard est un château fort édifié au XIIe siècle dans l'Eure par Richard Coeur de Lion." model-index: - name: fr_arches_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.6778376222 - name: NER Recall type: recall value: 0.7156697557 - name: NER F Score type: f_score value: 0.6962401393 --- French model trained to recognize named entities from archaeological reports. | Feature | Description | | --- | --- | | **Name** | `fr_arches_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `ner`, `entity_punctuation_removal` | | **Components** | `tok2vec`, `ner`, `entity_punctuation_removal` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | 21 archaeological reports from the [Inrap](https://www.inrap.fr/). | | **License** | `cc-by-nc 2.0` | | **Author** | [Institut national de recherches archéologiques préventives](https://www.inrap.fr/) | ### Label Scheme <details> <summary>View label scheme (15 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `CHRONOLOGIE`, `DECOR`, `EDIFICE`, `ESPECE`, `GPE`, `ID`, `LIEUDIT_SITE`, `LOC`, `MATERIAU`, `MOBILIER`, `ORG`, `PERSONNE`, `PEUPLE_CULTURE`, `STRUCTURE`, `TECHNIQUE_STYLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 69.62 | | `ENTS_P` | 67.78 | | `ENTS_R` | 71.57 | | `TOK2VEC_LOSS` | 63436.09 | | `NER_LOSS` | 246059.83 |
mundo-go/my_ner_model
mundo-go
2024-01-24T14:51:17Z
4
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:mundo-go/my_ner_model", "base_model:finetune:mundo-go/my_ner_model", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-24T09:58:32Z
--- license: apache-2.0 base_model: mundo-go/my_ner_model tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_ner_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_ner_model This model is a fine-tuned version of [mundo-go/my_ner_model](https://huggingface.co/mundo-go/my_ner_model) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Precision: 1.0000 - Recall: 1.0000 - F1: 1.0000 - Accuracy: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0015 | 1.0 | 1640 | 0.0001 | 0.9999 | 0.9999 | 0.9999 | 1.0000 | | 0.0002 | 2.0 | 3280 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
hojzas/autotrain-llama-proj8
hojzas
2024-01-24T14:50:01Z
78
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T14:38:35Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
tanatapanun/fine-tuned-bart-20-epochs-1500-input-256-output
tanatapanun
2024-01-24T14:46:37Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T14:06:32Z
--- base_model: bart-base tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-bart-20-epochs-1500-input-256-output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-bart-20-epochs-1500-input-256-output This model is a fine-tuned version of [bart-base](https://huggingface.co/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9200 - Rouge1: 0.1515 - Rouge2: 0.0334 - Rougel: 0.115 - Rougelsum: 0.1156 - Gen Len: 37.06 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 151 | 6.0528 | 0.0 | 0.0 | 0.0 | 0.0 | 10.2 | | No log | 2.0 | 302 | 1.1375 | 0.0882 | 0.0191 | 0.0773 | 0.0785 | 9.24 | | No log | 3.0 | 453 | 0.9715 | 0.0982 | 0.0262 | 0.0779 | 0.0781 | 23.4 | | 4.0047 | 4.0 | 604 | 0.9133 | 0.1155 | 0.0244 | 0.0896 | 0.0896 | 32.75 | | 4.0047 | 5.0 | 755 | 0.8848 | 0.1762 | 0.0333 | 0.139 | 0.1399 | 36.38 | | 4.0047 | 6.0 | 906 | 0.8709 | 0.1521 | 0.028 | 0.1225 | 0.1229 | 35.85 | | 0.756 | 7.0 | 1057 | 0.8611 | 0.1522 | 0.0355 | 0.1131 | 0.1139 | 52.75 | | 0.756 | 8.0 | 1208 | 0.8555 | 0.1677 | 0.0396 | 0.126 | 0.1268 | 41.22 | | 0.756 | 9.0 | 1359 | 0.8640 | 0.1411 | 0.0251 | 0.109 | 0.1093 | 24.65 | | 0.5214 | 10.0 | 1510 | 0.8645 | 0.1772 | 0.0382 | 0.1351 | 0.1348 | 43.11 | | 0.5214 | 11.0 | 1661 | 0.8681 | 0.1828 | 0.0386 | 0.1399 | 0.1407 | 38.1 | | 0.5214 | 12.0 | 1812 | 0.8741 | 0.2031 | 0.0436 | 0.1584 | 0.1592 | 46.33 | | 0.5214 | 13.0 | 1963 | 0.8861 | 0.1752 | 0.0422 | 0.1315 | 0.1315 | 39.91 | | 0.3632 | 14.0 | 2114 | 0.8922 | 0.132 | 0.0251 | 0.0999 | 0.1013 | 37.31 | | 0.3632 | 15.0 | 2265 | 0.9004 | 0.165 | 0.0368 | 0.1302 | 0.1299 | 41.1 | | 0.3632 | 16.0 | 2416 | 0.9072 | 0.1483 | 0.0347 | 0.1139 | 0.115 | 37.99 | | 0.2595 | 17.0 | 2567 | 0.9121 | 0.1558 | 0.0304 | 0.1149 | 0.1151 | 39.95 | | 0.2595 | 18.0 | 2718 | 0.9156 | 0.1519 | 0.0316 | 0.1168 | 0.1183 | 36.4 | | 0.2595 | 19.0 | 2869 | 0.9178 | 0.1437 | 0.0309 | 0.1101 | 0.1115 | 36.49 | | 0.2098 | 20.0 | 3020 | 0.9200 | 0.1515 | 0.0334 | 0.115 | 0.1156 | 37.06 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.0
klentree/segformer-b0-scene-parse-150-lr-4-e-15
klentree
2024-01-24T14:44:26Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "base_model:DiTo97/binarization-segformer-b3", "base_model:finetune:DiTo97/binarization-segformer-b3", "license:openrail", "endpoints_compatible", "region:us" ]
null
2024-01-24T13:38:39Z
--- license: openrail base_model: DiTo97/binarization-segformer-b3 tags: - generated_from_trainer model-index: - name: segformer-b0-scene-parse-150-lr-4-e-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-lr-4-e-15 This model is a fine-tuned version of [DiTo97/binarization-segformer-b3](https://huggingface.co/DiTo97/binarization-segformer-b3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1773 - Mean Iou: 0.5116 - Mean Accuracy: 0.5539 - Overall Accuracy: 0.9486 - Per Category Iou: [0.07467818861526594, 0.9484318643687625] - Per Category Accuracy: [0.13278359055139496, 0.9749314802690082] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------:|:--------------------------------------------:| | No log | 1.0 | 112 | 0.3321 | 0.4844 | 0.5000 | 0.9686 | [5.913750483660308e-05, 0.968644931717587] | [5.9410243004868244e-05, 0.9998514102409571] | | No log | 2.0 | 224 | 0.1448 | 0.4844 | 0.5 | 0.9688 | [0.0, 0.9687870873345269] | [0.0, 1.0] | | No log | 3.0 | 336 | 0.1467 | 0.4855 | 0.5011 | 0.9687 | [0.0024028604839131528, 0.9686745745655791] | [0.002417148172540925, 0.9998084247604243] | | No log | 4.0 | 448 | 0.1597 | 0.4974 | 0.5136 | 0.9673 | [0.02761431295696444, 0.9672534071470754] | [0.029766229180953417, 0.9974892869900998] | | 0.4196 | 5.0 | 560 | 0.1483 | 0.4945 | 0.5101 | 0.9683 | [0.02072799899238894, 0.9682597471616551] | [0.021509902838791155, 0.9987846484301768] | | 0.4196 | 6.0 | 672 | 0.1300 | 0.4973 | 0.5131 | 0.9682 | [0.026546808517533143, 0.9681413453315052] | [0.02781078346833604, 0.9984659761718246] | | 0.4196 | 7.0 | 784 | 0.1407 | 0.5063 | 0.5244 | 0.9659 | [0.04665771796171021, 0.9658509666995633] | [0.05345563922026602, 0.995305832396877] | | 0.4196 | 8.0 | 896 | 0.1377 | 0.5014 | 0.5186 | 0.9662 | [0.036728661127978124, 0.9661516368135028] | [0.041295211194926705, 0.995994201663374] | | 0.174 | 9.0 | 1008 | 0.1632 | 0.5096 | 0.5382 | 0.9570 | [0.06234910880338227, 0.9568704542992275] | [0.09161908189107895, 0.984874907876537] | | 0.174 | 10.0 | 1120 | 0.1424 | 0.5102 | 0.5323 | 0.9627 | [0.05773026579725805, 0.9625824124413115] | [0.07327829115771892, 0.9913228393342741] | | 0.174 | 11.0 | 1232 | 0.1553 | 0.5035 | 0.5223 | 0.9644 | [0.04268206669259935, 0.9643468862627879] | [0.05084668083459509, 0.9938369430563793] | | 0.174 | 12.0 | 1344 | 0.1607 | 0.5086 | 0.5330 | 0.9600 | [0.057171934641356385, 0.95994904570909] | [0.07762033120361757, 0.9884765551939039] | | 0.174 | 13.0 | 1456 | 0.1619 | 0.5095 | 0.5358 | 0.9589 | [0.060308850859297915, 0.958769171435925] | [0.08455435528004292, 0.9870474246884537] | | 0.1457 | 14.0 | 1568 | 0.1625 | 0.5123 | 0.5476 | 0.9534 | [0.07133326653200926, 0.9531840662639103] | [0.11479756384054969, 0.9803688154229716] | | 0.1457 | 15.0 | 1680 | 0.1773 | 0.5116 | 0.5539 | 0.9486 | [0.07467818861526594, 0.9484318643687625] | [0.13278359055139496, 0.9749314802690082] | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
AntoineGourru/results
AntoineGourru
2024-01-24T14:40:13Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-24T14:39:42Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
eglkan1/mt5-translated-lithuanian-simplifier
eglkan1
2024-01-24T14:34:38Z
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-base", "base_model:finetune:google/mt5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T10:55:33Z
--- license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-translated-lithuanian-simplifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-translated-lithuanian-simplifier This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0761 - Rouge1: 0.7877 - Rouge2: 0.6566 - Rougel: 0.7845 - Gen Len: 49.2293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:-------:| | 23.9322 | 0.1 | 200 | 19.1649 | 0.016 | 0.0004 | 0.0146 | 512.0 | | 2.5416 | 0.19 | 400 | 1.4406 | 0.035 | 0.0002 | 0.0345 | 51.3394 | | 0.7449 | 0.29 | 600 | 0.7221 | 0.0021 | 0.0 | 0.0021 | 50.2293 | | 0.4405 | 0.38 | 800 | 0.2164 | 0.5491 | 0.3593 | 0.5367 | 49.4955 | | 0.177 | 0.48 | 1000 | 0.1672 | 0.6294 | 0.4636 | 0.6209 | 49.2293 | | 0.1838 | 0.57 | 1200 | 0.1561 | 0.6214 | 0.4375 | 0.613 | 49.2293 | | 0.1471 | 0.67 | 1400 | 0.1295 | 0.7071 | 0.5673 | 0.6998 | 49.2293 | | 0.1622 | 0.77 | 1600 | 0.1229 | 0.6929 | 0.5402 | 0.6858 | 49.2293 | | 0.1255 | 0.86 | 1800 | 0.1192 | 0.7044 | 0.5547 | 0.6978 | 49.2293 | | 0.1281 | 0.96 | 2000 | 0.1150 | 0.7169 | 0.5718 | 0.7103 | 49.2293 | | 0.1561 | 1.05 | 2200 | 0.1088 | 0.7165 | 0.5688 | 0.7108 | 49.2293 | | 0.145 | 1.15 | 2400 | 0.1064 | 0.7321 | 0.5921 | 0.7263 | 49.2293 | | 0.1207 | 1.25 | 2600 | 0.1030 | 0.7348 | 0.5957 | 0.7291 | 49.2293 | | 0.1151 | 1.34 | 2800 | 0.1014 | 0.7289 | 0.5859 | 0.7239 | 49.2293 | | 0.1001 | 1.44 | 3000 | 0.0983 | 0.7402 | 0.6003 | 0.7349 | 49.2293 | | 0.1354 | 1.53 | 3200 | 0.0963 | 0.738 | 0.598 | 0.7332 | 49.2293 | | 0.1092 | 1.63 | 3400 | 0.0978 | 0.7446 | 0.607 | 0.7394 | 49.2293 | | 0.1109 | 1.72 | 3600 | 0.0973 | 0.7427 | 0.6034 | 0.7377 | 49.2293 | | 0.1083 | 1.82 | 3800 | 0.0950 | 0.7479 | 0.6094 | 0.7432 | 49.2293 | | 0.1348 | 1.92 | 4000 | 0.0958 | 0.7498 | 0.6121 | 0.745 | 49.2293 | | 0.1004 | 2.01 | 4200 | 0.0898 | 0.7539 | 0.6152 | 0.7494 | 49.2293 | | 0.1131 | 2.11 | 4400 | 0.0925 | 0.753 | 0.6154 | 0.7488 | 49.2293 | | 0.1312 | 2.2 | 4600 | 0.0919 | 0.755 | 0.6183 | 0.7508 | 49.2293 | | 0.1139 | 2.3 | 4800 | 0.0908 | 0.756 | 0.6182 | 0.7518 | 49.2293 | | 0.1168 | 2.39 | 5000 | 0.0880 | 0.7574 | 0.6202 | 0.7533 | 49.2293 | | 0.0793 | 2.49 | 5200 | 0.0897 | 0.7575 | 0.6193 | 0.7531 | 49.2293 | | 0.0869 | 2.59 | 5400 | 0.0866 | 0.7605 | 0.6228 | 0.7564 | 49.2293 | | 0.1053 | 2.68 | 5600 | 0.0870 | 0.7594 | 0.6203 | 0.7551 | 49.2293 | | 0.0889 | 2.78 | 5800 | 0.0893 | 0.7609 | 0.6237 | 0.7568 | 49.2293 | | 0.0982 | 2.87 | 6000 | 0.0873 | 0.7637 | 0.6279 | 0.7599 | 49.2293 | | 0.0838 | 2.97 | 6200 | 0.0846 | 0.7665 | 0.6309 | 0.7626 | 49.2293 | | 0.0829 | 3.07 | 6400 | 0.0844 | 0.7665 | 0.6315 | 0.7629 | 49.2293 | | 0.068 | 3.16 | 6600 | 0.0836 | 0.7695 | 0.6358 | 0.7658 | 49.2293 | | 0.0747 | 3.26 | 6800 | 0.0848 | 0.7675 | 0.6322 | 0.7639 | 49.2293 | | 0.0792 | 3.35 | 7000 | 0.0840 | 0.7691 | 0.6342 | 0.7656 | 49.2293 | | 0.0739 | 3.45 | 7200 | 0.0820 | 0.7713 | 0.6365 | 0.7676 | 49.2293 | | 0.0793 | 3.54 | 7400 | 0.0813 | 0.7723 | 0.6374 | 0.7685 | 49.2293 | | 0.0908 | 3.64 | 7600 | 0.0819 | 0.7731 | 0.6388 | 0.7696 | 49.2293 | | 0.1125 | 3.74 | 7800 | 0.0811 | 0.774 | 0.6402 | 0.7705 | 49.2293 | | 0.1231 | 3.83 | 8000 | 0.0805 | 0.7736 | 0.6391 | 0.7699 | 49.2293 | | 0.0805 | 3.93 | 8200 | 0.0806 | 0.7736 | 0.6383 | 0.7698 | 49.2293 | | 0.0798 | 4.02 | 8400 | 0.0806 | 0.7758 | 0.6413 | 0.7726 | 49.2293 | | 0.061 | 4.12 | 8600 | 0.0807 | 0.7738 | 0.6391 | 0.7705 | 49.2293 | | 0.0636 | 4.21 | 8800 | 0.0810 | 0.7763 | 0.6424 | 0.7731 | 49.2293 | | 0.0813 | 4.31 | 9000 | 0.0798 | 0.7765 | 0.6418 | 0.7731 | 49.2293 | | 0.0664 | 4.41 | 9200 | 0.0804 | 0.7779 | 0.6441 | 0.7744 | 49.2293 | | 0.077 | 4.5 | 9400 | 0.0783 | 0.7775 | 0.6432 | 0.774 | 49.2293 | | 0.0769 | 4.6 | 9600 | 0.0788 | 0.7786 | 0.6446 | 0.7752 | 49.2293 | | 0.0874 | 4.69 | 9800 | 0.0796 | 0.7782 | 0.6455 | 0.7749 | 49.2293 | | 0.0682 | 4.79 | 10000 | 0.0784 | 0.7783 | 0.6452 | 0.7752 | 49.2293 | | 0.0649 | 4.89 | 10200 | 0.0781 | 0.7788 | 0.6453 | 0.7757 | 49.2293 | | 0.0594 | 4.98 | 10400 | 0.0791 | 0.7795 | 0.6468 | 0.7762 | 49.2293 | | 0.1001 | 5.08 | 10600 | 0.0775 | 0.7794 | 0.6464 | 0.7762 | 49.2293 | | 0.065 | 5.17 | 10800 | 0.0794 | 0.7794 | 0.6474 | 0.7762 | 49.2293 | | 0.0505 | 5.27 | 11000 | 0.0787 | 0.7809 | 0.6481 | 0.7775 | 49.2293 | | 0.0904 | 5.36 | 11200 | 0.0772 | 0.7825 | 0.6504 | 0.7793 | 49.2293 | | 0.0782 | 5.46 | 11400 | 0.0777 | 0.7835 | 0.651 | 0.7803 | 49.2293 | | 0.0758 | 5.56 | 11600 | 0.0774 | 0.7823 | 0.6505 | 0.7792 | 49.2293 | | 0.0685 | 5.65 | 11800 | 0.0778 | 0.7819 | 0.6498 | 0.7787 | 49.2293 | | 0.0664 | 5.75 | 12000 | 0.0774 | 0.7818 | 0.6493 | 0.7786 | 49.2293 | | 0.0841 | 5.84 | 12200 | 0.0770 | 0.7848 | 0.6527 | 0.7813 | 49.2293 | | 0.0867 | 5.94 | 12400 | 0.0765 | 0.7844 | 0.6522 | 0.7812 | 49.2293 | | 0.0572 | 6.03 | 12600 | 0.0772 | 0.7849 | 0.6522 | 0.7816 | 49.2293 | | 0.0554 | 6.13 | 12800 | 0.0775 | 0.7844 | 0.6526 | 0.7812 | 49.2293 | | 0.0725 | 6.23 | 13000 | 0.0774 | 0.7851 | 0.6534 | 0.7822 | 49.2293 | | 0.0952 | 6.32 | 13200 | 0.0778 | 0.7848 | 0.6527 | 0.7817 | 49.2293 | | 0.0795 | 6.42 | 13400 | 0.0764 | 0.7858 | 0.6542 | 0.7826 | 49.2293 | | 0.0682 | 6.51 | 13600 | 0.0772 | 0.7852 | 0.6527 | 0.7819 | 49.2293 | | 0.0483 | 6.61 | 13800 | 0.0777 | 0.785 | 0.6525 | 0.7815 | 49.2293 | | 0.0725 | 6.7 | 14000 | 0.0767 | 0.7864 | 0.6545 | 0.7831 | 49.2293 | | 0.0675 | 6.8 | 14200 | 0.0773 | 0.786 | 0.6551 | 0.7827 | 49.2293 | | 0.0706 | 6.9 | 14400 | 0.0758 | 0.7867 | 0.6556 | 0.7837 | 49.2293 | | 0.0785 | 6.99 | 14600 | 0.0772 | 0.7866 | 0.6559 | 0.7835 | 49.2293 | | 0.0796 | 7.09 | 14800 | 0.0763 | 0.7872 | 0.6564 | 0.7841 | 49.2293 | | 0.0761 | 7.18 | 15000 | 0.0757 | 0.7879 | 0.6566 | 0.7848 | 49.2293 | | 0.0598 | 7.28 | 15200 | 0.0758 | 0.788 | 0.6568 | 0.7849 | 49.2293 | | 0.0587 | 7.38 | 15400 | 0.0768 | 0.7872 | 0.6556 | 0.7839 | 49.2293 | | 0.0859 | 7.47 | 15600 | 0.0765 | 0.7875 | 0.6559 | 0.7842 | 49.2293 | | 0.061 | 7.57 | 15800 | 0.0764 | 0.7876 | 0.6564 | 0.7845 | 49.2293 | | 0.0718 | 7.66 | 16000 | 0.0764 | 0.7871 | 0.6558 | 0.784 | 49.2293 | | 0.0695 | 7.76 | 16200 | 0.0763 | 0.7873 | 0.656 | 0.7842 | 49.2293 | | 0.0678 | 7.85 | 16400 | 0.0762 | 0.7875 | 0.6565 | 0.7844 | 49.2293 | | 0.0751 | 7.95 | 16600 | 0.0761 | 0.7877 | 0.6566 | 0.7845 | 49.2293 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0
alnrg2arg/blockchainlabs_7B_merged_test2_4_prune
alnrg2arg
2024-01-24T14:25:34Z
2,389
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "pruning", "alnrg2arg/blockchainlabs_7B_merged_test2_4", "mlabonne/NeuralBeagle14-7B", "udkai/Turdus", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T04:35:23Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - pruning - alnrg2arg/blockchainlabs_7B_merged_test2_4 - mlabonne/NeuralBeagle14-7B - udkai/Turdus --- # blockchainlabs_7B_merged_test2_4_prune blockchainlabs_7B_merged_test2_4_prune is a pruned model based on alnrg2arg/blockchainlabs_7B_merged_test2_4, which is a merged model using following models using [mergekit](https://github.com/cg123/mergekit): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [udkai/Turdus](https://huggingface.co/udkai/Turdus) Pruning Kit I used: [wanda](https://github.com/locuslab/wanda?tab=readme-ov-file#ablation-on-obs-weight-update) ## 🧩 Configuration ```json { "_name_or_path": "alnrg2arg/blockchainlabs_7B_merged_test2_4_prun", "architectures": [ "MistralForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 14336, "max_position_embeddings": 32768, "model_type": "mistral", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 8, "rms_norm_eps": 1e-05, "rope_theta": 10000.0, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.36.2", "use_cache": false, "vocab_size": 32000 } ```
alnrg2arg/blockchainlabs_7B_merged_test2_4_prune_sft_fp16
alnrg2arg
2024-01-24T14:24:32Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T14:31:25Z
--- library_name: transformers tags: - unsloth license: cc-by-nc-4.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alnrg2arg/blockchainlabs_7B_merged_test2_4_prune_sft_lora
alnrg2arg
2024-01-24T14:19:50Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T14:56:55Z
--- library_name: transformers tags: - unsloth license: cc-by-nc-4.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alnrg2arg/blockchainlabs_7B_merged_test2_4_prune_sft_lora_DPO_orca
alnrg2arg
2024-01-24T14:17:00Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T21:58:58Z
--- library_name: transformers tags: - unsloth license: cc-by-nc-4.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alnrg2arg/test
alnrg2arg
2024-01-24T14:16:13Z
1,385
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T02:34:41Z
--- license: cc-by-4.0 --- This is the test version for pruning. This model is a base model that will be pruned and quantized for on-device purpose. I used mergekit for merging two models: - https://github.com/cg123/mergekit The two models I combined are: - https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v2 - https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct-DPO-v2
napatswift/xlm-roberta-base-ner-th
napatswift
2024-01-24T14:14:25Z
105
1
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "th", "dataset:pythainlp/thainer-corpus-v2", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-24T14:11:33Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model results: [] datasets: - pythainlp/thainer-corpus-v2 language: - th --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_model This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1247 - Precision: 0.8073 - Recall: 0.8695 - F1: 0.8372 - Accuracy: 0.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.4 | 100 | 0.5360 | 0.4604 | 0.4644 | 0.4624 | 0.8846 | | No log | 0.81 | 200 | 0.2882 | 0.6137 | 0.6619 | 0.6369 | 0.9307 | | No log | 1.21 | 300 | 0.2128 | 0.7236 | 0.7649 | 0.7437 | 0.9442 | | No log | 1.62 | 400 | 0.1811 | 0.7146 | 0.7925 | 0.7515 | 0.9494 | | 0.4608 | 2.02 | 500 | 0.1594 | 0.7369 | 0.8021 | 0.7681 | 0.9542 | | 0.4608 | 2.43 | 600 | 0.1532 | 0.7494 | 0.8331 | 0.7890 | 0.9572 | | 0.4608 | 2.83 | 700 | 0.1403 | 0.7660 | 0.8417 | 0.8021 | 0.9594 | | 0.4608 | 3.24 | 800 | 0.1342 | 0.7909 | 0.8428 | 0.8160 | 0.9625 | | 0.4608 | 3.64 | 900 | 0.1325 | 0.7867 | 0.8572 | 0.8204 | 0.9626 | | 0.1256 | 4.05 | 1000 | 0.1275 | 0.8056 | 0.8632 | 0.8334 | 0.9648 | | 0.1256 | 4.45 | 1100 | 0.1229 | 0.8131 | 0.8643 | 0.8379 | 0.9657 | | 0.1256 | 4.86 | 1200 | 0.1247 | 0.8073 | 0.8695 | 0.8372 | 0.9655 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Ivan0831/PPO-LunarLander-V2
Ivan0831
2024-01-24T14:12:02Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T13:52:04Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -3.04 +/- 53.96 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 512 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.25 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ivan0831/PPO-LunarLander-V2' 'batch_size': 2048 'minibatch_size': 512} ```
alnrg2arg/blockchainlabs_7B_merged_test2_4
alnrg2arg
2024-01-24T14:06:18Z
1,649
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mlabonne/NeuralBeagle14-7B", "udkai/Turdus", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-17T05:58:52Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - mlabonne/NeuralBeagle14-7B - udkai/Turdus --- # blockchainlabs_7B_merged_test2_4 blockchainlabs_7B_merged_test2_4 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [udkai/Turdus](https://huggingface.co/udkai/Turdus) ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] - model: udkai/Turdus layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralBeagle14-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
Ivan0831/PPO-LunarLander-V1
Ivan0831
2024-01-24T13:51:11Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T13:34:35Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -45.65 +/- 23.57 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ivan0831/PPO-LunarLander-V1' 'batch_size': 512 'minibatch_size': 128} ```
Josef0801/model_deberta_3_labels
Josef0801
2024-01-24T13:49:30Z
44
0
transformers
[ "transformers", "tf", "deberta-v2", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T13:28:52Z
Based on microsoft/deberta-v3-base, finetuned on a synthetic dataset (6 labels were converted to 3 labels). Performance on test dataset: precision recall f1-score support 0 0.98 0.99 0.98 94 1 0.96 0.96 0.96 28 2 1.00 0.98 0.99 66 accuracy 0.98 188 macro avg 0.98 0.98 0.98 188 weighted avg 0.98 0.98 0.98 188 Performance on similar benchmark: precision recall f1-score support 0 0.13 0.52 0.21 23 1 0.44 0.15 0.22 75 2 0.00 0.00 0.00 19 accuracy 0.20 117 macro avg 0.19 0.22 0.14 117 weighted avg 0.31 0.20 0.18 117
seyf1elislam/neural-Kunoichi2-7B-slerp
seyf1elislam
2024-01-24T13:49:28Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T09:39:20Z
--- tags: - merge - mergekit - lazymergekit --- # neural-Kunoichi2-7B-slerp neural-Kunoichi2-7B-slerp is a merge of the following models using LazyMergekit: * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [mlabonne/NeuralPipe-7B-ties](https://huggingface.co/mlabonne/NeuralPipe-7B-ties) # quantized : * [GGUF](https://huggingface.co/seyf1elislam/neural-Kunoichi2-7B-slerp-GGUF) ## 🧩 Configuration ```yaml merge_method: slerp base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B slices: - sources: - model: SanjiWatsuki/Kunoichi-DPO-v2-7B layer_range: [0, 32] - model: mlabonne/NeuralPipe-7B-ties layer_range: [0, 32] parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "seyf1elislam/neural-Kunoichi2-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
HarrisonColby/q-FrozenLake-v1-4x4-noSlippery
HarrisonColby
2024-01-24T13:48:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T13:48:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="HarrisonColby/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GonzalVice/flan-t5-base
GonzalVice
2024-01-24T13:45:34Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T13:30:10Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: flan_chatbot_productos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan_chatbot_productos This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Tokenizers 0.15.0
Strudel7182/dqn-SpaceInvadersNoFrameskip-v4
Strudel7182
2024-01-24T13:43:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T12:26:02Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 585.50 +/- 133.20 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Strudel7182 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Strudel7182 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Strudel7182 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
klentree/segformer-b0-scene-parse-150-lr-3-e-15
klentree
2024-01-24T13:35:43Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "base_model:DiTo97/binarization-segformer-b3", "base_model:finetune:DiTo97/binarization-segformer-b3", "license:openrail", "endpoints_compatible", "region:us" ]
null
2024-01-24T12:27:32Z
--- license: openrail base_model: DiTo97/binarization-segformer-b3 tags: - generated_from_trainer model-index: - name: segformer-b0-scene-parse-150-lr-3-e-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-lr-3-e-15 This model is a fine-tuned version of [DiTo97/binarization-segformer-b3](https://huggingface.co/DiTo97/binarization-segformer-b3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1523 - Mean Iou: 0.5014 - Mean Accuracy: 0.5220 - Overall Accuracy: 0.9615 - Per Category Iou: [0.04132646470292031, 0.9614038983247747] - Per Category Accuracy: [0.053216300812732126, 0.9907305584765508] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------:|:--------------------------------------------:| | No log | 1.0 | 112 | 0.1629 | 0.4844 | 0.5 | 0.9688 | [0.0, 0.9687870873345269] | [0.0, 1.0] | | No log | 2.0 | 224 | 0.1437 | 0.4844 | 0.5000 | 0.9688 | [2.03629353850122e-05, 0.968778060560053] | [2.0369226173097684e-05, 0.9999900466190115] | | No log | 3.0 | 336 | 0.1551 | 0.4844 | 0.5 | 0.9688 | [0.0, 0.9687870873345269] | [0.0, 1.0] | | No log | 4.0 | 448 | 0.1536 | 0.4873 | 0.5029 | 0.9674 | [0.0072237010873418455, 0.967349403560223] | [0.0076096034111664095, 0.998278830733678] | | 0.254 | 5.0 | 560 | 0.1730 | 0.4844 | 0.5000 | 0.9688 | [1.697363485298286e-06, 0.9687858141149847] | [1.697435514424807e-06, 0.9999986327773367] | | 0.254 | 6.0 | 672 | 0.1726 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687868224249946] | [0.0, 0.9999997265554673] | | 0.254 | 7.0 | 784 | 0.1418 | 0.4886 | 0.5042 | 0.9679 | [0.009270700532836455, 0.9678754695078028] | [0.009627854237817505, 0.998758780577388] | | 0.254 | 8.0 | 896 | 0.1618 | 0.4844 | 0.5 | 0.9688 | [0.0, 0.9687870873345269] | [0.0, 1.0] | | 0.2012 | 9.0 | 1008 | 0.1350 | 0.4868 | 0.5023 | 0.9685 | [0.005035086692148778, 0.9684816005292253] | [0.005109280898418669, 0.9995252456024103] | | 0.2012 | 10.0 | 1120 | 0.1429 | 0.4975 | 0.5137 | 0.9673 | [0.027791805303191197, 0.967227089869692] | [0.02998689579782864, 0.997455270490238] | | 0.2012 | 11.0 | 1232 | 0.1419 | 0.4852 | 0.5008 | 0.9688 | [0.0015964088435281823, 0.9688182225729328] | [0.0015972868190737434, 0.9999822807942842] | | 0.2012 | 12.0 | 1344 | 0.1339 | 0.4872 | 0.5028 | 0.9686 | [0.00582435621561196, 0.968612834428971] | [0.00589010123505408, 0.9996363187715734] | | 0.2012 | 13.0 | 1456 | 0.1422 | 0.4990 | 0.5165 | 0.9652 | [0.03289244256624029, 0.9651360857253766] | [0.03794447348945214, 0.9950514742926044] | | 0.1837 | 14.0 | 1568 | 0.1423 | 0.4928 | 0.5087 | 0.9673 | [0.01828545458590366, 0.9672482875211772] | [0.019532390464486255, 0.9978029278690511] | | 0.1837 | 15.0 | 1680 | 0.1523 | 0.5014 | 0.5220 | 0.9615 | [0.04132646470292031, 0.9614038983247747] | [0.053216300812732126, 0.9907305584765508] | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Pranay2/my-project-xzg
Pranay2
2024-01-24T13:34:18Z
6
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-24T13:29:43Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Project-xzg Dreambooth model trained by Pranay2 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: B21 Sample pictures of this concept: ![0](https://huggingface.co/Pranay2/my-project-xzg/resolve/main/sample_images/xzg_(1).png)
Hk4crprasad/test2
Hk4crprasad
2024-01-24T13:33:31Z
17
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T06:37:55Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation ---
Vakatt/Taxi
Vakatt
2024-01-24T13:31:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T13:31:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Vakatt/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ivan0831/DRL
Ivan0831
2024-01-24T13:28:07Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T13:20:03Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -148.90 +/- 81.72 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ivan0831/DRL' 'batch_size': 512 'minibatch_size': 128} ```
Peter/shortstep_test
Peter
2024-01-24T13:27:06Z
0
0
peft
[ "peft", "safetensors", "mistral", "alignment-handbook", "trl", "sft", "unsloth", "generated_from_trainer", "dataset:zeta-labs/mind2web_combined_236_18_01", "base_model:unsloth/mistral-7b", "base_model:adapter:unsloth/mistral-7b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-01-24T12:36:55Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - trl - sft - unsloth - generated_from_trainer - trl - sft - unsloth - generated_from_trainer - unsloth datasets: - zeta-labs/mind2web_combined_236_18_01 base_model: unsloth/mistral-7b model-index: - name: shortstep_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shortstep_test This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the zeta-labs/mind2web_combined_236_18_01 dataset. It achieves the following results on the evaluation set: - Loss: 0.3442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1
Vakatt/q-FrozenLake-v1-4x4-noSlippery
Vakatt
2024-01-24T13:22:47Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T13:22:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Vakatt/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Josef0801/model_deberta_6_labels
Josef0801
2024-01-24T13:19:41Z
44
0
transformers
[ "transformers", "tf", "deberta-v2", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T12:46:21Z
Based on microsoft/deberta-v3-base, finetuned on a synthetic dataset (6 labels). Performance on test dataset: precision recall f1-score support 0 0.56 0.73 0.63 26 1 0.70 1.00 0.82 28 2 0.68 0.53 0.60 32 3 0.97 1.00 0.99 33 4 1.00 0.97 0.98 33 5 0.52 0.33 0.41 36 accuracy 0.75 188 macro avg 0.74 0.76 0.74 188 weighted avg 0.74 0.75 0.74 188 Performance on similar benchmark: precision recall f1-score support 0 0.22 0.83 0.34 23 1 0.50 0.01 0.03 75 2 0.19 0.26 0.22 19 accuracy 0.21 117 macro avg 0.30 0.37 0.20 117 weighted avg 0.39 0.21 0.12 117
arun100/whisper-small-fr-derived-1
arun100
2024-01-24T13:14:44Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "fr", "dataset:mozilla-foundation/common_voice_16_0", "base_model:qanastek/whisper-small-french-uncased", "base_model:finetune:qanastek/whisper-small-french-uncased", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-23T05:50:34Z
--- language: - fr license: apache-2.0 base_model: qanastek/whisper-small-french-uncased tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 fr type: mozilla-foundation/common_voice_16_0 config: fr split: test args: fr metrics: - name: Wer type: wer value: 15.184536972434753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base French This model is a fine-tuned version of [qanastek/whisper-small-french-uncased](https://huggingface.co/qanastek/whisper-small-french-uncased) on the mozilla-foundation/common_voice_16_0 fr dataset. It achieves the following results on the evaluation set: - Loss: 0.8014 - Wer: 15.1845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9295 | 0.2 | 100 | 0.8014 | 15.1845 | | 0.2976 | 0.4 | 200 | 0.4207 | 16.0289 | | 0.2699 | 0.59 | 300 | 0.3999 | 15.8267 | | 0.2773 | 0.79 | 400 | 0.3910 | 15.7267 | | 0.2631 | 0.99 | 500 | 0.3863 | 15.5972 | | 0.2487 | 1.19 | 600 | 0.3834 | 15.5907 | | 0.2477 | 1.39 | 700 | 0.3814 | 15.6156 | | 0.2428 | 1.59 | 800 | 0.3801 | 15.4902 | | 0.2492 | 1.78 | 900 | 0.3794 | 15.4672 | | 0.2471 | 1.98 | 1000 | 0.3791 | 15.4707 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
bartowski/zephyr-7b-dpo-full-exl2
bartowski
2024-01-24T13:09:53Z
1
1
null
[ "alignment-handbook", "generated_from_trainer", "trl", "dpo", "text-generation", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:alignment-handbook/zephyr-7b-sft-full", "base_model:finetune:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "region:us" ]
text-generation
2024-01-24T12:53:36Z
--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-dpo-full results: [] quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of zephyr-7b-dpo-full Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.12">turboderp's ExLlamaV2 v0.0.12</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/alignment-handbook/zephyr-7b-dpo-full | Branch | Bits | lm_head bits | Size | Description | | ----- | ---- | ------- | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/zephyr-7b-dpo-full-exl2/tree/8_0) | 8.0 | 8.0 | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/zephyr-7b-dpo-full-exl2/tree/6_5) | 6.5 | 8.0 | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/zephyr-7b-dpo-full-exl2/tree/5_0) | 5.0 | 6.0 | 7.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/Bartowski/zephyr-7b-dpo-full-exl2/tree/4_25) | 4.25 | 6.0 | 6.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/zephyr-7b-dpo-full-exl2/tree/3_5) | 3.5 | 6.0 | 6.1 GB | Lower quality, only use if you have to. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/zephyr-7b-dpo-full-exl2 zephyr-7b-dpo-full-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `zephyr-7b-dpo-full-exl2`: ```shell mkdir zephyr-7b-dpo-full-exl2 huggingface-cli download bartowski/zephyr-7b-dpo-full-exl2 --local-dir zephyr-7b-dpo-full-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir zephyr-7b-dpo-full-exl2-6_5 huggingface-cli download bartowski/zephyr-7b-dpo-full-exl2 --revision 6_5 --local-dir zephyr-7b-dpo-full-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir zephyr-7b-dpo-full-exl2-6.5 huggingface-cli download bartowski/zephyr-7b-dpo-full-exl2 --revision 6_5 --local-dir zephyr-7b-dpo-full-exl2-6.5 --local-dir-use-symlinks False ```
Josef0801/model_1_deberta
Josef0801
2024-01-24T13:07:31Z
44
0
transformers
[ "transformers", "tf", "deberta-v2", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T10:42:40Z
This model is based on svenbl80/deberta-v3-Base-finetuned-chatdoc-V5's model but further finetuned a synthetic dataset. It performs poorly on a different benchmark from the same document: precision recall f1-score support 0 0.19 0.22 0.20 23 1 0.62 0.44 0.52 75 2 0.00 0.00 0.00 19 accuracy 0.32 117 macro avg 0.27 0.22 0.24 117 weighted avg 0.44 0.32 0.37 117
bcse/BigLiz-120b-GGUF
bcse
2024-01-24T13:02:42Z
10
0
null
[ "gguf", "lzlv", "WinterGoddess", "frankenmerge", "120b", "conversational", "en", "license:llama2", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T16:30:51Z
--- license: llama2 language: - en pipeline_tag: conversational tags: - lzlv - WinterGoddess - frankenmerge - 120b --- # BigLiz 120B - GGUF - Original model: [BigLiz 120B](https://huggingface.co/llmixer/BigLiz-120b)
hongpingjun98/results2
hongpingjun98
2024-01-24T12:59:13Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:sem_eval_2024_task_2", "base_model:MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli", "base_model:finetune:MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-23T20:11:09Z
--- license: mit base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli tags: - generated_from_trainer datasets: - sem_eval_2024_task_2 metrics: - accuracy - precision - recall - f1 model-index: - name: results2 results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2024_task_2 type: sem_eval_2024_task_2 config: sem_eval_2024_task_2_source split: validation args: sem_eval_2024_task_2_source metrics: - name: Accuracy type: accuracy value: 0.715 - name: Precision type: precision value: 0.7186959617536364 - name: Recall type: recall value: 0.7150000000000001 - name: F1 type: f1 value: 0.7137907659862921 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results2 This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7766 - Accuracy: 0.715 - Precision: 0.7187 - Recall: 0.7150 - F1: 0.7138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6998 | 1.0 | 107 | 0.6713 | 0.6 | 0.6214 | 0.6000 | 0.5815 | | 0.7015 | 2.0 | 214 | 0.6502 | 0.68 | 0.7143 | 0.6800 | 0.6667 | | 0.6755 | 3.0 | 321 | 0.6740 | 0.53 | 0.6579 | 0.53 | 0.4107 | | 0.6605 | 4.0 | 428 | 0.6061 | 0.64 | 0.6502 | 0.64 | 0.6338 | | 0.5918 | 5.0 | 535 | 0.5675 | 0.695 | 0.7023 | 0.6950 | 0.6922 | | 0.5717 | 6.0 | 642 | 0.5945 | 0.685 | 0.6953 | 0.685 | 0.6808 | | 0.4655 | 7.0 | 749 | 0.5644 | 0.68 | 0.6801 | 0.6800 | 0.6800 | | 0.3407 | 8.0 | 856 | 0.7529 | 0.7 | 0.7029 | 0.7 | 0.6989 | | 0.3539 | 9.0 | 963 | 0.7211 | 0.69 | 0.6901 | 0.69 | 0.6900 | | 0.2695 | 10.0 | 1070 | 0.7760 | 0.685 | 0.6905 | 0.685 | 0.6827 | | 0.1666 | 11.0 | 1177 | 1.1053 | 0.71 | 0.7188 | 0.71 | 0.7071 | | 0.1648 | 12.0 | 1284 | 1.1662 | 0.72 | 0.7258 | 0.72 | 0.7182 | | 0.1229 | 13.0 | 1391 | 1.2760 | 0.735 | 0.7438 | 0.735 | 0.7326 | | 0.0737 | 14.0 | 1498 | 1.5943 | 0.7 | 0.7029 | 0.7 | 0.6989 | | 0.1196 | 15.0 | 1605 | 1.5407 | 0.705 | 0.7085 | 0.7050 | 0.7037 | | 0.0389 | 16.0 | 1712 | 1.6411 | 0.69 | 0.7016 | 0.69 | 0.6855 | | 0.0199 | 17.0 | 1819 | 1.7139 | 0.685 | 0.6919 | 0.685 | 0.6821 | | 0.0453 | 18.0 | 1926 | 1.6549 | 0.71 | 0.7121 | 0.71 | 0.7093 | | 0.0536 | 19.0 | 2033 | 1.7612 | 0.71 | 0.7142 | 0.71 | 0.7086 | | 0.0035 | 20.0 | 2140 | 1.7766 | 0.715 | 0.7187 | 0.7150 | 0.7138 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
asun17904/glue-mrpc-bert-base-uncased-regularized-l2
asun17904
2024-01-24T12:55:37Z
0
0
pytorch
[ "pytorch", "en", "license:mit", "region:us" ]
null
2024-01-24T12:18:31Z
--- language: en license: mit library_name: pytorch --- # Knowledge Continuity Regularized Network Dataset: GLUE Trainer Hyperparameters: - `lr` = 5e-05 - `per_device_batch_size` = 16 - `gradient_accumulation_steps` = 1 - `weight_decay` = 1e-09 - `seed` = 42 Regularization Hyperparameters - `numerical stability denominator constant` = 0.01 - `lambda` = 0.02 - `alpha` = 2.0 - `beta` = 1.0 Extended Logs: |eval_loss|eval_accuracy|epoch| |--|--|--| |16.298|0.804|1.0| |17.928|0.755|2.0| |15.529|0.828|3.0| |14.999|0.843|4.0| |14.680|0.858|5.0| |15.523|0.828|6.0| |14.987|0.846|7.0| |16.665|0.794|8.0| |14.767|0.853|9.0| |14.644|0.853|10.0| |14.528|0.860|11.0| |14.406|0.863|12.0| |14.673|0.853|13.0| |14.910|0.850|14.0| |14.386|0.863|15.0| |14.131|0.870|16.0| |15.204|0.838|17.0| |14.685|0.853|18.0| |14.876|0.846|19.0| |15.133|0.843|20.0| |14.664|0.853|21.0| |16.257|0.809|22.0| |14.943|0.846|23.0| |14.934|0.848|24.0| |15.064|0.843|25.0| |15.151|0.841|26.0| |14.982|0.843|27.0| |14.488|0.858|28.0| |15.235|0.838|29.0| |14.763|0.850|30.0| |14.908|0.848|31.0| |15.068|0.843|32.0| |14.755|0.850|33.0| |15.053|0.843|34.0| |15.350|0.838|35.0| |14.841|0.848|36.0| |14.721|0.853|37.0| |14.947|0.846|38.0| |14.727|0.855|39.0| |14.945|0.846|40.0| |15.096|0.846|41.0| |14.999|0.848|42.0| |14.911|0.848|43.0| |14.852|0.850|44.0| |14.922|0.848|45.0| |15.096|0.846|46.0| |14.970|0.846|47.0| |15.031|0.843|48.0| |15.031|0.843|49.0|
blueapple8259/TinyCode-python
blueapple8259
2024-01-24T12:54:57Z
93
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code", "en", "dataset:bigcode/starcoderdata", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T12:49:35Z
--- license: mit datasets: - bigcode/starcoderdata tags: - code language: - en --- This model is trained on 4 out of 58 Python files from the [starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata) dataset.
tourist800/Prefix-ORKG-finetuned-Mistral-7B
tourist800
2024-01-24T12:52:40Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-01-24T12:44:39Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
tourist800/Prefix-ORKG-finetuned-llama-13b
tourist800
2024-01-24T12:48:26Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-13b-chat-hf", "base_model:adapter:NousResearch/Llama-2-13b-chat-hf", "region:us" ]
null
2024-01-24T12:39:54Z
--- library_name: peft base_model: NousResearch/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
Augustya07/Llama-2-7b-chat-hf-sft-test-push
Augustya07
2024-01-24T12:36:57Z
72
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-24T12:33:03Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abhi5hekjangid/phi2_old
abhi5hekjangid
2024-01-24T12:33:49Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "phi", "trl", "sft", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-01-22T07:10:05Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi-2-finetuned-abhishek results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-2-finetuned-abhishek This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2648 | 1.0 | 779 | 1.1722 | | 1.0878 | 2.0 | 1558 | 1.0711 | | 0.9319 | 3.0 | 2338 | 0.9918 | | 0.8719 | 4.0 | 3116 | 0.9799 | ### Framework versions - PEFT 0.7.1 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
amphion/valle_librilight_6k
amphion
2024-01-24T12:33:33Z
0
1
null
[ "en", "license:mit", "region:us" ]
null
2024-01-11T02:54:30Z
--- license: mit language: - en --- # Pretrained Model of Amphion Vall-E We provide the pre-trained checkpoint of [Vall-E](https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VALLE) trained on [Libri-light](https://ai.meta.com/tools/libri-light/), which is derived from open-source audio books from the LibriVox project and contains over 60K hours of audio. Here we processed about 6,000-hour data to train Vall-E. ## Quick Start To utilize the pre-trained models, just run the following commands: ### Step1: Download the checkpoint ```bash git lfs install git clone https://huggingface.co/amphion/valle_librilight_6k ``` ### Step2: Clone the Amphion's Source Code of GitHub ```bash git clone https://github.com/open-mmlab/Amphion.git ``` ### Step3: Specify the checkpoint's path Use the soft link to specify the downloaded checkpoint in the first step: ```bash cd Amphion mkdir -p ckpts/tts ln -s ../../../valle_librilight_6k ckpts/tts/ ``` ### Step4: Inference You can follow the inference part of [this recipe](https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VALLE#4-inference) to generate speech from text. For example, if you want to synthesize a clip of speech with the text of "This is a clip of generated speech with the given text from Amphion Vall-E model.", just, run: ```bash sh egs/tts/VALLE/run.sh --stage 3 --gpu "0" \ --config "ckpts/tts/valle_librilight_6k/args.json" \ --infer_expt_dir ckpts/tts/valle_librilight_6k \ --infer_output_dir ckpts/tts/valle_librilight_6k/result \ --infer_mode "single" \ --infer_text "This is a clip of generated speech with the given text from Amphion Vall-E model." \ --infer_text_prompt "But even the unsuccessful dramatist has his moments." \ --infer_audio_prompt egs/tts/VALLE/prompt_examples/7176_92135_000004_000000.wav ```
sergeipetrov/swin2SR-classical-sr-x2-64
sergeipetrov
2024-01-24T12:29:43Z
177
0
transformers
[ "transformers", "pytorch", "swin2sr", "image-to-image", "vision", "arxiv:2209.11345", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-image
2024-01-24T12:29:05Z
--- license: apache-2.0 tags: - vision - image-to-image inference: true --- # Swin2SR model (image super-resolution) Swin2SR model that upscales images x2. It was introduced in the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Conde et al. and first released in [this repository](https://github.com/mv-lab/swin2sr). # Intended use cases This model is intended for image super resolution. # Usage Refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/swin2sr#transformers.Swin2SRForImageSuperResolution.forward.example).
dvs/autotrain-kisd2-y8ibj
dvs
2024-01-24T12:28:44Z
176
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:dvs/autotrain-data-autotrain-kisd2-y8ibj", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-24T12:28:36Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - dvs/autotrain-data-autotrain-kisd2-y8ibj --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.4466552734375 f1: 1.0 precision: 1.0 recall: 1.0 auc: 1.0 accuracy: 1.0
tifosi1709/codellama-7b-instruct-ft
tifosi1709
2024-01-24T12:23:26Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T12:17:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alionder/distilbert_turk
alionder
2024-01-24T12:23:24Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:dbmdz/distilbert-base-turkish-cased", "base_model:finetune:dbmdz/distilbert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T12:23:11Z
--- license: mit base_model: dbmdz/distilbert-base-turkish-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: distilbert_turk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_turk This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1927 - F1: 0.8338 - Roc Auc: 0.9092 - Accuracy: 0.8047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.2899 | 1.0 | 1151 | 0.2053 | 0.6418 | 0.7738 | 0.6719 | | 0.1846 | 2.0 | 2302 | 0.1777 | 0.7480 | 0.8434 | 0.7461 | | 0.1432 | 3.0 | 3453 | 0.1633 | 0.7879 | 0.8866 | 0.7656 | | 0.1241 | 4.0 | 4604 | 0.1508 | 0.8256 | 0.9037 | 0.7891 | | 0.0961 | 5.0 | 5755 | 0.1621 | 0.8203 | 0.9048 | 0.7969 | | 0.065 | 6.0 | 6906 | 0.1733 | 0.8108 | 0.9092 | 0.7969 | | 0.0548 | 7.0 | 8057 | 0.1848 | 0.8238 | 0.8993 | 0.7930 | | 0.0496 | 8.0 | 9208 | 0.1875 | 0.8130 | 0.9055 | 0.7969 | | 0.0413 | 9.0 | 10359 | 0.1905 | 0.8359 | 0.9096 | 0.8086 | | 0.038 | 10.0 | 11510 | 0.1927 | 0.8338 | 0.9092 | 0.8047 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tourist800/ORKG-finetuned-Mistral-7B
tourist800
2024-01-24T12:21:28Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-01-24T12:14:17Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
Siddharth11/my-pet-dog
Siddharth11
2024-01-24T12:19:28Z
1
2
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-24T12:15:04Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by Siddharth11 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 210968074 Sample pictures of this concept: ![0](https://huggingface.co/Siddharth11/my-pet-dog/resolve/main/sample_images/sample.jpg)
asun17904/glue-cola-bert-base-uncased-regularized-l2
asun17904
2024-01-24T12:17:58Z
0
0
pytorch
[ "pytorch", "en", "license:mit", "region:us" ]
null
2024-01-24T10:52:53Z
--- language: en license: mit library_name: pytorch --- # Knowledge Continuity Regularized Network Dataset: GLUE Trainer Hyperparameters: - `lr` = 5e-05 - `per_device_batch_size` = 16 - `gradient_accumulation_steps` = 1 - `weight_decay` = 1e-09 - `seed` = 42 Regularization Hyperparameters - `numerical stability denominator constant` = 0.01 - `lambda` = 0.02 - `alpha` = 2.0 - `beta` = 1.0 Extended Logs: |eval_loss|eval_accuracy|epoch| |--|--|--| |16.556|0.800|1.0| |16.658|0.794|2.0| |16.329|0.804|3.0| |16.252|0.816|4.0| |16.386|0.808|5.0| |16.747|0.802|6.0| |16.614|0.807|7.0| |16.641|0.808|8.0| |16.362|0.814|9.0| |16.559|0.805|10.0| |16.639|0.802|11.0| |16.819|0.796|12.0| |16.648|0.803|13.0| |17.400|0.780|14.0| |16.121|0.818|15.0| |16.481|0.808|16.0| |16.644|0.801|17.0| |16.747|0.806|18.0| |16.386|0.808|19.0| |16.684|0.802|20.0| |16.766|0.803|21.0| |16.543|0.803|22.0| |16.636|0.803|23.0| |16.468|0.813|24.0| |16.653|0.800|25.0| |17.070|0.788|26.0| |17.067|0.796|27.0| |16.857|0.796|28.0| |16.925|0.795|29.0| |16.890|0.798|30.0| |16.594|0.801|31.0| |16.578|0.800|32.0| |16.517|0.802|33.0| |16.529|0.802|34.0| |16.674|0.803|35.0| |16.543|0.809|36.0| |16.659|0.803|37.0| |16.723|0.803|38.0| |16.480|0.808|39.0| |16.410|0.804|40.0| |16.641|0.803|41.0| |16.328|0.811|42.0| |16.270|0.813|43.0| |16.291|0.812|44.0| |16.522|0.812|45.0| |16.395|0.810|46.0| |16.385|0.811|47.0| |16.392|0.812|48.0| |16.401|0.811|49.0|
ayoubkirouane/Mistral-Depth-UP-Scaled-9B-AlpacaInstruct
ayoubkirouane
2024-01-24T12:17:58Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "peft", "ayoubkirouane/Mistral-Depth-UP-Scaled-9B", "text-generation", "en", "dataset:yahma/alpaca-cleaned", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T12:10:39Z
--- library_name: transformers tags: - unsloth - peft - ayoubkirouane/Mistral-Depth-UP-Scaled-9B license: apache-2.0 datasets: - yahma/alpaca-cleaned language: - en pipeline_tag: text-generation --- ## Mistral-Depth-UP-Scaled-9B-AlpacaInstruct : - Finetuned Version of [**Mistral-Depth-UP-Scaled-9B**](ayoubkirouane/Mistral-Depth-UP-Scaled-9B) on [**alpaca-cleaned**](https://huggingface.co/datasets/yahma/alpaca-cleaned) Dataset .
alexgastev/dqn-LunarLander-v2
alexgastev
2024-01-24T12:15:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T12:15:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 7.77 +/- 114.71 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
akerberenes/pop-LunaLander-v2
akerberenes
2024-01-24T12:12:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T12:12:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.37 +/- 22.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
macarious/torgo_xlsr_finetune_M02_old
macarious
2024-01-24T12:12:18Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-24T06:28:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: torgo_xlsr_finetune_M02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # torgo_xlsr_finetune_M02 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7002 - Wer: 0.3119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5308 | 0.92 | 1000 | 3.3287 | 1.0 | | 1.6778 | 1.83 | 2000 | 1.8864 | 0.8387 | | 0.8622 | 2.75 | 3000 | 1.4902 | 0.6310 | | 0.6098 | 3.66 | 4000 | 1.3727 | 0.5758 | | 0.4854 | 4.58 | 5000 | 1.5900 | 0.5258 | | 0.4259 | 5.49 | 6000 | 1.4559 | 0.4403 | | 0.3824 | 6.41 | 7000 | 1.4472 | 0.4332 | | 0.3162 | 7.33 | 8000 | 1.4480 | 0.3913 | | 0.3334 | 8.24 | 9000 | 1.5251 | 0.3663 | | 0.2884 | 9.16 | 10000 | 1.2532 | 0.3779 | | 0.2745 | 10.07 | 11000 | 1.4908 | 0.4029 | | 0.2252 | 10.99 | 12000 | 1.7431 | 0.4055 | | 0.2363 | 11.9 | 13000 | 1.6840 | 0.3877 | | 0.2135 | 12.82 | 14000 | 1.7977 | 0.4029 | | 0.2157 | 13.74 | 15000 | 1.6831 | 0.3743 | | 0.1835 | 14.65 | 16000 | 1.9256 | 0.3556 | | 0.1718 | 15.57 | 17000 | 1.8000 | 0.3449 | | 0.1466 | 16.48 | 18000 | 1.8610 | 0.3414 | | 0.1708 | 17.4 | 19000 | 1.5912 | 0.3191 | | 0.1516 | 18.31 | 20000 | 1.8241 | 0.3164 | | 0.1494 | 19.23 | 21000 | 1.7002 | 0.3119 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.13.3
davidpedem/clasificador-muchocine
davidpedem
2024-01-24T12:11:28Z
89
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "classification", "generated_from_trainer", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T12:11:06Z
--- base_model: mrm8488/electricidad-base-discriminator tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4166 - Accuracy: 0.4310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3248 | 0.4013 | | 1.3832 | 2.0 | 776 | 1.3357 | 0.4090 | | 0.977 | 3.0 | 1164 | 1.4166 | 0.4310 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tourist800/ORKG-finetuned-llama-13b-chat
tourist800
2024-01-24T12:08:32Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-13b-chat-hf", "base_model:adapter:NousResearch/Llama-2-13b-chat-hf", "region:us" ]
null
2024-01-24T12:07:00Z
--- library_name: peft base_model: NousResearch/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
Andrewwwwww/Mixtral-8x7B-Instruct-v0.1
Andrewwwwww
2024-01-24T12:05:45Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-24T12:02:15Z
--- license: apache-2.0 language: - fr - it - de - es - en inference: false --- # Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Instruction format This format must be strictly respected, otherwise the model will generate sub-optimal outputs. The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. As reference, here is the pseudo-code used to tokenize instructions during fine-tuning: ```python def tokenize(text): return tok.encode(text, add_special_tokens=False) [BOS_ID] + tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") + tokenize(BOT_MESSAGE_1) + [EOS_ID] + … tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") + tokenize(BOT_MESSAGE_N) + [EOS_ID] ``` In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Limitations The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
BradNLP/q-FrozenLake-v1-4x4-noSlippery
BradNLP
2024-01-24T11:58:43Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T11:58:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="BradNLP/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Jacqkues/ppo-LunarLander-v2
Jacqkues
2024-01-24T11:54:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T11:54:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.64 +/- 24.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Parinitha003/Atari
Parinitha003
2024-01-24T11:47:26Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T11:45:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 501.00 +/- 133.32 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Parinitha003 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Parinitha003 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Parinitha003 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Gayathri142214002/Question_Generation_ComQ_8_2
Gayathri142214002
2024-01-24T11:36:15Z
4
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Gayathri142214002/Question_Generation_ComQ_7", "base_model:finetune:Gayathri142214002/Question_Generation_ComQ_7", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T10:52:32Z
--- license: apache-2.0 base_model: Gayathri142214002/Question_Generation_ComQ_7 tags: - generated_from_trainer model-index: - name: Question_Generation_ComQ_8_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question_Generation_ComQ_8_2 This model is a fine-tuned version of [Gayathri142214002/Question_Generation_ComQ_7](https://huggingface.co/Gayathri142214002/Question_Generation_ComQ_7) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0484 | 0.22 | 100 | 0.3026 | | 0.0462 | 0.44 | 200 | 0.3217 | | 0.2787 | 0.66 | 300 | 0.2620 | | 0.2864 | 0.88 | 400 | 0.2611 | | 0.2528 | 1.1 | 500 | 0.2699 | | 0.2224 | 1.32 | 600 | 0.2878 | | 0.2303 | 1.54 | 700 | 0.2812 | | 0.2525 | 1.76 | 800 | 0.2783 | | 0.2429 | 1.98 | 900 | 0.2685 | | 0.2147 | 2.2 | 1000 | 0.2849 | | 0.202 | 2.42 | 1100 | 0.2939 | | 0.2217 | 2.64 | 1200 | 0.2913 | | 0.2213 | 2.86 | 1300 | 0.2834 | | 0.1942 | 3.08 | 1400 | 0.2952 | | 0.1866 | 3.3 | 1500 | 0.3072 | | 0.1977 | 3.52 | 1600 | 0.3098 | | 0.199 | 3.74 | 1700 | 0.3053 | | 0.1964 | 3.96 | 1800 | 0.3017 | | 0.1672 | 4.18 | 1900 | 0.3125 | | 0.1669 | 4.4 | 2000 | 0.3182 | | 0.1904 | 4.62 | 2100 | 0.3193 | | 0.1744 | 4.84 | 2200 | 0.3132 | | 0.177 | 5.06 | 2300 | 0.3130 | | 0.1583 | 5.28 | 2400 | 0.3172 | | 0.1676 | 5.5 | 2500 | 0.3168 | | 0.1662 | 5.72 | 2600 | 0.3185 | | 0.1703 | 5.94 | 2700 | 0.3164 | | 0.1553 | 6.16 | 2800 | 0.3193 | | 0.1557 | 6.38 | 2900 | 0.3201 | | 0.1465 | 6.6 | 3000 | 0.3208 | | 0.1549 | 6.82 | 3100 | 0.3219 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Strudel7182/q-FrozenLake-v1-4x4-noSlippery
Strudel7182
2024-01-24T11:25:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T11:25:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Strudel7182/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
medxiaorudan/CodeLlama_CPP_FineTuned
medxiaorudan
2024-01-24T11:23:58Z
2
1
peft
[ "peft", "code", "arxiv:1910.09700", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2024-01-16T10:35:29Z
--- library_name: peft base_model: codellama/CodeLlama-7b-hf license: llama2 dataset: type: codeparrot/xlcost-text-to-code name: xlcost tags: - code --- # Model Card for Model ID ## Model Details ### Model Description This model has been fine-tuned using the CodeLlama base, incorporating C++ code sourced from the 'codeparrot/xlcost-text-to-code' dataset. It possesses the capability to generate C++ code based on provided task descriptions. If you get the error "ValueError: Tokenizer class CodeLlamaTokenizer does not exist or is not currently imported." make sure your Transformer version is 4.33.0 and accelerate>=0.20.3. - **Developed by:** [Rudan XIAO] - **Model type:** [code generation] - **License:** [llama2] - **Finetuned from model [optional]:** [codellama/CodeLlama-7b-hf] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/medxiaorudan/CodeGeneration] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ```python from transformers import AutoTokenizer import transformers import torch model = "medxiaorudan/CodeLlama_CPP_FineTuned" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) prompt = """ Use the Task below and write the Response, which is a programming code that can solve the Task. ### Task: Generate a C++ program that accepts numeric input from the user and maintains a record of previous user inputs with timestamps. Ensure the program sorts the user inputs in ascending order based on the provided numeric input. Enhance the program to display timestamps along with the sorted user inputs. ### Response: """ sequences_finetune = pipeline( prompt, do_sample=True, top_k=10, temperature=0.1, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=600, add_special_tokens=False ) for seq in sequences_finetune: print(f"Result: {seq['generated_text']}") ``` ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data https://huggingface.co/datasets/codeparrot/xlcost-text-to-code [More Information Needed] ### Training Procedure The detailed training report is [here](https://wandb.ai/medxiaorudan/CodeLlama_finetune_CPP?workspace=user-medxiaorudan). #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [bf16] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation I have use the Catch2 unit test framework for generated C++ code snippets correctness verification. Todo: Use the pass@k metric with the HumanEval-X dataset to verify the performance of the model. ### Testing Data, Factors & Metrics #### Testing Data https://huggingface.co/datasets/THUDM/humaneval-x [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> I used 4 NVIDIA A40-48Q GPU server configured with Python 3.10 and Cuda 12.2 to run the code in this article. It ran for about eight hours. Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [NVIDIA A40-48Q GPU] - **Hours used:** [8] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
s3nh/mhm-7b-v1.3-DPO-1-GGUF
s3nh
2024-01-24T11:19:54Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-01-24T10:18:31Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/h2m/mhm-7b-v1.3-DPO-1). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference User: Tell me story about what is an quantization and what do we need to build. ◄►Links referring to the same content or entity from another perspective, but does not significantly contribute additional information because of this duplicate differentiating the references as necessary.◄►Links referring to previous respective contents for further elaboration on the matter in hand. The goal of this page is to provide a quantification of what we need to build as well as an explanation of terms used in this document to help understand what it entails for those interested in its application. This page may contain PMTA information directly pertaining to this project, as it will affect the final result when it comes to delivering such technologies. The # Original model card
akolit/aldan-mix-8x7B-gguf
akolit
2024-01-24T11:17:23Z
1
1
null
[ "gguf", "text-generation", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-01-22T15:09:32Z
--- license: cc-by-nc-4.0 model_type: mixtral pipeline_tag: text-generation --- GGUF quants repo. For now only q4_0. FP16 safetensors model is [here](https://huggingface.co/akolit/aldan-mix-8x7B). This is a SLERP merge between [Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) and [Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss](https://huggingface.co/NeverSleep/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss). Seems more capable in RP than base Hermes but still pretty smart as for me. Prompt format: ChatML With this model I use the following generation settings in tavern (maybe those are not the best, share better templates in issues if you have any): - Temperature: 0.75 - Top P: 0.5 - Top A: 0.7 - TFS 0.97 - Repetition penalty: 1.1 - Mirostat: mode 2, tau 5, eta 0.1 Adding to system prompt something like "Assistant will never interrupt role-play and will always stay in character no matter what. Assistant will never write OOC (out of character). Assistant won't write actions or reactions of {{user}}. Assistant won't mention {{user}} in first person. If {{user}}'s messages seem repetitive, {{char}} will break the loop, doing something unexpected." might help, but it's up to you (as anything else, really).
ali0123/lora_4bit
ali0123
2024-01-24T11:16:16Z
0
0
null
[ "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:chavinlo/alpaca-13b", "base_model:finetune:chavinlo/alpaca-13b", "region:us" ]
null
2024-01-23T13:25:23Z
--- base_model: chavinlo/alpaca-13b tags: - trl - sft - generated_from_trainer model-index: - name: lora_4bit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora_4bit This model is a fine-tuned version of [chavinlo/alpaca-13b](https://huggingface.co/chavinlo/alpaca-13b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 300 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
akolit/aldan-mix-8x7B
akolit
2024-01-24T11:15:01Z
7
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T12:19:40Z
--- license: cc-by-nc-4.0 --- This is a SLERP merge between [Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) and [Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss](https://huggingface.co/NeverSleep/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss). Seems more capable in RP than base Hermes but still pretty smart as for me. Prompt format: ChatML [GGUF Q4_0 version](https://huggingface.co/akolit/aldan-mix-8x7B-gguf) With this model I use the following generation settings in tavern (maybe those are not the best, share better templates in issues if you have any): - Temperature: 0.75 - Top P: 0.5 - Top A: 0.7 - TFS 0.97 - Repetition penalty: 1.1 - Mirostat: mode 2, tau 5, eta 0.1 ! Model still seems to be prone to repetition with the settings above. Needs testing on other presets. SillyTavern's "Big O" preset with mirostat 2/5/0.15 seems promising. Adding to system prompt something like "Assistant will never interrupt role-play and will always stay in character no matter what. Assistant will never write OOC (out of character). Assistant won't write actions or reactions of {{user}}. Assistant won't mention {{user}} in first person. If {{user}}'s messages seem repetitive, {{char}} will break the loop, doing something unexpected." might help, but it's up to you (as anything else, really).
Gayathri142214002/Question_Generation_ComQ_9_2
Gayathri142214002
2024-01-24T11:04:56Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Gayathri142214002/Question_Generation_ComQ_6", "base_model:finetune:Gayathri142214002/Question_Generation_ComQ_6", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T10:49:18Z
--- license: apache-2.0 base_model: Gayathri142214002/Question_Generation_ComQ_6 tags: - generated_from_trainer model-index: - name: Question_Generation_ComQ_7_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question_Generation_ComQ_7_2 This model is a fine-tuned version of [Gayathri142214002/Question_Generation_ComQ_6](https://huggingface.co/Gayathri142214002/Question_Generation_ComQ_6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2389 | 0.23 | 100 | 0.2383 | | 0.2843 | 0.47 | 200 | 0.2704 | | 0.2913 | 0.7 | 300 | 0.2648 | | 0.2755 | 0.94 | 400 | 0.2607 | | 0.2329 | 1.17 | 500 | 0.2916 | | 0.2302 | 1.41 | 600 | 0.2971 | | 0.2426 | 1.64 | 700 | 0.2861 | | 0.2546 | 1.88 | 800 | 0.2906 | | 0.2163 | 2.11 | 900 | 0.2995 | | 0.211 | 2.35 | 1000 | 0.3133 | | 0.2202 | 2.58 | 1100 | 0.3082 | | 0.2352 | 2.82 | 1200 | 0.3039 | | 0.2169 | 3.05 | 1300 | 0.2971 | | 0.1932 | 3.29 | 1400 | 0.3126 | | 0.2043 | 3.52 | 1500 | 0.3173 | | 0.2066 | 3.76 | 1600 | 0.3100 | | 0.2099 | 3.99 | 1700 | 0.3101 | | 0.1672 | 4.23 | 1800 | 0.3226 | | 0.1813 | 4.46 | 1900 | 0.3295 | | 0.1823 | 4.7 | 2000 | 0.3280 | | 0.1967 | 4.93 | 2100 | 0.3247 | | 0.1725 | 5.17 | 2200 | 0.3330 | | 0.1723 | 5.4 | 2300 | 0.3336 | | 0.162 | 5.64 | 2400 | 0.3360 | | 0.1716 | 5.87 | 2500 | 0.3337 | | 0.1659 | 6.11 | 2600 | 0.3340 | | 0.1553 | 6.34 | 2700 | 0.3355 | | 0.1537 | 6.58 | 2800 | 0.3366 | | 0.1589 | 6.81 | 2900 | 0.3358 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
la-min/myanmar-gpt-7B-health-qa
la-min
2024-01-24T10:58:38Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:SeaLLMs/SeaLLM-7B-v1", "base_model:adapter:SeaLLMs/SeaLLM-7B-v1", "region:us" ]
null
2024-01-24T10:58:37Z
--- library_name: peft base_model: SeaLLMs/SeaLLM-7B-Chat --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Changchoichang2104/StableDiffusionXL-Waltz-with-Bashir-style
Changchoichang2104
2024-01-24T10:57:52Z
20
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:apache-2.0", "region:us" ]
text-to-image
2024-01-24T10:25:08Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: 'portrait of Taylor Swift, highly detailed, waltz of bashir style' output: url: images/a22ec06b-031c-454e-8fac-6a2f7dacddff.jpeg - text: 'portrait of Chris Hemsworth, highly detailed, waltz of bashir style' output: url: images/14281b37-6ef1-48c1-8e87-ff776a1503d8.jpeg - text: 'portrait of Robert Downey Jr, highly detailed, waltz of bashir style' output: url: images/c74b0d93-a349-4965-b890-d5e26b5b5f3e.jpeg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: null license: apache-2.0 # Waltz with Bashir Style Image Generation using Stable Diffusion XL Model description: | ## Overview Dive into the captivating world of art with our advanced "Waltz with Bashir" style adaptation for the Stable Diffusion XL model. This state-of-the-art model transforms your images into stunning artworks reminiscent of the iconic animation and visual style of the acclaimed film "Waltz with Bashir". ## Gallery ![Taylor Swift](images/a22ec06b-031c-454e-8fac-6a2f7dacddff.jpeg) *Portrait of Taylor Swift in Waltz of Bashir style.* ![Chris Hemsworth](images/14281b37-6ef1-48c1-8e87-ff776a1503d8.jpeg) *Portrait of Chris Hemsworth in Waltz of Bashir style.* ![Robert Downey Jr](images/c74b0d93-a349-4965-b890-d5e26b5b5f3e.jpeg) *Portrait of Robert Downey Jr in Waltz of Bashir style.* ## Download the Model You can download the model weights in Safetensors format from the following link. Navigate to the "Files & versions" tab to access the files. [Download Model Weights](/Changchoichang2104/StableDiffusionXL-Waltz-with-Bashir-style/tree/main) ## How to Use the Model To use this model, input a description of the image you want to generate, specifying that it should be in the 'Waltz of Bashir style'. The model will then generate an image based on your description. For example: `portrait of [Name], highly detailed, Waltz of Bashir style` Replace `[Name]` with the subject of your portrait. --- # Waltz with Bashir Style Image Generation using Stable Diffusion XL Model Dive into the captivating world of art with our advanced "Waltz with Bashir" style adaptation for the Stable Diffusion XL model. This state-of-the-art model transforms your images into stunning artworks reminiscent of the iconic animation and visual style of the acclaimed film "Waltz with Bashir". ## Gallery of Generated Images Here are some examples of what the model can create: ![Taylor Swift](images/a22ec06b-031c-454e-8fac-6a2f7dacddff.jpeg) *Portrait of Taylor Swift in Waltz of Bashir style.* ![Chris Hemsworth](images/14281b37-6ef1-48c1-8e87-ff776a1503d8.jpeg) *Portrait of Chris Hemsworth in Waltz of Bashir style.* ![Robert Downey Jr](images/c74b0d93-a349-4965-b890-d5e26b5b5f3e.jpeg) *Portrait of Robert Downey Jr in Waltz of Bashir style.* ## Download the Model You can download the model weights in Safetensors format from the following link. Navigate to the "Files & versions" tab to access the files. [Download Model Weights](/Changchoichang2104/StableDiffusionXL-Waltz-with-Bashir-style/tree/main) ## How to Use the Model To use this model, input a description of the image you want to generate, specifying that it should be in the 'Waltz of Bashir style'. The model will then generate an image based on your description. For example: portrait of [Name], highly detailed, Waltz of Bashir style Replace `[Name]` with the subject of your portrait.
fira7s/mbp_LoRA
fira7s
2024-01-24T10:55:10Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-24T10:55:08Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of MBAPEE person license: openrail++ --- # SDXL LoRA DreamBooth - fira7s/mbp_LoRA <Gallery /> ## Model description These are fira7s/mbp_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MBAPEE person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](fira7s/mbp_LoRA/tree/main) them in the Files & versions tab.
adi-vc/Reinforce-CartPole-v1
adi-vc
2024-01-24T10:54:28Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-23T20:24:56Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 121.90 +/- 6.67 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MarcoScap/ppo-LunarLander-v2
MarcoScap
2024-01-24T10:51:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-24T10:50:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.35 +/- 22.81 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
simonycl/data-selection-Llama-2-7b-sharegpt-KCenterGreedyDeita-0.05-lora
simonycl
2024-01-24T10:41:38Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-24T10:41:26Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
jaydeepcomm/experiments
jaydeepcomm
2024-01-24T10:28:31Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-24T10:28:21Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: experiments results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # experiments This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9273 | 0.43 | 3 | 1.6630 | | 1.2968 | 0.86 | 6 | 1.3173 | | 0.9918 | 1.29 | 9 | 1.1548 | | 1.1456 | 1.71 | 12 | 1.1042 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
xformAI/opt-6.7b-ub-16-qcqa-best-for-q-loss
xformAI
2024-01-24T10:27:03Z
0
0
transformers
[ "transformers", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-01-24T10:26:41Z
--- license: mit language: - en library_name: transformers --- This is a QCQA version of the original model facebook/opt-125m. In this version, the original MHA architecture is preserved but instead of having a single K/V head, different K/V heads corresponding to the same group have the same mean-pooled K or V values. It has upto 16 groups of KV heads per layer instead of the original 32 KV heads in the MHA implementation. This implementation is supposed to more efficient than corresponding GQA one. This has been optimized for quality loss.
e22vvb/EN_mt5-base_5_spider
e22vvb
2024-01-24T10:26:53Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T09:41:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: EN_mt5-base_5_spider results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EN_mt5-base_5_spider This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0147 - Rouge2 Precision: 0.0101 - Rouge2 Recall: 0.0008 - Rouge2 Fmeasure: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 438 | 4.4261 | 0.0037 | 0.0008 | 0.0013 | | 13.8978 | 2.0 | 876 | 1.9847 | 0.0032 | 0.0012 | 0.0016 | | 3.4854 | 3.0 | 1314 | 1.6748 | 0.0002 | 0.0 | 0.0 | | 2.1063 | 4.0 | 1752 | 1.2913 | 0.0074 | 0.0029 | 0.0036 | | 1.6372 | 5.0 | 2190 | 1.0147 | 0.0101 | 0.0008 | 0.0014 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.7.dev0 - Tokenizers 0.13.3
HarshithNLP/outputs
HarshithNLP
2024-01-24T10:25:18Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:bigscience/bloom-7b1", "base_model:adapter:bigscience/bloom-7b1", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-01-24T10:25:13Z
--- license: bigscience-bloom-rail-1.0 library_name: peft tags: - generated_from_trainer base_model: bigscience/bloom-7b1 model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Gayathri142214002/Question_Generation_ComQ_7_2
Gayathri142214002
2024-01-24T10:24:44Z
4
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Gayathri142214002/Question_Generation_ComQ_6", "base_model:finetune:Gayathri142214002/Question_Generation_ComQ_6", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T08:47:52Z
--- license: apache-2.0 base_model: Gayathri142214002/Question_Generation_ComQ_6 tags: - generated_from_trainer model-index: - name: Question_Generation_ComQ_7_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question_Generation_ComQ_7_2 This model is a fine-tuned version of [Gayathri142214002/Question_Generation_ComQ_6](https://huggingface.co/Gayathri142214002/Question_Generation_ComQ_6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2389 | 0.23 | 100 | 0.2383 | | 0.2843 | 0.47 | 200 | 0.2704 | | 0.2913 | 0.7 | 300 | 0.2648 | | 0.2755 | 0.94 | 400 | 0.2607 | | 0.2329 | 1.17 | 500 | 0.2916 | | 0.2302 | 1.41 | 600 | 0.2971 | | 0.2426 | 1.64 | 700 | 0.2861 | | 0.2546 | 1.88 | 800 | 0.2906 | | 0.2163 | 2.11 | 900 | 0.2995 | | 0.211 | 2.35 | 1000 | 0.3133 | | 0.2202 | 2.58 | 1100 | 0.3082 | | 0.2352 | 2.82 | 1200 | 0.3039 | | 0.2169 | 3.05 | 1300 | 0.2971 | | 0.1932 | 3.29 | 1400 | 0.3126 | | 0.2043 | 3.52 | 1500 | 0.3173 | | 0.2066 | 3.76 | 1600 | 0.3100 | | 0.2099 | 3.99 | 1700 | 0.3101 | | 0.1672 | 4.23 | 1800 | 0.3226 | | 0.1813 | 4.46 | 1900 | 0.3295 | | 0.1823 | 4.7 | 2000 | 0.3280 | | 0.1967 | 4.93 | 2100 | 0.3247 | | 0.1725 | 5.17 | 2200 | 0.3330 | | 0.1723 | 5.4 | 2300 | 0.3336 | | 0.162 | 5.64 | 2400 | 0.3360 | | 0.1716 | 5.87 | 2500 | 0.3337 | | 0.1659 | 6.11 | 2600 | 0.3340 | | 0.1553 | 6.34 | 2700 | 0.3355 | | 0.1537 | 6.58 | 2800 | 0.3366 | | 0.1589 | 6.81 | 2900 | 0.3358 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
xformAI/opt-6.7b-ub-16-qcqa-best-for-KV-cache
xformAI
2024-01-24T10:21:43Z
0
0
transformers
[ "transformers", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-01-24T10:20:19Z
--- license: mit language: - en library_name: transformers --- This is a QCQA version of the original model facebook/opt-125m. In this version, the original MHA architecture is preserved but instead of having a single K/V head, different K/V heads corresponding to the same group have the same mean-pooled K or V values. It has upto 16 groups of KV heads per layer instead of the original 32 KV heads in the MHA implementation. This implementation is supposed to more efficient than corresponding GQA one. This has been optimized for KV-cache.
katik0/layoutlm-funsd-tf
katik0
2024-01-24T10:20:48Z
44
0
transformers
[ "transformers", "tf", "layoutlm", "token-classification", "generated_from_keras_callback", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-24T10:20:24Z
--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_keras_callback model-index: - name: layoutlm-funsd-tf results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd-tf This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2471 - Validation Loss: 0.6741 - Train Overall Precision: 0.7311 - Train Overall Recall: 0.7858 - Train Overall F1: 0.7574 - Train Overall Accuracy: 0.8104 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| | 1.7162 | 1.4302 | 0.2735 | 0.3026 | 0.2873 | 0.4851 | 0 | | 1.1601 | 0.8705 | 0.5728 | 0.6708 | 0.6180 | 0.7254 | 1 | | 0.7538 | 0.7479 | 0.6533 | 0.7055 | 0.6784 | 0.7572 | 2 | | 0.5704 | 0.6795 | 0.6686 | 0.7582 | 0.7106 | 0.7936 | 3 | | 0.4379 | 0.6239 | 0.7022 | 0.7762 | 0.7374 | 0.8062 | 4 | | 0.3470 | 0.6538 | 0.7226 | 0.7842 | 0.7522 | 0.7986 | 5 | | 0.2908 | 0.6827 | 0.7033 | 0.7777 | 0.7386 | 0.7971 | 6 | | 0.2471 | 0.6741 | 0.7311 | 0.7858 | 0.7574 | 0.8104 | 7 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
Skier8402/whisper-small-tiny
Skier8402
2024-01-24T10:20:05Z
66
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "asr", "sst", "swahili", "sw", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-20T09:40:30Z
--- language: - sw license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer - asr - sst - swahili datasets: - mozilla-foundation/common_voice_13_0 model-index: - name: Whisper Tiny Sw - Skier8402 results: [] library_name: transformers metrics: - wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Sw - Skier8402 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13 dataset using the swahili only. ## Model description More information needed. ## Intended uses & limitations The model was trained without enough noise added as a form of data augmentation. Do not use this production. I recommend using a larger version of whisper with more hyperparameter tuning especially the learning rate, momentum, weight decay and adjusting the batch size. ## Training and evaluation data I followed the tutorial [here](https://huggingface.co/learn/audio-course/chapter5/fine-tuning). Very minimum edits to the code were done following this tutorial. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
thobuiq/teamtrack-ai
thobuiq
2024-01-24T10:16:30Z
74
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "trl", "dpo", "generated_from_trainer", "base_model:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "base_model:quantized:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-01-19T15:24:00Z
--- license: apache-2.0 base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ tags: - trl - dpo - generated_from_trainer model-index: - name: teamtrack-ai results: [] pipeline_tag: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # teamtrack-ai This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6303 - Rewards/chosen: -0.0503 - Rewards/rejected: -0.1912 - Rewards/accuracies: 0.875 - Rewards/margins: 0.1409 - Logps/rejected: -190.9696 - Logps/chosen: -89.6439 - Logits/rejected: -2.7104 - Logits/chosen: -2.8594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6859 | 0.01 | 10 | 0.6664 | 0.0030 | -0.0376 | 0.6875 | 0.0406 | -189.4330 | -89.1108 | -2.7111 | -2.8122 | | 0.6888 | 0.01 | 20 | 0.6478 | -0.0110 | -0.0944 | 0.875 | 0.0834 | -190.0014 | -89.2510 | -2.7160 | -2.8235 | | 0.6397 | 0.01 | 30 | 0.6385 | -0.0256 | -0.1254 | 0.8125 | 0.0997 | -190.3110 | -89.3974 | -2.7148 | -2.8392 | | 0.6501 | 0.02 | 40 | 0.6365 | -0.0472 | -0.1782 | 0.8125 | 0.1311 | -190.8396 | -89.6128 | -2.7116 | -2.8528 | | 0.6852 | 0.03 | 50 | 0.6303 | -0.0503 | -0.1912 | 0.875 | 0.1409 | -190.9696 | -89.6439 | -2.7104 | -2.8594 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/Hermaid-7B-GGUF
s3nh
2024-01-24T10:15:28Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T09:39:46Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/ToastyPigeon/Hermaid-7B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference User: Tell me story about what is an quantization and what do we need to build. James: We will create a new data type in Rust which represents quantized data. The goal of this project is to be able to read/write images, audio, etc. from quantized data. This involves writing some code for reading/writing the different formats and also some tests. This task can be divided into several parts: - Reading/writing of the image format(s) from quantized data (e.g. JPEG, PNG). - Reading/writing of audio formats from quantized data (e.g. WAV, Ogg Vorbis). - Writing tests to # Original model card
tremolo09/xama
tremolo09
2024-01-24T10:08:23Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:apache-2.0", "region:us" ]
text-to-image
2024-01-24T10:08:18Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/baiyin811-sssins.com- (4).jpg base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null license: apache-2.0 --- # cama <Gallery /> ## Download model [Download](/tremolo09/xama/tree/main) them in the Files & versions tab.