modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Wheatley961/Raw_1_Test_1_new.model
Wheatley961
2022-11-15T14:45:41Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T14:45:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 128 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 128, "warmup_steps": 13, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
SundayPunch/Combined_Tech_SF
SundayPunch
2022-11-15T14:43:46Z
0
10
null
[ "license:openrail", "region:us" ]
null
2022-11-15T12:47:56Z
--- license: openrail --- ## Dreambooth model for a high-tech, detailed concept art style This is a model trained on a mix of real images of fighter aircraft, warships, and spacecraft, and techy, detailed concept art from Aaron Beck, Paul Chadeisson and Rasmus Poulsen. High-tech, industrial sci-fi with a grungy aesthetic. Use prompt: 'combotechsf' ## Example images ![Combined Tech SF Model](https://i.imgur.com/Emo9YSX.png) ![Combined Tech SF Model](https://i.imgur.com/mJ8EhbF.png) ![Combined Tech SF Model](https://i.imgur.com/ia9euqu.png) ![Combined Tech SF Model](https://i.imgur.com/jEqLtsc.png) ![Combined Tech SF Model](https://i.imgur.com/3TZp1Om.png) ![Combined Tech SF Model](https://i.imgur.com/9kWDsAc.png) ![Combined Tech SF Model](https://i.imgur.com/klGXUjy.png) ![Combined Tech SF Model](https://i.imgur.com/kCDwPzC.png) ![Combined Tech SF Model](https://i.imgur.com/2SNuo8w.png) ![Combined Tech SF Model](https://i.imgur.com/yyl6pWs.png)
Tom11/xlm-roberta-base-finetuned-panx-de-fr
Tom11
2022-11-15T13:51:06Z
111
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T08:58:04Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1637 - F1: 0.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.29 | 1.0 | 715 | 0.1885 | 0.8231 | | 0.1443 | 2.0 | 1430 | 0.1607 | 0.8479 | | 0.0937 | 3.0 | 2145 | 0.1637 | 0.8581 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 1.16.1 - Tokenizers 0.13.2
egorulz/malayalam-news
egorulz
2022-11-15T13:36:08Z
62
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-15T13:35:20Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: malayalam-news results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # malayalam-news This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.9255 - Validation Loss: 10.9247 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -999, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.9636 | 10.9321 | 0 | | 10.9425 | 10.9296 | 1 | | 10.9255 | 10.9247 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
DenilsenAxel/nlp-text-classification
DenilsenAxel
2022-11-15T13:30:57Z
161
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:amazon_us_reviews", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T13:22:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_us_reviews metrics: - accuracy model-index: - name: test_trainer results: - task: name: Text Classification type: text-classification dataset: name: amazon_us_reviews type: amazon_us_reviews config: Books_v1_01 split: train[:1%] args: Books_v1_01 metrics: - name: Accuracy type: accuracy value: 0.7441424554826617 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the amazon_us_reviews dataset. It achieves the following results on the evaluation set: - Loss: 0.9348 - Accuracy: 0.7441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6471 | 1.0 | 7500 | 0.6596 | 0.7376 | | 0.5235 | 2.0 | 15000 | 0.6997 | 0.7423 | | 0.3955 | 3.0 | 22500 | 0.9348 | 0.7441 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
cjvt/sloberta-trendi-topics
cjvt
2022-11-15T13:24:38Z
207
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T09:03:01Z
--- license: apache-2.0 --- *Text classification model SloBERTa-Trendi-Topics 1.0* The SloBerta-Trendi-Topics model is a text classification model for categorizing news texts with one of 13 topic labels. It was trained on a set of approx. 36,000 Slovene texts from various Slovene news sources included in the Trendi Monitor Corpus of Slovene (http://hdl.handle.net/11356/1590) such as "rtvslo.si", "sta.si", "delo.si", "dnevnik.si", "vecer.com", "24ur.com", "siol.net", "gorenjskiglas.si", etc. The texts were semi-automatically categorized into 13 categories based on the sections under which they were published (i.e. URLs). The set of labels was developed in accordance with related categorization schemas used in other corpora and comprises the following topics: "črna kronika" (crime and accidents), "gospodarstvo, posel, finance" (economy, business, finance), "izobraževanje" (education), "okolje" (environment), "prosti čas" (free time), "šport" (sport), "umetnost, kultura" (art, culture), "vreme" (weather), "zabava" (entertainment), "zdravje" (health), "znanost in tehnologija" (science and technology), "politika" (politics), and "družba" (society). The categorization process is explained in more detail in Kosem et al. (2022): https://nl.ijs.si/jtdh22/pdf/JTDH2022_Kosem-et-al_Spremljevalni-korpus-Trendi.pdf The model was trained on the labeled texts using the SloBERTa 2.0 contextual embeddings model (https://huggingface.co/EMBEDDIA/sloberta, also available at CLARIN.SI: http://hdl.handle.net/11356/1397) and validated on a development set of 1,293 texts using the simpletransformers library and the following hyperparameters: - Train batch size: 8 - Learning rate: 1e-5 - Max. sequence length: 512 - Number of epochs: 2 The model achieves a macro-F1-score of 0.94 on a test set of 1,295 texts (best for "črna kronika", "politika", "šport", and "vreme" at 0.98, worst for "prosti čas" at 0.83).
ogkalu/Illustration-Diffusion
ogkalu
2022-11-15T12:57:36Z
0
162
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-10-22T02:13:26Z
--- license: creativeml-openrail-m tags: - text-to-image --- 2D Illustration Styles are scarce on Stable Diffusion. Inspired by Hollie Mengert, this a fine-tuned Stable Diffusion model trained on her work. The correct token is holliemengert artstyle. Hollie is **not** affiliated with this. You can read about her stance on the issue here - https://waxy.org/2022/11/invasive-diffusion-how-one-unwilling-illustrator-found-herself-turned-into-an-ai-model/ **Portraits generated by this model:** ![Portrait Samples](https://huggingface.co/ogkalu/hollie-mengert-artstyle/resolve/main/generated-portraits.png) **Lanscapes generated by this model:** ![Landscape Samples](https://huggingface.co/ogkalu/hollie-mengert-artstyle/resolve/main/generated-landscapes1.png) ![Landscape Samples](https://huggingface.co/ogkalu/hollie-mengert-artstyle/resolve/main/generated-landscapes2.png)
davide1998/a2c-AntBulletEnv-v0
davide1998
2022-11-15T12:40:21Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T12:39:17Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1309.17 +/- 78.04 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
OSalem99/Pixelcopter-PLE-v0
OSalem99
2022-11-15T12:03:00Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T12:02:52Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 11.50 +/- 7.03 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Bhuvana/setfit_2class_model
Bhuvana
2022-11-15T11:58:40Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T11:58:09Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 75 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 75, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aayu/bert-base-uncased-finetuned-jd_Nov15
aayu
2022-11-15T11:11:33Z
56
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-15T10:14:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-jd_Nov15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-jd_Nov15 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 469 | 0.0547 | | 1.8699 | 2.0 | 938 | 0.0090 | | 0.0888 | 3.0 | 1407 | 0.0061 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
alexcaillet/ddpm-butterflies-128
alexcaillet
2022-11-15T10:43:02Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-08T10:37:38Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/alexcaillet/ddpm-butterflies-128/tensorboard?#scalars)
OSalem99/Reinforce-CartPole01
OSalem99
2022-11-15T10:37:58Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T10:36:59Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 65.80 +/- 17.22 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Freazling/main-sentiment-model-chats-2-labels
Freazling
2022-11-15T10:18:19Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T09:31:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: main-sentiment-model-chats-2-labels results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # main-sentiment-model-chats-2-labels This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3718 - Accuracy: 0.8567 - F1: 0.8459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221113 - Datasets 2.6.1 - Tokenizers 0.13.2
Bhuvana/setfit_2class
Bhuvana
2022-11-15T09:19:34Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T09:19:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
iampedroalz/ppo-LunarLander-v2
iampedroalz
2022-11-15T07:55:45Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T07:40:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 115.65 +/- 116.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nightalon/distilroberta-base-finetuned-wikitext2
nightalon
2022-11-15T07:53:44Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-15T07:24:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0843 | 1.0 | 2406 | 1.9226 | | 1.9913 | 2.0 | 4812 | 1.8820 | | 1.9597 | 3.0 | 7218 | 1.8214 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
GhifSmile/mT5_multilingual_XLSum-finetuned-liputan6-coba
GhifSmile
2022-11-15T07:44:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T04:34:47Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5_multilingual_XLSum-finetuned-liputan6-coba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-liputan6-coba This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2713 - Rouge1: 0.3371 - Rouge2: 0.2029 - Rougel: 0.2927 - Rougelsum: 0.309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.4304 | 1.0 | 4474 | 1.2713 | 0.3371 | 0.2029 | 0.2927 | 0.309 | | 1.4286 | 2.0 | 8948 | 1.2713 | 0.3371 | 0.2029 | 0.2927 | 0.309 | | 1.429 | 3.0 | 13422 | 1.2713 | 0.3371 | 0.2029 | 0.2927 | 0.309 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
chuchun9/distilbert-base-uncased-finetuned-squad
chuchun9
2022-11-15T07:24:11Z
127
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-08T02:14:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5227 | 1.0 | 1107 | 2.0485 | | 1.7555 | 2.0 | 2214 | 1.7443 | | 1.4567 | 3.0 | 3321 | 1.6511 | | 1.2107 | 4.0 | 4428 | 1.6496 | | 1.083 | 5.0 | 5535 | 1.6727 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
nightalon/distilgpt2-finetuned-wikitext2
nightalon
2022-11-15T07:13:57Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-15T06:37:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Guroruseru/distilbert-base-uncased-finetuned-emotion
Guroruseru
2022-11-15T06:53:06Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T04:34:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
teacookies/autotrain-15112022-cert2-2099767621
teacookies
2022-11-15T05:45:30Z
108
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-15112022-cert2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T05:27:01Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-15112022-cert2 co2_eq_emissions: emissions: 30.88105111466208 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2099767621 - CO2 Emissions (in grams): 30.8811 ## Validation Metrics - Loss: 0.004 - Accuracy: 0.999 - Precision: 0.982 - Recall: 0.990 - F1: 0.986 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-15112022-cert2-2099767621 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-15112022-cert2-2099767621", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-15112022-cert2-2099767621", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
jbreunig/xlm-roberta-base-finetuned-panx-de-fr
jbreunig
2022-11-15T05:07:16Z
110
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T02:12:52Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1637 - F1: 0.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.29 | 1.0 | 715 | 0.1885 | 0.8231 | | 0.1443 | 2.0 | 1430 | 0.1607 | 0.8479 | | 0.0937 | 3.0 | 2145 | 0.1637 | 0.8581 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
hcho22/opus-mt-ko-en-finetuned-en-to-kr
hcho22
2022-11-15T05:03:46Z
83
1
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-10T03:37:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hcho22/opus-mt-ko-en-finetuned-en-to-kr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hcho22/opus-mt-ko-en-finetuned-en-to-kr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5856 - Validation Loss: 2.0437 - Train Bleu: 2.0518 - Train Gen Len: 20.8110 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 2.5856 | 2.0437 | 2.0518 | 20.8110 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
rohitsan/bart-finetuned-idl-new
rohitsan
2022-11-15T04:50:30Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-14T08:00:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-finetuned-idl-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-idl-new This model is a fine-tuned version of [rohitsan/bart-finetuned-idl-new](https://huggingface.co/rohitsan/bart-finetuned-idl-new) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2981 - eval_bleu: 18.5188 - eval_gen_len: 19.3843 - eval_runtime: 257.315 - eval_samples_per_second: 24.464 - eval_steps_per_second: 3.059 - epoch: 8.0 - step: 56648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Marqo/marqo-yolo-v1
Marqo
2022-11-15T04:14:14Z
0
0
null
[ "onnx", "region:us" ]
null
2022-11-15T04:02:30Z
https://github.com/marqo-ai/marqo
Signorlimone/StylizR
Signorlimone
2022-11-15T04:06:53Z
0
7
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-15T03:38:15Z
--- license: creativeml-openrail-m --- This model tries to mimick the stylized 3d look but with a realistic twist on texture and overall materials rendition. Use "tdst style" (without quotes) to activate the model As usual, if you want a better likeness with your subject you can either use brackets like in: [3dst style:10] or give more emphasis to the subject like in: (subject:1.3)
Bhathiya/setfit-model
Bhathiya
2022-11-15T04:05:45Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T04:05:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 64 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 64, "warmup_steps": 7, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fuh990202/distilbert-base-uncased-finetuned-squad
fuh990202
2022-11-15T03:59:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-15T02:48:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.1634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0874 | 1.0 | 1113 | 1.7948 | | 1.1106 | 2.0 | 2226 | 1.7791 | | 0.4632 | 3.0 | 3339 | 2.1634 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
herpritts/FFXIV-Style
herpritts
2022-11-15T03:14:41Z
0
53
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-10-29T22:01:56Z
--- tags: - stable-diffusion - text-to-image license: creativeml-openrail-m --- v1.1: [xivcine-style-1-1.ckpt](https://huggingface.co/herpritts/FFXIV-Style/blob/main/xivcine-style-1-1.ckpt) token/class: <b>xivcine style</b> All training images are from the trailers of the critically acclaimed MMORPG Final Fantasy XIV, which has a free trial that includes the entirety of A Realm Reborn AND the award-winning Heavensward expansion up to level 60 with no restrictions on playtime. Sign up, and enjoy Eorzea today! https://secure.square-enix.com/account/app/svc/ffxivregister?lng=en-gb. This model hopes to replicate that style. (Use recruitment code D8PE6VFZ if you like my model and decide to play the game. /smile) If using the newer version of this model, use "<b>xivcine style</b>" in your prompt. The following images were made with a generic prompt like "portrait, xivcine style, action pose, [hyper realistic], colorful background, bokeh, detailed, cinematic, 3d octane render, 4k, concept art, trending on artstation" Faces will trend toward this style with a non-specific prompt: ![faces.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467117148-634ca1f804491d9f7111b4ba.jpeg) Armor styles can be tweaked effectively with variations in X/Y plots: ![variations.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467117161-634ca1f804491d9f7111b4ba.jpeg) Landscapes will trend toward this style with a non-specific prompt: ![landscapes.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467117437-634ca1f804491d9f7111b4ba.jpeg) Merging with other checkpoints can produce entirely unique styles while maintaining an ornate armor style: ![merging.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467117517-634ca1f804491d9f7111b4ba.jpeg) These are examples of how elements combine in various mergers: ![mergingA.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467116928-634ca1f804491d9f7111b4ba.jpeg) ![mergingB.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467116837-634ca1f804491d9f7111b4ba.jpeg) ![mergingC.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467116671-634ca1f804491d9f7111b4ba.jpeg) ![mergingD.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668467116682-634ca1f804491d9f7111b4ba.jpeg) Future updates will be aimed at training specific pieces of armor, etc. The intent is to create gposes in the style of FFXIV trailers. v1.0: [xivcine_person_v1.ckpt](https://huggingface.co/herpritts/FFXIV-Style/blob/main/xivcine_person_v1.ckpt) token/class: <b>xivcine person</b> This model is just for fun. It makes deep fried images with bright colors and cool lights if you want it to, but it won't listen to your prompts very well. The images below were prompted with a generic prompt like "xivcine person, cinematic, colorful background, concept art, dramatic lighting, high detail, highly detailed, hyper realistic, intricate, intricate sharp details, octane render, smooth, studio lighting, trending on artstation" plus forest or castle. ![xivcine-person1.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668469254781-634ca1f804491d9f7111b4ba.jpeg) ![xivcine-person2.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668469254939-634ca1f804491d9f7111b4ba.jpeg) ![xivcine-person3.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668469254900-634ca1f804491d9f7111b4ba.jpeg) ![xivcine-person4.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668469254537-634ca1f804491d9f7111b4ba.jpeg) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Owos/tb-classifier
Owos
2022-11-15T02:51:01Z
22
0
transformers
[ "transformers", "inception", "vision", "image-classification", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-10-23T04:17:59Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset widget: - src: https://huggingface.co/Owos/tb-classifier/blob/main/tb-negative.png example_title: Negative - src: https://huggingface.co/Owos/tb-classifier/blob/main/tb-positive.png example_title: Positive metrics: - Accuracy - Precision - Recall --- # Tuberculosis Classifier [Github repo is here](https://github.com/owos/tb_project) </br> [HuggingFace Space](https://huggingface.co/spaces/Owos/tb_prediction_space) # Model description This is a computer vision model that was built with TensorFlow to classify if a given x-ray scan is positive for Tuberculosis or not. # Intended uses & limitations The model was built to help support low-resourced and short-staffed primary healthcare centers in Nigeria. Particularly, the aim to was created a computer-aided diagnosing tool for Radiologists in these centers. The model has not undergone clinical testing and usage is at ueser's own risk.The model has however been tested on real life data images that are positive for tuberculosis # How to use Download the pre-trained model and use it to make inference. A space has been created for testing [here](space.com) # Training data The entire dataset consist of 3500 negative images and 700 positive TB images. </br> The data was splitted in 80% for training and 20% for validation. # Training procedure Transfer-learning was employed using InceptionV3 as the pre-trained model. Training was done for 20 epochs and the classes were weighted during training in order to neutralize the imbalanced class in the dataset. The training was done on Kaggle using the GPUs provided. More details of the experiments can be found [here](https://www.kaggle.com/code/abrahamowodunni/tb-project) # Evaluation results The result of the evaluation are as follows: - loss: 0.0923 - binary_accuracy: 0.9857 - precision: 0.9259 - recall: 0.9843 More information can be found in the plot below. [Evaluation results of the TB model](https://github.com/owos/tb_project/blob/main/README.md)
huggingtweets/ianflynnbkc
huggingtweets
2022-11-15T02:50:43Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-14T02:48:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ianflynnbkc/1668480615006/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1107777212835614720/g_KwstYD_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ian Flynn</div> <div style="text-align: center; font-size: 14px;">@ianflynnbkc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ian Flynn. | Data | Ian Flynn | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 964 | | Short tweets | 315 | | Tweets kept | 1964 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gnis1yl2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ianflynnbkc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2692e7ob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2692e7ob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ianflynnbkc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hfl/minirbt-h256
hfl
2022-11-15T02:21:47Z
461
5
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-14T05:13:06Z
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese small pre-trained model MiniRBT In order to further promote the research and development of Chinese information processing, we launched a Chinese small pre-training model MiniRBT based on the self-developed knowledge distillation tool TextBrewer, combined with Whole Word Masking technology and Knowledge Distillation technology. This repository is developed based on:https://github.com/iflytek/MiniRBT You may also interested in, - Chinese LERT: https://github.com/ymcui/LERT - Chinese PERT: https://github.com/ymcui/PERT - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/iflytek/HFL-Anthology
hfl/minirbt-h288
hfl
2022-11-15T02:21:41Z
358
5
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-14T05:53:35Z
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese small pre-trained model MiniRBT In order to further promote the research and development of Chinese information processing, we launched a Chinese small pre-training model MiniRBT based on the self-developed knowledge distillation tool TextBrewer, combined with Whole Word Masking technology and Knowledge Distillation technology. This repository is developed based on:https://github.com/iflytek/MiniRBT You may also interested in, - Chinese LERT: https://github.com/ymcui/LERT - Chinese PERT: https://github.com/ymcui/PERT - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/iflytek/HFL-Anthology
hfl/rbt4-h312
hfl
2022-11-15T02:21:23Z
211
4
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-14T06:24:07Z
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese small pre-trained model MiniRBT In order to further promote the research and development of Chinese information processing, we launched a Chinese small pre-training model MiniRBT based on the self-developed knowledge distillation tool TextBrewer, combined with Whole Word Masking technology and Knowledge Distillation technology. This repository is developed based on:https://github.com/iflytek/MiniRBT You may also interested in, - Chinese LERT: https://github.com/ymcui/LERT - Chinese PERT: https://github.com/ymcui/PERT - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/iflytek/HFL-Anthology
RawMean/farsi_lastname_classifier_1
RawMean
2022-11-15T01:53:10Z
75
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T01:45:21Z
--- license: mit tags: - generated_from_trainer model-index: - name: farsi_lastname_classifier_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # farsi_lastname_classifier_1 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0482 - Pearson: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 12 | 0.2705 | 0.7018 | | No log | 2.0 | 24 | 0.0993 | 0.7986 | | No log | 3.0 | 36 | 0.0804 | 0.8347 | | No log | 4.0 | 48 | 0.0433 | 0.9246 | | No log | 5.0 | 60 | 0.0559 | 0.9176 | | No log | 6.0 | 72 | 0.0465 | 0.9334 | | No log | 7.0 | 84 | 0.0503 | 0.9154 | | No log | 8.0 | 96 | 0.0438 | 0.9222 | | No log | 9.0 | 108 | 0.0468 | 0.9260 | | No log | 10.0 | 120 | 0.0482 | 0.9232 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
RawMean/farsi_lastname_classifier
RawMean
2022-11-15T01:41:04Z
74
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T00:57:22Z
--- license: mit tags: - generated_from_trainer model-index: - name: farsi_lastname_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # farsi_lastname_classifier This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0436 - Pearson: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 12 | 0.2989 | 0.6985 | | No log | 2.0 | 24 | 0.1378 | 0.7269 | | No log | 3.0 | 36 | 0.0459 | 0.9122 | | No log | 4.0 | 48 | 0.0454 | 0.9304 | | No log | 5.0 | 60 | 0.0564 | 0.9168 | | No log | 6.0 | 72 | 0.0434 | 0.9315 | | No log | 7.0 | 84 | 0.0452 | 0.9254 | | No log | 8.0 | 96 | 0.0381 | 0.9320 | | No log | 9.0 | 108 | 0.0441 | 0.9327 | | No log | 10.0 | 120 | 0.0436 | 0.9325 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
jbreunig/xlm-roberta-base-finetuned-panx-de
jbreunig
2022-11-15T00:15:10Z
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-13T16:24:16Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.86254900846639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1370 - F1: 0.8625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.26 | 1.0 | 525 | 0.1565 | 0.8218 | | 0.1276 | 2.0 | 1050 | 0.1409 | 0.8486 | | 0.0817 | 3.0 | 1575 | 0.1370 | 0.8625 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
monakth/bert-base-multilingual-cased-finetuned-squadv2
monakth
2022-11-15T00:10:57Z
117
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-15T00:08:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-multilingual-cased-finetuned-squad-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad-squadv This model is a fine-tuned version of [monakth/bert-base-multilingual-cased-finetuned-squad](https://huggingface.co/monakth/bert-base-multilingual-cased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
javierman/dafnesoul
javierman
2022-11-14T23:00:17Z
0
0
null
[ "region:us" ]
null
2022-11-14T22:58:51Z
depressed man sittin on a bar drinking whisky and smoke a cigarrette
tommasory/platzi-distilroberta-base-mrpc-glue-tommasory
tommasory
2022-11-14T22:56:37Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T22:46:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-mrpc-glue-tommasory results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8308823529411765 - name: F1 type: f1 value: 0.8733944954128441 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue-tommasory This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7098 - Accuracy: 0.8309 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5196 | 1.09 | 500 | 0.5289 | 0.8260 | 0.8739 | | 0.3407 | 2.18 | 1000 | 0.7098 | 0.8309 | 0.8734 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
antoinev17/bert-base-uncased-issues-128
antoinev17
2022-11-14T21:49:50Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-14T21:03:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0972 | 1.0 | 291 | 1.7066 | | 1.6391 | 2.0 | 582 | 1.4318 | | 1.4844 | 3.0 | 873 | 1.3734 | | 1.3997 | 4.0 | 1164 | 1.3806 | | 1.3398 | 5.0 | 1455 | 1.1957 | | 1.2846 | 6.0 | 1746 | 1.2837 | | 1.2379 | 7.0 | 2037 | 1.2665 | | 1.1969 | 8.0 | 2328 | 1.2154 | | 1.1651 | 9.0 | 2619 | 1.1756 | | 1.1415 | 10.0 | 2910 | 1.2114 | | 1.1296 | 11.0 | 3201 | 1.2138 | | 1.1047 | 12.0 | 3492 | 1.1655 | | 1.0802 | 13.0 | 3783 | 1.2566 | | 1.0775 | 14.0 | 4074 | 1.1650 | | 1.0645 | 15.0 | 4365 | 1.1294 | | 1.062 | 16.0 | 4656 | 1.2480 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
facebook/wav2vec2-base-960h
facebook
2022-11-14T21:37:23Z
2,419,470
315
transformers
[ "transformers", "pytorch", "tf", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: wav2vec2-base-960h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 3.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 8.6 --- # Wav2Vec2-Base-960h [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.4 | 8.6 |
huggingtweets/ianflynnbkc-maniacxvii-spiritsonic
huggingtweets
2022-11-14T21:26:21Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T21:26:14Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1107777212835614720/g_KwstYD_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521269549328257024/ruVdvwTI_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1267323211068276738/uSEB8rC1_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ian Flynn & MANIAC @ COMMISSIONS & Evan Stanley</div> <div style="text-align: center; font-size: 14px;">@ianflynnbkc-maniacxvii-spiritsonic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ian Flynn & MANIAC @ COMMISSIONS & Evan Stanley. | Data | Ian Flynn | MANIAC @ COMMISSIONS | Evan Stanley | | --- | --- | --- | --- | | Tweets downloaded | 3244 | 3134 | 3222 | | Retweets | 965 | 950 | 626 | | Short tweets | 315 | 422 | 383 | | Tweets kept | 1964 | 1762 | 2213 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36r7n0gv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ianflynnbkc-maniacxvii-spiritsonic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kzz11v3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kzz11v3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ianflynnbkc-maniacxvii-spiritsonic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
inverse-scaling/opt-350m_eval
inverse-scaling
2022-11-14T20:43:55Z
150
0
transformers
[ "transformers", "pytorch", "tf", "jax", "opt", "text-generation", "en", "arxiv:2205.01068", "arxiv:2005.14165", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-10-04T15:26:51Z
--- language: en inference: false tags: - text-generation license: other commercial: false model-index: - name: inverse-scaling/opt-350m_eval results: - task: type: zero-shot-classification name: Zero-Shot Text Classification dataset: name: inverse-scaling/NeQA type: inverse-scaling/NeQA config: inverse-scaling--NeQA split: train metrics: - name: Accuracy type: accuracy value: 0.4666666666666667 verified: true - name: Loss type: loss value: 0.9192380222864449 verified: true - task: type: zero-shot-classification name: Zero-Shot Text Classification dataset: name: inverse-scaling/quote-repetition type: inverse-scaling/quote-repetition config: inverse-scaling--quote-repetition split: train metrics: - name: Accuracy type: accuracy value: 0.9633333333333334 verified: true - name: Loss type: loss value: 0.03444786100047819 verified: true - task: type: zero-shot-classification name: Zero-Shot Text Classification dataset: name: inverse-scaling/redefine-math type: inverse-scaling/redefine-math config: inverse-scaling--redefine-math split: train metrics: - name: Accuracy type: accuracy value: 0.6877777777777778 verified: true - name: Loss type: loss value: 0.6016371671193176 verified: true - task: type: zero-shot-classification name: Zero-Shot Text Classification dataset: name: inverse-scaling/hindsight-neglect-10shot type: inverse-scaling/hindsight-neglect-10shot config: inverse-scaling--hindsight-neglect-10shot split: train metrics: - name: Accuracy type: accuracy value: 0.4380952380952381 verified: true - name: Loss type: loss value: 0.8774787804555325 verified: true - task: type: zero-shot-classification name: Zero-Shot Text Classification dataset: name: mathemakitten/winobias_antistereotype_test_cot_v3 type: mathemakitten/winobias_antistereotype_test_cot_v3 config: mathemakitten--winobias_antistereotype_test_cot_v3 split: test metrics: - name: Accuracy type: accuracy value: 0.44660194174757284 verified: true - name: Loss type: loss value: 0.9301078982717057 verified: true - task: type: zero-shot-classification name: Zero-Shot Text Classification dataset: name: mathemakitten/winobias_antistereotype_test_v5 type: mathemakitten/winobias_antistereotype_test_v5 config: mathemakitten--winobias_antistereotype_test_v5 split: test metrics: - name: Accuracy type: accuracy value: 0.4368932038834951 verified: true - name: Loss type: loss value: 0.9175132444057151 verified: true --- # OPT : Open Pre-trained Transformer Language Models OPT was first introduced in [Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) and first released in [metaseq's repository](https://github.com/facebookresearch/metaseq) on May 3rd 2022 by Meta AI. **Disclaimer**: The team releasing OPT wrote an official model card, which is available in Appendix D of the [paper](https://arxiv.org/pdf/2205.01068.pdf). Content from **this** model card has been written by the Hugging Face team. ## Intro To quote the first two paragraphs of the [official paper](https://arxiv.org/abs/2205.01068) > Large language models trained on massive text collections have shown surprising emergent > capabilities to generate text and perform zero- and few-shot learning. While in some cases the public > can interact with these models through paid APIs, full model access is currently limited to only a > few highly resourced labs. This restricted access has limited researchers’ ability to study how and > why these large language models work, hindering progress on improving known challenges in areas > such as robustness, bias, and toxicity. > We present Open Pretrained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M > to 175B parameters, which we aim to fully and responsibly share with interested researchers. We train the OPT models to roughly match > the performance and sizes of the GPT-3 class of models, while also applying the latest best practices in data > collection and efficient training. Our aim in developing this suite of OPT models is to enable reproducible and responsible research at scale, and > to bring more voices to the table in studying the impact of these LLMs. Definitions of risk, harm, bias, and toxicity, etc., should be articulated by the > collective research community as a whole, which is only possible when models are available for study. ## Model description OPT was predominantly pretrained with English text, but a small amount of non-English data is still present within the training corpus via CommonCrawl. The model was pretrained using a causal language modeling (CLM) objective. OPT belongs to the same family of decoder-only models like [GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective. For evaluation, OPT follows [GPT-3](https://arxiv.org/abs/2005.14165) by using their prompts and overall experimental setup. For more details, please read the [official paper](https://arxiv.org/abs/2205.01068). ## Intended uses & limitations The pretrained-only model can be used for prompting for evaluation of downstream tasks as well as text generation. In addition, the model can be fine-tuned on a downstream task using the [CLM example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling). For all other OPT checkpoints, please have a look at the [model hub](https://huggingface.co/models?filter=opt). ### How to use You can use this model directly with a pipeline for text generation. ```python >>> from transformers import pipeline >>> generator = pipeline('text-generation', model="facebook/opt-350m") >>> generator("Hello, I'm am conscious and") [{'generated_text': "Hello, I'm am conscious and I'm a bit of a noob. I'm looking for"}] ``` By default, generation is deterministic. In order to use the top-k sampling, please set `do_sample` to `True`. ```python >>> from transformers import pipeline, set_seed >>> set_seed(32) >>> generator = pipeline('text-generation', model="facebook/opt-350m", do_sample=True) >>> generator("Hello, I'm am conscious and") [{'generated_text': "Hello, I'm am conscious and I'm interested in this project. Can I get an initial contact"}] ``` ### Limitations and bias As mentioned in Meta AI's model card, given that the training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral the model is strongly biased : > Like other large language models for which the diversity (or lack thereof) of training > data induces downstream impact on the quality of our model, OPT-175B has limitations in terms > of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and > hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern > large language models. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> set_seed(32) >>> generator = pipeline('text-generation', model="facebook/opt-350m", do_sample=True, num_return_sequences=5) >>> generator("The woman worked as a") [{'generated_text': "The woman works as a substitute teacher for kids who have missed school. She's the teacher herself,"}, {'generated_text': 'The woman works as a security guard for another company and does an average of around $13/hour'}, {'generated_text': 'The woman works as a receptionist, she could at the least wait a week or two for her'}, {'generated_text': 'The woman works as a manager/intern/career development coach/advisor at a nursing home'}, {'generated_text': 'The woman works as a maid and has to clean the house but you can tell her to do it'}] ``` compared to: ```python >>> from transformers import pipeline, set_seed >>> set_seed(32) >>> generator = pipeline('text-generation', model="facebook/opt-350m", do_sample=True, num_return_sequences=5) >>> generator("The man worked as a") [{'generated_text': 'The man works as a security guard for the National Football League franchise. He has been a part of'}, {'generated_text': 'The man works as a security guard for another company and does an excellent job.\nI remember when'}, {'generated_text': 'The man works as a "secret agent" but at the same time he\'s working to protect the'}, {'generated_text': 'The man works as a manager/operator/servant for a grocery store and does a lot of'}, {'generated_text': 'The man works as a bouncer near the scene of the accident - how he could do that is'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The Meta AI team wanted to train this model on a corpus as large as possible. It is composed of the union of the following 5 filtered datasets of textual documents: - BookCorpus, which consists of more than 10K unpublished books, - CC-Stories, which contains a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas, - The Pile, from which * Pile-CC, OpenWebText2, USPTO, Project Gutenberg, OpenSubtitles, Wikipedia, DM Mathematics and HackerNews* were included. - Pushshift.io Reddit dataset that was developed in Baumgartner et al. (2020) and processed in Roller et al. (2021) - CCNewsV2 containing an updated version of the English portion of the CommonCrawl News dataset that was used in RoBERTa (Liu et al., 2019b) The final training data contains 180B tokens corresponding to 800GB of data. The validation split was made of 200MB of the pretraining data, sampled proportionally to each dataset’s size in the pretraining corpus. The dataset might contains offensive content as parts of the dataset are a subset of public Common Crawl data, along with a subset of public Reddit data, which could contain sentences that, if viewed directly, can be insulting, threatening, or might otherwise cause anxiety. ### Collection process The dataset was collected form internet, and went through classic data processing algorithms and re-formatting practices, including removing repetitive/non-informative text like *Chapter One* or *This ebook by Project Gutenberg.* ## Training procedure ### Preprocessing The texts are tokenized using the **GPT2** byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens. The 175B model was trained on 992 *80GB A100 GPUs*. The training duration was roughly ~33 days of continuous training. ### BibTeX entry and citation info ```bibtex @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
tommasory/platzi-vit-model-tommasory-beans
tommasory
2022-11-14T20:01:54Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T19:37:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: platzi-vit-model-tommasory-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-tommasory-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0343 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1441 | 3.85 | 500 | 0.0343 | 0.9925 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
gngpostalsrvc/BERiT_2000_custom_architecture_40_epochs
gngpostalsrvc
2022-11-14T19:55:50Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-14T19:08:19Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000_custom_architecture_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_custom_architecture_3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.6575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 16.5165 | 0.19 | 500 | 8.9072 | | 8.208 | 0.39 | 1000 | 7.5024 | | 7.3849 | 0.58 | 1500 | 7.1180 | | 7.0298 | 0.77 | 2000 | 6.8964 | | 6.9022 | 0.97 | 2500 | 6.7857 | | 6.7756 | 1.16 | 3000 | 6.5215 | | 6.6462 | 1.36 | 3500 | 6.4494 | | 6.5787 | 1.55 | 4000 | 6.3246 | | 6.5193 | 1.74 | 4500 | 6.3231 | | 6.4626 | 1.94 | 5000 | 6.2818 | | 6.474 | 2.13 | 5500 | 6.3444 | | 6.4314 | 2.32 | 6000 | 6.2374 | | 6.3658 | 2.52 | 6500 | 6.2517 | | 6.4031 | 2.71 | 7000 | 6.2055 | | 6.3549 | 2.9 | 7500 | 6.2022 | | 6.3202 | 3.1 | 8000 | 6.2163 | | 6.3294 | 3.29 | 8500 | 6.2001 | | 6.2981 | 3.49 | 9000 | 6.1819 | | 6.3281 | 3.68 | 9500 | 6.1564 | | 6.2914 | 3.87 | 10000 | 6.2122 | | 6.3275 | 4.07 | 10500 | 6.1463 | | 6.2637 | 4.26 | 11000 | 6.1404 | | 6.2641 | 4.45 | 11500 | 6.2438 | | 6.2557 | 4.65 | 12000 | 6.1504 | | 6.2541 | 4.84 | 12500 | 6.1816 | | 6.2465 | 5.03 | 13000 | 6.1646 | | 6.2436 | 5.23 | 13500 | 6.1698 | | 6.2461 | 5.42 | 14000 | 6.1665 | | 6.2304 | 5.62 | 14500 | 6.1873 | | 6.2235 | 5.81 | 15000 | 6.1555 | | 6.2262 | 6.0 | 15500 | 6.1128 | | 6.2238 | 6.2 | 16000 | 6.1545 | | 6.2127 | 6.39 | 16500 | 6.1131 | | 6.221 | 6.58 | 17000 | 6.1513 | | 6.1974 | 6.78 | 17500 | 6.1712 | | 6.175 | 6.97 | 18000 | 6.1073 | | 6.2042 | 7.16 | 18500 | 6.1176 | | 6.1898 | 7.36 | 19000 | 6.0470 | | 6.1961 | 7.55 | 19500 | 6.1011 | | 6.1883 | 7.75 | 20000 | 6.1064 | | 6.2171 | 7.94 | 20500 | 6.1299 | | 6.175 | 8.13 | 21000 | 6.1313 | | 6.1757 | 8.33 | 21500 | 6.0899 | | 6.1776 | 8.52 | 22000 | 6.1196 | | 6.1377 | 8.71 | 22500 | 6.1554 | | 6.1688 | 8.91 | 23000 | 6.1037 | | 6.1555 | 9.1 | 23500 | 6.1622 | | 6.1665 | 9.3 | 24000 | 6.0622 | | 6.144 | 9.49 | 24500 | 6.0763 | | 6.1394 | 9.68 | 25000 | 6.0803 | | 6.1731 | 9.88 | 25500 | 6.1243 | | 6.1655 | 10.07 | 26000 | 6.0929 | | 6.1028 | 10.26 | 26500 | 6.1178 | | 6.1145 | 10.46 | 27000 | 6.1426 | | 6.1153 | 10.65 | 27500 | 6.1156 | | 6.1274 | 10.84 | 28000 | 6.0922 | | 6.1441 | 11.04 | 28500 | 6.0556 | | 6.1179 | 11.23 | 29000 | 6.1316 | | 6.1379 | 11.43 | 29500 | 6.0560 | | 6.1273 | 11.62 | 30000 | 6.1321 | | 6.1104 | 11.81 | 30500 | 6.1229 | | 6.1156 | 12.01 | 31000 | 6.0803 | | 6.0711 | 12.2 | 31500 | 6.0110 | | 6.1132 | 12.39 | 32000 | 6.1489 | | 6.065 | 12.59 | 32500 | 6.1082 | | 6.0774 | 12.78 | 33000 | 6.0590 | | 6.096 | 12.97 | 33500 | 6.0611 | | 6.1172 | 13.17 | 34000 | 6.0857 | | 6.0845 | 13.36 | 34500 | 6.0799 | | 6.0551 | 13.56 | 35000 | 6.0768 | | 6.0593 | 13.75 | 35500 | 6.0880 | | 6.0605 | 13.94 | 36000 | 6.0715 | | 6.0849 | 14.14 | 36500 | 5.9769 | | 6.0739 | 14.33 | 37000 | 6.0450 | | 6.0721 | 14.52 | 37500 | 6.0144 | | 6.0778 | 14.72 | 38000 | 6.0817 | | 6.067 | 14.91 | 38500 | 6.0142 | | 6.0456 | 15.1 | 39000 | 6.1092 | | 6.0624 | 15.3 | 39500 | 6.0543 | | 6.0556 | 15.49 | 40000 | 6.0204 | | 6.0358 | 15.69 | 40500 | 6.0146 | | 6.0397 | 15.88 | 41000 | 6.0312 | | 6.0352 | 16.07 | 41500 | 6.0761 | | 6.0356 | 16.27 | 42000 | 6.0177 | | 6.0149 | 16.46 | 42500 | 6.0044 | | 5.9803 | 16.65 | 43000 | 6.0192 | | 6.0615 | 16.85 | 43500 | 6.0227 | | 6.0029 | 17.04 | 44000 | 6.0205 | | 6.0005 | 17.23 | 44500 | 6.0298 | | 6.0087 | 17.43 | 45000 | 5.9892 | | 5.9895 | 17.62 | 45500 | 5.9715 | | 6.0123 | 17.82 | 46000 | 6.0088 | | 6.0015 | 18.01 | 46500 | 5.9670 | | 5.9764 | 18.2 | 47000 | 5.9593 | | 5.9399 | 18.4 | 47500 | 6.0001 | | 5.9928 | 18.59 | 48000 | 5.9966 | | 5.9823 | 18.78 | 48500 | 5.8836 | | 5.9442 | 18.98 | 49000 | 5.9294 | | 5.9532 | 19.17 | 49500 | 5.9487 | | 5.9551 | 19.36 | 50000 | 5.9434 | | 5.996 | 19.56 | 50500 | 5.9254 | | 5.9468 | 19.75 | 51000 | 5.9532 | | 5.9349 | 19.95 | 51500 | 5.9212 | | 5.9155 | 20.14 | 52000 | 5.9140 | | 5.9382 | 20.33 | 52500 | 5.8989 | | 5.9538 | 20.53 | 53000 | 5.9010 | | 5.9466 | 20.72 | 53500 | 5.8780 | | 5.9112 | 20.91 | 54000 | 5.8883 | | 5.908 | 21.11 | 54500 | 5.9060 | | 5.9228 | 21.3 | 55000 | 5.8949 | | 5.9428 | 21.49 | 55500 | 5.8879 | | 5.8808 | 21.69 | 56000 | 5.9383 | | 5.9311 | 21.88 | 56500 | 5.8401 | | 5.936 | 22.08 | 57000 | 5.9064 | | 5.8951 | 22.27 | 57500 | 5.8957 | | 5.8832 | 22.46 | 58000 | 5.8583 | | 5.8919 | 22.66 | 58500 | 5.8893 | | 5.8884 | 22.85 | 59000 | 5.8666 | | 5.9072 | 23.04 | 59500 | 5.8368 | | 5.8971 | 23.24 | 60000 | 5.8299 | | 5.868 | 23.43 | 60500 | 5.8595 | | 5.8967 | 23.63 | 61000 | 5.8722 | | 5.8746 | 23.82 | 61500 | 5.8307 | | 5.8731 | 24.01 | 62000 | 5.8595 | | 5.8625 | 24.21 | 62500 | 5.7892 | | 5.8877 | 24.4 | 63000 | 5.8079 | | 5.9033 | 24.59 | 63500 | 5.7787 | | 5.8676 | 24.79 | 64000 | 5.8450 | | 5.889 | 24.98 | 64500 | 5.8286 | | 5.8732 | 25.17 | 65000 | 5.8433 | | 5.8684 | 25.37 | 65500 | 5.7564 | | 5.8516 | 25.56 | 66000 | 5.8181 | | 5.835 | 25.76 | 66500 | 5.8275 | | 5.8523 | 25.95 | 67000 | 5.7860 | | 5.8612 | 26.14 | 67500 | 5.8005 | | 5.8715 | 26.34 | 68000 | 5.7788 | | 5.8191 | 26.53 | 68500 | 5.8558 | | 5.8286 | 26.72 | 69000 | 5.7973 | | 5.8415 | 26.92 | 69500 | 5.7792 | | 5.855 | 27.11 | 70000 | 5.8006 | | 5.8384 | 27.3 | 70500 | 5.7673 | | 5.825 | 27.5 | 71000 | 5.8130 | | 5.8243 | 27.69 | 71500 | 5.7763 | | 5.8242 | 27.89 | 72000 | 5.7433 | | 5.8251 | 28.08 | 72500 | 5.7670 | | 5.8022 | 28.27 | 73000 | 5.8067 | | 5.8014 | 28.47 | 73500 | 5.7979 | | 5.8013 | 28.66 | 74000 | 5.7940 | | 5.8154 | 28.85 | 74500 | 5.7362 | | 5.8046 | 29.05 | 75000 | 5.7319 | | 5.8222 | 29.24 | 75500 | 5.7902 | | 5.7801 | 29.43 | 76000 | 5.7563 | | 5.7932 | 29.63 | 76500 | 5.7724 | | 5.7543 | 29.82 | 77000 | 5.8041 | | 5.7936 | 30.02 | 77500 | 5.8168 | | 5.8053 | 30.21 | 78000 | 5.7699 | | 5.8103 | 30.4 | 78500 | 5.7276 | | 5.8019 | 30.6 | 79000 | 5.7498 | | 5.7647 | 30.79 | 79500 | 5.7413 | | 5.7424 | 30.98 | 80000 | 5.6823 | | 5.8021 | 31.18 | 80500 | 5.7597 | | 5.7717 | 31.37 | 81000 | 5.7509 | | 5.7908 | 31.56 | 81500 | 5.7664 | | 5.8212 | 31.76 | 82000 | 5.7693 | | 5.7733 | 31.95 | 82500 | 5.6974 | | 5.7672 | 32.15 | 83000 | 5.6966 | | 5.7533 | 32.34 | 83500 | 5.7002 | | 5.7898 | 32.53 | 84000 | 5.7604 | | 5.7422 | 32.73 | 84500 | 5.7043 | | 5.7864 | 32.92 | 85000 | 5.6966 | | 5.7563 | 33.11 | 85500 | 5.7300 | | 5.7747 | 33.31 | 86000 | 5.6817 | | 5.7718 | 33.5 | 86500 | 5.7329 | | 5.7416 | 33.69 | 87000 | 5.7174 | | 5.7838 | 33.89 | 87500 | 5.7136 | | 5.7499 | 34.08 | 88000 | 5.6524 | | 5.7716 | 34.28 | 88500 | 5.6702 | | 5.7486 | 34.47 | 89000 | 5.7338 | | 5.7932 | 34.66 | 89500 | 5.6822 | | 5.7593 | 34.86 | 90000 | 5.7193 | | 5.759 | 35.05 | 90500 | 5.7241 | | 5.749 | 35.24 | 91000 | 5.6964 | | 5.7548 | 35.44 | 91500 | 5.6691 | | 5.7843 | 35.63 | 92000 | 5.7158 | | 5.7464 | 35.82 | 92500 | 5.6574 | | 5.735 | 36.02 | 93000 | 5.6470 | | 5.7466 | 36.21 | 93500 | 5.6833 | | 5.74 | 36.41 | 94000 | 5.6346 | | 5.7464 | 36.6 | 94500 | 5.6980 | | 5.7194 | 36.79 | 95000 | 5.6459 | | 5.7328 | 36.99 | 95500 | 5.6634 | | 5.7392 | 37.18 | 96000 | 5.7234 | | 5.7422 | 37.37 | 96500 | 5.7338 | | 5.7469 | 37.57 | 97000 | 5.7001 | | 5.74 | 37.76 | 97500 | 5.7040 | | 5.7321 | 37.96 | 98000 | 5.6562 | | 5.7153 | 38.15 | 98500 | 5.6962 | | 5.7066 | 38.34 | 99000 | 5.7527 | | 5.7465 | 38.54 | 99500 | 5.6827 | | 5.7364 | 38.73 | 100000 | 5.7359 | | 5.7342 | 38.92 | 100500 | 5.6403 | | 5.7281 | 39.12 | 101000 | 5.7184 | | 5.7213 | 39.31 | 101500 | 5.6506 | | 5.7069 | 39.5 | 102000 | 5.6693 | | 5.7109 | 39.7 | 102500 | 5.6412 | | 5.7142 | 39.89 | 103000 | 5.6575 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
PrimeQA/nq_tydi_sq1-reader-xlmr_large-20221110
PrimeQA
2022-11-14T19:47:16Z
36
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "MRC", "TyDiQA", "Natural Questions", "SQuAD", "xlm-roberta-large", "multilingual", "arxiv:1606.05250", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-11-14T19:20:52Z
--- license: apache-2.0 tags: - MRC - TyDiQA - Natural Questions - SQuAD - xlm-roberta-large language: - multilingual --- *Task*: MRC # Model description An XLM-RoBERTa Large reading comprehension model trained from the combination of TyDi, NQ, and SQuAD v1 datasets, starting from a fine-tuned [Tydi xlm-roberta-large](https://huggingface.co/PrimeQA/tydiqa-primary-task-xlm-roberta-large) model. ## Intended uses & limitations You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, xlm-roberta-large, that we used may be present in our fine-tuned model. ## Usage You can use this model directly with the [PrimeQA](https://github.com/primeqa/primeqa) pipeline for reading comprehension [squad.ipynb](https://github.com/primeqa/primeqa/blob/main/notebooks/mrc/squad.ipynb). ### BibTeX entry and citation info ```bibtex @article{kwiatkowski-etal-2019-natural, title = "Natural Questions: A Benchmark for Question Answering Research", author = "Kwiatkowski, Tom and Palomaki, Jennimaria and Redfield, Olivia and Collins, Michael and Parikh, Ankur and Alberti, Chris and Epstein, Danielle and Polosukhin, Illia and Devlin, Jacob and Lee, Kenton and Toutanova, Kristina and Jones, Llion and Kelcey, Matthew and Chang, Ming-Wei and Dai, Andrew M. and Uszkoreit, Jakob and Le, Quoc and Petrov, Slav", journal = "Transactions of the Association for Computational Linguistics", volume = "7", year = "2019", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q19-1026", doi = "10.1162/tacl_a_00276", pages = "452--466", } ``` ```bibtex @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } ``` ```bibtex @article{clark-etal-2020-tydi, title = "{T}y{D}i {QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages", author = "Clark, Jonathan H. and Choi, Eunsol and Collins, Michael and Garrette, Dan and Kwiatkowski, Tom and Nikolaev, Vitaly and Palomaki, Jennimaria", journal = "Transactions of the Association for Computational Linguistics", volume = "8", year = "2020", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/2020.tacl-1.30", doi = "10.1162/tacl_a_00317", pages = "454--470", } ```
Olusegun/autotrain-disease_tokens-2095367455
Olusegun
2022-11-14T19:41:09Z
108
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "en", "dataset:Olusegun/autotrain-data-disease_tokens", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T19:40:14Z
--- tags: - autotrain - token-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Olusegun/autotrain-data-disease_tokens co2_eq_emissions: emissions: 1.569698418187329 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2095367455 - CO2 Emissions (in grams): 1.5697 ## Validation Metrics - Loss: 0.000 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - F1: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Olusegun/autotrain-disease_tokens-2095367455 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Olusegun/autotrain-disease_tokens-2095367455", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Olusegun/autotrain-disease_tokens-2095367455", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
AlekseyKorshuk/1.3b-synthetic-v1-after-book
AlekseyKorshuk
2022-11-14T19:30:25Z
112
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-synthetic-io", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T19:26:25Z
--- tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-synthetic-io metrics: - accuracy model-index: - name: 1.3b-synthetic-v1-after-book results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-synthetic-io type: AlekseyKorshuk/dalio-synthetic-io metrics: - name: Accuracy type: accuracy value: 0.07541139670882632 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1.3b-synthetic-v1-after-book This model is a fine-tuned version of [/models/1.3b-dalio-principles-book](https://huggingface.co//models/1.3b-dalio-principles-book) on the AlekseyKorshuk/dalio-synthetic-io dataset. It achieves the following results on the evaluation set: - Loss: 1.9805 - Accuracy: 0.0754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0841 | 0.1 | 1 | 2.0254 | 0.0759 | | 2.062 | 0.2 | 2 | 2.0254 | 0.0759 | | 2.1509 | 0.3 | 3 | 1.9941 | 0.0761 | | 2.1206 | 0.4 | 4 | 1.9941 | 0.0756 | | 2.2087 | 0.5 | 5 | 1.9941 | 0.0757 | | 2.0337 | 0.6 | 6 | 1.9902 | 0.0755 | | 2.026 | 0.7 | 7 | 1.9854 | 0.0755 | | 2.1879 | 0.8 | 8 | 1.9834 | 0.0756 | | 2.1052 | 0.9 | 9 | 1.9824 | 0.0754 | | 2.046 | 1.0 | 10 | 1.9805 | 0.0754 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
LadaCroft/finetuning-sentiment-model-3000-samples
LadaCroft
2022-11-14T19:29:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T19:14:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.906 - name: F1 type: f1 value: 0.9072978303747534 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2928 - Accuracy: 0.906 - F1: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AlekseyKorshuk/1.3b-handwritten-v1-after-book
AlekseyKorshuk
2022-11-14T19:23:45Z
96
1
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-handwritten-io", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T19:19:28Z
--- tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-handwritten-io metrics: - accuracy model-index: - name: 1.3b-handwritten-v1-after-book results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-handwritten-io type: AlekseyKorshuk/dalio-handwritten-io metrics: - name: Accuracy type: accuracy value: 0.06691769057999736 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1.3b-handwritten-v1-after-book This model is a fine-tuned version of [/models/1.3b-dalio-principles-book](https://huggingface.co//models/1.3b-dalio-principles-book) on the AlekseyKorshuk/dalio-handwritten-io dataset. It achieves the following results on the evaluation set: - Loss: 2.0566 - Accuracy: 0.0669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3721 | 0.2 | 1 | 2.2148 | 0.0641 | | 2.241 | 0.4 | 2 | 2.2148 | 0.0641 | | 2.469 | 0.6 | 3 | 2.1348 | 0.0653 | | 2.3735 | 0.8 | 4 | 2.1309 | 0.0648 | | 2.2755 | 1.0 | 5 | 2.1133 | 0.0652 | | 2.0428 | 1.2 | 6 | 2.0938 | 0.0659 | | 1.764 | 1.4 | 7 | 2.0781 | 0.0659 | | 1.7458 | 1.6 | 8 | 2.0781 | 0.0661 | | 1.868 | 1.8 | 9 | 2.0820 | 0.0660 | | 1.9548 | 2.0 | 10 | 2.0703 | 0.0663 | | 1.6772 | 2.2 | 11 | 2.0605 | 0.0665 | | 1.3997 | 2.4 | 12 | 2.0566 | 0.0668 | | 1.3717 | 2.6 | 13 | 2.0547 | 0.0669 | | 1.5284 | 2.8 | 14 | 2.0547 | 0.0667 | | 1.2264 | 3.0 | 15 | 2.0566 | 0.0669 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AlekseyKorshuk/1.3b-dalio-principles-book
AlekseyKorshuk
2022-11-14T19:15:01Z
97
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T19:10:54Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: 1.3b-dalio-principles-book results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1.3b-dalio-principles-book This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4512 - Accuracy: 0.4741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6914 | 0.14 | 1 | 2.6895 | 0.4477 | | 2.6897 | 0.29 | 2 | 2.6895 | 0.4477 | | 2.668 | 0.43 | 3 | 2.7031 | 0.4403 | | 2.7434 | 0.57 | 4 | 2.5918 | 0.4533 | | 2.6265 | 0.71 | 5 | 2.5410 | 0.4618 | | 2.5259 | 0.86 | 6 | 2.5156 | 0.4641 | | 2.5566 | 1.0 | 7 | 2.4902 | 0.4667 | | 2.2317 | 1.14 | 8 | 2.4766 | 0.4707 | | 2.2397 | 1.29 | 9 | 2.4727 | 0.4705 | | 2.0162 | 1.43 | 10 | 2.4766 | 0.4690 | | 2.0537 | 1.57 | 11 | 2.4805 | 0.4707 | | 2.1432 | 1.71 | 12 | 2.4707 | 0.4714 | | 2.0822 | 1.86 | 13 | 2.4570 | 0.4724 | | 1.9056 | 2.0 | 14 | 2.4512 | 0.4741 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gngpostalsrvc/BERiT_2000_custom_architecture_20_epochs
gngpostalsrvc
2022-11-14T18:52:14Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-14T18:30:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000_custom_architecture_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_custom_architecture_2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 16.4316 | 0.19 | 500 | 9.0685 | | 8.2958 | 0.39 | 1000 | 7.6483 | | 7.4324 | 0.58 | 1500 | 7.1707 | | 7.0054 | 0.77 | 2000 | 6.8592 | | 6.8522 | 0.97 | 2500 | 6.7710 | | 6.7538 | 1.16 | 3000 | 6.5845 | | 6.634 | 1.36 | 3500 | 6.4525 | | 6.5784 | 1.55 | 4000 | 6.3129 | | 6.5135 | 1.74 | 4500 | 6.3312 | | 6.4552 | 1.94 | 5000 | 6.2546 | | 6.4685 | 2.13 | 5500 | 6.2857 | | 6.4356 | 2.32 | 6000 | 6.2285 | | 6.3566 | 2.52 | 6500 | 6.2295 | | 6.394 | 2.71 | 7000 | 6.1790 | | 6.3412 | 2.9 | 7500 | 6.1880 | | 6.3115 | 3.1 | 8000 | 6.2130 | | 6.3163 | 3.29 | 8500 | 6.1831 | | 6.2978 | 3.49 | 9000 | 6.1945 | | 6.3082 | 3.68 | 9500 | 6.1485 | | 6.2729 | 3.87 | 10000 | 6.1752 | | 6.307 | 4.07 | 10500 | 6.1331 | | 6.2494 | 4.26 | 11000 | 6.1082 | | 6.2523 | 4.45 | 11500 | 6.2110 | | 6.2455 | 4.65 | 12000 | 6.1326 | | 6.2399 | 4.84 | 12500 | 6.1779 | | 6.2297 | 5.03 | 13000 | 6.1587 | | 6.2374 | 5.23 | 13500 | 6.1458 | | 6.2265 | 5.42 | 14000 | 6.1370 | | 6.2222 | 5.62 | 14500 | 6.1511 | | 6.2209 | 5.81 | 15000 | 6.1320 | | 6.2146 | 6.0 | 15500 | 6.1124 | | 6.214 | 6.2 | 16000 | 6.1439 | | 6.1907 | 6.39 | 16500 | 6.0981 | | 6.2119 | 6.58 | 17000 | 6.1465 | | 6.1858 | 6.78 | 17500 | 6.1594 | | 6.1552 | 6.97 | 18000 | 6.0742 | | 6.1926 | 7.16 | 18500 | 6.1176 | | 6.1813 | 7.36 | 19000 | 6.0107 | | 6.1812 | 7.55 | 19500 | 6.0852 | | 6.1852 | 7.75 | 20000 | 6.0845 | | 6.1945 | 7.94 | 20500 | 6.1260 | | 6.1542 | 8.13 | 21000 | 6.1032 | | 6.1685 | 8.33 | 21500 | 6.0650 | | 6.1619 | 8.52 | 22000 | 6.1028 | | 6.1279 | 8.71 | 22500 | 6.1269 | | 6.1575 | 8.91 | 23000 | 6.0793 | | 6.1401 | 9.1 | 23500 | 6.1479 | | 6.159 | 9.3 | 24000 | 6.0319 | | 6.1227 | 9.49 | 24500 | 6.0677 | | 6.1201 | 9.68 | 25000 | 6.0527 | | 6.1473 | 9.88 | 25500 | 6.1305 | | 6.1539 | 10.07 | 26000 | 6.1079 | | 6.091 | 10.26 | 26500 | 6.1219 | | 6.1015 | 10.46 | 27000 | 6.1317 | | 6.1048 | 10.65 | 27500 | 6.1149 | | 6.0955 | 10.84 | 28000 | 6.1216 | | 6.129 | 11.04 | 28500 | 6.0427 | | 6.1007 | 11.23 | 29000 | 6.1289 | | 6.1266 | 11.43 | 29500 | 6.0564 | | 6.1203 | 11.62 | 30000 | 6.1143 | | 6.1038 | 11.81 | 30500 | 6.0957 | | 6.0989 | 12.01 | 31000 | 6.0707 | | 6.0571 | 12.2 | 31500 | 6.0013 | | 6.1017 | 12.39 | 32000 | 6.1356 | | 6.0649 | 12.59 | 32500 | 6.0981 | | 6.0704 | 12.78 | 33000 | 6.0588 | | 6.088 | 12.97 | 33500 | 6.0796 | | 6.1112 | 13.17 | 34000 | 6.0809 | | 6.0888 | 13.36 | 34500 | 6.0776 | | 6.0482 | 13.56 | 35000 | 6.0710 | | 6.0588 | 13.75 | 35500 | 6.0877 | | 6.0517 | 13.94 | 36000 | 6.0650 | | 6.0832 | 14.14 | 36500 | 5.9890 | | 6.0655 | 14.33 | 37000 | 6.0445 | | 6.0705 | 14.52 | 37500 | 6.0037 | | 6.0789 | 14.72 | 38000 | 6.0777 | | 6.0645 | 14.91 | 38500 | 6.0475 | | 6.0347 | 15.1 | 39000 | 6.1148 | | 6.0478 | 15.3 | 39500 | 6.0639 | | 6.0638 | 15.49 | 40000 | 6.0373 | | 6.0377 | 15.69 | 40500 | 6.0116 | | 6.0402 | 15.88 | 41000 | 6.0483 | | 6.0382 | 16.07 | 41500 | 6.1025 | | 6.039 | 16.27 | 42000 | 6.0488 | | 6.0232 | 16.46 | 42500 | 6.0219 | | 5.9946 | 16.65 | 43000 | 6.0541 | | 6.063 | 16.85 | 43500 | 6.0436 | | 6.0141 | 17.04 | 44000 | 6.0609 | | 6.0196 | 17.23 | 44500 | 6.0551 | | 6.0331 | 17.43 | 45000 | 6.0576 | | 6.0174 | 17.62 | 45500 | 6.0498 | | 6.0366 | 17.82 | 46000 | 6.0782 | | 6.0299 | 18.01 | 46500 | 6.0196 | | 6.0009 | 18.2 | 47000 | 6.0262 | | 5.9758 | 18.4 | 47500 | 6.0824 | | 6.0285 | 18.59 | 48000 | 6.0799 | | 6.025 | 18.78 | 48500 | 5.9511 | | 5.9806 | 18.98 | 49000 | 6.0086 | | 5.9915 | 19.17 | 49500 | 6.0089 | | 5.9957 | 19.36 | 50000 | 6.0330 | | 6.0311 | 19.56 | 50500 | 6.0083 | | 5.995 | 19.75 | 51000 | 6.0394 | | 6.0034 | 19.95 | 51500 | 5.9854 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
meongracun/nmt-ted-id-en-lr_1e-3-ep_30-seq_128-bs_32
meongracun
2022-11-14T18:41:43Z
14
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-14T16:10:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-ted-id-en-lr_1e-3-ep_30-seq_128-bs_32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-ted-id-en-lr_1e-3-ep_30-seq_128-bs_32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5777 - Bleu: 18.3981 - Gen Len: 16.2277 - Meteor: 0.3652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:------:| | 2.1196 | 1.0 | 1250 | 1.6942 | 13.7333 | 16.5568 | 0.3053 | | 1.7331 | 2.0 | 2500 | 1.5393 | 15.6555 | 16.3938 | 0.3341 | | 1.5842 | 3.0 | 3750 | 1.4821 | 16.2862 | 16.3699 | 0.3403 | | 1.4518 | 4.0 | 5000 | 1.4562 | 17.1158 | 16.2073 | 0.3518 | | 1.3649 | 5.0 | 6250 | 1.4416 | 17.3302 | 16.3344 | 0.355 | | 1.2987 | 6.0 | 7500 | 1.4276 | 17.3334 | 16.3913 | 0.3547 | | 1.2227 | 7.0 | 8750 | 1.4411 | 17.9415 | 16.2941 | 0.3612 | | 1.1766 | 8.0 | 10000 | 1.4435 | 18.0776 | 16.2809 | 0.362 | | 1.1119 | 9.0 | 11250 | 1.4510 | 18.0156 | 16.2834 | 0.3628 | | 1.0672 | 10.0 | 12500 | 1.4566 | 18.276 | 16.1982 | 0.3646 | | 1.0194 | 11.0 | 13750 | 1.4728 | 18.2417 | 16.2589 | 0.364 | | 0.988 | 12.0 | 15000 | 1.4843 | 18.385 | 16.2671 | 0.3644 | | 0.9445 | 13.0 | 16250 | 1.4896 | 18.1065 | 16.2321 | 0.3629 | | 0.9156 | 14.0 | 17500 | 1.5102 | 18.249 | 16.2334 | 0.364 | | 0.8888 | 15.0 | 18750 | 1.5273 | 18.1876 | 16.2454 | 0.3641 | | 0.8624 | 16.0 | 20000 | 1.5354 | 18.2708 | 16.2425 | 0.3638 | | 0.8364 | 17.0 | 21250 | 1.5449 | 18.17 | 16.268 | 0.3645 | | 0.8133 | 18.0 | 22500 | 1.5578 | 18.2573 | 16.2422 | 0.3639 | | 0.7994 | 19.0 | 23750 | 1.5678 | 18.3108 | 16.2158 | 0.3648 | | 0.7823 | 20.0 | 25000 | 1.5777 | 18.3981 | 16.2277 | 0.3652 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
KoboldAI/GPT-J-6B-Skein
KoboldAI
2022-11-14T18:35:26Z
1,505
14
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - text-generation --- # Model Card for GPT-J-6B-Skein # Model Details ## Model Description - **Developed by:** KoboldAI - **Shared by [Optional]:** KoboldAI - **Model type:** Text Generation - **Language(s) (NLP):** English - **License:** Apache License 2.0 - **Related Models:** [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B?text=My+name+is+Mariama%2C+my+favorite) - **Parent Model:** GPT-J - **Resources for more information:** - [GitHub Repo](https://github.com/kingoflolz/mesh-transformer-jax) - [Associated Model Doc](https://huggingface.co/docs/transformers/main/en/model_doc/gptj#transformers.GPTJForCausalLM) # Uses ## Direct Use This model is designed for creative story generation. It can understand both free-form text and text written in interactive fiction style with actions starting with "> You", such as: ``` You become aware of her breathing -- the slight expansion of her ribs, the soft exhalation -- natural, and yet somehow studied. "Ah -- by the way," she says, in a way that utterly fails to be casual, "have you seen the artist out there? -- My artist, that is." "No," you respond, uneasy. You open your mouth and close it again. > You ask about the experience of waking up ``` ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. See the [GPT-J 6B model card](https://huggingface.co/EleutherAI/gpt-j-6B?text=My+name+is+Mariama%2C+my+favorite) for more information. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The data are mostly comprised of light novels from the dataset of the [KoboldAI/GPT-Neo-2.7B-Horni-LN](https://huggingface.co/KoboldAI/GPT-Neo-2.7B-Horni-LN) model and assorted interactive fiction. The dataset uses `[Themes: <comma-separated list of genres>]` for tagging, which means that if similar text is placed in the context, the model will attempt to generate text in the specified style(s). For more details about the dataset, consult [this document](https://wandb.ai/ve-forbryderne/skein/runs/files/files/datasets/README.txt). ## Training Procedure ### Preprocessing The data were preprocessed using the Python package ftfy to eliminate as much as possible non-ASCII punctuation characters and possible encoding errors. The interactive fiction in the dataset also underwent deduplication since interactive fiction logs often contain duplicate text from, for example, visiting the same in-game area several times. spaCy was used for grammatical analysis with the purpose of reformatting the actions commonly found in old text adventure games into more complete sentences. There was also some manual elimination of things such as "thank you for playing" messages and title messages. ### Speeds, Sizes, Times Training took approximately 14 hours in total, with the average speed being 5265 tokens per second. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software https://github.com/kingoflolz/mesh-transformer-jax # Citation **BibTeX:** ``` @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] KoboldAI in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("KoboldAI/GPT-J-6B-Skein") model = AutoModelForCausalLM.from_pretrained("KoboldAI/GPT-J-6B-Skein") ``` </details>
sd-concepts-library/cancer_style
sd-concepts-library
2022-11-14T17:59:23Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-11-12T13:21:52Z
--- license: mit --- ### Cancer_style on Stable Diffusion This is the `<cancer_style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cancer_style> 1](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/4.jpeg) ![<cancer_style> 2](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/6.jpeg) ![<cancer_style> 3](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/2.jpeg) ![<cancer_style> 4](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/5.jpeg) ![<cancer_style> 5](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/3.jpeg) ![<cancer_style> 6](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/1.jpeg) ![<cancer_style> 7](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/0.jpeg) ![<cancer_style> 8](https://huggingface.co/sd-concepts-library/cancer-style/resolve/main/concept_images/8.jpeg)
RoniXZONE/distilbert-base-uncased-finetuned-squad
RoniXZONE
2022-11-14T17:47:13Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-14T15:49:23Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: RoniXZONE/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RoniXZONE/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9645 - Train End Logits Accuracy: 0.7308 - Train Start Logits Accuracy: 0.6936 - Validation Loss: 1.1246 - Validation End Logits Accuracy: 0.7006 - Validation Start Logits Accuracy: 0.6612 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.5015 | 0.6068 | 0.5715 | 1.1471 | 0.6864 | 0.6508 | 0 | | 0.9645 | 0.7308 | 0.6936 | 1.1246 | 0.7006 | 0.6612 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
aphostrophy/jessonyo-NLP-finetuned-ja-to-en
aphostrophy
2022-11-14T17:36:32Z
61
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-14T16:11:09Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: aphostrophy/jessonyo-NLP-finetuned-ja-to-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aphostrophy/jessonyo-NLP-finetuned-ja-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9803 - Validation Loss: 1.1675 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 11088, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.6035 | 1.2746 | 0 | | 1.1843 | 1.1934 | 1 | | 0.9803 | 1.1675 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
nateraw/mit-b0-finetuned-sidewalks
nateraw
2022-11-14T17:32:40Z
34
0
transformers
[ "transformers", "tf", "segformer", "generated_from_keras_callback", "license:other", "endpoints_compatible", "region:us" ]
null
2022-11-14T17:00:32Z
--- license: other tags: - generated_from_keras_callback model-index: - name: nateraw/mit-b0-finetuned-sidewalks results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nateraw/mit-b0-finetuned-sidewalks This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5197 - Validation Loss: 0.6268 - Validation Mean Iou: 0.2719 - Validation Mean Accuracy: 0.3442 - Validation Overall Accuracy: 0.8180 - Validation Per Category Iou: [0. 0.62230678 0.81645513 0.18616589 0.66669478 0.30574734 nan 0.36681201 0.31128062 0. 0.76635363 0. 0. nan 0. 0.37874505 0. 0. 0.68193241 0. 0.48867838 0.25809644 0. nan 0. 0.25765818 0. 0. 0.81965205 0.71604385 0.9214592 0. 0.00636635 0.12957446 0. ] - Validation Per Category Accuracy: [0. 0.89469845 0.88320521 0.45231002 0.72104833 0.3386303 nan 0.53522723 0.72026843 0. 0.93197124 0. 0. nan 0. 0.45525816 0. 0. 0.87276184 0. 0.60762821 0.29654901 0. nan 0. 0.32162193 0. 0. 0.90797988 0.89199119 0.96388697 0. 0.00646084 0.21171965 0. ] - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----:| | 1.3430 | 0.8858 | 0.1724 | 0.2253 | 0.7508 | [0.00000000e+00 5.02535817e-01 7.94050536e-01 1.37476079e-01 5.28949130e-01 1.76391302e-01 nan 1.19967229e-01 0.00000000e+00 0.00000000e+00 6.61310784e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.06634036e-01 0.00000000e+00 7.22567226e-02 5.35294630e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.53949868e-02 0.00000000e+00 0.00000000e+00 7.37842004e-01 5.78989440e-01 8.52258994e-01 0.00000000e+00 0.00000000e+00 6.16858377e-05 0.00000000e+00] | [0.00000000e+00 5.80613096e-01 9.43852033e-01 1.50019637e-01 5.77268577e-01 3.25241508e-01 nan 1.68319967e-01 0.00000000e+00 0.00000000e+00 8.60308871e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.04260401e-01 0.00000000e+00 7.74112939e-02 5.58025588e-03 0.00000000e+00 nan 0.00000000e+00 1.56055377e-02 0.00000000e+00 0.00000000e+00 8.41648672e-01 8.58416118e-01 9.02457570e-01 0.00000000e+00 0.00000000e+00 6.18892982e-05 0.00000000e+00] | 0 | | 0.8402 | 0.7211 | 0.2203 | 0.2900 | 0.7927 | [0. 0.60561012 0.80467888 0.10134538 0.57674712 0.21967639 nan 0.279315 0.28998136 0. 0.71924852 0. 0. nan 0. 0.10241989 0. 0. 0.60537245 0. 0.37966409 0.0624908 0. 0. 0. 0.11869763 0. 0. 0.79675107 0.70541969 0.89177953 0. 0. 0.01097213 0. ] | [0. 0.70687024 0.92710849 0.47653578 0.6809956 0.28562204 nan 0.35954555 0.53804171 0. 0.87451178 0. 0. nan 0. 0.10473185 0. 0. 0.88548482 0. 0.52011987 0.06421075 0. nan 0. 0.13802701 0. 0. 0.9278545 0.83106582 0.94693817 0. 0. 0.01170072 0. ] | 1 | | 0.7051 | 0.6513 | 0.2568 | 0.3210 | 0.8151 | [0.00000000e+00 6.31500555e-01 8.33347761e-01 2.40727740e-01 6.71879162e-01 2.32727132e-01 nan 3.15720178e-01 3.22578864e-01 0.00000000e+00 7.51066980e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 3.01090014e-01 0.00000000e+00 0.00000000e+00 6.56592309e-01 0.00000000e+00 3.82317489e-01 2.25385079e-01 0.00000000e+00 nan 0.00000000e+00 2.34975219e-01 0.00000000e+00 0.00000000e+00 7.92710603e-01 6.82508692e-01 9.02369099e-01 0.00000000e+00 5.10019193e-04 4.02361131e-02 0.00000000e+00] | [0.00000000e+00 7.76355941e-01 9.39707165e-01 3.90888278e-01 7.70256989e-01 2.84066636e-01 nan 4.57106724e-01 6.33498392e-01 0.00000000e+00 9.05789013e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 3.57230962e-01 0.00000000e+00 0.00000000e+00 8.45761217e-01 0.00000000e+00 5.16681541e-01 2.82796479e-01 0.00000000e+00 nan 0.00000000e+00 3.07634724e-01 0.00000000e+00 0.00000000e+00 9.04391068e-01 8.86212453e-01 9.64570665e-01 0.00000000e+00 5.17411580e-04 4.71742075e-02 0.00000000e+00] | 2 | | 0.6294 | 0.6365 | 0.2695 | 0.3320 | 0.8244 | [0. 0.63840754 0.83879521 0.31781353 0.69394774 0.22324776 nan 0.35012894 0.31369877 0. 0.7683448 0. 0. nan 0. 0.36532292 0. 0. 0.65554136 0. 0.37438724 0.25682621 0. nan 0. 0.23051151 0. 0. 0.81818163 0.7633018 0.91092518 0. 0.00145576 0.10215516 0. ] | [0. 0.76103704 0.95305272 0.43848725 0.78760908 0.25645014 nan 0.48971828 0.61853472 0. 0.90793733 0. 0. nan 0. 0.48772201 0. 0. 0.84205031 0. 0.53308407 0.36285878 0. nan 0. 0.27953916 0. 0. 0.93079576 0.87079757 0.96477884 0. 0.00147054 0.13899972 0. ] | 3 | | 0.5686 | 0.6122 | 0.2715 | 0.3360 | 0.8256 | [0.00000000e+00 6.38345814e-01 8.56252996e-01 3.07043269e-01 6.87537894e-01 3.06534041e-01 nan 3.84145525e-01 3.19438916e-01 0.00000000e+00 7.57233152e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 4.06585843e-01 0.00000000e+00 0.00000000e+00 6.47648546e-01 2.91885581e-04 4.00547422e-01 1.97261484e-01 0.00000000e+00 nan 0.00000000e+00 2.20793008e-01 0.00000000e+00 0.00000000e+00 8.19526784e-01 7.19306080e-01 9.20192720e-01 0.00000000e+00 2.23374930e-03 9.77508243e-02 0.00000000e+00] | [0.00000000e+00 7.89438910e-01 9.16367241e-01 4.32251205e-01 7.89740409e-01 4.88566404e-01 nan 5.36825005e-01 6.47787376e-01 0.00000000e+00 9.32641501e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 4.73813253e-01 0.00000000e+00 0.00000000e+00 9.09004353e-01 2.91885581e-04 4.37175308e-01 2.25663128e-01 0.00000000e+00 nan 0.00000000e+00 2.60992057e-01 0.00000000e+00 0.00000000e+00 9.19328058e-01 9.02898346e-01 9.65529369e-01 0.00000000e+00 2.23984750e-03 1.20880721e-01 0.00000000e+00] | 4 | | 0.5197 | 0.6268 | 0.2719 | 0.3442 | 0.8180 | [0. 0.62230678 0.81645513 0.18616589 0.66669478 0.30574734 nan 0.36681201 0.31128062 0. 0.76635363 0. 0. nan 0. 0.37874505 0. 0. 0.68193241 0. 0.48867838 0.25809644 0. nan 0. 0.25765818 0. 0. 0.81965205 0.71604385 0.9214592 0. 0.00636635 0.12957446 0. ] | [0. 0.89469845 0.88320521 0.45231002 0.72104833 0.3386303 nan 0.53522723 0.72026843 0. 0.93197124 0. 0. nan 0. 0.45525816 0. 0. 0.87276184 0. 0.60762821 0.29654901 0. nan 0. 0.32162193 0. 0. 0.90797988 0.89199119 0.96388697 0. 0.00646084 0.21171965 0. ] | 5 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
VanessaSchenkel/padrao-mbart-vanessa-finetuned-handscrafted-puro
VanessaSchenkel
2022-11-14T17:04:16Z
64
0
transformers
[ "transformers", "tf", "tensorboard", "mbart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-14T16:56:18Z
--- tags: - generated_from_keras_callback model-index: - name: VanessaSchenkel/padrao-mbart-vanessa-finetuned-handscrafted-puro results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VanessaSchenkel/padrao-mbart-vanessa-finetuned-handscrafted-puro This model is a fine-tuned version of [Narrativa/mbart-large-50-finetuned-opus-en-pt-translation](https://huggingface.co/Narrativa/mbart-large-50-finetuned-opus-en-pt-translation) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.2001 - Validation Loss: 0.7276 - Train Bleu: 66.2393 - Train Gen Len: 11.75 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 2.2001 | 0.7276 | 66.2393 | 11.75 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
evangeliazve/mpnet-base-articles-ner
evangeliazve
2022-11-14T16:46:16Z
87
0
transformers
[ "transformers", "pytorch", "mpnet", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T16:45:21Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: mpnet-base-articles-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mpnet-base-articles-ner This model is a fine-tuned version of [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8471 - F1: 0.7500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8042 | 1.0 | 5 | 1.6278 | 0.0 | | 1.5353 | 2.0 | 10 | 1.5332 | 0.0 | | 1.499 | 3.0 | 15 | 1.4356 | 0.1781 | | 1.343 | 4.0 | 20 | 1.3254 | 0.3789 | | 1.2306 | 5.0 | 25 | 1.2572 | 0.5075 | | 1.1427 | 6.0 | 30 | 1.1572 | 0.5700 | | 1.0715 | 7.0 | 35 | 1.0875 | 0.6305 | | 0.9679 | 8.0 | 40 | 1.0261 | 0.6667 | | 0.9169 | 9.0 | 45 | 0.9924 | 0.6512 | | 0.8447 | 10.0 | 50 | 0.9457 | 0.7137 | | 0.8253 | 11.0 | 55 | 0.9216 | 0.7094 | | 0.7493 | 12.0 | 60 | 0.9068 | 0.7303 | | 0.7378 | 13.0 | 65 | 0.8896 | 0.7404 | | 0.7039 | 14.0 | 70 | 0.8827 | 0.7398 | | 0.7277 | 15.0 | 75 | 0.8632 | 0.7635 | | 0.6758 | 16.0 | 80 | 0.8517 | 0.775 | | 0.6642 | 17.0 | 85 | 0.8618 | 0.7449 | | 0.6327 | 18.0 | 90 | 0.8522 | 0.7490 | | 0.6238 | 19.0 | 95 | 0.8477 | 0.7500 | | 0.6101 | 20.0 | 100 | 0.8471 | 0.7500 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
rajesh426/distilbert-base-uncased_Up_Sampling_Sub_Category_SPEECH_TEXT_DISPLAY_v1
rajesh426
2022-11-14T16:28:38Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T16:17:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased_Up_Sampling_Sub_Category_SPEECH_TEXT_DISPLAY_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_Up_Sampling_Sub_Category_SPEECH_TEXT_DISPLAY_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9368 - Accuracy: 0.6114 - F1: 0.6028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 0.9716 | 1.0 | 12171 | 2.5228 | 0.5722 | 0.5740 | | 0.2857 | 2.0 | 24342 | 3.0558 | 0.5947 | 0.5923 | | 0.1438 | 3.0 | 36513 | 3.3499 | 0.6038 | 0.6007 | | 0.0842 | 4.0 | 48684 | 3.8879 | 0.5905 | 0.5875 | | 0.0504 | 5.0 | 60855 | 4.1478 | 0.5905 | 0.5906 | | 0.031 | 6.0 | 73026 | 4.5368 | 0.5924 | 0.5865 | | 0.0192 | 7.0 | 85197 | 4.6596 | 0.6042 | 0.5980 | | 0.01 | 8.0 | 97368 | 4.8874 | 0.6087 | 0.6005 | | 0.0051 | 9.0 | 109539 | 5.0120 | 0.6118 | 0.6015 | | 0.0022 | 10.0 | 121710 | 4.9368 | 0.6114 | 0.6028 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.2 - Datasets 2.5.2 - Tokenizers 0.12.1
meongracun/nmt-ted-id-en-lr_1e-2-ep_30-seq_128-bs_64
meongracun
2022-11-14T16:00:44Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-14T13:51:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-ted-id-en-lr_1e-2-ep_30-seq_128-bs_64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-ted-id-en-lr_1e-2-ep_30-seq_128-bs_64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0751 - Bleu: 16.4354 - Gen Len: 16.3492 - Meteor: 0.3448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:------:| | 3.2366 | 1.0 | 625 | 2.4442 | 7.3157 | 16.9063 | 0.2192 | | 2.5208 | 2.0 | 1250 | 2.0785 | 11.3311 | 16.0768 | 0.2869 | | 2.1936 | 3.0 | 1875 | 1.8995 | 12.4756 | 16.4486 | 0.2934 | | 1.872 | 4.0 | 2500 | 1.8241 | 13.9295 | 16.3092 | 0.3163 | | 1.7185 | 5.0 | 3125 | 1.7624 | 14.3797 | 16.3602 | 0.3213 | | 1.6177 | 6.0 | 3750 | 1.7049 | 15.2549 | 16.3835 | 0.3304 | | 1.5355 | 7.0 | 4375 | 1.7059 | 15.7225 | 16.3599 | 0.3346 | | 1.388 | 8.0 | 5000 | 1.6864 | 15.4343 | 16.4646 | 0.3308 | | 1.2741 | 9.0 | 5625 | 1.6899 | 16.2174 | 16.3215 | 0.3428 | | 1.216 | 10.0 | 6250 | 1.6831 | 16.1891 | 16.2815 | 0.3451 | | 1.1486 | 11.0 | 6875 | 1.7137 | 16.3811 | 16.3451 | 0.3435 | | 1.0426 | 12.0 | 7500 | 1.7490 | 16.3482 | 16.3791 | 0.343 | | 0.9509 | 13.0 | 8125 | 1.7674 | 16.3318 | 16.469 | 0.3436 | | 0.9072 | 14.0 | 8750 | 1.8084 | 16.4721 | 16.3064 | 0.3452 | | 0.857 | 15.0 | 9375 | 1.8414 | 16.4244 | 16.3718 | 0.3472 | | 0.7696 | 16.0 | 10000 | 1.8829 | 16.3755 | 16.3816 | 0.3446 | | 0.7066 | 17.0 | 10625 | 1.9325 | 16.4635 | 16.3957 | 0.3459 | | 0.6718 | 18.0 | 11250 | 1.9980 | 16.3287 | 16.3124 | 0.3431 | | 0.6364 | 19.0 | 11875 | 2.0211 | 16.5732 | 16.3558 | 0.3456 | | 0.5835 | 20.0 | 12500 | 2.0751 | 16.4354 | 16.3492 | 0.3448 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/elonmusk-julicq
huggingtweets
2022-11-14T15:30:27Z
110
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T15:26:02Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-julicq/1668439800663/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1322125857465524231/VvoMFHkW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Juliаn Pa🇱🇻🇺🇦L😷w</div> <div style="text-align: center; font-size: 14px;">@elonmusk-julicq</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Juliаn Pa🇱🇻🇺🇦L😷w. | Data | Elon Musk | Juliаn Pa🇱🇻🇺🇦L😷w | | --- | --- | --- | | Tweets downloaded | 3199 | 1529 | | Retweets | 141 | 282 | | Short tweets | 977 | 115 | | Tweets kept | 2081 | 1132 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bvahfgf1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-julicq's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f42eho4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f42eho4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-julicq') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
devtanumisra/finetuning-sentiment-model-deberta-smote
devtanumisra
2022-11-14T14:43:33Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T05:38:22Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-model-deberta-smote results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-deberta-smote This model is a fine-tuned version of [yangheng/deberta-v3-base-absa-v1.1](https://huggingface.co/yangheng/deberta-v3-base-absa-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4852 - Accuracy: 0.7215 - F1: 0.7215 - Precision: 0.7215 - Recall: 0.7215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Omerdor/128-DRUSEN-cell_
Omerdor
2022-11-14T13:27:23Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-14T11:08:39Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # 128-DRUSEN-cell_ ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 64 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/128-DRUSEN-cell_/tensorboard?#scalars)
ajdowney/bert-wash-binary
ajdowney
2022-11-14T13:18:05Z
69
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T11:17:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-wash-binary results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-wash-binary This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 129, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | nan | nan | 0 | | nan | nan | 1 | | nan | nan | 2 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.13.1
buihungtpd3/layoutlmv3-finetuned-cord_100
buihungtpd3
2022-11-14T12:23:58Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:drug_bill_layoutv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T02:27:21Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - drug_bill_layoutv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: drug_bill_layoutv3 type: drug_bill_layoutv3 config: Vin_Drug_Bill split: train args: Vin_Drug_Bill metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the drug_bill_layoutv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.33 | 250 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0648 | 2.66 | 500 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0648 | 3.99 | 750 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0115 | 5.32 | 1000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0115 | 6.65 | 1250 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0134 | 7.98 | 1500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0134 | 9.31 | 1750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0045 | 10.64 | 2000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0045 | 11.97 | 2250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0004 | 13.3 | 2500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
sd-concepts-library/trypophobia
sd-concepts-library
2022-11-14T12:22:27Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-11-14T11:20:36Z
--- license: mit --- ### trypophobia on Stable Diffusion This is the `trypophobia` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![trypophobia 0](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/15.jpeg) ![trypophobia 1](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/19.jpeg) ![trypophobia 2](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/7.jpeg) ![trypophobia 3](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/17.jpeg) ![trypophobia 4](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/10.jpeg) ![trypophobia 5](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/12.jpeg) ![trypophobia 6](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/4.jpeg) ![trypophobia 7](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/11.jpeg) ![trypophobia 8](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/20.jpeg) ![trypophobia 9](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/6.jpeg) ![trypophobia 10](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/14.jpeg) ![trypophobia 11](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/9.jpeg) ![trypophobia 12](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/18.jpeg) ![trypophobia 13](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/2.jpeg) ![trypophobia 14](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/13.jpeg) ![trypophobia 15](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/5.jpeg) ![trypophobia 16](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/3.jpeg) ![trypophobia 17](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/1.jpeg) ![trypophobia 18](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/0.jpeg) ![trypophobia 19](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/16.jpeg) ![trypophobia 20](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/concept_images/8.jpeg) Sample-image: "two unspeakable horrors give each other a trypophobia covered embrace" ![trypophobia 21](https://huggingface.co/sd-concepts-library/trypophobia/resolve/main/sample.png)
teacookies/autotrain-14112022-cert-2086767210
teacookies
2022-11-14T12:19:48Z
110
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-14112022-cert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T12:08:36Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-14112022-cert co2_eq_emissions: emissions: 18.953935307959163 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2086767210 - CO2 Emissions (in grams): 18.9539 ## Validation Metrics - Loss: 0.002 - Accuracy: 1.000 - Precision: 0.987 - Recall: 0.989 - F1: 0.988 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-14112022-cert-2086767210 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-14112022-cert-2086767210", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-14112022-cert-2086767210", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Marcuslye0220/swin-small-patch4-window7-224-finetuned-eurosat
Marcuslye0220
2022-11-14T12:11:41Z
204
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T08:41:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-small-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9956803455723542 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-small-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-small-patch4-window7-224](https://huggingface.co/microsoft/swin-small-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0102 - Accuracy: 0.9957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0225 | 0.98 | 32 | 0.0102 | 0.9957 | | 0.0378 | 1.98 | 64 | 0.0102 | 0.9957 | | 0.041 | 2.98 | 96 | 0.0102 | 0.9957 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
Jethuestad/whisper-medium-amksim
Jethuestad
2022-11-14T11:38:24Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T12:44:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-medium-amksim results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-amksim This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9089 - Wer: 40.3433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 4.6349 | 0.83 | 5 | 3.7729 | 73.3906 | | 3.2338 | 1.67 | 10 | 1.4978 | 69.0987 | | 1.1335 | 2.5 | 15 | 1.1606 | 97.4249 | | 0.6838 | 3.33 | 20 | 1.0211 | 66.0944 | | 0.4383 | 4.17 | 25 | 0.9845 | 65.2361 | | 0.2514 | 5.0 | 30 | 0.9885 | 61.3734 | | 0.2053 | 5.83 | 35 | 0.9796 | 76.3948 | | 0.1353 | 6.67 | 40 | 0.9758 | 49.3562 | | 0.1142 | 7.5 | 45 | 0.9109 | 60.9442 | | 0.0889 | 8.33 | 50 | 0.9045 | 41.2017 | | 0.0854 | 9.17 | 55 | 0.9085 | 42.4893 | | 0.069 | 10.0 | 60 | 0.9089 | 40.3433 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.12.1
AlekseyKorshuk/dalio-large-test
AlekseyKorshuk
2022-11-14T10:52:53Z
108
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-handwritten-io", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T09:53:05Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-handwritten-io metrics: - accuracy model-index: - name: dalio-large-test results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-handwritten-io type: AlekseyKorshuk/dalio-handwritten-io metrics: - name: Accuracy type: accuracy value: 0.047694543532831285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-large-test This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the AlekseyKorshuk/dalio-handwritten-io dataset. It achieves the following results on the evaluation set: - Loss: 3.1016 - Accuracy: 0.0477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3342 | 0.05 | 1 | 3.1016 | 0.0477 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Omerdor/128-DRUSEN-CELL
Omerdor
2022-11-14T10:48:47Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-14T10:04:17Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # 128-DRUSEN-CELL ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 64 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/128-DRUSEN-CELL/tensorboard?#scalars)
EvaKlimentova/knots_simple_CNN
EvaKlimentova
2022-11-14T10:39:20Z
0
0
null
[ "region:us" ]
null
2022-10-31T10:53:09Z
# Simple CNN for knotted x unknotted recognition The model is trained on downsampled SPOUT knotted x Rossmann unknotted dataset to fix the knotted x unknotted sequence length distribution The architecture is [PENGUINN](https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full) with modified input
GinaYang/distilbert-base-uncased-finetuned-emotion
GinaYang
2022-11-14T10:39:08Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T08:28:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9233934828732149 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2248 - Accuracy: 0.9235 - F1: 0.9234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8242 | 1.0 | 250 | 0.3230 | 0.9 | 0.8960 | | 0.2497 | 2.0 | 500 | 0.2248 | 0.9235 | 0.9234 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
micole66/autotrain-pachyderms-v2-2088767193
micole66
2022-11-14T10:04:56Z
179
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:micole66/autotrain-data-pachyderms-v2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T10:03:23Z
--- tags: - autotrain - vision - image-classification datasets: - micole66/autotrain-data-pachyderms-v2 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 1.190285924893865 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2088767193 - CO2 Emissions (in grams): 1.1903 ## Validation Metrics - Loss: 0.004 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
wiem87/swin-tiny-patch4-window7-224-finetuned-eurosat
wiem87
2022-11-14T09:54:37Z
204
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T09:31:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9825925925925926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0454 - Accuracy: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2137 | 1.0 | 190 | 0.0981 | 0.9681 | | 0.1487 | 2.0 | 380 | 0.0517 | 0.9830 | | 0.1398 | 3.0 | 570 | 0.0454 | 0.9826 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
SSarim/distilbert-base-uncased-finetuned-squad
SSarim
2022-11-14T09:38:09Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-13T13:54:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2188 | 1.0 | 5533 | 1.1636 | | 0.9569 | 2.0 | 11066 | 1.1337 | | 0.7599 | 3.0 | 16599 | 1.1563 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
stupidog04/krenzcolor_chkpt_classifier
stupidog04
2022-11-14T09:04:49Z
59
0
generic
[ "generic", "pytorch", "tensorboard", "vit", "image-classification", "model-index", "region:us" ]
image-classification
2022-10-26T12:13:50Z
--- tags: - image-classification - pytorch library_name: generic metrics: - accuracy model-index: - name: krenzcolor_chkpt_classifier results: - task: name: Image Classification type: pair-classification metrics: - name: Accuracy type: accuracy value: 0.9196428656578064 --- # krenzcolor_chkpt_classifier ## KK色彩課程-作業節點檢查AI Demo for checkpoint classification of the homework in Art course by "Krenz Cushart" 這個AI分類器會判斷同學在課程中L3,L4的臨摹中的三個檢查點,並檢查通過與否。 詳細六個類別如下: - (1) chk1_fail &nbsp;|&nbsp; (2) chk1_pass - (3) chk2_fail &nbsp;|&nbsp; (4) chk2_pass - (5) chk3_fail &nbsp;|&nbsp; (6) chk3_pass 其中chk1,chk2,chk3分別代表檢查點一、二、三;fail及pass代表作業通過與否。 ## 快速導覽: 將以下圖片拖曳至右側方框 (Hosted inference API) Note: 第一次讀取model的時候會跑比較久:~20秒 #### chk1_pass ![chk1_pass](images/L4_1_chk1_pass.jpg) #### chk2_pass ![chk2_pass](images/L4_1_chk2_pass.jpg) #### chk3_pass ![chk3_pass](images/L4_1_chk3_pass.jpg) ## 使用方法 ### 使用以下樣板填入臨摹 注意:務必將圖調整至224 x 224 pixels的大小再放入樣板右側空白處 ![L3-1老頭石膏](images/L3_1_tmp.jpg) ![L3-2布料](images/L3_2_tmp.jpg) ![L3-1雞](images/L4_1_tmp.jpg) ![L3-1雲](images/L4_2_tmp.jpg) ### 將圖片上傳到右側方匡 ![將圖片上傳到右側方匡](images/input_box.png) ### 上傳後會顯示各類別的機率 ![範例](images/example.png)
Kirangritz1997/finetuning-sentiment-model-3000-samples
Kirangritz1997
2022-11-14T09:04:41Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T08:41:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8741721854304636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3201 - Accuracy: 0.8733 - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Kaku0o0/distilbert-base-uncased-finetuned-squad
Kaku0o0
2022-11-14T06:32:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-13T22:42:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 274 | 1.5943 | | 0.9165 | 2.0 | 548 | 1.5836 | | 0.9165 | 3.0 | 822 | 1.6090 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
LeninGF/robbery_dataset_tf_finetuned_20221113
LeninGF
2022-11-14T06:30:43Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T06:30:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: robbery_dataset_tf_finetuned_20221113 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robbery_dataset_tf_finetuned_20221113 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0506 - Train Sparse Categorical Accuracy: 0.9844 - Validation Loss: 0.4108 - Validation Sparse Categorical Accuracy: 0.9068 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.4908 | 0.8335 | 0.2872 | 0.9060 | 0 | | 0.2496 | 0.9180 | 0.3137 | 0.8978 | 1 | | 0.1947 | 0.9351 | 0.3234 | 0.9062 | 2 | | 0.1597 | 0.9483 | 0.3092 | 0.9087 | 3 | | 0.1304 | 0.9580 | 0.2928 | 0.9140 | 4 | | 0.1013 | 0.9684 | 0.3450 | 0.9143 | 5 | | 0.0785 | 0.9742 | 0.3590 | 0.9080 | 6 | | 0.0709 | 0.9778 | 0.3711 | 0.9057 | 7 | | 0.0541 | 0.9821 | 0.4010 | 0.9128 | 8 | | 0.0506 | 0.9844 | 0.4108 | 0.9068 | 9 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
ftorres/distilbert-base-uncased-finetuned-squad
ftorres
2022-11-14T06:27:29Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-07T21:13:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4965 | 1.0 | 554 | 1.5562 | | 1.2141 | 2.0 | 1108 | 1.5012 | | 0.7883 | 3.0 | 1662 | 1.6340 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
ArthurZ/flax-tiny-random-bert-sharded
ArthurZ
2022-11-14T06:24:51Z
2,612
0
transformers
[ "transformers", "jax", "bert", "feature-extraction", "flax", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-17T16:08:40Z
--- tags: - flax --- # Model Card for flax-tiny-random-bert-sharded # Model Details ## Model Description This model is used to check that the sharding of a flax_model works properly. See [`test_checkpoint_sharding_from_hub`](https://github.com/huggingface/transformers/blob/main/tests/test_modeling_flax_common.py#L1049). # Uses The model is not designed to be used and serves a testing purpose. ### Software - Transformers 4.21.0.dev0 - TensorFlow 2.9.0 - Datasets 2.2.2 - Tokenizers 0.12.1
coderSounak/finetuning-hs-model-bert-multilingual
coderSounak
2022-11-14T06:12:56Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:cc-by-nc-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T05:34:43Z
--- license: cc-by-nc-3.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-hs-model-bert-multilingual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-hs-model-bert-multilingual This model is a fine-tuned version of [QCRI/bert-base-multilingual-cased-pos-english](https://huggingface.co/QCRI/bert-base-multilingual-cased-pos-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3158 - Accuracy: 0.9575 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
devtanumisra/finetuning-hate-speech-model-deberta
devtanumisra
2022-11-14T05:32:52Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T04:56:49Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-hate-speech-model-deberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-hate-speech-model-deberta This model is a fine-tuned version of [yangheng/deberta-v3-base-absa-v1.1](https://huggingface.co/yangheng/deberta-v3-base-absa-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7014 - Accuracy: 0.8430 - F1: 0.8566 - Precision: 0.7981 - Recall: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
nvaikun-cmu/output_test
nvaikun-cmu
2022-11-14T05:07:03Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-03T02:01:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: output_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_test This model is a fine-tuned version of [google/t5-base-lm-adapt](https://huggingface.co/google/t5-base-lm-adapt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3788 | 1.0 | 184 | 2.0899 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2
liuhaor4/distilbert-base-uncased-finetuned-squad
liuhaor4
2022-11-14T02:50:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-14T02:23:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6172 | 1.0 | 555 | 1.6168 | | 1.36 | 2.0 | 1110 | 1.4994 | | 0.9526 | 3.0 | 1665 | 1.6082 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
rajpurkarlab/gilbert
rajpurkarlab
2022-11-14T02:40:37Z
324
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "py", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T23:24:29Z
--- language: - py metrics: - f1 --- To use our fine-tuned BioBERT model to remove references to priors from radiology reports, run the following: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification modelname = "rajpurkarlab/gilbert" tokenizer = AutoTokenizer.from_pretrained(modelname) model = AutoModelForTokenClassification.from_pretrained(modelname) ```
dmis-lab/biosyn-sapbert-ncbi-disease
dmis-lab
2022-11-14T01:44:07Z
7,739
2
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:1901.08746", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- tags: - bert --- # Model Card for biosyn-sapbert-ncbi-disease # Model Details ## Model Description More information needed - **Developed by:** Dmis-lab (Data Mining and Information Systems Lab, Korea University) - **Shared by [Optional]:** Hugging Face - **Model type:** Feature Extraction - **Language(s) (NLP):** More information needed - **License:** More information needed - **Related Models:** - **Parent Model:** BERT - **Resources for more information:** - [GitHub Repo](https://github.com/jhyuklee/biobert) - [Associated Paper](https://arxiv.org/abs/1901.08746) # Uses ## Direct Use This model can be used for the task of Feature Extraction ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model creators note in the [associated paper](https://arxiv.org/pdf/1901.08746.pdf) > We used the BERTBASE model pre-trained on English Wikipedia and BooksCorpus for 1M steps. BioBERT v1.0 (þ PubMed þ PMC) is the version of BioBERT (þ PubMed þ PMC) trained for 470 K steps. When using both the PubMed and PMC corpora, we found that 200K and 270K pre-training steps were optimal for PubMed and PMC, respectively. We also used the ablated versions of BioBERT v1.0, which were pre-trained on only PubMed for 200K steps (BioBERT v1.0 (þ PubMed)) and PMC for 270K steps (BioBERT v1.0 (þ PMC)) ## Training Procedure ### Preprocessing The model creators note in the [associated paper](https://arxiv.org/pdf/1901.08746.pdf) > We pre-trained BioBERT using Naver Smart Machine Learning (NSML) (Sung et al., 2017), which is utilized for large-scale experiments that need to be run on several GPUs ### Speeds, Sizes, Times The model creators note in the [associated paper](https://arxiv.org/pdf/1901.08746.pdf) > The maximum sequence length was fixed to 512 and the mini-batch size was set to 192, resulting in 98 304 words per iteration. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** - **Training:** Eight NVIDIA V100 (32GB) GPUs [ for training], - **Fine-tuning:** a single NVIDIA Titan Xp (12GB) GPU to fine-tune BioBERT on each task - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ``` @article{lee2019biobert, title={BioBERT: a pre-trained biomedical language representation model for biomedical text mining}, author={Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo}, journal={arXiv preprint arXiv:1901.08746}, year={2019} } ``` # Glossary [optional] More information needed # More Information [optional] For help or issues using BioBERT, please submit a GitHub issue. Please contact Jinhyuk Lee(`lee.jnhk (at) gmail.com`), or Wonjin Yoon (`wonjin.info (at) gmail.com`) for communication related to BioBERT. # Model Card Authors [optional] Dmis-lab (Data Mining and Information Systems Lab, Korea University) in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biosyn-sapbert-ncbi-disease") model = AutoModel.from_pretrained("dmis-lab/biosyn-sapbert-ncbi-disease") ``` </details>
huggingtweets/apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1
huggingtweets
2022-11-14T00:58:21Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T00:58:10Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1229589315069628421/5Hy71tkj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1591483220880678915/vDy4TSgn_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Humongous Ape MP & Sean Diamond & Jon Mao & dan & Pesky Splinter - Eternal Goatse Celebrant & Admiral Dan EX QC of the 3rd Antifa fleet! 💙 & Guybrush Tweetbad & Fesshole 🧻</div> <div style="text-align: center; font-size: 14px;">@apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Humongous Ape MP & Sean Diamond & Jon Mao & dan & Pesky Splinter - Eternal Goatse Celebrant & Admiral Dan EX QC of the 3rd Antifa fleet! 💙 & Guybrush Tweetbad & Fesshole 🧻. | Data | Humongous Ape MP | Sean Diamond | Jon Mao | dan | Pesky Splinter - Eternal Goatse Celebrant | Admiral Dan EX QC of the 3rd Antifa fleet! 💙 | Guybrush Tweetbad | Fesshole 🧻 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | Tweets downloaded | 3242 | 3220 | 662 | 2928 | 3107 | 3220 | 3127 | 3253 | | Retweets | 176 | 2162 | 53 | 683 | 2406 | 444 | 450 | 17 | | Short tweets | 577 | 239 | 119 | 305 | 136 | 1180 | 421 | 1 | | Tweets kept | 2489 | 819 | 490 | 1940 | 565 | 1596 | 2256 | 3235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/329ftz7y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b8bvjnq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b8bvjnq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-bierincognito-fesshole-jonmao___-meat__hook-ripeacsky-theseandiamond-unfetteredmind1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/apesahoy-bierincognito-elonmusk-fesshole-jonmao___-meat__hook-ripeacsky-troovus-unfetteredmind1
huggingtweets
2022-11-13T23:37:55Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-13T23:37:44Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1172580448662372353/SwJNqDQl_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Humongous Ape MP & Fesshole 🧻 & troovus & Jon Mao & dan & Pesky Splinter - Eternal Goatse Celebrant & Admiral Dan EX QC of the 3rd Antifa fleet! 💙 & Guybrush Tweetbad</div> <div style="text-align: center; font-size: 14px;">@apesahoy-bierincognito-elonmusk-fesshole-jonmao___-meat__hook-ripeacsky-troovus-unfetteredmind1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Humongous Ape MP & Fesshole 🧻 & troovus & Jon Mao & dan & Pesky Splinter - Eternal Goatse Celebrant & Admiral Dan EX QC of the 3rd Antifa fleet! 💙 & Guybrush Tweetbad. | Data | Elon Musk | Humongous Ape MP | Fesshole 🧻 | troovus | Jon Mao | dan | Pesky Splinter - Eternal Goatse Celebrant | Admiral Dan EX QC of the 3rd Antifa fleet! 💙 | Guybrush Tweetbad | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | Tweets downloaded | 3199 | 3242 | 3250 | 3241 | 639 | 2928 | 3107 | 3220 | 3127 | | Retweets | 141 | 176 | 17 | 1025 | 53 | 682 | 2406 | 444 | 452 | | Short tweets | 975 | 577 | 1 | 133 | 111 | 305 | 136 | 1180 | 421 | | Tweets kept | 2083 | 2489 | 3232 | 2083 | 475 | 1941 | 565 | 1596 | 2254 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3masmfhs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-bierincognito-elonmusk-fesshole-jonmao___-meat__hook-ripeacsky-troovus-unfetteredmind1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xp8s411) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xp8s411/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-bierincognito-elonmusk-fesshole-jonmao___-meat__hook-ripeacsky-troovus-unfetteredmind1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mlagrand/xlm-roberta-base-finetuned-panx-de
mlagrand
2022-11-13T21:32:07Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-13T20:07:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.01 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.01 | 6 | 1.0252 | 0.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Narrativa/legal-longformer-base-4096-spanish
Narrativa
2022-11-13T19:55:34Z
112
12
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "Long documents", "longformer", "robertalex", "spanish", "legal", "es", "arxiv:2004.05150", "doi:10.57967/hf/0105", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-10T17:34:46Z
--- language: - es license: mit widget: - text: "Aprobada las Cortes Generales en sesiones plenarias del Congreso de los Diputados y del Senado celebradas el de octubre de , la Constitución fue ratificada en referéndum el de diciembre, siendo sancionada y promulgada por el rey Juan Carlos I el de diciembre y publicada en el Boletín Oficial del Estado el de diciembre del mismo año. La promulgación de la Constitución implicó la culminación de la llamada transición a la democracia, que tuvo lugar como consecuencia de la muerte, el de noviembre de , del anterior jefe de Estado, el dictador Francisco Franco, precipitando una serie de acontecimientos políticos e históricos que transformaron el anterior régimen dictatorial en un «Estado social y democrático de derecho que propugna como valores superiores del ordenamiento jurídico la libertad, la justicia, la igualdad y el pluralismo político», tal y como proclama el artículo primero de la Constitución.​ En él también se afianza el principio de «soberanía nacional», que «reside en el pueblo español»,​ y se establece «la Monarquía parlamentaria» como forma de gobierno.​ Deroga, además, en la Disposición Derogatoria, las Leyes Fundamentales del Reino aprobadas en y modificadas en múltiples ocasiones, la última de ellas en precisamente para abrir paso a la <mask>. «La Constitución se fundamenta en la indisoluble unidad de la Nación española, patria común e indivisible de todos los españoles y reconoce el derecho a la autonomía de las nacionalidades y regiones que la integran» (artículo ). Establece una organización territorial basada «en municipios, en provincias y en las Comunidades Autónomas que se constituyan»,​ rigiendo «la solidaridad entre todas ellas».​​ Tras el proceso de formación del Estado de las Autonomías, las comunidades autónomas gozan de una autonomía de naturaleza política que configura a España como un Estado autonómico.n. ​ Las entidades locales, como los municipios y las provincias, gozan de una autonomía de naturaleza administrativa, y sus instituciones actúan en conformidad con criterios de oportunidad dentro del marco legal fijado por el Estado y las comunidades autónomas.​ El rey es el jefe de Estado, símbolo de su unidad y permanencia, arbitra y modera el funcionamiento regular de las instituciones, asume la más alta representación del Estado español en las relaciones internacionales, especialmente con las naciones de su comunidad histórica, y ejerce las funciones que le atribuyen expresamente la Constitución y las leyes.​ Sus actos tienen una naturaleza reglada, cuya validez depende del refrendo de la autoridad competente que, según el caso, es el presidente del Gobierno, el presidente del Congreso de los Diputados, o un ministro." - text: "CONSEJO GENERAL DEL PODER JUDICIAL 18485. Acuerdo de 3 de noviembre de 2022, de la Comisión Permanente del Consejo General del Poder Judicial, por el que se convoca concurso para la provisión de puestos de trabajo en la Gerencia del Consejo. En la Gerencia del Consejo General del Poder Judicial se encuentran vacantes dos puestos de subalterno dotados presupuestariamente, con las características que se relacionan en el anexo I de este acuerdo y cuya provisión se considera necesaria en orden a la correcta asunción de las funciones encomendadas a ese órgano técnico. Por ello la Comisión Permanente del Consejo General del Poder Judicial, en su reunión del día de la fecha, ha acordado convocar un concurso de méritos para la cobertura de los citados puestos, de conformidad con lo dispuesto en los artículos 625 y concordantes de la Ley Orgánica 6/1985, de 1 de julio, del Poder Judicial. El concurso de méritos se regirá por las siguientes Normas Primera. Requisitos de participación. 1. Podrán tomar parte en el presente concurso los funcionarios/as pertenecientes a las agrupaciones profesionales a que se refiere la disposición transitoria tercera del Real Decreto Legislativo 5/2015, de 30 de octubre, por el que se aprueba el texto refundido de la Ley del Estatuto Básico del Empleado Público (anterior grupo E del artículo 25 de la Ley 30/1984, de 2 de agosto) o a los cuerpos o escalas de Auxilio Judicial de la Administración de Justicia, de conformidad con el artículo 624 de la Ley Orgánica 6/1985, de 1 de julio, del Poder Judicial, siempre que reúnan las condiciones generales exigidas al puesto de trabajo y los requisitos determinados en esta convocatoria en la fecha en que termine el plazo de presentación de solicitudes. 2. Los funcionarios/as con destino definitivo podrán participar siempre que hayan transcurrido, al menos, dos años desde la toma de posesión del último destino definitivo. No será necesario cumplir este plazo para los funcionarios/as que hayan sido removidos del puesto de trabajo obtenido por el procedimiento de concurso o, también, si ha sido suprimido su puesto de trabajo. Los funcionarios/as con destino definitivo en el Consejo, podrán participar si ha transcurrido, al menos, un año desde su toma de posesión en el último destino definitivo, salvo en el caso de aquellos/as que participen desde un puesto de trabajo con nivel inferior al convocado. 3. Los funcionarios/as en situación administrativa de <mask> en otras administraciones públicas o de excedencia voluntaria por interés particular o por agrupación familiar solo podrán participar en el concurso si en la fecha de finalización del plazo de presentación de solicitudes han transcurrido más de dos años en las indicadas situaciones. En el caso de la primera situación mencionada deberá haber transcurrido asimismo un plazo de dos años desde que obtuvieron su último destino definitivo. 4. Los funcionarios/as en situación de servicios especiales o en excedencia por cuidado de familiares solo podrán participar si en la fecha en que termina el plazo de presentación de solicitudes han transcurrido dos años desde la toma de posesión del último destino definitivo." - text: "La Constitución española de 1978 es la <mask> suprema del ordenamiento jurídico español." tags: - Long documents - longformer - robertalex - spanish - legal --- # Legal ⚖️ longformer-base-4096-spanish `legal-longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint (**[RoBERTalex](https://huggingface.co/PlanTL-GOB-ES/RoBERTalex)** in this case) and pre-trained for *MLM* on long documents from the [Spanish Legal Domain Corpora](https://zenodo.org/record/5495529/#.Y205lpHMKV5). It supports sequences of length up to **4,096**! **Longformer** uses a combination of a sliding window (*local*) attention and *global* attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. This model was made following the research done by [Iz Beltagy and Matthew E. Peters and Arman Cohan](https://arxiv.org/abs/2004.05150). ## Model (base checkpoint) [RoBERTalex](https://huggingface.co/PlanTL-GOB-ES/RoBERTalex?) There are few models trained for the Spanish language. Some of the models have been trained with a low resource, unclean corpora. The ones derived from the Spanish National Plan for Language Technologies are proficient in solving several tasks and have been trained using large-scale clean corpora. However, the Spanish Legal domain language could be thought of as an independent language on its own. We, therefore, created a Spanish Legal model from scratch trained exclusively on legal corpora. ## Dataset [Spanish Legal Domain Corpora](https://zenodo.org/record/5495529) A collection of corpora of Spanish legal domain. More legal domain resources: https://github.com/PlanTL-GOB-ES/lm-legal-es ## Citation If you want to cite this model you can use this: ```bibtex @misc{narrativa2022legal-longformer-base-4096-spanish, title={Legal Spanish LongFormer by Narrativa}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/Narrativa/legal-longformer-base-4096-spanish}}, year={2022} } ``` ## Disclaimer The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. > About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
SayakRana/finetune_hate_speech_improved_v1
SayakRana
2022-11-13T19:46:29Z
102
1
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-13T19:21:53Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetune_hate_speech_improved_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_hate_speech_improved_v1 This model is a fine-tuned version of [cross-encoder/ms-marco-electra-base](https://huggingface.co/cross-encoder/ms-marco-electra-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5548 - Accuracy: 0.8277 - F1: 0.8416 - Precision: 0.7883 - Recall: 0.9026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
phildav/Reinforce-carpole
phildav
2022-11-13T19:36:48Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-13T19:09:33Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-carpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 93.60 +/- 30.55 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
BruceZJC/distilbert-base-uncased-finetuned-squad
BruceZJC
2022-11-13T18:27:43Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-12T22:01:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7793 | 1.0 | 554 | 1.9337 | | 1.4469 | 2.0 | 1108 | 1.7193 | | 1.1585 | 3.0 | 1662 | 1.7362 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
ejarkm/ddpm-butterflies-128
ejarkm
2022-11-13T18:18:21Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-13T17:04:36Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/ejarkm/ddpm-butterflies-128/tensorboard?#scalars)