modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
jonfreak/dbvvPinata
jonfreak
2022-11-11T14:29:38Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-11T13:14:26Z
--- license: creativeml-openrail-m --- # Pinata dreambooth model for Stable-Diffusion Trained on 30 creatures, 2000 steps. With TheLastBen fast-stable-diffusion (https://github.com/TheLastBen/fast-stable-diffusion) use the token **dbvvpinata** ![grid-0004.png](https://s3.amazonaws.com/moonup/production/uploads/1668172835237-632702a8a28c096b45a9fb38.png) ![grid-0012.png](https://s3.amazonaws.com/moonup/production/uploads/1668172927129-632702a8a28c096b45a9fb38.png)
Terence3927/Reinforce-CartPole-v1
Terence3927
2022-11-11T13:54:07Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-11T13:49:22Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 92.90 +/- 34.69 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
epec254/my-awesome-setfit-model
epec254
2022-11-11T13:48:01Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-11T13:47:55Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Marre-Barre/bubblydubbly
Marre-Barre
2022-11-11T13:23:07Z
0
7
null
[ "region:us" ]
null
2022-11-10T12:51:24Z
Prompt: {{replace this with subject}}, soft colors, art by bubblydubbly negative prompt: heavy contrast, red eyes, blue hair blue hair as negative prompt if you want some normal hair scale: 8 steps: 50 art by bubblydubbly is the keyword bubblydubbly_7k is trained at 7000 steps, but tbh, I like the designs from 11,5k steps more, but the style is better for 7k steps. Pick your own and decide for yourself. :) Note: this is trained at 11500 steps, for 115 images, but seems a bit overtrained. Does some funky stuff with teeth. Will make a new version at 10k steps to see whether there is any difference while still retaining the style.
internetoftim/gpt2-finetuned-wikitext2
internetoftim
2022-11-11T12:40:27Z
196
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-11T12:16:29Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 18 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | nan | 1.0 | 291 | nan | | nan | 2.0 | 582 | nan | | nan | 3.0 | 873 | nan | ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_havest_0035
bigmorning
2022-11-11T11:30:44Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-11T11:30:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.5897 - Train Accuracy: 0.0150 - Train Do Wer: 1.0 - Validation Loss: 4.5822 - Validation Accuracy: 0.0130 - Validation Do Wer: 1.0 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | | 6.1085 | 0.0115 | 1.0 | 5.9657 | 0.0115 | 1.0 | 5 | | 5.8206 | 0.0115 | 1.0 | 5.7162 | 0.0115 | 1.0 | 6 | | 5.5567 | 0.0115 | 1.0 | 5.4963 | 0.0115 | 1.0 | 7 | | 5.3223 | 0.0116 | 1.0 | 5.3096 | 0.0116 | 1.0 | 8 | | 5.1222 | 0.0117 | 1.0 | 5.1600 | 0.0117 | 1.0 | 9 | | 4.9580 | 0.0117 | 1.0 | 5.0391 | 0.0118 | 1.0 | 10 | | 4.8251 | 0.0119 | 1.0 | 4.9427 | 0.0118 | 1.0 | 11 | | 4.7171 | 0.0119 | 1.0 | 4.8691 | 0.0119 | 1.0 | 12 | | 4.6284 | 0.0121 | 1.0 | 4.8123 | 0.0120 | 1.0 | 13 | | 4.5508 | 0.0121 | 1.0 | 4.7620 | 0.0121 | 1.0 | 14 | | 4.4855 | 0.0123 | 1.0 | 4.7260 | 0.0121 | 1.0 | 15 | | 4.4305 | 0.0124 | 1.0 | 4.7018 | 0.0123 | 1.0 | 16 | | 4.3788 | 0.0125 | 1.0 | 4.6738 | 0.0123 | 1.0 | 17 | | 4.3305 | 0.0127 | 1.0 | 4.6525 | 0.0124 | 1.0 | 18 | | 4.2860 | 0.0128 | 1.0 | 4.6401 | 0.0125 | 1.0 | 19 | | 4.2451 | 0.0130 | 1.0 | 4.6234 | 0.0126 | 1.0 | 20 | | 4.1994 | 0.0132 | 1.0 | 4.6077 | 0.0128 | 1.0 | 21 | | 4.1521 | 0.0133 | 1.0 | 4.6098 | 0.0129 | 1.0 | 22 | | 4.1148 | 0.0134 | 1.0 | 4.5919 | 0.0129 | 1.0 | 23 | | 4.0701 | 0.0135 | 1.0 | 4.6038 | 0.0128 | 1.0 | 24 | | 4.0199 | 0.0137 | 1.0 | 4.5777 | 0.0130 | 1.0 | 25 | | 3.9631 | 0.0138 | 1.0 | 4.5734 | 0.0131 | 1.0 | 26 | | 3.9175 | 0.0140 | 1.0 | 4.5866 | 0.0129 | 1.0 | 27 | | 3.8690 | 0.0142 | 1.0 | 4.5900 | 0.0129 | 1.0 | 28 | | 3.8276 | 0.0143 | 1.0 | 4.5602 | 0.0131 | 1.0 | 29 | | 3.7499 | 0.0145 | 1.0 | 4.5619 | 0.0132 | 1.0 | 30 | | 3.6968 | 0.0147 | 1.0 | 4.6203 | 0.0133 | 1.0 | 31 | | 3.6714 | 0.0149 | 1.0 | 4.7075 | 0.0133 | 1.0 | 32 | | 3.6318 | 0.0149 | 1.0 | 4.6638 | 0.0125 | 1.0 | 33 | | 3.5897 | 0.0150 | 1.0 | 4.5822 | 0.0130 | 1.0 | 34 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_havest_0025
bigmorning
2022-11-11T11:28:40Z
67
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T19:36:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0025 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0025 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0701 - Train Accuracy: 0.0135 - Train Do Wer: 1.0 - Validation Loss: 4.6038 - Validation Accuracy: 0.0128 - Validation Do Wer: 1.0 - Epoch: 24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | | 6.1085 | 0.0115 | 1.0 | 5.9657 | 0.0115 | 1.0 | 5 | | 5.8206 | 0.0115 | 1.0 | 5.7162 | 0.0115 | 1.0 | 6 | | 5.5567 | 0.0115 | 1.0 | 5.4963 | 0.0115 | 1.0 | 7 | | 5.3223 | 0.0116 | 1.0 | 5.3096 | 0.0116 | 1.0 | 8 | | 5.1222 | 0.0117 | 1.0 | 5.1600 | 0.0117 | 1.0 | 9 | | 4.9580 | 0.0117 | 1.0 | 5.0391 | 0.0118 | 1.0 | 10 | | 4.8251 | 0.0119 | 1.0 | 4.9427 | 0.0118 | 1.0 | 11 | | 4.7171 | 0.0119 | 1.0 | 4.8691 | 0.0119 | 1.0 | 12 | | 4.6284 | 0.0121 | 1.0 | 4.8123 | 0.0120 | 1.0 | 13 | | 4.5508 | 0.0121 | 1.0 | 4.7620 | 0.0121 | 1.0 | 14 | | 4.4855 | 0.0123 | 1.0 | 4.7260 | 0.0121 | 1.0 | 15 | | 4.4305 | 0.0124 | 1.0 | 4.7018 | 0.0123 | 1.0 | 16 | | 4.3788 | 0.0125 | 1.0 | 4.6738 | 0.0123 | 1.0 | 17 | | 4.3305 | 0.0127 | 1.0 | 4.6525 | 0.0124 | 1.0 | 18 | | 4.2860 | 0.0128 | 1.0 | 4.6401 | 0.0125 | 1.0 | 19 | | 4.2451 | 0.0130 | 1.0 | 4.6234 | 0.0126 | 1.0 | 20 | | 4.1994 | 0.0132 | 1.0 | 4.6077 | 0.0128 | 1.0 | 21 | | 4.1521 | 0.0133 | 1.0 | 4.6098 | 0.0129 | 1.0 | 22 | | 4.1148 | 0.0134 | 1.0 | 4.5919 | 0.0129 | 1.0 | 23 | | 4.0701 | 0.0135 | 1.0 | 4.6038 | 0.0128 | 1.0 | 24 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_havest_0015
bigmorning
2022-11-11T11:26:27Z
62
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T18:52:58Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5508 - Train Accuracy: 0.0121 - Train Do Wer: 1.0 - Validation Loss: 4.7620 - Validation Accuracy: 0.0121 - Validation Do Wer: 1.0 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | | 6.1085 | 0.0115 | 1.0 | 5.9657 | 0.0115 | 1.0 | 5 | | 5.8206 | 0.0115 | 1.0 | 5.7162 | 0.0115 | 1.0 | 6 | | 5.5567 | 0.0115 | 1.0 | 5.4963 | 0.0115 | 1.0 | 7 | | 5.3223 | 0.0116 | 1.0 | 5.3096 | 0.0116 | 1.0 | 8 | | 5.1222 | 0.0117 | 1.0 | 5.1600 | 0.0117 | 1.0 | 9 | | 4.9580 | 0.0117 | 1.0 | 5.0391 | 0.0118 | 1.0 | 10 | | 4.8251 | 0.0119 | 1.0 | 4.9427 | 0.0118 | 1.0 | 11 | | 4.7171 | 0.0119 | 1.0 | 4.8691 | 0.0119 | 1.0 | 12 | | 4.6284 | 0.0121 | 1.0 | 4.8123 | 0.0120 | 1.0 | 13 | | 4.5508 | 0.0121 | 1.0 | 4.7620 | 0.0121 | 1.0 | 14 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_havest_0010
bigmorning
2022-11-11T11:25:21Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T18:31:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.1222 - Train Accuracy: 0.0117 - Train Do Wer: 1.0 - Validation Loss: 5.1600 - Validation Accuracy: 0.0117 - Validation Do Wer: 1.0 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | | 6.1085 | 0.0115 | 1.0 | 5.9657 | 0.0115 | 1.0 | 5 | | 5.8206 | 0.0115 | 1.0 | 5.7162 | 0.0115 | 1.0 | 6 | | 5.5567 | 0.0115 | 1.0 | 5.4963 | 0.0115 | 1.0 | 7 | | 5.3223 | 0.0116 | 1.0 | 5.3096 | 0.0116 | 1.0 | 8 | | 5.1222 | 0.0117 | 1.0 | 5.1600 | 0.0117 | 1.0 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_havest_0005
bigmorning
2022-11-11T11:24:14Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T18:09:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_havest_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_havest_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4115 - Train Accuracy: 0.0115 - Train Do Wer: 1.0 - Validation Loss: 6.2357 - Validation Accuracy: 0.0115 - Validation Do Wer: 1.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 | | 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 | | 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 | | 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 | | 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
shamim237/en-it-model
shamim237
2022-11-11T11:19:07Z
60
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-11T11:17:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: en-it-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # en-it-model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-it](https://huggingface.co/Helsinki-NLP/opus-mt-en-it) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1962 - Train Acc: 0.4204 - Validation Loss: 0.2883 - Validation Acc: 0.4046 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Acc | Validation Loss | Validation Acc | Epoch | |:----------:|:---------:|:---------------:|:--------------:|:-----:| | 0.3407 | 0.4068 | 0.2950 | 0.4038 | 0 | | 0.2827 | 0.4128 | 0.2846 | 0.4052 | 1 | | 0.2563 | 0.4147 | 0.2787 | 0.4054 | 2 | | 0.2389 | 0.4166 | 0.2777 | 0.4056 | 3 | | 0.2262 | 0.4185 | 0.2800 | 0.4051 | 4 | | 0.2161 | 0.4186 | 0.2817 | 0.4049 | 5 | | 0.2082 | 0.4199 | 0.2829 | 0.4051 | 6 | | 0.2014 | 0.4213 | 0.2860 | 0.4047 | 7 | | 0.1962 | 0.4204 | 0.2883 | 0.4046 | 8 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs
ctu-aic
2022-11-11T11:17:40Z
110
1
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "Summarization", "abstractive summarization", "multilingual summarization", "m2m100_418M", "Czech", "text2text generation", "text generation", "cs", "en", "de", "fr", "tu", "zh", "es", "ru", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-23T21:38:12Z
--- language: - cs - en - de - fr - tu - zh - es - ru tags: - Summarization - abstractive summarization - multilingual summarization - m2m100_418M - Czech - text2text generation - text generation license: cc-by-sa-4.0 datasets: - Multilingual_large_dataset_(multilarge) - cnc/dm - xsum - mlsum - cnewsum - cnc - sumeczech metrics: - rouge - rougeraw - MemesCS --- # m2m100-418M-multilingual-summarization-multilarge-cs This model is a fine-tuned checkpoint of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries. ## Task The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: ''cs', 'en', 'de', 'es', 'fr', 'ru', 'tu', 'zh' #Usage Assume that you are using the provided MultilingualSummarizer.ipynb file and included files from git repository. ```python ## Configuration of summarization pipeline # def summ_config(): cfg = OrderedDict([ ## summarization model - checkpoint # ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs # ctu-aic/mt5-base-multilingual-summarization-multilarge-cs # ctu-aic/mbart25-multilingual-summarization-multilarge-cs ("model_name", "ctu-aic/mbart25-multilingual-summarization-multilarge-cs"), ## language of summarization task # language : string : cs, en, de, fr, es, tr, ru, zh ("language", "en"), ## generation method parameters in dictionary # ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.95), ("repetition_penalty", 1.23), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 128), ("min_length", 10), ])), #texts to summarize values = (list of strings, string, dataset) ("texts", [ "english text1 to summarize", "english text2 to summarize", ] ), #OPTIONAL: Target summaries values = (list of strings, string, None) ('golds', [ "target english text1", "target english text2", ]), #('golds', None), ]) return cfg cfg = summ_config() mSummarize = MultiSummarizer(**cfg) summaries,scores = mSummarize(**cfg) ``` ## Dataset Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set. ``` Train set: 3 464 563 docs Validation set: 121 260 docs ``` | Stats | fragment | | | avg document length | | avg summary length | | Documents | |-------------|----------|---------------------|--------------------|--------|---------|--------|--------|--------| | __dataset__ |__compression__ | __density__ | __coverage__ | __nsent__ | __nwords__ | __nsent__ | __nwords__ | __count__ | | cnc | 7.388 | 0.303 | 0.088 | 16.121 | 316.912 | 3.272 | 46.805 | 750K | | sumeczech | 11.769 | 0.471 | 0.115 | 27.857 | 415.711 | 2.765 | 38.644 | 1M | | cnndm | 13.688 | 2.983 | 0.538 | 32.783 | 676.026 | 4.134 | 54.036 | 300K | | xsum | 18.378 | 0.479 | 0.194 | 18.607 | 369.134 | 1.000 | 21.127 | 225K| | mlsum/tu | 8.666 | 5.418 | 0.461 | 14.271 | 214.496 | 1.793 | 25.675 | 274K | | mlsum/de | 24.741 | 8.235 | 0.469 | 32.544 | 539.653 | 1.951 | 23.077 | 243K| | mlsum/fr | 24.388 | 2.688 | 0.424 | 24.533 | 612.080 | 1.320 | 26.93 | 425K | | mlsum/es | 36.185 | 3.705 | 0.510 | 31.914 | 746.927 | 1.142 | 21.671 | 291K | | mlsum/ru | 78.909 | 1.194 | 0.246 | 62.141 | 948.079 | 1.012 | 11.976 | 27K| | cnewsum | 20.183 | 0.000 | 0.000 | 16.834 | 438.271 | 1.109 | 21.926 | 304K | #### Tokenization Truncation and padding were set to 512 tokens for the encoder (input text) and 128 for the decoder (summary). ## Training Trained based on cross-entropy loss. ``` Time: 3 days 10 hours Epochs: 1072K steps = 10 (from 10) GPUs: 4x NVIDIA A100-SXM4-40GB eloss: 2.824 - 1.745 tloss: 4.559 - 1.615 ``` ### ROUGE results per individual dataset test set: | ROUGE | ROUGE-1 | | | ROUGE-2 | | | ROUGE-L | | | |------------|---------|---------|-----------|--------|--------|-----------|--------|--------|---------| | dataset | Precision | Recall | Fscore | Precision | Recall | Fscore | Precision | Recall | Fscore | | cnc | 30.13 | 22.56 | 25.21 | 10.53 | 8.01 | 8.9 | 22.47 | 16.92 | 18.86 | | sumeczech- | 26.6 | 19.66 | 22.01 | 8.17 | 6.12 | 6.82 | 19.93 | 14.81 | 16.54 | | cnndm | 41.8 | 38.41 | 38.94 | 18.74 | 17.14 | 17.4 | 29.69 | 27.33 | 27.68 | | xsum | 38.27 | 33.62 | 35.16 | 14.39 | 12.69 | 13.25 | 30.77 | 27.05 | 28.29 | | mlsum-tu | 52.44 | 44.36 | 46.39 | 36.98 | 31.51 | 32.86 | 46.04 | 39.04 | 40.8 | | mlsum-de | 42.19 | 40.5 | 40.7 | 28.8 | 28.51 | 28.37 | 38.95 | 37.7 | 37.79 | | mlsum-fr | 34.57 | 27.74 | 29.95 | 16.27 | 13.04 | 14.08 | 27.18 | 21.89 | 23.6 | | mlsum-es | 30.93 | 26.41 | 27.66 | 11.42 | 9.85 | 10.28 | 25.12 | 21.59 | 22.55 | | mlsum-ru | 0.65 | 0.52 | 0.56 | 0.15 | 0.15 | 0.15 | 0.65 | 0.52 | 0.56 | | cnewsum | 25.14 | 26.56 | 24.45 | 6.89 | 7.54 | 6.78 | 24.77 | 26.15 | 24.08 | # USAGE ``` soon ```
horie-t/distilbert-base-uncased-finetuned-emotion
horie-t
2022-11-11T10:55:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-11T10:32:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.923910566982731 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.924 - F1: 0.9239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3321 | 0.9055 | 0.9023 | | No log | 2.0 | 500 | 0.2236 | 0.924 | 0.9239 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
amitjohn007/xlm-roberta-base-finetuned-squad
amitjohn007
2022-11-11T10:38:17Z
60
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-11T08:43:38Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: amitjohn007/xlm-roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/xlm-roberta-base-finetuned-squad This model is a fine-tuned version of [deepset/xlm-roberta-large-squad2](https://huggingface.co/deepset/xlm-roberta-large-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2888 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.6587 | 0 | | 0.4550 | 1 | | 0.2888 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
DeividasM/whisper-small-lt
DeividasM
2022-11-11T09:32:22Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "lt-asr-leaderboard", "generated_from_trainer", "lt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-07T11:26:58Z
--- language: - lt license: apache-2.0 tags: - lt-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small LT - Lithuanian Whisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: lt split: train+validation args: lt metrics: - name: Wer type: wer value: 32.65614439629468 --- ![WHISPER](WHISPER.png) <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small LT - Lithuanian Whisper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3871 - Wer: 32.6561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2419 | 1.8 | 1000 | 0.3749 | 38.7707 | | 0.0425 | 3.6 | 2000 | 0.3591 | 34.2345 | | 0.0062 | 5.4 | 3000 | 0.3779 | 32.7555 | | 0.0034 | 7.19 | 4000 | 0.3871 | 32.6561 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
thisisHJLee/wav2vec2-large-xls-r-1b-korean-convsen5
thisisHJLee
2022-11-11T09:29:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-11T02:32:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-1b-korean-convsen5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-korean-convsen5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0655 - Cer: 0.0105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | |:-------------:|:-----:|:----:|:------:|:---------------:| | 0.2312 | 1.0 | 1408 | 0.0869 | 0.4450 | | 0.109 | 2.0 | 2816 | 0.0789 | 0.4756 | | 0.0457 | 3.0 | 4224 | 0.0696 | 0.5013 | | 0.0334 | 4.0 | 5632 | 0.0628 | 0.4815 | | 0.0222 | 5.0 | 7040 | 0.0655 | 0.0105 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.11.0
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-xas-ntsema-colab
ntsema
2022-11-11T09:24:42Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T04:52:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-xas-ntsema-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-xas-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Terence3927/testpyramidsrnd
Terence3927
2022-11-11T08:56:50Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-11-11T08:56:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Terence3927/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
reza-aditya/q-Taxi-v3
reza-aditya
2022-11-11T08:32:14Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-11T08:32:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="reza-aditya/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
geek1024/prompt-extend
geek1024
2022-11-11T08:09:54Z
106
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-11T07:21:00Z
--- license: mit tags: - generated_from_trainer model-index: - name: prompt-extend results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prompt-extend This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.3823 | 0.35 | 100 | 4.2083 | | 3.72 | 0.69 | 200 | 3.2991 | | 3.1185 | 1.04 | 300 | 2.8394 | | 2.7284 | 1.39 | 400 | 2.5546 | | 2.4932 | 1.74 | 500 | 2.3679 | | 2.3408 | 2.08 | 600 | 2.2430 | | 2.1997 | 2.43 | 700 | 2.1748 | | 2.1631 | 2.78 | 800 | 2.1502 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
BearlyWorkingYT/OPT-125M-Kaggle-Creepypasta
BearlyWorkingYT
2022-11-11T07:39:02Z
113
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-11T07:19:36Z
--- license: other widget: - text: "There was a ghost" example_title: "First Prompt used in video" - text: "I was playing Terraria but then" example_title: "Second prompt used in video" inference: parameters: temperature: 0.6 repetition_penalty: 1.15 min_length: 128 max_length: 468 --- This is the model trained for this video: https://www.youtube.com/watch?v=OEPL5Tm3mmQ Due to hardware limitations, I trained this model with only a batch size of 2. (I know this isn't ideal). The quality of the model may be affected. After training was complete, the best model according to a hold-out set was used. This model was trained using a filtered version of this dataset: https://www.kaggle.com/datasets/thomaskonstantin/3500-popular-creepypastas This dataset had a lot of blank entries and missing text. Please subscribe to my YouTube Channel for bad quality videos and poorly trained models. https://www.youtube.com/channel/UCLXxfueCPZRZnyGFWJ07uqA
amitjohn007/roberta-base-finetuned-squad
amitjohn007
2022-11-11T07:26:14Z
59
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-11T06:35:49Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: amitjohn007/roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/roberta-base-finetuned-squad This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4173 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16608, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.7396 | 0 | | 0.5461 | 1 | | 0.4173 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
studio-ousia/luke-large-finetuned-conll-2003
studio-ousia
2022-11-11T06:57:23Z
1,240
3
transformers
[ "transformers", "pytorch", "luke", "arxiv:2010.01057", "arxiv:1906.08237", "arxiv:1903.07785", "arxiv:2002.01808", "arxiv:1910.09700", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 --- # Model Card for luke-large-finetuned-conll-2003 # Model Details ## Model Description LUKE (Language Understanding with Knowledge-based Embeddings) is a new pretrained contextualized representation of words and entities based on transformer. - **Developed by:** Studio Ousia - **Shared by [Optional]:** More information needed - **Model type:** EntitySpanClassification - **Language(s) (NLP):** More information needed - **License:** Apache-2.0 - **Related Models:** [Luke-large](https://huggingface.co/studio-ousia/luke-large?text=Paris+is+the+%3Cmask%3E+of+France.) - **Parent Model:** Luke - **Resources for more information:** - [GitHub Repo](https://github.com/studio-ousia/luke) - [Associated Paper](https://arxiv.org/abs/2010.01057) # Uses ## Direct Use More information needed ## Downstream Use [Optional] This model can also be used for the task of named entity recognition, cloze-style question answering, fine-grained entity typing, extractive question answering. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics LUKE achieves state-of-the-art results on five popular NLP benchmarks including * **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive question answering), * **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)** (cloze-style question answering), * **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation classification), and * **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing). ## Results The experimental results are provided as follows: | Task | Dataset | Metric | LUKE-large | luke-base | Previous SOTA | | ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- | | Extractive Question Answering | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) | EM/F1 | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237)) | | Named Entity Recognition | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/) | F1 | **94.3** | 93.3 | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785)) | | Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/) | EM/F1 | **90.6**/**91.2** | - | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) | | Relation Classification | [TACRED](https://nlp.stanford.edu/projects/tacred/) | F1 | **72.7** | - | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | | Fine-grained Entity Typing | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1 | **78.2** | - | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | Please check the [Github repository](https://github.com/studio-ousia/luke) for more details and updates. # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware * transformers_version: 4.6.0.dev0 ### Software More information needed # Citation **BibTeX:** ``` @inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Studio Ousia in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, LukeForEntitySpanClassification tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") ``` </details>
zhenyueyu/distilbert-base-uncased-finetuned-squad
zhenyueyu
2022-11-11T04:12:56Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-11T03:44:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2755 | 1.0 | 553 | 2.1210 | | 1.8766 | 2.0 | 1106 | 1.7363 | | 1.5381 | 3.0 | 1659 | 1.7093 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
kakaobrain/coyo-align-b7-base
kakaobrain
2022-11-11T03:42:56Z
0
0
null
[ "align", "clip", "en", "dataset:kakaobrain/coyo-700m", "arxiv:2102.05918", "license:apache-2.0", "region:us" ]
null
2022-11-09T07:13:12Z
--- language: - en tags: - align - clip license: apache-2.0 datasets: - kakaobrain/coyo-700m inference: false --- # Model Details This is an unofficial implementation of [ALIGN](https://arxiv.org/abs/2102.05918) trained on [COYO-700M](https://github.com/kakaobrain/coyo-dataset). The official ALIGN is trained on its dataset of 1.8B samples. That dataset is not released to the public. Instead, we trained our implementation of ALIGN model on [COYO-700M](https://github.com/kakaobrain/coyo-dataset). It's developed by Kakao Brain to validate the performance of COYO-700M dataset on a large-scale model. The training took about 8 days on TPU V3-512. ## Model Date April 2022 ## Model Type This is dual encoder model where - image encoder is using EfficientNet-B7 architecture - text encoder is using BERT-base architecture # Training data This model is trained on [COYO-700M](https://github.com/kakaobrain/coyo-dataset) dataset. # Evaluation results | | Dataset | ImageNet | Flickr30k | | MsCOCO | | |----------------------------------|:----------:|:--------:|:---------:|:-------:|:-------:|:-------:| | | | KNN | I2T R@1 | T2I R@1 | I2T R@1 | T2I R@1 | | ALIGN-L2-Large(Google) | ALIGN 1.8B | 76.4 | 88.6 | 75.7 | 58.6 | 45.6 | | ALIGN-B7-Base(Google) | ALIGN 1.8B | 69.3 | - | - | 55.4 | 41.7 | | COYO-ALIGN-B7-Base(Kakao Brain) | COYO-700M | 68.6 | 88.1 | 73.2 | 61.2 | 43.1 |
wilcomply/xlm-roberta-base-finetuned-panx-all
wilcomply
2022-11-11T03:15:09Z
121
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-11T02:43:49Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1731 - F1: 0.8525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2992 | 1.0 | 835 | 0.1936 | 0.8164 | | 0.1588 | 2.0 | 1670 | 0.1711 | 0.8466 | | 0.1022 | 3.0 | 2505 | 0.1731 | 0.8525 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
alextoyment/ppo-LunarLander-v2
alextoyment
2022-11-11T03:03:46Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-11T03:03:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 165.65 +/- 21.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/obama-self-2
sd-concepts-library
2022-11-11T02:57:39Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-11T02:57:29Z
--- license: mit --- ### obama_self_2 on Stable Diffusion This is the `<Obama>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Obama> 0](https://huggingface.co/sd-concepts-library/obama-self-2/resolve/main/concept_images/1.jpg) ![<Obama> 1](https://huggingface.co/sd-concepts-library/obama-self-2/resolve/main/concept_images/2.jpg) ![<Obama> 2](https://huggingface.co/sd-concepts-library/obama-self-2/resolve/main/concept_images/3.jpg) ![<Obama> 3](https://huggingface.co/sd-concepts-library/obama-self-2/resolve/main/concept_images/0.jpg)
jjjj-j/distilbert-base-uncased-finetuned-cola
jjjj-j
2022-11-11T02:39:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-06T22:10:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0884 - Matthews Correlation: 0.2439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 23 | 1.1535 | 0.0 | | No log | 2.0 | 46 | 1.1430 | 0.0 | | No log | 3.0 | 69 | 1.1438 | 0.0 | | No log | 4.0 | 92 | 1.0995 | 0.1890 | | No log | 5.0 | 115 | 1.1155 | 0.0509 | | No log | 6.0 | 138 | 1.0881 | 0.1554 | | No log | 7.0 | 161 | 1.1095 | 0.2136 | | No log | 8.0 | 184 | 1.0884 | 0.2439 | | No log | 9.0 | 207 | 1.1145 | 0.2155 | | No log | 10.0 | 230 | 1.1092 | 0.1897 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
krishnateja/wav2vec2-large-xls-r-300m-tr-colab
krishnateja
2022-11-11T01:59:27Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-10T02:53:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
huggingtweets/queenofbithynia
huggingtweets
2022-11-11T00:37:45Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/queenofbithynia/1668126937466/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1010627358879932416/0xVVQg3X_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">the needle-felted head of joyce carol oates</div> <div style="text-align: center; font-size: 14px;">@queenofbithynia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from the needle-felted head of joyce carol oates. | Data | the needle-felted head of joyce carol oates | | --- | --- | | Tweets downloaded | 3186 | | Retweets | 1 | | Short tweets | 64 | | Tweets kept | 3121 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pdmfti8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @queenofbithynia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hmbsp4tx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hmbsp4tx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/queenofbithynia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
robertbogdon/model_tuning_mindalle9_jsy6zj-labels-classification
robertbogdon
2022-11-11T00:34:27Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-11-11T00:34:25Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on model_tuning_mindalle9_jsy6zj to apply classification on labels **Metrics of the best model:** accuracy 0.735922 recall_macro 0.631737 precision_macro 0.440117 f1_macro 0.457940 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float ... free_string useless temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-9" type="checkbox" ><label for="sk-estimator-id-9" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
EhtashamNQ/mt5-small-finetuned-amazon-en-es
EhtashamNQ
2022-11-11T00:24:55Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-10T16:33:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: EhtashamNQ/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # EhtashamNQ/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5396 - Validation Loss: 2.8061 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 5208, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 20.5300 | 7.1775 | 0 | | 5.5220 | 3.7545 | 1 | | 3.4137 | 3.5929 | 2 | | 2.9827 | 3.0892 | 3 | | 2.7228 | 2.8718 | 4 | | 2.5396 | 2.8061 | 5 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
evelynerhuan/distilbert-base-uncased-model-1
evelynerhuan
2022-11-11T00:05:42Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-10T23:31:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-model-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-model-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0114 | 1.0 | 554 | 1.9485 | | 1.6658 | 2.0 | 1108 | 1.6325 | | 1.2555 | 3.0 | 1662 | 1.6071 | | 1.038 | 4.0 | 2216 | 1.6472 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
evelynerhuan/distilbert-base-uncased-original-finetuned-squad
evelynerhuan
2022-11-10T22:29:41Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-10T22:01:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-original-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-original-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.965 | 1.0 | 554 | 1.8076 | | 1.6215 | 2.0 | 1108 | 1.6230 | | 1.298 | 3.0 | 1662 | 1.6427 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
codefactory4791/distilbert-base-uncased-finetuned-emotion
codefactory4791
2022-11-10T22:21:33Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T15:27:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9340438701286115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1618 - Accuracy: 0.934 - F1: 0.9340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1749 | 1.0 | 250 | 0.1700 | 0.9325 | 0.9321 | | 0.1128 | 2.0 | 500 | 0.1618 | 0.934 | 0.9340 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.11.0
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-evn2-ntsema-colab
ntsema
2022-11-10T22:12:45Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T06:34:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-evn2-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.9866666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-evn2-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0299 - Wer: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2753 | 6.15 | 400 | 1.6106 | 0.99 | | 0.8472 | 12.3 | 800 | 1.6731 | 0.99 | | 0.4462 | 18.46 | 1200 | 1.8516 | 0.99 | | 0.2556 | 24.61 | 1600 | 2.0299 | 0.9867 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
amitjohn007/albert-finetuned-squad
amitjohn007
2022-11-10T22:07:05Z
59
0
transformers
[ "transformers", "tf", "albert", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-11-10T18:32:51Z
--- tags: - generated_from_keras_callback model-index: - name: amitjohn007/albert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/albert-finetuned-squad This model is a fine-tuned version of [ahotrod/albert_xxlargev1_squad2_512](https://huggingface.co/ahotrod/albert_xxlargev1_squad2_512) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0498 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.3775 | 0 | | 0.1702 | 1 | | 0.0498 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
AlekseyKorshuk/dalio-all-io-1.3b-3-epoch
AlekseyKorshuk
2022-11-10T21:12:47Z
97
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-all-io", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T20:52:55Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-1.3b-3-epoch results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.05841094794583167 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-all-io-1.3b-3-epoch This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.3008 - Accuracy: 0.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 | | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 | | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 | | 2.7302 | 0.14 | 4 | 2.5234 | 0.0526 | | 2.7004 | 0.17 | 5 | 2.5078 | 0.0529 | | 2.5681 | 0.21 | 6 | 2.4941 | 0.0532 | | 2.6404 | 0.24 | 7 | 2.4883 | 0.0534 | | 2.5325 | 0.28 | 8 | 2.4805 | 0.0536 | | 2.7205 | 0.31 | 9 | 2.4746 | 0.0536 | | 2.5149 | 0.34 | 10 | 2.4648 | 0.0533 | | 2.5017 | 0.38 | 11 | 2.4512 | 0.0535 | | 2.7026 | 0.41 | 12 | 2.4395 | 0.0539 | | 2.5259 | 0.45 | 13 | 2.4316 | 0.0543 | | 2.563 | 0.48 | 14 | 2.4219 | 0.0546 | | 2.5679 | 0.52 | 15 | 2.4141 | 0.0550 | | 2.3701 | 0.55 | 16 | 2.4082 | 0.0551 | | 2.4739 | 0.59 | 17 | 2.4082 | 0.0551 | | 2.481 | 0.62 | 18 | 2.4023 | 0.0548 | | 2.5795 | 0.66 | 19 | 2.3945 | 0.0549 | | 2.4902 | 0.69 | 20 | 2.3867 | 0.0549 | | 2.4509 | 0.72 | 21 | 2.3809 | 0.0551 | | 2.6052 | 0.76 | 22 | 2.3730 | 0.0553 | | 2.3323 | 0.79 | 23 | 2.3633 | 0.0555 | | 2.5994 | 0.83 | 24 | 2.3555 | 0.0556 | | 2.3347 | 0.86 | 25 | 2.3477 | 0.0556 | | 2.421 | 0.9 | 26 | 2.3398 | 0.0559 | | 2.5337 | 0.93 | 27 | 2.3359 | 0.0560 | | 2.4102 | 0.97 | 28 | 2.3320 | 0.0563 | | 2.4309 | 1.0 | 29 | 2.3262 | 0.0564 | | 1.9305 | 1.03 | 30 | 2.3223 | 0.0564 | | 1.8601 | 1.07 | 31 | 2.3203 | 0.0567 | | 1.8682 | 1.1 | 32 | 2.3281 | 0.0564 | | 1.8657 | 1.14 | 33 | 2.3535 | 0.0564 | | 2.063 | 1.17 | 34 | 2.3398 | 0.0567 | | 1.6443 | 1.21 | 35 | 2.3242 | 0.0568 | | 1.7592 | 1.24 | 36 | 2.3164 | 0.0569 | | 1.8981 | 1.28 | 37 | 2.3105 | 0.0569 | | 1.9379 | 1.31 | 38 | 2.3047 | 0.0573 | | 1.6008 | 1.34 | 39 | 2.3027 | 0.0574 | | 1.595 | 1.38 | 40 | 2.3027 | 0.0575 | | 1.7096 | 1.41 | 41 | 2.3027 | 0.0575 | | 1.7245 | 1.45 | 42 | 2.3027 | 0.0576 | | 1.795 | 1.48 | 43 | 2.3008 | 0.0577 | | 1.7241 | 1.52 | 44 | 2.3008 | 0.0576 | | 1.6356 | 1.55 | 45 | 2.2988 | 0.0576 | | 1.77 | 1.59 | 46 | 2.2969 | 0.0576 | | 1.6675 | 1.62 | 47 | 2.2930 | 0.0577 | | 1.6929 | 1.66 | 48 | 2.2910 | 0.0577 | | 1.6635 | 1.69 | 49 | 2.2910 | 0.0576 | | 1.6093 | 1.72 | 50 | 2.2910 | 0.0578 | | 1.7362 | 1.76 | 51 | 2.2891 | 0.0580 | | 1.7015 | 1.79 | 52 | 2.2852 | 0.0581 | | 1.9515 | 1.83 | 53 | 2.2812 | 0.0582 | | 1.6494 | 1.86 | 54 | 2.2773 | 0.0580 | | 1.7522 | 1.9 | 55 | 2.2734 | 0.0580 | | 1.7369 | 1.93 | 56 | 2.2676 | 0.0581 | | 1.6528 | 1.97 | 57 | 2.2637 | 0.0581 | | 1.51 | 2.0 | 58 | 2.2617 | 0.0583 | | 1.4579 | 2.03 | 59 | 2.2637 | 0.0585 | | 1.2645 | 2.07 | 60 | 2.2695 | 0.0585 | | 1.2424 | 2.1 | 61 | 2.2773 | 0.0584 | | 1.2117 | 2.14 | 62 | 2.2891 | 0.0584 | | 1.4059 | 2.17 | 63 | 2.3008 | 0.0580 | | 1.328 | 2.21 | 64 | 2.3145 | 0.0581 | | 1.3436 | 2.24 | 65 | 2.3281 | 0.0580 | | 1.389 | 2.28 | 66 | 2.3379 | 0.0580 | | 1.2127 | 2.31 | 67 | 2.3398 | 0.0580 | | 1.3645 | 2.34 | 68 | 2.3418 | 0.0581 | | 1.3389 | 2.38 | 69 | 2.3379 | 0.0581 | | 1.2549 | 2.41 | 70 | 2.3320 | 0.0581 | | 1.2193 | 2.45 | 71 | 2.3281 | 0.0582 | | 1.3617 | 2.48 | 72 | 2.3223 | 0.0583 | | 1.2336 | 2.52 | 73 | 2.3184 | 0.0583 | | 1.179 | 2.55 | 74 | 2.3145 | 0.0583 | | 1.2468 | 2.59 | 75 | 2.3125 | 0.0583 | | 1.3325 | 2.62 | 76 | 2.3086 | 0.0583 | | 1.1471 | 2.66 | 77 | 2.3066 | 0.0583 | | 1.3123 | 2.69 | 78 | 2.3066 | 0.0583 | | 1.3285 | 2.72 | 79 | 2.3047 | 0.0585 | | 1.3232 | 2.76 | 80 | 2.3027 | 0.0584 | | 1.1228 | 2.79 | 81 | 2.3027 | 0.0584 | | 1.3524 | 2.83 | 82 | 2.3027 | 0.0584 | | 1.2042 | 2.86 | 83 | 2.3027 | 0.0583 | | 1.3588 | 2.9 | 84 | 2.3008 | 0.0583 | | 1.2982 | 2.93 | 85 | 2.3008 | 0.0584 | | 1.4373 | 2.97 | 86 | 2.3008 | 0.0585 | | 1.3562 | 3.0 | 87 | 2.3008 | 0.0584 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mrojas/roberta-clinical-wl-es-finetuned-ner
mrojas
2022-11-10T20:38:26Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wl", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-10T20:16:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wl metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-clinical-wl-es-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wl type: wl config: WL split: train args: WL metrics: - name: Precision type: precision value: 0.6865079365079365 - name: Recall type: recall value: 0.7355442176870748 - name: F1 type: f1 value: 0.7101806239737274 - name: Accuracy type: accuracy value: 0.8267950260730044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-clinical-wl-es-finetuned-ner This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the wl dataset. It achieves the following results on the evaluation set: - Loss: 0.6227 - Precision: 0.6865 - Recall: 0.7355 - F1: 0.7102 - Accuracy: 0.8268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.028 | 1.0 | 500 | 0.6870 | 0.6558 | 0.6855 | 0.6703 | 0.8035 | | 0.5923 | 2.0 | 1000 | 0.6248 | 0.6851 | 0.7235 | 0.7038 | 0.8244 | | 0.4928 | 3.0 | 1500 | 0.6227 | 0.6865 | 0.7355 | 0.7102 | 0.8268 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
AlekseyKorshuk/dalio-all-io-1.3b
AlekseyKorshuk
2022-11-10T20:11:48Z
96
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-all-io", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T19:59:40Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-1.3b results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.05582538140677676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-all-io-1.3b This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.3652 - Accuracy: 0.0558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 | | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 | | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 | | 2.7302 | 0.14 | 4 | 2.5234 | 0.0527 | | 2.7 | 0.17 | 5 | 2.5078 | 0.0528 | | 2.5674 | 0.21 | 6 | 2.4941 | 0.0532 | | 2.6406 | 0.24 | 7 | 2.4883 | 0.0534 | | 2.5315 | 0.28 | 8 | 2.4805 | 0.0536 | | 2.7202 | 0.31 | 9 | 2.4727 | 0.0537 | | 2.5144 | 0.34 | 10 | 2.4648 | 0.0536 | | 2.4983 | 0.38 | 11 | 2.4512 | 0.0537 | | 2.7029 | 0.41 | 12 | 2.4414 | 0.0539 | | 2.5198 | 0.45 | 13 | 2.4336 | 0.0540 | | 2.5706 | 0.48 | 14 | 2.4258 | 0.0545 | | 2.5688 | 0.52 | 15 | 2.4180 | 0.0548 | | 2.3793 | 0.55 | 16 | 2.4102 | 0.0552 | | 2.4785 | 0.59 | 17 | 2.4043 | 0.0554 | | 2.4688 | 0.62 | 18 | 2.3984 | 0.0553 | | 2.5674 | 0.66 | 19 | 2.3984 | 0.0553 | | 2.5054 | 0.69 | 20 | 2.3945 | 0.0554 | | 2.452 | 0.72 | 21 | 2.3887 | 0.0555 | | 2.5999 | 0.76 | 22 | 2.3828 | 0.0556 | | 2.3665 | 0.79 | 23 | 2.3789 | 0.0556 | | 2.6223 | 0.83 | 24 | 2.375 | 0.0557 | | 2.3562 | 0.86 | 25 | 2.3711 | 0.0557 | | 2.429 | 0.9 | 26 | 2.3691 | 0.0557 | | 2.563 | 0.93 | 27 | 2.3672 | 0.0558 | | 2.4573 | 0.97 | 28 | 2.3652 | 0.0558 | | 2.4883 | 1.0 | 29 | 2.3652 | 0.0558 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lmvasque/prompt-ls-es-1
lmvasque
2022-11-10T19:27:28Z
107
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-08T14:02:07Z
--- license: cc-by-4.0 --- ## UoM&MMU at TSAR-2022 Shared Task - Prompt Learning for Lexical Simplification: prompt-ls-es-1 We present **PromptLS**, a method for fine-tuning large pre-trained masked language models to perform the task of Lexical Simplification. This model is part of a series of models presented at the [TSAR-2022 Shared Task](https://taln.upf.edu/pages/tsar2022-st/) by the University of Manchester and Manchester Metropolitan University (UoM&MMU) Team in English, Spanish and Portuguese. You can find more details about the project in our [GitHub](https://github.com/lmvasque/ls-prompt-tsar2022). ## Models Our models were fine-tuned using prompt-learning for **Lexical Simplification**. These are the available models you can use (current model page in bold): | Model Name | Run # | Language | Setting | |----------------------------------------------------------------------|-------|:-----------:|---------------| | [prompt-ls-en-1](https://huggingface.co/lmvasque/prompt-ls-en-1) | 1 | English | fine-tune | | [prompt-ls-en-2](https://huggingface.co/lmvasque/prompt-ls-en-2) | 2 | English | fine-tune | | [roberta-large](https://huggingface.co/roberta-large) | 3 | English | zero-shot | | **[prompt-ls-es-1](https://huggingface.co/lmvasque/prompt-ls-es-1)** | **1** | **Spanish** | **fine-tune** | | [prompt-ls-es-2](https://huggingface.co/lmvasque/prompt-ls-es-2) | 2 | Spanish | fine-tune | | [prompt-ls-es-3](https://huggingface.co/lmvasque/prompt-ls-es-3) | 3 | Spanish | fine-tune | | [prompt-ls-pt-1](https://huggingface.co/lmvasque/prompt-ls-pt-1) | 1 | Portuguese | fine-tune | | [prompt-ls-pt-2](https://huggingface.co/lmvasque/prompt-ls-pt-2) | 2 | Portuguese | fine-tune | | [prompt-ls-pt-3](https://huggingface.co/lmvasque/prompt-ls-pt-3) | 3 | Portuguese | fine-tune | For the zero-shot setting, we used the original models with no further training. Links to these models are also updated in the table above. ## Results We include the [official results](https://github.com/LaSTUS-TALN-UPF/TSAR-2022-Shared-Task/tree/main/results/official) from the competition test set as a reference. However, we encourage the users to also check our results in the development set, which show an increased performance for Spanish and Portuguese. You can find more details in our [paper](https://drive.google.com/file/d/1x5dRxgcSGAaCCrjsgpCHnYek9G-TmZff/view?usp=share_link). | Language | # | Model | Setting | Prompt1 | Prompt2 | w | k | Acc@1 | A@3 | M@3 | P@3 | |------------|---|-------|--------------|---------|---------|---|---|-------|-----|-----|-------------| | English | 1 | RoBERTa-L | fine-tune | simple | word | 5 | 5 | **0.6353** | **0.5308** | **0.4244** | **0.8739** | | English | 2 | mBERT | multilingual | easier | word | 10 | 10 | 0.4959 | 0.4235 | 0.3273 | 0.7560 | | English | 3 | RoBERTa-L | zero-shot | easier | word | 5 | - | 0.2654 | 0.268 | 0.1820 | 0.4906 | | Spanish | 1 | BERTIN | fine-tune | sinónimo | fácil | - | 3 | 0.3451 | **0.2907** | **0.2238** | **0.5543** | | Spanish | 2 | BERTIN | fine-tune | palabra | simple | - | 10 | 0.3614 | **0.2907**| 0.2225 | 0.538 | | Spanish | 3 | BERTIN | fine-tune | sinónimo | fácil | 10 | 10 | **0.3668** | 0.269 | 0.2128 | 0.5326 | | Portuguese | 1 | BR_BERTo | fine-tune | palavra | simples | - | 8 | **0.1711** | 0.1096 | 0.1011 | 0.2486 | | Portuguese | 2 | BR_BERTo | fine-tune | sinônimo | fácil | - | 10 | 0.1363 | 0.0962 | 0.0944 | 0.2379 | | Portuguese | 3 | BR_BERTo | fine-tune | sinônimo | simples | 5 | 10 | 0.1577 | **0.1283**| **0.1071**| **0.2834**| ## Citation If you use our results and scripts in your research, please cite our work: "[UoM&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification](https://drive.google.com/file/d/1x5dRxgcSGAaCCrjsgpCHnYek9G-TmZff/view?usp=share_link)". ``` @inproceedings{vasquez-rodriguez-etal-2022-prompt-ls, title = "UoM\&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Nguyen, Nhung T. H. and Shardlow, Matthew and Ananiadou, Sophia", booktitle = "Shared Task on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/prompt-ls-pt-2
lmvasque
2022-11-10T19:11:39Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-08T14:05:58Z
--- license: cc-by-4.0 --- ## UoM&MMU at TSAR-2022 Shared Task - Prompt Learning for Lexical Simplification: prompt-ls-pt-2 We present **PromptLS**, a method for fine-tuning large pre-trained masked language models to perform the task of Lexical Simplification. This model is part of a series of models presented at the [TSAR-2022 Shared Task](https://taln.upf.edu/pages/tsar2022-st/) by the University of Manchester and Manchester Metropolitan University (UoM&MMU) Team in English, Spanish and Portuguese. You can find more details about the project in our [GitHub](https://github.com/lmvasque/ls-prompt-tsar2022). ## Models Our models were fine-tuned using prompt-learning for **Lexical Simplification**. These are the available models you can use (current model page in bold): | Model Name | Run # | Language | Setting | |----------------------------------------------------------------------|-------|:--------------:|---------------| | [prompt-ls-en-1](https://huggingface.co/lmvasque/prompt-ls-en-1) | 1 | English | fine-tune | | [prompt-ls-en-2](https://huggingface.co/lmvasque/prompt-ls-en-2) | 2 | English | fine-tune | | [roberta-large](https://huggingface.co/roberta-large) | 3 | English | zero-shot | | [prompt-ls-es-1](https://huggingface.co/lmvasque/prompt-ls-es-1) | 1 | Spanish | fine-tune | | [prompt-ls-es-2](https://huggingface.co/lmvasque/prompt-ls-es-2) | 2 | Spanish | fine-tune | | [prompt-ls-es-3](https://huggingface.co/lmvasque/prompt-ls-es-3) | 3 | Spanish | fine-tune | | [prompt-ls-pt-1](https://huggingface.co/lmvasque/prompt-ls-pt-1) | 1 | Portuguese | fine-tune | | **[prompt-ls-pt-2](https://huggingface.co/lmvasque/prompt-ls-pt-2)** | **2** | **Portuguese** | **fine-tune** | | [prompt-ls-pt-3](https://huggingface.co/lmvasque/prompt-ls-pt-3) | 3 | Portuguese | fine-tune | For the zero-shot setting, we used the original models with no further training. Links to these models are also updated in the table above. ## Results We include the [official results](https://github.com/LaSTUS-TALN-UPF/TSAR-2022-Shared-Task/tree/main/results/official) from the competition test set as a reference. However, we encourage the users to also check our results in the development set, which show an increased performance for Spanish and Portuguese. You can find more details in our [paper](https://drive.google.com/file/d/1x5dRxgcSGAaCCrjsgpCHnYek9G-TmZff/view?usp=share_link). | Language | # | Model | Setting | Prompt1 | Prompt2 | w | k | Acc@1 | A@3 | M@3 | P@3 | |------------|---|-------|--------------|---------|---------|---|---|-------|-----|-----|-------------| | English | 1 | RoBERTa-L | fine-tune | simple | word | 5 | 5 | **0.6353** | **0.5308** | **0.4244** | **0.8739** | | English | 2 | mBERT | multilingual | easier | word | 10 | 10 | 0.4959 | 0.4235 | 0.3273 | 0.7560 | | English | 3 | RoBERTa-L | zero-shot | easier | word | 5 | - | 0.2654 | 0.268 | 0.1820 | 0.4906 | | Spanish | 1 | BERTIN | fine-tune | sinónimo | fácil | - | 3 | 0.3451 | **0.2907** | **0.2238** | **0.5543** | | Spanish | 2 | BERTIN | fine-tune | palabra | simple | - | 10 | 0.3614 | **0.2907**| 0.2225 | 0.538 | | Spanish | 3 | BERTIN | fine-tune | sinónimo | fácil | 10 | 10 | **0.3668** | 0.269 | 0.2128 | 0.5326 | | Portuguese | 1 | BR_BERTo | fine-tune | palavra | simples | - | 8 | **0.1711** | 0.1096 | 0.1011 | 0.2486 | | Portuguese | 2 | BR_BERTo | fine-tune | sinônimo | fácil | - | 10 | 0.1363 | 0.0962 | 0.0944 | 0.2379 | | Portuguese | 3 | BR_BERTo | fine-tune | sinônimo | simples | 5 | 10 | 0.1577 | **0.1283**| **0.1071**| **0.2834**| ## Citation If you use our results and scripts in your research, please cite our work: "[UoM&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification](https://drive.google.com/file/d/1x5dRxgcSGAaCCrjsgpCHnYek9G-TmZff/view?usp=share_link)". ``` @inproceedings{vasquez-rodriguez-etal-2022-prompt-ls, title = "UoM\&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Nguyen, Nhung T. H. and Shardlow, Matthew and Ananiadou, Sophia", booktitle = "Shared Task on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/prompt-ls-es-3
lmvasque
2022-11-10T19:11:28Z
110
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-08T14:03:09Z
--- license: cc-by-4.0 --- ## UoM&MMU at TSAR-2022 Shared Task - Prompt Learning for Lexical Simplification: prompt-ls-es-3 We present **PromptLS**, a method for fine-tuning large pre-trained masked language models to perform the task of Lexical Simplification. This model is part of a series of models presented at the [TSAR-2022 Shared Task](https://taln.upf.edu/pages/tsar2022-st/) by the University of Manchester and Manchester Metropolitan University (UoM&MMU) Team in English, Spanish and Portuguese. You can find more details about the project in our [GitHub](https://github.com/lmvasque/ls-prompt-tsar2022). ## Models Our models were fine-tuned using prompt-learning for **Lexical Simplification**. These are the available models you can use (current model page in bold): | Model Name | Run # | Language | Setting | |--------------------------------------------------------------------|----|:-----------:|-----------| | [prompt-ls-en-1](https://huggingface.co/lmvasque/prompt-ls-en-1) | 1 | English | fine-tune | | [prompt-ls-en-2](https://huggingface.co/lmvasque/prompt-ls-en-2) | 2 | English | fine-tune | | [roberta-large](https://huggingface.co/roberta-large) | 3 | English | zero-shot | | [prompt-ls-es-1](https://huggingface.co/lmvasque/prompt-ls-es-1) | 1 | Spanish | fine-tune | | [prompt-ls-es-2](https://huggingface.co/lmvasque/prompt-ls-es-2) | 2 | Spanish | fine-tune | | **[prompt-ls-es-3](https://huggingface.co/lmvasque/prompt-ls-es-3)** | **3** | **Spanish** | **fine-tune** | | [prompt-ls-pt-1](https://huggingface.co/lmvasque/prompt-ls-pt-1) | 1 | Portuguese | fine-tune | | [prompt-ls-pt-2](https://huggingface.co/lmvasque/prompt-ls-pt-2) | 2 | Portuguese | fine-tune | | [prompt-ls-pt-3](https://huggingface.co/lmvasque/prompt-ls-pt-3) | 3 | Portuguese | fine-tune | For the zero-shot setting, we used the original models with no further training. Links to these models are also updated in the table above. ## Results We include the [official results](https://github.com/LaSTUS-TALN-UPF/TSAR-2022-Shared-Task/tree/main/results/official) from the competition test set as a reference. However, we encourage the users to also check our results in the development set, which show an increased performance for Spanish and Portuguese. You can find more details in our [paper](https://drive.google.com/file/d/1x5dRxgcSGAaCCrjsgpCHnYek9G-TmZff/view?usp=share_link). | Language | # | Model | Setting | Prompt1 | Prompt2 | w | k | Acc@1 | A@3 | M@3 | P@3 | |------------|---|-------|--------------|---------|---------|---|---|-------|-----|-----|-------------| | English | 1 | RoBERTa-L | fine-tune | simple | word | 5 | 5 | **0.6353** | **0.5308** | **0.4244** | **0.8739** | | English | 2 | mBERT | multilingual | easier | word | 10 | 10 | 0.4959 | 0.4235 | 0.3273 | 0.7560 | | English | 3 | RoBERTa-L | zero-shot | easier | word | 5 | - | 0.2654 | 0.268 | 0.1820 | 0.4906 | | Spanish | 1 | BERTIN | fine-tune | sinónimo | fácil | - | 3 | 0.3451 | **0.2907** | **0.2238** | **0.5543** | | Spanish | 2 | BERTIN | fine-tune | palabra | simple | - | 10 | 0.3614 | **0.2907**| 0.2225 | 0.538 | | Spanish | 3 | BERTIN | fine-tune | sinónimo | fácil | 10 | 10 | **0.3668** | 0.269 | 0.2128 | 0.5326 | | Portuguese | 1 | BR_BERTo | fine-tune | palavra | simples | - | 8 | **0.1711** | 0.1096 | 0.1011 | 0.2486 | | Portuguese | 2 | BR_BERTo | fine-tune | sinônimo | fácil | - | 10 | 0.1363 | 0.0962 | 0.0944 | 0.2379 | | Portuguese | 3 | BR_BERTo | fine-tune | sinônimo | simples | 5 | 10 | 0.1577 | **0.1283**| **0.1071**| **0.2834**| ## Citation If you use our results and scripts in your research, please cite our work: "[UoM&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification](https://drive.google.com/file/d/1x5dRxgcSGAaCCrjsgpCHnYek9G-TmZff/view?usp=share_link)". ``` @inproceedings{vasquez-rodriguez-etal-2022-prompt-ls, title = "UoM\&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Nguyen, Nhung T. H. and Shardlow, Matthew and Ananiadou, Sophia", booktitle = "Shared Task on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
yunocchi/swin-tiny-patch4-window7-224-finetuned-respirator
yunocchi
2022-11-10T19:03:05Z
208
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-10T17:18:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-respirator results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9082397003745318 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-respirator This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2124 - Accuracy: 0.9082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4872 | 0.98 | 37 | 0.2124 | 0.9082 | | 0.4828 | 1.98 | 74 | 0.2124 | 0.9082 | | 0.4772 | 2.98 | 111 | 0.2124 | 0.9082 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
nateraw/videomae-base-finetuned-ucf101
nateraw
2022-11-10T18:54:58Z
158
1
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "vision", "en", "arxiv:1910.09700", "license:mit", "endpoints_compatible", "region:us" ]
video-classification
2022-11-10T18:46:46Z
--- language: en license: mit library_name: transformers tags: - video-classification - videomae - vision --- # Model Card for videomae-base-finetuned-ucf101 A [WandB report here](https://wandb.ai/nateraw/videomae-finetune-ucf101/reports/Fine-Tuning-VideoMAE-Base-on-UCF101--VmlldzoyOTUwMjk4) for metrics. # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination-optional) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation-optional) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> VideoMAE Base model fine tuned on UCF101 - **Developed by:** [@nateraw](https://huggingface.co/nateraw) - **Shared by [optional]:** [More Information Needed] - **Model type:** fine-tuned - **Language(s) (NLP):** en - **License:** mit - **Related Models [optional]:** [More Information Needed] - **Parent Model [optional]:** [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) - **Resources for more information:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model can be used for Video Action Recognition ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing We sampled clips from the videos of 64 frames, then took a uniform sample of those frames to get 16 frame inputs for the model. During training, we used PyTorchVideo's [`MixVideo`](https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/transforms/mix.py) to apply mixup/cutmix. ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results We only trained/evaluated one fold from the UCF101 annotations. Unlike in the VideoMAE paper, we did not perform inference over multiple crops/segments of validation videos, so the results are likely slightly lower than what you would get if you did that too. - Eval Accuracy: 0.758209764957428 - Eval Accuracy Top 5: 0.8983050584793091 # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [@nateraw](https://huggingface.co/nateraw) # Model Card Contact [@nateraw](https://huggingface.co/nateraw) # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from decord import VideoReader, cpu import torch import numpy as np from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification from huggingface_hub import hf_hub_download np.random.seed(0) def sample_frame_indices(clip_len, frame_sample_rate, seg_len): converted_len = int(clip_len * frame_sample_rate) end_idx = np.random.randint(converted_len, seg_len) start_idx = end_idx - converted_len indices = np.linspace(start_idx, end_idx, num=clip_len) indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) return indices # video clip consists of 300 frames (10 seconds at 30 FPS) file_path = hf_hub_download( repo_id="nateraw/dino-clips", filename="archery.mp4", repo_type="space" ) videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0)) # sample 16 frames videoreader.seek(0) indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(videoreader)) video = videoreader.get_batch(indices).asnumpy() feature_extractor = VideoMAEFeatureExtractor.from_pretrained("nateraw/videomae-base-finetuned-ucf101") model = VideoMAEForVideoClassification.from_pretrained("nateraw/videomae-base-finetuned-ucf101") inputs = feature_extractor(list(video), return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # model predicts one of the 101 UCF101 classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]) ``` </details>
robertbogdon/model_tuning_mindallee8kmcfjz-labels-classification
robertbogdon
2022-11-10T18:46:33Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-11-10T18:46:30Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on model_tuning_mindallee8kmcfjz to apply classification on labels **Metrics of the best model:** accuracy 0.806000 recall_macro 0.416887 precision_macro 0.391691 f1_macro 0.397991 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float ... free_string useless temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
Omerdor/dry_samples_train
Omerdor
2022-11-10T18:21:32Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-10T14:50:19Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dry_samples_train ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 4 - gradient_accumulation_steps: 3 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/dry_samples_train/tensorboard?#scalars)
Vested-Sigil/VanGO
Vested-Sigil
2022-11-10T17:54:49Z
0
0
null
[ "region:us" ]
null
2022-11-10T17:51:20Z
#!/usr/bin/env python3 from diffusers import DiffusionPipeline import PIL import requests from io import BytesIO import torch def download_image(url): response = requests.get(url) return PIL.Image.open(BytesIO(response.content)).convert("RGB") pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16") pipe.to("cuda") pipe.enable_attention_slicing() ### Text-to-Image images = pipe.text2img("An astronaut riding a horse").images ### Image-to-Image init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg") prompt = "A fantasy landscape, trending on artstation" images = pipe.img2img(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images ### Inpainting img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) prompt = "a cat sitting on a bench" images = pipe.inpaint(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
huggingtweets/googlepoetics
huggingtweets
2022-11-10T17:53:15Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T17:52:16Z
--- language: en thumbnail: http://www.huggingtweets.com/googlepoetics/1668102791580/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000152236311/e364d2a13dab35a8b65c9decf71ae134_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Google Poetics</div> <div style="text-align: center; font-size: 14px;">@googlepoetics</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Google Poetics. | Data | Google Poetics | | --- | --- | | Tweets downloaded | 1569 | | Retweets | 9 | | Short tweets | 35 | | Tweets kept | 1525 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2re8zf12/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @googlepoetics's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cwwobqqi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cwwobqqi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/googlepoetics') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nielsr/detr-table-structure-recognition
nielsr
2022-11-10T17:22:16Z
216
1
transformers
[ "transformers", "pytorch", "detr", "object-detection", "endpoints_compatible", "region:us" ]
object-detection
2022-09-06T14:36:57Z
Hi, Please don't use this model anymore, it only worked for a specific branch of mine. From now on it's recommended to use https://huggingface.co/microsoft/table-transformer-structure-recognition from Transformers. Thanks, have a great day
nielsr/detr-table-detection
nielsr
2022-11-10T17:21:51Z
214
2
transformers
[ "transformers", "pytorch", "detr", "object-detection", "endpoints_compatible", "region:us" ]
object-detection
2022-09-06T14:28:01Z
Hi, Please don't use this model anymore, it only worked for a specific branch of mine. From now on it's recommended to use https://huggingface.co/microsoft/table-transformer-detection from Transformers. Thanks, have a great day
yunocchi/swin-tiny-patch4-window7-224-finetuned-eurosat
yunocchi
2022-11-10T16:57:04Z
204
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-10T16:52:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.48148148148148145 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0629 - Accuracy: 0.4815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 1.0629 | 0.4815 | | No log | 2.0 | 4 | 1.0387 | 0.4815 | | No log | 3.0 | 6 | 1.0107 | 0.4815 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
amitjohn007/bert-finetuned-squad
amitjohn007
2022-11-10T16:43:37Z
59
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-10T05:33:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: amitjohn007/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5685 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16638, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2704 | 0 | | 0.7816 | 1 | | 0.5685 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT
ajtamayoh
2022-11-10T16:42:14Z
113
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-11T02:54:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NER_EHR_Spanish_model_Mulitlingual_BERT results: [] widget: - text: 'Presentamos el caso de una mujer de 30 años, fumadora de 20 cigarrillos/día y sin otros antecedentes personales de interés. La paciente refiere infecciones urinarias de repetición. Se indica realización de ecografía abdominal, observándose una lesión nodular intravesical, por lo que es derivada a consulta de urología. En cistoscopia se visualiza tumoración exofítica de 3x3 cms. en cara lateral derecha con mucosa vesical íntegra, no encontrándose alteraciones en el resto de la vejiga. Se realiza exploración bajo anestesia (EBA) y resección transuretral de dicha lesión (RTU). En el informe de anatomía patológica macroscópicamente se describen fragmentos de pared vesical con urotelio conservado sin displasia, destacando en la capa muscular propia y en continuidad con el tejido muscular de la misma, una tumoración fusocelular con células que muestran unos núcleos de gran tamaño, pleomórficos, de aspecto vesiculoso y unos citoplasmas amplios eosinófilos. Esta celularidad se dispone en formas de fascículos mal definidos y entre la misma se reconoce abundante celularidad constituida fundamentalmente por numerosas células plasmáticas y leucocitos polimorfonucleares eosinófilos. No se observa un índice mitótico elevado, aunque el índice de proliferación medido como positividad nuclear con anticuerpos frente a MIB-1 se encuentra entre el 10 y el 25% de la celularidad tumoral. No se han objetivado áreas de necrosis. En estudio inmunohistoquímico se observa marcada positividad frente a citoqueratinas (AE1/AE3) y CAM5.2 a nivel citoplasmático, así como una marcada positividad citoplasmática con anticuerpos frente a p80 (proteína ALK). La celularidad descrita ha resultado negativa con anticuerpos frente a músculo liso (actina de músculo liso, MyO D1 y Calretinina), así como para CEA y citoqueratinas de alto peso molecular, observándose tan sólo positividad focal y aislada frente a EMA. Tras realización de FISH sobre material parafinado no se evidencia traslocación en el gen de la ALK. El diagnóstico anatomopatológico definitivo es tumor miofibroblástico inflamatorio vesical.' --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER_EHR_Spanish_model_Mulitlingual_BERT This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the DisTEMIST shared task 2022 dataset. It is available at: https://temu.bsc.es/distemist/category/data/ It achieves the following results on the evaluation set: - Loss: 0.2603 - Precision: 0.5637 - Recall: 0.5801 - F1: 0.5718 - Accuracy: 0.9534 ## Model description For a complete description of our system, please go to: https://ceur-ws.org/Vol-3180/paper-26.pdf ## Training and evaluation data Dataset provided by DisTEMIST shared task, it is available at: https://temu.bsc.es/distemist/category/data/ ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 71 | 0.2060 | 0.5017 | 0.5540 | 0.5266 | 0.9496 | | No log | 2.0 | 142 | 0.2163 | 0.5363 | 0.5433 | 0.5398 | 0.9495 | | No log | 3.0 | 213 | 0.2245 | 0.5521 | 0.5356 | 0.5438 | 0.9514 | | No log | 4.0 | 284 | 0.2453 | 0.5668 | 0.5985 | 0.5822 | 0.9522 | | No log | 5.0 | 355 | 0.2433 | 0.5657 | 0.5579 | 0.5617 | 0.9530 | | No log | 6.0 | 426 | 0.2553 | 0.5762 | 0.5762 | 0.5762 | 0.9536 | | No log | 7.0 | 497 | 0.2603 | 0.5637 | 0.5801 | 0.5718 | 0.9534 | ### How to cite this work: Tamayo, A., Burgos, D. A., & Gelbukh, A. (2022). mbert and simple post-processing: A baseline for disease mention detection in spanish. In Working Notes of Conference and Labs of the Evaluation (CLEF) Forum. CEUR Workshop Proceedings. @inproceedings{tamayo2022mbert, title={mbert and simple post-processing: A baseline for disease mention detection in spanish}, author={Tamayo, Antonio and Burgos, Diego A and Gelbukh, Alexander}, booktitle={Working Notes of Conference and Labs of the Evaluation (CLEF) Forum. CEUR Workshop Proceedings}, year={2022} } ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Sents_tokenized_mBERT_cased_fine_tuned
ajtamayoh
2022-11-10T16:34:20Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-08T21:01:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Sents_tokenized_mBERT_cased_fine_tuned results: [] widget: - text: 'Se hospitalizó un hombre de 42 años, al que se le había diagnosticado recientemente un carcinoma renal sarcomatoide de células claras metastásico, con fiebre, manejo del dolor por metástasis óseas sintomáticas y para decisiones de tratamiento sistémico de primera línea. El paciente no tenía otros antecedentes. Inicialmente presentó fiebre de 39,0 °C el 12 de marzo de 2020, para la cual recibió ceftriaxona fuera de nuestro centro. El día 6, presentó tos leve y fiebre (38,3°C), lo que llevó a realizar una prueba de PCR en tiempo real para SARS-CoV-2; el resultado fue positivo. El paciente fue ingresado en la sala de COVID-19 de nuestro hospital y se monitorizó estrechamente. La TAC torácica mostró opacidades de vidrio esmerilado bilaterales parcheadas, asociadas al COVID-19 (figura 1). El D7 se le empezó a administrar terapia antivírica con lopinavir y ritonavir (400mg/100mg por vía oral), que se mantuvo durante 5 días, según las directrices locales. El día 8, una disnea súbita y una caída de la saturación obligaron a aumentar el oxígeno a 6 l/min, sin necesidad de ventilación mecánica. Se le administraron dos dosis de tocilizumab, con 8 mg/kg i.v. en cada dosis, separadas 8 horas, con buena tolerancia. Después mostró una mejora clínica, pasando a afebril rápidamente y con un consumo de oxígeno decreciente, que fue retirado por completo el día 12. Una TAC torácica del día 12 confirmó la mejora mostrando regresión parcial de los infiltrados pulmonares y de las opacidades de vidrio esmerilado. La proteína C-reactiva, un marcador indirecto de liberación de citocinas, disminuyó de 225 mg/L a 33 mg/L en 4 días (figura 1). Tras la administración de tocilizumab no se observaron cambios relevantes en las subpoblaciones linfocíticas circulantes y el porcentaje de CD4 + CD25 + linfocitos era alto, antes y después del tocilizumab. Finalmente, el paciente se recuperó totalmente de los síntomas de la COVID-19.' --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Sents_tokenized_mBERT_cased_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the LivingNER shared task 2022 dataset. It is available at: https://temu.bsc.es/livingner/category/data/ It achieves the following results on the evaluation set: - Loss: 0.0546 - Precision: 0.8574 - Recall: 0.7366 - F1: 0.7924 - Accuracy: 0.9893 ## Model description For a complete description of our system, please go to: https://ceur-ws.org/Vol-3202/livingner-paper13.pdf ## Training and evaluation data Dataset provided by LivingNER shared task, it is available at: https://temu.bsc.es/livingner/category/data/ ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0505 | 1.0 | 2568 | 0.0434 | 0.9399 | 0.6781 | 0.7878 | 0.9886 | | 0.0393 | 2.0 | 5136 | 0.0450 | 0.9384 | 0.6947 | 0.7984 | 0.9892 | | 0.0306 | 3.0 | 7704 | 0.0451 | 0.9497 | 0.6951 | 0.8027 | 0.9897 | | 0.0266 | 4.0 | 10272 | 0.0422 | 0.9646 | 0.6904 | 0.8048 | 0.9900 | | 0.0208 | 5.0 | 12840 | 0.0494 | 0.9576 | 0.6969 | 0.8067 | 0.9902 | | 0.0141 | 6.0 | 15408 | 0.0506 | 0.8407 | 0.7352 | 0.7844 | 0.9890 | | 0.0093 | 7.0 | 17976 | 0.0546 | 0.8574 | 0.7366 | 0.7924 | 0.9893 | ### How to cite this work: Tamayo, A., Burgos, D., & Gelbukh, A. (2022). ParTNER: Paragraph Tuning for Named Entity Recognition on Clinical Cases in Spanish using mBERT+ Rules. In CEUR Workshop Proceedings (Vol. 3202). CEUR-WS. @inproceedings{tamayo2022partner, title={ParTNER: Paragraph Tuning for Named Entity Recognition on Clinical Cases in Spanish using mBERT+ Rules}, author={Tamayo, Antonio and Burgos, Diego and Gelbukh, Alexander} } ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RafaelEiji/jurisbert-base-classify
RafaelEiji
2022-11-10T16:19:29Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T12:49:42Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [juridics/jurisbert-base-portuguese-uncased](https://huggingface.co/juridics/jurisbert-base-portuguese-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4838 - Accuracy: 0.7176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.0+cu116 - Datasets 2.6.1 - Tokenizers 0.13.1
sid321axn/minilm-finetuned-emotionclassification
sid321axn
2022-11-10T16:16:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T05:46:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: minilm-finetuned-emotionclassification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # minilm-finetuned-emotionclassification This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0554 - F1 Score: 0.6732 ## Model description The base model used is Microsoft MiniLM-L12-H384-uncased which is finetuned on [GoEmotions dataset](https://huggingface.co/datasets/go_emotions) available on huggingface. With this model, you can classify emotions in English text data. The model predicts 10 basic emotions: 1) anger 🤬 2) love ❤️ 3) fear 😨 4) joy 😀 5) excitement 😄 6) sadness 😭 7) surprise 😲 8) gratitude 😊 9) curiosity 🤔 10 caring ## Intended uses & limitations The model can be used to detect emotions from text/ documents which can be used for analysis contextual emotional analysis of the documents ## Training and evaluation data The dataset used for Training and Evaluation is [GoEmotions dataset](https://huggingface.co/datasets/go_emotions) and in this, we have used 10 emotion variables. {0:'sadness',1:'joy',2:'love',3:'anger',4:'fear',5:'surprise',6:'excitement',7:'gratitude',8:'curiosity',9:'caring'} ## How to use the model Here is how to use this model to extract the emotions from the given text in PyTorch: ```python >>> from transformers import pipeline >>> model_ckpt ="sid321axn/minilm-finetuned-emotionclassification" >>> pipe = pipeline("text-classification",model=model_ckpt) >>> pipe("I am really excited about second part of Brahmastra Movie") [{'label': 'excitement', 'score': 0.7849715352058411}] ``` ## Training procedure The training we have done by following this [video](https://www.youtube.com/watch?v=u--UVvH-LIQ) on Youtube by huggingface ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1659 | 1.0 | 539 | 1.1419 | 0.6347 | | 1.0719 | 2.0 | 1078 | 1.0789 | 0.6589 | | 0.9893 | 3.0 | 1617 | 1.0537 | 0.6666 | | 0.9296 | 4.0 | 2156 | 1.0366 | 0.6729 | | 0.8763 | 5.0 | 2695 | 1.0359 | 0.6774 | | 0.8385 | 6.0 | 3234 | 1.0484 | 0.6693 | | 0.8085 | 7.0 | 3773 | 1.0478 | 0.6758 | | 0.7842 | 8.0 | 4312 | 1.0488 | 0.6741 | | 0.7608 | 9.0 | 4851 | 1.0538 | 0.6749 | | 0.7438 | 10.0 | 5390 | 1.0554 | 0.6732 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
pinxi/bloom-1b7-bloom
pinxi
2022-11-10T16:00:58Z
12
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T15:03:46Z
--- license: bigscience-openrail-m --- Bloom-1b7 model finetuned on Bloom-175b generated data for email actionable points extraction
celinely/camembert-base-finetuned-sentence-simplification-fr
celinely
2022-11-10T15:26:39Z
56
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-27T09:41:46Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: camembert-base-finetuned-sentence-simplification-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-sentence-simplification-fr This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Rouge1: 100.0 - Rouge2: 100.0 - Rougel: 100.0 - Rougelsum: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:|:---------:| | 0.0202 | 1.0 | 167 | 0.0006 | 99.978 | 99.9587 | 99.978 | 99.978 | | 0.0034 | 2.0 | 334 | 0.0001 | 100.0 | 100.0 | 100.0 | 100.0 | | 0.0019 | 3.0 | 501 | 0.0001 | 100.0 | 100.0 | 100.0 | 100.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
sanchit-gandhi/whisper-medium-es-5k-1e-5
sanchit-gandhi
2022-11-10T15:26:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "es", "dataset:facebook/multilingual_librispeech", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-10T09:01:56Z
--- language: - es license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - facebook/multilingual_librispeech metrics: - wer model-index: - name: Whisper Small Es - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech args: 'config: es, split: test' metrics: - name: Wer type: wer value: 4.988756935106611 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Es - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Multilingual LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 0.1252 - Wer: 4.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2346 | 0.2 | 500 | 0.1957 | 8.5131 | | 0.1252 | 0.4 | 1000 | 0.1448 | 5.7876 | | 0.2076 | 0.6 | 1500 | 0.1361 | 5.5786 | | 0.2356 | 0.8 | 2000 | 0.1504 | 6.6611 | | 0.1893 | 1.0 | 2500 | 0.1252 | 4.9888 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1
pinxi/bloom-560m-igpt3
pinxi
2022-11-10T15:02:33Z
173
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T14:42:28Z
--- license: bigscience-openrail-m --- Bloom-560m model finetuned on InstructGPT3 generated data for email actionable points extraction
Omerdor/dry_samples_test
Omerdor
2022-11-10T14:39:04Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-10T12:36:19Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dry_samples_test ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/dry_samples_test/tensorboard?#scalars)
Matthijs/mobilenet_v1_0.75_192
Matthijs
2022-11-10T14:20:14Z
237
0
transformers
[ "transformers", "pytorch", "mobilenet_v1", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:1704.04861", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-22T12:07:44Z
--- license: other tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 192x192. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV1FeatureExtractor, MobileNetV1ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV1FeatureExtractor.from_pretrained("Matthijs/mobilenet_v1_1.0_224") model = MobileNetV1ForImageClassification.from_pretrained("Matthijs/mobilenet_v1_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
Matthijs/mobilenet_v1_1.0_224
Matthijs
2022-11-10T14:20:00Z
3,887
0
transformers
[ "transformers", "pytorch", "mobilenet_v1", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:1704.04861", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-22T12:05:41Z
--- license: other tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV1FeatureExtractor, MobileNetV1ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV1FeatureExtractor.from_pretrained("Matthijs/mobilenet_v1_1.0_224") model = MobileNetV1ForImageClassification.from_pretrained("Matthijs/mobilenet_v1_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
Narsil/layoutlm-funsd
Narsil
2022-11-10T13:52:40Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlm", "token-classification", "generated_from_trainer", "endpoints-template", "object-detection", "dataset:funsd", "autotrain_compatible", "endpoints_compatible", "region:us" ]
object-detection
2022-11-10T11:35:09Z
--- tags: - generated_from_trainer - endpoints-template library_name: transformers pipeline_tag: object-detection widget: - src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" example_title: invoice - src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" example_title: contract datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 1.0045 - Answer: {'precision': 0.7348314606741573, 'recall': 0.8084054388133498, 'f1': 0.7698646262507357, 'number': 809} - Header: {'precision': 0.44285714285714284, 'recall': 0.5210084033613446, 'f1': 0.47876447876447875, 'number': 119} - Question: {'precision': 0.8211009174311926, 'recall': 0.8403755868544601, 'f1': 0.8306264501160092, 'number': 1065} - Overall Precision: 0.7599 - Overall Recall: 0.8083 - Overall F1: 0.7866 - Overall Accuracy: 0.8106 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ## Deploy Model with Inference Endpoints Before we can get started, make sure you meet all of the following requirements: 1. An Organization/User with an active plan and *WRITE* access to the model repository. 2. Can access the UI: [https://ui.endpoints.huggingface.co](https://ui.endpoints.huggingface.co/endpoints) ### 1. Deploy LayoutLM and Send requests In this tutorial, you will learn how to deploy a [LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm) to [Hugging Face Inference Endpoints](https://huggingface.co/inference-endpoints) and how you can integrate it via an API into your products. This tutorial is not covering how you create the custom handler for inference. If you want to learn how to create a custom Handler for Inference Endpoints, you can either checkout the [documentation](https://huggingface.co/docs/inference-endpoints/guides/custom_handler) or go through [“Custom Inference with Hugging Face Inference Endpoints”](https://www.philschmid.de/custom-inference-handler) We are going to deploy [philschmid/layoutlm-funsd](https://huggingface.co/philschmid/layoutlm-funsd) which implements the following `handler.py` ```python from typing import Dict, List, Any from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor import torch from subprocess import run # install tesseract-ocr and pytesseract run("apt install -y tesseract-ocr", shell=True, check=True) run("pip install pytesseract", shell=True, check=True) # helper function to unnormalize bboxes for drawing onto the image def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] # set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path=""): # load model and processor from path self.model = LayoutLMForTokenClassification.from_pretrained(path).to(device) self.processor = LayoutLMv2Processor.from_pretrained(path) def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]: """ Args: data (:obj:): includes the deserialized image file as PIL.Image """ # process input image = data.pop("inputs", data) # process image encoding = self.processor(image, return_tensors="pt") # run prediction with torch.inference_mode(): outputs = self.model( input_ids=encoding.input_ids.to(device), bbox=encoding.bbox.to(device), attention_mask=encoding.attention_mask.to(device), token_type_ids=encoding.token_type_ids.to(device), ) predictions = outputs.logits.softmax(-1) # post process output result = [] for item, inp_ids, bbox in zip( predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu() ): label = self.model.config.id2label[int(item.argmax().cpu())] if label == "O": continue score = item.max().item() text = self.processor.tokenizer.decode(inp_ids) bbox = unnormalize_box(bbox.tolist(), image.width, image.height) result.append({"label": label, "score": score, "text": text, "bbox": bbox}) return {"predictions": result} ``` ### 2. Send HTTP request using Python Hugging Face Inference endpoints can directly work with binary data, this means that we can directly send our image from our document to the endpoint. We are going to use `requests` to send our requests. (make your you have it installed `pip install requests`) ```python import json import requests as r import mimetypes ENDPOINT_URL="" # url of your endpoint HF_TOKEN="" # organization token where you deployed your endpoint def predict(path_to_image:str=None): with open(path_to_image, "rb") as i: b = i.read() headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": mimetypes.guess_type(path_to_image)[0] } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_image="path_to_your_image.png") print(prediction) # {'predictions': [{'label': 'I-ANSWER', 'score': 0.4823932945728302, 'text': '[CLS]', 'bbox': [0.0, 0.0, 0.0, 0.0]}, {'label': 'B-HEADER', 'score': 0.992474377155304, 'text': 'your', 'bbox': [1712.529, 181.203, 1859.949, 228.88799999999998]}, ``` ### 3. Draw result on image To get a better understanding of what the model predicted you can also draw the predictions on the provided image. ```python from PIL import Image, ImageDraw, ImageFont # draw results on image def draw_result(path_to_image,result): image = Image.open(path_to_image) label2color = { "B-HEADER": "blue", "B-QUESTION": "red", "B-ANSWER": "green", "I-HEADER": "blue", "I-QUESTION": "red", "I-ANSWER": "green", } # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for res in result: draw.rectangle(res["bbox"], outline="black") draw.rectangle(res["bbox"], outline=label2color[res["label"]]) draw.text((res["bbox"][0] + 10, res["bbox"][1] - 10), text=res["label"], fill=label2color[res["label"]], font=font) return image draw_result("path_to_your_image.png", prediction["predictions"]) ```
toanbui1991/distilbert-base-uncased-finetuned-squad
toanbui1991
2022-11-10T13:39:29Z
59
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T03:01:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: toanbui1991/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # toanbui1991/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5101 - Train End Logits Accuracy: 0.6065 - Train Start Logits Accuracy: 0.5692 - Validation Loss: 1.1679 - Validation End Logits Accuracy: 0.6823 - Validation Start Logits Accuracy: 0.6523 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.5101 | 0.6065 | 0.5692 | 1.1679 | 0.6823 | 0.6523 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.13.2
huggingtweets/barkmeta-lb22_sus-nftherder
huggingtweets
2022-11-10T13:37:11Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T13:34:27Z
--- language: en thumbnail: http://www.huggingtweets.com/barkmeta-lb22_sus-nftherder/1668087427349/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579110344420622342/QzePSc2g_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1559936197564268551/WXSx0leh_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1554766012955955200/W_Ma1gx3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LB22 & Bark❓ & OKHotshot</div> <div style="text-align: center; font-size: 14px;">@barkmeta-lb22_sus-nftherder</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LB22 & Bark❓ & OKHotshot. | Data | LB22 | Bark❓ | OKHotshot | | --- | --- | --- | --- | | Tweets downloaded | 1220 | 3250 | 3249 | | Retweets | 467 | 287 | 139 | | Short tweets | 381 | 1866 | 811 | | Tweets kept | 372 | 1097 | 2299 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13l6lr2n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barkmeta-lb22_sus-nftherder's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1eghqa00) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1eghqa00/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/barkmeta-lb22_sus-nftherder') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/barkmeta-lb22_sus-nft_god
huggingtweets
2022-11-10T13:18:55Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T13:00:51Z
--- language: en thumbnail: http://www.huggingtweets.com/barkmeta-lb22_sus-nft_god/1668086330381/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579110344420622342/QzePSc2g_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1489268127565324291/ZQK5RoFg_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1559936197564268551/WXSx0leh_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LB22 & NFT God & Bark❓</div> <div style="text-align: center; font-size: 14px;">@barkmeta-lb22_sus-nft_god</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LB22 & NFT God & Bark❓. | Data | LB22 | NFT God | Bark❓ | | --- | --- | --- | --- | | Tweets downloaded | 1220 | 3250 | 3250 | | Retweets | 467 | 20 | 285 | | Short tweets | 381 | 165 | 1868 | | Tweets kept | 372 | 3065 | 1097 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vq9v8ck/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barkmeta-lb22_sus-nft_god's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ixknti18) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ixknti18/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/barkmeta-lb22_sus-nft_god') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ViktorDo/SciBERT-WIKI_Lifecycle_Finetuned
ViktorDo
2022-11-10T12:55:56Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T11:38:03Z
--- tags: - generated_from_trainer model-index: - name: SciBERT-WIKI_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SciBERT-WIKI_Lifecycle_Finetuned This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0933 | 1.0 | 2082 | 0.1159 | | 0.0782 | 2.0 | 4164 | 0.0935 | | 0.0442 | 3.0 | 6246 | 0.1142 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Matthijs/mobilenet_v2_1.0_224
Matthijs
2022-11-10T12:48:17Z
1,045
0
transformers
[ "transformers", "pytorch", "coreml", "mobilenet_v2", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:1801.04381", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-27T13:30:29Z
--- license: other tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # MobileNet V2 MobileNet V2 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. It was first released in [this repository](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet). Disclaimer: The team releasing MobileNet V2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier and **224** is the resolution of the input images the model was trained on. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV2FeatureExtractor.from_pretrained("Matthijs/mobilenet_v2_1.0_224") model = MobileNetV2ForImageClassification.from_pretrained("Matthijs/mobilenet_v2_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch. ### BibTeX entry and citation info ```bibtex @inproceedings{mobilenetv22018, title={MobileNetV2: Inverted Residuals and Linear Bottlenecks}, author={Mark Sandler and Andrew Howard and Menglong Zhu and Andrey Zhmoginov and Liang-Chieh Chen}, booktitle={CVPR}, year={2018} } ```
Vsevolod/company-names-similarity-sentence-transformer
Vsevolod
2022-11-10T12:44:01Z
648
16
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-24T11:15:41Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1222 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.WeightedRandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 122.1875, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/sbe_sus
huggingtweets
2022-11-10T12:41:46Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-10T12:20:40Z
--- language: en thumbnail: http://www.huggingtweets.com/sbe_sus/1668084101960/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579111637973336071/MkdCeTeX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sberto.eth 📈</div> <div style="text-align: center; font-size: 14px;">@sbe_sus</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sberto.eth 📈. | Data | sberto.eth 📈 | | --- | --- | | Tweets downloaded | 1273 | | Retweets | 648 | | Short tweets | 221 | | Tweets kept | 404 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rwjbirb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sbe_sus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ejp5m2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ejp5m2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sbe_sus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Galeros/Reinforce-pong0001
Galeros
2022-11-10T12:41:31Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-10T12:41:19Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pong0001 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
wakio/dummy-model
wakio
2022-11-10T12:22:03Z
59
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-10T11:54:52Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
luanngo/evjvqa_mt5_vit_16
luanngo
2022-11-10T11:04:55Z
101
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-07T09:04:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: evjvqa_mt5_vit_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # evjvqa_mt5_vit_16 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2997 - F1: 0.4194 - Bleu4: 0.3783 - Mean Pred Len: 14.85 - Mean Label Len: 15.25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Bleu4 | Mean Pred Len | Mean Label Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------------:|:--------------:| | 15.7375 | 0.07 | 20 | 9.6637 | 0.0771 | 0.0567 | 10.75 | 15.25 | | 15.7459 | 0.15 | 40 | 10.0761 | 0.0784 | 0.0754 | 11.5 | 15.25 | | 15.456 | 0.22 | 60 | 9.5077 | 0.0574 | 0.0595 | 11.35 | 15.25 | | 15.3725 | 0.3 | 80 | 9.5230 | 0.0589 | 0.0436 | 11.45 | 15.25 | | 14.9377 | 0.37 | 100 | 8.6082 | 0.079 | 0.0725 | 12.2 | 15.25 | | 14.5629 | 0.45 | 120 | 9.3522 | 0.0851 | 0.0704 | 12.35 | 15.25 | | 14.2505 | 0.52 | 140 | 8.0656 | 0.0666 | 0.0473 | 11.85 | 15.25 | | 13.4648 | 0.6 | 160 | 7.5456 | 0.0783 | 0.054 | 10.4 | 15.25 | | 13.055 | 0.67 | 180 | 7.0022 | 0.0607 | 0.0529 | 10.2 | 15.25 | | 12.2861 | 0.75 | 200 | 6.6263 | 0.0704 | 0.0677 | 10.4 | 15.25 | | 11.8459 | 0.82 | 220 | 6.1817 | 0.0849 | 0.0802 | 11.15 | 15.25 | | 10.9808 | 0.9 | 240 | 5.6607 | 0.0779 | 0.053 | 11.65 | 15.25 | | 10.0039 | 0.97 | 260 | 5.3278 | 0.0867 | 0.0619 | 10.55 | 15.25 | | 8.819 | 1.05 | 280 | 4.5316 | 0.1154 | 0.1346 | 9.45 | 15.25 | | 7.5032 | 1.12 | 300 | 3.7815 | 0.1355 | 0.1159 | 9.75 | 15.25 | | 6.1347 | 1.2 | 320 | 3.0172 | 0.1807 | 0.1546 | 9.85 | 15.25 | | 4.8126 | 1.27 | 340 | 2.6729 | 0.2177 | 0.1978 | 9.35 | 15.25 | | 4.1824 | 1.35 | 360 | 2.3100 | 0.3017 | 0.3567 | 11.3 | 15.25 | | 3.6456 | 1.42 | 380 | 2.2327 | 0.3029 | 0.3605 | 11.4 | 15.25 | | 3.3865 | 1.5 | 400 | 2.0704 | 0.316 | 0.3167 | 13.15 | 15.25 | | 3.2078 | 1.57 | 420 | 2.0376 | 0.3027 | 0.2856 | 13.5 | 15.25 | | 3.0357 | 1.65 | 440 | 1.9508 | 0.3207 | 0.3404 | 13.1 | 15.25 | | 2.9388 | 1.72 | 460 | 1.9042 | 0.3872 | 0.3665 | 13.5 | 15.25 | | 2.7807 | 1.8 | 480 | 1.8595 | 0.3954 | 0.3692 | 13.65 | 15.25 | | 2.7234 | 1.87 | 500 | 1.8956 | 0.3871 | 0.3484 | 14.2 | 15.25 | | 2.6417 | 1.95 | 520 | 1.7809 | 0.4406 | 0.3592 | 15.85 | 15.25 | | 2.5189 | 2.02 | 540 | 1.7255 | 0.4242 | 0.3844 | 14.8 | 15.25 | | 2.4075 | 2.1 | 560 | 1.7226 | 0.4378 | 0.4022 | 14.55 | 15.25 | | 2.3158 | 2.17 | 580 | 1.6749 | 0.46 | 0.4313 | 14.7 | 15.25 | | 2.3145 | 2.25 | 600 | 1.6850 | 0.4229 | 0.3525 | 15.75 | 15.25 | | 2.2615 | 2.32 | 620 | 1.6651 | 0.4618 | 0.3666 | 16.65 | 15.25 | | 2.1983 | 2.4 | 640 | 1.6409 | 0.4101 | 0.3297 | 15.1 | 15.25 | | 2.1365 | 2.47 | 660 | 1.6350 | 0.4317 | 0.3728 | 15.4 | 15.25 | | 2.1286 | 2.55 | 680 | 1.6045 | 0.389 | 0.3352 | 14.95 | 15.25 | | 2.1301 | 2.62 | 700 | 1.5884 | 0.4391 | 0.3679 | 15.55 | 15.25 | | 2.1368 | 2.7 | 720 | 1.5702 | 0.415 | 0.3352 | 15.4 | 15.25 | | 2.0449 | 2.77 | 740 | 1.5415 | 0.4215 | 0.366 | 14.7 | 15.25 | | 2.0286 | 2.85 | 760 | 1.5434 | 0.406 | 0.3291 | 15.35 | 15.25 | | 2.0126 | 2.92 | 780 | 1.5358 | 0.389 | 0.3033 | 15.0 | 15.25 | | 1.9923 | 3.0 | 800 | 1.4857 | 0.4471 | 0.3605 | 15.85 | 15.25 | | 1.8807 | 3.07 | 820 | 1.4665 | 0.4743 | 0.3717 | 15.95 | 15.25 | | 1.8989 | 3.15 | 840 | 1.4760 | 0.3996 | 0.3502 | 14.8 | 15.25 | | 1.8745 | 3.22 | 860 | 1.4294 | 0.3815 | 0.3258 | 15.2 | 15.25 | | 1.9292 | 3.3 | 880 | 1.4454 | 0.4366 | 0.3694 | 15.6 | 15.25 | | 1.8473 | 3.37 | 900 | 1.4205 | 0.4032 | 0.3523 | 15.65 | 15.25 | | 1.8723 | 3.45 | 920 | 1.4080 | 0.4167 | 0.3609 | 15.5 | 15.25 | | 1.8272 | 3.52 | 940 | 1.4069 | 0.3944 | 0.3734 | 14.45 | 15.25 | | 1.8443 | 3.6 | 960 | 1.4088 | 0.409 | 0.3712 | 14.65 | 15.25 | | 1.7956 | 3.67 | 980 | 1.3970 | 0.3848 | 0.3573 | 14.6 | 15.25 | | 1.802 | 3.75 | 1000 | 1.3971 | 0.4116 | 0.3856 | 14.75 | 15.25 | | 1.8154 | 3.82 | 1020 | 1.4013 | 0.4382 | 0.3731 | 14.85 | 15.25 | | 1.7599 | 3.9 | 1040 | 1.4035 | 0.4106 | 0.3566 | 15.25 | 15.25 | | 1.8375 | 3.97 | 1060 | 1.3992 | 0.4286 | 0.3594 | 15.6 | 15.25 | | 1.739 | 4.04 | 1080 | 1.3955 | 0.4218 | 0.3686 | 15.1 | 15.25 | | 1.7291 | 4.12 | 1100 | 1.3968 | 0.4702 | 0.4011 | 15.65 | 15.25 | | 1.7279 | 4.19 | 1120 | 1.3743 | 0.4328 | 0.3668 | 15.5 | 15.25 | | 1.7092 | 4.27 | 1140 | 1.3650 | 0.4321 | 0.3721 | 15.55 | 15.25 | | 1.7002 | 4.34 | 1160 | 1.3413 | 0.3999 | 0.3669 | 15.25 | 15.25 | | 1.7333 | 4.42 | 1180 | 1.3715 | 0.4459 | 0.3758 | 16.15 | 15.25 | | 1.707 | 4.49 | 1200 | 1.3630 | 0.4173 | 0.3686 | 15.0 | 15.25 | | 1.6815 | 4.57 | 1220 | 1.3326 | 0.4344 | 0.3755 | 15.1 | 15.25 | | 1.7045 | 4.64 | 1240 | 1.3440 | 0.4083 | 0.3801 | 14.7 | 15.25 | | 1.6511 | 4.72 | 1260 | 1.3361 | 0.3976 | 0.3722 | 14.7 | 15.25 | | 1.682 | 4.79 | 1280 | 1.3314 | 0.3964 | 0.3707 | 14.85 | 15.25 | | 1.6511 | 4.87 | 1300 | 1.3461 | 0.4081 | 0.3704 | 15.0 | 15.25 | | 1.5936 | 4.94 | 1320 | 1.3362 | 0.4185 | 0.3667 | 15.15 | 15.25 | | 1.6287 | 5.02 | 1340 | 1.3312 | 0.4296 | 0.374 | 14.85 | 15.25 | | 1.6401 | 5.09 | 1360 | 1.3152 | 0.403 | 0.366 | 14.95 | 15.25 | | 1.6093 | 5.17 | 1380 | 1.3316 | 0.3931 | 0.3689 | 14.75 | 15.25 | | 1.6002 | 5.24 | 1400 | 1.3506 | 0.3948 | 0.3702 | 14.8 | 15.25 | | 1.6245 | 5.32 | 1420 | 1.3344 | 0.401 | 0.3605 | 15.1 | 15.25 | | 1.6005 | 5.39 | 1440 | 1.3310 | 0.4174 | 0.3698 | 15.1 | 15.25 | | 1.5903 | 5.47 | 1460 | 1.3218 | 0.4156 | 0.3716 | 14.85 | 15.25 | | 1.6016 | 5.54 | 1480 | 1.3219 | 0.4368 | 0.3984 | 14.8 | 15.25 | | 1.6143 | 5.62 | 1500 | 1.3157 | 0.4094 | 0.3729 | 14.55 | 15.25 | | 1.6082 | 5.69 | 1520 | 1.3109 | 0.4068 | 0.3778 | 14.9 | 15.25 | | 1.5451 | 5.77 | 1540 | 1.3057 | 0.4056 | 0.3703 | 14.95 | 15.25 | | 1.6312 | 5.84 | 1560 | 1.3055 | 0.4032 | 0.3656 | 14.85 | 15.25 | | 1.5476 | 5.92 | 1580 | 1.3282 | 0.4154 | 0.3662 | 15.2 | 15.25 | | 1.5758 | 5.99 | 1600 | 1.3205 | 0.4136 | 0.3623 | 15.2 | 15.25 | | 1.598 | 6.07 | 1620 | 1.3200 | 0.4159 | 0.3675 | 14.9 | 15.25 | | 1.567 | 6.14 | 1640 | 1.3359 | 0.4153 | 0.3699 | 14.7 | 15.25 | | 1.5349 | 6.22 | 1660 | 1.3378 | 0.4036 | 0.3649 | 14.8 | 15.25 | | 1.5536 | 6.29 | 1680 | 1.3374 | 0.4143 | 0.3691 | 14.85 | 15.25 | | 1.5382 | 6.37 | 1700 | 1.3274 | 0.4052 | 0.38 | 14.65 | 15.25 | | 1.5238 | 6.44 | 1720 | 1.3217 | 0.406 | 0.3674 | 14.9 | 15.25 | | 1.5434 | 6.52 | 1740 | 1.3174 | 0.4096 | 0.3759 | 14.85 | 15.25 | | 1.5326 | 6.59 | 1760 | 1.3134 | 0.4096 | 0.3759 | 14.85 | 15.25 | | 1.5263 | 6.67 | 1780 | 1.3157 | 0.4104 | 0.3635 | 15.05 | 15.25 | | 1.4775 | 6.74 | 1800 | 1.3197 | 0.4096 | 0.3759 | 14.85 | 15.25 | | 1.5173 | 6.82 | 1820 | 1.3121 | 0.4167 | 0.3722 | 14.9 | 15.25 | | 1.5304 | 6.89 | 1840 | 1.3240 | 0.4198 | 0.3818 | 14.7 | 15.25 | | 1.5344 | 6.97 | 1860 | 1.3250 | 0.4135 | 0.3793 | 14.7 | 15.25 | | 1.5392 | 7.04 | 1880 | 1.3187 | 0.4135 | 0.3793 | 14.7 | 15.25 | | 1.5201 | 7.12 | 1900 | 1.3128 | 0.4143 | 0.3681 | 14.8 | 15.25 | | 1.5139 | 7.19 | 1920 | 1.3072 | 0.4143 | 0.3654 | 14.95 | 15.25 | | 1.4878 | 7.27 | 1940 | 1.3021 | 0.4143 | 0.3654 | 14.95 | 15.25 | | 1.5123 | 7.34 | 1960 | 1.3041 | 0.4143 | 0.3681 | 14.8 | 15.25 | | 1.4569 | 7.42 | 1980 | 1.3203 | 0.417 | 0.3712 | 14.8 | 15.25 | | 1.4984 | 7.49 | 2000 | 1.3149 | 0.4198 | 0.3832 | 14.65 | 15.25 | | 1.5187 | 7.57 | 2020 | 1.3102 | 0.4076 | 0.3818 | 14.7 | 15.25 | | 1.5394 | 7.64 | 2040 | 1.3223 | 0.4176 | 0.3907 | 14.65 | 15.25 | | 1.4602 | 7.72 | 2060 | 1.3102 | 0.4101 | 0.3686 | 14.9 | 15.25 | | 1.4959 | 7.79 | 2080 | 1.3123 | 0.4178 | 0.3688 | 15.05 | 15.25 | | 1.5462 | 7.87 | 2100 | 1.3083 | 0.4262 | 0.3692 | 15.1 | 15.25 | | 1.4951 | 7.94 | 2120 | 1.2964 | 0.4301 | 0.3816 | 14.95 | 15.25 | | 1.5016 | 8.01 | 2140 | 1.3078 | 0.4274 | 0.3784 | 14.9 | 15.25 | | 1.4464 | 8.09 | 2160 | 1.3154 | 0.4178 | 0.3654 | 15.1 | 15.25 | | 1.4654 | 8.16 | 2180 | 1.3070 | 0.4243 | 0.3702 | 15.0 | 15.25 | | 1.4519 | 8.24 | 2200 | 1.2995 | 0.4339 | 0.3708 | 15.05 | 15.25 | | 1.5098 | 8.31 | 2220 | 1.3051 | 0.4395 | 0.3903 | 14.75 | 15.25 | | 1.4601 | 8.39 | 2240 | 1.3013 | 0.4376 | 0.3881 | 14.8 | 15.25 | | 1.4693 | 8.46 | 2260 | 1.2981 | 0.4278 | 0.3871 | 14.8 | 15.25 | | 1.5386 | 8.54 | 2280 | 1.3002 | 0.4112 | 0.3781 | 14.8 | 15.25 | | 1.5115 | 8.61 | 2300 | 1.2994 | 0.4153 | 0.3806 | 14.9 | 15.25 | | 1.5133 | 8.69 | 2320 | 1.2971 | 0.4236 | 0.385 | 14.85 | 15.25 | | 1.4691 | 8.76 | 2340 | 1.2979 | 0.4321 | 0.3896 | 14.75 | 15.25 | | 1.4548 | 8.84 | 2360 | 1.3054 | 0.4276 | 0.385 | 14.75 | 15.25 | | 1.4816 | 8.91 | 2380 | 1.3029 | 0.4259 | 0.3857 | 14.7 | 15.25 | | 1.4386 | 8.99 | 2400 | 1.2983 | 0.4196 | 0.3826 | 14.75 | 15.25 | | 1.5242 | 9.06 | 2420 | 1.2958 | 0.421 | 0.3739 | 14.95 | 15.25 | | 1.4824 | 9.14 | 2440 | 1.2939 | 0.4292 | 0.3827 | 14.9 | 15.25 | | 1.5137 | 9.21 | 2460 | 1.2896 | 0.4213 | 0.3796 | 14.8 | 15.25 | | 1.4634 | 9.29 | 2480 | 1.2934 | 0.4191 | 0.3855 | 14.85 | 15.25 | | 1.4881 | 9.36 | 2500 | 1.2982 | 0.4134 | 0.3838 | 14.65 | 15.25 | | 1.4185 | 9.44 | 2520 | 1.2995 | 0.4117 | 0.3795 | 14.65 | 15.25 | | 1.3843 | 9.51 | 2540 | 1.3013 | 0.4217 | 0.3826 | 14.65 | 15.25 | | 1.4563 | 9.59 | 2560 | 1.3005 | 0.4117 | 0.3795 | 14.65 | 15.25 | | 1.461 | 9.66 | 2580 | 1.3008 | 0.4194 | 0.3783 | 14.85 | 15.25 | | 1.47 | 9.74 | 2600 | 1.2999 | 0.4194 | 0.3783 | 14.85 | 15.25 | | 1.4892 | 9.81 | 2620 | 1.2994 | 0.4196 | 0.3826 | 14.75 | 15.25 | | 1.4503 | 9.89 | 2640 | 1.2992 | 0.4196 | 0.3826 | 14.75 | 15.25 | | 1.4216 | 9.96 | 2660 | 1.2997 | 0.4194 | 0.3783 | 14.85 | 15.25 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1
karolill/nb-bert-finetuned-on-norec
karolill
2022-11-10T10:41:04Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T09:08:18Z
--- license: mit --- # NB-BERT fine-tuned on NoReC ## Description This model is based on the pre-trained [NB-BERT-large model](https://huggingface.co/NbAiLab/nb-bert-large?text=P%C3%A5+biblioteket+kan+du+l%C3%A5ne+en+%5BMASK%5D.). It is a model for sentiment analysis. ## Data for fine-tuning This model was fine-tuned on 1000 exemples from the [NoReC train dataset](https://github.com/ltgoslo/norec) that belonged to the screen category. The training lasted 3 epochs with a learning rate of 5e-5. The code used to create this model (and some additional models) can be found on [Github](https://github.com/Karolill/NB-BERT-fine-tuned-on-english).
Norod78/hebrew-gpt_neo-xl
Norod78
2022-11-10T10:38:56Z
65
9
transformers
[ "transformers", "pytorch", "jax", "onnx", "safetensors", "gpt_neo", "text-generation", "he", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "עוד בימי קדם" - text: "קוראים לי דורון ואני מעוניין ל" - text: "קוראים לי איציק ואני חושב ש" - text: "החתול שלך מאוד חמוד ו" - text: "ובדרך ראינו שהגן" license: mit --- # hebrew-gpt_neo-xl Hebrew text generation model based on [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). Each was trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program. ## Datasets 1. An assortment of various Hebrew corpuses - I have made it available [here](https://mega.nz/folder/CodSSA4R#4INvMes-56m_WUi7jQMbJQ) 2. oscar / unshuffled_deduplicated_he - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he) The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. 3. CC100-Hebrew Dataset [Homepage](https://metatext.io/datasets/cc100-hebrew) Created by Conneau & Wenzek et al. at 2020, the CC100-Hebrew This dataset is one of the 100 corpora of monolingual data that was processed from the January-December 2018 Commoncrawl snapshots from the CC-Net repository. The size of this corpus is 6.1G., in Hebrew language. ## Training Config Available [here](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-xl/configs) <BR> ## Usage ### Google Colab Notebook Available [here ](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-xl/Norod78_hebrew_gpt_neo_xl_Colab.ipynb) <BR> #### Simple usage sample code ```python !pip install tokenizers==0.10.3 transformers==4.8.0 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-xl") model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-xl", pad_token_id=tokenizer.eos_token_id) prompt_text = "אני אוהב שוקולד ועוגות" max_len = 512 sample_output_num = 3 seed = 1000 import numpy as np import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() print(f"device: {device}, n_gpu: {n_gpu}") np.random.seed(seed) torch.manual_seed(seed) if n_gpu > 0: torch.cuda.manual_seed_all(seed) model.to(device) encoded_prompt = tokenizer.encode( prompt_text, add_special_tokens=False, return_tensors="pt") encoded_prompt = encoded_prompt.to(device) if encoded_prompt.size()[-1] == 0: input_ids = None else: input_ids = encoded_prompt print("input_ids = " + str(input_ids)) if input_ids != None: max_len += len(encoded_prompt[0]) if max_len > 2048: max_len = 2048 print("Updated max_len = " + str(max_len)) stop_token = "<|endoftext|>" new_lines = "\ \ \ " sample_outputs = model.generate( input_ids, do_sample=True, max_length=max_len, top_k=50, top_p=0.95, num_return_sequences=sample_output_num ) print(100 * '-' + "\ \t\tOutput\ " + 100 * '-') for i, sample_output in enumerate(sample_outputs): text = tokenizer.decode(sample_output, skip_special_tokens=True) # Remove all text after the stop token text = text[: text.find(stop_token) if stop_token else None] # Remove all text after 3 newlines text = text[: text.find(new_lines) if new_lines else None] print("\ {}: {}".format(i, text)) print("\ " + 100 * '-') ```
reza-aditya/lunar-reinforcement-learning
reza-aditya
2022-11-10T10:26:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-10T09:09:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -711.41 +/- 372.03 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ArtbyArbi/picbixex
ArtbyArbi
2022-11-10T10:00:15Z
33
0
diffusers
[ "diffusers", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-10T09:57:15Z
--- license: mit --- ### PicBixex on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by ArbiCreatesArt This your the Stable Diffusion model fine-tuned the PicBixex concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **PicBixex** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: PicBixex ![PicBixex 0](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(1).jpg) ![PicBixex 1](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(2).jpg) ![PicBixex 2](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(3).jpg) ![PicBixex 3](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(4).jpg) ![PicBixex 4](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(5).jpg) ![PicBixex 5](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(6).jpg) ![PicBixex 6](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(7).jpg) ![PicBixex 7](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(8).jpg) ![PicBixex 8](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(9).jpg) ![PicBixex 9](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(10).jpg) ![PicBixex 10](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(11).jpg) ![PicBixex 11](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(12).jpg) ![PicBixex 12](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(13).jpg) ![PicBixex 13](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(14).jpg) ![PicBixex 14](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(15).jpg) ![PicBixex 15](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(16).jpg) ![PicBixex 16](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(17).jpg) ![PicBixex 17](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(18).jpg) ![PicBixex 18](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(19).jpg) ![PicBixex 19](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(20).jpg) ![PicBixex 20](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(21).jpg) ![PicBixex 21](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(22).jpg) ![PicBixex 22](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(23).JPG) ![PicBixex 23](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(24).jpg) ![PicBixex 24](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(25).jpg) ![PicBixex 25](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(26).jpg) ![PicBixex 26](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(27).jpg) ![PicBixex 27](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(28).jpg) ![PicBixex 28](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(29).jpg) ![PicBixex 29](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(30).jpg) ![PicBixex 30](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(31).jpg) ![PicBixex 31](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(32).jpg) ![PicBixex 32](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(33).jpg) ![PicBixex 33](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(34).jpg) ![PicBixex 34](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(35).jpg) ![PicBixex 35](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(36).jpg) ![PicBixex 36](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(37).jpg) ![PicBixex 37](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(38).jpg) ![PicBixex 38](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(39).jpg) ![PicBixex 39](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(40).jpg) ![PicBixex 40](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(41).jpg) ![PicBixex 41](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(42).jpg) ![PicBixex 42](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(43).jpg) ![PicBixex 43](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(44).jpg) ![PicBixex 44](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(45).jpg) ![PicBixex 45](https://huggingface.co/ArbiCreatesArt/picbixex/resolve/main/concept_images/PicBixex_(46).jpg)
naverpapago/garnet
naverpapago
2022-11-10T09:33:03Z
0
2
pytorch
[ "pytorch", "Scene Text Removal", "Image to Image", "arxiv:2210.07489", "license:apache-2.0", "region:us" ]
null
2022-11-08T02:01:55Z
--- license: apache-2.0 tags: - Scene Text Removal - Image to Image library_name: pytorch --- ### GaRNet This is text-removal model that introduced in the paper below and first released at [this page](https://github.com/naver/garnet). \ [The Surprisingly Straightforward Scene Text Removal Method With Gated Attention and Region of Interest Generation: A Comprehensive Prominent Model Analysis](https://arxiv.org/abs/2210.07489). \ Hyeonsu Lee, Chankyu Choi \ Naver Corp. \ In ECCV 2022. ### Model description GaRNet is a generator that create non-text image with given image and coresponding text box mask. It consists of convolution encoder and decoder. The encoder consists of residual block with attention module called Gated Attention. Gated Attention module has two Spatial attention branch. Each attention branch finds text stroke or its surrounding regions. The module adjusts the weight of these two domains by trainable parameters. The model was trained in PatchGAN manner with Region-of-Interest Generation. \ The discriminator is consists of convolution encoder. Given an image, it determines whether each patch, which indicates text-box regions, is real or fake. All loss functions treat non-textbox regions as 'don't care'. ### Intended uses & limitations This model can be used for areas that require the process of erasing text from an image, such as concealment private information, text editing.\ You can use the raw model or pre-trained model.\ Note that pre-trained model was trained in both Synthetic and SCUT_EnsText dataset. And the SCUT-EnsText dataset can only be used for non-commercial research purposes. ### How to use You can use inference code in [this page](https://github.com/naver/garnet). ### BibTeX entry and citation info ``` @inproceedings{lee2022surprisingly, title={The Surprisingly Straightforward Scene Text Removal Method with Gated Attention and Region of Interest Generation: A Comprehensive Prominent Model Analysis}, author={Lee, Hyeonsu and Choi, Chankyu}, booktitle={European Conference on Computer Vision}, pages={457--472}, year={2022}, organization={Springer} } ```
Galeros/Reinforce-cartpole0001
Galeros
2022-11-10T09:10:39Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-10T08:57:49Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole0001 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 101.90 +/- 9.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-sah2-ntsema-colab
ntsema
2022-11-10T08:25:33Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T07:30:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-sah2-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.3295938104448743 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-sah2-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3586 - Wer: 0.3296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4128 | 5.71 | 400 | 0.4462 | 0.5733 | | 0.2344 | 11.43 | 800 | 0.3489 | 0.3969 | | 0.1181 | 17.14 | 1200 | 0.3470 | 0.3602 | | 0.0837 | 22.85 | 1600 | 0.3608 | 0.3451 | | 0.0645 | 28.57 | 2000 | 0.3586 | 0.3296 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
vent42/test
vent42
2022-11-10T08:22:44Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-10T08:22:44Z
--- license: bigscience-openrail-m ---
Kohei1201/distilbert-base-uncased-finetuned-cola
Kohei1201
2022-11-10T07:48:32Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T06:43:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5567273065308361 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8434 - Matthews Correlation: 0.5567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5224 | 1.0 | 535 | 0.5360 | 0.4275 | | 0.3498 | 2.0 | 1070 | 0.5205 | 0.5078 | | 0.2383 | 3.0 | 1605 | 0.6466 | 0.5318 | | 0.1739 | 4.0 | 2140 | 0.7723 | 0.5532 | | 0.1276 | 5.0 | 2675 | 0.8434 | 0.5567 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.2 - Datasets 2.6.1 - Tokenizers 0.13.2
libok/test
libok
2022-11-10T06:57:12Z
0
0
null
[ "region:us" ]
null
2022-11-10T06:56:42Z
a robot reading the book and playing the piano
NoCrypt/momocha-mix
NoCrypt
2022-11-10T06:49:03Z
0
19
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-10T06:39:29Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # Momocha mix models Scrapped from [chenyfan's sharepoint](https://cyfan-my.sharepoint.com/:f:/g/personal/chenyfan_cyfan_onmicrosoft_com/EilOWB40m3ZJn6ahczIUIs4B6v0XvizO5YorOhG_5eYSUw?e=ZyP7qE) Example output: ![](https://i.ibb.co/T1Gp5yg/photo-2022-11-09-15-54-30.jpg)
Terence3927/q-Taxi-v3
Terence3927
2022-11-10T06:20:54Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-10T06:20:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Terence3927/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Terence3927/q-FrozenLake-v1-4x4-noSlippery
Terence3927
2022-11-10T06:12:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-10T06:08:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Terence3927/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
xu1998hz/sescore_german_mt
xu1998hz
2022-11-10T03:59:25Z
0
1
null
[ "region:us" ]
null
2022-11-05T01:44:41Z
SEScore German checkpoint for Machine Translation
zhangfx7/deberta-base-finetuned-cola
zhangfx7
2022-11-10T02:43:42Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-10T02:22:29Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: deberta-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-cola This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6187 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6187 | 1.0 | 535 | 0.6187 | 0.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
42MARU/ko-42maru-wav2vec2-conformer-del-1s
42MARU
2022-11-10T02:33:57Z
81
1
transformers
[ "transformers", "pytorch", "wav2vec2-conformer", "automatic-speech-recognition", "audio", "ko", "dataset:KsponSpeech", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-31T07:50:05Z
--- language: - ko # Example: fr license: apache-2.0 # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses library_name: transformers # Optional. Example: keras or any library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts tags: - audio - automatic-speech-recognition datasets: - KsponSpeech metrics: - wer # Example: wer. Use metric id from https://hf.co/metrics --- # ko-42maru-wav2vec2-conformer-del-1s ## Table of Contents - [ko-42maru-wav2vec2-conformer-del-1s](#ko-42maru-wav2vec2-conformer-del-1s) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [Evaluation](#evaluation) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** 해당 모델은 wav2vec2-conformer base architecture에 scratch pre-training 되었습니다. <br /> Wav2Vec2ConformerForCTC를 이용하여 KsponSpeech에 대한 Fine-Tuning 모델입니다. <br /> - Dataset use [AIHub KsponSpeech](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123) <br /> Datasets는 해당 Data를 전처리하여 임의로 만들어 사용하였습니다. <br /> del-1s의 의미는 1초 이하의 데이터 필터링을 의미합니다. <br /> 해당 모델은 **음성전사를 자체 커스텀한 42maru** 기준의 데이터로 학습된 모델입니다. (숫자와 영어는 한글 표기법을 따름) <br /> - **Developed by:** TADev (@lIlBrother, @ddobokki, @jp42maru) - **Language(s):** Korean - **License:** apache-2.0 - **Parent Model:** See the [wav2vec2-conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer) for more information about the pre-trained base model. (해당 모델은 wav2vec2-conformer base architecture에 scratch pre-training 되었습니다.) ## Evaluation Just using `load_metric("wer")` and `load_metric("wer")` in huggingface `datasets` library <br /> ## How to Get Started With the Model KenLM과 혼용된 Wav2Vec2ProcessorWithLM 예제를 보시려면 [42maru-kenlm 예제](https://huggingface.co/42MARU/ko-ctc-kenlm-42maru-only-wiki)를 참고하세요 ```python import librosa from pyctcdecode import build_ctcdecoder from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForCTC, AutoTokenizer, Wav2Vec2ProcessorWithLM, ) from transformers.pipelines import AutomaticSpeechRecognitionPipeline audio_path = "" # 모델과 토크나이저, 예측을 위한 각 모듈들을 불러옵니다. model = AutoModelForCTC.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s") feature_extractor = AutoFeatureExtractor.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s") tokenizer = AutoTokenizer.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s") beamsearch_decoder = build_ctcdecoder( labels=list(tokenizer.encoder.keys()), kenlm_model_path=None, ) processor = Wav2Vec2ProcessorWithLM( feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=beamsearch_decoder ) # 실제 예측을 위한 파이프라인에 정의된 모듈들을 삽입. asr_pipeline = AutomaticSpeechRecognitionPipeline( model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder, device=-1, ) # 음성파일을 불러오고 beamsearch 파라미터를 특정하여 예측을 수행합니다. raw_data, _ = librosa.load(audio_path, sr=16000) kwargs = {"decoder_kwargs": {"beam_width": 100}} pred = asr_pipeline(inputs=raw_data, **kwargs)["text"] # 모델이 자소 분리 유니코드 텍스트로 나오므로, 일반 String으로 변환해줄 필요가 있습니다. result = unicodedata.normalize("NFC", pred) print(result) # 안녕하세요 하나둘셋 테스트입니다. ``` *Beam-100 Result (WER)*: | "clean" | "other" | | ------- | ------- | | 21.52 | 25.72 |
undertheseanlp/vietnamese-ner-v1.4.0a2
undertheseanlp
2022-11-10T02:29:43Z
389
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "vi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-10T02:16:40Z
--- license: apache-2.0 language: vi ---
irfan-noordin/segformer-b0-finetuned-segments-sidewalk-oct-22
irfan-noordin
2022-11-10T02:23:44Z
157
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-11-09T06:58:03Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-oct-22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-oct-22 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.9249 - Mean Iou: 0.1675 - Mean Accuracy: 0.2109 - Overall Accuracy: 0.7776 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.8631 - Accuracy Flat-sidewalk: 0.9423 - Accuracy Flat-crosswalk: 0.0 - Accuracy Flat-cyclinglane: 0.4704 - Accuracy Flat-parkingdriveway: 0.1421 - Accuracy Flat-railtrack: 0.0 - Accuracy Flat-curb: 0.0061 - Accuracy Human-person: 0.0 - Accuracy Human-rider: 0.0 - Accuracy Vehicle-car: 0.8937 - Accuracy Vehicle-truck: 0.0 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.0 - Accuracy Vehicle-motorcycle: 0.0 - Accuracy Vehicle-bicycle: 0.0 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0 - Accuracy Construction-building: 0.9143 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.0055 - Accuracy Construction-fenceguardrail: 0.0 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: nan - Accuracy Construction-stairs: 0.0 - Accuracy Object-pole: 0.0 - Accuracy Object-trafficsign: 0.0 - Accuracy Object-trafficlight: 0.0 - Accuracy Nature-vegetation: 0.9291 - Accuracy Nature-terrain: 0.8710 - Accuracy Sky: 0.9207 - Accuracy Void-ground: 0.0 - Accuracy Void-dynamic: 0.0 - Accuracy Void-static: 0.0 - Accuracy Void-unclear: 0.0 - Iou Unlabeled: nan - Iou Flat-road: 0.6127 - Iou Flat-sidewalk: 0.8192 - Iou Flat-crosswalk: 0.0 - Iou Flat-cyclinglane: 0.4256 - Iou Flat-parkingdriveway: 0.1262 - Iou Flat-railtrack: 0.0 - Iou Flat-curb: 0.0061 - Iou Human-person: 0.0 - Iou Human-rider: 0.0 - Iou Vehicle-car: 0.6655 - Iou Vehicle-truck: 0.0 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0 - Iou Vehicle-motorcycle: 0.0 - Iou Vehicle-bicycle: 0.0 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0 - Iou Construction-building: 0.5666 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.0054 - Iou Construction-fenceguardrail: 0.0 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: nan - Iou Construction-stairs: 0.0 - Iou Object-pole: 0.0 - Iou Object-trafficsign: 0.0 - Iou Object-trafficlight: 0.0 - Iou Nature-vegetation: 0.7875 - Iou Nature-terrain: 0.6912 - Iou Sky: 0.8218 - Iou Void-ground: 0.0 - Iou Void-dynamic: 0.0 - Iou Void-static: 0.0 - Iou Void-unclear: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| | 2.832 | 0.05 | 20 | 3.1768 | 0.0700 | 0.1095 | 0.5718 | nan | 0.1365 | 0.9472 | 0.0019 | 0.0006 | 0.0004 | 0.0 | 0.0205 | 0.0 | 0.0 | 0.2074 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0001 | 0.0 | 0.0 | 0.7360 | 0.0 | 0.0235 | 0.0050 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9559 | 0.0429 | 0.5329 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1260 | 0.5906 | 0.0016 | 0.0006 | 0.0004 | 0.0 | 0.0175 | 0.0 | 0.0 | 0.2006 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0001 | 0.0 | 0.0 | 0.3729 | 0.0 | 0.0209 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5778 | 0.0408 | 0.4932 | 0.0009 | 0.0 | 0.0 | 0.0 | | 2.3224 | 0.1 | 40 | 2.4686 | 0.0885 | 0.1321 | 0.6347 | nan | 0.5225 | 0.9260 | 0.0005 | 0.0001 | 0.0006 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.3738 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8191 | 0.0 | 0.0263 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9649 | 0.0701 | 0.6434 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4240 | 0.6602 | 0.0005 | 0.0001 | 0.0006 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.3292 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3962 | 0.0 | 0.0260 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6019 | 0.0617 | 0.5862 | 0.0001 | 0.0 | 0.0 | 0.0 | | 2.1961 | 0.15 | 60 | 1.9886 | 0.0988 | 0.1431 | 0.6500 | nan | 0.5168 | 0.9319 | 0.0 | 0.0001 | 0.0000 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.5761 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8325 | 0.0 | 0.0132 | 0.0003 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9612 | 0.1260 | 0.7625 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3929 | 0.6721 | 0.0 | 0.0001 | 0.0000 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.4609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4375 | 0.0 | 0.0131 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6342 | 0.1108 | 0.6353 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.2964 | 0.2 | 80 | 2.0597 | 0.1066 | 0.1503 | 0.6682 | nan | 0.6577 | 0.9207 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.5257 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8466 | 0.0 | 0.0094 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9526 | 0.2022 | 0.8392 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4276 | 0.7093 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.4438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4488 | 0.0 | 0.0093 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6560 | 0.1833 | 0.7408 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.9751 | 0.25 | 100 | 1.7493 | 0.1186 | 0.1645 | 0.6944 | nan | 0.7604 | 0.9146 | 0.0 | 0.0004 | 0.0012 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.7381 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8273 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9636 | 0.3289 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4904 | 0.7490 | 0.0 | 0.0004 | 0.0012 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.5465 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4913 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6542 | 0.2761 | 0.7004 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7626 | 0.3 | 120 | 1.5608 | 0.1295 | 0.1752 | 0.7118 | nan | 0.8168 | 0.9102 | 0.0 | 0.0002 | 0.0025 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8094 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8362 | 0.0 | 0.0030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9492 | 0.5677 | 0.8861 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4958 | 0.7592 | 0.0 | 0.0002 | 0.0025 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.5680 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5095 | 0.0 | 0.0030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7082 | 0.4878 | 0.7392 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.32 | 0.35 | 140 | 1.5048 | 0.1323 | 0.1797 | 0.7181 | nan | 0.7883 | 0.9260 | 0.0 | 0.0000 | 0.0037 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8711 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8590 | 0.0 | 0.0022 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9128 | 0.7088 | 0.8576 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5141 | 0.7598 | 0.0 | 0.0000 | 0.0037 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5287 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5016 | 0.0 | 0.0022 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7458 | 0.5602 | 0.7499 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6464 | 0.4 | 160 | 1.3886 | 0.1342 | 0.1783 | 0.7217 | nan | 0.7859 | 0.9390 | 0.0 | 0.0 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8508 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9368 | 0.7223 | 0.9025 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5173 | 0.7561 | 0.0 | 0.0 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5059 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7366 | 0.5802 | 0.7401 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4757 | 0.45 | 180 | 1.3649 | 0.1367 | 0.1840 | 0.7255 | nan | 0.8587 | 0.9185 | 0.0 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8588 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8337 | 0.0 | 0.0014 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9036 | 0.7809 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5077 | 0.7693 | 0.0 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5980 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5264 | 0.0 | 0.0014 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7521 | 0.6078 | 0.7438 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.0018 | 0.5 | 200 | 1.3118 | 0.1353 | 0.1839 | 0.7242 | nan | 0.7797 | 0.9457 | 0.0 | 0.0029 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8345 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8509 | 0.0 | 0.0018 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8704 | 0.8688 | 0.9069 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5321 | 0.7602 | 0.0 | 0.0029 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6060 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5276 | 0.0 | 0.0018 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7133 | 0.5551 | 0.7593 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4636 | 0.55 | 220 | 1.2729 | 0.1330 | 0.1797 | 0.7249 | nan | 0.8619 | 0.9203 | 0.0 | 0.0015 | 0.0067 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8903 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8514 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9447 | 0.5448 | 0.9040 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5249 | 0.7844 | 0.0 | 0.0015 | 0.0066 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5735 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5336 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7136 | 0.4869 | 0.7613 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1856 | 0.6 | 240 | 1.2551 | 0.1382 | 0.1828 | 0.7274 | nan | 0.7497 | 0.9518 | 0.0 | 0.0005 | 0.0048 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8893 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8153 | 0.0 | 0.0048 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9475 | 0.7597 | 0.9107 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5097 | 0.7477 | 0.0 | 0.0005 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6172 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5527 | 0.0 | 0.0048 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7293 | 0.6250 | 0.7703 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4577 | 0.65 | 260 | 1.1862 | 0.1387 | 0.1848 | 0.7304 | nan | 0.8842 | 0.9065 | 0.0 | 0.0001 | 0.0024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8632 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9442 | 0.7313 | 0.9080 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5121 | 0.7833 | 0.0 | 0.0001 | 0.0024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6297 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5381 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7437 | 0.6199 | 0.7486 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0748 | 0.7 | 280 | 1.2000 | 0.1391 | 0.1846 | 0.7301 | nan | 0.7249 | 0.9690 | 0.0 | 0.0005 | 0.0064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8656 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8917 | 0.8362 | 0.9065 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5306 | 0.7403 | 0.0 | 0.0005 | 0.0063 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6223 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5491 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7566 | 0.6061 | 0.7761 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.642 | 0.75 | 300 | 1.1452 | 0.1432 | 0.1880 | 0.7409 | nan | 0.8682 | 0.9389 | 0.0 | 0.0030 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8605 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8759 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9092 | 0.8515 | 0.8892 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5333 | 0.7905 | 0.0 | 0.0030 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6393 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5418 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7655 | 0.6551 | 0.7893 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2166 | 0.8 | 320 | 1.1450 | 0.1388 | 0.1849 | 0.7391 | nan | 0.8516 | 0.9460 | 0.0 | 0.0043 | 0.0060 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.6849 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5584 | 0.7932 | 0.0 | 0.0043 | 0.0060 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5844 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5259 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7548 | 0.5985 | 0.7549 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.1346 | 0.85 | 340 | 1.1215 | 0.1428 | 0.1887 | 0.7411 | nan | 0.7956 | 0.9551 | 0.0 | 0.0145 | 0.0098 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8646 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8884 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9131 | 0.8828 | 0.9024 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5611 | 0.7721 | 0.0 | 0.0145 | 0.0097 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6313 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5405 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7563 | 0.6337 | 0.7917 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8351 | 0.9 | 360 | 1.1012 | 0.1433 | 0.1896 | 0.7449 | nan | 0.8723 | 0.9432 | 0.0 | 0.0025 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8822 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8662 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9213 | 0.8361 | 0.9201 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5472 | 0.7989 | 0.0 | 0.0025 | 0.0113 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5416 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7666 | 0.6674 | 0.7664 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.152 | 0.95 | 380 | 1.1045 | 0.1452 | 0.1891 | 0.7453 | nan | 0.8827 | 0.9332 | 0.0 | 0.0457 | 0.0124 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9399 | 0.7910 | 0.9107 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5462 | 0.7966 | 0.0 | 0.0457 | 0.0123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6494 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5395 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7636 | 0.6627 | 0.7763 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2062 | 1.0 | 400 | 1.0607 | 0.1469 | 0.1897 | 0.7482 | nan | 0.8192 | 0.9644 | 0.0 | 0.0944 | 0.0198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8406 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8821 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9193 | 0.8054 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5772 | 0.7742 | 0.0 | 0.0941 | 0.0195 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5360 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7740 | 0.6591 | 0.7710 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0116 | 1.05 | 420 | 1.0503 | 0.1493 | 0.1950 | 0.7554 | nan | 0.8686 | 0.9478 | 0.0 | 0.2033 | 0.0295 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9166 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8409 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9414 | 0.7667 | 0.9196 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5809 | 0.8022 | 0.0 | 0.1995 | 0.0287 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5517 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7628 | 0.6441 | 0.7652 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.009 | 1.1 | 440 | 1.0723 | 0.1529 | 0.1958 | 0.7553 | nan | 0.7797 | 0.9670 | 0.0 | 0.2214 | 0.0547 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8978 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8927 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9274 | 0.8016 | 0.9176 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5898 | 0.7717 | 0.0 | 0.2157 | 0.0526 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6389 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5499 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7760 | 0.6697 | 0.7818 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1496 | 1.15 | 460 | 1.0417 | 0.1571 | 0.2017 | 0.7607 | nan | 0.7736 | 0.9645 | 0.0 | 0.3606 | 0.0669 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8775 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8801 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9098 | 0.8906 | 0.9326 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6102 | 0.7737 | 0.0 | 0.3374 | 0.0634 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5538 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7682 | 0.6437 | 0.7772 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4669 | 1.2 | 480 | 1.0161 | 0.1566 | 0.2024 | 0.7637 | nan | 0.8236 | 0.9531 | 0.0 | 0.3507 | 0.0584 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9165 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8675 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9263 | 0.8597 | 0.9222 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6005 | 0.7983 | 0.0 | 0.3296 | 0.0556 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5498 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7752 | 0.6654 | 0.7770 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.075 | 1.25 | 500 | 1.0124 | 0.1556 | 0.2000 | 0.7634 | nan | 0.8521 | 0.9499 | 0.0 | 0.3154 | 0.0410 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8618 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9442 | 0.8133 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5910 | 0.8068 | 0.0 | 0.2992 | 0.0394 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6338 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5507 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7689 | 0.6697 | 0.7737 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.888 | 1.3 | 520 | 0.9797 | 0.1597 | 0.2028 | 0.7677 | nan | 0.8590 | 0.9472 | 0.0 | 0.3534 | 0.0469 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8900 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9379 | 0.8578 | 0.9187 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5908 | 0.8056 | 0.0 | 0.3311 | 0.0448 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6598 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5676 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7712 | 0.6912 | 0.8088 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8099 | 1.35 | 540 | 0.9760 | 0.1589 | 0.2026 | 0.7678 | nan | 0.8526 | 0.9534 | 0.0 | 0.3370 | 0.0313 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8862 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9252 | 0.8551 | 0.9206 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5954 | 0.8014 | 0.0 | 0.3188 | 0.0303 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6382 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5706 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7830 | 0.6934 | 0.8122 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1998 | 1.4 | 560 | 0.9815 | 0.1578 | 0.2030 | 0.7631 | nan | 0.8956 | 0.9250 | 0.0 | 0.3267 | 0.0461 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8956 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9206 | 0.8669 | 0.9275 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5656 | 0.8136 | 0.0 | 0.3102 | 0.0440 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.6574 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5524 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7894 | 0.6940 | 0.7818 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5591 | 1.45 | 580 | 0.9654 | 0.1618 | 0.2043 | 0.7698 | nan | 0.8198 | 0.9655 | 0.0 | 0.3715 | 0.0848 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.8935 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8965 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9146 | 0.8730 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6182 | 0.7898 | 0.0 | 0.3467 | 0.0792 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.6590 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5647 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7871 | 0.6835 | 0.8101 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.861 | 1.5 | 600 | 0.9622 | 0.1607 | 0.2045 | 0.7689 | nan | 0.8163 | 0.9648 | 0.0 | 0.3780 | 0.0907 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9187 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8714 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9229 | 0.8485 | 0.9361 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6180 | 0.7903 | 0.0 | 0.3541 | 0.0844 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6307 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5609 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7854 | 0.6904 | 0.7884 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8335 | 1.55 | 620 | 0.9569 | 0.1598 | 0.2050 | 0.7686 | nan | 0.8421 | 0.9561 | 0.0 | 0.3493 | 0.0928 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8753 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9172 | 0.8688 | 0.9335 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6069 | 0.8031 | 0.0 | 0.3306 | 0.0860 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.6123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5618 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7851 | 0.6911 | 0.7950 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9988 | 1.6 | 640 | 0.9337 | 0.1611 | 0.2050 | 0.7711 | nan | 0.8595 | 0.9538 | 0.0 | 0.3512 | 0.0928 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.8962 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8854 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9281 | 0.8594 | 0.9367 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6062 | 0.8105 | 0.0 | 0.3310 | 0.0868 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.6565 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5596 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7819 | 0.6958 | 0.7880 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.966 | 1.65 | 660 | 0.9322 | 0.1612 | 0.2051 | 0.7707 | nan | 0.8706 | 0.9494 | 0.0 | 0.3470 | 0.0997 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8905 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9347 | 0.8652 | 0.9364 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5953 | 0.8136 | 0.0 | 0.3281 | 0.0922 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6654 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7756 | 0.6890 | 0.7885 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2154 | 1.7 | 680 | 0.9373 | 0.1611 | 0.2048 | 0.7710 | nan | 0.8448 | 0.9577 | 0.0 | 0.3717 | 0.1010 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.9173 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8613 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9411 | 0.8371 | 0.9246 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6096 | 0.8056 | 0.0 | 0.3487 | 0.0930 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.6272 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7762 | 0.6911 | 0.7931 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7979 | 1.75 | 700 | 0.9429 | 0.1622 | 0.2067 | 0.7717 | nan | 0.8496 | 0.9548 | 0.0 | 0.3821 | 0.1182 | 0.0 | 0.0013 | 0.0 | 0.0 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9202 | 0.8812 | 0.9204 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6104 | 0.8088 | 0.0 | 0.3583 | 0.1074 | 0.0 | 0.0013 | 0.0 | 0.0 | 0.6410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5675 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7784 | 0.6767 | 0.7994 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8366 | 1.8 | 720 | 0.9379 | 0.1645 | 0.2075 | 0.7745 | nan | 0.8359 | 0.9580 | 0.0 | 0.4130 | 0.1275 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.8998 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8704 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9450 | 0.8617 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6227 | 0.8035 | 0.0 | 0.3850 | 0.1147 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.6544 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7682 | 0.6867 | 0.8055 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0448 | 1.85 | 740 | 0.9419 | 0.1659 | 0.2087 | 0.7769 | nan | 0.8483 | 0.9532 | 0.0 | 0.4442 | 0.1387 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.8986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8865 | 0.0 | 0.0042 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9458 | 0.8442 | 0.9215 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6240 | 0.8122 | 0.0 | 0.4077 | 0.1237 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.6529 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5700 | 0.0 | 0.0041 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7767 | 0.6938 | 0.8070 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9737 | 1.9 | 760 | 0.9193 | 0.1664 | 0.2082 | 0.7772 | nan | 0.8420 | 0.9586 | 0.0 | 0.4353 | 0.1193 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.9082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.0079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9385 | 0.8464 | 0.9190 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6232 | 0.8053 | 0.0 | 0.4022 | 0.1088 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5766 | 0.0 | 0.0079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7843 | 0.7077 | 0.8180 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0716 | 1.95 | 780 | 0.9170 | 0.1672 | 0.2098 | 0.7785 | nan | 0.8434 | 0.9539 | 0.0 | 0.4671 | 0.1283 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0058 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9398 | 0.8661 | 0.9157 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6242 | 0.8106 | 0.0 | 0.4232 | 0.1156 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.6631 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0057 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7811 | 0.6920 | 0.8223 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4144 | 2.0 | 800 | 0.9249 | 0.1675 | 0.2109 | 0.7776 | nan | 0.8631 | 0.9423 | 0.0 | 0.4704 | 0.1421 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.8937 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9143 | 0.0 | 0.0055 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9291 | 0.8710 | 0.9207 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6127 | 0.8192 | 0.0 | 0.4256 | 0.1262 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.6655 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5666 | 0.0 | 0.0054 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7875 | 0.6912 | 0.8218 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-mhr2-ntsema-colab
ntsema
2022-11-10T01:46:14Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-10T00:13:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-mhr2-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.7993311036789298 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-mhr2-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7562 - Wer: 0.7993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.5636 | 5.79 | 400 | 1.8357 | 1.0 | | 1.6348 | 11.59 | 800 | 0.6797 | 0.8528 | | 0.8624 | 17.39 | 1200 | 0.6651 | 0.8194 | | 0.5248 | 23.19 | 1600 | 0.6892 | 0.7826 | | 0.3328 | 28.98 | 2000 | 0.7562 | 0.7993 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221109+cu116 - Datasets 2.6.1 - Tokenizers 0.13.2
burakyldrm/wav2vec2-burak-new-300-v2-6
burakyldrm
2022-11-10T01:45:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T19:25:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-burak-new-300-v2-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-6 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3074 - Wer: 0.2340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 151 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.3136 | 9.61 | 500 | 3.1262 | 1.0 | | 1.8247 | 19.23 | 1000 | 0.4049 | 0.5065 | | 0.5387 | 28.83 | 1500 | 0.2828 | 0.3462 | | 0.3713 | 38.45 | 2000 | 0.2761 | 0.3125 | | 0.293 | 48.08 | 2500 | 0.2872 | 0.3001 | | 0.2436 | 57.68 | 3000 | 0.2912 | 0.2904 | | 0.2116 | 67.3 | 3500 | 0.2910 | 0.2725 | | 0.1859 | 76.91 | 4000 | 0.2937 | 0.2533 | | 0.1731 | 86.53 | 4500 | 0.2985 | 0.2485 | | 0.1569 | 96.15 | 5000 | 0.3022 | 0.2409 | | 0.1471 | 105.76 | 5500 | 0.3070 | 0.2374 | | 0.1385 | 115.38 | 6000 | 0.2954 | 0.2429 | | 0.1289 | 124.99 | 6500 | 0.3016 | 0.2361 | | 0.1268 | 134.61 | 7000 | 0.3000 | 0.2368 | | 0.12 | 144.23 | 7500 | 0.3074 | 0.2340 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
sanchit-gandhi/whisper-medium-es-5k
sanchit-gandhi
2022-11-10T01:33:57Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "es", "dataset:facebook/multilingual_librispeech", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T19:30:55Z
--- language: - es license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - facebook/multilingual_librispeech metrics: - wer model-index: - name: Whisper Small Es - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech args: 'config: es, split: test' metrics: - name: Wer type: wer value: 60.16226172047142 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Es - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Multilingual LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 1.2668 - Wer: 60.1623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.2112 | 0.2 | 500 | 1.7394 | 61.1126 | | 1.4913 | 0.4 | 1000 | 1.3758 | 62.8143 | | 1.6651 | 0.6 | 1500 | 1.3100 | 61.3261 | | 1.7031 | 0.8 | 2000 | 1.2752 | 60.5261 | | 1.4289 | 1.0 | 2500 | 1.2668 | 60.1623 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1
flamesbob/Steampunk_angel
flamesbob
2022-11-10T01:08:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-10T01:06:53Z
--- license: creativeml-openrail-m --- art by `Steampunk_angel` this style gives a steampunk look and feel with gears and sometimes mechanical wings to prompts. License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
hcho22/opus-mt-ko-en-finetuned-kr-to-en
hcho22
2022-11-10T00:23:13Z
60
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-08T18:23:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hcho22/opus-mt-ko-en-finetuned-kr-to-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hcho22/opus-mt-ko-en-finetuned-kr-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2330 - Validation Loss: 1.2844 - Train Bleu: 30.7578 - Train Gen Len: 13.9104 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 1.2330 | 1.2844 | 30.7578 | 13.9104 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_final_havest
bigmorning
2022-11-10T00:22:37Z
62
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-10T00:22:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_final_havest results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_final_havest This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0287 - Train Accuracy: 0.0346 - Validation Loss: 0.6219 - Validation Accuracy: 0.0314 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0949 | 0.0116 | 4.4444 | 0.0124 | 0 | | 4.3242 | 0.0130 | 4.0648 | 0.0140 | 1 | | 3.9308 | 0.0145 | 3.6837 | 0.0157 | 2 | | 3.5552 | 0.0159 | 3.3410 | 0.0171 | 3 | | 3.1591 | 0.0175 | 2.8089 | 0.0198 | 4 | | 2.2408 | 0.0221 | 1.7104 | 0.0255 | 5 | | 1.4220 | 0.0261 | 1.2181 | 0.0279 | 6 | | 1.0460 | 0.0280 | 0.9912 | 0.0290 | 7 | | 0.8363 | 0.0291 | 0.8645 | 0.0296 | 8 | | 0.6967 | 0.0299 | 0.7748 | 0.0301 | 9 | | 0.5942 | 0.0305 | 0.7201 | 0.0304 | 10 | | 0.5151 | 0.0309 | 0.6675 | 0.0307 | 11 | | 0.4496 | 0.0314 | 0.6382 | 0.0308 | 12 | | 0.3951 | 0.0318 | 0.6060 | 0.0310 | 13 | | 0.3473 | 0.0321 | 0.5945 | 0.0311 | 14 | | 0.3053 | 0.0324 | 0.5752 | 0.0312 | 15 | | 0.2684 | 0.0327 | 0.5700 | 0.0313 | 16 | | 0.2355 | 0.0330 | 0.5651 | 0.0313 | 17 | | 0.2065 | 0.0332 | 0.5619 | 0.0313 | 18 | | 0.1785 | 0.0334 | 0.5522 | 0.0314 | 19 | | 0.1535 | 0.0337 | 0.5609 | 0.0313 | 20 | | 0.1310 | 0.0339 | 0.5590 | 0.0314 | 21 | | 0.1115 | 0.0340 | 0.5695 | 0.0313 | 22 | | 0.0951 | 0.0342 | 0.5723 | 0.0314 | 23 | | 0.0787 | 0.0343 | 0.5796 | 0.0314 | 24 | | 0.0649 | 0.0344 | 0.5967 | 0.0313 | 25 | | 0.0539 | 0.0345 | 0.6019 | 0.0313 | 26 | | 0.0441 | 0.0346 | 0.6113 | 0.0313 | 27 | | 0.0364 | 0.0346 | 0.6110 | 0.0314 | 28 | | 0.0287 | 0.0346 | 0.6219 | 0.0314 | 29 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2