modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
giulio86/65
|
giulio86
| 2022-11-08T20:18:43Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2022-11-08T20:18:43Z |
---
license: creativeml-openrail-m
---
|
huggingtweets/big___oven-codeinecucumber
|
huggingtweets
| 2022-11-08T19:32:56Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-10-25T19:41:48Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1579203041764442116/RSLookYD_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1571653458972794884/eaxhUsib_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Gutted & oskcar</div>
<div style="text-align: center; font-size: 14px;">@big___oven-codeinecucumber</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Gutted & oskcar.
| Data | Gutted | oskcar |
| --- | --- | --- |
| Tweets downloaded | 1761 | 2669 |
| Retweets | 243 | 635 |
| Short tweets | 326 | 308 |
| Tweets kept | 1192 | 1726 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qyf2pl5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @big___oven-codeinecucumber's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rr9twhn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rr9twhn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/big___oven-codeinecucumber')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base
|
gary109
| 2022-11-08T19:17:51Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"gary109/AI_Light_Dance",
"generated_from_trainer",
"dataset:ai_light_dance",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-07T10:38:40Z |
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
datasets:
- ai_light_dance
model-index:
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai-light-dance_drums_ft_pretrain_wav2vec2-base
This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base) on the GARY109/AI_LIGHT_DANCE - ONSET-DRUMS dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8991
- Wer: 0.6046
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 200.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 0.9 | 8 | 2.0434 | 0.6226 |
| 0.4739 | 1.9 | 16 | 2.1024 | 0.6247 |
| 0.4693 | 2.9 | 24 | 1.9824 | 0.6211 |
| 0.5139 | 3.9 | 32 | 2.2962 | 0.6429 |
| 0.5081 | 4.9 | 40 | 2.2201 | 0.6292 |
| 0.5081 | 5.9 | 48 | 2.1399 | 0.6208 |
| 0.5785 | 6.9 | 56 | 2.1451 | 0.6417 |
| 0.533 | 7.9 | 64 | 2.1184 | 0.6330 |
| 0.5141 | 8.9 | 72 | 2.0230 | 0.6342 |
| 0.4971 | 9.9 | 80 | 2.2137 | 0.6381 |
| 0.4971 | 10.9 | 88 | 2.1159 | 0.6253 |
| 0.5645 | 11.9 | 96 | 2.0966 | 0.6247 |
| 0.4932 | 12.9 | 104 | 1.9249 | 0.6223 |
| 0.4918 | 13.9 | 112 | 2.0445 | 0.6235 |
| 0.5053 | 14.9 | 120 | 2.1317 | 0.6304 |
| 0.5053 | 15.9 | 128 | 2.0723 | 0.6256 |
| 0.5565 | 16.9 | 136 | 2.1390 | 0.6402 |
| 0.4819 | 17.9 | 144 | 1.9556 | 0.6321 |
| 0.5131 | 18.9 | 152 | 1.9886 | 0.6333 |
| 0.4798 | 19.9 | 160 | 1.9700 | 0.6259 |
| 0.4798 | 20.9 | 168 | 1.9771 | 0.6295 |
| 0.5221 | 21.9 | 176 | 1.9880 | 0.6235 |
| 0.4862 | 22.9 | 184 | 2.0994 | 0.6298 |
| 0.4831 | 23.9 | 192 | 2.0521 | 0.6205 |
| 0.4952 | 24.9 | 200 | 1.9838 | 0.6064 |
| 0.4952 | 25.9 | 208 | 2.0319 | 0.6103 |
| 0.5119 | 26.9 | 216 | 2.0419 | 0.6160 |
| 0.4996 | 27.9 | 224 | 2.0073 | 0.6178 |
| 0.488 | 28.9 | 232 | 2.1740 | 0.6304 |
| 0.4978 | 29.9 | 240 | 2.2731 | 0.6163 |
| 0.4978 | 30.9 | 248 | 2.2420 | 0.6205 |
| 0.5259 | 31.9 | 256 | 2.0561 | 0.6184 |
| 0.47 | 32.9 | 264 | 1.9455 | 0.6136 |
| 0.5132 | 33.9 | 272 | 1.9307 | 0.6043 |
| 0.4972 | 34.9 | 280 | 2.0536 | 0.6127 |
| 0.4972 | 35.9 | 288 | 1.9113 | 0.6223 |
| 0.5147 | 36.9 | 296 | 1.9317 | 0.6286 |
| 0.4914 | 37.9 | 304 | 2.1810 | 0.6241 |
| 0.472 | 38.9 | 312 | 2.1403 | 0.6160 |
| 0.4825 | 39.9 | 320 | 2.1141 | 0.6094 |
| 0.4825 | 40.9 | 328 | 2.2870 | 0.6031 |
| 0.5138 | 41.9 | 336 | 2.1404 | 0.6181 |
| 0.48 | 42.9 | 344 | 2.0243 | 0.6265 |
| 0.4598 | 43.9 | 352 | 2.1117 | 0.6199 |
| 0.474 | 44.9 | 360 | 2.0378 | 0.6321 |
| 0.474 | 45.9 | 368 | 2.1919 | 0.6211 |
| 0.4933 | 46.9 | 376 | 2.3645 | 0.6109 |
| 0.4692 | 47.9 | 384 | 2.1920 | 0.6076 |
| 0.4716 | 48.9 | 392 | 2.3663 | 0.6034 |
| 0.4601 | 49.9 | 400 | 2.2838 | 0.6280 |
| 0.4601 | 50.9 | 408 | 2.0287 | 0.6148 |
| 0.4891 | 51.9 | 416 | 2.1346 | 0.6130 |
| 0.4506 | 52.9 | 424 | 2.1556 | 0.6181 |
| 0.4581 | 53.9 | 432 | 2.0560 | 0.6229 |
| 0.4485 | 54.9 | 440 | 1.9944 | 0.5971 |
| 0.4485 | 55.9 | 448 | 1.9791 | 0.6097 |
| 0.4942 | 56.9 | 456 | 2.1166 | 0.6070 |
| 0.4748 | 57.9 | 464 | 2.0271 | 0.6124 |
| 0.4229 | 58.9 | 472 | 2.0437 | 0.6229 |
| 0.45 | 59.9 | 480 | 2.1012 | 0.6142 |
| 0.45 | 60.9 | 488 | 1.9151 | 0.6049 |
| 0.4936 | 61.9 | 496 | 1.8991 | 0.6046 |
| 0.4602 | 62.9 | 504 | 1.9813 | 0.6112 |
| 0.4626 | 63.9 | 512 | 1.9372 | 0.6136 |
| 0.445 | 64.9 | 520 | 1.9060 | 0.6154 |
| 0.445 | 65.9 | 528 | 1.9574 | 0.6151 |
| 0.4907 | 66.9 | 536 | 2.0947 | 0.6022 |
| 0.4723 | 67.9 | 544 | 2.0061 | 0.6010 |
| 0.4103 | 68.9 | 552 | 1.9557 | 0.6094 |
| 0.4808 | 69.9 | 560 | 2.1042 | 0.6088 |
| 0.4808 | 70.9 | 568 | 2.1360 | 0.6073 |
| 0.4682 | 71.9 | 576 | 2.1290 | 0.6013 |
| 0.4472 | 72.9 | 584 | 1.9454 | 0.5989 |
| 0.4259 | 73.9 | 592 | 2.0937 | 0.6043 |
| 0.4464 | 74.9 | 600 | 2.0822 | 0.6058 |
| 0.4464 | 75.9 | 608 | 2.0128 | 0.6058 |
| 0.4775 | 76.9 | 616 | 1.9744 | 0.6094 |
| 0.4394 | 77.9 | 624 | 1.9992 | 0.6010 |
| 0.418 | 78.9 | 632 | 2.1693 | 0.5947 |
| 0.4384 | 79.9 | 640 | 2.1326 | 0.5923 |
| 0.4384 | 80.9 | 648 | 2.1151 | 0.5950 |
| 0.4971 | 81.9 | 656 | 2.1581 | 0.5923 |
| 0.4176 | 82.9 | 664 | 2.0876 | 0.6013 |
| 0.4312 | 83.9 | 672 | 2.1316 | 0.5935 |
| 0.4408 | 84.9 | 680 | 2.2627 | 0.5971 |
| 0.4408 | 85.9 | 688 | 2.2799 | 0.6112 |
| 0.4678 | 86.9 | 696 | 2.1239 | 0.5989 |
| 0.4288 | 87.9 | 704 | 2.1574 | 0.5983 |
| 0.4157 | 88.9 | 712 | 2.2125 | 0.5908 |
| 0.444 | 89.9 | 720 | 2.0542 | 0.5986 |
| 0.444 | 90.9 | 728 | 2.0899 | 0.5920 |
| 0.4694 | 91.9 | 736 | 2.1122 | 0.6076 |
| 0.4314 | 92.9 | 744 | 2.0634 | 0.5950 |
| 0.4348 | 93.9 | 752 | 2.0333 | 0.6046 |
| 0.4558 | 94.9 | 760 | 2.1188 | 0.5956 |
| 0.4558 | 95.9 | 768 | 2.0606 | 0.5995 |
| 0.461 | 96.9 | 776 | 2.0600 | 0.5971 |
| 0.4258 | 97.9 | 784 | 2.0479 | 0.6040 |
| 0.4395 | 98.9 | 792 | 2.1282 | 0.6055 |
| 0.4282 | 99.9 | 800 | 2.0593 | 0.6043 |
| 0.4282 | 100.9 | 808 | 2.0592 | 0.5920 |
| 0.4623 | 101.9 | 816 | 2.0852 | 0.5944 |
| 0.4392 | 102.9 | 824 | 2.2024 | 0.5920 |
| 0.4308 | 103.9 | 832 | 2.1786 | 0.5935 |
| 0.4375 | 104.9 | 840 | 2.1085 | 0.5911 |
| 0.4375 | 105.9 | 848 | 2.0724 | 0.5974 |
| 0.4501 | 106.9 | 856 | 2.1306 | 0.5881 |
| 0.4273 | 107.9 | 864 | 2.1340 | 0.5899 |
| 0.4234 | 108.9 | 872 | 2.1125 | 0.5980 |
| 0.4289 | 109.9 | 880 | 2.0526 | 0.6007 |
| 0.4289 | 110.9 | 888 | 2.0955 | 0.5884 |
| 0.478 | 111.9 | 896 | 2.1146 | 0.5872 |
| 0.4143 | 112.9 | 904 | 2.2310 | 0.5899 |
| 0.4193 | 113.9 | 912 | 2.2165 | 0.5899 |
| 0.4159 | 114.9 | 920 | 2.1631 | 0.5941 |
| 0.4159 | 115.9 | 928 | 2.1371 | 0.5938 |
| 0.4776 | 116.9 | 936 | 2.0972 | 0.5935 |
| 0.4143 | 117.9 | 944 | 2.1248 | 0.5917 |
| 0.4022 | 118.9 | 952 | 2.1317 | 0.5956 |
| 0.4346 | 119.9 | 960 | 2.1237 | 0.5992 |
| 0.4346 | 120.9 | 968 | 2.0684 | 0.5935 |
| 0.4564 | 121.9 | 976 | 2.0722 | 0.5947 |
| 0.4243 | 122.9 | 984 | 2.1361 | 0.5884 |
| 0.413 | 123.9 | 992 | 2.1207 | 0.5893 |
| 0.4113 | 124.9 | 1000 | 2.0697 | 0.5837 |
| 0.4113 | 125.9 | 1008 | 2.1005 | 0.5875 |
| 0.4426 | 126.9 | 1016 | 2.0822 | 0.5870 |
| 0.4255 | 127.9 | 1024 | 2.0572 | 0.5959 |
| 0.4214 | 128.9 | 1032 | 2.0343 | 0.5935 |
| 0.4042 | 129.9 | 1040 | 2.0282 | 0.5902 |
| 0.4042 | 130.9 | 1048 | 2.0314 | 0.5846 |
| 0.4515 | 131.9 | 1056 | 2.0621 | 0.5870 |
| 0.4138 | 132.9 | 1064 | 2.0704 | 0.5938 |
| 0.4289 | 133.9 | 1072 | 2.0222 | 0.5896 |
| 0.3908 | 134.9 | 1080 | 2.0879 | 0.5855 |
| 0.3908 | 135.9 | 1088 | 2.1068 | 0.5822 |
| 0.4489 | 136.9 | 1096 | 2.0702 | 0.5837 |
| 0.4191 | 137.9 | 1104 | 2.1093 | 0.5881 |
| 0.4149 | 138.9 | 1112 | 2.1046 | 0.5819 |
| 0.4127 | 139.9 | 1120 | 2.1729 | 0.5777 |
| 0.4127 | 140.9 | 1128 | 2.1636 | 0.5810 |
| 0.4449 | 141.9 | 1136 | 2.1515 | 0.5786 |
| 0.3977 | 142.9 | 1144 | 2.1531 | 0.5774 |
| 0.4121 | 143.9 | 1152 | 2.0857 | 0.5816 |
| 0.4363 | 144.9 | 1160 | 2.1372 | 0.5822 |
| 0.4363 | 145.9 | 1168 | 2.1902 | 0.5828 |
| 0.4318 | 146.9 | 1176 | 2.1465 | 0.5831 |
| 0.4112 | 147.9 | 1184 | 2.0697 | 0.5858 |
| 0.4292 | 148.9 | 1192 | 2.0850 | 0.5837 |
| 0.4182 | 149.9 | 1200 | 2.1171 | 0.5846 |
| 0.4182 | 150.9 | 1208 | 2.1020 | 0.5867 |
| 0.4381 | 151.9 | 1216 | 2.1052 | 0.5849 |
| 0.4235 | 152.9 | 1224 | 2.1430 | 0.5864 |
| 0.4173 | 153.9 | 1232 | 2.1131 | 0.5834 |
| 0.3927 | 154.9 | 1240 | 2.1134 | 0.5846 |
| 0.3927 | 155.9 | 1248 | 2.1173 | 0.5846 |
| 0.4492 | 156.9 | 1256 | 2.0772 | 0.5801 |
| 0.4313 | 157.9 | 1264 | 2.0309 | 0.5861 |
| 0.4015 | 158.9 | 1272 | 2.0887 | 0.5819 |
| 0.4268 | 159.9 | 1280 | 2.1812 | 0.5849 |
| 0.4268 | 160.9 | 1288 | 2.1568 | 0.5881 |
| 0.4496 | 161.9 | 1296 | 2.0805 | 0.5801 |
| 0.4121 | 162.9 | 1304 | 2.0461 | 0.5872 |
| 0.401 | 163.9 | 1312 | 2.0377 | 0.5864 |
| 0.4192 | 164.9 | 1320 | 2.0183 | 0.5872 |
| 0.4192 | 165.9 | 1328 | 2.0107 | 0.5855 |
| 0.4466 | 166.9 | 1336 | 2.0528 | 0.5881 |
| 0.3981 | 167.9 | 1344 | 2.0511 | 0.5878 |
| 0.3967 | 168.9 | 1352 | 2.0374 | 0.5867 |
| 0.4072 | 169.9 | 1360 | 2.0554 | 0.5867 |
| 0.4072 | 170.9 | 1368 | 2.0388 | 0.5858 |
| 0.4581 | 171.9 | 1376 | 2.0188 | 0.5914 |
| 0.3937 | 172.9 | 1384 | 1.9999 | 0.5852 |
| 0.4074 | 173.9 | 1392 | 1.9738 | 0.5840 |
| 0.4085 | 174.9 | 1400 | 2.0090 | 0.5843 |
| 0.4085 | 175.9 | 1408 | 1.9990 | 0.5864 |
| 0.4224 | 176.9 | 1416 | 2.0391 | 0.5852 |
| 0.4471 | 177.9 | 1424 | 2.0262 | 0.5855 |
| 0.4233 | 178.9 | 1432 | 2.0621 | 0.5801 |
| 0.409 | 179.9 | 1440 | 2.0486 | 0.5846 |
| 0.409 | 180.9 | 1448 | 2.0508 | 0.5807 |
| 0.4518 | 181.9 | 1456 | 2.0241 | 0.5887 |
| 0.4077 | 182.9 | 1464 | 2.0169 | 0.5843 |
| 0.4197 | 183.9 | 1472 | 2.0014 | 0.5896 |
| 0.4237 | 184.9 | 1480 | 2.0189 | 0.5843 |
| 0.4237 | 185.9 | 1488 | 2.0095 | 0.5867 |
| 0.4394 | 186.9 | 1496 | 1.9993 | 0.5884 |
| 0.4299 | 187.9 | 1504 | 2.0097 | 0.5899 |
| 0.4198 | 188.9 | 1512 | 2.0049 | 0.5870 |
| 0.4116 | 189.9 | 1520 | 1.9899 | 0.5875 |
| 0.4116 | 190.9 | 1528 | 1.9814 | 0.5881 |
| 0.445 | 191.9 | 1536 | 1.9820 | 0.5887 |
| 0.4198 | 192.9 | 1544 | 1.9838 | 0.5881 |
| 0.4065 | 193.9 | 1552 | 1.9849 | 0.5884 |
| 0.3917 | 194.9 | 1560 | 1.9803 | 0.5867 |
| 0.3917 | 195.9 | 1568 | 1.9777 | 0.5881 |
| 0.4239 | 196.9 | 1576 | 1.9752 | 0.5875 |
| 0.4183 | 197.9 | 1584 | 1.9766 | 0.5872 |
| 0.3965 | 198.9 | 1592 | 1.9773 | 0.5872 |
| 0.4144 | 199.9 | 1600 | 1.9781 | 0.5872 |
### Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
mrahusain/q-FrozenLake-v1-4x4-noSlippery
|
mrahusain
| 2022-11-08T18:29:40Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-08T18:29:34Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="mrahusain/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
ArafatBHossain/bert_uncased_fine_tuned_emotion_dataset
|
ArafatBHossain
| 2022-11-08T18:17:50Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-10-14T05:38:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert_uncased_fine_tuned_emotion_dataset
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_fine_tuned_emotion_dataset
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1870
- Accuracy: 0.943
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2321 | 1.0 | 2000 | 0.2690 | 0.924 |
| 0.1483 | 2.0 | 4000 | 0.1683 | 0.9415 |
| 0.0954 | 3.0 | 6000 | 0.1870 | 0.943 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
philschmid/pyannote-segmentation
|
philschmid
| 2022-11-08T17:15:47Z | 1,078 | 8 |
pyannote-audio
|
[
"pyannote-audio",
"pytorch",
"pyannote",
"pyannote-audio-model",
"audio",
"voice",
"speech",
"speaker",
"speaker-segmentation",
"voice-activity-detection",
"overlapped-speech-detection",
"resegmentation",
"dataset:ami",
"dataset:dihard",
"dataset:voxconverse",
"arxiv:2104.04045",
"license:mit",
"region:us"
] |
voice-activity-detection
| 2022-11-08T17:13:14Z |
---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-model
- audio
- voice
- speech
- speaker
- speaker-segmentation
- voice-activity-detection
- overlapped-speech-detection
- resegmentation
datasets:
- ami
- dihard
- voxconverse
license: mit
inference: false
---
# 🎹 Speaker segmentation

Model from *[End-to-end speaker segmentation for overlap-aware resegmentation](http://arxiv.org/abs/2104.04045)*,
by Hervé Bredin and Antoine Laurent.
[Online demo](https://huggingface.co/spaces/pyannote/pretrained-pipelines) is available as a Hugging Face Space.
## Support
For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]).
For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository.
## Usage
Relies on pyannote.audio 2.0 currently in development: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation).
### Voice activity detection
```python
from pyannote.audio.pipelines import VoiceActivityDetection
pipeline = VoiceActivityDetection(segmentation="pyannote/segmentation")
HYPER_PARAMETERS = {
# onset/offset activation thresholds
"onset": 0.5, "offset": 0.5,
# remove speech regions shorter than that many seconds.
"min_duration_on": 0.0,
# fill non-speech regions shorter than that many seconds.
"min_duration_off": 0.0
}
pipeline.instantiate(HYPER_PARAMETERS)
vad = pipeline("audio.wav")
# `vad` is a pyannote.core.Annotation instance containing speech regions
```
### Overlapped speech detection
```python
from pyannote.audio.pipelines import OverlappedSpeechDetection
pipeline = OverlappedSpeechDetection(segmentation="pyannote/segmentation")
pipeline.instantiate(HYPER_PARAMETERS)
osd = pipeline("audio.wav")
# `osd` is a pyannote.core.Annotation instance containing overlapped speech regions
```
### Resegmentation
```python
from pyannote.audio.pipelines import Resegmentation
pipeline = Resegmentation(segmentation="pyannote/segmentation",
diarization="baseline")
pipeline.instantiate(HYPER_PARAMETERS)
resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline})
# where `baseline` should be provided as a pyannote.core.Annotation instance
```
### Raw scores
```python
from pyannote.audio import Inference
inference = Inference("pyannote/segmentation")
segmentation = inference("audio.wav")
# `segmentation` is a pyannote.core.SlidingWindowFeature
# instance containing raw segmentation scores like the
# one pictured above (output)
```
## Reproducible research
In order to reproduce the results of the paper ["End-to-end speaker segmentation for overlap-aware resegmentation
"](https://arxiv.org/abs/2104.04045), use `pyannote/segmentation@Interspeech2021` with the following hyper-parameters:
| Voice activity detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
| ------------------------ | ------- | -------- | ----------------- | ------------------ |
| AMI Mix-Headset | 0.684 | 0.577 | 0.181 | 0.037 |
| DIHARD3 | 0.767 | 0.377 | 0.136 | 0.067 |
| VoxConverse | 0.767 | 0.713 | 0.182 | 0.501 |
| Overlapped speech detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
| --------------------------- | ------- | -------- | ----------------- | ------------------ |
| AMI Mix-Headset | 0.448 | 0.362 | 0.116 | 0.187 |
| DIHARD3 | 0.430 | 0.320 | 0.091 | 0.144 |
| VoxConverse | 0.587 | 0.426 | 0.337 | 0.112 |
| Resegmentation of VBx | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
| --------------------- | ------- | -------- | ----------------- | ------------------ |
| AMI Mix-Headset | 0.542 | 0.527 | 0.044 | 0.705 |
| DIHARD3 | 0.592 | 0.489 | 0.163 | 0.182 |
| VoxConverse | 0.537 | 0.724 | 0.410 | 0.563 |
Expected outputs (and VBx baseline) are also provided in the `/reproducible_research` sub-directories.
## Citation
```bibtex
@inproceedings{Bredin2021,
Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
Booktitle = {Proc. Interspeech 2021},
Address = {Brno, Czech Republic},
Month = {August},
Year = {2021},
```
```bibtex
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
```
|
aorhan/ddpm-butterflies-128
|
aorhan
| 2022-11-08T17:09:51Z | 2 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:imagefolder",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2022-11-08T16:38:49Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: imagefolder
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `imagefolder` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/aorhan/ddpm-butterflies-128/tensorboard?#scalars)
|
harmonai/maestro-150k
|
harmonai
| 2022-11-08T16:40:37Z | 30 | 17 |
diffusers
|
[
"diffusers",
"audio-generation",
"license:mit",
"diffusers:DanceDiffusionPipeline",
"region:us"
] | null | 2022-10-20T12:20:47Z |
---
license: mit
tags:
- audio-generation
---
[Dance Diffusion](https://github.com/Harmonai-org/sample-generator) is now available in 🧨 Diffusers.
## FP32
```python
# !pip install diffusers[torch] accelerate scipy
from diffusers import DiffusionPipeline
from scipy.io.wavfile import write
model_id = "harmonai/maestro-150k"
pipe = DiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
audios = pipe(audio_length_in_s=4.0).audios
# To save locally
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
```
## FP16
Faster at a small loss of quality
```python
# !pip install diffusers[torch] accelerate scipy
from diffusers import DiffusionPipeline
from scipy.io.wavfile import write
import torch
model_id = "harmonai/maestro-150k"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
audios = pipeline(audio_length_in_s=4.0).audios
# To save locally
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
```
|
espnet/iam_handwriting_ocr
|
espnet
| 2022-11-08T16:28:56Z | 4 | 7 |
espnet
|
[
"espnet",
"image-to-text",
"ocr",
"handwriting-recognition",
"en",
"dataset:iam",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
image-to-text
| 2022-11-04T17:05:39Z |
---
tags:
- espnet
- image-to-text
- ocr
- handwriting-recognition
language: en
datasets:
- iam
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/iam_handwriting_ocr`
This model was trained by kenzheng99 using iam recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout 2169367022b8939d22005e8cf45a65bb20bc0768
pip install -e .
cd egs2/iam/ocr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/iam_handwriting_ocr
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Mon Nov 7 13:40:17 EST 2022`
- python version: `3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0]`
- espnet version: `espnet 202209`
- pytorch version: `pytorch 1.10.0`
- Git hash: `2169367022b8939d22005e8cf45a65bb20bc0768`
- Commit date: `Thu Nov 3 20:38:03 2022 -0400`
## asr_train_asr_conformer_extracted_en_char
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave/test|2915|25932|80.5|17.3|2.2|0.8|20.3|72.8|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave/test|2915|125616|94.0|4.2|1.8|0.7|6.7|72.8|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/train_asr_conformer.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_conformer_extracted_en_char
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 35197
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 200
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 64
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_extracted_en_char/train/speech_shape
- exp/asr_stats_extracted_en_char/train/text_shape.char
valid_shape_file:
- exp/asr_stats_extracted_en_char/valid/speech_shape
- exp/asr_stats_extracted_en_char/valid/text_shape.char
batch_type: folded
valid_batch_type: null
fold_length:
- 800
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/extracted/train/feats.scp
- speech
- kaldi_ark
- - dump/extracted/train/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/extracted/valid/feats.scp
- speech
- kaldi_ark
- - dump/extracted/valid/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 15000
token_list:
- <blank>
- <unk>
- <space>
- e
- t
- a
- o
- n
- i
- r
- s
- h
- l
- d
- c
- u
- m
- f
- p
- g
- y
- w
- b
- .
- ','
- v
- k
- '-'
- T
- ''''
- M
- I
- A
- '"'
- S
- P
- H
- B
- C
- W
- N
- G
- x
- R
- E
- L
- F
- '0'
- D
- '1'
- j
- O
- q
- U
- K
- '!'
- '3'
- '9'
- (
- z
- )
- ':'
- V
- ;
- '5'
- '2'
- J
- '8'
- Y
- '4'
- '6'
- '?'
- '#'
- '&'
- '7'
- /
- '*'
- Q
- X
- Z
- +
- <sos/eos>
init: xavier_uniform
input_size: 100
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: null
zero_infinity: true
joint_net_conf: null
use_preprocessor: true
token_type: char
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
frontend: null
frontend_conf: {}
specaug: null
specaug_conf: {}
normalize: global_mvn
normalize_conf:
stats_file: exp/asr_stats_extracted_en_char/train/feats_stats.npz
model: espnet
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1
length_normalized_loss: false
preencoder: null
preencoder_conf: {}
encoder: conformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 1024
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d
normalize_before: true
macaron_style: true
rel_pos_type: latest
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
use_cnn_module: true
cnn_module_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1
required:
- output_dir
- token_list
version: '202209'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
PaulaAlfy/xlm-roberta-base-finetuned-panx-de-fr
|
PaulaAlfy
| 2022-11-08T15:55:07Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-08T15:16:21Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1907
- F1: 0.8682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2901 | 1.0 | 715 | 0.1864 | 0.8211 |
| 0.1576 | 2.0 | 1430 | 0.1667 | 0.8441 |
| 0.1038 | 3.0 | 2145 | 0.1710 | 0.8452 |
| 0.0701 | 4.0 | 2860 | 0.1787 | 0.8636 |
| 0.0449 | 5.0 | 3575 | 0.1907 | 0.8682 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
bigmorning/whisper_end22
|
bigmorning
| 2022-11-08T15:15:27Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-08T15:15:16Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: whisper_end22
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_end22
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1061
- Train Accuracy: 0.0341
- Validation Loss: 0.5635
- Validation Accuracy: 0.0314
- Epoch: 22
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 5.0856 | 0.0116 | 4.4440 | 0.0123 | 0 |
| 4.3149 | 0.0131 | 4.0521 | 0.0142 | 1 |
| 3.9260 | 0.0146 | 3.7264 | 0.0153 | 2 |
| 3.5418 | 0.0160 | 3.3026 | 0.0174 | 3 |
| 2.7510 | 0.0198 | 2.0157 | 0.0241 | 4 |
| 1.6782 | 0.0250 | 1.3567 | 0.0273 | 5 |
| 1.1705 | 0.0274 | 1.0678 | 0.0286 | 6 |
| 0.9126 | 0.0287 | 0.9152 | 0.0294 | 7 |
| 0.7514 | 0.0296 | 0.8057 | 0.0299 | 8 |
| 0.6371 | 0.0302 | 0.7409 | 0.0302 | 9 |
| 0.5498 | 0.0307 | 0.6854 | 0.0306 | 10 |
| 0.4804 | 0.0312 | 0.6518 | 0.0307 | 11 |
| 0.4214 | 0.0316 | 0.6200 | 0.0310 | 12 |
| 0.3713 | 0.0319 | 0.5947 | 0.0311 | 13 |
| 0.3281 | 0.0322 | 0.5841 | 0.0311 | 14 |
| 0.2891 | 0.0325 | 0.5700 | 0.0313 | 15 |
| 0.2550 | 0.0328 | 0.5614 | 0.0313 | 16 |
| 0.2237 | 0.0331 | 0.5572 | 0.0313 | 17 |
| 0.1959 | 0.0333 | 0.5563 | 0.0314 | 18 |
| 0.1698 | 0.0335 | 0.5530 | 0.0314 | 19 |
| 0.1455 | 0.0337 | 0.5590 | 0.0314 | 20 |
| 0.1242 | 0.0339 | 0.5743 | 0.0313 | 21 |
| 0.1061 | 0.0341 | 0.5635 | 0.0314 | 22 |
### Framework versions
- Transformers 4.25.0.dev0
- TensorFlow 2.9.2
- Tokenizers 0.13.2
|
bigmorning/whisper_0020
|
bigmorning
| 2022-11-08T15:05:11Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-08T15:05:01Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: whisper_0020
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_0020
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1698
- Train Accuracy: 0.0335
- Validation Loss: 0.5530
- Validation Accuracy: 0.0314
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 5.0856 | 0.0116 | 4.4440 | 0.0123 | 0 |
| 4.3149 | 0.0131 | 4.0521 | 0.0142 | 1 |
| 3.9260 | 0.0146 | 3.7264 | 0.0153 | 2 |
| 3.5418 | 0.0160 | 3.3026 | 0.0174 | 3 |
| 2.7510 | 0.0198 | 2.0157 | 0.0241 | 4 |
| 1.6782 | 0.0250 | 1.3567 | 0.0273 | 5 |
| 1.1705 | 0.0274 | 1.0678 | 0.0286 | 6 |
| 0.9126 | 0.0287 | 0.9152 | 0.0294 | 7 |
| 0.7514 | 0.0296 | 0.8057 | 0.0299 | 8 |
| 0.6371 | 0.0302 | 0.7409 | 0.0302 | 9 |
| 0.5498 | 0.0307 | 0.6854 | 0.0306 | 10 |
| 0.4804 | 0.0312 | 0.6518 | 0.0307 | 11 |
| 0.4214 | 0.0316 | 0.6200 | 0.0310 | 12 |
| 0.3713 | 0.0319 | 0.5947 | 0.0311 | 13 |
| 0.3281 | 0.0322 | 0.5841 | 0.0311 | 14 |
| 0.2891 | 0.0325 | 0.5700 | 0.0313 | 15 |
| 0.2550 | 0.0328 | 0.5614 | 0.0313 | 16 |
| 0.2237 | 0.0331 | 0.5572 | 0.0313 | 17 |
| 0.1959 | 0.0333 | 0.5563 | 0.0314 | 18 |
| 0.1698 | 0.0335 | 0.5530 | 0.0314 | 19 |
### Framework versions
- Transformers 4.25.0.dev0
- TensorFlow 2.9.2
- Tokenizers 0.13.2
|
rosamondthalken/t5-base-sci-names
|
rosamondthalken
| 2022-11-08T14:39:36Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"scientific names",
"text generation",
"en",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-09-16T15:00:05Z |
---
language:
- en
tags:
- scientific names
- text generation
license: cc-by-sa-4.0
---
# t5-base-sci-names
Biodiversity literature is dedicated to the identification, documentation, and categorization of plants, fungi, animals, and other living organisms. Correctly extracting the name of an organism within these documents involves finding the entire scientific name–including the genus, specific epithet, and author name. Extracting these names allows biologists to access documents about a species more comprehensively, and to track an organism’s history of documentation, which includes biological changes and changes in how scientists describe them.
**t5-base-sci-names** uses advances in text-to-text generation to generate scientific names and authors from biodiversity literature. This model was trained on hand-labeled biodiversity texts, including labeled information about a mentioned organism's genus (abbreviated and expanded), specific epithet, and author. This model was trained to output 0-N scientific names with specific prefixes (e.g. "genus = " or "epithet = ") and performs best with anywhere from 20-120 words.
You can also use the model in this tutorial for [scientific names generation](https://colab.research.google.com/drive/1GEpnCaMJYiPIhuZiDJ1X1pZsGtGSm8Ds?usp=sharing).
Thanks to Damon Little and Nelson Salinas at the New York Botanical Gardens for their support.
*Note that this model is still a work in progress. Any feedback is welcome.*
|
google/ddpm-ema-cat-256
|
google
| 2022-11-08T13:42:16Z | 1,133 | 2 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"arxiv:2006.11239",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-07-19T10:45:53Z |
---
license: apache-2.0
tags:
- pytorch
- diffusers
- unconditional-image-generation
---
# Denoising Diffusion Probabilistic Models (DDPM)
**Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
**Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel
**Abstract**:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
## Inference
**DDPM** models can use *discrete noise schedulers* such as:
- [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py)
- [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)
- [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest.
For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead.
See the following code:
```python
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-ema-cat-256"
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
# run pipeline in inference (sample random noise and denoise)
image = ddpm().images[0]
# save image
image.save("ddpm_generated_image.png")
```
For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)
## Training
If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
## Samples
1. 
2. 
3. 
4. 
|
google/ddpm-church-256
|
google
| 2022-11-08T13:41:58Z | 850 | 9 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"arxiv:2006.11239",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-07-19T10:42:51Z |
---
license: apache-2.0
tags:
- pytorch
- diffusers
- unconditional-image-generation
---
# Denoising Diffusion Probabilistic Models (DDPM)
**Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
**Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel
**Abstract**:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
## Inference
**DDPM** models can use *discrete noise schedulers* such as:
- [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py)
- [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)
- [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest.
For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead.
See the following code:
```python
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-church-256"
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
# run pipeline in inference (sample random noise and denoise)
image = ddpm().images[0]
# save image
image.save("ddpm_generated_image.png")
```
For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)
## Training
If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
## Samples
1. 
2. 
3. 
4. 
|
google/ddpm-ema-bedroom-256
|
google
| 2022-11-08T13:41:41Z | 392 | 2 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"arxiv:2006.11239",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-07-18T19:49:13Z |
---
license: apache-2.0
tags:
- pytorch
- diffusers
- unconditional-image-generation
---
# Denoising Diffusion Probabilistic Models (DDPM)
**Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
**Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel
**Abstract**:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
## Inference
**DDPM** models can use *discrete noise schedulers* such as:
- [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py)
- [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)
- [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest.
For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead.
See the following code:
```python
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-ema-bedroom-256"
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
# run pipeline in inference (sample random noise and denoise)
image = ddpm().images[0]
# save image
image.save("ddpm_generated_image.png")
```
For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)
## Training
If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
## Samples
1. 
2. 
3. 
4. 
|
google/ddpm-ema-celebahq-256
|
google
| 2022-11-08T13:41:29Z | 10,679 | 6 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"arxiv:2006.11239",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-07-19T10:42:32Z |
---
license: apache-2.0
tags:
- pytorch
- diffusers
- unconditional-image-generation
---
# Denoising Diffusion Probabilistic Models (DDPM)
**Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
**Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel
**Abstract**:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
## Inference
**DDPM** models can use *discrete noise schedulers* such as:
- [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py)
- [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)
- [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest.
For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead.
See the following code:
```python
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-ema-celebahq-256"
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
# run pipeline in inference (sample random noise and denoise)
image = ddpm().images[0]
# save image
image.save("ddpm_generated_image.png")
```
For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)
## Training
If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) # <- TODO(PVP) add link
## Samples
1. 
2. 
3. 
4. 
|
ShinCore/MMDv1-18
|
ShinCore
| 2022-11-08T10:51:00Z | 0 | 61 | null |
[
"stable-diffusion",
"stable diffusion",
"text-to-image",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2022-11-05T10:51:25Z |
---
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable diffusion
- text-to-image
---
MEGA MERGE DIFF (MMD) VERSION 1-18. 18 MERGED MODELS IN ONE
ANNOUNCEMENT:
- DUE TO THE FACT THAT I CANNOT SEEM TO CATCH A BREAK AND GET SOME TIME TO ASSUAGE MY OWN INSECURITIES ABOUT THE QUALITY OF THIS MODEL, I AM JUST GOING TO RELEASE IT.
FIRST MODEL RELEASE: MMD V1-18 MODEL MERGE ALPHA:
- DISCORD INVITE: https://discord.gg/WdmejvKCDG (EDIT 11/6, WILL NOT EXPIRE ANYMORE)
- MODEL FAQ, MERGING METHODOLOGY, BORING CHARACTER BACKSTORY: https://discord.com/channels/900672465276116994/1035853968225615922
- LIST OF MERGED MODELS (DUE TO THE NATURE OF SOME OF THE MERGED MODELS, I CANNOT LIST THEM HERE): https://discord.com/channels/900672465276116994/1035895704377368687
- DOWNLOAD LINK: https://huggingface.co/ShinCore/MMDv1-18/tree/main
SUMMARY:
MMD V1-18 A MEGA MERGE OF SD 1.5 AND 17 OTHER MODELS. IT IS INTENDED TO BE A GENERALIST MODEL, NOT FOCUSED ON ANY SINGLE GENRE OR CATEGORY OR STYLE OR SUBJECT. THERE ARE ALREADY A PROLIFERATION OF GREAT MODELS OUT THERE, COVERING A BROAD SPECTRUM OF CONTENT. HOWEVER, THAT ALSO CAUSES A PROBLEM IN THAT WE HAVE A PROFLIERATION OF GREAT MODELS OUT THERE THAT DO ONE OR TWO THINGS REALLY WELL, BUT THATS KINDA IT. OTHER THAN THOSE ONE OR TWO THINGS THAT HAVE BEEN ADDED TO THE BASE SD MODEL, ITS NO DIFFERENT THAN ANY OF THE OTHER MODELS.
MMD WAS CREATED TO ADDRESS THE ISSUE OF DISORGANIZED CONTENT FRAGMENTATION ACROSS HUGGINGFACE, DISCORD, REDDIT, RENTRY.ORG, 4CHAN, AND THE REMAINDER OF THE INTERNET. IT ALSO TRIES TO ADDRESS THE ISSUES INHERENT WITH THE BASE SD 1.5 MODEL. NAMELY, PROBLEMATIC ANATOMY, LACK OF RESPONSIVENESS TO PROMPT ENGINEERING, BLAND OUTPUTS, ETC.
THE CURRENT SET OF MERGED MODELS ARE A CROSS SECTION OF MODELS THAT I FEEL IMPROVE AND ENRICH THE BASE MODEL. IN MY TESTS (WHICH YOU CAN TAKE A LOOK AT THE LOGS IN MY #EXPERIMENTS CHANNEL IN THE DISCORD I WORK OUT OF), THE MERGING OF A SPECIFIC SET OF MODELS HAS SHOWN TO IMPROVE HUMAN ANATOMY COHERENCY, INCREASE CREATIVITY AND DETAIL IN BOTH FORE/BACKGROUNDS, AND CAN BE MORE RESPONSIVE TO PROMPTING (PLEASE SEE PROMPTING NOTE BELOW).
- DOWNSIDE: TRIGGER TERMS ASSOCIATED WITH SPECIFIC MODELS HAVE A DRASTICALLY REDUCED EFFECT. IF USING A TRIGGER TERM ASSOCIATED WITH A SPECIFIC MODEL, YOU MUST INCREASE THE STR TO SEE ANY EFFECT. THE MODEL CAN ALSO BE MUCH MORE SENSITIVE TO THE SETTINGS THAT YOU USE. I HAVE LISTED SOME RECOMMENDATIONS BELOW.
IMPORTANT: I DO NOT, IN ANY WAY, SHAPE OR FORM, CLAIM THAT THIS MODEL IS SUPERIOR TO ANY OTHER MODEL OUT THERE. NOR DO I FEEL THAT I AM SOMEHOW SOME KIND OF SD GURU AND AM AN EXPERT OF ANY KIND. MY INTENTIONS IN CREATING THIS MODEL IS FOR MY OWN PERSONAL GOAL OF USING IT, AS WELL AS OTHER AI TOOLS, TO CREATE A STREAMLINED WORKFLOW PIPELINE THAT WILL ENABLE INDIE SOLO GAME DEVS TO CREATE GAMES WITH GREATER EASE AND EFFICIENCY. I DREAM OF SOMEDAY BEING A SOLO INDIE GAME DEV, AND THIS IS MY WAY OF HEADING TOWARDS THAT GOAL IN AN INDIRECT FASHION.
I AM NOT A GENIUS. I AM NOT EVEN A GODDAMN CODER/PROGRAMMER/MATHMETICIAN. I AM COMPLETELY OUT OF MY DEPTH. I SOMETIMES FEEL LIKE THAT ZOOLANDER MEME, HOOTING AND POKING AT A COMPUTER THAT IS BEYOND MY LIMITED COMPREHENSION. I AM NOTHING MORE THAN AN OLD, TIRED, LAZY, AND GRUMPY BASTARD WHO IS SPENDING WHAT LITTLE FREE TIME I HAVE TRYING TO FIGURE THIS CRAP OUT SO THAT I DONT HAVE TO LEARN HOW TO CREATE A GAME FROM SCRATCH. I JUST WANT AN AI TO DO IT FOR ME.
NOTES ABOUT USAGE:
- MODEL CAN BE A BIT HARSH AND RIGID, BUT PUT OUT SOME AMAZING GENS. 2ND RELEASE WILL BE LESS EXTREME.
RECOMMENDED SETTINGS:
- IMG HEIGHT/WIDTH MUST BE SET TO A MULTIPLE OF 128
- SET HIRES FIX TO ON. SET FIRST PASS HEIGHT/WIDTH TO HALF OF IMG HEIGHT/WIDTH.
- PLAY WITH DENOISING STR, I SET MINE TO .69, YMMV.
- MODEL IS SENSITIVE TO CFG. I USUALLY USE 12.5, BUT OTHERS HAVE REPORTED BETTER OUTPUTS AT LOWER/HIGHER VALUES. TRY THEM OUT. DONT BE AFRAID OF GOING REALLY HIGH OR REALLY LOW.
- SET RESIZE SEED OPTION TO 512X512. (DDIM RESPONDS BETTER TO THIS SETTING. OTHER SAMPLERS MAY NOT. TURN ON AND OFF AND COMPARE)
PROMPTING:
- MERGED MODELS USE A COMBO OF STANDARD SD BLIP/CLIP AND DANBOORU TAGS. I USE BOTH IN MY PROMPTS. TRY USING BOTH CLIP AND DANBOORU INTERROGATOR ON IMAGES, GET THE RESULTS FROM BOTH, AND USE THEM IN YOUR OWN PROMPTING. THEY SEEM TO REINFORCE EACH OTHER, THOUGH THIS IS DIFFICULT TO SCIENTIFICALLY VERIFY. I HAVE SEVERAL THEORIES THAT I INTEND TO TEST OUT, AS TIME PERMITS
- USE NEGATIVE PROMPTING WITHOUT RESERVATIONS. YES, I HAVE SEEN STATEMENTS TO THE EFFECT THAT NEGATIVE PROMPTING IS LIKE A PLACEBO. ALL I CAN TELL YOU IS THAT, WHEN I REMOVED ALL OF MY NEGATIVE PROMPTS, MY GENS TURNED INTO A HORRORSHOW.
I COULD NOT PUT THEM BACK ON FAST ENOUGH.
2ND RELEASE, MMD V1-18 MODEL MERGE (TONED DOWN) ALPHA:
- THIS IS THE SAME AS THE FIRST RELEASE,BUT I MERGED BACK IN 25% OF SD 1.5. MORE FORGIVING, LESS EXTREME EDITION.
EVERYTHING ELSE IS THE SAME.
FINAL NOTE: IT HAS BEEN POINTED OUT TO ME THAT I AM USING ALL CAPS, AS IF I WAS SOMEHOW NOT ALREADY AWARE. AS I HAVE PREVIOUSLY POINTED OUT, I AM AN OLD, TIRED, LAZY AND GRUMPY BASTARD. MY PREVIOUS AND CURRENT PROFESSION HAS GOTTEN ME INTO THE HABIT OF USING ALL CAPS WHEN WORKING. DONT ASK ME THE REASONS, THEY ARE STUPID. AS IN, OTHER PEOPLE THAT I DEAL WITH. I AM PERFECTLY CAPABLE OF USING PROPER CAPITIALIZATION. I CHOOSE NOT TO WHEN I AM FOCUSED, GRINDING AWAY AT SOMETHING, HASTILY TRYING TO FINISH SOMETHING, OR AM IN A BAD MOOD BECAUSE SOMETHING IS IRRITATING ME.
SO BASICALLY, PRETTY MUCH ALL THE TIME.
I APOLOGIZE, BUT YOUR ARE GOING TO HAVE TO DEAL WITH IT.
|
bthomas/setfit_bench_bert-base-uncased_finetuned_for_seqclassif
|
bthomas
| 2022-11-08T10:23:54Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"SetFitbench",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-08T10:20:10Z |
---
license: apache-2.0
tags:
- SetFitbench
- generated_from_trainer
model-index:
- name: setfit_bench_bert-base-uncased_finetuned_for_seqclassif
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# setfit_bench_bert-base-uncased_finetuned_for_seqclassif
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2666
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3437 | 1.0 | 189 | 0.2666 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.12.1
|
troesy/hateBERT_3epoch
|
troesy
| 2022-11-08T10:21:20Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-08T10:07:36Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: hateBERT_3epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hateBERT_3epoch
This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2174
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9174
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 174 | 0.2301 | 0.0 | 0.0 | 0.0 | 0.9112 |
| No log | 2.0 | 348 | 0.2192 | 0.0 | 0.0 | 0.0 | 0.9148 |
| 0.2311 | 3.0 | 522 | 0.2174 | 0.0 | 0.0 | 0.0 | 0.9174 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
dreaming-tree/rl_class
|
dreaming-tree
| 2022-11-08T10:17:43Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-08T10:16:56Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 73.61 +/- 70.22
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
troesy/toxicBERT_3epoch
|
troesy
| 2022-11-08T10:00:48Z | 20 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-04T16:27:22Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: toxicBERT_3epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# toxicBERT_3epoch
This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2162
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 174 | 0.2301 | 0.0 | 0.0 | 0.0 | 0.9110 |
| No log | 2.0 | 348 | 0.2186 | 0.0 | 0.0 | 0.0 | 0.9134 |
| 0.2312 | 3.0 | 522 | 0.2162 | 0.0 | 0.0 | 0.0 | 0.9173 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
tkubotake/xlm-roberta-base-finetuned-panx-all
|
tkubotake
| 2022-11-08T09:07:09Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T03:46:39Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [tkubotake/xlm-roberta-base-finetuned-panx-de](https://huggingface.co/tkubotake/xlm-roberta-base-finetuned-panx-de) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2290
- F1: 0.8629
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1259 | 1.0 | 835 | 0.1879 | 0.8478 |
| 0.078 | 2.0 | 1670 | 0.2121 | 0.8582 |
| 0.0439 | 3.0 | 2505 | 0.2290 | 0.8629 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
sd-concepts-library/kodakvision500t
|
sd-concepts-library
| 2022-11-08T08:19:22Z | 0 | 14 | null |
[
"license:mit",
"region:us"
] | null | 2022-11-08T07:57:07Z |
---
license: mit
---
### KodakVision500T on Stable Diffusion
This is the `<kodakvision_500T>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
This concept was trained on **6** photographs taken with **Kodak Vision 3 500T**, through **1800** steps.
Here are some generated images from the concept that you will be able to use as a `style`:




|
Sushanti123/layoutxlm-finetuned-xfund-fr
|
Sushanti123
| 2022-11-08T07:26:56Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"dataset:xfun",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-01T08:40:16Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- xfun
model-index:
- name: layoutxlm-finetuned-xfund-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutxlm-finetuned-xfund-fr
This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the xfun dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.10.0+cu111
- Datasets 2.6.1
- Tokenizers 0.13.2
|
GuiGel/beto-uncased-flert-context-we-lstm-crf-meddocan
|
GuiGel
| 2022-11-08T07:19:25Z | 6 | 0 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"region:us"
] |
token-classification
| 2022-11-08T07:16:36Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
---
### Demo: How to use in Flair
Requires:
- **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("GuiGel/beto-uncased-flert-context-we-lstm-crf-meddocan")
# make example sentence
sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
|
Meow412/finetuning-sentiment-BERTmodel-A3-allcontents
|
Meow412
| 2022-11-08T06:40:42Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-08T05:51:44Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-BERTmodel-A3-allcontents
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-BERTmodel-A3-allcontents
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2951
- Accuracy: 0.8814
- F1: 0.4138
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
bguan/Reinforce-CartPole-v1
|
bguan
| 2022-11-08T05:55:49Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-08T02:43:41Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 440.00 +/- 88.54
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
Meow412/finetuning-sentiment-BERTmodel-A3
|
Meow412
| 2022-11-08T05:36:32Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-08T05:15:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-BERTmodel-A3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-BERTmodel-A3
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3307
- Accuracy: 0.8656
- F1: 0.3576
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
RamAnanth1/positive-reframing
|
RamAnanth1
| 2022-11-08T04:47:00Z | 34 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"arxiv:2204.02952",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-11-01T20:50:51Z |
# Positive Perspectives with Text Reframing
Based on the paper [Inducing Positive Perspectives with Text Reframing](https://arxiv.org/abs/2204.02952), this model focuses on the positive reframing task. The purpose of the model is to neutralize a negative point of view and generate a more positive perspective without changing the original meaning.
The model provided is obtained from this [HuggingFace Space](https://huggingface.co/spaces/Ella2323/Positive-Reframing) and stored in a separate repository to increase ease of use. All credits go to the original contributors of the abovementioned HuggingFace Space.
### Available strategies for positive reframing:
**growth**: viewing a challenging event as an opportunity for the author to specifically grow or improve himself.
**impermanence**: Saying that bad things don't last forever, will get better soon, and/or that other people have had similar difficulties.
**neutralizing**: Replacing a negative word with a neutral word. For example, “This was a terrible day” becomes “This was a long day”.
**optimism**: Focusing on things about the situation itself, at that moment, that are good (not just predicting a better future).
**self_affirmation**: Talking about what strengths the author already has, or values he admires, such as love, courage, perseverance, etc.
**thankfulness**: Expressing gratitude or gratitude with keywords like appreciate, happy for it, grateful for, good thing, etc.
|
kit-nlp/bert-base-japanese-sentiment-irony
|
kit-nlp
| 2022-11-08T04:23:27Z | 481 | 4 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T06:29:21Z |
---
language: ja
license: cc-by-sa-4.0
---
# BERT Base Japanese for Irony
This is a BERT Base model for sentiment analysis in Japanese additionally finetuned for automatic irony detection.
The model was based on [bert-base-japanese-sentiment](https://huggingface.co/daigo/bert-base-japanese-sentiment), and later finetuned on a dataset containing ironic and sarcastic tweets.
## Licenses
The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a>
## Citations
Please, cite this model using the following citation.
```
@inproceedings{dan2022bert-base-irony02,
title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 皮肉検出モデル (daigo ver.)},
author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人},
publisher={HuggingFace},
year={2022},
url = "https://huggingface.co/kit-nlp/bert-base-japanese-sentiment-irony"
}
```
|
kit-nlp/yacis-electra-small-japanese-irony
|
kit-nlp
| 2022-11-08T04:16:30Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T07:05:34Z |
---
language: ja
license: cc-by-sa-4.0
---
# YACIS ELECTRA Small Japanese for Irony
This is an [ELECTRA](https://github.com/google-research/electra) Base model for the Japanese language finetuned for automatic irony detection.
The model was based on [YACIS ELECTRA small Japanese](https://huggingface.co/ptaszynski/yacis-electra-small-japanese), and later finetuned on a dataset containing ironic and sarcastic tweets.
## Licenses
The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a>
## Citations
Please, cite this model using the following citation.
```
@inproceedings{dan2022yaciselectra-small-irony,
title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 皮肉検出モデル (Izumi Labs ver.)},
author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人},
publisher={HuggingFace},
year={2022},
url = "https://huggingface.co/kit-nlp/yacis-electra-small-japanese-irony"
}
```
|
kit-nlp/electra-small-japanese-discriminator-irony
|
kit-nlp
| 2022-11-08T04:11:04Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T07:14:32Z |
---
language: ja
license: cc-by-sa-4.0
---
# ELECTRA small Japanese discriminator for Irony
This is an [ELECTRA](https://github.com/google-research/electra) Base model for the Japanese language finetuned for automatic irony detection.
The model was based on [ELECTRA small Japanese discriminator](https://huggingface.co/izumi-lab/electra-small-japanese-discriminator), and later finetuned on a dataset containing ironic and sarcastic tweets.
## Licenses
The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a>
## Citations
Please, cite this model using the following citation.
```
@inproceedings{dan2022electra-base-irony,
title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 皮肉検出モデル (Izumi Labs ver.)},
author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人},
publisher={HuggingFace},
year={2022},
url = "https://huggingface.co/kit-nlp/electra-small-japanese-discriminator-irony"
}
```
|
bigmorning/bigmorning_whisper
|
bigmorning
| 2022-11-08T03:44:46Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-08T03:13:01Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: bigmorning_whisper
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bigmorning_whisper
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.25.0.dev0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.2
|
dhshin/ddpm-butterflies-128
|
dhshin
| 2022-11-08T03:16:58Z | 3 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:huggan/smithsonian_butterflies_subset",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2022-10-25T01:06:18Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/dhshin/ddpm-butterflies-128/tensorboard?#scalars)
|
QianMolloy/distilbert-base-uncased-finetuned-emotion
|
QianMolloy
| 2022-11-08T03:06:18Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T02:51:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9285
- name: F1
type: f1
value: 0.928851862350588
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2178
- Accuracy: 0.9285
- F1: 0.9289
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8227 | 1.0 | 250 | 0.3212 | 0.8985 | 0.8932 |
| 0.2463 | 2.0 | 500 | 0.2178 | 0.9285 | 0.9289 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.10.0
- Datasets 2.6.1
- Tokenizers 0.13.1
|
BigSalmon/InformalToFormalLincoln90Paraphrase
|
BigSalmon
| 2022-11-08T03:06:10Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-08T02:37:14Z |
data: https://github.com/BigSalmon2/InformalToFormalDataset
Text Generation Informal Formal
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
```
```
Demo:
https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy
```
```
prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:"""
input_ids = tokenizer.encode(prompt, return_tensors='pt')
outputs = model.generate(input_ids=input_ids,
max_length=10 + len(prompt),
temperature=1.0,
top_k=50,
top_p=0.95,
do_sample=True,
num_return_sequences=5,
early_stopping=True)
for i in range(5):
print(tokenizer.decode(outputs[i]))
```
Most likely outputs (Disclaimer: I highly recommend using this over just generating):
```
prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:"""
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(250)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
print(best_words)
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
original: microsoft word's [MASK] pricing invites competition.
Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition.
***
original: the library’s quiet atmosphere encourages visitors to [blank] in their work.
Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work.
```
```
Essay Intro (Warriors vs. Rockets in Game 7):
text: eagerly anticipated by fans, game 7's are the highlight of the post-season.
text: ever-building in suspense, game 7's have the crowd captivated.
***
Essay Intro (South Korean TV Is Becoming Popular):
text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ).
text: increasingly held in critical esteem, south korean television continues to impress.
text: at the forefront of quality content, south korea is quickly achieving celebrity status.
***
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
```
- nebraska
- unicamerical legislature
- different from federal house and senate
text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate.
***
- penny has practically no value
- should be taken out of circulation
- just as other coins have been in us history
- lost use
- value not enough
- to make environmental consequences worthy
text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness.
***
-
```
```
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
***
original:
```
```
wordy: classical music is becoming less popular more and more.
Translate into Concise Text: interest in classic music is fading.
***
wordy:
```
```
sweet: savvy voters ousted him.
longer: voters who were informed delivered his defeat.
***
sweet:
```
```
1: commercial space company spacex plans to launch a whopping 52 flights in 2022.
2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022.
3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights.
4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company.
5: a commercial space company, spacex aims to conduct 52 flights in 2022.
***
1:
```
Keywords to sentences or sentence.
```
ngos are characterized by:
□ voluntary citizens' group that is organized on a local, national or international level
□ encourage political participation
□ often serve humanitarian functions
□ work for social, economic, or environmental change
***
what are the drawbacks of living near an airbnb?
□ noise
□ parking
□ traffic
□ security
□ strangers
***
```
```
original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung.
adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung.
***
original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark.
adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark.
***
original:
```
```
original: had trouble deciding.
translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation.
***
original:
```
```
input: not loyal
1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ).
***
input:
```
```
first: ( was complicit in / was involved in ).
antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ).
***
first: ( have no qualms about / see no issue with ).
antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ).
***
first: ( do not see eye to eye / disagree often ).
antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ).
***
first:
```
```
stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground.
***
languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo.
***
dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia.
***
embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons.
```
Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above):
```
his contention [blank] by the evidence [sep] was refuted [answer]
***
few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer]
***
when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer]
***
the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer]
***
the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer]
***
microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer]
***
```
```
original: microsoft word's [MASK] pricing invites competition.
Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition.
***
original: the library’s quiet atmosphere encourages visitors to [blank] in their work.
Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work.
```
Backwards
```
Essay Intro (National Parks):
text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ).
***
Essay Intro (D.C. Statehood):
washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ).
```
```
topic: the Golden State Warriors.
characterization 1: the reigning kings of the NBA.
characterization 2: possessed of a remarkable cohesion.
characterization 3: helmed by superstar Stephen Curry.
characterization 4: perched atop the league’s hierarchy.
characterization 5: boasting a litany of hall-of-famers.
***
topic: emojis.
characterization 1: shorthand for a digital generation.
characterization 2: more versatile than words.
characterization 3: the latest frontier in language.
characterization 4: a form of self-expression.
characterization 5: quintessentially millennial.
characterization 6: reflective of a tech-centric world.
***
topic:
```
```
regular: illinois went against the census' population-loss prediction by getting more residents.
VBG: defying the census' prediction of population loss, illinois experienced growth.
***
regular: microsoft word’s high pricing increases the likelihood of competition.
VBG: extortionately priced, microsoft word is inviting competition.
***
regular:
```
```
source: badminton should be more popular in the US.
QUERY: Based on the given topic, can you develop a story outline?
target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more
text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing.
***
source: movies in theaters should be free.
QUERY: Based on the given topic, can you develop a story outline?
target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money
text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay.
***
source:
```
```
in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure.
***
the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule.
***
the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement.
***
```
```
it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise.
question: what does “do likewise” mean in the above context?
(a) make the same journey
(b) share in the promise of the american dream
(c) start anew in the land of opportunity
(d) make landfall on the united states
***
in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure.
question: what does “this orientation” mean in the above context?
(a) visible business practices
(b) candor with the public
(c) open, honest communication
(d) culture of accountability
```
```
example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot.
text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities.
***
example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear.
text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student.
```
```
<Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle>
***
<Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle>
```
```
accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult
(a) in reverential tones
(b) with great affection
(c) in adulatory fashion
(d) in glowing terms
```
```
clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ).
```
```
description: when someone thinks that their view is the only right one.
synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous.
***
description: when you put something off.
synonyms: shelve, defer, table, postpone.
```
```
organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea.
rewrite phrases: meritocratic, viability, vision
rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability.
```
*Note* Of all the masking techniques, this one works the best.
```
<Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle>
***
<Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle>
```
```
essence: when someone's views are keeping within reasonable.
refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ).
***
essence: when things are worked through in a petty way.
refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling.
```
```
description: when someone thinks that their view is the only right one.
synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous.
***
description: when you put something off.
synonyms: shelve, defer, table, postpone.
```
```
organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea.
rewrite phrases: meritocratic, viability, vision
rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability.
```
```
music before bedtime [makes for being able to relax] -> is a recipe for relaxation.
```
```
[people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway.
```
```
in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal.
***
politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ).
```
```
Q: What is whistleblower protection?
A: Whistleblower protection is a form of legal immunity granted to employees who expose the unethical practices of their employer.
Q: Why are whistleblower protections important?
A: Absent whistleblower protections, employees would be deterred from exposing their employer’s wrongdoing for fear of retribution.
Q: Why would an employer engage in retribution?
A: An employer who has acted unethically stands to suffer severe financial and reputational damage were their transgressions to become public. To safeguard themselves from these consequences, they might seek to dissuade employees from exposing their wrongdoing.
```
```
original: the meritocratic nature of crowdfunding [MASK] into their vision's viability.
infill: the meritocratic nature of crowdfunding [gives investors idea of how successful] -> ( offers entrepreneurs a window ) into their vision's viability.
```
```
Leadership | Lecture 17: Worker Morale
What Workers Look for in Companies:
• Benefits
o Tuition reimbursement
o Paid parental leave
o 401K matching
o Profit sharing
o Pension plans
o Free meals
• Social responsibility
o Environmental stewardship
o Charitable contributions
o Diversity
• Work-life balance
o Telecommuting
o Paid holidays and vacation
o Casual dress
• Growth opportunities
• Job security
• Competitive compensation
• Recognition
o Open-door policies
o Whistleblower protection
o Employee-of-the-month awards
o Positive performance reviews
o Bonuses
```
```
description: business
keywords: for-profit, fiduciary duty, monopolistic, bottom line, return on investment, short-term thinking, capital-intensive, self-interested, risk-taking, fiduciary duty, merger, speculation, profiteering, oversight, capitalism, diversification
```
```
3. In this task, you are given a company name and you need to find its industry.
McDonalds -- Restaurant
Facebook -- Social Network
IKEA -- Furniture
American Express -- Credit Services
Nokia -- Telecom
Nintendo -- Entertainment
4. In this task, you are given a Month and you need to convert it to its corresponding season
April -- Spring
December -- Winter
July -- Summer
October -- Fall
February -- Winter
5. In this task, you are given a sentence with a missing word and you need to predict the correct word.
Managers should set an _____ for their employees. -- example
Some people spend more than four _____ in the gym. -- hours
The police were on the _____ of arresting the suspect. -- verge
They were looking for _____ on how to solve the problem. -- guidance
What is the _____ of the coffee? -- price
6. In this task, you are given a paragraph and you need to reorder it to make it logical.
It was first proposed in 1987. The total length of the bridge is 1,828 meters. The idea of a bridge connects Hong Kong to Macau. -- The idea of bridge connecting Hong Kong and Macau was first proposed in 1987. The total length of the bridge is 1,828 meters.
It is a movie about a brave and noble policeman. The film was produced by Americans. They were Kevin Lima and Chris Buck. They are directors. The movie is called Tarzan. -- Produced by Americans Kevin Lima and Chris Buck, Tarzan is a movie about a brave and noble policeman.
It was first discovered in the mountains of India. The active ingredients in this plant can stimulate hair growth. The plant is called "Hair Plus." -- First discovered in the mountains of India, Hair Plus is a plant whose active ingredients can stimulate hair growth.
```
```
trivia: What is the population of South Korea?
response: 51 million.
***
trivia: What is the minimum voting age in the US?
response: 18.
***
trivia: What are the first ten amendments of the US constitution called?
response: Bill of Rights.
```
|
huggingtweets/sensanders
|
huggingtweets
| 2022-11-08T02:38:49Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-09-28T15:31:16Z |
---
language: en
thumbnail: http://www.huggingtweets.com/sensanders/1667875118330/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/794619281271033856/Fs0QQaH7_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bernie Sanders</div>
<div style="text-align: center; font-size: 14px;">@sensanders</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bernie Sanders.
| Data | Bernie Sanders |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 276 |
| Short tweets | 4 |
| Tweets kept | 2969 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ghx24nl1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sensanders's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31jf3liz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31jf3liz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/sensanders')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
tomrb/bettercallbloom-3b
|
tomrb
| 2022-11-08T01:12:59Z | 9 | 5 |
transformers
|
[
"transformers",
"pytorch",
"bloom",
"text-generation",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-10-20T17:17:16Z |
---
language: en
license: mit
---
# BetterCallBloom-3b
Finetuned Bloom-3b model on the r/legaladvice subreddit from pileoflaw
## Model description
BLOOM-3B is a 3,002,557,440 parameters model pretrained by the BigScience initiative.
## Intended uses & limitations
### How to use
### Limitations and bias
## Training data
## Training procedure
### Preprocessing
## Evaluation results
### BibTeX entry and citation info
|
kit-nlp/bert-base-japanese-basic-char-v2-irony
|
kit-nlp
| 2022-11-08T00:10:26Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T07:33:23Z |
---
language: ja
license: cc-by-sa-4.0
---
# bert-base-irony
This is a BERT Base model for the Japanese language finetuned for automatic irony detection.
The model was based on [BERT base Japanese](https://huggingface.co/hiroshi-matsuda-rit/bert-base-japanese-basic-char-v2), and later finetuned on a dataset containing ironic and sarcastic tweets.
## Licenses
The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a>
## Citations
Please, cite this model using the following citation.
```
@inproceedings{dan2022bert-base-irony,
title={北見工業大学 テキスト情報処理研究室 BERT Base 皮肉検出モデル (RIT ver.)},
author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人},
publisher={HuggingFace},
year={2022},
url = "https://huggingface.co/kit-nlp/bert-base-japanese-basic-char-v2-irony"
}
```
|
yongauh/distilbert-base-uncased-finetuned-emotion
|
yongauh
| 2022-11-07T23:48:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T23:35:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.921
- name: F1
type: f1
value: 0.9211554013340549
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2208
- Accuracy: 0.921
- F1: 0.9212
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8473 | 1.0 | 250 | 0.3167 | 0.908 | 0.9061 |
| 0.2561 | 2.0 | 500 | 0.2208 | 0.921 | 0.9212 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.11.0
|
Devarshi/Brain_Tumor_Detector_swin
|
Devarshi
| 2022-11-07T22:28:14Z | 50 | 4 |
transformers
|
[
"transformers",
"pytorch",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-11-07T06:37:51Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: Brain_Tumor_Detector_swin
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9981308411214953
- name: F1
type: f1
value: 0.9985111662531018
- name: Recall
type: recall
value: 0.9990069513406157
- name: Precision
type: precision
value: 0.998015873015873
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Brain_Tumor_Detector_swin
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0054
- Accuracy: 0.9981
- F1: 0.9985
- Recall: 0.9990
- Precision: 0.9980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.079 | 1.0 | 113 | 0.0283 | 0.9882 | 0.9906 | 0.9930 | 0.9881 |
| 0.0575 | 2.0 | 226 | 0.0121 | 0.9956 | 0.9965 | 0.9950 | 0.9980 |
| 0.0312 | 3.0 | 339 | 0.0054 | 0.9981 | 0.9985 | 0.9990 | 0.9980 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
AlekseyKorshuk/amazon-reviews-input-output-6.7b-best
|
AlekseyKorshuk
| 2022-11-07T22:14:21Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"text-generation",
"generated_from_trainer",
"dataset:AlekseyKorshuk/amazon-reviews-input-output",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-07T21:47:46Z |
---
license: other
tags:
- generated_from_trainer
datasets:
- AlekseyKorshuk/amazon-reviews-input-output
metrics:
- accuracy
model-index:
- name: amazon-reviews-input-output-6.7b-best
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: AlekseyKorshuk/amazon-reviews-input-output
type: AlekseyKorshuk/amazon-reviews-input-output
metrics:
- name: Accuracy
type: accuracy
value: 0.040325203252032524
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# amazon-reviews-input-output-6.7b-best
This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the AlekseyKorshuk/amazon-reviews-input-output dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6953
- Accuracy: 0.0403
- Samples: 100
- Perplexity: 14.8101
- Table: <wandb.data_types.Table object at 0x7fc684448b50>
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.9912 | 0.06 | 1 | 2.7441 | 0.0404 |
| 2.9329 | 0.12 | 2 | 2.7441 | 0.0404 |
| 2.9138 | 0.19 | 3 | 2.8262 | 0.0389 |
| 2.9395 | 0.25 | 4 | 2.8262 | 0.0389 |
| 2.9109 | 0.31 | 5 | 2.7949 | 0.0399 |
| 2.8391 | 0.38 | 6 | 2.7461 | 0.0403 |
| 2.9368 | 0.44 | 7 | 2.7207 | 0.0398 |
| 2.7583 | 0.5 | 8 | 2.7070 | 0.0403 |
| 2.9756 | 0.56 | 9 | 2.6836 | 0.0408 |
| 2.8442 | 0.62 | 10 | 2.6738 | 0.0403 |
| 2.7312 | 0.69 | 11 | 2.6680 | 0.0405 |
| 2.7439 | 0.75 | 12 | 2.6699 | 0.0404 |
| 2.9075 | 0.81 | 13 | 2.6797 | 0.0403 |
| 2.8518 | 0.88 | 14 | 2.6797 | 0.0403 |
| 2.8579 | 0.94 | 15 | 2.6777 | 0.0404 |
| 2.8916 | 1.0 | 16 | 2.6953 | 0.0403 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
bishalbaaniya/bishalbaaniya-finetuned-myaamia-to-english
|
bishalbaaniya
| 2022-11-07T21:15:33Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-10-27T03:24:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: bishalbaaniya-finetuned-myaamia-to-english
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bishalbaaniya-finetuned-myaamia-to-english
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0090
- Bleu: 0.1637
- Gen Len: 7.977
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 4.1712 | 1.0 | 1082 | 4.0090 | 0.1637 | 7.977 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
ilevs/distilrubert-tiny-cased-conversational-finetuned
|
ilevs
| 2022-11-07T21:06:23Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-06T14:54:50Z |
---
tags:
- generated_from_trainer
model-index:
- name: distilrubert-tiny-cased-conversational-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilrubert-tiny-cased-conversational-finetuned
This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
AlekseyKorshuk/amazon-reviews-input-output-1.3b
|
AlekseyKorshuk
| 2022-11-07T20:45:36Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"text-generation",
"generated_from_trainer",
"dataset:AlekseyKorshuk/amazon-reviews-input-output",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-07T20:26:17Z |
---
license: other
tags:
- generated_from_trainer
datasets:
- AlekseyKorshuk/amazon-reviews-input-output
metrics:
- accuracy
model-index:
- name: amazon-reviews-input-output-1.3b
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: AlekseyKorshuk/amazon-reviews-input-output
type: AlekseyKorshuk/amazon-reviews-input-output
metrics:
- name: Accuracy
type: accuracy
value: 0.03550813008130081
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# amazon-reviews-input-output-1.3b
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/amazon-reviews-input-output dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5488
- Accuracy: 0.0355
- Samples: 100
- Perplexity: 34.7725
- Table: <wandb.data_types.Table object at 0x7ffa3c3fd700>
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.2024 | 0.06 | 1 | 2.9121 | 0.0385 |
| 3.1226 | 0.12 | 2 | 2.9121 | 0.0385 |
| 3.1321 | 0.19 | 3 | 2.8477 | 0.0394 |
| 2.9875 | 0.25 | 4 | 2.8477 | 0.0394 |
| 2.9717 | 0.31 | 5 | 2.8555 | 0.0391 |
| 2.9341 | 0.38 | 6 | 2.8438 | 0.0392 |
| 3.0376 | 0.44 | 7 | 2.8184 | 0.0396 |
| 2.8164 | 0.5 | 8 | 2.7988 | 0.0395 |
| 3.0857 | 0.56 | 9 | 2.7988 | 0.0394 |
| 2.9492 | 0.62 | 10 | 2.7969 | 0.0395 |
| 2.8633 | 0.69 | 11 | 2.7969 | 0.0395 |
| 2.8994 | 0.75 | 12 | 2.7910 | 0.0398 |
| 3.0024 | 0.81 | 13 | 2.7812 | 0.0401 |
| 2.937 | 0.88 | 14 | 2.7812 | 0.0399 |
| 2.9963 | 0.94 | 15 | 2.7812 | 0.0399 |
| 3.0168 | 1.0 | 16 | 2.7754 | 0.04 |
| 2.2589 | 1.06 | 17 | 2.7715 | 0.0397 |
| 2.2568 | 1.12 | 18 | 2.7793 | 0.0395 |
| 2.3138 | 1.19 | 19 | 2.8027 | 0.0393 |
| 2.2759 | 1.25 | 20 | 2.8184 | 0.0393 |
| 2.5137 | 1.31 | 21 | 2.8262 | 0.0390 |
| 2.2997 | 1.38 | 22 | 2.8320 | 0.0388 |
| 2.2693 | 1.44 | 23 | 2.8359 | 0.0392 |
| 2.204 | 1.5 | 24 | 2.8379 | 0.0387 |
| 2.3713 | 1.56 | 25 | 2.8359 | 0.0391 |
| 2.3448 | 1.62 | 26 | 2.8340 | 0.0391 |
| 2.217 | 1.69 | 27 | 2.8359 | 0.0391 |
| 2.3082 | 1.75 | 28 | 2.8379 | 0.0385 |
| 2.2878 | 1.81 | 29 | 2.8379 | 0.0386 |
| 2.2429 | 1.88 | 30 | 2.8379 | 0.0385 |
| 2.2838 | 1.94 | 31 | 2.8359 | 0.0385 |
| 2.4038 | 2.0 | 32 | 2.8379 | 0.0387 |
| 1.8481 | 2.06 | 33 | 2.8555 | 0.0384 |
| 1.657 | 2.12 | 34 | 2.8965 | 0.0382 |
| 1.6996 | 2.19 | 35 | 2.9590 | 0.0380 |
| 1.6741 | 2.25 | 36 | 3.0312 | 0.0379 |
| 1.594 | 2.31 | 37 | 3.0410 | 0.0380 |
| 1.5201 | 2.38 | 38 | 3.0156 | 0.0381 |
| 1.5149 | 2.44 | 39 | 3.0137 | 0.0380 |
| 1.5521 | 2.5 | 40 | 3.0176 | 0.0379 |
| 1.5364 | 2.56 | 41 | 3.0273 | 0.0378 |
| 1.5385 | 2.62 | 42 | 3.0391 | 0.0380 |
| 1.4794 | 2.69 | 43 | 3.0488 | 0.0380 |
| 1.4313 | 2.75 | 44 | 3.0527 | 0.0378 |
| 1.5071 | 2.81 | 45 | 3.0469 | 0.0378 |
| 1.4799 | 2.88 | 46 | 3.0449 | 0.0378 |
| 1.521 | 2.94 | 47 | 3.0371 | 0.0380 |
| 1.4603 | 3.0 | 48 | 3.0410 | 0.0379 |
| 1.25 | 3.06 | 49 | 3.0859 | 0.0381 |
| 1.0411 | 3.12 | 50 | 3.1797 | 0.0375 |
| 1.0385 | 3.19 | 51 | 3.2969 | 0.0371 |
| 1.0254 | 3.25 | 52 | 3.3613 | 0.0367 |
| 0.9656 | 3.31 | 53 | 3.3633 | 0.0368 |
| 1.036 | 3.38 | 54 | 3.3359 | 0.0366 |
| 0.9366 | 3.44 | 55 | 3.2949 | 0.0366 |
| 0.9712 | 3.5 | 56 | 3.2695 | 0.0367 |
| 1.0066 | 3.56 | 57 | 3.2676 | 0.0366 |
| 0.9952 | 3.62 | 58 | 3.2773 | 0.0368 |
| 1.0352 | 3.69 | 59 | 3.2891 | 0.0367 |
| 1.0212 | 3.75 | 60 | 3.3164 | 0.0362 |
| 0.9468 | 3.81 | 61 | 3.3203 | 0.0360 |
| 0.9155 | 3.88 | 62 | 3.3223 | 0.0366 |
| 0.8552 | 3.94 | 63 | 3.3262 | 0.0370 |
| 0.9575 | 4.0 | 64 | 3.3340 | 0.0370 |
| 0.6384 | 4.06 | 65 | 3.375 | 0.0370 |
| 0.6436 | 4.12 | 66 | 3.4453 | 0.0364 |
| 0.5752 | 4.19 | 67 | 3.5391 | 0.0358 |
| 0.6542 | 4.25 | 68 | 3.6016 | 0.0354 |
| 0.6724 | 4.31 | 69 | 3.6016 | 0.0354 |
| 0.591 | 4.38 | 70 | 3.5938 | 0.0359 |
| 0.5346 | 4.44 | 71 | 3.5801 | 0.0361 |
| 0.5112 | 4.5 | 72 | 3.5762 | 0.0361 |
| 0.5443 | 4.56 | 73 | 3.5840 | 0.0362 |
| 0.5689 | 4.62 | 74 | 3.6152 | 0.0358 |
| 0.5667 | 4.69 | 75 | 3.6328 | 0.0358 |
| 0.554 | 4.75 | 76 | 3.6348 | 0.0357 |
| 0.6087 | 4.81 | 77 | 3.625 | 0.0355 |
| 0.5236 | 4.88 | 78 | 3.6152 | 0.0355 |
| 0.5458 | 4.94 | 79 | 3.5781 | 0.0355 |
| 0.5702 | 5.0 | 80 | 3.5488 | 0.0355 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
okho0653/distilbert-base-zero-shot
|
okho0653
| 2022-11-07T20:44:16Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T20:40:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-zero-shot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-zero-shot
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7147
- eval_accuracy: 0.0741
- eval_f1: 0.1379
- eval_runtime: 1.1794
- eval_samples_per_second: 22.894
- eval_steps_per_second: 1.696
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
Meow412/finetuning-sentiment-model-A3
|
Meow412
| 2022-11-07T20:39:27Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T20:30:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-A3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-A3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3212
- Accuracy: 0.8760
- F1: 0.3516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
edbeeching/atari_zaxxon_3333
|
edbeeching
| 2022-11-07T20:31:59Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:30:50Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_zaxxon
type: atari_zaxxon
metrics:
- type: mean_reward
value: 12600.00 +/- 0.00
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_zaxxon** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_videopinball_3333
|
edbeeching
| 2022-11-07T20:27:56Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:26:42Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_videopinball
type: atari_videopinball
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_videopinball** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_venture_3333
|
edbeeching
| 2022-11-07T20:26:22Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:25:21Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_venture
type: atari_venture
metrics:
- type: mean_reward
value: 1650.00 +/- 250.00
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_venture** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_upndown_3333
|
edbeeching
| 2022-11-07T20:25:01Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:23:31Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_upndown
type: atari_upndown
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_upndown** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_tutankham_3333
|
edbeeching
| 2022-11-07T20:23:10Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:22:04Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_tutankham
type: atari_tutankham
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_tutankham** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_timepilot_3333
|
edbeeching
| 2022-11-07T20:21:45Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:20:54Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_timepilot
type: atari_timepilot
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_timepilot** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_tennis_3333
|
edbeeching
| 2022-11-07T20:20:35Z | 3 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:19:22Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_tennis
type: atari_tennis
metrics:
- type: mean_reward
value: 24.00 +/- 0.00
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_tennis** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_spaceinvaders_3333
|
edbeeching
| 2022-11-07T20:17:41Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:16:43Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_spaceinvaders
type: atari_spaceinvaders
metrics:
- type: mean_reward
value: 2212.50 +/- 2.50
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_spaceinvaders** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_skiing_3333
|
edbeeching
| 2022-11-07T20:14:49Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:13:46Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_skiing
type: atari_skiing
metrics:
- type: mean_reward
value: -10184.29 +/- 133.20
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_skiing** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_seaquest_3333
|
edbeeching
| 2022-11-07T20:13:26Z | 3 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:12:29Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_seaquest
type: atari_seaquest
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_seaquest** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
edbeeching/atari_roadrunner_3333
|
edbeeching
| 2022-11-07T20:10:27Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:09:13Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_roadrunner
type: atari_roadrunner
metrics:
- type: mean_reward
value: 84000.00 +/- 0.00
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_roadrunner** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
Ananjas/AwooAI
|
Ananjas
| 2022-11-07T20:08:29Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-07T19:37:57Z |
---
tags:
- conversational
---
|
edbeeching/atari_qbert_3333
|
edbeeching
| 2022-11-07T20:07:22Z | 1 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-11-07T20:06:16Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_qbert
type: atari_qbert
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_qbert** environment.
This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
|
artemnech/dialoT5-base
|
artemnech
| 2022-11-07T18:58:36Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-08-29T10:37:48Z |
How to use:
```
from collections import deque
from bs4 import BeautifulSoup
import requests
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer
import torch
model_name = 'artemnech/dialoT5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate(text, **kwargs):
model.eval()
inputs = tokenizer(text, return_tensors='pt').to(model.device)
with torch.no_grad():
hypotheses = model.generate(**inputs, **kwargs)
return tokenizer.decode(hypotheses[0], skip_special_tokens=True)
def dialog(context):
keyword = generate('keyword: ' + ' '.join(context), num_beams=2,)
knowlege = ''
if keyword != 'no_keywords':
resp = requests.get(f"https://en.wikipedia.org/wiki/{keyword}")
root = BeautifulSoup(resp.content, "html.parser")
knowlege ="knowlege: " + " ".join([_.text.strip() for _ in root.find("div", class_="mw-body-content mw-content-ltr").find_all("p", limit=2)])
answ = generate(f'dialog: ' + knowlege + ' '.join(context), num_beams=3,
do_sample=True, temperature=1.1, encoder_no_repeat_ngram_size=5,
no_repeat_ngram_size=5,
max_new_tokens = 30)
return answ
context =deque([], maxlen=4)
while True:
text = input()
text = 'user1>>: ' + text
context.append(text)
answ = dialog(context)
context.append('user2>>: ' + answ)
print('bot: ', answ)
```
|
azuresonance/bert-finetuned-ner
|
azuresonance
| 2022-11-07T18:08:45Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T17:58:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: train
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9351422898742554
- name: Recall
type: recall
value: 0.9511948838774823
- name: F1
type: f1
value: 0.943100283664275
- name: Accuracy
type: accuracy
value: 0.9867251427562254
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0604
- Precision: 0.9351
- Recall: 0.9512
- F1: 0.9431
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0861 | 1.0 | 1756 | 0.0691 | 0.9094 | 0.9322 | 0.9206 | 0.9809 |
| 0.034 | 2.0 | 3512 | 0.0605 | 0.9303 | 0.9482 | 0.9392 | 0.9861 |
| 0.0162 | 3.0 | 5268 | 0.0604 | 0.9351 | 0.9512 | 0.9431 | 0.9867 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
GuiGel/xlm-roberta-large-flert-finetune-meddocan
|
GuiGel
| 2022-11-07T17:36:11Z | 3 | 0 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"region:us"
] |
token-classification
| 2022-11-07T17:32:35Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
---
### Demo: How to use in Flair
Requires:
- **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("GuiGel/xlm-roberta-large-flert-finetune-meddocan")
# make example sentence
sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
|
mqymmayy/mt5-small-finetuned-amazon-en-es
|
mqymmayy
| 2022-11-07T16:44:48Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-11-07T14:21:59Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0294
- Rouge1: 16.5993
- Rouge2: 8.0138
- Rougel: 16.1315
- Rougelsum: 16.2931
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 6.5928 | 1.0 | 1209 | 3.3005 | 14.7775 | 6.4604 | 14.2574 | 14.3422 |
| 3.9024 | 2.0 | 2418 | 3.1399 | 16.8632 | 8.6474 | 16.065 | 16.2114 |
| 3.5806 | 3.0 | 3627 | 3.0869 | 18.2422 | 9.2647 | 17.6227 | 17.7649 |
| 3.4201 | 4.0 | 4836 | 3.0590 | 17.7826 | 8.9742 | 16.9951 | 17.1804 |
| 3.3202 | 5.0 | 6045 | 3.0598 | 17.7808 | 8.6038 | 17.2243 | 17.4125 |
| 3.2436 | 6.0 | 7254 | 3.0409 | 16.8469 | 8.2339 | 16.3935 | 16.5818 |
| 3.2079 | 7.0 | 8463 | 3.0332 | 16.8148 | 8.2115 | 16.3166 | 16.4832 |
| 3.1801 | 8.0 | 9672 | 3.0294 | 16.5993 | 8.0138 | 16.1315 | 16.2931 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
zhiguoxu/chinese-macbert-base-finetuned-ner
|
zhiguoxu
| 2022-11-07T15:45:01Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-10-23T12:03:17Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: chinese-macbert-base-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chinese-macbert-base-finetuned-ner
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2420
- F1: 0.9224
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 57
- eval_batch_size: 57
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.6141 | 1.0 | 1 | 2.6454 | 0.0 |
| 2.7076 | 2.0 | 2 | 2.0034 | 0.0 |
| 2.0979 | 3.0 | 3 | 1.6276 | 0.0 |
| 1.7264 | 4.0 | 4 | 1.3419 | 0.3522 |
| 1.4691 | 5.0 | 5 | 1.1239 | 0.4091 |
| 1.2504 | 6.0 | 6 | 0.9532 | 0.5514 |
| 1.0798 | 7.0 | 7 | 0.8129 | 0.5895 |
| 0.9279 | 8.0 | 8 | 0.6987 | 0.625 |
| 0.8179 | 9.0 | 9 | 0.6081 | 0.6392 |
| 0.7202 | 10.0 | 10 | 0.5346 | 0.6667 |
| 0.6377 | 11.0 | 11 | 0.4731 | 0.7451 |
| 0.5751 | 12.0 | 12 | 0.4226 | 0.7925 |
| 0.5202 | 13.0 | 13 | 0.3804 | 0.7685 |
| 0.4733 | 14.0 | 14 | 0.3447 | 0.7928 |
| 0.44 | 15.0 | 15 | 0.3145 | 0.8509 |
| 0.4047 | 16.0 | 16 | 0.2899 | 0.8918 |
| 0.3773 | 17.0 | 17 | 0.2707 | 0.8966 |
| 0.353 | 18.0 | 18 | 0.2563 | 0.9052 |
| 0.3413 | 19.0 | 19 | 0.2468 | 0.9224 |
| 0.3314 | 20.0 | 20 | 0.2420 | 0.9224 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.12.0+cu102
- Datasets 1.18.4
- Tokenizers 0.12.1
|
Rundstedtz/distilbert-base-uncased-letters-from-jenny
|
Rundstedtz
| 2022-11-07T15:35:42Z | 5 | 1 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-11-07T15:27:32Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rundstedtz/distilbert-base-uncased-letters-from-jenny
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rundstedtz/distilbert-base-uncased-letters-from-jenny
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.5319
- Validation Loss: 2.9614
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -988, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.5319 | 2.9614 | 0 |
### Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.2
|
kevinbror/Svenskmodell
|
kevinbror
| 2022-11-07T15:20:39Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-11-07T15:20:15Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: Svenskmodell
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Svenskmodell
This model is a fine-tuned version of [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3411
- Train End Logits Accuracy: 0.8882
- Train Start Logits Accuracy: 0.8838
- Validation Loss: 1.4988
- Validation End Logits Accuracy: 0.6713
- Validation Start Logits Accuracy: 0.6669
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 28792, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.2392 | 0.6241 | 0.6197 | 1.0970 | 0.6588 | 0.6543 | 0 |
| 0.7549 | 0.7615 | 0.7569 | 1.1185 | 0.6673 | 0.6665 | 1 |
| 0.5005 | 0.8376 | 0.8323 | 1.3299 | 0.6571 | 0.6503 | 2 |
| 0.3411 | 0.8882 | 0.8838 | 1.4988 | 0.6713 | 0.6669 | 3 |
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.6.4
- Datasets 2.1.0
- Tokenizers 0.12.1
|
jasonsheih/bert-base-uncased-finetuned-vr-comfort-2125
|
jasonsheih
| 2022-11-07T13:58:05Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-05T13:26:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-vr-comfort-2125
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-vr-comfort-2125
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0440
- Accuracy: 0.8431
- F1: 0.8437
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7159 | 1.0 | 157 | 0.6408 | 0.7401 | 0.6612 |
| 0.5559 | 2.0 | 314 | 0.5362 | 0.7952 | 0.7684 |
| 0.362 | 3.0 | 471 | 0.5135 | 0.8204 | 0.8132 |
| 0.1918 | 4.0 | 628 | 0.6109 | 0.8407 | 0.8388 |
| 0.1192 | 5.0 | 785 | 0.6947 | 0.8347 | 0.8316 |
| 0.0661 | 6.0 | 942 | 0.7843 | 0.8455 | 0.8467 |
| 0.0507 | 7.0 | 1099 | 0.9312 | 0.8168 | 0.8271 |
| 0.0406 | 8.0 | 1256 | 0.8616 | 0.8467 | 0.8488 |
| 0.0268 | 9.0 | 1413 | 0.8403 | 0.8443 | 0.8478 |
| 0.0251 | 10.0 | 1570 | 0.8662 | 0.8467 | 0.8472 |
| 0.0188 | 11.0 | 1727 | 0.9418 | 0.8563 | 0.8530 |
| 0.0195 | 12.0 | 1884 | 0.9541 | 0.8479 | 0.8469 |
| 0.0172 | 13.0 | 2041 | 0.9372 | 0.8407 | 0.8413 |
| 0.0142 | 14.0 | 2198 | 0.9883 | 0.8491 | 0.8469 |
| 0.0156 | 15.0 | 2355 | 1.0150 | 0.8419 | 0.8428 |
| 0.0138 | 16.0 | 2512 | 1.0035 | 0.8479 | 0.8466 |
| 0.013 | 17.0 | 2669 | 1.0909 | 0.8299 | 0.8355 |
| 0.0115 | 18.0 | 2826 | 1.0278 | 0.8515 | 0.8490 |
| 0.0107 | 19.0 | 2983 | 1.0419 | 0.8431 | 0.8437 |
| 0.0101 | 20.0 | 3140 | 1.0440 | 0.8431 | 0.8437 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
t-bank-ai/ruDialoGPT-medium
|
t-bank-ai
| 2022-11-07T13:34:43Z | 1,169 | 35 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"conversational",
"ru",
"arxiv:2001.09977",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2022-07-12T14:52:19Z |
---
license: mit
widget:
- text: "@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@"
example_title: "how r u"
- text: "@@ПЕРВЫЙ@@ что ты делал на выходных? @@ВТОРОЙ@@"
example_title: "wyd"
language:
- ru
tags:
- conversational
---
This generation model is based on [sberbank-ai/rugpt3medium_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2). It's trained on large corpus of dialog data and can be used for buildning generative conversational agents
The model was trained with context size 3
On a private validation set we calculated metrics introduced in [this paper](https://arxiv.org/pdf/2001.09977.pdf):
- Sensibleness: Crowdsourcers were asked whether model's response makes sense given the context
- Specificity: Crowdsourcers were asked whether model's response is specific for given context, in other words we don't want our model to give general and boring responses
- SSA which is the average of two metrics above (Sensibleness Specificity Average)
| | sensibleness | specificity | SSA |
|:----------------------------------------------------|---------------:|--------------:|------:|
| [tinkoff-ai/ruDialoGPT-small](https://huggingface.co/tinkoff-ai/ruDialoGPT-small) | 0.64 | 0.5 | 0.57 |
| [tinkoff-ai/ruDialoGPT-medium](https://huggingface.co/tinkoff-ai/ruDialoGPT-medium) | 0.78 | 0.69 | 0.735 |
How to use:
```python
import torch
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/ruDialoGPT-medium')
model = AutoModelWithLMHead.from_pretrained('tinkoff-ai/ruDialoGPT-medium')
inputs = tokenizer('@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@', return_tensors='pt')
generated_token_ids = model.generate(
**inputs,
top_k=10,
top_p=0.95,
num_beams=3,
num_return_sequences=3,
do_sample=True,
no_repeat_ngram_size=2,
temperature=1.2,
repetition_penalty=1.2,
length_penalty=1.0,
eos_token_id=50257,
max_new_tokens=40
)
context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids]
context_with_response
```
|
FacVain/turkish-sentiment-XMLRoBERTa
|
FacVain
| 2022-11-07T11:19:48Z | 0 | 0 | null |
[
"tr",
"region:us"
] | null | 2022-11-07T09:57:24Z |
---
language: tr
tag: text-classification
widget:
- text: "Oldukça kullanışlı bir ürün."
---
This repository contains two models that has been finetuned on twitter-XMLRoBERTa https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base.
3_Label model can classify text as positive, neutral and negative.
2_Label_Twitter is finetuned with tweets and can predict tweets as positive and negative.
|
tatakof/testpyramidsrnd
|
tatakof
| 2022-11-07T11:00:36Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2022-11-07T11:00:28Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: franfram/testpyramidsrnd
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ronanki/xlm-r-multilingual-v1-2022-11-07
|
ronanki
| 2022-11-07T10:50:15Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"xlm-roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-11-07T10:49:57Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# ronanki/xlm-r-multilingual-v1-2022-11-07
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ronanki/xlm-r-multilingual-v1-2022-11-07')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('ronanki/xlm-r-multilingual-v1-2022-11-07')
model = AutoModel.from_pretrained('ronanki/xlm-r-multilingual-v1-2022-11-07')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/xlm-r-multilingual-v1-2022-11-07)
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 348 with parameters:
```
{'batch_size': 64}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 30,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1044,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
silveto/distilbert-base-uncased-finetuned-squad
|
silveto
| 2022-11-07T10:44:30Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-11-02T17:43:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1531
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2297 | 1.0 | 5533 | 1.1547 |
| 0.9688 | 2.0 | 11066 | 1.1278 |
| 0.763 | 3.0 | 16599 | 1.1531 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.10.3
|
Shyam-311/distilroberta-base-finetuned-wikitext2
|
Shyam-311
| 2022-11-07T10:34:57Z | 164 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-11-07T10:01:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8340
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0843 | 1.0 | 2406 | 1.9226 |
| 1.9913 | 2.0 | 4812 | 1.8820 |
| 1.9597 | 3.0 | 7218 | 1.8214 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
nguyenkhoa2407/bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07
|
nguyenkhoa2407
| 2022-11-07T10:30:30Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:favsbot",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T10:23:28Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- favsbot
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: favsbot
type: favsbot
config: default
split: train
args: default
metrics:
- name: Precision
type: precision
value: 0.8275862068965517
- name: Recall
type: recall
value: 0.96
- name: F1
type: f1
value: 0.888888888888889
- name: Accuracy
type: accuracy
value: 0.9444444444444444
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the favsbot dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1169
- Precision: 0.8276
- Recall: 0.96
- F1: 0.8889
- Accuracy: 0.9444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 1.6302 | 0.0 | 0.0 | 0.0 | 0.5972 |
| No log | 2.0 | 20 | 1.0453 | 0.6667 | 0.08 | 0.1429 | 0.6389 |
| No log | 3.0 | 30 | 0.7286 | 0.8421 | 0.64 | 0.7273 | 0.8472 |
| No log | 4.0 | 40 | 0.5296 | 0.8 | 0.8 | 0.8000 | 0.8889 |
| No log | 5.0 | 50 | 0.3960 | 0.8214 | 0.92 | 0.8679 | 0.9306 |
| No log | 6.0 | 60 | 0.2987 | 0.8214 | 0.92 | 0.8679 | 0.9306 |
| No log | 7.0 | 70 | 0.2424 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 8.0 | 80 | 0.2151 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 9.0 | 90 | 0.1815 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 10.0 | 100 | 0.1675 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 11.0 | 110 | 0.1504 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 12.0 | 120 | 0.1410 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 13.0 | 130 | 0.1350 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 14.0 | 140 | 0.1281 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 15.0 | 150 | 0.1239 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 16.0 | 160 | 0.1190 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 17.0 | 170 | 0.1187 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 18.0 | 180 | 0.1180 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 19.0 | 190 | 0.1170 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
| No log | 20.0 | 200 | 0.1169 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1
|
julien-c/pokemon-predict-hp
|
julien-c
| 2022-11-07T10:11:46Z | 0 | 1 |
mlconsole
|
[
"mlconsole",
"tabular-regression",
"dataset:julien-c/kaggle-rounakbanik-pokemon",
"license:apache-2.0",
"model-index",
"region:us"
] |
tabular-regression
| 2022-10-10T08:28:52Z |
---
license: apache-2.0
tags:
- mlconsole
- tabular-regression
library_name: mlconsole
inference: false
datasets:
- julien-c/kaggle-rounakbanik-pokemon
metrics:
- mae
- loss
model-index:
- name: pokemon-predict-hp
results:
- task:
type: tabular-regression
name: tabular-regression
dataset:
type: julien-c/kaggle-rounakbanik-pokemon
name: pokemon.csv
metrics:
- type: mae
name: Mean absolute error
value: 15.908513069152832
- type: loss
name: Model loss
value: 647.6045532226562
---
# pokemon.csv (#0)
Trained on [ML Console](https://mlconsole.com) on the [julien-c/kaggle-rounakbanik-pokemon](https://huggingface.co/datasets/julien-c/kaggle-rounakbanik-pokemon).
[Load the model on ML Console](https://mlconsole.com/model/hf/julien-c/pokemon-predict-hp).
### Screenshots of training


|
Shyam-311/distilgpt2-finetuned-wikitext2
|
Shyam-311
| 2022-11-07T09:55:19Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-07T09:08:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7602 | 1.0 | 2334 | 3.6669 |
| 3.653 | 2.0 | 4668 | 3.6472 |
| 3.6006 | 3.0 | 7002 | 3.6421 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
|
thisisHJLee/wav2vec2-large-xls-r-300m-korean-convsen3
|
thisisHJLee
| 2022-11-07T09:31:00Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-07T05:04:25Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-korean-convsen3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-korean-convsen3
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0089
- Cer: 0.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5769 | 1.0 | 1762 | 0.0593 | 0.0124 |
| 0.0927 | 2.0 | 3524 | 0.0106 | 0.0014 |
| 0.0571 | 3.0 | 5286 | 0.0089 | 0.0010 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.11.0
|
pig4431/Sentiment140_BERT_5E
|
pig4431
| 2022-11-07T08:46:38Z | 10 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:sentiment140",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T08:39:06Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- sentiment140
metrics:
- accuracy
model-index:
- name: Sentiment140_BERT_5E
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sentiment140
type: sentiment140
config: sentiment140
split: train
args: sentiment140
metrics:
- name: Accuracy
type: accuracy
value: 0.82
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sentiment140_BERT_5E
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the sentiment140 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7061
- Accuracy: 0.82
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6882 | 0.08 | 50 | 0.6047 | 0.7 |
| 0.6223 | 0.16 | 100 | 0.5137 | 0.8067 |
| 0.5463 | 0.24 | 150 | 0.4573 | 0.8067 |
| 0.4922 | 0.32 | 200 | 0.4790 | 0.8 |
| 0.4821 | 0.4 | 250 | 0.4207 | 0.8267 |
| 0.4985 | 0.48 | 300 | 0.4267 | 0.8067 |
| 0.4455 | 0.56 | 350 | 0.4301 | 0.8133 |
| 0.469 | 0.64 | 400 | 0.4294 | 0.82 |
| 0.4906 | 0.72 | 450 | 0.4059 | 0.8067 |
| 0.4006 | 0.8 | 500 | 0.4181 | 0.8133 |
| 0.445 | 0.88 | 550 | 0.3948 | 0.8267 |
| 0.4302 | 0.96 | 600 | 0.3976 | 0.84 |
| 0.4442 | 1.04 | 650 | 0.3887 | 0.8533 |
| 0.3424 | 1.12 | 700 | 0.4119 | 0.8267 |
| 0.3589 | 1.2 | 750 | 0.4083 | 0.8533 |
| 0.3737 | 1.28 | 800 | 0.4253 | 0.8333 |
| 0.334 | 1.36 | 850 | 0.4147 | 0.86 |
| 0.3637 | 1.44 | 900 | 0.3926 | 0.8533 |
| 0.3388 | 1.52 | 950 | 0.4084 | 0.8267 |
| 0.3375 | 1.6 | 1000 | 0.4132 | 0.8467 |
| 0.3725 | 1.68 | 1050 | 0.3965 | 0.8467 |
| 0.3649 | 1.76 | 1100 | 0.3956 | 0.8333 |
| 0.3799 | 1.84 | 1150 | 0.3923 | 0.8333 |
| 0.3695 | 1.92 | 1200 | 0.4266 | 0.84 |
| 0.3233 | 2.0 | 1250 | 0.4225 | 0.8333 |
| 0.2313 | 2.08 | 1300 | 0.4672 | 0.8333 |
| 0.231 | 2.16 | 1350 | 0.5212 | 0.8133 |
| 0.2526 | 2.24 | 1400 | 0.5392 | 0.8067 |
| 0.2721 | 2.32 | 1450 | 0.4895 | 0.82 |
| 0.2141 | 2.4 | 1500 | 0.5258 | 0.8133 |
| 0.2658 | 2.48 | 1550 | 0.5046 | 0.8267 |
| 0.2386 | 2.56 | 1600 | 0.4873 | 0.8267 |
| 0.2493 | 2.64 | 1650 | 0.4950 | 0.8333 |
| 0.2692 | 2.72 | 1700 | 0.5080 | 0.8267 |
| 0.2226 | 2.8 | 1750 | 0.5016 | 0.8467 |
| 0.2522 | 2.88 | 1800 | 0.5068 | 0.8267 |
| 0.2556 | 2.96 | 1850 | 0.4937 | 0.8267 |
| 0.2311 | 3.04 | 1900 | 0.5103 | 0.8267 |
| 0.1703 | 3.12 | 1950 | 0.5680 | 0.82 |
| 0.1744 | 3.2 | 2000 | 0.5501 | 0.82 |
| 0.1667 | 3.28 | 2050 | 0.6142 | 0.82 |
| 0.1863 | 3.36 | 2100 | 0.6355 | 0.82 |
| 0.2543 | 3.44 | 2150 | 0.6000 | 0.8133 |
| 0.1565 | 3.52 | 2200 | 0.6618 | 0.8267 |
| 0.1531 | 3.6 | 2250 | 0.6595 | 0.8133 |
| 0.1915 | 3.68 | 2300 | 0.6647 | 0.8267 |
| 0.1601 | 3.76 | 2350 | 0.6729 | 0.8267 |
| 0.176 | 3.84 | 2400 | 0.6699 | 0.82 |
| 0.1815 | 3.92 | 2450 | 0.6819 | 0.8067 |
| 0.1987 | 4.0 | 2500 | 0.6543 | 0.8333 |
| 0.1236 | 4.08 | 2550 | 0.6686 | 0.8333 |
| 0.1599 | 4.16 | 2600 | 0.6583 | 0.8267 |
| 0.1256 | 4.24 | 2650 | 0.6871 | 0.8267 |
| 0.1291 | 4.32 | 2700 | 0.6855 | 0.82 |
| 0.1198 | 4.4 | 2750 | 0.6901 | 0.82 |
| 0.1245 | 4.48 | 2800 | 0.7152 | 0.8267 |
| 0.1784 | 4.56 | 2850 | 0.7053 | 0.82 |
| 0.1705 | 4.64 | 2900 | 0.7016 | 0.82 |
| 0.1265 | 4.72 | 2950 | 0.7013 | 0.82 |
| 0.1192 | 4.8 | 3000 | 0.7084 | 0.82 |
| 0.174 | 4.88 | 3050 | 0.7062 | 0.82 |
| 0.1328 | 4.96 | 3100 | 0.7061 | 0.82 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
cynthiachan/finetuned-bert-base
|
cynthiachan
| 2022-11-07T07:56:55Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:cynthiachan/FeedRef2022",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T06:51:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cynthiachan/FeedRef2022
model-index:
- name: training
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# training
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the cynthiachan/FeedRef2022 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0514
- Attackid Precision: 0.8889
- Attackid Recall: 0.9231
- Attackid F1: 0.9057
- Attackid Number: 52
- Bitcoinaddr Precision: 0.875
- Bitcoinaddr Recall: 1.0
- Bitcoinaddr F1: 0.9333
- Bitcoinaddr Number: 7
- Cve Precision: 0.8378
- Cve Recall: 0.9538
- Cve F1: 0.8921
- Cve Number: 65
- Defenderthreat Precision: 0.875
- Defenderthreat Recall: 1.0
- Defenderthreat F1: 0.9333
- Defenderthreat Number: 7
- Domain Precision: 0.9279
- Domain Recall: 0.9369
- Domain F1: 0.9324
- Domain Number: 206
- Email Precision: 0.8333
- Email Recall: 0.9302
- Email F1: 0.8791
- Email Number: 43
- Filepath Precision: 0.8857
- Filepath Recall: 0.9195
- Filepath F1: 0.9023
- Filepath Number: 1652
- Fingerprint Precision: 0.0
- Fingerprint Recall: 0.0
- Fingerprint F1: 0.0
- Fingerprint Number: 2
- Hostname Precision: 0.8910
- Hostname Recall: 0.9653
- Hostname F1: 0.9267
- Hostname Number: 144
- Ipv4 Precision: 0.9767
- Ipv4 Recall: 0.9825
- Ipv4 F1: 0.9796
- Ipv4 Number: 171
- Ipv6 Precision: 0.3333
- Ipv6 Recall: 1.0
- Ipv6 F1: 0.5
- Ipv6 Number: 3
- Md5 Precision: 0.9141
- Md5 Recall: 0.9857
- Md5 F1: 0.9486
- Md5 Number: 421
- Sha1 Precision: 0.8545
- Sha1 Recall: 0.9592
- Sha1 F1: 0.9038
- Sha1 Number: 49
- Sha256 Precision: 0.9120
- Sha256 Recall: 0.9919
- Sha256 F1: 0.9502
- Sha256 Number: 491
- Uri Precision: 0.3333
- Uri Recall: 0.4545
- Uri F1: 0.3846
- Uri Number: 11
- Overall Precision: 0.8946
- Overall Recall: 0.9446
- Overall F1: 0.9189
- Overall Accuracy: 0.9886
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Bitcoinaddr Precision | Bitcoinaddr Recall | Bitcoinaddr F1 | Bitcoinaddr Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Fingerprint Precision | Fingerprint Recall | Fingerprint F1 | Fingerprint Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Ipv6 Precision | Ipv6 Recall | Ipv6 F1 | Ipv6 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.3691 | 0.04 | 500 | 0.3054 | 0.0 | 0.0 | 0.0 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 206 | 0.0 | 0.0 | 0.0 | 43 | 0.1917 | 0.5975 | 0.2903 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 144 | 0.5747 | 0.5848 | 0.5797 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.4160 | 0.7648 | 0.5389 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.5131 | 0.9145 | 0.6574 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.2665 | 0.5590 | 0.3610 | 0.9297 |
| 0.2388 | 0.07 | 1000 | 0.2124 | 0.0 | 0.0 | 0.0 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7467 | 0.8615 | 0.8 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 206 | 0.0 | 0.0 | 0.0 | 43 | 0.3846 | 0.4661 | 0.4215 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.3534 | 0.6528 | 0.4585 | 144 | 0.6667 | 0.5614 | 0.6095 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.5275 | 0.9097 | 0.6678 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.8787 | 0.9002 | 0.8893 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.4932 | 0.5539 | 0.5218 | 0.9491 |
| 0.1817 | 0.11 | 1500 | 0.2025 | 0.4433 | 0.8269 | 0.5772 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7941 | 0.8308 | 0.8120 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.2241 | 0.6602 | 0.3346 | 206 | 0.1538 | 0.2326 | 0.1852 | 43 | 0.4561 | 0.6816 | 0.5465 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.0042 | 0.0069 | 0.0052 | 144 | 0.6522 | 0.7018 | 0.6761 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.5671 | 0.8527 | 0.6812 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.7623 | 0.9470 | 0.8447 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.4654 | 0.6961 | 0.5579 | 0.9563 |
| 0.1552 | 0.15 | 2000 | 0.1581 | 0.6119 | 0.7885 | 0.6891 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8235 | 0.8615 | 0.8421 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.4979 | 0.5680 | 0.5306 | 206 | 0.4795 | 0.8140 | 0.6034 | 43 | 0.4876 | 0.7960 | 0.6047 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.5682 | 0.6944 | 0.625 | 144 | 0.4692 | 0.8012 | 0.5918 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.5321 | 0.9240 | 0.6753 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.7951 | 0.9328 | 0.8585 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.5345 | 0.7966 | 0.6398 | 0.9622 |
| 0.1567 | 0.19 | 2500 | 0.1619 | 0.6032 | 0.7308 | 0.6609 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8133 | 0.9385 | 0.8714 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6257 | 0.5680 | 0.5954 | 206 | 0.1379 | 0.1860 | 0.1584 | 43 | 0.5788 | 0.7512 | 0.6538 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.4981 | 0.9097 | 0.6437 | 144 | 0.7233 | 0.8713 | 0.7905 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7723 | 0.9264 | 0.8423 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.7523 | 0.9837 | 0.8526 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.6308 | 0.7876 | 0.7006 | 0.9628 |
| 0.1588 | 0.22 | 3000 | 0.1409 | 0.4050 | 0.9423 | 0.5665 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5962 | 0.9538 | 0.7337 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6805 | 0.7961 | 0.7338 | 206 | 0.5821 | 0.9070 | 0.7091 | 43 | 0.6291 | 0.7712 | 0.6930 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6902 | 0.8819 | 0.7744 | 144 | 0.5737 | 0.8421 | 0.6825 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.5678 | 0.9454 | 0.7094 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.8582 | 0.9735 | 0.9122 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.6300 | 0.8228 | 0.7136 | 0.9664 |
| 0.1257 | 0.26 | 3500 | 0.1417 | 0.5541 | 0.7885 | 0.6508 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6854 | 0.9385 | 0.7922 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6828 | 0.7524 | 0.7159 | 206 | 0.5217 | 0.8372 | 0.6429 | 43 | 0.6314 | 0.7155 | 0.6708 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.5261 | 0.9097 | 0.6667 | 144 | 0.7562 | 0.8889 | 0.8172 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7435 | 0.9501 | 0.8342 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.7325 | 0.9817 | 0.8390 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.6627 | 0.7942 | 0.7225 | 0.9658 |
| 0.1229 | 0.3 | 4000 | 0.1455 | 0.6567 | 0.8462 | 0.7395 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7391 | 0.7846 | 0.7612 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6858 | 0.7524 | 0.7176 | 206 | 0.4321 | 0.8140 | 0.5645 | 43 | 0.6740 | 0.7809 | 0.7235 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6452 | 0.8333 | 0.7273 | 144 | 0.5455 | 0.5614 | 0.5533 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7697 | 0.8575 | 0.8112 | 421 | 0.3645 | 0.7959 | 0.5 | 49 | 0.6948 | 0.9735 | 0.8109 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.6684 | 0.8029 | 0.7295 | 0.9667 |
| 0.1323 | 0.34 | 4500 | 0.1323 | 0.6719 | 0.8269 | 0.7414 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7910 | 0.8154 | 0.8030 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6064 | 0.7330 | 0.6637 | 206 | 0.74 | 0.8605 | 0.7957 | 43 | 0.6802 | 0.7391 | 0.7084 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.5935 | 0.5069 | 0.5468 | 144 | 0.7826 | 0.7368 | 0.7590 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7783 | 0.8171 | 0.7972 | 421 | 0.3810 | 0.8163 | 0.5195 | 49 | 0.8368 | 0.9715 | 0.8992 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7049 | 0.7717 | 0.7368 | 0.9680 |
| 0.1379 | 0.37 | 5000 | 0.1088 | 0.5930 | 0.9808 | 0.7391 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.725 | 0.8923 | 0.8 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7619 | 0.6990 | 0.7291 | 206 | 0.5556 | 0.9302 | 0.6957 | 43 | 0.6551 | 0.8360 | 0.7346 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7127 | 0.8958 | 0.7938 | 144 | 0.7989 | 0.8596 | 0.8282 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7665 | 0.9359 | 0.8428 | 421 | 0.3729 | 0.4490 | 0.4074 | 49 | 0.7278 | 0.9695 | 0.8314 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.6886 | 0.8550 | 0.7629 | 0.9738 |
| 0.1162 | 0.41 | 5500 | 0.1205 | 0.5765 | 0.9423 | 0.7153 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8026 | 0.9385 | 0.8652 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7960 | 0.7767 | 0.7862 | 206 | 0.6032 | 0.8837 | 0.7170 | 43 | 0.6724 | 0.8099 | 0.7348 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6791 | 0.8819 | 0.7674 | 144 | 0.8041 | 0.9123 | 0.8548 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7188 | 0.9287 | 0.8104 | 421 | 0.5714 | 0.8163 | 0.6723 | 49 | 0.8088 | 0.9735 | 0.8835 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7033 | 0.8538 | 0.7713 | 0.9711 |
| 0.1128 | 0.45 | 6000 | 0.1165 | 0.6575 | 0.9231 | 0.768 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7143 | 0.9231 | 0.8054 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7703 | 0.7816 | 0.7759 | 206 | 0.6724 | 0.9070 | 0.7723 | 43 | 0.6634 | 0.7706 | 0.7130 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6580 | 0.8819 | 0.7537 | 144 | 0.8434 | 0.8187 | 0.8309 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8032 | 0.9596 | 0.8745 | 421 | 0.6066 | 0.7551 | 0.6727 | 49 | 0.8554 | 0.9756 | 0.9115 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7201 | 0.8327 | 0.7723 | 0.9736 |
| 0.11 | 0.49 | 6500 | 0.1374 | 0.7167 | 0.8269 | 0.7679 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7273 | 0.8615 | 0.7887 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7592 | 0.7039 | 0.7305 | 206 | 0.725 | 0.6744 | 0.6988 | 43 | 0.6129 | 0.7524 | 0.6755 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7151 | 0.8542 | 0.7785 | 144 | 0.7919 | 0.8012 | 0.7965 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7821 | 0.9549 | 0.8599 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.6880 | 0.9837 | 0.8097 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.6710 | 0.8005 | 0.7300 | 0.9680 |
| 0.1152 | 0.52 | 7000 | 0.1152 | 0.6933 | 1.0 | 0.8189 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6374 | 0.8923 | 0.7436 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6103 | 0.6311 | 0.6205 | 206 | 0.6739 | 0.7209 | 0.6966 | 43 | 0.6969 | 0.7960 | 0.7431 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7721 | 0.7292 | 0.75 | 144 | 0.8526 | 0.7778 | 0.8135 | 171 | 0.0192 | 0.3333 | 0.0364 | 3 | 0.8549 | 0.9097 | 0.8815 | 421 | 0.4706 | 0.8163 | 0.5970 | 49 | 0.8625 | 0.9837 | 0.9191 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7271 | 0.8216 | 0.7715 | 0.9722 |
| 0.1084 | 0.56 | 7500 | 0.1073 | 0.75 | 0.8077 | 0.7778 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6484 | 0.9077 | 0.7564 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7313 | 0.8058 | 0.7667 | 206 | 0.6452 | 0.9302 | 0.7619 | 43 | 0.6933 | 0.8196 | 0.7512 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6818 | 0.9375 | 0.7895 | 144 | 0.6872 | 0.9123 | 0.7839 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8789 | 0.9477 | 0.9120 | 421 | 0.7451 | 0.7755 | 0.76 | 49 | 0.8374 | 0.9857 | 0.9055 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7277 | 0.8643 | 0.7902 | 0.9741 |
| 0.0789 | 0.6 | 8000 | 0.0958 | 0.7719 | 0.8462 | 0.8073 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7403 | 0.8769 | 0.8028 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7731 | 0.8107 | 0.7915 | 206 | 0.74 | 0.8605 | 0.7957 | 43 | 0.7408 | 0.7924 | 0.7657 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6749 | 0.9514 | 0.7896 | 144 | 0.8011 | 0.8480 | 0.8239 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8299 | 0.9620 | 0.8911 | 421 | 0.5686 | 0.5918 | 0.58 | 49 | 0.8770 | 0.9878 | 0.9291 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7700 | 0.8469 | 0.8066 | 0.9760 |
| 0.1149 | 0.64 | 8500 | 0.1334 | 1.0 | 0.7692 | 0.8696 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6795 | 0.8154 | 0.7413 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7336 | 0.7621 | 0.7476 | 206 | 0.3824 | 0.6047 | 0.4685 | 43 | 0.6318 | 0.5454 | 0.5854 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8227 | 0.8056 | 0.8140 | 144 | 0.7707 | 0.7076 | 0.7378 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8776 | 0.9026 | 0.8899 | 421 | 0.6129 | 0.7755 | 0.6847 | 49 | 0.8339 | 0.9817 | 0.9018 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7231 | 0.6961 | 0.7094 | 0.9673 |
| 0.1155 | 0.67 | 9000 | 0.1052 | 0.6267 | 0.9038 | 0.7402 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7294 | 0.9538 | 0.8267 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7232 | 0.7864 | 0.7535 | 206 | 0.7391 | 0.7907 | 0.7640 | 43 | 0.7494 | 0.7312 | 0.7402 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7531 | 0.8472 | 0.7974 | 144 | 0.8708 | 0.9064 | 0.8883 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8340 | 0.9667 | 0.8955 | 421 | 0.5714 | 0.5714 | 0.5714 | 49 | 0.8709 | 0.9756 | 0.9203 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7664 | 0.8135 | 0.7893 | 0.9742 |
| 0.0926 | 0.71 | 9500 | 0.1048 | 0.6438 | 0.9038 | 0.752 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6610 | 0.6 | 0.6290 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7541 | 0.6699 | 0.7095 | 206 | 0.7308 | 0.8837 | 0.8 | 43 | 0.6768 | 0.8456 | 0.7519 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7119 | 0.875 | 0.7850 | 144 | 0.8343 | 0.8830 | 0.8580 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8712 | 0.9477 | 0.9078 | 421 | 0.7193 | 0.8367 | 0.7736 | 49 | 0.8476 | 0.9857 | 0.9115 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7322 | 0.8604 | 0.7911 | 0.9760 |
| 0.0982 | 0.75 | 10000 | 0.0985 | 0.6533 | 0.9423 | 0.7717 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7027 | 0.8 | 0.7482 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7671 | 0.8155 | 0.7906 | 206 | 0.7143 | 0.9302 | 0.8081 | 43 | 0.7465 | 0.8039 | 0.7741 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6507 | 0.9444 | 0.7705 | 144 | 0.9106 | 0.9532 | 0.9314 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8008 | 0.9264 | 0.8590 | 421 | 0.5641 | 0.8980 | 0.6929 | 49 | 0.8460 | 0.9735 | 0.9053 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7633 | 0.8568 | 0.8074 | 0.9769 |
| 0.085 | 0.79 | 10500 | 0.0972 | 0.6184 | 0.9038 | 0.7344 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8154 | 0.8154 | 0.8154 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7236 | 0.8641 | 0.7876 | 206 | 0.7755 | 0.8837 | 0.8261 | 43 | 0.7544 | 0.8105 | 0.7814 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7081 | 0.9097 | 0.7964 | 144 | 0.8778 | 0.9240 | 0.9003 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8976 | 0.9572 | 0.9264 | 421 | 0.8039 | 0.8367 | 0.8200 | 49 | 0.8432 | 0.9857 | 0.9089 | 491 | 0.1111 | 0.0909 | 0.1000 | 11 | 0.7852 | 0.8643 | 0.8229 | 0.9779 |
| 0.0981 | 0.82 | 11000 | 0.1092 | 0.6944 | 0.9615 | 0.8065 | 52 | 0.2 | 0.1429 | 0.1667 | 7 | 0.7262 | 0.9385 | 0.8188 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6842 | 0.8835 | 0.7712 | 206 | 0.6667 | 0.7907 | 0.7234 | 43 | 0.7117 | 0.8251 | 0.7642 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7159 | 0.875 | 0.7875 | 144 | 0.9337 | 0.9064 | 0.9199 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7175 | 0.9715 | 0.8254 | 421 | 0.0 | 0.0 | 0.0 | 49 | 0.8620 | 0.9796 | 0.9171 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7399 | 0.8610 | 0.7959 | 0.9737 |
| 0.0892 | 0.86 | 11500 | 0.0969 | 0.6049 | 0.9423 | 0.7368 | 52 | 0.4545 | 0.7143 | 0.5556 | 7 | 0.0 | 0.0 | 0.0 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.8 | 0.8155 | 0.8077 | 206 | 0.8696 | 0.9302 | 0.8989 | 43 | 0.6975 | 0.8571 | 0.7691 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7397 | 0.75 | 0.7448 | 144 | 0.8841 | 0.8480 | 0.8657 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8821 | 0.9596 | 0.9192 | 421 | 0.9474 | 0.7347 | 0.8276 | 49 | 0.8251 | 0.9511 | 0.8836 | 491 | 0.25 | 0.1818 | 0.2105 | 11 | 0.7557 | 0.8544 | 0.8020 | 0.9759 |
| 0.0924 | 0.9 | 12000 | 0.0971 | 0.7059 | 0.9231 | 0.8000 | 52 | 0.4615 | 0.8571 | 0.6 | 7 | 0.8108 | 0.9231 | 0.8633 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7331 | 0.8932 | 0.8053 | 206 | 0.8 | 0.9302 | 0.8602 | 43 | 0.7544 | 0.8535 | 0.8009 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7697 | 0.8819 | 0.8220 | 144 | 0.8947 | 0.8947 | 0.8947 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7758 | 0.9454 | 0.8522 | 421 | 0.4516 | 0.8571 | 0.5915 | 49 | 0.8618 | 0.9776 | 0.9160 | 491 | 0.08 | 0.1818 | 0.1111 | 11 | 0.7664 | 0.8875 | 0.8225 | 0.9782 |
| 0.0784 | 0.94 | 12500 | 0.1113 | 0.6623 | 0.9808 | 0.7907 | 52 | 0.6667 | 0.8571 | 0.75 | 7 | 0.8406 | 0.8923 | 0.8657 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.6865 | 0.8398 | 0.7555 | 206 | 0.7547 | 0.9302 | 0.8333 | 43 | 0.7858 | 0.7863 | 0.7861 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8026 | 0.8472 | 0.8243 | 144 | 0.8629 | 0.8830 | 0.8728 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8462 | 0.9406 | 0.8909 | 421 | 0.56 | 0.8571 | 0.6774 | 49 | 0.9119 | 0.9695 | 0.9398 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.8022 | 0.8466 | 0.8238 | 0.9774 |
| 0.1063 | 0.97 | 13000 | 0.0932 | 0.6538 | 0.9808 | 0.7846 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7838 | 0.8923 | 0.8345 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7738 | 0.8301 | 0.8009 | 206 | 0.75 | 0.8372 | 0.7912 | 43 | 0.6979 | 0.8529 | 0.7676 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7086 | 0.8611 | 0.7774 | 144 | 0.8703 | 0.9415 | 0.9045 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.6184 | 0.8931 | 0.7308 | 421 | 0.2424 | 0.1633 | 0.1951 | 49 | 0.8511 | 0.9776 | 0.9100 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7176 | 0.8646 | 0.7843 | 0.9760 |
| 0.0765 | 1.01 | 13500 | 0.0892 | 0.6806 | 0.9423 | 0.7903 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6714 | 0.7231 | 0.6963 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.8416 | 0.8252 | 0.8333 | 206 | 0.7917 | 0.8837 | 0.8352 | 43 | 0.7330 | 0.8559 | 0.7897 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7105 | 0.9375 | 0.8084 | 144 | 0.8757 | 0.9474 | 0.9101 | 171 | 0.125 | 1.0 | 0.2222 | 3 | 0.8769 | 0.9810 | 0.9260 | 421 | 0.5970 | 0.8163 | 0.6897 | 49 | 0.8761 | 0.9796 | 0.925 | 491 | 0.0 | 0.0 | 0.0 | 11 | 0.7696 | 0.8881 | 0.8246 | 0.9790 |
| 0.0677 | 1.05 | 14000 | 0.0804 | 0.6667 | 0.9231 | 0.7742 | 52 | 0.3333 | 0.7143 | 0.4545 | 7 | 0.7941 | 0.8308 | 0.8120 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.8112 | 0.7718 | 0.7910 | 206 | 0.7234 | 0.7907 | 0.7556 | 43 | 0.7725 | 0.8487 | 0.8088 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7949 | 0.8611 | 0.8267 | 144 | 0.9401 | 0.9181 | 0.9290 | 171 | 0.1765 | 1.0 | 0.3 | 3 | 0.8613 | 0.9739 | 0.9142 | 421 | 0.4868 | 0.7551 | 0.592 | 49 | 0.8881 | 0.9857 | 0.9344 | 491 | 0.2222 | 0.1818 | 0.2000 | 11 | 0.7978 | 0.8782 | 0.8360 | 0.9805 |
| 0.0544 | 1.09 | 14500 | 0.0924 | 0.9216 | 0.9038 | 0.9126 | 52 | 0.1875 | 0.4286 | 0.2609 | 7 | 0.7973 | 0.9077 | 0.8489 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.7511 | 0.8641 | 0.8036 | 206 | 0.78 | 0.9070 | 0.8387 | 43 | 0.7361 | 0.8747 | 0.7994 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.6569 | 0.9306 | 0.7701 | 144 | 0.9253 | 0.9415 | 0.9333 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.9146 | 0.9667 | 0.9400 | 421 | 0.6308 | 0.8367 | 0.7193 | 49 | 0.8121 | 0.9857 | 0.8905 | 491 | 0.0833 | 0.1818 | 0.1143 | 11 | 0.7679 | 0.9025 | 0.8298 | 0.9793 |
| 0.0797 | 1.12 | 15000 | 0.0851 | 0.9057 | 0.9231 | 0.9143 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7294 | 0.9538 | 0.8267 | 65 | 0.5 | 0.5714 | 0.5333 | 7 | 0.7909 | 0.8447 | 0.8169 | 206 | 0.8125 | 0.9070 | 0.8571 | 43 | 0.8104 | 0.8432 | 0.8265 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7 | 0.8264 | 0.7580 | 144 | 0.8804 | 0.9474 | 0.9127 | 171 | 0.2222 | 0.6667 | 0.3333 | 3 | 0.8834 | 0.9359 | 0.9089 | 421 | 0.5056 | 0.9184 | 0.6522 | 49 | 0.8436 | 0.9776 | 0.9057 | 491 | 0.0625 | 0.0909 | 0.0741 | 11 | 0.8077 | 0.8794 | 0.8420 | 0.9793 |
| 0.0544 | 1.16 | 15500 | 0.0905 | 0.7 | 0.9423 | 0.8033 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6421 | 0.9385 | 0.7625 | 65 | 0.25 | 0.2857 | 0.2667 | 7 | 0.8018 | 0.8447 | 0.8227 | 206 | 0.7273 | 0.9302 | 0.8163 | 43 | 0.7642 | 0.8571 | 0.8080 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8098 | 0.9167 | 0.8599 | 144 | 0.9261 | 0.9532 | 0.9395 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.6976 | 0.9810 | 0.8154 | 421 | 0.6066 | 0.7551 | 0.6727 | 49 | 0.8948 | 0.9878 | 0.9390 | 491 | 0.3636 | 0.3636 | 0.3636 | 11 | 0.7664 | 0.8953 | 0.8259 | 0.9793 |
| 0.0815 | 1.2 | 16000 | 0.0799 | 0.9804 | 0.9615 | 0.9709 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6593 | 0.9231 | 0.7692 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.825 | 0.8010 | 0.8128 | 206 | 0.6667 | 0.9302 | 0.7767 | 43 | 0.7140 | 0.8523 | 0.7770 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7016 | 0.9306 | 0.8000 | 144 | 0.9096 | 0.9415 | 0.9253 | 171 | 0.3 | 1.0 | 0.4615 | 3 | 0.7203 | 0.9359 | 0.8140 | 421 | 0.3193 | 0.7755 | 0.4524 | 49 | 0.8548 | 0.9470 | 0.8986 | 491 | 0.5 | 0.4545 | 0.4762 | 11 | 0.7339 | 0.8794 | 0.8001 | 0.9780 |
| 0.0647 | 1.24 | 16500 | 0.0739 | 0.8889 | 0.9231 | 0.9057 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7692 | 0.9231 | 0.8392 | 65 | 0.0 | 0.0 | 0.0 | 7 | 0.8077 | 0.8155 | 0.8116 | 206 | 0.8 | 0.9302 | 0.8602 | 43 | 0.7750 | 0.8717 | 0.8205 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8467 | 0.8819 | 0.8639 | 144 | 0.92 | 0.9415 | 0.9306 | 171 | 0.0682 | 1.0 | 0.1277 | 3 | 0.8515 | 0.9810 | 0.9117 | 421 | 0.9318 | 0.8367 | 0.8817 | 49 | 0.9120 | 0.9919 | 0.9502 | 491 | 0.1875 | 0.2727 | 0.2222 | 11 | 0.8066 | 0.8998 | 0.8507 | 0.9820 |
| 0.0532 | 1.27 | 17000 | 0.0870 | 0.8491 | 0.8654 | 0.8571 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8657 | 0.8923 | 0.8788 | 65 | 0.5714 | 0.5714 | 0.5714 | 7 | 0.7404 | 0.8447 | 0.7891 | 206 | 0.8163 | 0.9302 | 0.8696 | 43 | 0.8296 | 0.8547 | 0.8420 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8217 | 0.8958 | 0.8571 | 144 | 0.8931 | 0.8304 | 0.8606 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8369 | 0.9382 | 0.8847 | 421 | 0.9574 | 0.9184 | 0.9375 | 49 | 0.9026 | 0.9817 | 0.9405 | 491 | 0.5714 | 0.3636 | 0.4444 | 11 | 0.8367 | 0.8815 | 0.8585 | 0.9810 |
| 0.0673 | 1.31 | 17500 | 0.0851 | 0.8929 | 0.9615 | 0.9259 | 52 | 0.5714 | 0.5714 | 0.5714 | 7 | 0.7024 | 0.9077 | 0.7919 | 65 | 0.4 | 0.2857 | 0.3333 | 7 | 0.7817 | 0.8689 | 0.8230 | 206 | 0.7959 | 0.9070 | 0.8478 | 43 | 0.8198 | 0.8511 | 0.8352 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7738 | 0.9028 | 0.8333 | 144 | 0.9162 | 0.9591 | 0.9371 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8655 | 0.9786 | 0.9186 | 421 | 0.775 | 0.6327 | 0.6966 | 49 | 0.8377 | 0.9776 | 0.9023 | 491 | 0.2143 | 0.2727 | 0.2400 | 11 | 0.8231 | 0.8902 | 0.8553 | 0.9816 |
| 0.0715 | 1.35 | 18000 | 0.0821 | 0.8868 | 0.9038 | 0.8952 | 52 | 0.1 | 1.0 | 0.1818 | 7 | 0.6778 | 0.9385 | 0.7871 | 65 | 0.8 | 0.5714 | 0.6667 | 7 | 0.7653 | 0.7913 | 0.7780 | 206 | 0.78 | 0.9070 | 0.8387 | 43 | 0.7410 | 0.8989 | 0.8124 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7458 | 0.9167 | 0.8224 | 144 | 0.8713 | 0.8713 | 0.8713 | 171 | 0.2727 | 1.0 | 0.4286 | 3 | 0.8008 | 0.9644 | 0.875 | 421 | 0.4333 | 0.7959 | 0.5612 | 49 | 0.8920 | 0.9756 | 0.9319 | 491 | 0.8333 | 0.4545 | 0.5882 | 11 | 0.7578 | 0.9082 | 0.8262 | 0.9793 |
| 0.0778 | 1.39 | 18500 | 0.0661 | 0.9074 | 0.9423 | 0.9245 | 52 | 0.0714 | 0.1429 | 0.0952 | 7 | 0.8 | 0.9231 | 0.8571 | 65 | 1.0 | 0.2857 | 0.4444 | 7 | 0.8757 | 0.7864 | 0.8286 | 206 | 0.7547 | 0.9302 | 0.8333 | 43 | 0.7831 | 0.8674 | 0.8231 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8323 | 0.9306 | 0.8787 | 144 | 0.8859 | 0.9532 | 0.9183 | 171 | 0.1875 | 1.0 | 0.3158 | 3 | 0.9138 | 0.9572 | 0.9350 | 421 | 0.7963 | 0.8776 | 0.8350 | 49 | 0.8544 | 0.9919 | 0.9180 | 491 | 0.2 | 0.1818 | 0.1905 | 11 | 0.8172 | 0.8971 | 0.8553 | 0.9829 |
| 0.0672 | 1.42 | 19000 | 0.0841 | 0.6538 | 0.9808 | 0.7846 | 52 | 0.2593 | 1.0 | 0.4118 | 7 | 0.6703 | 0.9385 | 0.7821 | 65 | 0.4 | 0.2857 | 0.3333 | 7 | 0.8162 | 0.7330 | 0.7724 | 206 | 0.8696 | 0.9302 | 0.8989 | 43 | 0.7510 | 0.8747 | 0.8082 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7432 | 0.9444 | 0.8318 | 144 | 0.8477 | 0.9766 | 0.9076 | 171 | 0.1579 | 1.0 | 0.2727 | 3 | 0.8103 | 0.9739 | 0.8846 | 421 | 0.6327 | 0.6327 | 0.6327 | 49 | 0.7970 | 0.9674 | 0.8740 | 491 | 0.1190 | 0.4545 | 0.1887 | 11 | 0.7558 | 0.8977 | 0.8207 | 0.9787 |
| 0.0802 | 1.46 | 19500 | 0.0682 | 0.8276 | 0.9231 | 0.8727 | 52 | 0.4615 | 0.8571 | 0.6 | 7 | 0.7468 | 0.9077 | 0.8194 | 65 | 0.3333 | 0.2857 | 0.3077 | 7 | 0.7621 | 0.8398 | 0.7991 | 206 | 0.9091 | 0.9302 | 0.9195 | 43 | 0.7958 | 0.8801 | 0.8359 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7735 | 0.9722 | 0.8615 | 144 | 0.9357 | 0.9357 | 0.9357 | 171 | 0.3333 | 1.0 | 0.5 | 3 | 0.8385 | 0.9620 | 0.8960 | 421 | 0.5556 | 0.9184 | 0.6923 | 49 | 0.8845 | 0.9674 | 0.9241 | 491 | 0.2778 | 0.4545 | 0.3448 | 11 | 0.8074 | 0.9070 | 0.8543 | 0.9819 |
| 0.0886 | 1.5 | 20000 | 0.0633 | 0.9259 | 0.9615 | 0.9434 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7568 | 0.8615 | 0.8058 | 65 | 0.5714 | 0.5714 | 0.5714 | 7 | 0.8980 | 0.8544 | 0.8756 | 206 | 0.9302 | 0.9302 | 0.9302 | 43 | 0.8470 | 0.8916 | 0.8688 | 1652 | 0.25 | 1.0 | 0.4 | 2 | 0.8373 | 0.9653 | 0.8968 | 144 | 0.9032 | 0.9825 | 0.9412 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.9044 | 0.9667 | 0.9346 | 421 | 0.7931 | 0.9388 | 0.8598 | 49 | 0.8342 | 0.9939 | 0.9071 | 491 | 0.1053 | 0.3636 | 0.1633 | 11 | 0.8471 | 0.9185 | 0.8814 | 0.9833 |
| 0.0525 | 1.54 | 20500 | 0.0632 | 0.8197 | 0.9615 | 0.8850 | 52 | 0.7 | 1.0 | 0.8235 | 7 | 0.6742 | 0.9231 | 0.7792 | 65 | 0.4444 | 0.5714 | 0.5 | 7 | 0.7819 | 0.9223 | 0.8463 | 206 | 0.6721 | 0.9535 | 0.7885 | 43 | 0.8220 | 0.8723 | 0.8464 | 1652 | 0.0909 | 0.5 | 0.1538 | 2 | 0.7812 | 0.8681 | 0.8224 | 144 | 0.9180 | 0.9825 | 0.9492 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8838 | 0.9572 | 0.9190 | 421 | 0.5 | 0.9592 | 0.6573 | 49 | 0.8173 | 0.9837 | 0.8928 | 491 | 0.25 | 0.3636 | 0.2963 | 11 | 0.8092 | 0.9097 | 0.8565 | 0.9828 |
| 0.0664 | 1.57 | 21000 | 0.0671 | 0.8197 | 0.9615 | 0.8850 | 52 | 0.5385 | 1.0 | 0.7000 | 7 | 0.6778 | 0.9385 | 0.7871 | 65 | 0.375 | 0.4286 | 0.4000 | 7 | 0.7932 | 0.9126 | 0.8488 | 206 | 0.72 | 0.8372 | 0.7742 | 43 | 0.7546 | 0.8935 | 0.8182 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7571 | 0.9306 | 0.8349 | 144 | 0.8777 | 0.9649 | 0.9192 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8867 | 0.9667 | 0.9250 | 421 | 0.8846 | 0.9388 | 0.9109 | 49 | 0.8199 | 0.9919 | 0.8977 | 491 | 0.3333 | 0.4545 | 0.3846 | 11 | 0.7829 | 0.9221 | 0.8468 | 0.9830 |
| 0.0524 | 1.61 | 21500 | 0.0674 | 0.8305 | 0.9423 | 0.8829 | 52 | 0.5833 | 1.0 | 0.7368 | 7 | 0.7763 | 0.9077 | 0.8369 | 65 | 0.375 | 0.4286 | 0.4000 | 7 | 0.8889 | 0.8544 | 0.8713 | 206 | 0.7692 | 0.9302 | 0.8421 | 43 | 0.8235 | 0.8838 | 0.8526 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9041 | 0.9167 | 0.9103 | 144 | 0.9527 | 0.9415 | 0.9471 | 171 | 0.4286 | 1.0 | 0.6 | 3 | 0.9470 | 0.9762 | 0.9614 | 421 | 0.7857 | 0.8980 | 0.8381 | 49 | 0.8857 | 0.9939 | 0.9367 | 491 | 0.5 | 0.4545 | 0.4762 | 11 | 0.8555 | 0.9140 | 0.8838 | 0.9844 |
| 0.0603 | 1.65 | 22000 | 0.0735 | 0.7812 | 0.9615 | 0.8621 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.9206 | 0.8923 | 0.9062 | 65 | 0.8 | 0.5714 | 0.6667 | 7 | 0.8062 | 0.8883 | 0.8453 | 206 | 0.6721 | 0.9535 | 0.7885 | 43 | 0.8402 | 0.8051 | 0.8223 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8036 | 0.9375 | 0.8654 | 144 | 0.9167 | 0.9649 | 0.9402 | 171 | 0.3 | 1.0 | 0.4615 | 3 | 0.9249 | 0.9359 | 0.9303 | 421 | 0.7077 | 0.9388 | 0.8070 | 49 | 0.9198 | 0.9817 | 0.9498 | 491 | 0.6667 | 0.5455 | 0.6 | 11 | 0.8558 | 0.8715 | 0.8636 | 0.9822 |
| 0.0674 | 1.69 | 22500 | 0.0639 | 0.8103 | 0.9038 | 0.8545 | 52 | 0.2 | 0.2857 | 0.2353 | 7 | 0.7838 | 0.8923 | 0.8345 | 65 | 1.0 | 0.5714 | 0.7273 | 7 | 0.8852 | 0.8981 | 0.8916 | 206 | 0.8163 | 0.9302 | 0.8696 | 43 | 0.8393 | 0.8759 | 0.8572 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8618 | 0.9097 | 0.8851 | 144 | 0.8771 | 0.9181 | 0.8971 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.9400 | 0.9667 | 0.9532 | 421 | 0.9388 | 0.9388 | 0.9388 | 49 | 0.9030 | 0.9857 | 0.9426 | 491 | 0.3846 | 0.4545 | 0.4167 | 11 | 0.8633 | 0.9064 | 0.8844 | 0.9843 |
| 0.0693 | 1.72 | 23000 | 0.0773 | 0.7143 | 0.9615 | 0.8197 | 52 | 0.8571 | 0.8571 | 0.8571 | 7 | 0.8356 | 0.9385 | 0.8841 | 65 | 0.625 | 0.7143 | 0.6667 | 7 | 0.8009 | 0.8786 | 0.8380 | 206 | 0.7119 | 0.9767 | 0.8235 | 43 | 0.7847 | 0.9001 | 0.8385 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7640 | 0.9444 | 0.8447 | 144 | 0.8836 | 0.9766 | 0.9278 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7143 | 0.9501 | 0.8155 | 421 | 0.3780 | 0.9796 | 0.5455 | 49 | 0.8134 | 0.9674 | 0.8837 | 491 | 0.5714 | 0.3636 | 0.4444 | 11 | 0.7688 | 0.9212 | 0.8381 | 0.9808 |
| 0.0383 | 1.76 | 23500 | 0.0667 | 0.6410 | 0.9615 | 0.7692 | 52 | 0.7143 | 0.7143 | 0.7143 | 7 | 0.7692 | 0.9231 | 0.8392 | 65 | 0.8333 | 0.7143 | 0.7692 | 7 | 0.8326 | 0.8689 | 0.8504 | 206 | 0.7636 | 0.9767 | 0.8571 | 43 | 0.8580 | 0.8777 | 0.8677 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8571 | 0.9167 | 0.8859 | 144 | 0.9405 | 0.9240 | 0.9322 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8901 | 0.9810 | 0.9333 | 421 | 0.88 | 0.8980 | 0.8889 | 49 | 0.9112 | 0.9817 | 0.9451 | 491 | 0.3636 | 0.3636 | 0.3636 | 11 | 0.8628 | 0.9097 | 0.8856 | 0.9845 |
| 0.0496 | 1.8 | 24000 | 0.0712 | 0.8 | 0.9231 | 0.8571 | 52 | 0.8571 | 0.8571 | 0.8571 | 7 | 0.7262 | 0.9385 | 0.8188 | 65 | 0.7143 | 0.7143 | 0.7143 | 7 | 0.8390 | 0.8350 | 0.8370 | 206 | 0.8889 | 0.9302 | 0.9091 | 43 | 0.8522 | 0.8692 | 0.8607 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8867 | 0.9236 | 0.9048 | 144 | 0.9598 | 0.9766 | 0.9681 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8963 | 0.9857 | 0.9389 | 421 | 0.7015 | 0.9592 | 0.8103 | 49 | 0.9412 | 0.9776 | 0.9590 | 491 | 0.25 | 0.5455 | 0.3429 | 11 | 0.8659 | 0.9073 | 0.8861 | 0.9848 |
| 0.0465 | 1.84 | 24500 | 0.0612 | 0.6667 | 0.9615 | 0.7874 | 52 | 0.75 | 0.8571 | 0.8000 | 7 | 0.7625 | 0.9385 | 0.8414 | 65 | 0.7143 | 0.7143 | 0.7143 | 7 | 0.8287 | 0.8689 | 0.8483 | 206 | 0.7407 | 0.9302 | 0.8247 | 43 | 0.8236 | 0.8904 | 0.8557 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.7919 | 0.9514 | 0.8644 | 144 | 0.9326 | 0.9708 | 0.9513 | 171 | 0.0513 | 0.6667 | 0.0952 | 3 | 0.9079 | 0.9834 | 0.9441 | 421 | 0.8958 | 0.8776 | 0.8866 | 49 | 0.9186 | 0.9878 | 0.9519 | 491 | 0.1765 | 0.2727 | 0.2143 | 11 | 0.8355 | 0.9212 | 0.8762 | 0.9853 |
| 0.0446 | 1.87 | 25000 | 0.0662 | 0.6410 | 0.9615 | 0.7692 | 52 | 0.6364 | 1.0 | 0.7778 | 7 | 0.8732 | 0.9538 | 0.9118 | 65 | 0.8333 | 0.7143 | 0.7692 | 7 | 0.9378 | 0.8786 | 0.9073 | 206 | 0.8333 | 0.9302 | 0.8791 | 43 | 0.8362 | 0.8747 | 0.8550 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8447 | 0.9444 | 0.8918 | 144 | 0.9598 | 0.9766 | 0.9681 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.92 | 0.9834 | 0.9506 | 421 | 0.9070 | 0.7959 | 0.8478 | 49 | 0.9186 | 0.9878 | 0.9519 | 491 | 0.3636 | 0.3636 | 0.3636 | 11 | 0.8659 | 0.9131 | 0.8889 | 0.9851 |
| 0.0496 | 1.91 | 25500 | 0.0653 | 0.7612 | 0.9808 | 0.8571 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8472 | 0.9385 | 0.8905 | 65 | 0.5 | 0.5714 | 0.5333 | 7 | 0.9158 | 0.8981 | 0.9069 | 206 | 0.8367 | 0.9535 | 0.8913 | 43 | 0.8487 | 0.8729 | 0.8606 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8889 | 0.9444 | 0.9158 | 144 | 0.9586 | 0.9474 | 0.9529 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.9077 | 0.9810 | 0.9429 | 421 | 0.7895 | 0.9184 | 0.8491 | 49 | 0.9120 | 0.9919 | 0.9502 | 491 | 0.5 | 0.2727 | 0.3529 | 11 | 0.8714 | 0.9137 | 0.8921 | 0.9854 |
| 0.0689 | 1.95 | 26000 | 0.0689 | 0.8596 | 0.9423 | 0.8991 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.7887 | 0.8615 | 0.8235 | 65 | 0.5714 | 0.5714 | 0.5714 | 7 | 0.9064 | 0.8932 | 0.8998 | 206 | 0.8367 | 0.9535 | 0.8913 | 43 | 0.8217 | 0.9122 | 0.8646 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8232 | 0.9375 | 0.8766 | 144 | 0.9222 | 0.9708 | 0.9459 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.8827 | 0.9834 | 0.9303 | 421 | 0.9744 | 0.7755 | 0.8636 | 49 | 0.8574 | 0.9919 | 0.9197 | 491 | 0.4286 | 0.2727 | 0.3333 | 11 | 0.8441 | 0.9299 | 0.8849 | 0.9842 |
| 0.0465 | 1.99 | 26500 | 0.1060 | 0.8136 | 0.9231 | 0.8649 | 52 | 0.5 | 1.0 | 0.6667 | 7 | 0.7778 | 0.8615 | 0.8175 | 65 | 0.7143 | 0.7143 | 0.7143 | 7 | 0.8552 | 0.9175 | 0.8852 | 206 | 0.82 | 0.9535 | 0.8817 | 43 | 0.8698 | 0.8977 | 0.8835 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8904 | 0.9028 | 0.8966 | 144 | 0.9643 | 0.9474 | 0.9558 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.7361 | 0.9739 | 0.8384 | 421 | 0.25 | 0.0612 | 0.0984 | 49 | 0.8832 | 0.9552 | 0.9178 | 491 | 0.1 | 0.1818 | 0.1290 | 11 | 0.8384 | 0.9040 | 0.8700 | 0.9796 |
| 0.0448 | 2.02 | 27000 | 0.0686 | 0.7385 | 0.9231 | 0.8205 | 52 | 0.625 | 0.7143 | 0.6667 | 7 | 0.8714 | 0.9385 | 0.9037 | 65 | 0.625 | 0.7143 | 0.6667 | 7 | 0.8545 | 0.9126 | 0.8826 | 206 | 0.6727 | 0.8605 | 0.7551 | 43 | 0.8778 | 0.8959 | 0.8868 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9116 | 0.9306 | 0.9210 | 144 | 0.9538 | 0.9649 | 0.9593 | 171 | 0.0 | 0.0 | 0.0 | 3 | 0.9157 | 0.9549 | 0.9349 | 421 | 0.875 | 0.8571 | 0.8660 | 49 | 0.8855 | 0.9919 | 0.9356 | 491 | 0.4 | 0.3636 | 0.3810 | 11 | 0.8790 | 0.9200 | 0.8990 | 0.9854 |
| 0.0379 | 2.06 | 27500 | 0.0633 | 0.8421 | 0.9231 | 0.8807 | 52 | 0.2308 | 0.4286 | 0.3 | 7 | 0.8824 | 0.9231 | 0.9023 | 65 | 0.4545 | 0.7143 | 0.5556 | 7 | 0.8451 | 0.9272 | 0.8843 | 206 | 0.7037 | 0.8837 | 0.7835 | 43 | 0.8901 | 0.8674 | 0.8786 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8303 | 0.9514 | 0.8867 | 144 | 0.9706 | 0.9649 | 0.9677 | 171 | 0.3333 | 1.0 | 0.5 | 3 | 0.9300 | 0.9786 | 0.9537 | 421 | 0.9149 | 0.8776 | 0.8958 | 49 | 0.8385 | 0.9939 | 0.9096 | 491 | 0.2 | 0.3636 | 0.2581 | 11 | 0.8719 | 0.9116 | 0.8913 | 0.9859 |
| 0.0352 | 2.1 | 28000 | 0.0653 | 0.8772 | 0.9615 | 0.9174 | 52 | 0.5556 | 0.7143 | 0.6250 | 7 | 0.8158 | 0.9538 | 0.8794 | 65 | 0.75 | 0.8571 | 0.8000 | 7 | 0.8733 | 0.9369 | 0.9040 | 206 | 0.8913 | 0.9535 | 0.9213 | 43 | 0.8272 | 0.9128 | 0.8679 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8824 | 0.9375 | 0.9091 | 144 | 0.9706 | 0.9649 | 0.9677 | 171 | 0.375 | 1.0 | 0.5455 | 3 | 0.8790 | 0.9834 | 0.9283 | 421 | 0.9 | 0.9184 | 0.9091 | 49 | 0.8692 | 0.9878 | 0.9247 | 491 | 0.25 | 0.4545 | 0.3226 | 11 | 0.8493 | 0.9377 | 0.8913 | 0.9844 |
| 0.0328 | 2.14 | 28500 | 0.0599 | 0.8772 | 0.9615 | 0.9174 | 52 | 0.7143 | 0.7143 | 0.7143 | 7 | 0.8806 | 0.9077 | 0.8939 | 65 | 0.5556 | 0.7143 | 0.6250 | 7 | 0.8804 | 0.8932 | 0.8867 | 206 | 0.8542 | 0.9535 | 0.9011 | 43 | 0.8680 | 0.9074 | 0.8872 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.85 | 0.9444 | 0.8947 | 144 | 0.9701 | 0.9474 | 0.9586 | 171 | 0.2727 | 1.0 | 0.4286 | 3 | 0.9452 | 0.9834 | 0.9639 | 421 | 0.6714 | 0.9592 | 0.7899 | 49 | 0.8937 | 0.9756 | 0.9328 | 491 | 0.5 | 0.4545 | 0.4762 | 11 | 0.8786 | 0.9293 | 0.9032 | 0.9867 |
| 0.0473 | 2.17 | 29000 | 0.0595 | 0.7692 | 0.9615 | 0.8547 | 52 | 0.2222 | 0.2857 | 0.25 | 7 | 0.8493 | 0.9538 | 0.8986 | 65 | 0.6667 | 0.5714 | 0.6154 | 7 | 0.8889 | 0.9320 | 0.9100 | 206 | 0.8367 | 0.9535 | 0.8913 | 43 | 0.8341 | 0.9189 | 0.8744 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8466 | 0.9583 | 0.8990 | 144 | 0.9711 | 0.9825 | 0.9767 | 171 | 0.2143 | 1.0 | 0.3529 | 3 | 0.9234 | 0.9739 | 0.9480 | 421 | 0.75 | 0.9184 | 0.8257 | 49 | 0.8844 | 0.9817 | 0.9305 | 491 | 0.5556 | 0.4545 | 0.5 | 11 | 0.8557 | 0.9386 | 0.8953 | 0.9855 |
| 0.0511 | 2.21 | 29500 | 0.0668 | 0.6849 | 0.9615 | 0.8000 | 52 | 0.1522 | 1.0 | 0.2642 | 7 | 0.7561 | 0.9538 | 0.8435 | 65 | 0.75 | 0.8571 | 0.8000 | 7 | 0.8761 | 0.9272 | 0.9009 | 206 | 0.8039 | 0.9535 | 0.8723 | 43 | 0.8154 | 0.9195 | 0.8643 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8491 | 0.9375 | 0.8911 | 144 | 0.9709 | 0.9766 | 0.9738 | 171 | 0.2727 | 1.0 | 0.4286 | 3 | 0.8939 | 0.9810 | 0.9354 | 421 | 0.5789 | 0.8980 | 0.704 | 49 | 0.8403 | 0.9857 | 0.9072 | 491 | 0.5 | 0.4545 | 0.4762 | 11 | 0.8214 | 0.9407 | 0.8770 | 0.9845 |
| 0.0369 | 2.25 | 30000 | 0.0695 | 0.6579 | 0.9615 | 0.7812 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8732 | 0.9538 | 0.9118 | 65 | 0.625 | 0.7143 | 0.6667 | 7 | 0.9154 | 0.8932 | 0.9042 | 206 | 0.9535 | 0.9535 | 0.9535 | 43 | 0.8883 | 0.9001 | 0.8942 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9013 | 0.9514 | 0.9257 | 144 | 0.9527 | 0.9415 | 0.9471 | 171 | 0.375 | 1.0 | 0.5455 | 3 | 0.9126 | 0.9430 | 0.9276 | 421 | 0.5104 | 1.0 | 0.6759 | 49 | 0.9286 | 0.9796 | 0.9534 | 491 | 0.3571 | 0.4545 | 0.4 | 11 | 0.8837 | 0.9233 | 0.9030 | 0.9854 |
| 0.041 | 2.29 | 30500 | 0.0623 | 0.9091 | 0.9615 | 0.9346 | 52 | 0.4375 | 1.0 | 0.6087 | 7 | 0.8378 | 0.9538 | 0.8921 | 65 | 0.75 | 0.8571 | 0.8000 | 7 | 0.9061 | 0.9369 | 0.9212 | 206 | 0.8723 | 0.9535 | 0.9111 | 43 | 0.8486 | 0.9225 | 0.8840 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8940 | 0.9375 | 0.9153 | 144 | 0.9708 | 0.9708 | 0.9708 | 171 | 1.0 | 1.0 | 1.0 | 3 | 0.9556 | 0.9715 | 0.9635 | 421 | 0.7705 | 0.9592 | 0.8545 | 49 | 0.9310 | 0.9898 | 0.9595 | 491 | 0.3333 | 0.4545 | 0.3846 | 11 | 0.8803 | 0.9428 | 0.9105 | 0.9853 |
| 0.0385 | 2.32 | 31000 | 0.0632 | 0.9091 | 0.9615 | 0.9346 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.7848 | 0.9538 | 0.8611 | 65 | 0.5556 | 0.7143 | 0.6250 | 7 | 0.8915 | 0.9175 | 0.9043 | 206 | 0.9111 | 0.9535 | 0.9318 | 43 | 0.8486 | 0.9092 | 0.8778 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8961 | 0.9583 | 0.9262 | 144 | 0.9709 | 0.9766 | 0.9738 | 171 | 1.0 | 1.0 | 1.0 | 3 | 0.9180 | 0.9834 | 0.9495 | 421 | 0.8478 | 0.7959 | 0.8211 | 49 | 0.8959 | 0.9817 | 0.9368 | 491 | 0.3125 | 0.4545 | 0.3704 | 11 | 0.8724 | 0.9338 | 0.9021 | 0.9849 |
| 0.0415 | 2.36 | 31500 | 0.0647 | 0.8929 | 0.9615 | 0.9259 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8493 | 0.9538 | 0.8986 | 65 | 0.75 | 0.8571 | 0.8000 | 7 | 0.9363 | 0.9272 | 0.9317 | 206 | 0.875 | 0.9767 | 0.9231 | 43 | 0.8679 | 0.9025 | 0.8849 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8726 | 0.9514 | 0.9103 | 144 | 0.9429 | 0.9649 | 0.9538 | 171 | 0.3 | 1.0 | 0.4615 | 3 | 0.9154 | 0.9762 | 0.9448 | 421 | 0.7719 | 0.8980 | 0.8302 | 49 | 0.9067 | 0.9898 | 0.9464 | 491 | 0.1579 | 0.5455 | 0.2449 | 11 | 0.8767 | 0.9329 | 0.9039 | 0.9847 |
| 0.0454 | 2.4 | 32000 | 0.0606 | 0.9091 | 0.9615 | 0.9346 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8971 | 0.9385 | 0.9173 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.9139 | 0.9272 | 0.9205 | 206 | 0.8542 | 0.9535 | 0.9011 | 43 | 0.8652 | 0.9056 | 0.8849 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9122 | 0.9375 | 0.9247 | 144 | 0.9483 | 0.9649 | 0.9565 | 171 | 0.3 | 1.0 | 0.4615 | 3 | 0.9321 | 0.9786 | 0.9548 | 421 | 0.8136 | 0.9796 | 0.8889 | 49 | 0.9455 | 0.9898 | 0.9672 | 491 | 0.2143 | 0.5455 | 0.3077 | 11 | 0.888 | 0.9350 | 0.9109 | 0.9869 |
| 0.0334 | 2.44 | 32500 | 0.0610 | 0.8929 | 0.9615 | 0.9259 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8714 | 0.9385 | 0.9037 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.8977 | 0.9369 | 0.9169 | 206 | 0.9130 | 0.9767 | 0.9438 | 43 | 0.8463 | 0.9068 | 0.8755 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9007 | 0.9444 | 0.9220 | 144 | 0.9532 | 0.9532 | 0.9532 | 171 | 0.375 | 1.0 | 0.5455 | 3 | 0.9536 | 0.9762 | 0.9648 | 421 | 0.8545 | 0.9592 | 0.9038 | 49 | 0.9419 | 0.9898 | 0.9652 | 491 | 0.25 | 0.5455 | 0.3429 | 11 | 0.8813 | 0.9356 | 0.9076 | 0.9867 |
| 0.0453 | 2.47 | 33000 | 0.0610 | 0.8929 | 0.9615 | 0.9259 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8732 | 0.9538 | 0.9118 | 65 | 0.5556 | 0.7143 | 0.6250 | 7 | 0.9057 | 0.9320 | 0.9187 | 206 | 0.9302 | 0.9302 | 0.9302 | 43 | 0.8668 | 0.9098 | 0.8878 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8882 | 0.9375 | 0.9122 | 144 | 0.9588 | 0.9532 | 0.9560 | 171 | 0.375 | 1.0 | 0.5455 | 3 | 0.9303 | 0.9834 | 0.9561 | 421 | 1.0 | 0.8980 | 0.9462 | 49 | 0.9455 | 0.9898 | 0.9672 | 491 | 0.7143 | 0.4545 | 0.5556 | 11 | 0.8952 | 0.9353 | 0.9148 | 0.9875 |
| 0.0225 | 2.51 | 33500 | 0.0607 | 0.9259 | 0.9615 | 0.9434 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.7949 | 0.9538 | 0.8671 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.8733 | 0.9369 | 0.9040 | 206 | 0.8696 | 0.9302 | 0.8989 | 43 | 0.8641 | 0.9007 | 0.8820 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8616 | 0.9514 | 0.9043 | 144 | 0.9412 | 0.9357 | 0.9384 | 171 | 0.3333 | 1.0 | 0.5 | 3 | 0.9281 | 0.9810 | 0.9538 | 421 | 0.8868 | 0.9592 | 0.9216 | 49 | 0.9365 | 0.9919 | 0.9634 | 491 | 0.4545 | 0.4545 | 0.4545 | 11 | 0.8844 | 0.9323 | 0.9077 | 0.9876 |
| 0.0276 | 2.55 | 34000 | 0.0603 | 0.8909 | 0.9423 | 0.9159 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.775 | 0.9538 | 0.8552 | 65 | 0.6667 | 0.8571 | 0.75 | 7 | 0.8894 | 0.9369 | 0.9125 | 206 | 0.9111 | 0.9535 | 0.9318 | 43 | 0.8661 | 0.9201 | 0.8923 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8688 | 0.9653 | 0.9145 | 144 | 0.9649 | 0.9649 | 0.9649 | 171 | 0.1667 | 1.0 | 0.2857 | 3 | 0.9649 | 0.9786 | 0.9717 | 421 | 0.9020 | 0.9388 | 0.92 | 49 | 0.9222 | 0.9898 | 0.9548 | 491 | 0.4545 | 0.4545 | 0.4545 | 11 | 0.8868 | 0.9428 | 0.9140 | 0.9877 |
| 0.0291 | 2.59 | 34500 | 0.0605 | 0.9074 | 0.9423 | 0.9245 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8378 | 0.9538 | 0.8921 | 65 | 0.75 | 0.8571 | 0.8000 | 7 | 0.9091 | 0.9223 | 0.9157 | 206 | 0.9524 | 0.9302 | 0.9412 | 43 | 0.8707 | 0.9213 | 0.8953 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8947 | 0.9444 | 0.9189 | 144 | 0.9758 | 0.9415 | 0.9583 | 171 | 0.25 | 1.0 | 0.4 | 3 | 0.9448 | 0.9762 | 0.9603 | 421 | 0.9787 | 0.9388 | 0.9583 | 49 | 0.8952 | 0.9919 | 0.9411 | 491 | 0.2632 | 0.4545 | 0.3333 | 11 | 0.8885 | 0.9401 | 0.9136 | 0.9881 |
| 0.0264 | 2.62 | 35000 | 0.0616 | 0.9074 | 0.9423 | 0.9245 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8493 | 0.9538 | 0.8986 | 65 | 0.75 | 0.8571 | 0.8000 | 7 | 0.9019 | 0.9369 | 0.9190 | 206 | 0.8913 | 0.9535 | 0.9213 | 43 | 0.8694 | 0.9310 | 0.8992 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8782 | 0.9514 | 0.9133 | 144 | 0.9422 | 0.9532 | 0.9477 | 171 | 0.25 | 1.0 | 0.4 | 3 | 0.9258 | 0.9786 | 0.9515 | 421 | 0.8679 | 0.9388 | 0.9020 | 49 | 0.9272 | 0.9857 | 0.9556 | 491 | 0.1852 | 0.4545 | 0.2632 | 11 | 0.8837 | 0.9465 | 0.9140 | 0.9875 |
| 0.0343 | 2.66 | 35500 | 0.0595 | 0.7083 | 0.9808 | 0.8226 | 52 | 0.6667 | 0.8571 | 0.75 | 7 | 0.7949 | 0.9538 | 0.8671 | 65 | 0.7143 | 0.7143 | 0.7143 | 7 | 0.8858 | 0.9417 | 0.9129 | 206 | 0.9091 | 0.9302 | 0.9195 | 43 | 0.8556 | 0.9110 | 0.8824 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8616 | 0.9514 | 0.9043 | 144 | 0.9270 | 0.9649 | 0.9456 | 171 | 1.0 | 1.0 | 1.0 | 3 | 0.9388 | 0.9834 | 0.9606 | 421 | 0.8868 | 0.9592 | 0.9216 | 49 | 0.8919 | 0.9919 | 0.9392 | 491 | 0.625 | 0.4545 | 0.5263 | 11 | 0.8728 | 0.9389 | 0.9046 | 0.9871 |
| 0.0284 | 2.7 | 36000 | 0.0569 | 0.9074 | 0.9423 | 0.9245 | 52 | 0.5385 | 1.0 | 0.7000 | 7 | 0.8052 | 0.9538 | 0.8732 | 65 | 0.5556 | 0.7143 | 0.6250 | 7 | 0.9143 | 0.9320 | 0.9231 | 206 | 0.9070 | 0.9070 | 0.9070 | 43 | 0.8724 | 0.9189 | 0.8950 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9145 | 0.9653 | 0.9392 | 144 | 0.9540 | 0.9708 | 0.9623 | 171 | 0.15 | 1.0 | 0.2609 | 3 | 0.9605 | 0.9810 | 0.9706 | 421 | 0.8364 | 0.9388 | 0.8846 | 49 | 0.8907 | 0.9959 | 0.9404 | 491 | 0.625 | 0.4545 | 0.5263 | 11 | 0.8865 | 0.9425 | 0.9137 | 0.9878 |
| 0.0377 | 2.74 | 36500 | 0.0554 | 0.7083 | 0.9808 | 0.8226 | 52 | 0.5833 | 1.0 | 0.7368 | 7 | 0.7654 | 0.9538 | 0.8493 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.8981 | 0.9417 | 0.9194 | 206 | 0.9091 | 0.9302 | 0.9195 | 43 | 0.8700 | 0.9237 | 0.8961 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9205 | 0.9653 | 0.9424 | 144 | 0.9540 | 0.9708 | 0.9623 | 171 | 0.25 | 1.0 | 0.4 | 3 | 0.9063 | 0.9881 | 0.9455 | 421 | 0.9020 | 0.9388 | 0.92 | 49 | 0.8825 | 0.9939 | 0.9349 | 491 | 0.4545 | 0.4545 | 0.4545 | 11 | 0.8755 | 0.9477 | 0.9101 | 0.9883 |
| 0.0316 | 2.77 | 37000 | 0.0562 | 0.6711 | 0.9808 | 0.7969 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8052 | 0.9538 | 0.8732 | 65 | 0.6667 | 0.8571 | 0.75 | 7 | 0.9143 | 0.9320 | 0.9231 | 206 | 0.9524 | 0.9302 | 0.9412 | 43 | 0.8721 | 0.9243 | 0.8974 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.9026 | 0.9653 | 0.9329 | 144 | 0.9653 | 0.9766 | 0.9709 | 171 | 0.2143 | 1.0 | 0.3529 | 3 | 0.9202 | 0.9857 | 0.9518 | 421 | 0.8070 | 0.9388 | 0.8679 | 49 | 0.8954 | 0.9939 | 0.9421 | 491 | 0.5 | 0.4545 | 0.4762 | 11 | 0.8801 | 0.9471 | 0.9123 | 0.9885 |
| 0.0454 | 2.81 | 37500 | 0.0555 | 0.8333 | 0.9615 | 0.8929 | 52 | 0.5 | 1.0 | 0.6667 | 7 | 0.8052 | 0.9538 | 0.8732 | 65 | 0.6667 | 0.8571 | 0.75 | 7 | 0.9023 | 0.9417 | 0.9216 | 206 | 0.8696 | 0.9302 | 0.8989 | 43 | 0.8782 | 0.9249 | 0.9009 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8642 | 0.9722 | 0.9150 | 144 | 0.9337 | 0.9883 | 0.9602 | 171 | 0.2143 | 1.0 | 0.3529 | 3 | 0.9498 | 0.9881 | 0.9686 | 421 | 0.94 | 0.9592 | 0.9495 | 49 | 0.8954 | 0.9939 | 0.9421 | 491 | 0.3125 | 0.4545 | 0.3704 | 11 | 0.8845 | 0.9492 | 0.9157 | 0.9881 |
| 0.0445 | 2.85 | 38000 | 0.0521 | 0.8889 | 0.9231 | 0.9057 | 52 | 0.5385 | 1.0 | 0.7000 | 7 | 0.8493 | 0.9538 | 0.8986 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.9019 | 0.9369 | 0.9190 | 206 | 0.8511 | 0.9302 | 0.8889 | 43 | 0.8769 | 0.9183 | 0.8971 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8797 | 0.9653 | 0.9205 | 144 | 0.9767 | 0.9825 | 0.9796 | 171 | 0.25 | 1.0 | 0.4 | 3 | 0.9243 | 0.9857 | 0.9540 | 421 | 0.8103 | 0.9592 | 0.8785 | 49 | 0.8954 | 0.9939 | 0.9421 | 491 | 0.3125 | 0.4545 | 0.3704 | 11 | 0.8845 | 0.9443 | 0.9134 | 0.9884 |
| 0.0379 | 2.89 | 38500 | 0.0524 | 0.8727 | 0.9231 | 0.8972 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8611 | 0.9538 | 0.9051 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.9147 | 0.9369 | 0.9257 | 206 | 0.8696 | 0.9302 | 0.8989 | 43 | 0.8903 | 0.9183 | 0.9041 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8742 | 0.9653 | 0.9175 | 144 | 0.9711 | 0.9825 | 0.9767 | 171 | 0.2308 | 1.0 | 0.375 | 3 | 0.9101 | 0.9857 | 0.9464 | 421 | 0.8214 | 0.9388 | 0.8762 | 49 | 0.9067 | 0.9898 | 0.9464 | 491 | 0.3571 | 0.4545 | 0.4 | 11 | 0.8932 | 0.9434 | 0.9176 | 0.9885 |
| 0.0372 | 2.92 | 39000 | 0.0514 | 0.8889 | 0.9231 | 0.9057 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8378 | 0.9538 | 0.8921 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.9279 | 0.9369 | 0.9324 | 206 | 0.8333 | 0.9302 | 0.8791 | 43 | 0.8857 | 0.9195 | 0.9023 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8910 | 0.9653 | 0.9267 | 144 | 0.9767 | 0.9825 | 0.9796 | 171 | 0.3333 | 1.0 | 0.5 | 3 | 0.9141 | 0.9857 | 0.9486 | 421 | 0.8545 | 0.9592 | 0.9038 | 49 | 0.9120 | 0.9919 | 0.9502 | 491 | 0.3333 | 0.4545 | 0.3846 | 11 | 0.8946 | 0.9446 | 0.9189 | 0.9886 |
| 0.0263 | 2.96 | 39500 | 0.0515 | 0.8889 | 0.9231 | 0.9057 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8378 | 0.9538 | 0.8921 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.9190 | 0.9369 | 0.9279 | 206 | 0.8511 | 0.9302 | 0.8889 | 43 | 0.8868 | 0.9201 | 0.9031 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8910 | 0.9653 | 0.9267 | 144 | 0.9825 | 0.9825 | 0.9825 | 171 | 0.3 | 1.0 | 0.4615 | 3 | 0.9326 | 0.9857 | 0.9584 | 421 | 0.8868 | 0.9592 | 0.9216 | 49 | 0.9137 | 0.9919 | 0.9512 | 491 | 0.3571 | 0.4545 | 0.4 | 11 | 0.8982 | 0.9449 | 0.9210 | 0.9885 |
| 0.0242 | 3.0 | 40000 | 0.0518 | 0.8889 | 0.9231 | 0.9057 | 52 | 0.875 | 1.0 | 0.9333 | 7 | 0.8267 | 0.9538 | 0.8857 | 65 | 0.875 | 1.0 | 0.9333 | 7 | 0.9190 | 0.9369 | 0.9279 | 206 | 0.8696 | 0.9302 | 0.8989 | 43 | 0.8827 | 0.9201 | 0.9010 | 1652 | 0.0 | 0.0 | 0.0 | 2 | 0.8688 | 0.9653 | 0.9145 | 144 | 0.9825 | 0.9825 | 0.9825 | 171 | 0.2727 | 1.0 | 0.4286 | 3 | 0.9220 | 0.9834 | 0.9517 | 421 | 0.9038 | 0.9592 | 0.9307 | 49 | 0.9086 | 0.9919 | 0.9484 | 491 | 0.3846 | 0.4545 | 0.4167 | 11 | 0.8933 | 0.9446 | 0.9183 | 0.9885 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
pig4431/Sentiment140_ALBERT_5E
|
pig4431
| 2022-11-07T07:45:04Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:sentiment140",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T07:44:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- sentiment140
metrics:
- accuracy
model-index:
- name: Sentiment140_ALBERT_5E
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sentiment140
type: sentiment140
config: sentiment140
split: train
args: sentiment140
metrics:
- name: Accuracy
type: accuracy
value: 0.8533333333333334
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sentiment140_ALBERT_5E
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the sentiment140 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6103
- Accuracy: 0.8533
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6713 | 0.08 | 50 | 0.5704 | 0.7333 |
| 0.5742 | 0.16 | 100 | 0.4620 | 0.8 |
| 0.5104 | 0.24 | 150 | 0.5536 | 0.74 |
| 0.5313 | 0.32 | 200 | 0.5198 | 0.76 |
| 0.5023 | 0.4 | 250 | 0.4286 | 0.8 |
| 0.4871 | 0.48 | 300 | 0.4294 | 0.8267 |
| 0.4513 | 0.56 | 350 | 0.4349 | 0.8133 |
| 0.4647 | 0.64 | 400 | 0.4046 | 0.8333 |
| 0.4827 | 0.72 | 450 | 0.4218 | 0.8333 |
| 0.4517 | 0.8 | 500 | 0.4093 | 0.82 |
| 0.4417 | 0.88 | 550 | 0.3999 | 0.84 |
| 0.4701 | 0.96 | 600 | 0.3779 | 0.8867 |
| 0.397 | 1.04 | 650 | 0.3730 | 0.8667 |
| 0.3377 | 1.12 | 700 | 0.3833 | 0.8333 |
| 0.411 | 1.2 | 750 | 0.3704 | 0.84 |
| 0.3796 | 1.28 | 800 | 0.3472 | 0.86 |
| 0.3523 | 1.36 | 850 | 0.3512 | 0.8733 |
| 0.3992 | 1.44 | 900 | 0.3712 | 0.84 |
| 0.3641 | 1.52 | 950 | 0.3718 | 0.82 |
| 0.3973 | 1.6 | 1000 | 0.3508 | 0.84 |
| 0.3576 | 1.68 | 1050 | 0.3600 | 0.86 |
| 0.3701 | 1.76 | 1100 | 0.3287 | 0.8667 |
| 0.3721 | 1.84 | 1150 | 0.3794 | 0.82 |
| 0.3673 | 1.92 | 1200 | 0.3378 | 0.8733 |
| 0.4223 | 2.0 | 1250 | 0.3508 | 0.86 |
| 0.2745 | 2.08 | 1300 | 0.3835 | 0.86 |
| 0.283 | 2.16 | 1350 | 0.3500 | 0.8533 |
| 0.2769 | 2.24 | 1400 | 0.3334 | 0.8733 |
| 0.2491 | 2.32 | 1450 | 0.3519 | 0.8867 |
| 0.3237 | 2.4 | 1500 | 0.3438 | 0.86 |
| 0.2662 | 2.48 | 1550 | 0.3513 | 0.8667 |
| 0.2423 | 2.56 | 1600 | 0.3413 | 0.8867 |
| 0.2655 | 2.64 | 1650 | 0.3126 | 0.8933 |
| 0.2516 | 2.72 | 1700 | 0.3333 | 0.8733 |
| 0.252 | 2.8 | 1750 | 0.3316 | 0.88 |
| 0.2872 | 2.88 | 1800 | 0.3227 | 0.9 |
| 0.306 | 2.96 | 1850 | 0.3383 | 0.8733 |
| 0.248 | 3.04 | 1900 | 0.3474 | 0.8733 |
| 0.1507 | 3.12 | 1950 | 0.4140 | 0.8667 |
| 0.1994 | 3.2 | 2000 | 0.3729 | 0.8533 |
| 0.167 | 3.28 | 2050 | 0.3782 | 0.8867 |
| 0.1872 | 3.36 | 2100 | 0.4352 | 0.8867 |
| 0.1611 | 3.44 | 2150 | 0.4511 | 0.8667 |
| 0.2338 | 3.52 | 2200 | 0.4244 | 0.8533 |
| 0.1538 | 3.6 | 2250 | 0.4226 | 0.8733 |
| 0.1561 | 3.68 | 2300 | 0.4126 | 0.88 |
| 0.2156 | 3.76 | 2350 | 0.4382 | 0.86 |
| 0.1684 | 3.84 | 2400 | 0.4969 | 0.86 |
| 0.1917 | 3.92 | 2450 | 0.4439 | 0.8667 |
| 0.1584 | 4.0 | 2500 | 0.4759 | 0.86 |
| 0.1038 | 4.08 | 2550 | 0.5042 | 0.8667 |
| 0.0983 | 4.16 | 2600 | 0.5527 | 0.8533 |
| 0.1404 | 4.24 | 2650 | 0.5801 | 0.84 |
| 0.0844 | 4.32 | 2700 | 0.5884 | 0.86 |
| 0.1347 | 4.4 | 2750 | 0.5865 | 0.8467 |
| 0.1373 | 4.48 | 2800 | 0.5915 | 0.8533 |
| 0.1506 | 4.56 | 2850 | 0.5976 | 0.8467 |
| 0.1007 | 4.64 | 2900 | 0.6678 | 0.82 |
| 0.1311 | 4.72 | 2950 | 0.6082 | 0.8533 |
| 0.1402 | 4.8 | 3000 | 0.6180 | 0.8467 |
| 0.1363 | 4.88 | 3050 | 0.6107 | 0.8533 |
| 0.0995 | 4.96 | 3100 | 0.6103 | 0.8533 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.1
|
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-sah-ntsema-colab
|
ntsema
| 2022-11-07T07:24:16Z | 132 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:audiofolder",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-07T04:24:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-espeak-cv-ft-sah-ntsema-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.2246858832224686
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-espeak-cv-ft-sah-ntsema-colab
This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2143
- Wer: 0.2247
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.7431 | 5.71 | 400 | 0.2879 | 0.4054 |
| 0.1876 | 11.42 | 800 | 0.2349 | 0.3023 |
| 0.0986 | 17.14 | 1200 | 0.2248 | 0.2701 |
| 0.0737 | 22.85 | 1600 | 0.2242 | 0.2428 |
| 0.0546 | 28.57 | 2000 | 0.2143 | 0.2247 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.14.0.dev20221105+cu116
- Datasets 2.6.1
- Tokenizers 0.13.1
|
tkubotake/xlm-roberta-base-finetuned-panx-en
|
tkubotake
| 2022-11-07T05:12:03Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T03:30:35Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.en
split: train
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.7580275229357799
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [tkubotake/xlm-roberta-base-finetuned-panx-de](https://huggingface.co/tkubotake/xlm-roberta-base-finetuned-panx-de) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5430
- F1: 0.7580
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1318 | 1.0 | 50 | 0.4145 | 0.7557 |
| 0.0589 | 2.0 | 100 | 0.5016 | 0.7524 |
| 0.0314 | 3.0 | 150 | 0.5430 | 0.7580 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
tkubotake/xlm-roberta-base-finetuned-panx-it
|
tkubotake
| 2022-11-07T04:56:08Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T03:14:56Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.it
split: train
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8602239734549979
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [tkubotake/xlm-roberta-base-finetuned-panx-de](https://huggingface.co/tkubotake/xlm-roberta-base-finetuned-panx-de) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2762
- F1: 0.8602
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1073 | 1.0 | 70 | 0.2783 | 0.8554 |
| 0.0728 | 2.0 | 140 | 0.2651 | 0.8605 |
| 0.0409 | 3.0 | 210 | 0.2762 | 0.8602 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
huggingtweets/mhhmmad_
|
huggingtweets
| 2022-11-07T04:41:10Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-07T04:41:03Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355122703036936198/SDlJIKsr_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mohammad Hassan</div>
<div style="text-align: center; font-size: 14px;">@mhhmmad_</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Mohammad Hassan.
| Data | Mohammad Hassan |
| --- | --- |
| Tweets downloaded | 3017 |
| Retweets | 679 |
| Short tweets | 201 |
| Tweets kept | 2137 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wifnwvu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mhhmmad_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23y6lfe2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23y6lfe2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/mhhmmad_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
rymaju/t5-small-finetuned-en-to-regex
|
rymaju
| 2022-11-07T04:31:37Z | 63 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-11-07T01:32:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-en-to-regex
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-en-to-regex
This model is a fine-tuned version of [rymaju/t5-small-finetuned-en-to-regex](https://huggingface.co/rymaju/t5-small-finetuned-en-to-regex) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0032
- Bleu: 12.1984
- Gen Len: 16.7502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.0092 | 1.0 | 6188 | 0.0043 | 12.1984 | 16.7522 |
| 0.0069 | 2.0 | 12376 | 0.0040 | 12.2039 | 16.7502 |
| 0.0056 | 3.0 | 18564 | 0.0034 | 12.2091 | 16.7483 |
| 0.0048 | 4.0 | 24752 | 0.0035 | 12.2103 | 16.7502 |
| 0.0049 | 5.0 | 30940 | 0.0035 | 12.1984 | 16.7502 |
| 0.0046 | 6.0 | 37128 | 0.0033 | 12.1984 | 16.7502 |
| 0.0046 | 7.0 | 43316 | 0.0035 | 12.1984 | 16.7502 |
| 0.0046 | 8.0 | 49504 | 0.0032 | 12.1984 | 16.7502 |
| 0.0042 | 9.0 | 55692 | 0.0032 | 12.1984 | 16.7502 |
| 0.0043 | 10.0 | 61880 | 0.0032 | 12.1984 | 16.7502 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
jrtec/jrtec-gpt2-text-generation-quotes-jonathan-vargas
|
jrtec
| 2022-11-07T04:26:10Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"quotes",
"quote",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-06T03:21:37Z |
---
license: mit
tags:
- text-generation
- quotes
- quote
- generated_from_trainer
model-index:
- name: jrtec-gpt2-text-generation-quotes-jonathan-vargas
results: []
widget:
- text: "life: "
example_title: "Life quote"
- text: "death: "
example_title: "Death quote"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# jrtec-gpt2-text-generation-quotes-jonathan-vargas
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7033
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7463 | 1.71 | 500 | 0.7033 |
| 0.4281 | 3.41 | 1000 | 0.7084 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
Marve271/BartConditionalGeneration-bart-large-finetuned-insult
|
Marve271
| 2022-11-07T04:05:25Z | 182 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-11-06T19:15:18Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: BartConditionalGeneration-bart-large-finetuned-insult
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BartConditionalGeneration-bart-large-finetuned-insult
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.6217 | 1.0 | 568 | 4.5864 |
| 4.7444 | 2.0 | 1136 | nan |
| 4.2308 | 3.0 | 1704 | 3.7590 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
salascorp/categorizacion_comercios_v_0.0.7
|
salascorp
| 2022-11-07T03:24:01Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-07T02:51:40Z |
---
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: categorizacion_comercios_v_0.0.7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# categorizacion_comercios_v_0.0.7
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4673
- Accuracy: 0.9125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.13.0+cpu
- Datasets 2.6.1
- Tokenizers 0.13.1
|
jinhybr/OCR-LayoutLMv3-Invoice
|
jinhybr
| 2022-11-07T02:11:33Z | 113 | 7 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"dataset:wild_receipt",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T01:13:54Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- wild_receipt
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: OCR-LayoutLMv3-Invoice
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wild_receipt
type: wild_receipt
config: WildReceipt
split: train
args: WildReceipt
metrics:
- name: Precision
type: precision
value: 0.8765398302764851
- name: Recall
type: recall
value: 0.8812439796339617
- name: F1
type: f1
value: 0.8788856103753516
- name: Accuracy
type: accuracy
value: 0.92678512668641
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# OCR-LayoutLMv3-Invoice
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wild_receipt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3159
- Precision: 0.8765
- Recall: 0.8812
- F1: 0.8789
- Accuracy: 0.9268
## Model description
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.16 | 100 | 1.5032 | 0.4934 | 0.1444 | 0.2234 | 0.6064 |
| No log | 0.32 | 200 | 1.0282 | 0.5884 | 0.4420 | 0.5048 | 0.7385 |
| No log | 0.47 | 300 | 0.7856 | 0.7448 | 0.6205 | 0.6770 | 0.8133 |
| No log | 0.63 | 400 | 0.6464 | 0.7736 | 0.6689 | 0.7174 | 0.8399 |
| 1.1733 | 0.79 | 500 | 0.5672 | 0.7609 | 0.7303 | 0.7453 | 0.8557 |
| 1.1733 | 0.95 | 600 | 0.5055 | 0.7658 | 0.7652 | 0.7655 | 0.8677 |
| 1.1733 | 1.1 | 700 | 0.4735 | 0.7946 | 0.7848 | 0.7897 | 0.8784 |
| 1.1733 | 1.26 | 800 | 0.4414 | 0.7962 | 0.7946 | 0.7954 | 0.8818 |
| 1.1733 | 1.42 | 900 | 0.4094 | 0.8176 | 0.8064 | 0.8120 | 0.8894 |
| 0.5047 | 1.58 | 1000 | 0.3971 | 0.8219 | 0.8248 | 0.8234 | 0.8961 |
| 0.5047 | 1.74 | 1100 | 0.4082 | 0.7993 | 0.8362 | 0.8174 | 0.8927 |
| 0.5047 | 1.89 | 1200 | 0.3797 | 0.8240 | 0.8317 | 0.8278 | 0.8962 |
| 0.5047 | 2.05 | 1300 | 0.3597 | 0.8326 | 0.8331 | 0.8329 | 0.9020 |
| 0.5047 | 2.21 | 1400 | 0.3544 | 0.8462 | 0.8283 | 0.8371 | 0.9020 |
| 0.368 | 2.37 | 1500 | 0.3374 | 0.8428 | 0.8435 | 0.8432 | 0.9056 |
| 0.368 | 2.52 | 1600 | 0.3364 | 0.8406 | 0.8522 | 0.8464 | 0.9089 |
| 0.368 | 2.68 | 1700 | 0.3404 | 0.8467 | 0.8536 | 0.8501 | 0.9107 |
| 0.368 | 2.84 | 1800 | 0.3319 | 0.8405 | 0.8501 | 0.8453 | 0.9090 |
| 0.368 | 3.0 | 1900 | 0.3324 | 0.8584 | 0.8492 | 0.8538 | 0.9117 |
| 0.2949 | 3.15 | 2000 | 0.3204 | 0.8691 | 0.8404 | 0.8545 | 0.9119 |
| 0.2949 | 3.31 | 2100 | 0.3107 | 0.8599 | 0.8547 | 0.8573 | 0.9162 |
| 0.2949 | 3.47 | 2200 | 0.3169 | 0.8680 | 0.8489 | 0.8584 | 0.9146 |
| 0.2949 | 3.63 | 2300 | 0.3190 | 0.8683 | 0.8519 | 0.8600 | 0.9152 |
| 0.2949 | 3.79 | 2400 | 0.2975 | 0.8631 | 0.8617 | 0.8624 | 0.9182 |
| 0.2438 | 3.94 | 2500 | 0.3040 | 0.8566 | 0.8640 | 0.8603 | 0.9171 |
| 0.2438 | 4.1 | 2600 | 0.3045 | 0.8585 | 0.8642 | 0.8613 | 0.9181 |
| 0.2438 | 4.26 | 2700 | 0.3139 | 0.8498 | 0.8748 | 0.8621 | 0.9160 |
| 0.2438 | 4.42 | 2800 | 0.2985 | 0.8642 | 0.8672 | 0.8657 | 0.9214 |
| 0.2438 | 4.57 | 2900 | 0.3047 | 0.8688 | 0.8694 | 0.8691 | 0.9214 |
| 0.2028 | 4.73 | 3000 | 0.2986 | 0.8686 | 0.8695 | 0.8691 | 0.9207 |
| 0.2028 | 4.89 | 3100 | 0.3135 | 0.8628 | 0.8755 | 0.8691 | 0.9197 |
| 0.2028 | 5.05 | 3200 | 0.2927 | 0.8656 | 0.8755 | 0.8705 | 0.9217 |
| 0.2028 | 5.21 | 3300 | 0.2992 | 0.8724 | 0.8697 | 0.8711 | 0.9228 |
| 0.2028 | 5.36 | 3400 | 0.2975 | 0.8831 | 0.8639 | 0.8734 | 0.9244 |
| 0.1814 | 5.52 | 3500 | 0.2897 | 0.8736 | 0.8788 | 0.8762 | 0.9250 |
| 0.1814 | 5.68 | 3600 | 0.3118 | 0.8674 | 0.8751 | 0.8712 | 0.9216 |
| 0.1814 | 5.84 | 3700 | 0.2974 | 0.8735 | 0.8779 | 0.8757 | 0.9237 |
| 0.1814 | 5.99 | 3800 | 0.2957 | 0.8696 | 0.8815 | 0.8755 | 0.9240 |
| 0.1814 | 6.15 | 3900 | 0.3120 | 0.8698 | 0.8817 | 0.8757 | 0.9250 |
| 0.1602 | 6.31 | 4000 | 0.3080 | 0.8715 | 0.8800 | 0.8757 | 0.9238 |
| 0.1602 | 6.47 | 4100 | 0.3031 | 0.8767 | 0.8788 | 0.8777 | 0.9261 |
| 0.1602 | 6.62 | 4200 | 0.3146 | 0.8699 | 0.8784 | 0.8741 | 0.9227 |
| 0.1602 | 6.78 | 4300 | 0.3085 | 0.8717 | 0.8788 | 0.8752 | 0.9248 |
| 0.1602 | 6.94 | 4400 | 0.3023 | 0.8749 | 0.8756 | 0.8752 | 0.9250 |
| 0.1383 | 7.1 | 4500 | 0.3025 | 0.8860 | 0.8735 | 0.8797 | 0.9252 |
| 0.1383 | 7.26 | 4600 | 0.3026 | 0.8775 | 0.8810 | 0.8792 | 0.9272 |
| 0.1383 | 7.41 | 4700 | 0.3146 | 0.8715 | 0.8832 | 0.8773 | 0.9251 |
| 0.1383 | 7.57 | 4800 | 0.3113 | 0.8769 | 0.8803 | 0.8786 | 0.9275 |
| 0.1383 | 7.73 | 4900 | 0.3073 | 0.8797 | 0.8786 | 0.8792 | 0.9261 |
| 0.1306 | 7.89 | 5000 | 0.3163 | 0.8714 | 0.8828 | 0.8770 | 0.9248 |
| 0.1306 | 8.04 | 5100 | 0.3163 | 0.8753 | 0.8810 | 0.8781 | 0.9250 |
| 0.1306 | 8.2 | 5200 | 0.3132 | 0.8743 | 0.8804 | 0.8773 | 0.9257 |
| 0.1306 | 8.36 | 5300 | 0.3119 | 0.8735 | 0.8837 | 0.8786 | 0.9264 |
| 0.1306 | 8.52 | 5400 | 0.3145 | 0.8826 | 0.8779 | 0.8802 | 0.9272 |
| 0.1174 | 8.68 | 5500 | 0.3166 | 0.8776 | 0.8811 | 0.8794 | 0.9261 |
| 0.1174 | 8.83 | 5600 | 0.3146 | 0.8776 | 0.8814 | 0.8795 | 0.9260 |
| 0.1174 | 8.99 | 5700 | 0.3135 | 0.8763 | 0.8826 | 0.8795 | 0.9271 |
| 0.1174 | 9.15 | 5800 | 0.3154 | 0.8794 | 0.8818 | 0.8806 | 0.9275 |
| 0.1174 | 9.31 | 5900 | 0.3152 | 0.8788 | 0.8817 | 0.8802 | 0.9274 |
| 0.11 | 9.46 | 6000 | 0.3159 | 0.8765 | 0.8812 | 0.8789 | 0.9268 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
huggingtweets/thebuddha_3
|
huggingtweets
| 2022-11-07T00:16:25Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-07T00:16:16Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1421008625095647234/Vfg52xtV_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Buddha</div>
<div style="text-align: center; font-size: 14px;">@thebuddha_3</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Buddha.
| Data | Buddha |
| --- | --- |
| Tweets downloaded | 3200 |
| Retweets | 138 |
| Short tweets | 695 |
| Tweets kept | 2367 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14lqj1g8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thebuddha_3's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rpocant) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rpocant/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/thebuddha_3')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/gleampt2-h3xenbrenner2-kidddozer
|
huggingtweets
| 2022-11-06T23:40:24Z | 97 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-11-06T23:39:09Z |
---
language: en
thumbnail: http://www.huggingtweets.com/gleampt2-h3xenbrenner2-kidddozer/1667778020169/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1396839225249734657/GG6ve7Qv_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1509747695795118080/Vz0be-8x_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1380052646178996227/fmYX0h3D_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">h b & Pepper Boy & gleam</div>
<div style="text-align: center; font-size: 14px;">@gleampt2-h3xenbrenner2-kidddozer</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from h b & Pepper Boy & gleam.
| Data | h b | Pepper Boy | gleam |
| --- | --- | --- | --- |
| Tweets downloaded | 1231 | 2848 | 2305 |
| Retweets | 75 | 690 | 196 |
| Short tweets | 155 | 442 | 170 |
| Tweets kept | 1001 | 1716 | 1939 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/336sqi28/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gleampt2-h3xenbrenner2-kidddozer's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hhg4q0io) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hhg4q0io/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/gleampt2-h3xenbrenner2-kidddozer')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
kaejo98/bart-base_question_generation
|
kaejo98
| 2022-11-06T23:27:56Z | 8 | 4 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-11-01T22:36:20Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base_question_generation
results: []
---
# BART-base Question Generation
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on different questions and answering dataset. It was trained to generation question using two different approaches, <b> Casual-Generation </b> and <b> Context-based-Generation </b>.
## Model description
The model takes context as an input sequence, and will generate a full question sentence as an output sequence. There are two ways the model can be queried produce the questions:
- <b> Casual-Generation </b>: where the model is tasked to generate questions answerable by a given passage. The input should be follow the structure or format: '\<generate_questions\> paragraph: put your passage text here'. <br/>
Example: <br/>
\<generate_questions\> paragraph: The lithosphere is broken into tectonic plates whose motion allows heat to escape from the interior of the Earth into space. The crust lies on top of the mantle, a configuration that is stable because the upper mantle is made of peridotite and is therefore significantly denser than the crust. The boundary between the crust and mantle is conventionally placed at the Mohorovičić discontinuity, a boundary defined by a contrast in seismic velocity.
- <b> Context-based-Generation </b>: given a section of a passage (context), the model is tasked to generate questions from the passage about the selected section or context. The input should be follow the structure or format: \<generate_context_questions\> \<section\> put your context here \</section\> paragraph: put your passage text here'. <br/>
Example: <br/>
\<generate_context_questions\> \<section\> Mohorovičić discontinuity \</section\> paragraph: The lithosphere is broken into tectonic plates whose motion allows heat to escape from the interior of the Earth into space. The crust lies on top of the mantle, a configuration that is stable because the upper mantle is made of peridotite and is therefore significantly denser than the crust. The boundary between the crust and mantle is conventionally placed at the Mohorovičić discontinuity, a boundary defined by a contrast in seismic velocity.
The input sequence can then be encoded and passed as the input_ids argument in the model's generate() method.
## limitations
The model was trained on only a limited amount of data hence questions might be poor quality. In addition the questions generated have style similar to that of the training data.
## Training and evaluation data
The dataset used to train the model comprises the training datasets from:
- Reasoning Over Paragraph Effects in Situations (ROPES): https://allenai.org/data/ropes
- SQUAD:
- DROP (Discrete Reasoning Over Paragraphs): https://allenai.org/data/drop
- SciQ
After preprocessing the data from the above listed datasets, we had 408372 examples for training the model and 25k for development and 18k for testing.
## Training procedure
The model is trained (finetuned) for 5 epochs with the hyperparameters listed below:
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 5
At the end of 5 epochs, the Evaluation loss was: 1.64 and the training loss was: 0.9671.
### Framework versions
- Transformers 4.23.1
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1
|
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-bak-ntsema-colab
|
ntsema
| 2022-11-06T22:55:43Z | 126 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:audiofolder",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-06T05:30:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-espeak-cv-ft-bak-ntsema-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 1.0547550432276658
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-espeak-cv-ft-bak-ntsema-colab
This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 1.0548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5109 | 8.33 | 400 | inf | 1.0807 |
| 0.4252 | 16.66 | 800 | inf | 1.0519 |
| 0.1744 | 24.99 | 1200 | inf | 1.0548 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.14.0.dev20221105+cu116
- Datasets 2.6.1
- Tokenizers 0.13.1
|
halflings/house_price_prediction_ser2
|
halflings
| 2022-11-06T21:40:14Z | 0 | 0 |
mlconsole
|
[
"mlconsole",
"tabular-regression",
"dataset:house_price_prediction",
"license:unknown",
"model-index",
"region:us"
] |
tabular-regression
| 2022-11-06T21:40:10Z |
---
license: unknown
inference: false
tags:
- mlconsole
- tabular-regression
library_name: mlconsole
metrics:
- mae
- loss
datasets:
- house_price_prediction
model-index:
- name: house_price_prediction_ser2
results:
- task:
type: tabular-regression
name: tabular-regression
dataset:
type: house_price_prediction
name: house_price_prediction
metrics:
- type: mae
name: Mean absolute error
value: 5.011783599853516
- type: loss
name: Model loss
value: 43.01755905151367
---
# regression model trained on "house_price_prediction"
🤖 [Load and use this model](https://mlconsole.com/model/hf/halflings/house_price_prediction_ser2) in one click.
🧑💻 [Train your own model](https://mlconsole.com) on ML Console.
|
halflings/house_price_prediction_dev
|
halflings
| 2022-11-06T21:34:02Z | 0 | 0 |
mlconsole
|
[
"mlconsole",
"tabular-regression",
"dataset:house_price_prediction",
"license:unknown",
"model-index",
"region:us"
] |
tabular-regression
| 2022-11-06T21:33:58Z |
---
license: unknown
inference: false
tags:
- mlconsole
- tabular-regression
library_name: mlconsole
metrics:
- mae
- loss
datasets:
- house_price_prediction
model-index:
- name: house_price_prediction_dev
results:
- task:
type: tabular-regression
name: tabular-regression
dataset:
type: house_price_prediction
name: house_price_prediction
metrics:
- type: mae
name: Mean absolute error
value: 7.064809322357178
- type: loss
name: Model loss
value: 98.9962387084961
---
# regression model trained on "house_price_prediction"
🤖 [Load and use this model](https://mlconsole.com/model/hf/halflings/house_price_prediction_dev) in one click.
🧑💻 [Train your own model](https://mlconsole.com) on ML Console.
|
lewtun/distilhubert-finetuned-gtzan
|
lewtun
| 2022-11-06T21:05:59Z | 31 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"hf-course",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-03-14T17:10:18Z |
---
license: apache-2.0
tags:
- hf-course
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6694
- Accuracy: 0.82
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.99 | 56 | 1.9426 | 0.5 |
| No log | 1.99 | 112 | 1.4157 | 0.63 |
| No log | 2.99 | 168 | 1.1351 | 0.69 |
| No log | 3.99 | 224 | 1.0285 | 0.72 |
| No log | 4.99 | 280 | 0.8538 | 0.79 |
| No log | 5.99 | 336 | 0.8015 | 0.74 |
| No log | 6.99 | 392 | 0.6694 | 0.82 |
| No log | 7.99 | 448 | 0.6779 | 0.79 |
| 1.0811 | 8.99 | 504 | 0.6414 | 0.81 |
| 1.0811 | 9.99 | 560 | 0.6443 | 0.82 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.11.0
- Datasets 2.6.1
- Tokenizers 0.11.6
|
pig4431/amazonPolarity_DistilBERT_5E
|
pig4431
| 2022-11-06T20:58:38Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:amazon_polarity",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-11-06T20:54:32Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_polarity
metrics:
- accuracy
model-index:
- name: amazonPolarity_DistilBERT_5EE
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_polarity
type: amazon_polarity
config: amazon_polarity
split: train
args: amazon_polarity
metrics:
- name: Accuracy
type: accuracy
value: 0.94
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# amazonPolarity_DistilBERT_5EE
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_polarity dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2899
- Accuracy: 0.94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6581 | 0.03 | 50 | 0.5315 | 0.84 |
| 0.4321 | 0.05 | 100 | 0.2897 | 0.8933 |
| 0.298 | 0.08 | 150 | 0.3165 | 0.8667 |
| 0.2902 | 0.11 | 200 | 0.2552 | 0.9067 |
| 0.2824 | 0.13 | 250 | 0.2277 | 0.9133 |
| 0.2522 | 0.16 | 300 | 0.1998 | 0.94 |
| 0.2781 | 0.19 | 350 | 0.1933 | 0.94 |
| 0.2668 | 0.21 | 400 | 0.2316 | 0.92 |
| 0.2619 | 0.24 | 450 | 0.1968 | 0.9333 |
| 0.2446 | 0.27 | 500 | 0.1846 | 0.9467 |
| 0.2677 | 0.29 | 550 | 0.1818 | 0.94 |
| 0.2026 | 0.32 | 600 | 0.2348 | 0.9133 |
| 0.2351 | 0.35 | 650 | 0.2127 | 0.92 |
| 0.2685 | 0.37 | 700 | 0.1792 | 0.94 |
| 0.2141 | 0.4 | 750 | 0.2252 | 0.9133 |
| 0.2193 | 0.43 | 800 | 0.2131 | 0.9267 |
| 0.2456 | 0.45 | 850 | 0.2205 | 0.9133 |
| 0.2548 | 0.48 | 900 | 0.1788 | 0.94 |
| 0.2353 | 0.51 | 950 | 0.1954 | 0.9267 |
| 0.2546 | 0.53 | 1000 | 0.1815 | 0.9333 |
| 0.2583 | 0.56 | 1050 | 0.1654 | 0.9333 |
| 0.219 | 0.59 | 1100 | 0.1760 | 0.9467 |
| 0.2241 | 0.61 | 1150 | 0.2107 | 0.92 |
| 0.2201 | 0.64 | 1200 | 0.2381 | 0.8933 |
| 0.1745 | 0.67 | 1250 | 0.1944 | 0.92 |
| 0.2698 | 0.69 | 1300 | 0.1971 | 0.9267 |
| 0.214 | 0.72 | 1350 | 0.1944 | 0.9333 |
| 0.2436 | 0.75 | 1400 | 0.2079 | 0.92 |
| 0.2318 | 0.77 | 1450 | 0.2088 | 0.9333 |
| 0.2206 | 0.8 | 1500 | 0.1875 | 0.94 |
| 0.2593 | 0.83 | 1550 | 0.1797 | 0.9267 |
| 0.1908 | 0.85 | 1600 | 0.1924 | 0.9333 |
| 0.2378 | 0.88 | 1650 | 0.1649 | 0.9267 |
| 0.2332 | 0.91 | 1700 | 0.1768 | 0.94 |
| 0.2125 | 0.93 | 1750 | 0.2276 | 0.92 |
| 0.2174 | 0.96 | 1800 | 0.2035 | 0.9333 |
| 0.19 | 0.99 | 1850 | 0.1805 | 0.94 |
| 0.1515 | 1.01 | 1900 | 0.1832 | 0.94 |
| 0.1671 | 1.04 | 1950 | 0.1902 | 0.94 |
| 0.171 | 1.07 | 2000 | 0.2468 | 0.9267 |
| 0.1495 | 1.09 | 2050 | 0.2276 | 0.9267 |
| 0.1535 | 1.12 | 2100 | 0.1926 | 0.94 |
| 0.2085 | 1.15 | 2150 | 0.1878 | 0.94 |
| 0.1395 | 1.17 | 2200 | 0.1795 | 0.9467 |
| 0.1556 | 1.2 | 2250 | 0.1554 | 0.9467 |
| 0.1273 | 1.23 | 2300 | 0.1707 | 0.94 |
| 0.1873 | 1.25 | 2350 | 0.1867 | 0.9467 |
| 0.1589 | 1.28 | 2400 | 0.2089 | 0.9333 |
| 0.1426 | 1.31 | 2450 | 0.1797 | 0.9467 |
| 0.149 | 1.33 | 2500 | 0.1991 | 0.9333 |
| 0.1535 | 1.36 | 2550 | 0.2116 | 0.94 |
| 0.1671 | 1.39 | 2600 | 0.1704 | 0.9467 |
| 0.1582 | 1.41 | 2650 | 0.1843 | 0.94 |
| 0.1393 | 1.44 | 2700 | 0.1831 | 0.94 |
| 0.1474 | 1.47 | 2750 | 0.1895 | 0.94 |
| 0.203 | 1.49 | 2800 | 0.1843 | 0.9467 |
| 0.1562 | 1.52 | 2850 | 0.2060 | 0.9467 |
| 0.1886 | 1.55 | 2900 | 0.1837 | 0.94 |
| 0.1332 | 1.57 | 2950 | 0.1920 | 0.9467 |
| 0.1519 | 1.6 | 3000 | 0.1789 | 0.9533 |
| 0.1354 | 1.63 | 3050 | 0.1974 | 0.9467 |
| 0.125 | 1.65 | 3100 | 0.1890 | 0.9533 |
| 0.2044 | 1.68 | 3150 | 0.1755 | 0.9533 |
| 0.1746 | 1.71 | 3200 | 0.1607 | 0.9467 |
| 0.1981 | 1.73 | 3250 | 0.1613 | 0.9533 |
| 0.1276 | 1.76 | 3300 | 0.1825 | 0.96 |
| 0.1935 | 1.79 | 3350 | 0.1707 | 0.9533 |
| 0.1848 | 1.81 | 3400 | 0.1697 | 0.96 |
| 0.1596 | 1.84 | 3450 | 0.1581 | 0.9667 |
| 0.1797 | 1.87 | 3500 | 0.1634 | 0.96 |
| 0.1493 | 1.89 | 3550 | 0.1614 | 0.9533 |
| 0.1703 | 1.92 | 3600 | 0.1673 | 0.9467 |
| 0.1951 | 1.95 | 3650 | 0.1589 | 0.9533 |
| 0.1582 | 1.97 | 3700 | 0.1761 | 0.9467 |
| 0.1974 | 2.0 | 3750 | 0.1918 | 0.94 |
| 0.1056 | 2.03 | 3800 | 0.2063 | 0.94 |
| 0.1109 | 2.05 | 3850 | 0.2031 | 0.9467 |
| 0.113 | 2.08 | 3900 | 0.2118 | 0.9467 |
| 0.0834 | 2.11 | 3950 | 0.1974 | 0.9533 |
| 0.1434 | 2.13 | 4000 | 0.2075 | 0.9533 |
| 0.0691 | 2.16 | 4050 | 0.2178 | 0.9533 |
| 0.1144 | 2.19 | 4100 | 0.2383 | 0.9467 |
| 0.1446 | 2.21 | 4150 | 0.2207 | 0.9533 |
| 0.172 | 2.24 | 4200 | 0.2034 | 0.9467 |
| 0.1026 | 2.27 | 4250 | 0.2048 | 0.9467 |
| 0.1131 | 2.29 | 4300 | 0.2334 | 0.9467 |
| 0.121 | 2.32 | 4350 | 0.2367 | 0.9333 |
| 0.1144 | 2.35 | 4400 | 0.2313 | 0.9467 |
| 0.1089 | 2.37 | 4450 | 0.2352 | 0.9533 |
| 0.1193 | 2.4 | 4500 | 0.2440 | 0.94 |
| 0.0689 | 2.43 | 4550 | 0.2379 | 0.9333 |
| 0.1799 | 2.45 | 4600 | 0.2354 | 0.9467 |
| 0.1068 | 2.48 | 4650 | 0.2158 | 0.9533 |
| 0.0974 | 2.51 | 4700 | 0.2456 | 0.94 |
| 0.0637 | 2.53 | 4750 | 0.2191 | 0.9333 |
| 0.1125 | 2.56 | 4800 | 0.2390 | 0.9467 |
| 0.1706 | 2.59 | 4850 | 0.2407 | 0.94 |
| 0.1533 | 2.61 | 4900 | 0.2242 | 0.9533 |
| 0.1357 | 2.64 | 4950 | 0.2119 | 0.9533 |
| 0.1342 | 2.67 | 5000 | 0.2268 | 0.9467 |
| 0.0796 | 2.69 | 5050 | 0.2450 | 0.9467 |
| 0.1351 | 2.72 | 5100 | 0.2499 | 0.94 |
| 0.1285 | 2.75 | 5150 | 0.2252 | 0.94 |
| 0.1563 | 2.77 | 5200 | 0.2191 | 0.94 |
| 0.1022 | 2.8 | 5250 | 0.2256 | 0.9533 |
| 0.11 | 2.83 | 5300 | 0.2365 | 0.9467 |
| 0.0926 | 2.85 | 5350 | 0.2206 | 0.9467 |
| 0.1043 | 2.88 | 5400 | 0.2018 | 0.9533 |
| 0.1041 | 2.91 | 5450 | 0.2268 | 0.9467 |
| 0.1232 | 2.93 | 5500 | 0.2164 | 0.9467 |
| 0.1537 | 2.96 | 5550 | 0.1956 | 0.9533 |
| 0.1188 | 2.99 | 5600 | 0.2126 | 0.9467 |
| 0.0749 | 3.01 | 5650 | 0.2249 | 0.9467 |
| 0.062 | 3.04 | 5700 | 0.2254 | 0.9467 |
| 0.0755 | 3.07 | 5750 | 0.2472 | 0.94 |
| 0.0866 | 3.09 | 5800 | 0.2569 | 0.94 |
| 0.0502 | 3.12 | 5850 | 0.2481 | 0.9467 |
| 0.1158 | 3.15 | 5900 | 0.2457 | 0.94 |
| 0.0413 | 3.17 | 5950 | 0.2500 | 0.94 |
| 0.0966 | 3.2 | 6000 | 0.2851 | 0.9333 |
| 0.0613 | 3.23 | 6050 | 0.2717 | 0.9467 |
| 0.1029 | 3.25 | 6100 | 0.2714 | 0.94 |
| 0.0833 | 3.28 | 6150 | 0.2683 | 0.94 |
| 0.0928 | 3.31 | 6200 | 0.2490 | 0.9467 |
| 0.0571 | 3.33 | 6250 | 0.2575 | 0.9533 |
| 0.1252 | 3.36 | 6300 | 0.2599 | 0.9467 |
| 0.0788 | 3.39 | 6350 | 0.2522 | 0.9467 |
| 0.0862 | 3.41 | 6400 | 0.2489 | 0.9533 |
| 0.112 | 3.44 | 6450 | 0.2452 | 0.9533 |
| 0.0868 | 3.47 | 6500 | 0.2438 | 0.9533 |
| 0.0979 | 3.49 | 6550 | 0.2474 | 0.94 |
| 0.0739 | 3.52 | 6600 | 0.2508 | 0.94 |
| 0.0786 | 3.55 | 6650 | 0.2621 | 0.94 |
| 0.0872 | 3.57 | 6700 | 0.2543 | 0.9333 |
| 0.0962 | 3.6 | 6750 | 0.2347 | 0.9467 |
| 0.124 | 3.63 | 6800 | 0.2319 | 0.9533 |
| 0.0747 | 3.65 | 6850 | 0.2448 | 0.9533 |
| 0.0591 | 3.68 | 6900 | 0.2379 | 0.94 |
| 0.1049 | 3.71 | 6950 | 0.2493 | 0.9333 |
| 0.0772 | 3.73 | 7000 | 0.2429 | 0.94 |
| 0.071 | 3.76 | 7050 | 0.2558 | 0.94 |
| 0.1116 | 3.79 | 7100 | 0.2600 | 0.94 |
| 0.1199 | 3.81 | 7150 | 0.2480 | 0.94 |
| 0.0819 | 3.84 | 7200 | 0.2506 | 0.94 |
| 0.1054 | 3.87 | 7250 | 0.2431 | 0.94 |
| 0.09 | 3.89 | 7300 | 0.2582 | 0.9333 |
| 0.0936 | 3.92 | 7350 | 0.2460 | 0.94 |
| 0.0469 | 3.95 | 7400 | 0.2509 | 0.94 |
| 0.1101 | 3.97 | 7450 | 0.2545 | 0.9467 |
| 0.1077 | 4.0 | 7500 | 0.2640 | 0.9467 |
| 0.0777 | 4.03 | 7550 | 0.2709 | 0.94 |
| 0.0777 | 4.05 | 7600 | 0.2842 | 0.94 |
| 0.0847 | 4.08 | 7650 | 0.2649 | 0.94 |
| 0.0462 | 4.11 | 7700 | 0.2702 | 0.9467 |
| 0.0572 | 4.13 | 7750 | 0.2628 | 0.94 |
| 0.0435 | 4.16 | 7800 | 0.2689 | 0.9467 |
| 0.0566 | 4.19 | 7850 | 0.2727 | 0.9467 |
| 0.1149 | 4.21 | 7900 | 0.2635 | 0.9467 |
| 0.0557 | 4.24 | 7950 | 0.2665 | 0.9467 |
| 0.061 | 4.27 | 8000 | 0.2680 | 0.9467 |
| 0.0664 | 4.29 | 8050 | 0.2767 | 0.9467 |
| 0.0481 | 4.32 | 8100 | 0.2662 | 0.9467 |
| 0.0893 | 4.35 | 8150 | 0.2677 | 0.9467 |
| 0.0855 | 4.37 | 8200 | 0.2733 | 0.9467 |
| 0.0552 | 4.4 | 8250 | 0.2589 | 0.94 |
| 0.0469 | 4.43 | 8300 | 0.2733 | 0.94 |
| 0.0633 | 4.45 | 8350 | 0.2799 | 0.94 |
| 0.0629 | 4.48 | 8400 | 0.2838 | 0.94 |
| 0.0854 | 4.51 | 8450 | 0.2837 | 0.94 |
| 0.0596 | 4.53 | 8500 | 0.2808 | 0.94 |
| 0.0579 | 4.56 | 8550 | 0.2839 | 0.94 |
| 0.0508 | 4.59 | 8600 | 0.2844 | 0.94 |
| 0.0557 | 4.61 | 8650 | 0.2833 | 0.94 |
| 0.0383 | 4.64 | 8700 | 0.2878 | 0.94 |
| 0.0554 | 4.67 | 8750 | 0.2924 | 0.94 |
| 0.0681 | 4.69 | 8800 | 0.2868 | 0.94 |
| 0.065 | 4.72 | 8850 | 0.2888 | 0.94 |
| 0.0731 | 4.75 | 8900 | 0.2946 | 0.94 |
| 0.0638 | 4.77 | 8950 | 0.2886 | 0.94 |
| 0.043 | 4.8 | 9000 | 0.2867 | 0.94 |
| 0.0658 | 4.83 | 9050 | 0.2872 | 0.94 |
| 0.0249 | 4.85 | 9100 | 0.2882 | 0.94 |
| 0.0612 | 4.88 | 9150 | 0.2902 | 0.94 |
| 0.0271 | 4.91 | 9200 | 0.2890 | 0.94 |
| 0.0308 | 4.93 | 9250 | 0.2897 | 0.94 |
| 0.0896 | 4.96 | 9300 | 0.2898 | 0.94 |
| 0.1172 | 4.99 | 9350 | 0.2899 | 0.94 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
thaonguyen274/vit-base-patch16-224-finetuned-imageclassification
|
thaonguyen274
| 2022-11-06T20:55:55Z | 28 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-11-06T16:57:46Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-imageclassification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9501779359430605
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-imageclassification
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1790
- Accuracy: 0.9502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 9 | 0.5791 | 0.9004 |
| 1.4122 | 2.0 | 18 | 0.2002 | 0.9359 |
| 0.3147 | 3.0 | 27 | 0.1717 | 0.9502 |
| 0.1907 | 4.0 | 36 | 0.1632 | 0.9466 |
| 0.158 | 5.0 | 45 | 0.1822 | 0.9466 |
| 0.1169 | 6.0 | 54 | 0.1778 | 0.9502 |
| 0.0984 | 7.0 | 63 | 0.1552 | 0.9573 |
| 0.0971 | 8.0 | 72 | 0.1835 | 0.9502 |
| 0.0965 | 9.0 | 81 | 0.1878 | 0.9484 |
| 0.0766 | 10.0 | 90 | 0.1790 | 0.9502 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.