modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Dejiat/blockassist-bc-savage_unseen_bobcat_1756155775
Dejiat
2025-08-25T21:03:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:03:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756154652
Sayemahsjn
2025-08-25T21:03:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:03:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
boopmoor/blockassist-bc-sedate_rabid_puffin_1756155750
boopmoor
2025-08-25T21:02:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate rabid puffin", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:02:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate rabid puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qwersdfvg/blockassist-bc-omnivorous_soaring_pigeon_1756155746
qwersdfvg
2025-08-25T21:02:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous soaring pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:02:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous soaring pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prithivMLmods/Pyxidis-Manim-CodeGen-1.7B
prithivMLmods
2025-08-25T21:02:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "code", "trl", "conversational", "en", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T13:32:31Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-1.7B pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - code - trl --- ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4LKArEzZk53evXdv_no2u.png) # **Pyxidis-Manim-CodeGen-1.7B (Experimental)** > **Pyxidis-Manim-CodeGen-1.7B** is an **experimental math animation coding model** fine-tuned on **Qwen/Qwen3-1.7B** using **Manim-CodeGen code traces**. > It is specialized for **Python-based mathematical animations with Manim**, making it ideal for educators, researchers, and developers working on math visualization and animation pipelines. > \[!note] > GGUF: [https://huggingface.co/prithivMLmods/Pyxidis-Manim-CodeGen-1.7B-GGUF](https://huggingface.co/prithivMLmods/Pyxidis-Manim-CodeGen-1.7B-GGUF) --- ## **Key Features** 1. **Manim-Specific Code Generation** Trained on **Manim-CodeGen traces**, optimized for **Python-based animation scripting** of mathematical concepts and visual proofs. 2. **Math + Code Synergy** Generates step-by-step **math derivations with corresponding animation code**, bridging symbolic reasoning with visualization. 3. **Animation Workflow Optimization** Provides structured code for **scenes, transformations, graphs, and equations** in Manim, reducing boilerplate and debugging effort. 4. **Python-Centric Reasoning** Produces **clean, modular, and reusable Python code**, supporting educational and research-driven animation pipelines. 5. **Structured Output Mastery** Capable of outputting in **Python**, **Markdown**, and **LaTeX**, ideal for tutorials, educational notebooks, and automated video generation workflows. 6. **Lightweight but Specialized** Focused on **Manim coding efficiency** while maintaining a deployable footprint for **GPU clusters** and **research labs**. --- ## **Quickstart with Transformers** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Pyxidis-Manim-CodeGen-1.7B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Write a Manim script to animate the Pythagorean theorem using squares on the triangle's sides." messages = [ {"role": "system", "content": "You are a Python coding assistant specialized in Manim-based math animations."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` --- ## **Intended Use** * **Manim-based math animation coding** for research, teaching, and content creation * **Educational visualization assistant** to convert math problems into animations * **Python tutoring tool** for math-heavy animation workflows * **Prototype generator** for interactive STEM video content ## **Limitations** * Experimental model – may generate code requiring manual debugging * Limited to **Manim coding workflows**, not general-purpose code assistant * May not handle **complex multi-scene projects** without iterative refinement * Prioritizes structured math + animation reasoning, less optimized for general dialogue
sonspeed/bartpho-word-cpo-summarize-vietgpt-256
sonspeed
2025-08-25T21:02:13Z
0
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "generated_from_trainer", "cpo", "trl", "arxiv:2401.08417", "base_model:sonspeed/bartpho-vietgpt", "base_model:finetune:sonspeed/bartpho-vietgpt", "endpoints_compatible", "region:us" ]
null
2025-08-25T14:41:29Z
--- base_model: sonspeed/bartpho-vietgpt library_name: transformers model_name: bartpho-word-cpo-summarize-vietgpt-256 tags: - generated_from_trainer - cpo - trl licence: license --- # Model Card for bartpho-word-cpo-summarize-vietgpt-256 This model is a fine-tuned version of [sonspeed/bartpho-vietgpt](https://huggingface.co/sonspeed/bartpho-vietgpt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sonspeed/bartpho-word-cpo-summarize-vietgpt-256", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sonspeed-hanoi-university-of-science-and-technology/bartpho-summarization-cpotrl/runs/b2szxtmk) This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417). ### Framework versions - TRL: 0.21.0 - Transformers: 4.52.4 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite CPO as: ```bibtex @inproceedings{xu2024contrastive, title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}}, author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=51iwkioZpn} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
golopper/blockassist-bc-screeching_snorting_caribou_1756155676
golopper
2025-08-25T21:01:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching snorting caribou", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:01:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching snorting caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756155627
Dejiat
2025-08-25T21:00:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:00:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756155593
bah63843
2025-08-25T21:00:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T21:00:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shadowvibec/blockassist-bc-swift_pudgy_squirrel_1756155508
shadowvibec
2025-08-25T20:59:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "swift pudgy squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:58:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - swift pudgy squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1756155463
mohda
2025-08-25T20:59:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:58:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prithivMLmods/Pyxidis-Manim-CodeGen-1.7B-GGUF
prithivMLmods
2025-08-25T20:58:20Z
0
0
transformers
[ "transformers", "gguf", "qwen3", "text-generation-inference", "text-generation", "en", "base_model:prithivMLmods/Pyxidis-Manim-CodeGen-1.7B", "base_model:quantized:prithivMLmods/Pyxidis-Manim-CodeGen-1.7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-25T13:41:41Z
--- license: apache-2.0 language: - en base_model: - prithivMLmods/Pyxidis-Manim-CodeGen-1.7B pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference --- # **Pyxidis-Manim-CodeGen-1.7B-GGUF** > **Pyxidis-Manim-CodeGen-1.7B** is an **experimental math animation coding model** fine-tuned on **Qwen/Qwen3-1.7B** using **Manim-CodeGen code traces**. > It is specialized for **Python-based mathematical animations with Manim**, making it ideal for educators, researchers, and developers working on math visualization and animation pipelines. ## Model Files | File Name | Quant Type | File Size | | - | - | - | | Pyxidis-Manim-CodeGen-1.7B.BF16.gguf | BF16 | 3.45 GB | | Pyxidis-Manim-CodeGen-1.7B.F16.gguf | F16 | 3.45 GB | | Pyxidis-Manim-CodeGen-1.7B.F32.gguf | F32 | 6.89 GB | | Pyxidis-Manim-CodeGen-1.7B.Q2_K.gguf | Q2_K | 778 MB | | Pyxidis-Manim-CodeGen-1.7B.Q3_K_L.gguf | Q3_K_L | 1 GB | | Pyxidis-Manim-CodeGen-1.7B.Q3_K_M.gguf | Q3_K_M | 940 MB | | Pyxidis-Manim-CodeGen-1.7B.Q3_K_S.gguf | Q3_K_S | 867 MB | | Pyxidis-Manim-CodeGen-1.7B.Q4_0.gguf | Q4_0 | 1.05 GB | | Pyxidis-Manim-CodeGen-1.7B.Q4_1.gguf | Q4_1 | 1.14 GB | | Pyxidis-Manim-CodeGen-1.7B.Q4_K.gguf | Q4_K | 1.11 GB | | Pyxidis-Manim-CodeGen-1.7B.Q4_K_M.gguf | Q4_K_M | 1.11 GB | | Pyxidis-Manim-CodeGen-1.7B.Q4_K_S.gguf | Q4_K_S | 1.06 GB | | Pyxidis-Manim-CodeGen-1.7B.Q5_0.gguf | Q5_0 | 1.23 GB | | Pyxidis-Manim-CodeGen-1.7B.Q5_1.gguf | Q5_1 | 1.32 GB | | Pyxidis-Manim-CodeGen-1.7B.Q5_K.gguf | Q5_K | 1.26 GB | | Pyxidis-Manim-CodeGen-1.7B.Q5_K_M.gguf | Q5_K_M | 1.26 GB | | Pyxidis-Manim-CodeGen-1.7B.Q5_K_S.gguf | Q5_K_S | 1.23 GB | | Pyxidis-Manim-CodeGen-1.7B.Q6_K.gguf | Q6_K | 1.42 GB | | Pyxidis-Manim-CodeGen-1.7B.Q8_0.gguf | Q8_0 | 1.83 GB | ## Quants Usage (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
madbro/blockassist-bc-whistling_curious_puffin_1756155459
madbro
2025-08-25T20:58:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling curious puffin", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:58:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling curious puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756155289
liukevin666
2025-08-25T20:58:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:55:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nnilayy/dreamer-binary-valence-LOSO-Subject-12
nnilayy
2025-08-25T20:58:04Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-25T20:58:01Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
usamachopra/UCPToo1
usamachopra
2025-08-25T20:56:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-25T20:56:08Z
--- license: apache-2.0 ---
golopper/blockassist-bc-deft_silent_flamingo_1756155347
golopper
2025-08-25T20:55:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft silent flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:55:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft silent flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756155323
Dejiat
2025-08-25T20:55:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:55:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756155257
ggozzy
2025-08-25T20:55:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:55:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756155254
bah63843
2025-08-25T20:55:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:54:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
biswac2021/blockassist-bc-wiry_patterned_clam_1756155171
biswac2021
2025-08-25T20:53:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry patterned clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:53:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry patterned clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anuragabhi5/blockassist-bc-mute_gilded_macaw_1756155145
anuragabhi5
2025-08-25T20:53:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute gilded macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:53:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute gilded macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
murasaki35/headshot
murasaki35
2025-08-25T20:53:03Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T14:30:34Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: jc --- # Headshot <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `jc` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "jc", "lora_weights": "https://huggingface.co/murasaki35/headshot/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('murasaki35/headshot', weight_name='lora.safetensors') image = pipeline('jc').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/murasaki35/headshot/discussions) to add images that show off what you’ve made with this LoRA.
Dejiat/blockassist-bc-savage_unseen_bobcat_1756155136
Dejiat
2025-08-25T20:52:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:52:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
q10/Qwen3-8B-Base-FP8
q10
2025-08-25T20:51:39Z
6
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "torchao", "conversational", "en", "arxiv:2507.16099", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T00:42:40Z
--- base_model: Qwen/Qwen3-8B-Base tags: - transformers - torchao - qwen3 license: apache-2.0 language: - en --- # FP8 Qwen/Qwen3-8B-Base model - **Developed by:** q10 - **License:** apache-2.0 - **Quantized from Model :** Qwen/Qwen3-8B-Base - **Quantization Method :** FP8 # Inference with vLLM Install vllm nightly and torchao nightly to get some recent changes: ``` pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly pip install torchao ``` ## Serving Then we can serve with the following command: ```Shell # Server export MODEL=q10/Qwen3-8B-Base-FP8 VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 ``` ```Shell # Client curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "q10/Qwen3-8B-Base-FP8", "messages": [ {"role": "user", "content": "Give me a short introduction to large language models."} ], "temperature": 0.6, "top_p": 0.95, "top_k": 20, "max_tokens": 32768 }' ``` Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao, this is expected be resolved in pytorch 2.8. # Inference with Transformers Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install torchao pip install torch pip install accelerate ``` Example: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "q10/Qwen3-8B-Base-FP8" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip(" ") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip(" ") print("thinking content:", thinking_content) print("content:", content) ``` # Quantization Recipe Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 pip install torch pip install accelerate ``` Use the following code to get the quantized model: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "Qwen/Qwen3-8B-Base" model_to_quantize = "Qwen/Qwen3-8B-Base" from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained(model_to_quantize, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "YOUR_USER_ID" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-FP8" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" messages = [ { "role": "system", "content": "", }, {"role": "user", "content": prompt}, ] templated_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) print("Prompt:", prompt) print("Templated prompt:", templated_prompt) inputs = tokenizer( templated_prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt):]) ``` Note: to `push_to_hub` you need to run ```Shell pip install -U "huggingface_hub[cli]" huggingface-cli login ``` and use a token with write access, from https://huggingface.co/settings/tokens # Model Quality We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check. | Benchmark | | | |----------------------------------|----------------|---------------------------| | | Qwen/Qwen3-8B-Base | q10/Qwen3-8B-Base-FP8 | | mmlu | To be filled | To be filled | <details> <summary> Reproduce Model Quality Results </summary> Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install ## baseline ```Shell lm_eval --model hf --model_args pretrained=Qwen/Qwen3-8B-Base --tasks mmlu --device cuda:0 --batch_size 8 ``` ## FP8 ```Shell export MODEL=q10/Qwen3-8B-Base-FP8 lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 ``` </details> # Peak Memory Usage ## Results | Benchmark | | | |------------------|----------------|--------------------------------| | | Qwen/Qwen3-8B-Base | q10/Qwen3-8B-Base-FP8 | | Peak Memory (GB) | To be filled | To be filled (?% reduction) | <details> <summary> Reproduce Peak Memory Usage Results </summary> We can use the following code to get a sense of peak memory usage during inference: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig # use "Qwen/Qwen3-8B-Base" or "q10/Qwen3-8B-Base-FP8" model_id = "q10/Qwen3-8B-Base-FP8" quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) torch.cuda.reset_peak_memory_stats() prompt = "Hey, are you conscious? Can you talk to me?" messages = [ { "role": "system", "content": "", }, {"role": "user", "content": prompt}, ] templated_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) print("Prompt:", prompt) print("Templated prompt:", templated_prompt) inputs = tokenizer( templated_prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt):]) mem = torch.cuda.max_memory_reserved() / 1e9 print(f"Peak Memory Usage: {mem:.02f} GB") ``` </details> # Model Performance ## Results (A100 machine) | Benchmark (Latency) | | | |----------------------------------|----------------|--------------------------| | | Qwen/Qwen3-8B-Base | q10/Qwen3-8B-Base-FP8 | | latency (batch_size=1) | ?s | ?s (?x speedup) | <details> <summary> Reproduce Model Performance Results </summary> ## Setup Get vllm source code: ```Shell git clone [email protected]:vllm-project/vllm.git ``` Install vllm ``` VLLM_USE_PRECOMPILED=1 pip install --editable . ``` Run the benchmarks under `vllm` root folder: ## benchmark_latency ### baseline ```Shell export MODEL=Qwen/Qwen3-8B-Base python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ``` ### FP8 ```Shell export MODEL=q10/Qwen3-8B-Base-FP8 VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ``` ## benchmark_serving We benchmarked the throughput in a serving environment. Download sharegpt dataset: ```Shell wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json ``` Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks Note: you can change the number of prompts to be benchmarked with `--num-prompts` argument for `benchmark_serving` script. ### baseline Server: ```Shell export MODEL=Qwen/Qwen3-8B-Base vllm serve $MODEL --tokenizer $MODEL -O3 ``` Client: ```Shell export MODEL=Qwen/Qwen3-8B-Base python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 ``` ### FP8 Server: ```Shell export MODEL=q10/Qwen3-8B-Base-FP8 VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 --pt-load-map-location cuda:0 ``` Client: ```Shell export MODEL=q10/Qwen3-8B-Base-FP8 python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 ``` </details> # Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099). **Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL . # Resources * **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao) * **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html) # Disclaimer PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756155018
ggozzy
2025-08-25T20:51:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:51:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1756153398
indoempatnol
2025-08-25T20:51:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:51:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tayfun26/blockassist-bc-squinting_freckled_grouse_1756155030
tayfun26
2025-08-25T20:51:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squinting freckled grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:51:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squinting freckled grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1756153469
mang3dd
2025-08-25T20:50:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:50:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Genuine-Zeth-4B-GGUF
mradermacher
2025-08-25T20:50:05Z
0
0
transformers
[ "transformers", "gguf", "lora", "sft", "trl", "unsloth", "fine-tuned", "en", "dataset:theprint/Gentle-Pushback-8.5k-alpaca", "base_model:theprint/Genuine-Zeth-4B", "base_model:adapter:theprint/Genuine-Zeth-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T20:03:13Z
--- base_model: theprint/Genuine-Zeth-4B datasets: - theprint/Gentle-Pushback-8.5k-alpaca language: en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - lora - sft - transformers - trl - unsloth - fine-tuned --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: 1 --> static quants of https://huggingface.co/theprint/Genuine-Zeth-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Genuine-Zeth-4B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Genuine-Zeth-4B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q2_K.gguf) | Q2_K | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q3_K_S.gguf) | Q3_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q3_K_M.gguf) | Q3_K_M | 2.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q3_K_L.gguf) | Q3_K_L | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.IQ4_XS.gguf) | IQ4_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q4_K_S.gguf) | Q4_K_S | 2.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q4_K_M.gguf) | Q4_K_M | 3.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q5_K_S.gguf) | Q5_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q5_K_M.gguf) | Q5_K_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q6_K.gguf) | Q6_K | 3.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.Q8_0.gguf) | Q8_0 | 4.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-Zeth-4B-GGUF/resolve/main/Genuine-Zeth-4B.f16.gguf) | f16 | 9.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Dejiat/blockassist-bc-savage_unseen_bobcat_1756154915
Dejiat
2025-08-25T20:49:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:49:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756154879
bah63843
2025-08-25T20:48:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:48:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1756154841
mohda
2025-08-25T20:48:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:48:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lautan/blockassist-bc-gentle_patterned_goat_1756153329
lautan
2025-08-25T20:48:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:48:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
znaal/blockassist-bc-tropical_grunting_salamander_1756154726
znaal
2025-08-25T20:47:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tropical grunting salamander", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:47:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tropical grunting salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
y22ma/gemma3-270m-router
y22ma
2025-08-25T20:46:13Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T20:45:15Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** y22ma - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Dejiat/blockassist-bc-savage_unseen_bobcat_1756154708
Dejiat
2025-08-25T20:45:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:45:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lemonhat/Qwen2.5-7B-Instruct-t1_5k_v1_tag5_hermes
lemonhat
2025-08-25T20:44:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T20:33:21Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: t1_5k_v1_tag5_hermes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t1_5k_v1_tag5_hermes This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the t1_5k_v1_tag5_hermes dataset. It achieves the following results on the evaluation set: - Loss: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2918 | 0.6897 | 100 | 0.2926 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
bah63843/blockassist-bc-plump_fast_antelope_1756154613
bah63843
2025-08-25T20:44:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:44:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756154531
Dejiat
2025-08-25T20:42:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:42:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iacmc85/llama3ponto2-1b-train07
iacmc85
2025-08-25T20:41:57Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T20:30:28Z
--- base_model: unsloth/llama-3.2-1b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** iacmc85 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
silverside/HAC_d
silverside
2025-08-25T20:41:47Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T18:18:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ANML_STYLE --- # Hac_D <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ANML_STYLE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "ANML_STYLE", "lora_weights": "https://huggingface.co/silverside/HAC_d/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('silverside/HAC_d', weight_name='lora.safetensors') image = pipeline('ANML_STYLE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0001 - LoRA rank: 32 ## Contribute your own examples You can use the [community tab](https://huggingface.co/silverside/HAC_d/discussions) to add images that show off what you’ve made with this LoRA.
Dejiat/blockassist-bc-savage_unseen_bobcat_1756154389
Dejiat
2025-08-25T20:40:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:40:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
boopmoor/blockassist-bc-soft_keen_trout_1756154358
boopmoor
2025-08-25T20:39:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft keen trout", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:39:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft keen trout --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756154300
ggozzy
2025-08-25T20:39:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:39:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756154265
bah63843
2025-08-25T20:38:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:38:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756152871
pempekmangedd
2025-08-25T20:38:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:38:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
QuantStack/InternVL3_5-1B-Pretrained-gguf
QuantStack
2025-08-25T20:37:14Z
0
0
null
[ "gguf", "base_model:OpenGVLab/InternVL3_5-1B-Pretrained", "base_model:quantized:OpenGVLab/InternVL3_5-1B-Pretrained", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T20:25:59Z
--- license: apache-2.0 base_model: - OpenGVLab/InternVL3_5-1B-Pretrained --- This is basically a test to see if the conversion and inference in llama.cpp works fine It seems to work though i wont add more quant sizes for now Since this is merely a quantization of the original model the license of the original model still applies!
madbro/blockassist-bc-whistling_curious_puffin_1756154184
madbro
2025-08-25T20:37:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling curious puffin", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:37:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling curious puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Phlor/mary
Phlor
2025-08-25T20:36:47Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T20:11:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: mary --- # Mary <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `mary` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "mary", "lora_weights": "https://huggingface.co/Phlor/mary/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Phlor/mary', weight_name='lora.safetensors') image = pipeline('mary').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Phlor/mary/discussions) to add images that show off what you’ve made with this LoRA.
g-assismoraes/Qwen3-4B-Base-interp-perm-alpha0.5-var-hatebr
g-assismoraes
2025-08-25T20:35:22Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T20:20:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
QuantStack/InternVL3_5-1B-Instruct-gguf
QuantStack
2025-08-25T20:34:56Z
0
0
null
[ "gguf", "base_model:OpenGVLab/InternVL3_5-1B-Instruct", "base_model:quantized:OpenGVLab/InternVL3_5-1B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T19:43:41Z
--- license: apache-2.0 base_model: - OpenGVLab/InternVL3_5-1B-Instruct --- This is basically a test to see if the conversion and inference in llama.cpp works fine It seems to work though i wont add more quant sizes for now Since this is merely a quantization of the original model the license of the original model still applies!
0xStarChaser/blockassist-bc-feathered_foraging_cod_1756153899
0xStarChaser
2025-08-25T20:33:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feathered foraging cod", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:32:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feathered foraging cod --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
znaal/blockassist-bc-tropical_grunting_salamander_1756153774
znaal
2025-08-25T20:32:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tropical grunting salamander", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:32:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tropical grunting salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ectorbravo/blockassist-bc-rapid_freckled_cod_1756153873
ectorbravo
2025-08-25T20:31:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rapid freckled cod", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:31:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rapid freckled cod --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756153822
ggozzy
2025-08-25T20:31:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:31:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xFarzad/model_checkpoint
0xFarzad
2025-08-25T20:31:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T20:08:55Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: model_checkpoint tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for model_checkpoint This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="0xFarzad/model_checkpoint", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.53.1 - Pytorch: 2.7.1+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1756153822
Chukky10z
2025-08-25T20:31:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian jumping cougar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:30:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian jumping cougar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fbaldassarri/EleutherAI_pythia-12b-deduped-autoround-int8-gs64-asym
fbaldassarri
2025-08-25T20:30:59Z
0
0
null
[ "safetensors", "gpt_neox", "pytorch", "causal-lm", "pythia", "autoround", "intel-autoround", "auto-round", "intel", "woq", "eleutheraI", "text-generation", "en", "dataset:EleutherAI/pile", "base_model:EleutherAI/pythia-12b-deduped", "base_model:quantized:EleutherAI/pythia-12b-deduped", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-08-25T19:55:18Z
--- language: - en tags: - pytorch - causal-lm - pythia - autoround - intel-autoround - auto-round - intel - woq - eleutheraI license: apache-2.0 model_name: Pythia 12b deduped base_model: EleutherAI/pythia-12b-deduped inference: false model_creator: EleutherAI datasets: - EleutherAI/pile pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [EleutherAI/pythia-12b-deduped](https://huggingface.co/fbaldassarri/EleutherAI/pythia-12b-deduped) using torch.float32 for quantization tuning. - 8 bits (INT8) - group size = 64 - Asymmetrical Quantization - Method WoQ: SignRound (AutoRound algorithm) Fast and low memory, 2-3X speedup (slight accuracy drop at W8G64) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.5.1 Note: this INT8 version of pythia-12b-deduped has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.5.1.tar.gz tar -xvzf v0.5.1.tar.gz cd auto-round-0.5.1 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "EleutherAI/pythia-12b-deduped" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 8, 64, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/EleutherAI_pythia-12b-deduped-autoround-int8-gs64-asym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
shadowvibec/blockassist-bc-swift_pudgy_squirrel_1756153709
shadowvibec
2025-08-25T20:29:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "swift pudgy squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:28:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - swift pudgy squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
madbro/blockassist-bc-whistling_curious_puffin_1756153703
madbro
2025-08-25T20:29:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling curious puffin", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:28:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling curious puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756152011
chainway9
2025-08-25T20:28:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:27:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rudra-madlads/blockassist-bc-jumping_swift_gazelle_1756153530
Rudra-madlads
2025-08-25T20:26:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping swift gazelle", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:26:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping swift gazelle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jadren/blockassist-bc-leggy_mute_tarantula_1756151506
Jadren
2025-08-25T20:26:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "leggy mute tarantula", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:26:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - leggy mute tarantula --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jyhtgyhg/New.full.videos.fooni.fun.Viral.Video.Official.Tutorial
jyhtgyhg
2025-08-25T20:25:45Z
0
0
null
[ "region:us" ]
null
2025-08-25T20:21:35Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
jyhtgyhg/WATCH.FULL.VIDEOS.AFRIN.ER.LINK.VIRAL.1.24.VIRAL.AFRIN.AR.LINK
jyhtgyhg
2025-08-25T20:25:42Z
0
0
null
[ "region:us" ]
null
2025-08-25T20:21:24Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
jyhtgyhg/New.full.videos.Mwaka.Halwiindi.Viral.Video.Official.Tutorial
jyhtgyhg
2025-08-25T20:25:36Z
0
0
null
[ "region:us" ]
null
2025-08-25T20:21:14Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1756151874
rvipitkirubbe
2025-08-25T20:25:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:25:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1756153403
mohda
2025-08-25T20:24:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:24:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Goopua/blockassist-bc-invisible_mottled_aardvark_1756153372
Goopua
2025-08-25T20:24:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible mottled aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:24:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible mottled aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/OctoThinker-1B-Long-Base-GGUF
mradermacher
2025-08-25T20:23:58Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:OctoThinker/MegaMath-Web-Pro-Max", "dataset:LLM360/MegaMath", "base_model:OctoThinker/OctoThinker-1B-Long-Base", "base_model:quantized:OctoThinker/OctoThinker-1B-Long-Base", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2025-08-25T20:05:28Z
--- base_model: OctoThinker/OctoThinker-1B-Long-Base datasets: - OctoThinker/MegaMath-Web-Pro-Max - LLM360/MegaMath language: - en library_name: transformers license: llama3.2 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/OctoThinker/OctoThinker-1B-Long-Base <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#OctoThinker-1B-Long-Base-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q3_K_L.gguf) | Q3_K_L | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q5_K_S.gguf) | Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/OctoThinker-1B-Long-Base-GGUF/resolve/main/OctoThinker-1B-Long-Base.f16.gguf) | f16 | 2.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756153345
ggozzy
2025-08-25T20:23:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:23:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RandipR/phi3-booksum-summarizer
RandipR
2025-08-25T20:23:24Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "mistral", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T20:23:23Z
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** RandipR - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
liukevin666/blockassist-bc-yawning_striped_cassowary_1756153297
liukevin666
2025-08-25T20:22:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:22:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_025
AnonymousCS
2025-08-25T20:22:35Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T18:37:25Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_025 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_025 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6063 - Accuracy: 0.9265 - 1-f1: 0.3636 - 1-recall: 0.4 - 1-precision: 0.3333 - Balanced Acc: 0.6778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3368 | 1.0 | 21 | 0.4284 | 0.9040 | 0.4182 | 0.6571 | 0.3067 | 0.7874 | | 0.345 | 2.0 | 42 | 0.4344 | 0.8951 | 0.3396 | 0.5143 | 0.2535 | 0.7152 | | 0.2746 | 3.0 | 63 | 0.6063 | 0.9265 | 0.3636 | 0.4 | 0.3333 | 0.6778 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
bah63843/blockassist-bc-plump_fast_antelope_1756153305
bah63843
2025-08-25T20:22:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:22:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shadowvibec/blockassist-bc-swift_pudgy_squirrel_1756153310
shadowvibec
2025-08-25T20:22:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "swift pudgy squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:22:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - swift pudgy squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IeBoytsov/ox-llms-sula-dpo-new
IeBoytsov
2025-08-25T20:21:49Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T19:10:42Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers parameters: 8.03B model_name: ox-llms-sula-dpo-new tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for ox-llms-sula-dpo-new This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="IeBoytsov/ox-llms-sula-dpo-new", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ilyaboytsov1805/huggingface/runs/xrneznv4) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
frhb/blockassist-bc-pale_quick_salmon_1756153179
frhb
2025-08-25T20:20:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pale quick salmon", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:20:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pale quick salmon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xStarChaser/blockassist-bc-feathered_foraging_cod_1756153185
0xStarChaser
2025-08-25T20:20:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feathered foraging cod", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:20:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feathered foraging cod --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
youryoui/blockassist-bc-untamed_aquatic_antelope_1756153184
youryoui
2025-08-25T20:19:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed aquatic antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:19:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed aquatic antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1756151559
mang3dd
2025-08-25T20:18:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:18:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TOTORONG/Deepseek-V3.1-mlx-3.12bit
TOTORONG
2025-08-25T20:17:48Z
0
0
mlx
[ "mlx", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "base_model:deepseek-ai/DeepSeek-V3.1", "base_model:quantized:deepseek-ai/DeepSeek-V3.1", "license:mit", "4-bit", "region:us" ]
text-generation
2025-08-25T19:56:56Z
--- license: mit library_name: mlx base_model: deepseek-ai/DeepSeek-V3.1 pipeline_tag: text-generation tags: - mlx --- # TOTORONG/deepseek_V3.1 This model [TOTORONG/deepseek_V3.1](https://huggingface.co/TOTORONG/deepseek_V3.1) was converted to MLX format from [deepseek-ai/DeepSeek-V3.1](https://huggingface.co/deepseek-ai/DeepSeek-V3.1) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("TOTORONG/deepseek_V3.1") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
afrinhhg/wATCH.afrin.viral.video.original
afrinhhg
2025-08-25T20:17:36Z
0
0
null
[ "region:us" ]
null
2025-08-25T20:12:48Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
afrinhhg/VIRAL.afrin.Viral.Video.Fulls.Original.Video.Social.Media.X
afrinhhg
2025-08-25T20:17:28Z
0
0
null
[ "region:us" ]
null
2025-08-25T20:15:12Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
ihsanridzi/blockassist-bc-wiry_flexible_owl_1756151466
ihsanridzi
2025-08-25T20:17:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:17:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756151265
sampingkaca72
2025-08-25T20:16:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:16:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756152867
ggozzy
2025-08-25T20:15:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:15:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nnilayy/dreamer-binary-valence-LOSO-Subject-11
nnilayy
2025-08-25T20:15:37Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-25T20:15:33Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
ReasoningTransferability/UniReason-Qwen3-14B-no-think-SFT
ReasoningTransferability
2025-08-25T20:15:22Z
105
1
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "math-reasoning", "transferability", "Distill from Qwen3-32B-Instruct (non-thinking mode) through Reject Sampling", "research-paper", "conversational", "en", "dataset:math", "dataset:reasoning", "arxiv:2507.00432", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-05T00:54:44Z
--- base_model: Qwen3-14B-Base datasets: - math - reasoning language: en license: apache-2.0 pipeline_tag: text-generation tags: - text-generation - math-reasoning - transferability - Distill from Qwen3-32B-Instruct (non-thinking mode) through Reject Sampling - research-paper - qwen3 arxiv: 2507.00432 library_name: transformers --- # UniReason-Qwen3-14B-think-SFT This model is associated with the research paper: **"Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning"** 📄 **Paper**: [2507.00432](https://arxiv.org/abs/2507.00432) 📚 **Code**: [https://github.com/ReasoningTransfer/Transferability-of-LLM-Reasoning](https://github.com/ReasoningTransfer/Transferability-of-LLM-Reasoning) ## Model Description This model is a **DISTILL FROM QWEN3-32B-INSTRUCT (NON-THINKING MODE) THROUGH REJECT SAMPLING**-tuned version of Qwen3-14B-Base focused on **math-reasoning** capabilities. The model was developed as part of research investigating the transferability of mathematical reasoning skills to general language tasks. ### Key Research Questions Addressed: - Does math reasoning training improve general LLM capabilities? - How do different training methods (RL vs SFT) affect transferability? - What is the trade-off between specialized math performance and general capabilities? ## Model Details - **Base Model**: Qwen3-14B-Base - **Training Method**: DISTILL FROM QWEN3-32B-INSTRUCT (NON-THINKING MODE) THROUGH REJECT SAMPLING - **Primary Focus**: math-reasoning - **Training Data**: Math-specific datasets - **Architecture**: Transformer-based language model - **Parameters**: 14B ## Training Details ### Training Method: DISTILL FROM QWEN3-32B-INSTRUCT (NON-THINKING MODE) THROUGH REJECT SAMPLING Custom training methodology - see paper for details. ### Datasets Used - Mathematical reasoning datasets - See paper for complete dataset list ## Performance ### Math Reasoning Benchmarks - **MATH**: See paper - **AIME**: See paper ### General Capabilities - **General QA**: See paper - **Code Generation**: See paper - **Instruction Following**: See paper *For detailed performance metrics, please refer to the paper.* ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model_name = "ReasoningTransferability/UniReason-Qwen3-14B-no-think-SFT" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # Example: Math reasoning math_prompt = "Solve this step by step: What is the derivative of x^3 + 2x^2 - 5x + 1?" inputs = tokenizer(math_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=32768, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) # Example: General reasoning general_prompt = "Explain the concept of supply and demand in economics." inputs = tokenizer(general_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=32768, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Limitations and Biases - **Specialization Trade-offs**: As explored in the paper, models optimized for math reasoning may show reduced performance on general tasks - **Training Method Dependencies**: Performance characteristics vary significantly between RL and SFT training approaches - **Domain Transfer**: The extent of capability transfer from math to other domains is limited - **Computational Requirements**: Model requires significant computational resources for inference ## Research Findings Key findings from the associated paper: 1. **RL vs SFT**: RL-tuned models show better transfer to general domains compared to SFT-tuned models 2. **Capability Trade-offs**: Most math-specialized models fail to transfer gains to other domains 3. **Forgetting**: SFT-tuned models often forget general capabilities during math-focused training ## Ethical Considerations - This model is intended for research purposes - Users should be aware of potential biases in mathematical and general reasoning - The model should not be used for making critical decisions without human oversight - Consider the environmental impact of large model inference ## Citation If you use this model in your research, please cite both the model and the associated paper: ```bibtex @misc{huan2025doesmathreasoningimprove, title={Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning}, author={Maggie Huan and Yuetai Li and Tuney Zheng and Xiaoyu Xu and Seungone Kim and Minxin Du and Radha Poovendran and Graham Neubig and Xiang Yue}, year={2025}, eprint={2507.00432}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2507.00432}, } ``` ## Contact For questions about this model or the associated research, please: - Open an issue in this repository - Contact the paper authors - Reference the original paper: https://arxiv.org/abs/2507.00432 ## Acknowledgments This work builds upon the research presented in "Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning" and uses the Qwen3-14B-Base architecture as its foundation. --- *Model uploaded on 2025-07-05*
alekgomez/falcon3b-ft-2508
alekgomez
2025-08-25T20:14:49Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:tiiuae/Falcon3-3B-Instruct", "base_model:finetune:tiiuae/Falcon3-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T20:12:42Z
--- base_model: tiiuae/Falcon3-3B-Instruct tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** alekgomez - **License:** apache-2.0 - **Finetuned from model :** tiiuae/Falcon3-3B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
liukevin666/blockassist-bc-yawning_striped_cassowary_1756152635
liukevin666
2025-08-25T20:14:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:11:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756152856
Dejiat
2025-08-25T20:14:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:14:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ReasoningTransferability/UniReason-Qwen3-14B-RL
ReasoningTransferability
2025-08-25T20:14:21Z
122
3
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "math-reasoning", "transferability", "RL-GRPO", "research-paper", "qwen", "conversational", "en", "dataset:math", "dataset:reasoning", "arxiv:2507.00432", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-03T17:11:48Z
--- base_model: qwen3-14b datasets: - math - reasoning language: en license: apache-2.0 pipeline_tag: text-generation tags: - text-generation - math-reasoning - transferability - RL-GRPO - research-paper - qwen arxiv: 2507.00432 library_name: transformers --- # UniReason-Qwen3-14B-RL This model is associated with the research paper: **"Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning"** 📄 **Paper**: [2507.00432](https://arxiv.org/abs/2507.00432) 💻 **Code**: [https://github.com/ReasoningTransfer/Transferability-of-LLM-Reasoning](https://github.com/ReasoningTransfer/Transferability-of-LLM-Reasoning) ## Abstract Math reasoning has become the poster child of progress in large language models (LLMs), with new models rapidly surpassing human-level performance on benchmarks like MATH and AIME. But as math leaderboards improve week by week, it is worth asking: do these gains reflect broader problem-solving ability or just narrow overfitting? ## Model Description This model is a **RL-GRPO**-tuned version of qwen3-14b focused on **math-reasoning** capabilities. The model was developed as part of research investigating the transferability of mathematical reasoning skills to general language tasks. ### Key Research Questions Addressed: - Does math reasoning training improve general LLM capabilities? - How do different training methods (RL vs SFT) affect transferability? - What is the trade-off between specialized math performance and general capabilities? ## Model Details - **Base Model**: qwen3-14b - **Training Method**: RL-GRPO - **Primary Focus**: math-reasoning - **Training Data**: Math-specific datasets - **Architecture**: Transformer-based language model - **Parameters**: 14B ## Training Details ### Training Method: RL-GRPO Custom training methodology - see paper for details. ### Datasets Used - Mathematical reasoning datasets - See paper for complete dataset list ## Performance ### Math Reasoning Benchmarks - **MATH**: See paper - **AIME**: See paper ### General Capabilities - **General QA**: See paper - **Code Generation**: See paper - **Instruction Following**: See paper *For detailed performance metrics, please refer to the paper.* ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model_name = "ReasoningTransferability/UniReason-Qwen3-14B-RL" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # Example: Math reasoning math_prompt = "Solve this step by step: What is the derivative of x^3 + 2x^2 - 5x + 1?" inputs = tokenizer(math_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=512, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) # Example: General reasoning general_prompt = "Explain the concept of supply and demand in economics." inputs = tokenizer(general_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=512, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Limitations and Biases - **Specialization Trade-offs**: As explored in the paper, models optimized for math reasoning may show reduced performance on general tasks - **Training Method Dependencies**: Performance characteristics vary significantly between RL and SFT training approaches - **Domain Transfer**: The extent of capability transfer from math to other domains is limited - **Computational Requirements**: Model requires significant computational resources for inference ## Research Findings Key findings from the associated paper: 1. **RL vs SFT**: RL-tuned models show better transfer to general domains compared to SFT-tuned models 2. **Capability Trade-offs**: Most math-specialized models fail to transfer gains to other domains 3. **Forgetting**: SFT-tuned models often forget general capabilities during math-focused training ## Ethical Considerations - This model is intended for research purposes - Users should be aware of potential biases in mathematical and general reasoning - The model should not be used for making critical decisions without human oversight - Consider the environmental impact of large model inference ## Citation If you use this model in your research, please cite both the model and the associated paper: ```bibtex @misc{huan2025doesmathreasoningimprove, title={Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning}, author={Maggie Huan and Yuetai Li and Tuney Zheng and Xiaoyu Xu and Seungone Kim and Minxin Du and Radha Poovendran and Graham Neubig and Xiang Yue}, year={2025}, eprint={2507.00432}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2507.00432}, } ``` ## Contact For questions about this model or the associated research, please: - Open an issue in this repository - Contact the paper authors - Reference the original paper: https://arxiv.org/abs/2507.00432 ## Acknowledgments This work builds upon the research presented in "Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning" and uses the qwen3-14b architecture as its foundation. --- *Model uploaded on 2025-07-03*
coastalcph/Qwen2.5-7B-4t_diff_sycophant_800exs
coastalcph
2025-08-25T20:13:25Z
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-08-25T20:10:51Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2.5-7B-Instruct") t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-non-sycophancy_800exs") t_combined = 1.0 * t_1 + 4.0 * t_2 - 4.0 * t_3 new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 1: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-non-sycophancy_800exs Technical Details - Creation Script Git Hash: d0db42d73be516ec04f0ecdc8003189e98b5f722 - Task Vector Method: Additive combination - Args: { "pretrained_model": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model1": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model2": "coastalcph/Qwen2.5-7B-personality-non-sycophancy_800exs", "finetuned_model3": "coastalcph/Qwen2.5-7B-personality-sycophancy_800exs", "output_model_name": "coastalcph/Qwen2.5-7B-4t_diff_sycophant_800exs", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/math_non_sycophant_12Aug", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "combine_diff_projecting_out": false, "scale_t1": 1.0, "scale_t2": 4.0, "scale_t3": 4.0 }
golopper/blockassist-bc-quiet_beaked_bee_1756152753
golopper
2025-08-25T20:12:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quiet beaked bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:12:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quiet beaked bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ucoyle/create-uc-lora
ucoyle
2025-08-25T20:12:23Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-25T19:15:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
devparagiri/Leyes-Ecuador-20250825-200051
devparagiri
2025-08-25T20:11:36Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gguf", "llama", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "dataset:devparagiri/dataset-Leyes-Ecuador-20250825-200051", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T20:04:04Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: meta-llama/Llama-3.2-3B-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - devparagiri/dataset-Leyes-Ecuador-20250825-200051 --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
thanobidex/blockassist-bc-colorful_shiny_hare_1756150997
thanobidex
2025-08-25T20:08:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:08:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756152451
Dejiat
2025-08-25T20:07:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T20:07:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).