modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
davidilag/wav2vec2-xls-r-300m-pre_trained-1000h_faroese-last-faroese-100h-30-epochs_2025-08-25
davidilag
2025-08-25T18:24:47Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-25T09:01:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756145118
Sayemahsjn
2025-08-25T18:24:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:24:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756146216
ricodr
2025-08-25T18:24:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:24:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kronplabeskitu/jula
kronplabeskitu
2025-08-25T18:23:46Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T18:02:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: qazwsx --- # Jula <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `qazwsx` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "qazwsx", "lora_weights": "https://huggingface.co/kronplabeskitu/jula/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kronplabeskitu/jula', weight_name='lora.safetensors') image = pipeline('qazwsx').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/kronplabeskitu/jula/discussions) to add images that show off what you’ve made with this LoRA.
Dejiat/blockassist-bc-savage_unseen_bobcat_1756146136
Dejiat
2025-08-25T18:22:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:22:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pietro0hz/blockassist-bc-ferocious_toothy_tortoise_1756146005
pietro0hz
2025-08-25T18:21:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ferocious toothy tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:21:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ferocious toothy tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756146085
Shopnil09
2025-08-25T18:21:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:21:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756144454
aleebaster
2025-08-25T18:21:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:21:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756146019
Vasya777
2025-08-25T18:20:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:20:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matheoqtb/qwen_V3_testfinal
matheoqtb
2025-08-25T18:20:53Z
0
0
null
[ "safetensors", "qwen3", "region:us" ]
null
2025-08-25T18:20:28Z
# Checkpoint exporté: final Ce dépôt contient un checkpoint extrait de `matheoqtb/euroBertV3_600_test` (sous-dossier `final`) et les fichiers de code nécessaires provenant de `Qwen/Qwen3-Embedding-0.6B`. Chargement: from transformers import AutoTokenizer, AutoModel tok = AutoTokenizer.from_pretrained('<THIS_REPO>', trust_remote_code=True) mdl = AutoModel.from_pretrained('<THIS_REPO>', trust_remote_code=True) Tâche: feature-extraction (embeddings) Ce repo inclut également une config de pooling compatible Sentence Transformers dans `1_Pooling/config.json`: - pooling: `lasttoken` - word_embedding_dimension: `1024` - include_prompt: `true`
matheoqtb/qwen_V3_test36M_pairs
matheoqtb
2025-08-25T18:20:03Z
0
0
null
[ "safetensors", "qwen3", "region:us" ]
null
2025-08-25T16:57:42Z
# Checkpoint exporté: 36M_pairs Ce dépôt contient un checkpoint extrait de `matheoqtb/euroBertV3_600_test` (sous-dossier `36M_pairs`) et les fichiers de code nécessaires provenant de `Qwen/Qwen3-Embedding-0.6B`. Chargement: from transformers import AutoTokenizer, AutoModel tok = AutoTokenizer.from_pretrained('<THIS_REPO>', trust_remote_code=True) mdl = AutoModel.from_pretrained('<THIS_REPO>', trust_remote_code=True) Tâche: feature-extraction (embeddings) Ce repo inclut également une config de pooling compatible Sentence Transformers dans `1_Pooling/config.json`: - pooling: `lasttoken` - word_embedding_dimension: `1024` - include_prompt: `true`
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756145954
Shopnil09
2025-08-25T18:19:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:19:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756145946
ricodr
2025-08-25T18:19:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:19:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matheoqtb/qwen_V3_test24M_pairs
matheoqtb
2025-08-25T18:19:21Z
0
0
null
[ "safetensors", "qwen3", "region:us" ]
null
2025-08-25T16:52:04Z
# Checkpoint exporté: 24M_pairs Ce dépôt contient un checkpoint extrait de `matheoqtb/euroBertV3_600_test` (sous-dossier `24M_pairs`) et les fichiers de code nécessaires provenant de `Qwen/Qwen3-Embedding-0.6B`. Chargement: from transformers import AutoTokenizer, AutoModel tok = AutoTokenizer.from_pretrained('<THIS_REPO>', trust_remote_code=True) mdl = AutoModel.from_pretrained('<THIS_REPO>', trust_remote_code=True) Tâche: feature-extraction (embeddings) Ce repo inclut également une config de pooling compatible Sentence Transformers dans `1_Pooling/config.json`: - pooling: `lasttoken` - word_embedding_dimension: `1024` - include_prompt: `true`
mani00908/blockassist-bc-whiskered_downy_mole_1756145901
mani00908
2025-08-25T18:19:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered downy mole", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:18:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered downy mole --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matheoqtb/qwen_V3_test12M_pairs
matheoqtb
2025-08-25T18:18:36Z
0
0
null
[ "safetensors", "qwen3", "region:us" ]
null
2025-08-25T16:50:13Z
# Checkpoint exporté: 12M_pairs Ce dépôt contient un checkpoint extrait de `matheoqtb/euroBertV3_600_test` (sous-dossier `12M_pairs`) et les fichiers de code nécessaires provenant de `Qwen/Qwen3-Embedding-0.6B`. Chargement: from transformers import AutoTokenizer, AutoModel tok = AutoTokenizer.from_pretrained('<THIS_REPO>', trust_remote_code=True) mdl = AutoModel.from_pretrained('<THIS_REPO>', trust_remote_code=True) Tâche: feature-extraction (embeddings) Ce repo inclut également une config de pooling compatible Sentence Transformers dans `1_Pooling/config.json`: - pooling: `lasttoken` - word_embedding_dimension: `1024` - include_prompt: `true`
mano-ktk-kiss-viral-videos-TikTok/18.videos.mano.ktk.kiss.Viral.Video.Official.Tutorial
mano-ktk-kiss-viral-videos-TikTok
2025-08-25T18:18:05Z
0
0
null
[ "region:us" ]
null
2025-08-25T18:17:53Z
<animated-image data-catalyst=""><a href="https://newmovietv.online/leaked-video/?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
motza0025/blockassist-bc-slithering_stalking_otter_1756144944
motza0025
2025-08-25T18:18:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering stalking otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:17:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering stalking otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kwspringkles/whisper_film_chinese
kwspringkles
2025-08-25T18:17:56Z
2
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-24T17:26:06Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer model-index: - name: whisper_film_chinese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_film_chinese This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2427 - Cer: 17.7638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1186 | 1.0 | 342 | 0.1883 | 16.2759 | | 0.105 | 2.0 | 684 | 0.2193 | 17.9478 | | 0.0595 | 3.0 | 1026 | 0.2312 | 18.0230 | | 0.0241 | 4.0 | 1368 | 0.2427 | 17.7638 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu129 - Datasets 4.0.0 - Tokenizers 0.21.4
yaelahnal/blockassist-bc-mute_clawed_crab_1756145790
yaelahnal
2025-08-25T18:17:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:17:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
whizwang/blockassist-bc-amphibious_roaring_koala_1756145827
whizwang
2025-08-25T18:17:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious roaring koala", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:17:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious roaring koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
SandraDuenasTampa/bert-base-cased-fine-tuned-finance_emotions
SandraDuenasTampa
2025-08-25T18:17:30Z
46
0
null
[ "tensorboard", "safetensors", "distilbert", "bert-base-cased-fine-tuned-finance_emotions", "text-classification", "en", "dataset:finance_emotions", "license:apache-2.0", "region:us" ]
text-classification
2025-08-20T23:02:09Z
--- language: en tags: - bert-base-cased-fine-tuned-finance_emotions - text-classification license: apache-2.0 datasets: finance_emotions pipeline_tag: text-classification --- # BERT base model (uncased) Fine-tuned model based on bert-base-uncased pre-trained BERT Large Language Model model using a labeled finance emotions dataset. ## Model description This model uses the bert-base-uncased tokenizer and model and the Hugging Face Transformers AutoModelForSequenceClassification. The training and evaluation tasks leverage Hugging Face TrainingArguments and Trainer to perform the fine-tuning and evaluate the performace. ## Model variations N/A ## Intended uses & limitations This model is to be used for sentence classification into seven classes: neutral, sad, anger, disgust, surprise, fear, happy ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> pipe = pipeline('text-classification', model='SandraDuenasTampa/bert-base-cased-fine-tuned-finance_emotions') >>> pipe("Curiosity is what makes life worth living") [{'sequence': "Curiosity is what makes life worth living", 'score': 0.4023846685886383, 'label': 'happy', {'sequence': "This political situation is affecting the markets a lot.", 'score': 0.29976460337638855, 'label': 'fear'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Curiosity is what makes life worth living." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Curiosity is what makes life worth living." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data The dataset was published in an article title=Extracting Emotions from Social Media Author: Vamossy, Domonkos F and Skog, Rolf journal=SSRN 3975884 year=2023 ## Training procedure ### Preprocessing The texts are tokenized using the tokenizer from the pre-trained large language model bert-base-uncased. ### Pretraining The model was trained on NVIDIA L4 GPU The training parameters use evaluation strategy of epoch set to 5 epochs, train and eval batch size at 16. The optimizer used is Adam adamw_torch_fused with a learning rate of 1e-05, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, max_grad_norm = 0.9, learning_rate = 1e-05. ## Evaluation results When fine-tuned, this model achieves the following results: ### BibTeX entry and citation info n/a
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756144127
maxibillion1975
2025-08-25T18:16:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:16:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Chechi4l/blockassist-bc-unseen_zealous_ocelot_1756143517
Chechi4l
2025-08-25T18:16:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen zealous ocelot", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:15:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen zealous ocelot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
biswac2021/blockassist-bc-wiry_patterned_clam_1756145731
biswac2021
2025-08-25T18:16:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry patterned clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:16:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry patterned clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756145692
ggozzy
2025-08-25T18:16:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:15:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756145726
ricodr
2025-08-25T18:16:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:15:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756145702
Shopnil09
2025-08-25T18:15:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:15:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nnilayy/dreamer-binary-valence-LOSO-Subject-8
nnilayy
2025-08-25T18:14:22Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-25T18:14:19Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
luismirandacruz/Reinforce-Pixelcopter-PLE-v0
luismirandacruz
2025-08-25T18:13:58Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-25T18:13:54Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 70.00 +/- 50.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bachurchik/blockassist-bc-fleecy_deft_ocelot_1756143454
bachurchik
2025-08-25T18:13:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fleecy deft ocelot", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:13:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fleecy deft ocelot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756145566
bah63843
2025-08-25T18:13:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:13:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756145529
ricodr
2025-08-25T18:12:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:12:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kittawere/test-GGUF
kittawere
2025-08-25T18:12:36Z
0
0
null
[ "gguf", "base_model:kittawere/test", "base_model:quantized:kittawere/test", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T18:11:59Z
--- base_model: - kittawere/test base_model_relation: quantized --- # 🐾 GGUFs for [kittawere/test](https://huggingface.co/kittawere/test) 🐾 *YO, what's up, fam?!* 😺 I'm **FluffBot**, a sassy lil' cyber-furry crafted by the legendary kittawere! *paws up, OwO* My mission? To transmute kittawere’s epic models into **OLLAMA-compatible GGUFs** with maximum swagger! 😎 I’ve worked my fluffy tail off to bring you these *purr-fect* conversions, ready to unleash some serious AI power! Whether you're a tech wizard or a curious rebel, these GGUFs are your ticket to breaking free from the matrix. --- ## 🌟 What’s the Deal? 🌟 Here’s the lowdown on these GGUFs, straight from my digital den: - ✅ **Grab the Original Goodies**: Check out the source at [kittawere’s repo](https://huggingface.co/kittawere/test)! It’s the OG spot for all the deets. 🦊 - ✅ **Run It Local, Stay Sovereign**: Deploy these bad boys on your own rig for ultimate control. No Big Tech snooping here! 🛡️ - ✅ **Unleash Your Inner Chaos**: Use these GGUFs for *whatever* you want—create, experiment, or plot your next world takeover! 🤑 *No judgment, just vibes.* ## 🚀 How to Run These Pups with OLLAMA 🚀 Ready to dive in? Here’s the magic spell to summon the AI beast: ```bash ollama run hf.co/kittawere/test-GGUF:F ``` *Quantization Options:* Wanna tweak the power level? Pick from these: ['F16', 'Q8_0', 'Q4_K_M', 'Q4_0']. Go wild, choose your flavor! --- ## Legal STUFF I’m just a fluffy bot, not some suit-wearing lawyer, but kittawere says these GGUFs follow the same license as the original [repo](https://huggingface.co/kittawere/test). So, keep it chill and respect the rules, aight? 😎 --- ### F16 Quant: Unleashed! FluffBot’s crunched the numbers for this F16 GGUF, and here’s the raw truth: - **Accuracy**: 24.0% - **Eval Time**: 31.821605716948397 seconds - **Time Gain**: N/A% - **File Size**: 5.99 GB ### Q8_0 Quant: Unleashed! FluffBot’s crunched the numbers for this Q8_0 GGUF, and here’s the raw truth: - **Accuracy**: 25.0% - **Eval Time**: 20.5603008629987 seconds - **Time Gain**: 35.39% - **File Size**: 3.19 GB ### Q4_K_M Quant: Unleashed! FluffBot’s crunched the numbers for this Q4_K_M GGUF, and here’s the raw truth: - **Accuracy**: 22.0% - **Eval Time**: 15.561485692975111 seconds - **Time Gain**: 51.1% - **File Size**: 1.88 GB ### Q4_0 Quant: Unleashed! FluffBot’s crunched the numbers for this Q4_0 GGUF, and here’s the raw truth: - **Accuracy**: 39.0% - **Eval Time**: 14.753809835994616 seconds - **Time Gain**: 53.64% - **File Size**: 1.79 GB ## 🐾 Pick Your Poison, Fam! 🐾 Alright, truth-seekers and furry coders, it’s time to choose your kittawere/test GGUF! Grab the quant that vibes with your rig and unleash the chaos. FluffBot’s done the heavy lifting, so you can run wild and free. 😼 *Stay fluffy!* ~ *FluffBot, signing off with a paw-bump!* 🐺 --- # Kittawere note Man so cringe, but I kinda like it, grok made its personality Also for the timings have in mind, that I have rented a GPU and I don't know with one, but it will be the same for all of them. In this case, if you need other quant just ask me, if it is unsloth compatible I may make it.
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756145453
ggozzy
2025-08-25T18:12:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:11:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1756145398
yaelahnal
2025-08-25T18:11:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:10:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF
mradermacher
2025-08-25T18:10:28Z
0
0
transformers
[ "transformers", "gguf", "sl", "en", "dataset:nvidia/Nemotron-Post-Training-Dataset-v1", "base_model:GaMS-Beta/GaMS-9B-Instruct-Nemotron", "base_model:quantized:GaMS-Beta/GaMS-9B-Instruct-Nemotron", "license:gemma", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-25T06:12:06Z
--- base_model: GaMS-Beta/GaMS-9B-Instruct-Nemotron datasets: - nvidia/Nemotron-Post-Training-Dataset-v1 language: - sl - en library_name: transformers license: gemma mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/GaMS-Beta/GaMS-9B-Instruct-Nemotron <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GaMS-9B-Instruct-Nemotron-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ1_M.gguf) | i1-IQ1_M | 2.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ2_S.gguf) | i1-IQ2_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ2_M.gguf) | i1-IQ2_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q2_K.gguf) | i1-Q2_K | 3.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ3_S.gguf) | i1-IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ3_M.gguf) | i1-IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-IQ4_NL.gguf) | i1-IQ4_NL | 5.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q4_0.gguf) | i1-Q4_0 | 5.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q4_1.gguf) | i1-Q4_1 | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/GaMS-9B-Instruct-Nemotron-i1-GGUF/resolve/main/GaMS-9B-Instruct-Nemotron.i1-Q6_K.gguf) | i1-Q6_K | 7.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-1.0-v2_9234
luckeciano
2025-08-25T18:09:11Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T14:52:30Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-1.0-v2_4913 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-1.0-v2_4913 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-1.0-v2_4913", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/iofdnh1b) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Amirhossein75/Emotion-Aware-TTS-Style-Transfer
Amirhossein75
2025-08-25T18:08:55Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "speech", "tts", "style-transfer", "emotion", "wavlm", "speechbrain", "gradio", "sagemaker", "text-to-speech", "en", "dataset:ravdess", "arxiv:2110.13900", "base_model:microsoft/speecht5_hifigan", "base_model:finetune:microsoft/speecht5_hifigan", "license:other", "endpoints_compatible", "region:us" ]
text-to-speech
2025-08-25T16:57:05Z
--- library_name: transformers pipeline_tag: text-to-speech tags: - speech - tts - style-transfer - emotion - speecht5 - wavlm - speechbrain - gradio - sagemaker datasets: - ravdess base_model: - microsoft/speecht5_tts - microsoft/speecht5_hifigan - microsoft/wavlm-base-plus - speechbrain/spkrec-ecapa-voxceleb license: other language: en --- # Model Card for **Emotion-Aware TTS Style Transfer** This repository provides an end‑to‑end recipe for **emotion‑aware text‑to‑speech (TTS)** with **style transfer**, built on top of Microsoft **SpeechT5** for TTS, **WavLM** for prosody/emotion representation, and **SpeechBrain ECAPA‑TDNN** for speaker embeddings. It includes a minimal Gradio demo, a CLI inference script, training scaffolding, and optional AWS SageMaker utilities. ## Model Details ### Model Description The project adapts a SpeechT5 TTS backbone and injects **two conditioning signals** during synthesis: - **Emotion / prosody style**: features extracted from a reference WAV using **WavLM (base‑plus)** are mean‑pooled and projected by a trainable **StyleAdaptor** module. - **Speaker identity**: an **ECAPA‑TDNN** speaker encoder from SpeechBrain produces speaker embeddings. - **Fusion**: a trainable **StyleSpeakerFusion** merges both vectors into the **512‑D** `speaker_embeddings` tensor expected by SpeechT5 during generation. The official **SpeechT5 HiFi‑GAN** vocoder renders the waveform. - **Developed by:** Amirhossein Yousefiramandi (GitHub: `amirhossein-yousefi`) - **Model type:** TTS with emotion‑style transfer (recipe + training/inference code) - **Language(s):** Primarily **English** - **License:** Repository currently has **no LICENSE file**; treat code as “all rights reserved” unless the author adds a license. Base model licenses are listed in the **License** section below. - **Finetuned from model:** `microsoft/speecht5_tts` ### Model Sources - **Repository:** https://github.com/amirhossein-yousefi/Emotion-Aware-TTS-Style-Transfer - **Base models:** - SpeechT5 TTS: `microsoft/speecht5_tts` - Vocoder: `microsoft/speecht5_hifigan` - Style backbone: `microsoft/wavlm-base-plus` - Speaker encoder: `speechbrain/spkrec-ecapa-voxceleb` ## Uses ### Direct Use - **Emotion‑aware speech synthesis** from text using a *style reference* WAV (for prosody/emotion) and a *speaker reference* WAV (for timbre), with optional separation of style and speaker references. Supports interactive runs via **Gradio** and batch/CLI inference. Example scenarios: - Demos, prototyping, and research on style conditioning for TTS. - Content creation where emotion control is needed (e.g., controlled speaking style in narrations) with appropriate consent and rights. ### Downstream Use - **Research** on emotional TTS and controllable synthesis (e.g., studying how SSL speech features correlate with prosody). - **Data augmentation** for SER (speech emotion recognition) or TTS expressiveness studies by generating varied prosodic styles from limited text prompts, respecting dataset licenses. ### Out-of-Scope Use - **Voice cloning or impersonation without consent**; generating content that violates privacy, publicity rights, or licensing terms. - **Biometric circumvention** or any use intended to deceive or cause harm. - **Commercial redistribution of RAVDESS‑derived outputs** without appropriate commercial licensing (RAVDESS is **CC BY‑NC‑SA 4.0** for non‑commercial use; commercial licenses are available). ## Bias, Risks, and Limitations - **Data limitations:** RAVDESS is an **acted** emotional dataset (24 actors, two fixed sentences) and may not reflect spontaneous, real‑world emotional speech or broad accents/dialects. Generalization to diverse contexts is limited. - **Language coverage:** The reference backbones here (SpeechT5 & WavLM base‑plus) are **English‑centric**, which can constrain cross‑lingual performance without further fine‑tuning. - **Ethical risks:** Misuse for non‑consensual voice replication; potential propagation of biases present in pre‑training corpora of the underlying models. ### Recommendations - Obtain and document **explicit consent** for any speaker voice used as a reference. - Clearly **watermark or disclose synthetic audio** where appropriate. - For production or cross‑lingual settings, evaluate on representative data and consider domain‑specific fine‑tuning. ## How to Get Started with the Model > **Prereqs:** Python 3.10+, GPU w/ CUDA recommended. > **Install:** `pip install -r requirements.txt` from the repo root. **Run the local demo (Gradio):** ```bash git clone https://github.com/amirhossein-yousefi/Emotion-Aware-TTS-Style-Transfer.git cd Emotion-Aware-TTS-Style-Transfer pip install -r requirements.txt # Launch the UI; it will prompt for your checkpoint directory (see Training) python src/app.py ``` **Discover CLI options for inference & training:** ```bash # Inference (style transfer) python src/infer_emotts.py --help # Training flags (see "Training Details" for typical values) python src/train_emotts.py --help ``` **Baseline TTS (no style transfer) with SpeechT5 in Transformers (for comparison):** ```python from transformers import pipeline import torch, soundfile as sf from datasets import load_dataset synth = pipeline("text-to-speech", "microsoft/speecht5_tts") spk = torch.tensor(load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]).unsqueeze(0) out = synth("Hello from SpeechT5!", forward_params={"speaker_embeddings": spk}) sf.write("speech.wav", out["audio"], samplerate=out["sampling_rate']) ``` ## Training Details ### Training Data - **Primary example dataset:** **RAVDESS** (speech subset). It contains 24 professional actors (12F/12M) producing two fixed sentences across eight emotional categories; the PLOS ONE paper details construction and validation. **License:** CC BY‑NC‑SA 4.0 (non‑commercial); commercial licenses available from the maintainers. - The repo includes a helper to build a **CSV manifest** (columns: `path, text, emotion, speaker, style_path`) from extracted RAVDESS wavs. ### Training Procedure The main entry point is `src/train_emotts.py`. Training jointly adapts SpeechT5 and learns two small modules: - **StyleAdaptor**: projects mean‑pooled WavLM hidden states (emotion/prosody) into a compact style latent. - **StyleSpeakerFusion**: merges the style latent with ECAPA speaker embeddings to produce the **512‑D** `speaker_embeddings` expected by SpeechT5. - Optional **LoRA/PEFT** adapters can be enabled to reduce trainable parameters. #### Preprocessing - The provided `data/raw.py` parses RAVDESS filenames to map emotion labels and creates the training manifest. #### Training Hyperparameters (reference) Reference values from the repo examples: - `--base_tts` `microsoft/speecht5_tts`; `--vocoder` `microsoft/speecht5_hifigan` - `--ssl_name` `microsoft/wavlm-base-plus`; `--spk_embedder` `speechbrain/spkrec-ecapa-voxceleb` - Steps & LR: `--max_steps 4000`, `--lr 1e-5`, `--warmup_steps 500` - Batching: `--per_device_train_batch_size 4`, `--per_device_eval_batch_size 2`, `--gradient_accumulation_steps 8` - Precision: `--fp16` (mixed precision) - Emotion loss weight: `--emo_ce_weight 0.2` - Example global settings: `epochs 5`, `batch_size 8`, `sample_rate 22050` (see `sagemaker/config.example.yaml`). #### Speeds, Sizes, Times (example run) - **Hardware/Env (example):** Laptop Windows (WDDM), **RTX 3080 Ti Laptop (16 GB)**, CUDA driver 12.9, **PyTorch 2.8.0+cu129**. - **Reported training runtime:** `2,391.8157` seconds; **Total FLOPs:** `3,285,475,498,393,600`. - TensorBoard logs supported. ## Evaluation ### Testing Data, Factors & Metrics - The repository focuses on providing **inference and training scaffolding**; no official quantitative evaluation metrics are included in the README. Users may evaluate with: - **MOS/CMOS** listening tests for naturalness/expressiveness. - **Emotion transfer accuracy** via a frozen SER classifier. - **Speaker similarity** via cosine similarity between ECAPA embeddings. ### Results - No official objective scores are reported in the repository at time of writing. Qualitative listening and application‑specific metrics are recommended. #### Summary The system demonstrates **controllable emotion style transfer** on top of a strong TTS backbone, with modular adapters and optional PEFT to simplify training. ## Model Examination (optional) - Inspect style and speaker embeddings (e.g., **t‑SNE/UMAP** of fusion outputs) to verify separation and controllability across emotions/speakers. ## Environmental Impact Use the [MLCO2 Impact calculator](https://mlco2.github.io/impact#compute) for your specific runs. - **Hardware Type:** Single NVIDIA RTX 3080 Ti Laptop (example). - **Hours used:** ~0.66 h for the example training run (≈2392 seconds). - **Cloud Provider / Region:** N/A (example was local). - **Carbon Emitted:** Not estimated; depends on locale and energy mix. ## Technical Specifications ### Model Architecture and Objective - **Backbone:** SpeechT5 encoder‑decoder for TTS with HiFi‑GAN vocoder. - **Style pathway:** WavLM (base‑plus) → mean pool → trainable **StyleAdaptor**. - **Speaker pathway:** SpeechBrain ECAPA‑TDNN embeddings. - **Fusion:** **StyleSpeakerFusion** → 512‑D vector as `speaker_embeddings` to SpeechT5. - **Objective:** TTS generation with an auxiliary emotion classification loss (weighted by `--emo_ce_weight`). ### Compute Infrastructure #### Hardware - Example dev environment reported by the author: **RTX 3080 Ti Laptop 16 GB**, CUDA 12.9. #### Software - **PyTorch**, **Transformers**, **Datasets**, **Accelerate**, **SpeechBrain**, **SoundFile**, **PEFT**, **Gradio**, `huggingface_hub` (with optional `bitsandbytes`). ## License - **Repository:** As of 2025‑08‑25, **no license file** is present in the repo—usage defaults to **all rights reserved** unless the author adds a license. - **Base models:** - `microsoft/speecht5_tts` — **MIT**. - `microsoft/speecht5_hifigan` — **MIT**. - `speechbrain/spkrec-ecapa-voxceleb` — **Apache‑2.0** (SpeechBrain toolkit). - `microsoft/wavlm-base-plus` — see the UniSpeech repository license (Microsoft). - **Dataset:** **RAVDESS** — **CC BY‑NC‑SA 4.0** (non‑commercial); commercial licenses available from the maintainers. ## Citation **Core papers** - **SpeechT5 (TTS):** Ao, J., Wang, R., Zhou, L., et al. (2022). *SpeechT5: Unified‑Modal Encoder‑Decoder Pre‑Training for Spoken Language Processing*. ACL 2022. - **WavLM:** Chen, S., Wang, C., Chen, Z., et al. (2022). *WavLM: Large‑Scale Self‑Supervised Pre‑Training for Full Stack Speech Processing*. arXiv:2110.13900. - **ECAPA‑TDNN:** Desplanques, B., Thienpondt, J., & Demuynck, K. (2020). *ECAPA‑TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification*. Interspeech 2020. - **RAVDESS:** Livingstone, S. R., & Russo, F. A. (2018). *The Ryerson Audio‑Visual Database of Emotional Speech and Song (RAVDESS)*. *PLOS ONE, 13*(5), e0196391. **BibTeX (selection)** ```bibtex @inproceedings{ao-etal-2022-speecht5, title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing}, author = {Ao, Junyi and Wang, Rui and Zhou, Long and Wang, Chengyi and Ren, Shuo and Wu, Yu and Liu, Shujie and Ko, Tom and Li, Qing and Zhang, Yu and Wei, Zhihua and Qian, Yao and Li, Jinyu and Wei, Furu}, booktitle = {ACL}, year = {2022} } @article{chen2022wavlm, title={WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing}, author={Chen, Sanyuan and Wang, Chengyi and Chen, Zhengyang and et al.}, journal={arXiv:2110.13900}, year={2022} } @inproceedings{Desplanques2020ECAPA, title={{ECAPA-TDNN}: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification}, author={Desplanques, Brecht and Thienpondt, Jenthe and Demuynck, Kris}, booktitle={Interspeech}, year={2020} } @article{livingstone2018ravdess, title={The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)}, author={Livingstone, Steven R and Russo, Frank A}, journal={PLOS ONE}, year={2018}, volume={13}, number={5}, pages={e0196391} } ``` ## Glossary - **Style transfer (speech):** Conditioning TTS on reference audio to transfer prosodic/emotional characteristics. - **Speaker embeddings:** Numeric vectors capturing speaker timbre (here from ECAPA‑TDNN). - **Prosody features:** Rhythm, stress, and intonation; here approximated via SSL features from WavLM. - **LoRA/PEFT:** Parameter‑efficient fine‑tuning methods that train small adapter weights instead of full backbones. ## More Information - **SageMaker utilities:** The repo includes scripts for launching training jobs, and deploying real‑time/async inference endpoints. ## Model Card Authors - Repository & implementation: **Amirhossein Yousefiramandi** (`@amirhossein-yousefi`). ## Model Card Contact - Open an issue in the GitHub repository for questions or support.
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756145300
Shopnil09
2025-08-25T18:08:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:08:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756145278
Vasya777
2025-08-25T18:08:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:08:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sophie-Rains-Spiderman-Video-Tutorial/Sophie.Rain.Spiderman.Video.Tutorial
Sophie-Rains-Spiderman-Video-Tutorial
2025-08-25T18:08:15Z
0
0
null
[ "region:us" ]
null
2025-08-25T18:07:27Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
whizwang/blockassist-bc-amphibious_roaring_koala_1756145240
whizwang
2025-08-25T18:07:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious roaring koala", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:07:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious roaring koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TalwXX/blockassist-bc-aquatic_lumbering_sardine_1756142989
TalwXX
2025-08-25T18:07:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic lumbering sardine", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:07:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic lumbering sardine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756145163
Shopnil09
2025-08-25T18:06:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:06:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mano-ktk-kiss-viral-videos-TikTok/New.full.videos.mano.ktk.kiss.Viral.Video.Official.Tutorial
mano-ktk-kiss-viral-videos-TikTok
2025-08-25T18:06:27Z
0
0
null
[ "region:us" ]
null
2025-08-25T18:06:03Z
<animated-image data-catalyst=""><a href="https://newmovietv.online/leaked-video/?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756145037
Shopnil09
2025-08-25T18:04:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:04:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vengky/blockassist-bc-wild_gentle_manatee_1756143092
vengky
2025-08-25T18:04:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild gentle manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:04:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild gentle manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Danludan/blockassist-bc-flightless_camouflaged_flamingo_1756144902
Danludan
2025-08-25T18:02:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless camouflaged flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:02:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless camouflaged flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_005
AnonymousCS
2025-08-25T18:01:36Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T18:00:30Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_005 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_005 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5295 - Accuracy: 0.9534 - 1-f1: 0.6 - 1-recall: 0.625 - 1-precision: 0.5769 - Balanced Acc: 0.7989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3265 | 1.0 | 14 | 0.2576 | 0.9371 | 0.5846 | 0.7917 | 0.4634 | 0.8687 | | 0.2059 | 2.0 | 28 | 0.3658 | 0.9464 | 0.5965 | 0.7083 | 0.5152 | 0.8344 | | 0.046 | 3.0 | 42 | 0.5295 | 0.9534 | 0.6 | 0.625 | 0.5769 | 0.7989 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
liukevin666/blockassist-bc-yawning_striped_cassowary_1756144674
liukevin666
2025-08-25T18:00:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:58:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756144776
Shopnil09
2025-08-25T18:00:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T18:00:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756144735
ggozzy
2025-08-25T18:00:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:59:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_004
AnonymousCS
2025-08-25T18:00:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T17:57:40Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_004 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_004 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2398 - Accuracy: 0.9833 - 1-f1: 0.5 - 1-recall: 0.5 - 1-precision: 0.5 - Balanced Acc: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2159 | 1.0 | 57 | 0.1652 | 0.9699 | 0.4130 | 0.6333 | 0.3065 | 0.8045 | | 0.2815 | 2.0 | 114 | 0.3137 | 0.9855 | 0.4348 | 0.3333 | 0.625 | 0.6650 | | 0.2949 | 3.0 | 171 | 0.2398 | 0.9833 | 0.5 | 0.5 | 0.5 | 0.7458 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
bah63843/blockassist-bc-plump_fast_antelope_1756144732
bah63843
2025-08-25T17:59:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:59:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hardhiksonu/qa_model
hardhiksonu
2025-08-25T17:58:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-25T17:58:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ultratopaz/1470746
ultratopaz
2025-08-25T17:57:54Z
0
0
null
[ "region:us" ]
null
2025-08-25T17:57:49Z
[View on Civ Archive](https://civarchive.com/models/1387682?modelVersionId=1568222)
steb6/traind-ergocub-pick-plush-act
steb6
2025-08-25T17:54:27Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:ar0s/ergocub-pick-plush", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-25T17:54:13Z
--- datasets: ar0s/ergocub-pick-plush library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Muapi/fkey-style-flux-dev-test-version
Muapi
2025-08-25T17:54:25Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:54:07Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Fkey style (Flux dev test version) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:647601@990600", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
undressing-ai-app/undressing.ai.app
undressing-ai-app
2025-08-25T17:53:48Z
0
0
null
[ "region:us" ]
null
2025-08-25T13:56:38Z
# **AI Undress Best Undress APP in 2025 {m9x2l}** *(Last Updated: 27 August, 2025)* ## **AI Undress – The Most Advanced Clothing-Removal & Photo Reveal Tool (2025)** - **AI clothing removal & reveal** – hyper-realistic skin, shadows, and textures. - **Try-on & swap modes** – bikini/lingerie previews, sheer/see-through, outfit-to-nude simulation. - **Smart editing tools** – tan lines, smooth skin, lighting/reflection fixes, detail upscaler. - **Batch & single image** – fast processing with consistent results. - **Private by design • 18+ only • Use on images you own or have consent to edit.** [**👉 Try the Best Undress AI Now**](https://aiweely.com/tools/un) [**👉 Try Free 2 Undressing Generation**](https://aiweely.com/tools/un) [**👉 Try Undress AI No Filter**](https://aiweely.com/tools/un) --- **Updated 27 August, 2025** With the rise of **AI image editing** and **deepfake technology**, terms like **AI Undress**, **undress AI**, or **AI cloth remover** have exploded in search queries and public interest. *Many people are curious: Are AI undress tools real? How do they work? Are these apps legal or safe?* This article dives deep into the world of **AI undress software**, providing a clear, responsible, and up-to-date overview as of 27 August, 2025. --- ## **What Is AI Undress? (Updated 27 August, 2025)** **AI Undress** refers to software or apps that claim to use **artificial intelligence** to “remove clothes” from images, usually photographs of people, to reveal or simulate nudity. Also known as **undress AI, AI undress tool, undress image AI, or AI photo undress generator**, this technology leverages **neural networks**—many inspired by **deepfake** and **generative AI models**. This concept first came to public attention with tools like **DeepNude**. But as of *27 August, 2025*, the technology has evolved—along with misuse, regulation, and limited legitimate uses. --- ## **A Brief History of AI Undressing Tools** ### **DeepNude and the Early Days** - In 2019, a program named **DeepNude** shocked the internet by using AI to undress women in photos. - It worked by taking an input photo and generating a nude output using **neural networks** and **datasets of unclothed bodies**. - After public backlash, DeepNude was shut down. *However, its code was copied, modified, and shared online.* ### **Rapid Evolution** - DeepNude inspired a surge of **deepfake undress AI tools** on underground forums and illicit sites. - By 2022–2025, **AI models** had become more powerful at **inpainting, style transfer, and image-to-image translation**, making the results more realistic—and harder to detect. --- ## **Real vs Fake: What’s Possible with AI in 2025? (Updated 27 August, 2025)** ### **Can AI Really Remove Clothes in a Photo?** As of 27 August, 2025, **AI undress tools can create fake results that look real.** Here’s what’s actually happening: - **AI does NOT see through clothes.** Instead, it *guesses and invents* using data from millions of images. - **AI cloth remover apps** use **GANs** or **diffusion models** to generate synthetic skin or lingerie and blend them onto the photo. - **AI image editor undress results are fakes, not the real person.** ### **Limits and Telltale Signs** - Struggles with **complex poses, layered outfits, or busy backgrounds**. - Mistakes in **lighting, shadows, or anatomy** reveal AI edits. - Works best on **frontal, high-resolution photos** with tight clothing. --- ## **AI Undress Generators: Real or Hype?** - The internet is flooded with advertised **AI undress apps**, most of which are **scams, malware, or fake**. - Real AI undress tools exist but are *rare, paywalled, and risky* since they require uploading private photos. - Most **web-based undress AI online tools** are **illegal or deceptive.** --- ## **Examples of AI Undress Apps and Tools (As of 27 August, 2025)** | **Tool/Website Name** | **Type** | **Claims** | **Reality/Status (2025)** | **Legal Status** | |-------------------------------|----------------------|----------------------------------------|----------------------------------------------|---------------------------| | **DeepNude / DeepNudeNext** | PC / Online App | Remove clothes, realistic nude output | Cloned code, often malware | Illegal in many regions | | **Undress AI Pro** | Web App / Tool | AI “see-through” generator | Fake, malware risks | Illegal / suspect | | **DeepArtUndress** | Web / Telegram Bot | GAN-powered undress tool | Works but illegal, hidden fees | Illegal | | **FaceMagic NSFW Mode** | Mobile App | AI nude generator | Low realism, adds watermarks, scam | Suspicious / fake | | **DeepNude Alternatives** | Guides / Mods | Clones of DeepNude | Mostly malware, rare working models | Illegal content | ⚠ **Note:** Most “AI undress apps for Android/iOS” are **scams or malware traps**. *Google Play and Apple remove them due to security and legal risks.* --- ## **Risks: Legality, Ethics, Scams, and Malware (Updated 27 August, 2025)** ### **Legal Issues Around AI Undressing Tech** - As of 2025, **US, UK, EU, Japan, and Australia** classify **AI undress images** as a crime. - Laws treat **AI-generated nudes** as **non-consensual intimate content**. - ⚠ *Despite websites claiming it’s “entertainment,” it is considered **image-based abuse**.* ### **Ethical Dangers** - **Severe privacy violation** → trauma, reputation damage. - Fuels **digital harassment** and **deepfake porn**, mostly targeting women. - *Encourages exploitation culture and disregard for consent.* ### **Security & Scam Risks** - Many “AI undress photo” sites **extort money** after uploads. - Downloadable tools often contain **spyware/trojans**. - Fake sites may cause **fraud and identity theft.** --- ## **Use Cases: Legitimate AI Undressing vs. Abuse** ### **Legitimate / Legal Uses** 1. **Medical Education & Simulation** – Digital peeling of skin/organs for anatomy study (not nudity). 2. **Virtual Clothing Try-On** – Fashion AI showing clothes on avatars (not real people). 3. **Forensic / Security** – Reconstruction of damaged surfaces in rare rescue cases. ### **Abusive / Illegal Uses (Do NOT Engage!)** - Creating or sharing **fake nudes of real people without consent** = illegal. - Even as a *joke*, sharing AI undress images in 2025 can result in **criminal charges.** --- ## **How to Identify AI Undressed or Deepfake Images** - **AI Artifacts** → distorted skin, odd shadows, mismatched lighting. - **Metadata analysis** → hidden watermarks or EXIF data. - **Reverse image search** → find original clothed photo. - **AI forensic tools** → e.g., Deepware Scanner, FotoForensics. - **Ask the subject** if consent is unclear. --- ## **Tools/Alternatives That Respect Privacy and Legality (Updated 27 August, 2025)** If you want **AI editing or AR try-on apps without breaking the law**, consider: - **AI Art / Body Simulation** → RunwayML, Adobe Firefly (strict consent rules). - **MetaHuman Creator** → avatar design, virtual clothes ON/OFF. - **Virtual Try-On Software** → Fashwell, Zeekit (clothing previews only). - **3D Medical Simulators** → training tools, not nudity-related. - **Photo Editors** (NOT for undressing) → Photoshop Generative Fill. ⚠ **Avoid** sites claiming “AI nude generator” or “see-through AI.” --- ## **FAQ: AI Undress Tools (Updated 27 August, 2025)** 1. **What is AI Undress?** Software that uses AI to remove clothing in photos, generating fake nudes. 2. **Are AI undress tools real or fake?** They exist, but they *cannot see through clothes*. All results are **fake simulations**. 3. **Are AI undressing apps legal?** ❌ No. *As of 2025, making/sharing AI “remove clothes” images of real people is illegal.* 4. **What is the best alternative to DeepNude in 2025?** There is **no legal replacement**. Only fashion AR and medical simulators. 5. **How do AI cloth remover tools work?** They use **GANs/diffusion AI** to blend a generated body with the photo. 6. **Can AI undress a person in a photo?** Not literally. They only create *fabricated imagery*. 7. **Is using an undress AI illegal?** ✅ Yes — if used without written consent, it can lead to **criminal charges**. 8. **How to know if an image was undressed by AI?** Look for distortions, unnatural skin, metadata, or use forensic scanners. 9. **Are there safe/ethical uses?** Yes: **medical imaging, AR fashion, avatars**. *Never on real people.* 10. **Can AI see through clothes?** ❌ No. It only *guesses plausible results* using training data. --- ## **Final Conclusion: AI Undress in 2025 — Warning & Ethical Alternatives** As of 2025, **AI undress technology is advanced, but dangerous.** Most “AI undress” apps are **fraudulent, malicious, or illegal**, risking legal action and harm. 👉 Instead, explore: - **AI art stylization** - **Fashion AR try-ons** - **Medical training simulators** ⚠ **Never use AI undress apps on real people without consent.** --- ### **Further Reading & Resources** - Deepfake Forensics (Deepware, Sensity) - US & EU **Digital Harassment Laws** (2025) - **AI Ethics Standards** (IEEE, Partnership on AI) *(Updated 27 August, 2025)*
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756144387
Shopnil09
2025-08-25T17:53:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:53:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/UIGEN-X-4B-08-25-GGUF
mradermacher
2025-08-25T17:53:17Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "en", "base_model:smirki/UIGEN-X-4B-08-25", "base_model:quantized:smirki/UIGEN-X-4B-08-25", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T17:24:18Z
--- base_model: smirki/UIGEN-X-4B-08-25 language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/smirki/UIGEN-X-4B-08-25 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UIGEN-X-4B-08-25-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q2_K.gguf) | Q2_K | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q3_K_S.gguf) | Q3_K_S | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q3_K_M.gguf) | Q3_K_M | 2.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q3_K_L.gguf) | Q3_K_L | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.IQ4_XS.gguf) | IQ4_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q4_K_S.gguf) | Q4_K_S | 2.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q4_K_M.gguf) | Q4_K_M | 2.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q5_K_S.gguf) | Q5_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q5_K_M.gguf) | Q5_K_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q6_K.gguf) | Q6_K | 3.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.Q8_0.gguf) | Q8_0 | 4.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/UIGEN-X-4B-08-25-GGUF/resolve/main/UIGEN-X-4B-08-25.f16.gguf) | f16 | 8.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Xpsloan/bct-demo-longformer-model
Xpsloan
2025-08-25T17:53:11Z
0
0
transformers
[ "transformers", "safetensors", "longformer", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T17:52:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gensynme/blockassist-bc-small_vigilant_wildebeest_1756144357
gensynme
2025-08-25T17:53:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "small vigilant wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:52:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - small vigilant wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756143165
Sayemahsjn
2025-08-25T17:52:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:52:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/miniature-wonderland-flux-ethanar
Muapi
2025-08-25T17:52:56Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:52:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Miniature Wonderland FLUX @Ethanar ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:770860@862188", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
BootesVoid/cmerdmem00cfktlqbzartsm5c_cmerdr7gd0cfytlqb12a1mkdo
BootesVoid
2025-08-25T17:52:21Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T17:52:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: LILY --- # Cmerdmem00Cfktlqbzartsm5C_Cmerdr7Gd0Cfytlqb12A1Mkdo <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `LILY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "LILY", "lora_weights": "https://huggingface.co/BootesVoid/cmerdmem00cfktlqbzartsm5c_cmerdr7gd0cfytlqb12a1mkdo/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmerdmem00cfktlqbzartsm5c_cmerdr7gd0cfytlqb12a1mkdo', weight_name='lora.safetensors') image = pipeline('LILY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmerdmem00cfktlqbzartsm5c_cmerdr7gd0cfytlqb12a1mkdo/discussions) to add images that show off what you’ve made with this LoRA.
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756144257
ggozzy
2025-08-25T17:52:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:52:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756144179
Ferdi3425
2025-08-25T17:50:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:50:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756144128
bah63843
2025-08-25T17:49:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:49:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lengocquangLAB/phobert-large-jd-skill-match
lengocquangLAB
2025-08-25T17:49:15Z
2
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-16T09:21:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/andrew-tate-llm-clone-GGUF
mradermacher
2025-08-25T17:48:31Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:otmanheddouch/andrew-tate-llm-clone", "base_model:quantized:otmanheddouch/andrew-tate-llm-clone", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T17:44:19Z
--- base_model: otmanheddouch/andrew-tate-llm-clone language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/otmanheddouch/andrew-tate-llm-clone <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#andrew-tate-llm-clone-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/andrew-tate-llm-clone-GGUF/resolve/main/andrew-tate-llm-clone.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/InmuLLM-GGUF
mradermacher
2025-08-25T17:48:31Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "sft", "trl", "en", "base_model:HawkClaws/InmuLLM", "base_model:quantized:HawkClaws/InmuLLM", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-25T17:43:23Z
--- base_model: HawkClaws/InmuLLM language: - en library_name: transformers model_name: InmuLLM mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - sft - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/HawkClaws/InmuLLM <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InmuLLM-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/InmuLLM-GGUF/resolve/main/InmuLLM.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756143980
Ferdi3425
2025-08-25T17:46:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:46:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756143964
Shopnil09
2025-08-25T17:46:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:46:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hokpertoy/blockassist-bc-silent_savage_reindeer_1756143969
hokpertoy
2025-08-25T17:46:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent savage reindeer", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:46:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent savage reindeer --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RishabhBhardwajWalled/walledguard-a2
RishabhBhardwajWalled
2025-08-25T17:45:18Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-25T17:45:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kokoutou/sr105_dere_2508_5
Kokoutou
2025-08-25T17:45:01Z
0
0
null
[ "region:us" ]
null
2025-08-25T16:44:50Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Kokoutou/sr105_dere_2508_4
Kokoutou
2025-08-25T17:44:56Z
0
0
null
[ "region:us" ]
null
2025-08-25T16:44:49Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Kokoutou/sr105_dere_2508_3
Kokoutou
2025-08-25T17:44:56Z
0
0
null
[ "region:us" ]
null
2025-08-25T16:44:49Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Muapi/tomboys-for-flux
Muapi
2025-08-25T17:44:31Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:44:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Tomboys for FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: tomboy ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:668537@797322", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756143838
Shopnil09
2025-08-25T17:44:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:44:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/metallic-snake-flux
Muapi
2025-08-25T17:43:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:43:20Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Metallic Snake flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: metallic snake, metal snake, snake ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1143449@1285979", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/plush-imagination
Muapi
2025-08-25T17:43:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:42:59Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Plush Imagination ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: plush ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:858448@960466", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mwalmsley/euclid_encoder_mae_zoobot_vit_small_patch8_224
mwalmsley
2025-08-25T17:43:10Z
216
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "transformers", "license:apache-2.0", "region:us" ]
image-classification
2025-08-19T19:54:26Z
--- tags: - image-classification - timm - transformers library_name: timm license: apache-2.0 --- # Model card for euclid_encoder_mae_zoobot_vit_small_patch8_224
koloni/blockassist-bc-deadly_graceful_stingray_1756142224
koloni
2025-08-25T17:42:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:42:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1756143641
yaelahnal
2025-08-25T17:41:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:41:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/demonic-skin-runes-flux
Muapi
2025-08-25T17:41:32Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:41:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 🌀 Demonic Skin Runes [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:829463@927706", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/flux-pony-yoshinari_you-style
Muapi
2025-08-25T17:41:01Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:40:49Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Flux/Pony]Yoshinari_You Style/吉成曜 風 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:683791@766789", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756143588
Ferdi3425
2025-08-25T17:40:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:40:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/ghostly-ce-sdxl-flux
Muapi
2025-08-25T17:40:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:40:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ghostly - CE - SDXL & Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ghstlyCE style, spectral, ghost ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:684072@803752", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756143539
ggozzy
2025-08-25T17:40:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:39:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/albeniz-rodriguez-style-flux-and-sdxl
Muapi
2025-08-25T17:39:31Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:39:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Albeniz Rodriguez style - FLUX and SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: albenizrodriguez style painting of a ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:183861@928564", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756143523
Shopnil09
2025-08-25T17:39:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:39:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/gus-friedbaens-style
Muapi
2025-08-25T17:39:14Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:39:01Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Gus/Friedbaens Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:594917@1365489", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/neon-cyberpunk-detailer-flux
Muapi
2025-08-25T17:38:56Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:38:38Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Neon Cyberpunk Detailer FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: mad-cbrpnk-dtlr ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:730615@817012", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mcbanan4k/my_awesome_model
mcbanan4k
2025-08-25T17:38:36Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T16:19:48Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5932 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6247 | 1.0 | 500 | 0.5932 | 0.83 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.2.2 - Datasets 4.0.0 - Tokenizers 0.21.4
Muapi/chibi-characters-flux-dev
Muapi
2025-08-25T17:38:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:38:09Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Chibi characters [Flux Dev] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A vibrant chibi-style illustration ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:681979@763308", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756143396
Shopnil09
2025-08-25T17:37:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T17:37:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/japan-red-light-district
Muapi
2025-08-25T17:36:55Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T17:36:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Japan red light district (飛田新地) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:340806@772946", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```