modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
SajayR/verypoggersmi
SajayR
2025-08-25T16:49:54Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-25T16:49:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jiruii/Qwen1.5b
jiruii
2025-08-25T16:49:02Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-25T12:50:31Z
--- license: other license_name: readme license_link: LICENSE ---
ginic/gender_split_70_female_5_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:48:36Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:47:45Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details Still training with a total amount of data equal to half the full training data (4000 examples), vary the gender split 30/70, but draw examples from all individuals. Do 5 models for each gender split with the same model parameters but different data seeds. Goals: - Determine how different in gender split in training data affects performance Params to vary: - percent female (--percent_female) [0.3, 0.7] - training seed (--train_seed)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756140431
ggozzy
2025-08-25T16:48:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:48:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756139329
Sayemahsjn
2025-08-25T16:48:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:48:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756140443
Ferdi3425
2025-08-25T16:47:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:47:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
biswac2021/blockassist-bc-wiry_patterned_clam_1756140378
biswac2021
2025-08-25T16:46:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry patterned clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:46:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry patterned clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatmhd1995/ft_phi35_jd_inclusive_detection_25082025
fatmhd1995
2025-08-25T16:46:49Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T16:43:41Z
--- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** fatmhd1995 - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ginic/gender_split_70_female_2_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:46:45Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:45:54Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details Still training with a total amount of data equal to half the full training data (4000 examples), vary the gender split 30/70, but draw examples from all individuals. Do 5 models for each gender split with the same model parameters but different data seeds. Goals: - Determine how different in gender split in training data affects performance Params to vary: - percent female (--percent_female) [0.3, 0.7] - training seed (--train_seed)
ginic/gender_split_30_female_5_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:45:49Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:44:53Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details Still training with a total amount of data equal to half the full training data (4000 examples), vary the gender split 30/70, but draw examples from all individuals. Do 5 models for each gender split with the same model parameters but different data seeds. Goals: - Determine how different in gender split in training data affects performance Params to vary: - percent female (--percent_female) [0.3, 0.7] - training seed (--train_seed)
ginic/vary_individuals_young_only_1_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:43:55Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:42:58Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details These experiments keep the total amount of data equal to half the training data with the gender split 50/50, but further exclude certain speakers completely using the --speaker_restriction argument. This allows us to restrict speakers included in training data in any way. For the purposes of these experiments, we are focussed on the age demogrpahic of the user. For reference, the speakers and their demographics included in the training data are as follows where the speaker age range 'y' means under 30 and 'o' means over 40: | speaker_id | speaker_gender | speaker_age_range | | ---------- | -------------- | ----------------- | | S01 | f | y | | S04 | f | y | | S08 | f | y | | S09 | f | y | | S12 | f | y | | S21 | f | y | | S02 | f | o | | S05 | f | o | | S07 | f | o | | S14 | f | o | | S16 | f | o | | S17 | f | o | | S06 | m | y | | S11 | m | y | | S13 | m | y | | S15 | m | y | | S28 | m | y | | S30 | m | y | | S03 | m | o | | S10 | m | o | | S19 | m | o | | S22 | m | o | | S24 | m | o | Goals: - Determine how variety of speakers in the training data affects performance Params to vary: - training seed (--train_seed) - demographic make up of training data by age, using --speaker_restriction - Experiments `young_only`: only individuals under 30, S01 S04 S08 S09 S12 S21 S06 S11 S13 S15 S28 S30 - Experiments `old_only`: only individuals over 40, S02 S05 S07 S14 S16 S17 S03 S10 S19 S22 S24
Shopnil09/blockassist-bc-scruffy_knobby_hippo_1756140199
Shopnil09
2025-08-25T16:43:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy knobby hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:43:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy knobby hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prolinkmoon/blockassist-bc-rabid_scaly_anteater_1756140055
prolinkmoon
2025-08-25T16:43:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rabid scaly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:42:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rabid scaly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756140165
Ferdi3425
2025-08-25T16:43:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:43:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wwfwefwEF/blockassist-bc-hunting_prehistoric_walrus_1756140136
wwfwefwEF
2025-08-25T16:42:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hunting prehistoric walrus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:42:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hunting prehistoric walrus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hokpertoy/blockassist-bc-soft_curious_camel_1756140140
hokpertoy
2025-08-25T16:42:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft curious camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:42:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft curious camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756138344
hakimjustbao
2025-08-25T16:42:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:42:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
svu22/arabic_model
svu22
2025-08-25T16:41:58Z
55
0
null
[ "pytorch", "wav2vec2", "region:us" ]
null
2025-08-12T12:11:34Z
language: - ar license: apache-2.0 datasets: - mozilla-foundation/common_voice_8_0 type: automatic-speech-recognition
ginic/gender_split_30_female_4_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:41:58Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:41:04Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details Still training with a total amount of data equal to half the full training data (4000 examples), vary the gender split 30/70, but draw examples from all individuals. Do 5 models for each gender split with the same model parameters but different data seeds. Goals: - Determine how different in gender split in training data affects performance Params to vary: - percent female (--percent_female) [0.3, 0.7] - training seed (--train_seed)
koloni/blockassist-bc-deadly_graceful_stingray_1756138475
koloni
2025-08-25T16:41:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:41:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1756138319
indoempatnol
2025-08-25T16:41:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:41:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ginic/vary_individuals_young_only_2_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:41:00Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:40:04Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details These experiments keep the total amount of data equal to half the training data with the gender split 50/50, but further exclude certain speakers completely using the --speaker_restriction argument. This allows us to restrict speakers included in training data in any way. For the purposes of these experiments, we are focussed on the age demogrpahic of the user. For reference, the speakers and their demographics included in the training data are as follows where the speaker age range 'y' means under 30 and 'o' means over 40: | speaker_id | speaker_gender | speaker_age_range | | ---------- | -------------- | ----------------- | | S01 | f | y | | S04 | f | y | | S08 | f | y | | S09 | f | y | | S12 | f | y | | S21 | f | y | | S02 | f | o | | S05 | f | o | | S07 | f | o | | S14 | f | o | | S16 | f | o | | S17 | f | o | | S06 | m | y | | S11 | m | y | | S13 | m | y | | S15 | m | y | | S28 | m | y | | S30 | m | y | | S03 | m | o | | S10 | m | o | | S19 | m | o | | S22 | m | o | | S24 | m | o | Goals: - Determine how variety of speakers in the training data affects performance Params to vary: - training seed (--train_seed) - demographic make up of training data by age, using --speaker_restriction - Experiments `young_only`: only individuals under 30, S01 S04 S08 S09 S12 S21 S06 S11 S13 S15 S28 S30 - Experiments `old_only`: only individuals over 40, S02 S05 S07 S14 S16 S17 S03 S10 S19 S22 S24
NYUAD-ComNets/Llama3.2_MultiModal_Memes_Hate_Detector
NYUAD-ComNets
2025-08-25T16:40:50Z
181
0
transformers
[ "transformers", "safetensors", "mllama", "image-to-text", "text-generation-inference", "unsloth", "en", "arxiv:2508.15810", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-06-29T19:19:59Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- # Llama3.2-11B based Hate Detection in Arabic MultiModal Memes The rise of social media and online communication platforms has led to the spread of Arabic memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic meme. This work used Llama 3.2 with its vision capability to effectively identify hate content within Arabic memes. The evaluation is conducted using a dataset of Arabic memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of ***Llama 3.2-11B fine-tuned with Arabic memes***, to deliver the superior performance. They achieve **accuracy** of **80.3%** and **macro F1 score** of **73.3%**. The proposed solutions offer a more nuanced understanding of memes for accurate and efficient Arabic content moderation systems. # Examples of Arabic Memes from ArabicNLP MAHED 2025 challenge # Examples | | | | |:-------------------------:|:-------------------------:|:-------------------------:| |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jBuVCt5163WlugFRXkSgq.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jiPId6f5IiGXxpI898llC.jpeg"> | |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/61acyltUsTB--ZOAMkv0a.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/_alSRnwG0azE_iYq2BrpP.jpeg"> | ``` python import pandas as pd import os from unsloth import FastVisionModel import torch from datasets import load_dataset from transformers import TextStreamer from PIL import Image import os os.environ["TOKENIZERS_PARALLELISM"] = "false" model_name = "NYUAD-ComNets/Llama3.2_MultiModal_Memes_Hate_Detector" model, tokenizer = FastVisionModel.from_pretrained(model_name, token='xxxxxxxxxxxxxxxxxxxxxx') FastVisionModel.for_inference(model) dataset_test = load_dataset("QCRI/Prop2Hate-Meme", split = "test") print(dataset_test) def add_labels_column(example): example["labels"] = "no_hate" if example["hate_label"] == 0 else "hate" return example dataset_test = dataset_test.map(add_labels_column) pred=[] for k in range(606): image = dataset_test[k]["image"] text = dataset_test[k]["text"] lab = dataset_test[k]["labels"] messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text} ]} ] input_text = tokenizer.apply_chat_template(messages,add_generation_prompt = True) inputs = tokenizer( image, input_text, add_special_tokens = False, return_tensors = "pt", ).to("cuda") text_streamer = TextStreamer(tokenizer, skip_prompt = True) p = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = False, temperature = 0.3, min_p = 0.3) p = tokenizer.decode(p[0], skip_special_tokens=True) pred.append(p.split('assistant')[1].strip()) print(pred) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jRSB8JxqqoV-2E97N5QQM.png) We used Low-Rank Adaptation (LoRA) as the Parameter-Efficient Fine-Tuning (PEFT) method for fine-tuning utilizing the unsloth framework. The hyper-parameters of Llama 3.2-11B are as follows: the training batch size per device is set to 4. gradients are accumulated over 4 steps. the learning rate warm-up lasts for 5 steps. the total number of training steps is 150. the learning rate is set to 0.0002. the optimizer used is 8-bit AdamW weight decay is set to 0.01. a linear learning rate scheduler is used. # BibTeX entry and citation info ``` @misc{aldahoul2025detectinghopehateemotion, title={Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models}, author={Nouar AlDahoul and Yasir Zaki}, year={2025}, eprint={2508.15810}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.15810}, } ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756139953
ggozzy
2025-08-25T16:40:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:40:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756139910
Ferdi3425
2025-08-25T16:39:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:39:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
biswac2021/blockassist-bc-wiry_patterned_clam_1756139881
biswac2021
2025-08-25T16:38:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry patterned clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:38:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry patterned clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
QinShiHuangisavailable/output013
QinShiHuangisavailable
2025-08-25T16:38:15Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Math-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-21T15:43:38Z
--- base_model: Qwen/Qwen2.5-Math-7B-Instruct library_name: transformers model_name: output013 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for output013 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="QinShiHuangisavailable/output013", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.7.1+cu118 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ricodr/blockassist-bc-twitchy_toothy_clam_1756139809
ricodr
2025-08-25T16:37:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:37:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1756139781
Chukky10z
2025-08-25T16:37:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian jumping cougar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:36:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian jumping cougar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ginic/gender_split_70_female_4_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:37:10Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:36:18Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details Still training with a total amount of data equal to half the full training data (4000 examples), vary the gender split 30/70, but draw examples from all individuals. Do 5 models for each gender split with the same model parameters but different data seeds. Goals: - Determine how different in gender split in training data affects performance Params to vary: - percent female (--percent_female) [0.3, 0.7] - training seed (--train_seed)
ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa
ginic
2025-08-25T16:36:15Z
0
0
null
[ "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T16:35:20Z
--- license: mit language: - en pipeline_tag: automatic-speech-recognition --- # About This model was created to support experiments for evaluating phonetic transcription with the Buckeye corpus as part of https://github.com/ginic/multipa. This is a version of facebook/wav2vec2-large-xlsr-53 fine tuned on a specific subset of the Buckeye corpus. For details about specific model parameters, please view the config.json here or training scripts in the scripts/buckeye_experiments folder of the GitHub repository. # Experiment Details Vary the random seed to select training data while keeping an even 50/50 gender split to measure statistical significance of changing training data selection. Retrain with the same model parameters, but different data seeding to measure statistical significance of data seed, keeping 50/50 gender split. Goals: - Establish whether data variation with the same gender makeup is statistically significant in changing performance on the test set Params to vary: - training data seed (--train_seed): [91, 114, 771, 503]
Monketoo/llama_3.2_code_first_try
Monketoo
2025-08-25T16:34:24Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T16:34:17Z
--- base_model: unsloth/llama-3.2-1b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Monketoo - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Stasonelison/blockassist-bc-howling_powerful_aardvark_1756139556
Stasonelison
2025-08-25T16:33:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "howling powerful aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:33:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - howling powerful aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lemonhat/Qwen2.5-Coder-7B-Instruct-t1_25k_v2_tag5
lemonhat
2025-08-25T16:32:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T16:21:44Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: t1_25k_v2_tag5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t1_25k_v2_tag5 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the t1_25k_v2_tag5 dataset. It achieves the following results on the evaluation set: - Loss: 0.2605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3427 | 0.0817 | 100 | 0.3218 | | 0.2658 | 0.1634 | 200 | 0.3040 | | 0.2831 | 0.2451 | 300 | 0.2921 | | 0.2759 | 0.3268 | 400 | 0.2846 | | 0.3056 | 0.4085 | 500 | 0.2798 | | 0.2839 | 0.4902 | 600 | 0.2763 | | 0.3051 | 0.5719 | 700 | 0.2703 | | 0.3155 | 0.6536 | 800 | 0.2688 | | 0.2373 | 0.7353 | 900 | 0.2634 | | 0.2561 | 0.8170 | 1000 | 0.2620 | | 0.2546 | 0.8987 | 1100 | 0.2609 | | 0.2504 | 0.9804 | 1200 | 0.2606 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
kat9370/blockassist-bc-pesty_miniature_beaver_1756139491
kat9370
2025-08-25T16:32:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty miniature beaver", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:31:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty miniature beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
18-V-I-D-E-O-S-Sophie-Rain-Viral-X-X-video/FULL.VIDEOS.Sophie.Rain.Spiderman.Viral.Video.Official.Tutorial
18-V-I-D-E-O-S-Sophie-Rain-Viral-X-X-video
2025-08-25T16:32:07Z
0
0
null
[ "region:us" ]
null
2025-08-25T16:31:20Z
<animated-image data-catalyst=""><a href="https://newmovietv.online/leaked-video/?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Rudra-madlads/blockassist-bc-jumping_swift_gazelle_1756139266
Rudra-madlads
2025-08-25T16:28:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping swift gazelle", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:28:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping swift gazelle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
biswac2021/blockassist-bc-wiry_patterned_clam_1756139268
biswac2021
2025-08-25T16:28:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry patterned clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:28:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry patterned clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756137585
chainway9
2025-08-25T16:27:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:27:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1756139092
lilTAT
2025-08-25T16:25:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:25:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Nelooo/blockassist-bc-invisible_foxy_heron_1756139124
Nelooo
2025-08-25T16:25:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible foxy heron", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:25:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible foxy heron --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zoefyt/zoef-flux-with-27-img-24-aug-4-46
zoefyt
2025-08-25T16:25:06Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-24T13:09:57Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: foe man, in a bustling cafe, portrait, neutral expression, studio lighting, photoreal, sharp detail, centered composition output: url: samples/1756040899912__000002000_0.jpg - text: foe man, in a medieval fantasy forest, wearing ranger armor, volumetric light shafts through trees, RPG concept art output: url: samples/1756040946083__000002000_1.jpg # - text: foe man, pixel art portrait, 16-bit video game character sprite, retro color # palette, sharp edges # output: # url: samples/1756040992271__000002000_2.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: foe man license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # zoef-flux-with-27-img-24-aug-4-46 Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words You should use `foe man` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/zoefyt/zoef-flux-with-27-img-24-aug-4-46/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('zoefyt/zoef-flux-with-27-img-24-aug-4-46', weight_name='zoef-flux-with-27-img-24-aug-4-46.safetensors') image = pipeline('foe man, in a bustling cafe, portrait, neutral expression, studio lighting, photoreal, sharp detail, centered composition').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
yifeng2025summer/qwen2.5_7b_gtpo_maxiters1_step30
yifeng2025summer
2025-08-25T16:24:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T16:23:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aleebaster/blockassist-bc-sly_eager_boar_1756137463
aleebaster
2025-08-25T16:23:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:23:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RageBlyat/qwen2.5vlfinal
RageBlyat
2025-08-25T16:21:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-25T16:16:28Z
--- base_model: unsloth/qwen2.5-vl-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** RageBlyat - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-vl-7b-instruct-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1756137387
quantumxnode
2025-08-25T16:21:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:21:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vxhuyentrang/blockassist-bc-singing_tame_bison_1756137937
vxhuyentrang
2025-08-25T16:21:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing tame bison", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:21:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing tame bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Amama02/pinterest-personality-keywords-25-August
Amama02
2025-08-25T16:20:39Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "pinterest", "keywords", "personality", "fine-tuned", "lora", "flan-t5", "en", "base_model:google/flan-t5-base", "base_model:adapter:google/flan-t5-base", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T16:20:14Z
--- language: en license: apache-2.0 base_model: google/flan-t5-base tags: - text2text-generation - pinterest - keywords - personality - fine-tuned - lora - flan-t5 library_name: transformers pipeline_tag: text2text-generation widget: - text: "Generate Pinterest keywords for Cleopatra - Culture: Egyptian | Role: Royalty | Period: Ancient Egypt - Keywords should be visual, searchable on Pinterest, and capture their aesthetic essence. The Culture, Role, Period and bio give important information about the personality. Take them into account when generating keywords" example_title: "Cleopatra Keywords" - text: "Generate Pinterest keywords for Leonardo da Vinci - Culture: Italian | Role: Polymath | Period: Renaissance - Keywords should be visual, searchable on Pinterest, and capture their aesthetic essence. The Culture, Role, Period and bio give important information about the personality. Take them into account when generating keywords" example_title: "Leonardo da Vinci Keywords" --- # Pinterest Personality Keywords Generator 🎨 **Fine-tuned FLAN-T5 model for generating Pinterest-optimized keywords for historical and fictional personalities.** This model was fine-tuned using LoRA (Low-Rank Adaptation) to generate visually appealing, searchable Pinterest keywords based on personality information. ## 🚀 Quick Start ### Using Transformers Pipeline ```python from transformers import pipeline # Load the model generator = pipeline("text2text-generation", model="Amama02/pinterest-personality-keywords-25-August") # Generate keywords input_text = "Generate Pinterest keywords for Marie Curie - Culture: Polish-French | Role: Scientist | Period: Early 20th Century - Keywords should be visual, searchable on Pinterest, and capture their aesthetic essence. The Culture, Role, Period and bio give important information about the personality. Take them into account when generating keywords" result = generator( input_text, max_length=300, num_beams=8, temperature=0.9, do_sample=True, top_p=0.95, repetition_penalty=2.0, length_penalty=1.2, no_repeat_ngram_size=2 ) print(result[0]['generated_text']) ``` ### Using Direct Model Loading ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Amama02/pinterest-personality-keywords-25-August") model = AutoModelForSeq2SeqLM.from_pretrained("Amama02/pinterest-personality-keywords-25-August") # Prepare input input_text = "Generate Pinterest keywords for Frida Kahlo - Culture: Mexican | Role: Artist | Period: 20th Century - Keywords should be visual, searchable on Pinterest, and capture their aesthetic essence. The Culture, Role, Period and bio give important information about the personality. Take them into account when generating keywords" # Tokenize and generate inputs = tokenizer(input_text, return_tensors="pt", max_length=256, truncation=True) outputs = model.generate( **inputs, max_length=300, num_beams=8, temperature=0.9, do_sample=True, top_p=0.95, repetition_penalty=2.0, length_penalty=1.2, early_stopping=True, no_repeat_ngram_size=2 ) keywords = tokenizer.decode(outputs[0], skip_special_tokens=True) print(keywords) ``` ## 📝 Input Format The model expects input in this specific format: ``` Generate Pinterest keywords for [PERSONALITY_NAME] - Culture: [CULTURE] | Role: [ROLE] | Period: [TIME_PERIOD] | Bio: [BIOGRAPHY] - Keywords should be visual, searchable on Pinterest, and capture their aesthetic essence. The Culture, Role, Period and bio give important information about the personality. Take them into account when generating keywords ``` ### Required Fields: - **PERSONALITY_NAME**: Name of the person - **Culture**: Cultural background or nationality - **Role**: Profession, title, or main role - **Period**: Historical time period - **Bio**: (Optional) Brief biography ## 🎯 Example Outputs | Input | Generated Keywords | |-------|-------------------| | **Cleopatra** (Egyptian Royalty, Ancient Egypt) | "Egyptian queen aesthetic, ancient Egypt fashion, Cleopatra makeup, pharaoh style, golden jewelry, Egyptian mythology, ancient beauty, royal Egyptian, hieroglyphics, Egyptian art" | | **Leonardo da Vinci** (Italian Polymath, Renaissance) | "Renaissance art, Italian genius, classical paintings, Renaissance fashion, vintage sketches, Italian Renaissance, Renaissance architecture, classical art history" | | **Marie Curie** (Polish-French Scientist, Early 20th Century) | "vintage science, female scientist aesthetic, laboratory vintage, early 1900s fashion, women in science, vintage academic, scientific discovery, vintage portraits" | ## ⚙️ Generation Parameters The model is optimized with these generation settings: - **max_length**: 300 - **num_beams**: 8 - **temperature**: 0.9 - **top_p**: 0.95 - **repetition_penalty**: 2.0 - **length_penalty**: 1.2 - **no_repeat_ngram_size**: 2 ## 🔧 Technical Details - **Base Model**: google/flan-t5-base - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **LoRA Rank**: 16 - **Target Modules**: ["q", "v", "k", "o", "wi", "wo"] - **Training Data**: Historical and fictional personalities dataset - **Task**: Seq2Seq text generation The model has been optimized for: - ✅ **Visual Keywords**: Generates terms that work well for image searches - ✅ **Pinterest Optimization**: Keywords tailored for Pinterest's search algorithm - ✅ **Cultural Sensitivity**: Respects cultural context and historical accuracy - ✅ **Diversity**: Produces varied and creative keyword combinations ## 🚫 Limitations - Specifically designed for Pinterest keyword generation - May not perform well on other text generation tasks - Limited to personalities with sufficient historical/cultural context - Requires specific input format for optimal results
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756138757
ggozzy
2025-08-25T16:20:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:20:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
squidward7559s/blockassist-bc-nocturnal_long_whale_1756138762
squidward7559s
2025-08-25T16:20:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal long whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:20:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal long whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nnilayy/dreamer-binary-valence-LOSO-Subject-5
nnilayy
2025-08-25T16:20:11Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-25T16:20:08Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
lilTAT/blockassist-bc-gentle_rugged_hare_1756138727
lilTAT
2025-08-25T16:19:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:19:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1756137066
unitova
2025-08-25T16:19:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:19:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Yntec/Crybaby
Yntec
2025-08-25T16:19:49Z
8
0
diffusers
[ "diffusers", "safetensors", "Paintings", "Style Art", "Landscapes", "Wick_J4", "iamxenos", "RIXYN", "Barons", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-04-26T10:52:19Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image language: - en tags: - Paintings - Style Art - Landscapes - Wick_J4 - iamxenos - RIXYN - Barons - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- # Crybaby Samples and prompts: ![AI image generator Crybaby samples](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/DQd80QaA8T5jW2EAX_pob.png) Top left: pretty cute little girl as Marie Antoinette playing on toy piano in bedroom Top right: Masterpiece, Best Quality, highres, fantasy, official art, kitten, grass, sky, scenery, Fuji 85mm, fairytale illustration, colored sclera, black eyes, perfect eyes, happy, cute, cat, whiskers, pawpads, claws, furry, plush, soft, perfect, tail, christmas lights, christmas tree, christmas ornaments, warmth Bottom left: analog style 70s color photograph of young Jet Lee as Invincible Man, star wars behind the scenes Bottom right: absurdres, adorable cute harley quinn, at night, dark alley, moon, :) red ponytail, blonde ponytail, in matte black hardsuit, military, roughed up, bat, city fog, A mix of MGM and CocaCola (which includes many models) to create a realistic version of Cryptids. Original pages: https://civitai.com/models/109568/mgmv1 https://huggingface.co/Yntec/Cryptids https://huggingface.co/Yntec/CocaCola https://civitai.com/models/142552?modelVersionId=163068 (Kitsch-In-Sync v2) https://huggingface.co/Yntec/HELLmix
philipperen55/Qwen2.5-7B-Instruct-D30E3LA16R64MSL512PDTBS32GAS1LR2e-4_epoch2
philipperen55
2025-08-25T16:19:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-25T16:18:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liukevin666/blockassist-bc-yawning_striped_cassowary_1756138701
liukevin666
2025-08-25T16:19:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:19:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
giyon87/blockassist-bc-screeching_deadly_wolf_1756138726
giyon87
2025-08-25T16:19:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching deadly wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:19:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching deadly wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756138690
ricodr
2025-08-25T16:18:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:18:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756138603
Vasya777
2025-08-25T16:18:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:18:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756138579
bah63843
2025-08-25T16:17:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:16:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Felix128wnjsx/instagirl-v23
Felix128wnjsx
2025-08-25T16:17:12Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-08-24T19:52:42Z
--- license: apache-2.0 ---
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756138558
Ferdi3425
2025-08-25T16:16:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:16:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-uppal-farm-girl-viral-video-XX/New.full.videos.uppal.farm.girl.Viral.Video.Official.Tutorial
VIDEOS-18-uppal-farm-girl-viral-video-XX
2025-08-25T16:15:48Z
0
0
null
[ "region:us" ]
null
2025-08-25T16:15:34Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ESpeech/ESpeech-TTS-1_SFT-95K
ESpeech
2025-08-25T16:14:14Z
0
0
null
[ "TTS", "F5-TTS", "ru", "dataset:ESpeech/ESpeech-webinars2", "license:apache-2.0", "region:us" ]
null
2025-08-25T09:53:15Z
--- license: apache-2.0 datasets: - ESpeech/ESpeech-webinars2 language: - ru tags: - TTS - F5-TTS --- Установите необходимые зависимости: ``` pip install f5-tts gradio ruaccent transformers torch torchaudio huggingface_hub ``` Запустите код и ждите сообщения с адресом веб-интерфейса ```py #!/usr/bin/env python3 import os import gc import tempfile import traceback from pathlib import Path import gradio as gr import numpy as np import soundfile as sf import torch import torchaudio from huggingface_hub import hf_hub_download, snapshot_download from ruaccent import RUAccent from f5_tts.infer.utils_infer import ( infer_process, load_model, load_vocoder, preprocess_ref_audio_text, remove_silence_for_generated_wav, save_spectrogram, tempfile_kwargs, ) from f5_tts.model import DiT MODEL_CFG = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) MODEL_REPO = "ESpeech/ESpeech-TTS-1_SFT-95K" MODEL_FILE = "espeech_tts_95k.pt" VOCAB_FILE = "vocab.txt" loaded_model = None def ensure_model(): global loaded_model if loaded_model is not None: return loaded_model model_path = None vocab_path = None print(f"Trying to download model file '{MODEL_FILE}' and '{VOCAB_FILE}' from hub '{MODEL_REPO}'") try: model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE) vocab_path = hf_hub_download(repo_id=MODEL_REPO, filename=VOCAB_FILE) print(f"Downloaded model to {model_path}") print(f"Downloaded vocab to {vocab_path}") except Exception as e: print("hf_hub_download failed:", e) if model_path is None or vocab_path is None: try: local_dir = f"cache_{MODEL_REPO.replace('/', '_')}" print(f"Attempting snapshot_download into {local_dir}...") snapshot_dir = snapshot_download(repo_id=MODEL_REPO, cache_dir=None, local_dir=local_dir, token=hf_token) possible_model = os.path.join(snapshot_dir, MODEL_FILE) possible_vocab = os.path.join(snapshot_dir, VOCAB_FILE) if os.path.exists(possible_model): model_path = possible_model if os.path.exists(possible_vocab): vocab_path = possible_vocab print(f"Snapshot downloaded to {snapshot_dir}") except Exception as e: print("snapshot_download failed:", e) if not model_path or not os.path.exists(model_path): raise FileNotFoundError(f"Model file not found after download attempts: {model_path}") if not vocab_path or not os.path.exists(vocab_path): raise FileNotFoundError(f"Vocab file not found after download attempts: {vocab_path}") print(f"Loading model from: {model_path}") loaded_model = load_model(DiT, MODEL_CFG, model_path, vocab_file=vocab_path) return loaded_model print("Preloading model...") try: ensure_model() print("Model preloaded.") except Exception as e: print(f"Model preload failed: {e}") print("Loading RUAccent...") accentizer = RUAccent() accentizer.load(omograph_model_size='turbo3.1', use_dictionary=True, tiny_mode=False) print("RUAccent loaded.") print("Loading vocoder...") vocoder = load_vocoder() print("Vocoder loaded.") def process_text_with_accent(text, accentizer): if not text or not text.strip(): return text if '+' in text: return text else: return accentizer.process_all(text) def process_texts_only(ref_text, gen_text): processed_ref_text = process_text_with_accent(ref_text, accentizer) processed_gen_text = process_text_with_accent(gen_text, accentizer) return processed_ref_text, processed_gen_text def synthesize( ref_audio, ref_text, gen_text, remove_silence, seed, cross_fade_duration=0.15, nfe_step=32, speed=1.0, ): if not ref_audio: gr.Warning("Please provide reference audio.") return None, None, ref_text, gen_text if seed is None or seed < 0 or seed > 2**31 - 1: seed = np.random.randint(0, 2**31 - 1) torch.manual_seed(int(seed)) if not gen_text or not gen_text.strip(): gr.Warning("Please enter text to generate.") return None, None, ref_text, gen_text if not ref_text or not ref_text.strip(): gr.Warning("Please provide reference text.") return None, None, ref_text, gen_text processed_ref_text = process_text_with_accent(ref_text, accentizer) processed_gen_text = process_text_with_accent(gen_text, accentizer) try: model = ensure_model() except Exception as e: gr.Warning(f"Failed to load model: {e}") return None, None, processed_ref_text, processed_gen_text device = torch.device("cuda" if torch.cuda.is_available() else "cpu") try: if device.type == "cuda": try: model.to(device) vocoder.to(device) except Exception as e: print("Warning: failed to move model/vocoder to cuda:", e) try: ref_audio_proc, processed_ref_text_final = preprocess_ref_audio_text( ref_audio, processed_ref_text, show_info=gr.Info ) except Exception as e: gr.Warning(f"Preprocess failed: {e}") traceback.print_exc() return None, None, processed_ref_text, processed_gen_text try: final_wave, final_sample_rate, combined_spectrogram = infer_process( ref_audio_proc, processed_ref_text_final, processed_gen_text, model, vocoder, cross_fade_duration=cross_fade_duration, nfe_step=nfe_step, speed=speed, show_info=gr.Info, progress=gr.Progress(), ) except Exception as e: gr.Warning(f"Infer failed: {e}") traceback.print_exc() return None, None, processed_ref_text, processed_gen_text if remove_silence: try: with tempfile.NamedTemporaryFile(suffix=".wav", **tempfile_kwargs) as f: temp_path = f.name sf.write(temp_path, final_wave, final_sample_rate) remove_silence_for_generated_wav(temp_path) final_wave_tensor, _ = torchaudio.load(temp_path) final_wave = final_wave_tensor.squeeze().cpu().numpy() except Exception as e: print("Remove silence failed:", e) try: with tempfile.NamedTemporaryFile(suffix=".png", **tempfile_kwargs) as tmp_spectrogram: spectrogram_path = tmp_spectrogram.name save_spectrogram(combined_spectrogram, spectrogram_path) except Exception as e: print("Save spectrogram failed:", e) spectrogram_path = None return (final_sample_rate, final_wave), spectrogram_path, processed_ref_text_final, processed_gen_text finally: if device.type == "cuda": try: model.to("cpu") vocoder.to("cpu") torch.cuda.empty_cache() gc.collect() except Exception as e: print("Warning during cuda cleanup:", e) with gr.Blocks(title="ESpeech-TTS") as app: gr.Markdown("# ESpeech-TTS") gr.Markdown("💡 **Совет:** Добавьте символ '+' для ударения (например, 'прив+ет')") gr.Markdown("❌ **Совет:** Референс должен быть не более 12 секунд") with gr.Row(): with gr.Column(): ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") ref_text_input = gr.Textbox( label="Reference Text", lines=2, placeholder="Text corresponding to reference audio" ) with gr.Column(): gen_text_input = gr.Textbox( label="Text to Generate", lines=5, max_lines=20, placeholder="Enter text to synthesize..." ) process_text_btn = gr.Button("✏️ Process Text (Add Accents)", variant="secondary") with gr.Accordion("Advanced Settings", open=False): with gr.Row(): seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0) remove_silence = gr.Checkbox(label="Remove Silences", value=False) with gr.Row(): speed_slider = gr.Slider(label="Speed", minimum=0.3, maximum=2.0, value=1.0, step=0.1) nfe_slider = gr.Slider(label="NFE Steps", minimum=4, maximum=64, value=48, step=2) cross_fade_slider = gr.Slider(label="Cross-Fade Duration (s)", minimum=0.0, maximum=1.0, value=0.15, step=0.01) generate_btn = gr.Button("🎤 Generate Speech", variant="primary", size="lg") with gr.Row(): audio_output = gr.Audio(label="Generated Audio", type="numpy") spectrogram_output = gr.Image(label="Spectrogram", type="filepath") process_text_btn.click( process_texts_only, inputs=[ref_text_input, gen_text_input], outputs=[ref_text_input, gen_text_input] ) generate_btn.click( synthesize, inputs=[ ref_audio_input, ref_text_input, gen_text_input, remove_silence, seed_input, cross_fade_slider, nfe_slider, speed_slider, ], outputs=[audio_output, spectrogram_output, ref_text_input, gen_text_input] ) if __name__ == "__main__": app.launch() ```
LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-bel-Cyrl
LumiOpen
2025-08-25T16:13:19Z
0
0
null
[ "safetensors", "xlm-roberta", "bel", "dataset:LumiOpen/hpltv2-llama33-edu-annotation", "license:apache-2.0", "region:us" ]
null
2025-08-25T16:13:03Z
--- language: - bel license: apache-2.0 datasets: - LumiOpen/hpltv2-llama33-edu-annotation --- # Llama-HPLT-edu-Belarusian classifier ## Model summary This is a classifier for judging the educational content of Belarusian (bel-Cyrl) web pages. It was developed to filter educational content from [HPLT v2](https://hplt-project.org/datasets/v2.0) and was trained on 450k [annotations](https://huggingface.co/datasets/LumiOpen/hpltv2-llama33-edu-annotation) generated by [LLama3.3-70B-instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). The web pages were sampled randomly from Belarusian subset of the corpus. ### How to load in transformers To load the Llama-HPLT-Edu classifier, use the following code: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-bel-Cyrl") model = AutoModelForSequenceClassification.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-bel-Cyrl") text = "I'm non-educational web page containing nothing useful" inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) #results from a model trained with Welsh annotations #{'text': "I'm non-educational web page containing nothing useful", 'score': 0.8145455718040466, 'int_score': 1} #{'text': 'what are most common animals found in farm? there are cows, sheeps', 'score': 1.6858888864517212, 'int_score': 2} ``` ## Training - Model: FacebookAI/xlm-roberta-large with a classification head - Dataset: 500,000 samples from Llama3.3 annotations split into 450,000 train, 25,000 validation, and 25,000 test splits. - Epochs: 20 - Learning Rate: 3e-4 - Evaluation Metric: F1 score ### Test Metrics ``` precision recall f1-score support 0 0.79 0.57 0.66 8065 1 0.55 0.67 0.60 8743 2 0.47 0.60 0.53 4670 3 0.46 0.40 0.43 2428 4 0.67 0.28 0.40 1063 5 0.38 0.10 0.15 31 accuracy 0.58 25000 macro avg 0.55 0.44 0.46 25000 weighted avg 0.61 0.58 0.58 25000 ``` ## Citing Preprint coming soon. If you need to cite this work, please use the citation below: ``` @misc {llama_hplt_edu_classifiers_2025, author = { Tarkka, Otto, Reunamo, Akseli, Vitiugin, Fedor and Pyysalo, Sampo } title = { Llama-HPLT-edu classifiers }, year = 2025, url = {https://huggingface.co/collections/LumiOpen/hplt-edu-classifiers-68a85a78f9710426320e7cbb}, publisher = { Hugging Face } } ```
LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-azj-Latn
LumiOpen
2025-08-25T16:13:00Z
0
0
null
[ "safetensors", "xlm-roberta", "azj", "dataset:LumiOpen/hpltv2-llama33-edu-annotation", "license:apache-2.0", "region:us" ]
null
2025-08-25T16:12:45Z
--- language: - azj license: apache-2.0 datasets: - LumiOpen/hpltv2-llama33-edu-annotation --- # Llama-HPLT-edu-North Azerbaijani classifier ## Model summary This is a classifier for judging the educational content of North Azerbaijani (azj-Latn) web pages. It was developed to filter educational content from [HPLT v2](https://hplt-project.org/datasets/v2.0) and was trained on 450k [annotations](https://huggingface.co/datasets/LumiOpen/hpltv2-llama33-edu-annotation) generated by [LLama3.3-70B-instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). The web pages were sampled randomly from North Azerbaijani subset of the corpus. ### How to load in transformers To load the Llama-HPLT-Edu classifier, use the following code: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-azj-Latn") model = AutoModelForSequenceClassification.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-azj-Latn") text = "I'm non-educational web page containing nothing useful" inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) #results from a model trained with Welsh annotations #{'text': "I'm non-educational web page containing nothing useful", 'score': 0.8145455718040466, 'int_score': 1} #{'text': 'what are most common animals found in farm? there are cows, sheeps', 'score': 1.6858888864517212, 'int_score': 2} ``` ## Training - Model: FacebookAI/xlm-roberta-large with a classification head - Dataset: 500,000 samples from Llama3.3 annotations split into 450,000 train, 25,000 validation, and 25,000 test splits. - Epochs: 20 - Learning Rate: 3e-4 - Evaluation Metric: F1 score ### Test Metrics ``` precision recall f1-score support 0 0.84 0.65 0.73 11889 1 0.54 0.73 0.62 8635 2 0.48 0.52 0.50 2975 3 0.40 0.32 0.36 1049 4 0.65 0.16 0.26 443 5 0.00 0.00 0.00 9 accuracy 0.64 25000 macro avg 0.49 0.40 0.41 25000 weighted avg 0.67 0.64 0.64 25000 ``` ## Citing Preprint coming soon. If you need to cite this work, please use the citation below: ``` @misc {llama_hplt_edu_classifiers_2025, author = { Tarkka, Otto, Reunamo, Akseli, Vitiugin, Fedor and Pyysalo, Sampo } title = { Llama-HPLT-edu classifiers }, year = 2025, url = {https://huggingface.co/collections/LumiOpen/hplt-edu-classifiers-68a85a78f9710426320e7cbb}, publisher = { Hugging Face } } ```
LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-ara-Arab
LumiOpen
2025-08-25T16:12:42Z
0
0
null
[ "safetensors", "xlm-roberta", "ara", "dataset:LumiOpen/hpltv2-llama33-edu-annotation", "license:apache-2.0", "region:us" ]
null
2025-08-25T16:12:27Z
--- language: - ara license: apache-2.0 datasets: - LumiOpen/hpltv2-llama33-edu-annotation --- # Llama-HPLT-edu-Arabic classifier ## Model summary This is a classifier for judging the educational content of Arabic (ara-Arab) web pages. It was developed to filter educational content from [HPLT v2](https://hplt-project.org/datasets/v2.0) and was trained on 450k [annotations](https://huggingface.co/datasets/LumiOpen/hpltv2-llama33-edu-annotation) generated by [LLama3.3-70B-instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). The web pages were sampled randomly from Arabic subset of the corpus. ### How to load in transformers To load the Llama-HPLT-Edu classifier, use the following code: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-ara-Arab") model = AutoModelForSequenceClassification.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-ara-Arab") text = "I'm non-educational web page containing nothing useful" inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) #results from a model trained with Welsh annotations #{'text': "I'm non-educational web page containing nothing useful", 'score': 0.8145455718040466, 'int_score': 1} #{'text': 'what are most common animals found in farm? there are cows, sheeps', 'score': 1.6858888864517212, 'int_score': 2} ``` ## Training - Model: FacebookAI/xlm-roberta-large with a classification head - Dataset: 500,000 samples from Llama3.3 annotations split into 450,000 train, 25,000 validation, and 25,000 test splits. - Epochs: 20 - Learning Rate: 3e-4 - Evaluation Metric: F1 score ### Test Metrics ``` precision recall f1-score support 0 0.83 0.55 0.66 10183 1 0.57 0.74 0.64 9736 2 0.45 0.60 0.51 3156 3 0.35 0.36 0.35 1185 4 0.72 0.20 0.31 707 5 0.17 0.06 0.09 33 accuracy 0.61 25000 macro avg 0.51 0.42 0.43 25000 weighted avg 0.65 0.61 0.61 25000 ``` ## Citing Preprint coming soon. If you need to cite this work, please use the citation below: ``` @misc {llama_hplt_edu_classifiers_2025, author = { Tarkka, Otto, Reunamo, Akseli, Vitiugin, Fedor and Pyysalo, Sampo } title = { Llama-HPLT-edu classifiers }, year = 2025, url = {https://huggingface.co/collections/LumiOpen/hplt-edu-classifiers-68a85a78f9710426320e7cbb}, publisher = { Hugging Face } } ```
ricodr/blockassist-bc-twitchy_toothy_clam_1756138317
ricodr
2025-08-25T16:12:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:12:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Baoquoc285/llama3_1_task9_v3
Baoquoc285
2025-08-25T16:12:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T16:11:35Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Baoquoc285 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lilTAT/blockassist-bc-gentle_rugged_hare_1756138243
lilTAT
2025-08-25T16:11:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:11:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hayatoshibahara/act-so101-test
hayatoshibahara
2025-08-25T16:10:35Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:EngineerCafeJP/record-test-2025-08-23-20-48-00", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-25T16:10:12Z
--- datasets: EngineerCafeJP/record-test-2025-08-23-20-48-00 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Yntec/Cryptids
Yntec
2025-08-25T16:10:33Z
24
3
diffusers
[ "diffusers", "safetensors", "Anime", "Animals", "Creatures", "Eyes", "Style", "2D", "Base Model", "RIXYN", "Barons", "iamxenos", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "base_model:Yntec/HELLmix", "base_model:merge:Yntec/HELLmix", "base_model:Yntec/HellSKitchen", "base_model:merge:Yntec/HellSKitchen", "base_model:Yntec/Kitsch-In-Sync", "base_model:merge:Yntec/Kitsch-In-Sync", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-30T12:45:35Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image language: - en tags: - Anime - Animals - Creatures - Eyes - Style - 2D - Base Model - RIXYN - Barons - iamxenos - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image base_model: - Yntec/HellSKitchen - Yntec/Kitsch-In-Sync - Yntec/HELLmix base_model_relation: merge --- # Cryptids The Cryptids LoRA by RIXYN at 1.0 strength merged in the HellSKitchen model to maximize its style! It has the MoistMixV2VAE baked in. So it's mixed with two models, HELLmix by Barons and Kitsch-In-Sync by iamxenos. Comparison: ![Comparison](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/Zzwdg3lcycyjVtq5Vkjtc.png) (Click for larger) Sample and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/6zJtJiH85Cbqdg0K2ZwJB.png) Masterpiece, Best Quality, highres, fantasy, official art, kitten, grass, sky, scenery, Fuji 85mm, fairytale illustration, colored sclera, black eyes, perfect eyes, happy, cute, cat, whiskers, pawpads, claws, furry, plush, soft, perfect, tail, christmas lights, christmas tree, christmas ornaments, warmth Model comparison: ![4 models compared](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/gBw08JUPIM_85TgmoS7Mw.png) (Click for larger) Sample image by digiplay: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/eezS6UIXS1Qn_O-cz-A7x.png) 8k Angel sky Original pages: https://civitai.com/models/64766/cryptids?modelVersionId=69407 (Cryptids LoRA) https://civitai.com/models/142552?modelVersionId=163068 (Kitsch-In-Sync) https://huggingface.co/Yntec/HELLmix https://huggingface.co/Yntec/HellSKitchen
ricodr/blockassist-bc-twitchy_toothy_clam_1756138124
ricodr
2025-08-25T16:09:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:09:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756138039
liukevin666
2025-08-25T16:08:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:08:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756138040
ggozzy
2025-08-25T16:08:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:08:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-pesty_extinct_prawn_1756135738
acidjp
2025-08-25T16:08:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:08:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matheoqtb/euroBert_V3_testfinal
matheoqtb
2025-08-25T16:05:40Z
0
0
null
[ "safetensors", "eurobert", "custom_code", "region:us" ]
null
2025-08-25T16:05:16Z
# Checkpoint exporté: final Ce dépôt contient un checkpoint extrait de `matheoqtb/euroBertV3_600_test` (sous-dossier `final`) et les fichiers de code nécessaires provenant de `EuroBERT/EuroBERT-610m`. Chargement: from transformers import AutoTokenizer, AutoModel tok = AutoTokenizer.from_pretrained('<THIS_REPO>', trust_remote_code=True) mdl = AutoModel.from_pretrained('<THIS_REPO>', trust_remote_code=True) Tâche: feature-extraction (embeddings)
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756136067
hakimjustbao
2025-08-25T16:04:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:04:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756137705
ricodr
2025-08-25T16:02:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:02:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1756135961
indoempatnol
2025-08-25T16:02:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:02:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-reptilian_bellowing_cockroach_1756137687
AnerYubo
2025-08-25T16:01:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian bellowing cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:01:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian bellowing cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/splade-mini-GGUF
mradermacher
2025-08-25T16:00:58Z
72
0
transformers
[ "transformers", "gguf", "sentence-transformers", "sparse-encoder", "sparse", "splade", "generated_from_trainer", "dataset_size:1000000", "loss:SpladeLoss", "loss:SparseMarginMSELoss", "loss:FlopsLoss", "en", "dataset:microsoft/ms_marco", "base_model:rasyosef/splade-mini", "base_model:quantized:rasyosef/splade-mini", "license:mit", "endpoints_compatible", "region:us", "feature-extraction" ]
null
2025-07-20T05:39:56Z
--- base_model: rasyosef/splade-mini datasets: - microsoft/ms_marco language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - sentence-transformers - sparse-encoder - sparse - splade - generated_from_trainer - dataset_size:1000000 - loss:SpladeLoss - loss:SparseMarginMSELoss - loss:FlopsLoss --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rasyosef/splade-mini <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#splade-mini-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q4_K_M.gguf) | Q4_K_M | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q5_K_S.gguf) | Q5_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q5_K_M.gguf) | Q5_K_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q6_K.gguf) | Q6_K | 0.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.Q8_0.gguf) | Q8_0 | 0.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/splade-mini-GGUF/resolve/main/splade-mini.f16.gguf) | f16 | 0.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756137561
ggozzy
2025-08-25T16:00:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T16:00:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rudra-madlads/blockassist-bc-jumping_swift_gazelle_1756137517
Rudra-madlads
2025-08-25T16:00:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping swift gazelle", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:59:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping swift gazelle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-mangy_grassy_barracuda_1756135998
motza0025
2025-08-25T15:59:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mangy grassy barracuda", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:59:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mangy grassy barracuda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kavpro/blockassist-bc-tall_lively_caribou_1756137497
kavpro
2025-08-25T15:59:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall lively caribou", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:59:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall lively caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1756137498
lilTAT
2025-08-25T15:59:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:58:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756137492
ricodr
2025-08-25T15:58:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:58:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756137395
bah63843
2025-08-25T15:57:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:57:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vangard703/output_full_no_temporal
vangard703
2025-08-25T15:55:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-25T15:29:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tuckermanhall1/blockassist-bc-tough_monstrous_wombat_1756135315
tuckermanhall1
2025-08-25T15:55:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough monstrous wombat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:55:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough monstrous wombat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Genos77/ParkinsonDetection
Genos77
2025-08-25T15:54:56Z
0
0
null
[ "joblib", "region:us" ]
null
2025-08-25T10:54:34Z
--- title: ParkinsonDetection emoji: 🚀 colorFrom: yellow colorTo: gray sdk: gradio sdk_version: 5.43.1 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
angiecely8538/blockassist-bc-striped_invisible_jackal_1756135233
angiecely8538
2025-08-25T15:53:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "striped invisible jackal", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:53:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - striped invisible jackal --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ganeshsahoo7468/blockassist-bc-bipedal_mighty_hummingbird_1756137050
ganeshsahoo7468
2025-08-25T15:52:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal mighty hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:52:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal mighty hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
goptouy/blockassist-bc-durable_enormous_platypus_1756137060
goptouy
2025-08-25T15:51:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "durable enormous platypus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:51:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - durable enormous platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
edimaosom1/blockassist-bc-padded_crested_gull_1756135300
edimaosom1
2025-08-25T15:50:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "padded crested gull", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:50:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - padded crested gull --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VISHNUDHAT/DeepHat-V1-7B-Q4_K_M-GGUF
VISHNUDHAT
2025-08-25T15:50:15Z
0
0
transformers
[ "transformers", "gguf", "code", "qwen-coder", "cybersecurity", "devops", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:DeepHat/DeepHat-V1-7B", "base_model:quantized:DeepHat/DeepHat-V1-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T15:49:49Z
--- license: apache-2.0 base_model: DeepHat/DeepHat-V1-7B language: - en pipeline_tag: text-generation library_name: transformers tags: - code - qwen-coder - cybersecurity - devops - llama-cpp - gguf-my-repo --- # VISHNUDHAT/DeepHat-V1-7B-Q4_K_M-GGUF This model was converted to GGUF format from [`DeepHat/DeepHat-V1-7B`](https://huggingface.co/DeepHat/DeepHat-V1-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DeepHat/DeepHat-V1-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo VISHNUDHAT/DeepHat-V1-7B-Q4_K_M-GGUF --hf-file deephat-v1-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo VISHNUDHAT/DeepHat-V1-7B-Q4_K_M-GGUF --hf-file deephat-v1-7b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo VISHNUDHAT/DeepHat-V1-7B-Q4_K_M-GGUF --hf-file deephat-v1-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo VISHNUDHAT/DeepHat-V1-7B-Q4_K_M-GGUF --hf-file deephat-v1-7b-q4_k_m.gguf -c 2048 ```
goptouy/blockassist-bc-muscular_carnivorous_okapi_1756136970
goptouy
2025-08-25T15:49:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular carnivorous okapi", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:49:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular carnivorous okapi --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mdsam907685/Ava
Mdsam907685
2025-08-25T15:49:35Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-25T15:49:35Z
--- license: apache-2.0 ---
ricodr/blockassist-bc-twitchy_toothy_clam_1756136885
ricodr
2025-08-25T15:48:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T15:48:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).