text
stringlengths
0
1.16k
2025-01-20 17:48:45.116744: Current learning rate: 0.00848
2025-01-20 17:49:32.870237: train_loss -0.7063
2025-01-20 17:49:32.905346: val_loss -0.7131
2025-01-20 17:49:32.905403: Pseudo dice [np.float32(0.7526), np.float32(0.7667), np.float32(0.8472), np.float32(0.7631), np.float32(0.8882), np.float32(0.7736)]
2025-01-20 17:49:32.905439: Epoch time: 47.79 s
2025-01-20 17:49:33.377629:
2025-01-20 17:49:33.412023: Epoch 168
2025-01-20 17:49:33.412100: Current learning rate: 0.00847
2025-01-20 17:50:21.172562: train_loss -0.6954
2025-01-20 17:50:21.207665: val_loss -0.7146
2025-01-20 17:50:21.207726: Pseudo dice [np.float32(0.7568), np.float32(0.7651), np.float32(0.8464), np.float32(0.7605), np.float32(0.8924), np.float32(0.7779)]
2025-01-20 17:50:21.207778: Epoch time: 47.8 s
2025-01-20 17:50:21.792203:
2025-01-20 17:50:21.826651: Epoch 169
2025-01-20 17:50:21.826732: Current learning rate: 0.00847
2025-01-20 17:51:09.658484: train_loss -0.6928
2025-01-20 17:51:09.693465: val_loss -0.6964
2025-01-20 17:51:09.693546: Pseudo dice [np.float32(0.7419), np.float32(0.7484), np.float32(0.8566), np.float32(0.7139), np.float32(0.8886), np.float32(0.7605)]
2025-01-20 17:51:09.693590: Epoch time: 47.87 s
2025-01-20 17:51:10.167336:
2025-01-20 17:51:10.201899: Epoch 170
2025-01-20 17:51:10.201959: Current learning rate: 0.00846
2025-01-20 17:51:58.036834: train_loss -0.7012
2025-01-20 17:51:58.071962: val_loss -0.7008
2025-01-20 17:51:58.072019: Pseudo dice [np.float32(0.7476), np.float32(0.7686), np.float32(0.8526), np.float32(0.7235), np.float32(0.8801), np.float32(0.7749)]
2025-01-20 17:51:58.072056: Epoch time: 47.87 s
2025-01-20 17:51:58.542607:
2025-01-20 17:51:58.577027: Epoch 171
2025-01-20 17:51:58.577093: Current learning rate: 0.00845
2025-01-20 17:52:46.353316: train_loss -0.7063
2025-01-20 17:52:46.388471: val_loss -0.6915
2025-01-20 17:52:46.388551: Pseudo dice [np.float32(0.747), np.float32(0.7635), np.float32(0.8556), np.float32(0.7178), np.float32(0.8938), np.float32(0.7853)]
2025-01-20 17:52:46.388589: Epoch time: 47.81 s
2025-01-20 17:52:46.862888:
2025-01-20 17:52:46.897362: Epoch 172
2025-01-20 17:52:46.897465: Current learning rate: 0.00844
2025-01-20 17:53:34.700198: train_loss -0.7109
2025-01-20 17:53:34.735316: val_loss -0.6986
2025-01-20 17:53:34.735371: Pseudo dice [np.float32(0.7549), np.float32(0.7731), np.float32(0.8544), np.float32(0.7478), np.float32(0.8906), np.float32(0.7813)]
2025-01-20 17:53:34.735414: Epoch time: 47.84 s
2025-01-20 17:53:35.209154:
2025-01-20 17:53:35.243700: Epoch 173
2025-01-20 17:53:35.243805: Current learning rate: 0.00843
2025-01-20 17:54:23.046081: train_loss -0.7111
2025-01-20 17:54:23.081189: val_loss -0.7017
2025-01-20 17:54:23.081259: Pseudo dice [np.float32(0.7627), np.float32(0.7959), np.float32(0.858), np.float32(0.766), np.float32(0.8724), np.float32(0.7699)]
2025-01-20 17:54:23.081297: Epoch time: 47.84 s
2025-01-20 17:54:23.081318: Yayy! New best EMA pseudo Dice: 0.7943000197410583
2025-01-20 17:54:23.941194:
2025-01-20 17:54:23.976403: Epoch 174
2025-01-20 17:54:23.976467: Current learning rate: 0.00842
2025-01-20 17:55:11.748150: train_loss -0.7081
2025-01-20 17:55:11.783322: val_loss -0.7049
2025-01-20 17:55:11.783377: Pseudo dice [np.float32(0.7259), np.float32(0.7645), np.float32(0.8517), np.float32(0.7278), np.float32(0.8816), np.float32(0.7741)]
2025-01-20 17:55:11.783415: Epoch time: 47.81 s
2025-01-20 17:55:12.254952:
2025-01-20 17:55:12.289385: Epoch 175
2025-01-20 17:55:12.289472: Current learning rate: 0.00841
2025-01-20 17:56:00.068010: train_loss -0.7041
2025-01-20 17:56:00.102996: val_loss -0.6871
2025-01-20 17:56:00.103062: Pseudo dice [np.float32(0.7304), np.float32(0.728), np.float32(0.8542), np.float32(0.7609), np.float32(0.8768), np.float32(0.7655)]
2025-01-20 17:56:00.103124: Epoch time: 47.81 s
2025-01-20 17:56:00.575979:
2025-01-20 17:56:00.610449: Epoch 176
2025-01-20 17:56:00.610511: Current learning rate: 0.0084
2025-01-20 17:56:48.397920: train_loss -0.7089
2025-01-20 17:56:48.433021: val_loss -0.7153
2025-01-20 17:56:48.433074: Pseudo dice [np.float32(0.7428), np.float32(0.7442), np.float32(0.8625), np.float32(0.7771), np.float32(0.8826), np.float32(0.7763)]
2025-01-20 17:56:48.433113: Epoch time: 47.82 s
2025-01-20 17:56:49.023321:
2025-01-20 17:56:49.057683: Epoch 177
2025-01-20 17:56:49.057760: Current learning rate: 0.00839
2025-01-20 17:57:36.840920: train_loss -0.7084
2025-01-20 17:57:36.876035: val_loss -0.7046
2025-01-20 17:57:36.876093: Pseudo dice [np.float32(0.7574), np.float32(0.7802), np.float32(0.8622), np.float32(0.7636), np.float32(0.8829), np.float32(0.7694)]
2025-01-20 17:57:36.876129: Epoch time: 47.82 s
2025-01-20 17:57:37.346123:
2025-01-20 17:57:37.380581: Epoch 178
2025-01-20 17:57:37.380667: Current learning rate: 0.00838
2025-01-20 17:58:25.148544: train_loss -0.7023
2025-01-20 17:58:25.152187: val_loss -0.7168
2025-01-20 17:58:25.152256: Pseudo dice [np.float32(0.7659), np.float32(0.7728), np.float32(0.8584), np.float32(0.7541), np.float32(0.8883), np.float32(0.7868)]
2025-01-20 17:58:25.152292: Epoch time: 47.8 s
2025-01-20 17:58:25.152314: Yayy! New best EMA pseudo Dice: 0.7953000068664551
2025-01-20 17:58:26.003227:
2025-01-20 17:58:26.005799: Epoch 179
2025-01-20 17:58:26.005862: Current learning rate: 0.00837
2025-01-20 17:59:13.774798: train_loss -0.706
2025-01-20 17:59:13.809968: val_loss -0.6969
2025-01-20 17:59:13.810022: Pseudo dice [np.float32(0.7581), np.float32(0.7357), np.float32(0.851), np.float32(0.7544), np.float32(0.8908), np.float32(0.7714)]
2025-01-20 17:59:13.810060: Epoch time: 47.77 s
2025-01-20 17:59:14.282736:
2025-01-20 17:59:14.317167: Epoch 180
2025-01-20 17:59:14.317232: Current learning rate: 0.00836
2025-01-20 18:00:02.093386: train_loss -0.7064
2025-01-20 18:00:02.093565: val_loss -0.7037
2025-01-20 18:00:02.093631: Pseudo dice [np.float32(0.7448), np.float32(0.763), np.float32(0.8551), np.float32(0.7445), np.float32(0.8779), np.float32(0.7825)]
2025-01-20 18:00:02.093670: Epoch time: 47.81 s
2025-01-20 18:00:02.564326:
2025-01-20 18:00:02.598797: Epoch 181