text
stringlengths 0
1.16k
|
---|
2025-01-20 18:00:02.598862: Current learning rate: 0.00836
|
2025-01-20 18:00:50.362668: train_loss -0.7155
|
2025-01-20 18:00:50.397704: val_loss -0.7065
|
2025-01-20 18:00:50.397785: Pseudo dice [np.float32(0.754), np.float32(0.7551), np.float32(0.8601), np.float32(0.7633), np.float32(0.8935), np.float32(0.782)]
|
2025-01-20 18:00:50.397843: Epoch time: 47.8 s
|
2025-01-20 18:00:50.397865: Yayy! New best EMA pseudo Dice: 0.7957000136375427
|
2025-01-20 18:00:51.253439:
|
2025-01-20 18:00:51.254693: Epoch 182
|
2025-01-20 18:00:51.254758: Current learning rate: 0.00835
|
2025-01-20 18:01:39.037234: train_loss -0.7141
|
2025-01-20 18:01:39.072489: val_loss -0.7054
|
2025-01-20 18:01:39.072565: Pseudo dice [np.float32(0.7626), np.float32(0.7592), np.float32(0.8528), np.float32(0.7174), np.float32(0.894), np.float32(0.7673)]
|
2025-01-20 18:01:39.072613: Epoch time: 47.78 s
|
2025-01-20 18:01:39.540474:
|
2025-01-20 18:01:39.575017: Epoch 183
|
2025-01-20 18:01:39.575079: Current learning rate: 0.00834
|
2025-01-20 18:02:27.344148: train_loss -0.7173
|
2025-01-20 18:02:27.379227: val_loss -0.7106
|
2025-01-20 18:02:27.379293: Pseudo dice [np.float32(0.7458), np.float32(0.7529), np.float32(0.8524), np.float32(0.7413), np.float32(0.8882), np.float32(0.7827)]
|
2025-01-20 18:02:27.379338: Epoch time: 47.8 s
|
2025-01-20 18:02:27.848155:
|
2025-01-20 18:02:27.882647: Epoch 184
|
2025-01-20 18:02:27.882714: Current learning rate: 0.00833
|
2025-01-20 18:03:15.659252: train_loss -0.7202
|
2025-01-20 18:03:15.694355: val_loss -0.7016
|
2025-01-20 18:03:15.694416: Pseudo dice [np.float32(0.7567), np.float32(0.7622), np.float32(0.8544), np.float32(0.7414), np.float32(0.8859), np.float32(0.7837)]
|
2025-01-20 18:03:15.694461: Epoch time: 47.81 s
|
2025-01-20 18:03:16.280389:
|
2025-01-20 18:03:16.314869: Epoch 185
|
2025-01-20 18:03:16.314958: Current learning rate: 0.00832
|
2025-01-20 18:04:04.071265: train_loss -0.708
|
2025-01-20 18:04:04.106284: val_loss -0.7084
|
2025-01-20 18:04:04.106340: Pseudo dice [np.float32(0.7535), np.float32(0.7453), np.float32(0.8646), np.float32(0.7548), np.float32(0.882), np.float32(0.7693)]
|
2025-01-20 18:04:04.106379: Epoch time: 47.79 s
|
2025-01-20 18:04:04.576561:
|
2025-01-20 18:04:04.611114: Epoch 186
|
2025-01-20 18:04:04.611176: Current learning rate: 0.00831
|
2025-01-20 18:04:52.371905: train_loss -0.7149
|
2025-01-20 18:04:52.406984: val_loss -0.7127
|
2025-01-20 18:04:52.407039: Pseudo dice [np.float32(0.754), np.float32(0.7454), np.float32(0.8567), np.float32(0.7306), np.float32(0.8897), np.float32(0.7692)]
|
2025-01-20 18:04:52.407076: Epoch time: 47.8 s
|
2025-01-20 18:04:52.878551:
|
2025-01-20 18:04:52.913041: Epoch 187
|
2025-01-20 18:04:52.913104: Current learning rate: 0.0083
|
2025-01-20 18:05:40.676506: train_loss -0.7093
|
2025-01-20 18:05:40.711597: val_loss -0.6992
|
2025-01-20 18:05:40.711651: Pseudo dice [np.float32(0.7454), np.float32(0.7434), np.float32(0.8607), np.float32(0.7411), np.float32(0.9019), np.float32(0.7784)]
|
2025-01-20 18:05:40.711694: Epoch time: 47.8 s
|
2025-01-20 18:05:41.184538:
|
2025-01-20 18:05:41.218916: Epoch 188
|
2025-01-20 18:05:41.218980: Current learning rate: 0.00829
|
2025-01-20 18:06:29.012526: train_loss -0.7078
|
2025-01-20 18:06:29.047543: val_loss -0.6844
|
2025-01-20 18:06:29.047625: Pseudo dice [np.float32(0.7464), np.float32(0.7143), np.float32(0.8518), np.float32(0.7259), np.float32(0.8885), np.float32(0.7652)]
|
2025-01-20 18:06:29.047660: Epoch time: 47.83 s
|
2025-01-20 18:06:29.518758:
|
2025-01-20 18:06:29.553226: Epoch 189
|
2025-01-20 18:06:29.553312: Current learning rate: 0.00828
|
2025-01-20 18:07:17.296560: train_loss -0.7092
|
2025-01-20 18:07:17.331673: val_loss -0.6965
|
2025-01-20 18:07:17.331736: Pseudo dice [np.float32(0.76), np.float32(0.7774), np.float32(0.8524), np.float32(0.756), np.float32(0.8746), np.float32(0.7683)]
|
2025-01-20 18:07:17.331804: Epoch time: 47.78 s
|
2025-01-20 18:07:17.804097:
|
2025-01-20 18:07:17.838449: Epoch 190
|
2025-01-20 18:07:17.838530: Current learning rate: 0.00827
|
2025-01-20 18:08:05.635204: train_loss -0.7082
|
2025-01-20 18:08:05.670240: val_loss -0.6948
|
2025-01-20 18:08:05.670322: Pseudo dice [np.float32(0.7505), np.float32(0.7521), np.float32(0.8593), np.float32(0.7575), np.float32(0.8937), np.float32(0.7671)]
|
2025-01-20 18:08:05.670359: Epoch time: 47.83 s
|
2025-01-20 18:08:06.140339:
|
2025-01-20 18:08:06.174832: Epoch 191
|
2025-01-20 18:08:06.174901: Current learning rate: 0.00826
|
2025-01-20 18:08:53.905154: train_loss -0.7042
|
2025-01-20 18:08:53.940275: val_loss -0.6998
|
2025-01-20 18:08:53.940330: Pseudo dice [np.float32(0.7525), np.float32(0.7545), np.float32(0.8442), np.float32(0.7667), np.float32(0.8885), np.float32(0.7787)]
|
2025-01-20 18:08:53.940367: Epoch time: 47.77 s
|
2025-01-20 18:08:54.414248:
|
2025-01-20 18:08:54.448702: Epoch 192
|
2025-01-20 18:08:54.448771: Current learning rate: 0.00825
|
2025-01-20 18:09:42.180784: train_loss -0.7107
|
2025-01-20 18:09:42.215887: val_loss -0.6933
|
2025-01-20 18:09:42.215966: Pseudo dice [np.float32(0.7591), np.float32(0.7432), np.float32(0.8519), np.float32(0.7355), np.float32(0.8981), np.float32(0.7824)]
|
2025-01-20 18:09:42.216005: Epoch time: 47.77 s
|
2025-01-20 18:09:42.803728:
|
2025-01-20 18:09:42.838124: Epoch 193
|
2025-01-20 18:09:42.838221: Current learning rate: 0.00824
|
2025-01-20 18:10:30.606583: train_loss -0.7095
|
2025-01-20 18:10:30.641713: val_loss -0.6963
|
2025-01-20 18:10:30.641792: Pseudo dice [np.float32(0.7582), np.float32(0.7519), np.float32(0.8628), np.float32(0.7771), np.float32(0.8816), np.float32(0.7964)]
|
2025-01-20 18:10:30.641834: Epoch time: 47.8 s
|
2025-01-20 18:10:30.641855: Yayy! New best EMA pseudo Dice: 0.7957000136375427
|
2025-01-20 18:10:31.509621:
|
2025-01-20 18:10:31.545057: Epoch 194
|
2025-01-20 18:10:31.545144: Current learning rate: 0.00824
|
2025-01-20 18:11:19.319617: train_loss -0.722
|
2025-01-20 18:11:19.354579: val_loss -0.6974
|
2025-01-20 18:11:19.354657: Pseudo dice [np.float32(0.7477), np.float32(0.7496), np.float32(0.8512), np.float32(0.7506), np.float32(0.901), np.float32(0.783)]
|
2025-01-20 18:11:19.354698: Epoch time: 47.81 s
|
2025-01-20 18:11:19.354725: Yayy! New best EMA pseudo Dice: 0.7958999872207642
|
2025-01-20 18:11:20.212988:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.