text
stringlengths 0
1.16k
|
---|
2025-01-20 18:11:20.215648: Epoch 195
|
2025-01-20 18:11:20.215757: Current learning rate: 0.00823
|
2025-01-20 18:12:07.922738: train_loss -0.7157
|
2025-01-20 18:12:07.957848: val_loss -0.7033
|
2025-01-20 18:12:07.957921: Pseudo dice [np.float32(0.7624), np.float32(0.7624), np.float32(0.8675), np.float32(0.7486), np.float32(0.89), np.float32(0.7721)]
|
2025-01-20 18:12:07.957989: Epoch time: 47.71 s
|
2025-01-20 18:12:07.958021: Yayy! New best EMA pseudo Dice: 0.7962999939918518
|
2025-01-20 18:12:08.812959:
|
2025-01-20 18:12:08.848300: Epoch 196
|
2025-01-20 18:12:08.848390: Current learning rate: 0.00822
|
2025-01-20 18:12:56.563520: train_loss -0.7131
|
2025-01-20 18:12:56.598548: val_loss -0.7296
|
2025-01-20 18:12:56.598626: Pseudo dice [np.float32(0.7532), np.float32(0.7638), np.float32(0.8581), np.float32(0.7609), np.float32(0.8795), np.float32(0.7818)]
|
2025-01-20 18:12:56.598664: Epoch time: 47.75 s
|
2025-01-20 18:12:56.598684: Yayy! New best EMA pseudo Dice: 0.7965999841690063
|
2025-01-20 18:12:57.461012:
|
2025-01-20 18:12:57.463443: Epoch 197
|
2025-01-20 18:12:57.463534: Current learning rate: 0.00821
|
2025-01-20 18:13:45.189736: train_loss -0.7103
|
2025-01-20 18:13:45.224882: val_loss -0.6943
|
2025-01-20 18:13:45.224952: Pseudo dice [np.float32(0.7441), np.float32(0.7644), np.float32(0.8552), np.float32(0.7386), np.float32(0.8876), np.float32(0.7635)]
|
2025-01-20 18:13:45.225002: Epoch time: 47.73 s
|
2025-01-20 18:13:45.699655:
|
2025-01-20 18:13:45.734133: Epoch 198
|
2025-01-20 18:13:45.734225: Current learning rate: 0.0082
|
2025-01-20 18:14:33.498337: train_loss -0.7141
|
2025-01-20 18:14:33.533468: val_loss -0.6818
|
2025-01-20 18:14:33.533526: Pseudo dice [np.float32(0.7492), np.float32(0.7251), np.float32(0.8536), np.float32(0.7455), np.float32(0.8791), np.float32(0.7769)]
|
2025-01-20 18:14:33.533565: Epoch time: 47.8 s
|
2025-01-20 18:14:34.008346:
|
2025-01-20 18:14:34.042814: Epoch 199
|
2025-01-20 18:14:34.042877: Current learning rate: 0.00819
|
2025-01-20 18:15:21.746579: train_loss -0.7046
|
2025-01-20 18:15:21.781704: val_loss -0.686
|
2025-01-20 18:15:21.781767: Pseudo dice [np.float32(0.7409), np.float32(0.7247), np.float32(0.8445), np.float32(0.7325), np.float32(0.8834), np.float32(0.7659)]
|
2025-01-20 18:15:21.781812: Epoch time: 47.74 s
|
2025-01-20 18:15:22.752723:
|
2025-01-20 18:15:22.752954: Epoch 200
|
2025-01-20 18:15:22.753011: Current learning rate: 0.00818
|
2025-01-20 18:16:10.494308: train_loss -0.7119
|
2025-01-20 18:16:10.529505: val_loss -0.7005
|
2025-01-20 18:16:10.529560: Pseudo dice [np.float32(0.7474), np.float32(0.7703), np.float32(0.8553), np.float32(0.741), np.float32(0.8873), np.float32(0.7844)]
|
2025-01-20 18:16:10.529598: Epoch time: 47.74 s
|
2025-01-20 18:16:11.004667:
|
2025-01-20 18:16:11.039090: Epoch 201
|
2025-01-20 18:16:11.039172: Current learning rate: 0.00817
|
2025-01-20 18:16:58.761600: train_loss -0.707
|
2025-01-20 18:16:58.796654: val_loss -0.7037
|
2025-01-20 18:16:58.796745: Pseudo dice [np.float32(0.7582), np.float32(0.7505), np.float32(0.8627), np.float32(0.7617), np.float32(0.884), np.float32(0.7817)]
|
2025-01-20 18:16:58.796788: Epoch time: 47.76 s
|
2025-01-20 18:16:59.270476:
|
2025-01-20 18:16:59.304902: Epoch 202
|
2025-01-20 18:16:59.305003: Current learning rate: 0.00816
|
2025-01-20 18:17:47.038893: train_loss -0.7022
|
2025-01-20 18:17:47.073881: val_loss -0.6949
|
2025-01-20 18:17:47.073947: Pseudo dice [np.float32(0.764), np.float32(0.7282), np.float32(0.8606), np.float32(0.755), np.float32(0.883), np.float32(0.7637)]
|
2025-01-20 18:17:47.073983: Epoch time: 47.77 s
|
2025-01-20 18:17:47.547129:
|
2025-01-20 18:17:47.581570: Epoch 203
|
2025-01-20 18:17:47.581633: Current learning rate: 0.00815
|
2025-01-20 18:18:35.328165: train_loss -0.7118
|
2025-01-20 18:18:35.363181: val_loss -0.698
|
2025-01-20 18:18:35.363248: Pseudo dice [np.float32(0.7618), np.float32(0.7807), np.float32(0.8528), np.float32(0.7646), np.float32(0.8969), np.float32(0.7934)]
|
2025-01-20 18:18:35.363285: Epoch time: 47.78 s
|
2025-01-20 18:18:35.843240:
|
2025-01-20 18:18:35.877609: Epoch 204
|
2025-01-20 18:18:35.877689: Current learning rate: 0.00814
|
2025-01-20 18:19:23.605674: train_loss -0.7176
|
2025-01-20 18:19:23.640644: val_loss -0.7291
|
2025-01-20 18:19:23.640702: Pseudo dice [np.float32(0.7645), np.float32(0.7872), np.float32(0.8509), np.float32(0.7441), np.float32(0.8981), np.float32(0.7923)]
|
2025-01-20 18:19:23.640761: Epoch time: 47.76 s
|
2025-01-20 18:19:23.640786: Yayy! New best EMA pseudo Dice: 0.7971000075340271
|
2025-01-20 18:19:24.501439:
|
2025-01-20 18:19:24.536664: Epoch 205
|
2025-01-20 18:19:24.536763: Current learning rate: 0.00813
|
2025-01-20 18:20:12.257827: train_loss -0.7199
|
2025-01-20 18:20:12.292974: val_loss -0.6832
|
2025-01-20 18:20:12.293029: Pseudo dice [np.float32(0.7385), np.float32(0.7133), np.float32(0.8622), np.float32(0.7491), np.float32(0.8891), np.float32(0.7767)]
|
2025-01-20 18:20:12.293064: Epoch time: 47.76 s
|
2025-01-20 18:20:12.760242:
|
2025-01-20 18:20:12.794730: Epoch 206
|
2025-01-20 18:20:12.794791: Current learning rate: 0.00813
|
2025-01-20 18:21:00.505389: train_loss -0.7023
|
2025-01-20 18:21:00.540545: val_loss -0.685
|
2025-01-20 18:21:00.540610: Pseudo dice [np.float32(0.7527), np.float32(0.7597), np.float32(0.8591), np.float32(0.7327), np.float32(0.877), np.float32(0.7652)]
|
2025-01-20 18:21:00.540653: Epoch time: 47.75 s
|
2025-01-20 18:21:00.997563:
|
2025-01-20 18:21:01.032002: Epoch 207
|
2025-01-20 18:21:01.032087: Current learning rate: 0.00812
|
2025-01-20 18:21:48.761284: train_loss -0.7033
|
2025-01-20 18:21:48.796453: val_loss -0.7027
|
2025-01-20 18:21:48.796508: Pseudo dice [np.float32(0.7389), np.float32(0.739), np.float32(0.854), np.float32(0.7292), np.float32(0.897), np.float32(0.7767)]
|
2025-01-20 18:21:48.796544: Epoch time: 47.76 s
|
2025-01-20 18:21:49.369728:
|
2025-01-20 18:21:49.404187: Epoch 208
|
2025-01-20 18:21:49.404287: Current learning rate: 0.00811
|
2025-01-20 18:22:37.146113: train_loss -0.7124
|
2025-01-20 18:22:37.181227: val_loss -0.7065
|
2025-01-20 18:22:37.181282: Pseudo dice [np.float32(0.7603), np.float32(0.7525), np.float32(0.8581), np.float32(0.7482), np.float32(0.8944), np.float32(0.7592)]
|
2025-01-20 18:22:37.181319: Epoch time: 47.78 s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.