content
stringlengths
0
894k
type
stringclasses
2 values
# Generated by Django 2.0.3 on 2018-04-13 22:35 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('catalog', '0006_auto_20180413_1527'), ] operations = [ migrations.RenameField( model_name='reply', old_name='mediaItem', new_name='reply_to', ), migrations.AddField( model_name='review', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
python
import numpy as np from gym.spaces import Box, Dict, Discrete from database_env.foop import DataBaseEnv_FOOP from database_env.query_encoding import DataBaseEnv_QueryEncoding class DataBaseEnv_FOOP_QueryEncoding(DataBaseEnv_FOOP, DataBaseEnv_QueryEncoding): """ Database environment with states and actions as in the article (https://arxiv.org/pdf/1911.11689.pdf) and encoding like NEO (http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf). Suitable for use with RLlib. Attributes: env_config(dict): Algorithm-specific configuration data, should contain item corresponding to the DB scheme. """ def __init__(self, env_config, is_join_graph_encoding=False): super().__init__(env_config) self.is_join_graph_encoding = is_join_graph_encoding real_obs_shape = self.N_rels * self.N_cols + self.N_cols if self.is_join_graph_encoding: real_obs_shape += self.query_encoding_size real_obs_shape = (real_obs_shape, ) self.observation_space = Dict({ 'real_obs': Box(low = 0, high = 1, shape = real_obs_shape, dtype = np.int), 'action_mask': Box(low = 0, high = 1, shape = (len(self.actions), ), dtype = np.int), }) def get_obs(self): real_obs = [self.get_foop().flatten()] if self.is_join_graph_encoding: real_obs.append(self.join_graph_encoding) real_obs.append(self.predicate_ohe) real_obs = np.concatenate(real_obs).astype(np.int) return { 'real_obs': real_obs.tolist(), 'action_mask': self.valid_actions().astype(np.int).tolist() }
python
def intercala(nomeA, nomeB, nomeS): fileA = open(nomeA, 'rt') fileB = open(nomeB, 'rt') fileS = open(nomeS, 'wt') nA = int(fileA.readline()) nB = int(fileB.readline()) while def main(): nomeA = input('Nome do primeiro arquivo: ') nomeB = input('Nome do segundo arquivo: ') nomeS = input('Nome para o arquivo de saida: ') intercala(nomeA, nomeB, nomeS) if __name__ == "__main__": main()
python
import RPi.GPIO as GPIO import time class Motion: def __init__(self, ui, pin, timeout=30): self._ui = ui self._pin = int(pin) self._timeout = int(timeout) self._last_motion = time.time() GPIO.setmode(GPIO.BCM) # choose BCM or BOARD GPIO.setup(self._pin, GPIO.IN) def check(self): now = time.time() if GPIO.input(self._pin): self._last_motion = now if (now - self._last_motion) <= self._timeout: self._ui.on() #if not self._ui.backlight_on: # print "Turning UI on" else: # elif self._ui.backlight_on: self._ui.off()
python
# # PySNMP MIB module H3C-DOMAIN-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/H3C-DOMAIN-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:08:30 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion") h3cCommon, = mibBuilder.importSymbols("HUAWEI-3COM-OID-MIB", "h3cCommon") InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType") NotificationGroup, ModuleCompliance, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance", "ObjectGroup") ObjectIdentity, iso, Bits, Integer32, ModuleIdentity, TimeTicks, IpAddress, NotificationType, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, MibIdentifier, Counter32, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "iso", "Bits", "Integer32", "ModuleIdentity", "TimeTicks", "IpAddress", "NotificationType", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "MibIdentifier", "Counter32", "Unsigned32") RowStatus, TruthValue, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "TruthValue", "DisplayString", "TextualConvention") h3cDomain = ModuleIdentity((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46)) if mibBuilder.loadTexts: h3cDomain.setLastUpdated('200908050000Z') if mibBuilder.loadTexts: h3cDomain.setOrganization('H3C Technologies Co., Ltd.') class H3cModeOfDomainScheme(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4)) namedValues = NamedValues(("none", 1), ("local", 2), ("radius", 3), ("tacacs", 4)) class H3cAAATypeDomainScheme(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4)) namedValues = NamedValues(("accounting", 1), ("authentication", 2), ("authorization", 3), ("none", 4)) class H3cAccessModeofDomainScheme(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)) namedValues = NamedValues(("default", 1), ("login", 2), ("lanAccess", 3), ("portal", 4), ("ppp", 5), ("gcm", 6), ("dvpn", 7), ("dhcp", 8), ("voice", 9), ("superauthen", 10), ("command", 11), ("wapi", 12)) h3cDomainControl = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 1)) h3cDomainDefault = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 1, 1), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 128))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cDomainDefault.setStatus('current') h3cDomainTables = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2)) h3cDomainInfoTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1), ) if mibBuilder.loadTexts: h3cDomainInfoTable.setStatus('current') h3cDomainInfoEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1), ).setIndexNames((0, "H3C-DOMAIN-MIB", "h3cDomainName")) if mibBuilder.loadTexts: h3cDomainInfoEntry.setStatus('current') h3cDomainName = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 1), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 128))) if mibBuilder.loadTexts: h3cDomainName.setStatus('current') h3cDomainState = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("active", 1), ("block", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainState.setStatus('current') h3cDomainMaxAccessNum = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 3), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainMaxAccessNum.setStatus('current') h3cDomainVlanAssignMode = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("integer", 1), ("string", 2), ("vlanlist", 3)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainVlanAssignMode.setStatus('current') h3cDomainIdleCutEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 5), TruthValue()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIdleCutEnable.setStatus('current') h3cDomainIdleCutMaxTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 120))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIdleCutMaxTime.setStatus('current') h3cDomainIdleCutMinFlow = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 10240000))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIdleCutMinFlow.setStatus('current') h3cDomainMessengerEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 8), TruthValue()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainMessengerEnable.setStatus('current') h3cDomainMessengerLimitTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 9), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 60))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainMessengerLimitTime.setStatus('current') h3cDomainMessengerSpanTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(5, 60))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainMessengerSpanTime.setStatus('current') h3cDomainSelfServiceEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 11), TruthValue()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSelfServiceEnable.setStatus('current') h3cDomainSelfServiceURL = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 12), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSelfServiceURL.setStatus('current') h3cDomainAccFailureAction = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ignore", 1), ("reject", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainAccFailureAction.setStatus('current') h3cDomainRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 14), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainRowStatus.setStatus('current') h3cDomainCurrentAccessNum = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 1, 1, 15), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cDomainCurrentAccessNum.setStatus('current') h3cDomainSchemeTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2), ) if mibBuilder.loadTexts: h3cDomainSchemeTable.setStatus('current') h3cDomainSchemeEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1), ).setIndexNames((0, "H3C-DOMAIN-MIB", "h3cDomainName"), (0, "H3C-DOMAIN-MIB", "h3cDomainSchemeIndex")) if mibBuilder.loadTexts: h3cDomainSchemeEntry.setStatus('current') h3cDomainSchemeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 1), Integer32()) if mibBuilder.loadTexts: h3cDomainSchemeIndex.setStatus('current') h3cDomainSchemeMode = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 2), H3cModeOfDomainScheme()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSchemeMode.setStatus('current') h3cDomainAuthSchemeName = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainAuthSchemeName.setStatus('current') h3cDomainAcctSchemeName = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainAcctSchemeName.setStatus('current') h3cDomainSchemeRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 5), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSchemeRowStatus.setStatus('current') h3cDomainSchemeAAAType = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 6), H3cAAATypeDomainScheme()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSchemeAAAType.setStatus('current') h3cDomainSchemeAAAName = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSchemeAAAName.setStatus('current') h3cDomainSchemeAccessMode = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 2, 1, 8), H3cAccessModeofDomainScheme()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainSchemeAccessMode.setStatus('current') h3cDomainIpPoolTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3), ) if mibBuilder.loadTexts: h3cDomainIpPoolTable.setStatus('current') h3cDomainIpPoolEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3, 1), ).setIndexNames((0, "H3C-DOMAIN-MIB", "h3cDomainName"), (0, "H3C-DOMAIN-MIB", "h3cDomainIpPoolNum")) if mibBuilder.loadTexts: h3cDomainIpPoolEntry.setStatus('current') h3cDomainIpPoolNum = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 99))) if mibBuilder.loadTexts: h3cDomainIpPoolNum.setStatus('current') h3cDomainIpPoolLowIpAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3, 1, 2), InetAddressType()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIpPoolLowIpAddrType.setStatus('current') h3cDomainIpPoolLowIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3, 1, 3), InetAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIpPoolLowIpAddr.setStatus('current') h3cDomainIpPoolLen = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3, 1, 4), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIpPoolLen.setStatus('current') h3cDomainIpPoolRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 46, 2, 3, 1, 5), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cDomainIpPoolRowStatus.setStatus('current') mibBuilder.exportSymbols("H3C-DOMAIN-MIB", H3cAAATypeDomainScheme=H3cAAATypeDomainScheme, h3cDomainSelfServiceURL=h3cDomainSelfServiceURL, h3cDomainIpPoolEntry=h3cDomainIpPoolEntry, h3cDomainInfoEntry=h3cDomainInfoEntry, h3cDomainMessengerLimitTime=h3cDomainMessengerLimitTime, h3cDomainIdleCutEnable=h3cDomainIdleCutEnable, h3cDomainSchemeRowStatus=h3cDomainSchemeRowStatus, h3cDomainIpPoolLen=h3cDomainIpPoolLen, h3cDomainName=h3cDomainName, h3cDomain=h3cDomain, h3cDomainIdleCutMaxTime=h3cDomainIdleCutMaxTime, H3cAccessModeofDomainScheme=H3cAccessModeofDomainScheme, h3cDomainRowStatus=h3cDomainRowStatus, h3cDomainAcctSchemeName=h3cDomainAcctSchemeName, h3cDomainVlanAssignMode=h3cDomainVlanAssignMode, h3cDomainIdleCutMinFlow=h3cDomainIdleCutMinFlow, h3cDomainSelfServiceEnable=h3cDomainSelfServiceEnable, h3cDomainControl=h3cDomainControl, h3cDomainMessengerEnable=h3cDomainMessengerEnable, h3cDomainSchemeAAAName=h3cDomainSchemeAAAName, h3cDomainIpPoolTable=h3cDomainIpPoolTable, h3cDomainAccFailureAction=h3cDomainAccFailureAction, h3cDomainIpPoolRowStatus=h3cDomainIpPoolRowStatus, h3cDomainIpPoolLowIpAddrType=h3cDomainIpPoolLowIpAddrType, H3cModeOfDomainScheme=H3cModeOfDomainScheme, h3cDomainDefault=h3cDomainDefault, h3cDomainSchemeTable=h3cDomainSchemeTable, h3cDomainMessengerSpanTime=h3cDomainMessengerSpanTime, h3cDomainSchemeEntry=h3cDomainSchemeEntry, h3cDomainSchemeAccessMode=h3cDomainSchemeAccessMode, h3cDomainSchemeMode=h3cDomainSchemeMode, PYSNMP_MODULE_ID=h3cDomain, h3cDomainAuthSchemeName=h3cDomainAuthSchemeName, h3cDomainTables=h3cDomainTables, h3cDomainIpPoolNum=h3cDomainIpPoolNum, h3cDomainInfoTable=h3cDomainInfoTable, h3cDomainCurrentAccessNum=h3cDomainCurrentAccessNum, h3cDomainSchemeAAAType=h3cDomainSchemeAAAType, h3cDomainIpPoolLowIpAddr=h3cDomainIpPoolLowIpAddr, h3cDomainMaxAccessNum=h3cDomainMaxAccessNum, h3cDomainSchemeIndex=h3cDomainSchemeIndex, h3cDomainState=h3cDomainState)
python
import sys import numpy as np from matplotlib import pyplot as plt from tensorflow import keras from tensorflow.keras import layers def preprocess(array: np.array): """ Normalizes the supplied array and reshapes it into the appropriate format """ array = array.astype("float32")/255.0 array = np.reshape(array, (len(array), 28, 28, 1)) print("Final Shape:", array.shape) return array def noise(array): """ Adds random noise to each image in the supplied array """ noise_factor = 0.5 noise_array = array + noise_factor * \ np.random.normal(loc=0.0, scale=1.0, size=array.shape) return np.clip(noise_array, 0.0, 1.0) def load_data(path="mnist.npz"): """ Loading the data and applying the preprocessing steps """ with np.load("mnist.npz", allow_pickle=True) as f: train_data, test_data = f['x_train'], f['x_test'] train_data = preprocess(train_data) test_data = preprocess(test_data) return train_data, test_data train_data, test_data = load_data() # create a copy of data with noise noisy_train_data = noise(train_data) noisy_test_data = noise(test_data) def build_model(input_shape=(28, 28, 1)): """ Building the autoencoder model for mnist """ input = layers.Input(shape=input_shape) # encoder x = layers.Conv2D(32, (3, 3), activation='relu', padding='same', name="Conv1")(input) x = layers.MaxPooling2D((2, 2), padding='same', name='Pool1')(x) x = layers.Conv2D(32, (3, 3), activation='relu', padding='same', name='Conv2')(x) x = layers.MaxPooling2D((2, 2), padding='same', name='Pool2')(x) # decoder x = layers.Conv2DTranspose( 32, (3, 3), strides=2, activation='relu', padding='same', name="Conv1_transpose")(x) x = layers.Conv2DTranspose( 32, (3, 3), strides=2, activation='relu', padding='same', name='Conv2_transpose')(x) output = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same', name="output_layer")(x) autoencoder = keras.models.Model(input, output, name='AutoEncoder-Model') autoencoder.compile(optimizer='adam', loss='binary_crossentropy') return autoencoder def train_model(checkpoint_dir="tmp", monitor="val_loss"): autoencoder = build_model() autoencoder.summary() early_stopping = keras.callbacks.EarlyStopping( monitor=monitor, patience=5, restore_best_weights=True) model_checkpoint = keras.callbacks.ModelCheckpoint( checkpoint_dir, monitor=monitor, verbose=0, save_best_only=True, save_weights_only=False, mode="auto", save_freq="epoch", options=None) autoencoder.fit( x=noisy_train_data, y=train_data, epochs=100, batch_size=128, shuffle=True, validation_data=(noisy_test_data, test_data), callbacks=[early_stopping, model_checkpoint]) autoencoder.save('saved_model') def display(array1, array2, n=10): """ Displays n random images from each one of the supplied arrays. args: n: Number of output to show """ indices = np.random.randint(len(array1), size=n) images1 = array1[indices, :] images2 = array2[indices, :] plt.figure(figsize=(20, 4)) for i, (image1, image2) in enumerate(zip(images1, images2)): ax = plt.subplot(2, n, i + 1) plt.imshow(image1.reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax = plt.subplot(2, n, i + 1 + n) plt.imshow(image2.reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() def show_output(): """ function for showing the output """ try: autoencoder = keras.models.load_model( "saved_model") # loading model from tmp folder except Exception: print("There is no model please train the model first then use the run command") predictions = autoencoder.predict(noisy_test_data) display(noisy_test_data, predictions, n=10) if __name__ == '__main__': try: if sys.argv[1] == "train": train_model() if sys.argv[1] == "run": show_output() except Exception: print("Please Use train and run argument to run the process. check the Readme for more details")
python
import math from time import sleep from timeit import default_timer as timer LMS8001_C1_STEP=1.2e-12 LMS8001_C2_STEP=10.0e-12 LMS8001_C3_STEP=1.2e-12 LMS8001_C2_FIX=150.0e-12 LMS8001_C3_FIX=5.0e-12 LMS8001_R2_0=24.6e3 LMS8001_R3_0=14.9e3 class PLL_METHODS(object): def __init__(self, chip, fRef): self.chip = chip self.fRef = fRef def estim_KVCO(self, FIT_KVCO=True, PROFILE=0): # Check VCO_SEL and VCO_FREQ reg_pll_vco_freq=self.chip.getRegisterByName('PLL_VCO_FREQ_'+str(PROFILE)) reg_pll_vco_cfg=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) vco_sel=reg_pll_vco_cfg['VCO_SEL_'+str(PROFILE)+'<1:0>'] vco_freq=reg_pll_vco_freq['VCO_FREQ_'+str(PROFILE)+'<7:0>'] if not (FIT_KVCO): # Use Average for KVCO in Calculations if (vco_sel==1): KVCO_avg=44.404e6 elif (vco_sel==2): KVCO_avg=33.924e6 elif (vco_sel==3): KVCO_avg=41.455e6 else: self.chip.log('Ext. LO selected in PLL_PROFILE.') return None else: # Use Fitted Values for KVCO in Calculations # Changed on 17.05.2017. with new results # Following equations fitted for VTUNE=0.7 V CBANK=vco_freq if (vco_sel==1): KVCO_avg=27.296e6 * (2.26895e-10*CBANK**4+4.98467e-9*CBANK**3+9.01884e-6*CBANK**2+3.69804e-3*CBANK**1+1.01283e+00) elif (vco_sel==2): KVCO_avg=23.277e6 * (8.38795e-11*CBANK**4+2.20202e-08*CBANK**3+3.68009e-06*CBANK**2+3.22264e-03*CBANK**1+1.01093e+00) elif (vco_sel==3): KVCO_avg=29.110e6 * (-1.54988e-11*CBANK**4+4.27489e-08*CBANK**3+5.26971e-06*CBANK**2+2.83453e-03*CBANK**1+9.94192e-01) else: self.chip.log('Ext. LO selected in PLL_PROFILE.') return None return KVCO_avg def calc_ideal_LPF(self, fc, PM_deg, Icp, KVCO_HzV, N, gamma=1.045, T31=0.1): PM_rad=PM_deg*math.pi/180 wc=2*math.pi*fc Kphase=Icp/(2*math.pi) Kvco=2*math.pi*KVCO_HzV # Approx. formula, Dean Banerjee T1=(1.0/math.cos(PM_rad)-math.tan(PM_rad))/(wc*(1+T31)) T3=T1*T31; T2=gamma/((wc**2)*(T1+T3)); A0=(Kphase*Kvco)/((wc**2)*N)*math.sqrt((1+(wc**2)*(T2**2))/((1+(wc**2)*(T1**2))*(1+(wc**2)*(T3**2)))); A2=A0*T1*T3; A1=A0*(T1+T3); C1=A2/(T2**2)*(1+math.sqrt(1+T2/A2*(T2*A0-A1))); C3=(-(T2**2)*(C1**2)+T2*A1*C1-A2*A0)/((T2**2)*C1-A2); C2=A0-C1-C3; R2=T2/C2; R3=A2/(C1*C3*T2); LPF_vals=dict() LPF_vals['C1']=C1 LPF_vals['C2']=C2 LPF_vals['C3']=C3 LPF_vals['R2']=R2 LPF_vals['R3']=R3 return LPF_vals def calc_real_LPF(self, LPF_IDEAL_VALS): C1_cond=(LMS8001_C1_STEP<=LPF_IDEAL_VALS['C1']<=15*LMS8001_C1_STEP) C2_cond=(LMS8001_C2_FIX<=LPF_IDEAL_VALS['C2']<=LMS8001_C2_FIX+15*LMS8001_C2_STEP) C3_cond=(LMS8001_C3_FIX+LMS8001_C3_STEP<=LPF_IDEAL_VALS['C3']<=LMS8001_C3_FIX+15*LMS8001_C3_STEP) R2_cond=(LMS8001_R2_0/15.0<=LPF_IDEAL_VALS['R2']<=LMS8001_R2_0) R3_cond=(LMS8001_R3_0/15.0<=LPF_IDEAL_VALS['R3']<=LMS8001_R3_0) LPFvals_OK=(C1_cond and C2_cond and C3_cond and R2_cond and R3_cond) LPF_REAL_VALS=dict() if (LPFvals_OK): C1_CODE=int(round(LPF_IDEAL_VALS['C1']/LMS8001_C1_STEP)) C2_CODE=int(round((LPF_IDEAL_VALS['C2']-LMS8001_C2_FIX)/LMS8001_C2_STEP)) C3_CODE=int(round((LPF_IDEAL_VALS['C3']-LMS8001_C3_FIX)/LMS8001_C3_STEP)) C1_CODE=int(min(max(C1_CODE,0),15)) C2_CODE=int(min(max(C2_CODE,0),15)) C3_CODE=int(min(max(C3_CODE,0),15)) R2_CODE=int(round(LMS8001_R2_0/LPF_IDEAL_VALS['R2'])) R3_CODE=int(round(LMS8001_R3_0/LPF_IDEAL_VALS['R3'])) R2_CODE=min(max(R2_CODE,1),15) R3_CODE=min(max(R3_CODE,1),15) LPF_REAL_VALS['C1_CODE']=C1_CODE LPF_REAL_VALS['C2_CODE']=C2_CODE LPF_REAL_VALS['C3_CODE']=C3_CODE LPF_REAL_VALS['R2_CODE']=R2_CODE LPF_REAL_VALS['R3_CODE']=R3_CODE return (LPFvals_OK, LPF_REAL_VALS) def setSDM(self, DITHER_EN=0, SEL_SDMCLK=0, REV_SDMCLK=0, PROFILE=0): # Sets Sigma-Delta Modulator Config. Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_PLL_SDM_CFG=self.chip.getRegisterByName('PLL_SDM_CFG_'+str(PROFILE)) reg_PLL_SDM_CFG['DITHER_EN_'+str(PROFILE)]=DITHER_EN reg_PLL_SDM_CFG['SEL_SDMCLK_'+str(PROFILE)]=SEL_SDMCLK reg_PLL_SDM_CFG['REV_SDMCLK_'+str(PROFILE)]=REV_SDMCLK self.chip.setImmediateMode(Imd_Mode) def setVCOBIAS(self, EN=0, BYP_VCOREG=1, CURLIM_VCOREG=1, SPDUP_VCOREG=0, VDIV_VCOREG=32): """Sets VCO Bias Parameters""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) regVCOBIAS=self.chip.getRegisterByName('PLL_VREG') regVCOBIAS['EN_VCOBIAS']=EN regVCOBIAS['BYP_VCOREG']=BYP_VCOREG regVCOBIAS['CURLIM_VCOREG']=CURLIM_VCOREG regVCOBIAS['SPDUP_VCOREG']=SPDUP_VCOREG regVCOBIAS['VDIV_VCOREG<7:0>']=VDIV_VCOREG self.chip.setImmediateMode(Imd_Mode) def setSPDUP_VCO(self, SPDUP=0, PROFILE=0): Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_VCO_CFG=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) reg_VCO_CFG['SPDUP_VCO_'+str(PROFILE)]=SPDUP self.chip.setImmediateMode(Imd_Mode) def setSPDUP_VCOREG(self, SPDUP=0): Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) regVCOBIAS=self.chip.getRegisterByName('PLL_VREG') regVCOBIAS['SPDUP_VCOREG']=SPDUP self.chip.setImmediateMode(Imd_Mode) def setXBUF(self, EN=0, BYPEN=0, SLFBEN=1): """Sets XBUF Configuration""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) regXBUF=self.chip.getRegisterByName('PLL_CFG_XBUF') regXBUF['PLL_XBUF_EN']=EN regXBUF['PLL_XBUF_SLFBEN']=SLFBEN regXBUF['PLL_XBUF_BYPEN']=BYPEN self.chip.setImmediateMode(Imd_Mode) def setCP(self, PULSE=4, OFS=0, ICT_CP=16, PROFILE=0): """Sets CP Parameters""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_CP_CFG0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) reg_CP_CFG0['PULSE_'+str(PROFILE)+'<5:0>']=PULSE reg_CP_CFG0['OFS_'+str(PROFILE)+'<5:0>']=OFS reg_CP_CFG1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) reg_CP_CFG1['ICT_CP_'+str(PROFILE)+'<4:0>']=ICT_CP reg_PLL_ENABLE=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) if (OFS>0): reg_PLL_ENABLE['PLL_EN_CPOFS_'+str(PROFILE)]=1 else: reg_PLL_ENABLE['PLL_EN_CPOFS_'+str(PROFILE)]=0 self.chip.setImmediateMode(Imd_Mode) def getCP(self, PROFILE=0): """Returns CP Parameters""" d=dict() Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_CP_CFG0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) d["PULSE"]=reg_CP_CFG0['PULSE_'+str(PROFILE)+'<5:0>'] d["OFS"]=reg_CP_CFG0['OFS_'+str(PROFILE)+'<5:0>'] reg_CP_CFG1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) d["ICT_CP"]=reg_CP_CFG1['ICT_CP_'+str(PROFILE)+'<4:0>'] reg_PLL_ENABLE=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) d["EN_CPOFS"]=reg_PLL_ENABLE['PLL_EN_CPOFS_'+str(PROFILE)] self.chip.setImmediateMode(Imd_Mode) return d def setCP_FLOCK(self, PULSE=4, OFS=0, PROFILE=0): reg_pll_flock_cfg2=self.chip.getRegisterByName('PLL_FLOCK_CFG2_'+str(PROFILE)) reg_pll_flock_cfg2['FLOCK_PULSE_'+str(PROFILE)+'<5:0>']=int(PULSE) reg_pll_flock_cfg2['FLOCK_OFS_'+str(PROFILE)+'<5:0>']=int(OFS) def setLD(self, LD_VCT=2, PROFILE=0): """Sets Lock-Detector's Comparator Threashold""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_pll_enable=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) reg_pll_enable['PLL_EN_LD_'+str(PROFILE)]=1 reg_pll_cp_cfg1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) reg_pll_cp_cfg1['LD_VCT_'+str(PROFILE)+'<1:0>']=LD_VCT self.chip.setImmediateMode(Imd_Mode) def setPFD(self, DEL=0, FLIP=0, PROFILE=0): """Sets PFD Parameters""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_CP_CFG0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) reg_CP_CFG0['FLIP_'+str(PROFILE)]=FLIP reg_CP_CFG0['DEL_'+str(PROFILE)+'<1:0>']=DEL self.chip.setImmediateMode(Imd_Mode) def setVTUNE_VCT(self, VTUNE_VCT, PROFILE=0): reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>']=VTUNE_VCT def openPLL(self, VTUNE_VCT=2, PROFILE=0, dbgMode=False): """Breaks the PLL Loop and sets the fixed VCO tuning voltage""" VTUNE_VCT=int(VTUNE_VCT) VTUNE_DICT={0:300, 1:600, 2:750, 3:900} if (VTUNE_VCT>3): VTUNE_VCT=3 elif (VTUNE_VCT<0): VTUNE_VCT=0 reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_pll_lpf_cfg2['LPFSW_'+str(PROFILE)]=1 reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>']=VTUNE_VCT if (dbgMode): self.chip.log("PLL Loop Broken. VTUNE=%.2f mV" %(VTUNE_DICT[VTUNE_VCT])) def closePLL(self, PROFILE=0): """Closes PLL Loop""" reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_pll_lpf_cfg2['LPFSW_'+str(PROFILE)]=0 reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)]=2 def setVCO(self, SEL=3, FREQ=128, AMP=1, VCO_AAC_EN=True, VDIV_SWVDD=2, PROFILE=0): """Sets VCO Parameters""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_VCO_FREQ=self.chip.getRegisterByName('PLL_VCO_FREQ_'+str(PROFILE)) reg_VCO_FREQ['VCO_FREQ_'+str(PROFILE)+'<7:0>']=FREQ reg_VCO_CFG=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) if (VCO_AAC_EN): reg_VCO_CFG['VCO_AAC_EN_'+str(PROFILE)]=1 else: reg_VCO_CFG['VCO_AAC_EN_'+str(PROFILE)]=0 reg_VCO_CFG['VCO_SEL_'+str(PROFILE)+'<1:0>']=SEL reg_VCO_CFG['VCO_AMP_'+str(PROFILE)+'<6:0>']=AMP reg_VCO_CFG['VDIV_SWVDD_'+str(PROFILE)+'<1:0>']=VDIV_SWVDD self.chip.setImmediateMode(Imd_Mode) def setFFDIV(self, FFMOD=0, PROFILE=0): """Sets FF-DIV Modulus""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_PLL_ENABLE=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) if (FFMOD>0): reg_PLL_ENABLE['PLL_EN_FFCORE_'+str(PROFILE)]=1 else: reg_PLL_ENABLE['PLL_EN_FFCORE_'+str(PROFILE)]=0 reg_FF_CFG=self.chip.getRegisterByName('PLL_FF_CFG_'+str(PROFILE)) if (FFMOD>0): reg_FF_CFG['FFDIV_SEL_'+str(PROFILE)]=1 else: reg_FF_CFG['FFDIV_SEL_'+str(PROFILE)]=0 reg_FF_CFG['FFCORE_MOD_'+str(PROFILE)+'<1:0>']=FFMOD reg_FF_CFG['FF_MOD_'+str(PROFILE)+'<1:0>']=FFMOD self.chip.setImmediateMode(Imd_Mode) def setFBDIV(self, N_INT, N_FRAC, IntN_Mode=False, PROFILE=0): """Sets FB-DIV Parameters""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_SDM_CFG=self.chip.getRegisterByName('PLL_SDM_CFG_'+str(PROFILE)) if (IntN_Mode): reg_SDM_CFG['INTMOD_EN_'+str(PROFILE)]=1 N_FRAC_H=0 N_FRAC_L=0 else: reg_SDM_CFG['INTMOD_EN_'+str(PROFILE)]=0 N_FRAC_H=int(math.floor(N_FRAC/2**16)) N_FRAC_L=int(N_FRAC-N_FRAC_H*(2**16)) #if (DITHER_EN): # reg_SDM_CFG['DITHER_EN_'+str(PROFILE)]=1 #else: # reg_SDM_CFG['DITHER_EN_'+str(PROFILE)]=0 reg_SDM_CFG['INTMOD_'+str(PROFILE)+'<9:0>']=N_INT reg_FRACMODL=self.chip.getRegisterByName('PLL_FRACMODL_'+str(PROFILE)) reg_FRACMODL['FRACMODL_'+str(PROFILE)+'<15:0>']=N_FRAC_L reg_FRACMODH=self.chip.getRegisterByName('PLL_FRACMODH_'+str(PROFILE)) reg_FRACMODH['FRACMODH_'+str(PROFILE)+'<3:0>']=N_FRAC_H reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 self.chip.setImmediateMode(Imd_Mode) def setLPF(self, C1=8, C2=8, R2=1, C3=8, R3=1, PROFILE=0): """Sets LPF Element Values""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_PLL_LPF_CFG1=self.chip.getRegisterByName('PLL_LPF_CFG1_'+str(PROFILE)) reg_PLL_LPF_CFG1['R3_'+str(PROFILE)+'<3:0>']=R3 reg_PLL_LPF_CFG1['R2_'+str(PROFILE)+'<3:0>']=R2 reg_PLL_LPF_CFG1['C2_'+str(PROFILE)+'<3:0>']=C2 reg_PLL_LPF_CFG1['C1_'+str(PROFILE)+'<3:0>']=C1 reg_PLL_LPF_CFG2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_PLL_LPF_CFG2['C3_'+str(PROFILE)+'<3:0>']=C3 self.chip.setImmediateMode(Imd_Mode) def setLPF_FLOCK(self, C1=8, C2=8, R2=1, C3=8, R3=1, PROFILE=0): reg_pll_flock_cfg1=self.chip.getRegisterByName('PLL_FLOCK_CFG1_'+str(PROFILE)) reg_pll_flock_cfg1['FLOCK_R3_'+str(PROFILE)+'<3:0>']=int(R3) reg_pll_flock_cfg1['FLOCK_R2_'+str(PROFILE)+'<3:0>']=int(R2) reg_pll_flock_cfg1['FLOCK_C1_'+str(PROFILE)+'<3:0>']=int(C1) reg_pll_flock_cfg1['FLOCK_C2_'+str(PROFILE)+'<3:0>']=int(C2) reg_pll_flock_cfg2=self.chip.getRegisterByName('PLL_FLOCK_CFG2_'+str(PROFILE)) reg_pll_flock_cfg2['FLOCK_C3_'+str(PROFILE)+'<3:0>']=int(C3) def setLODIST(self, channel, EN=True, EN_FLOCK=False, IQ=True, phase=0, PROFILE=0): """Sets LODIST Configuration""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) channel_dict={'A':0, 'B':1, 'C':2, 'D':3} phase_dict={0:0, 90:1, 180:2, 270:3} if (channel not in channel_dict.keys()): self.chip.log("Not valid LO-DIST channel name.") return None if (phase not in phase_dict.keys()): self.chip.log("Not valid LO-DIST phase value.") return None reg_pll_enable=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) reg_lodist_cfg=self.chip.getRegisterByName('PLL_LODIST_CFG_'+str(PROFILE)) val_old=reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>'] if (EN): reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']=val_old|int(2**channel_dict[channel]) reg_pll_enable['PLL_LODIST_EN_BIAS_'+str(PROFILE)]=1 else: reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']=val_old&(15-int(2**channel_dict[channel])) # Disable LO DIST Bias if not needed if (reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']==0): reg_pll_enable['PLL_LODIST_EN_BIAS_'+str(PROFILE)]=0 reg_pll_enable['PLL_LODIST_EN_DIV2IQ_'+str(PROFILE)]=0 if (IQ==True): reg_lodist_cfg['PLL_LODIST_FSP_OUT'+str(channel_dict[channel])+'_'+str(PROFILE)+'<2:0>']=phase_dict[phase] reg_pll_enable['PLL_LODIST_EN_DIV2IQ_'+str(PROFILE)]=1 else: reg_lodist_cfg['PLL_LODIST_FSP_OUT'+str(channel_dict[channel])+'_'+str(PROFILE)+'<2:0>']=phase_dict[phase]+4 A_IQ=reg_lodist_cfg['PLL_LODIST_FSP_OUT0_'+str(PROFILE)+'<2:0>'] A_EN=reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']&1 B_IQ=reg_lodist_cfg['PLL_LODIST_FSP_OUT1_'+str(PROFILE)+'<2:0>'] B_EN=reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']&2 C_IQ=reg_lodist_cfg['PLL_LODIST_FSP_OUT2_'+str(PROFILE)+'<2:0>'] C_EN=reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']&4 D_IQ=reg_lodist_cfg['PLL_LODIST_FSP_OUT3_'+str(PROFILE)+'<2:0>'] D_EN=reg_lodist_cfg['PLL_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']&8 # Disable DivBy2 IQ Gen. Core if not needed if ((A_IQ>=4 or A_EN==0) and (B_IQ>=4 or B_EN==0) and (C_IQ>=4 or C_EN==0) and (D_IQ>=4 or D_EN==0)): reg_pll_enable['PLL_LODIST_EN_DIV2IQ_'+str(PROFILE)]=0 # Enable Output of desired LO channel during the Fast-Lock Operating Mode of LMS8001-PLL if EN_FLOCK=True if (EN_FLOCK): if (channel=='A'): LO_FLOCK_EN_MASK=1 elif (channel=='B'): LO_FLOCK_EN_MASK=2 elif (channel=='C'): LO_FLOCK_EN_MASK=4 else: LO_FLOCK_EN_MASK=8 else: LO_FLOCK_EN_MASK=0 reg_pll_flock_cfg3=self.chip.getRegisterByName('PLL_FLOCK_CFG3_'+str(PROFILE)) LO_FLOCK_EN=reg_pll_flock_cfg3['FLOCK_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>'] reg_pll_flock_cfg3['FLOCK_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']=LO_FLOCK_EN | LO_FLOCK_EN_MASK # Set Back to initial value of ImmediateMode self.chip.setImmediateMode(Imd_Mode) def setFLOCK(self, BWEF, LoopBW=600.0e3, PM=50.0, FLOCK_N=200, Ch_EN=[], METHOD='SIMPLE', FIT_KVCO=True, FLOCK_VCO_SPDUP=1, PROFILE=0, dbgMode=False): """ Automatically calculates Fast-Lock Mode parameters from BWEF argument. BWEF-BandWidth Extension Factor METHOD='SIMPLE' Clips charge pump current settings in Fast-Lock Operating Mode if ICP_NORMAL*BWEF^2 is greater than (ICP)max. Only changes the values of LoopFilter resistors during Fast-Lock mode. Capacitor values are the same as in NORMAL operating mode. METHOD=='SMART' Takes the phase-margin argument PM to calculate LoopFilter elements and maximum pulse CP current which will give the PLL loop bandwidth value of LoopBW with desired phase margin PM. """ Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) LO_OUT_EN=0 if ('A' in Ch_EN): LO_OUT_EN+=1 if ('B' in Ch_EN): LO_OUT_EN+=2 if ('C' in Ch_EN): LO_OUT_EN+=4 if ('D' in Ch_EN): LO_OUT_EN+=8 if (METHOD not in ['SIMPLE', 'SMART']): self.chip.log("Bad Fast-Lock Mode Optimization Method. METHOD='SIMPLE' or METHOD='SMART'.") return False reg_cp_cfg0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) PULSE=reg_cp_cfg0['PULSE_'+str(PROFILE)+'<5:0>'] OFS=reg_cp_cfg0['OFS_'+str(PROFILE)+'<5:0>'] reg_pll_cp_cfg1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) ICT_CP_INIT=reg_pll_cp_cfg1['ICT_CP_'+str(PROFILE)+'<4:0>'] reg_pll_flock_cfg3=self.chip.getRegisterByName('PLL_FLOCK_CFG3_'+str(PROFILE)) reg_pll_flock_cfg3['FLOCK_LODIST_EN_OUT_'+str(PROFILE)+'<3:0>']=LO_OUT_EN reg_pll_flock_cfg3['FLOCK_VCO_SPDUP_'+str(PROFILE)]=0 reg_pll_flock_cfg3['FLOCK_N_'+str(PROFILE)+'<9:0>']=min(FLOCK_N, 1023) reg_pll_flock_cfg3['FLOCK_VCO_SPDUP_'+str(PROFILE)]=FLOCK_VCO_SPDUP if (METHOD=='SIMPLE'): reg_lpf_cfg1=self.chip.getRegisterByName('PLL_LPF_CFG1_'+str(PROFILE)) R3=reg_lpf_cfg1['R3_'+str(PROFILE)+'<3:0>'] R2=reg_lpf_cfg1['R2_'+str(PROFILE)+'<3:0>'] C1=reg_lpf_cfg1['C1_'+str(PROFILE)+'<3:0>'] C2=reg_lpf_cfg1['C2_'+str(PROFILE)+'<3:0>'] reg_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) C3=reg_lpf_cfg2['C3_'+str(PROFILE)+'<3:0>'] R3_FLOCK=min(round(R3*BWEF), 15) # R3_FLOCK=min(round(R3*math.sqrt(BWEF)), 15) R2_FLOCK=min(round(R2*BWEF), 15) PULSE_FLOCK=min(round(PULSE*BWEF**2), 63) #PULSE_FLOCK=min(round(PULSE*BWEF), 63) OFS_FLOCK=min(round(OFS*PULSE_FLOCK/PULSE), 63) #OFS_FLOCK=OFS self.setLPF_FLOCK(C1=C1, C2=C2, R2=R2_FLOCK, C3=C3, R3=R3_FLOCK, PROFILE=PROFILE) self.setCP_FLOCK(PULSE=PULSE_FLOCK, OFS=OFS_FLOCK, PROFILE=PROFILE) else: fc=LoopBW/1.65 # Sweep CP PULSE values and find the first one that result with implementable LPF values for desired PLL dynamics in Fast-Lock Mode cp_pulse_vals=range(PULSE,64) cp_pulse_vals.reverse() # Estimate the value of KVCO for settings in the PLL Profile PROFILE KVCO_avg=self.estim_KVCO(FIT_KVCO=FIT_KVCO, PROFILE=PROFILE) # Read Feedback-Divider Modulus N=self.getNDIV(PROFILE=PROFILE) for cp_pulse in cp_pulse_vals: # Calculate CP Current Value Icp=ICT_CP_INIT*25.0e-6/16.0*cp_pulse gamma=1.045 T31=0.1 LPF_IDEAL_VALS=self.calc_ideal_LPF(fc=fc, PM_deg=PM, Icp=Icp, KVCO_HzV=KVCO_avg, N=N, gamma=gamma, T31=T31) (LPFvals_OK, LPF_REAL_VALS)=self.calc_real_LPF(LPF_IDEAL_VALS) if (LPFvals_OK): # Set CP Pulse Current to the optimized value self.setCP_FLOCK(PULSE=cp_pulse, OFS=min(round(OFS*cp_pulse/PULSE),63), PROFILE=PROFILE) # self.setCP_FLOCK(PULSE=cp_pulse, OFS=0, PROFILE=PROFILE) # Set LPF Components to the optimized values self.setLPF_FLOCK(C1=LPF_REAL_VALS['C1_CODE'], C2=LPF_REAL_VALS['C2_CODE'], R2=LPF_REAL_VALS['R2_CODE'], C3=LPF_REAL_VALS['C3_CODE'], R3=LPF_REAL_VALS['R3_CODE'], PROFILE=PROFILE) if (dbgMode): self.chip.log('PLL LoopBW Optimization finished successfuly.') self.chip.log('-'*45) self.chip.log('\tIcp=%.2f uA' %(Icp/1.0e-6)) self.chip.log('\tUsed Value for KVCO=%.2f MHz/V' %(KVCO_avg/1.0e6)) self.chip.log('\tNDIV=%.2f' % (N)) self.chip.log('-'*45) self.chip.log('') self.chip.log('Ideal LPF Values') self.chip.log('-'*45) self.chip.log('\tC1= %.2f pF' %(LPF_IDEAL_VALS['C1']/1.0e-12)) self.chip.log('\tC2= %.2f pF' %(LPF_IDEAL_VALS['C2']/1.0e-12)) self.chip.log('\tR2= %.2f kOhm' %(LPF_IDEAL_VALS['R2']/1.0e3)) self.chip.log('\tC3= %.2f pF' %(LPF_IDEAL_VALS['C3']/1.0e-12)) self.chip.log('\tR3= %.2f kOhm' %(LPF_IDEAL_VALS['R3']/1.0e3)) self.chip.log('') return True self.chip.setImmediateMode(Imd_Mode) return True def disablePLL(self, PROFILE=0): """Disables PLL Blocks, XBUF and VCO Bias""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Disable VCO-BIAS self.setVCOBIAS(EN=0) # Disable XBUF self.setXBUF(EN=0) # Disable PLL core circuits reg_pll_enable=self.chip.getRegisterByName("PLL_ENABLE_"+str(PROFILE)) reg_pll_enable['PLL_EN_VTUNE_COMP_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_LD_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_PFD_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_CP_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_CPOFS_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_VCO_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_FFDIV_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_FBDIV_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)]=0 reg_pll_enable['PLL_SDM_CLK_EN_'+str(PROFILE)]=0 self.chip.setImmediateMode(Imd_Mode) def enablePLL(self, PDIV2=False, IntN_Mode=False, XBUF_SLFBEN=1, PROFILE=0): """Enables VCO Bias, XBUF and PLL Blocks""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Define PLL Config # Enable VCO Biasing Block reg_pll_vreg=self.chip.getRegisterByName("PLL_VREG") reg_pll_vreg['EN_VCOBIAS']=1 # Enable XBUF # Sets SLFBEN, when TCXO is AC-coupled to LMS8001 IC REFIN reg_cfg_xbuf=self.chip.getRegisterByName("PLL_CFG_XBUF") reg_cfg_xbuf['PLL_XBUF_EN']=1 reg_cfg_xbuf['PLL_XBUF_SLFBEN']=XBUF_SLFBEN # Define Desired PLL Profile # Enable Blocks reg_pll_enable=self.chip.getRegisterByName("PLL_ENABLE_"+str(PROFILE)) reg_pll_enable['PLL_EN_VTUNE_COMP_'+str(PROFILE)]=1 reg_pll_enable['PLL_EN_LD_'+str(PROFILE)]=1 reg_pll_enable['PLL_EN_PFD_'+str(PROFILE)]=1 reg_pll_enable['PLL_EN_CP_'+str(PROFILE)]=1 reg_pll_enable['PLL_EN_VCO_'+str(PROFILE)]=1 reg_pll_enable['PLL_EN_FFDIV_'+str(PROFILE)]=1 reg_pll_enable['PLL_EN_FBDIV_'+str(PROFILE)]=1 if (PDIV2): reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)]=1 else: reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)]=0 reg_pll_enable['PLL_EN_FBDIV_'+str(PROFILE)]=1 if (IntN_Mode): reg_pll_enable['PLL_SDM_CLK_EN_'+str(PROFILE)]=0 else: reg_pll_enable['PLL_SDM_CLK_EN_'+str(PROFILE)]=1 self.chip.setImmediateMode(Imd_Mode) def calc_fbdiv(self, F_TARGET, IntN_Mode, PDIV2): """Calculates Configuration Parameters for FB-DIV for targeted VCO Frequency""" if (PDIV2): N_FIX=2.0 else: N_FIX=1.0 # Integer-N or Fractional-N Mode if (IntN_Mode): N_INT=round(F_TARGET/N_FIX/self.fRef) N_FRAC=0 else: N_INT=int(math.floor(F_TARGET/N_FIX/self.fRef)) N_FRAC=int(round(2**20*(F_TARGET/N_FIX/self.fRef-N_INT))) return (N_INT, N_FRAC, N_FIX) def vco_auto_ctune(self, F_TARGET, PROFILE=0, XBUF_SLFBEN=1, IntN_Mode=False, PDIV2=False, VTUNE_VCT=1, VCO_SEL_FORCE=0, VCO_SEL_INIT=2, FREQ_INIT_POS=7, FREQ_INIT=0, FREQ_SETTLING_N=4, VTUNE_WAIT_N=128, VCO_SEL_FREQ_MAX=250, VCO_SEL_FREQ_MIN=5, dbgMode=False): """Performs VCO Coarse Frequency Tuning Using On-Chip LMS8001 IC Calibration State-Machine""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Store the current PLL Profile Index before proceeding to the new one for configuration PROFILE_OLD=self.chip.PLL.ACTIVE_PROFILE if (PROFILE_OLD!=PROFILE): self.chip.PLL.ACTIVE_PROFILE=PROFILE # Determine the FB-DIV configuration for targeted VCO frequency and self.fRef reference frequency (N_INT, N_FRAC, N_FIX)=self.calc_fbdiv(F_TARGET, IntN_Mode, PDIV2) # The exact value of targetec VCO frequency that will be used in automatic coarse-tune algorithm # If IntN-Mode is chosen, VCO will be locked to the closest integer multiple of reference frequency FVCO_TARGET=N_FIX*(N_INT+N_FRAC/2.0**20)*self.fRef # Calculate the fractional division words N_FRAC_H=int(math.floor(N_FRAC/2**16)) N_FRAC_L=int(N_FRAC-N_FRAC_H*(2**16)) # Enable PLL self.enablePLL(PDIV2, IntN_Mode, XBUF_SLFBEN, PROFILE) # Define VCO reg_vco_cfg=self.chip.getRegisterByName("PLL_VCO_CFG_"+str(PROFILE)) # Set the VCO tuning voltage value during coarse-tuning reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>']=VTUNE_VCT # Define SDM & FB-DIV Modulus reg_sdm_cfg=self.chip.getRegisterByName("PLL_SDM_CFG_"+str(PROFILE)) if (IntN_Mode or N_FRAC==0): reg_sdm_cfg['INTMOD_EN_'+str(PROFILE)]=1 else: reg_sdm_cfg['INTMOD_EN_'+str(PROFILE)]=0 reg_sdm_cfg['INTMOD_'+str(PROFILE)+'<9:0>']=int(N_INT) reg_fracmod_l=self.chip.getRegisterByName("PLL_FRACMODL_"+str(PROFILE)) reg_fracmod_l['FRACMODL_'+str(PROFILE)+'<15:0>']=N_FRAC_L reg_fracmod_h=self.chip.getRegisterByName("PLL_FRACMODH_"+str(PROFILE)) reg_fracmod_h['FRACMODH_'+str(PROFILE)+'<3:0>']=N_FRAC_H # Reset PLL, Enable Calibration Mode reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 reg_pll_cfg['PLL_CALIBRATION_EN']=1 reg_pll_cfg['CTUNE_RES<1:0>']=3 # Write VCO AUTO-CAL Registers reg_pll_cal_auto1=self.chip.getRegisterByName('PLL_CAL_AUTO1') reg_pll_cal_auto1['VCO_SEL_FORCE']=VCO_SEL_FORCE reg_pll_cal_auto1['VCO_SEL_INIT<1:0>']=VCO_SEL_INIT reg_pll_cal_auto1['FREQ_INIT_POS<2:0>']=FREQ_INIT_POS reg_pll_cal_auto1['FREQ_INIT<7:0>']=FREQ_INIT reg_pll_cal_auto2=self.chip.getRegisterByName('PLL_CAL_AUTO2') reg_pll_cal_auto2['FREQ_SETTLING_N<3:0>']=FREQ_SETTLING_N reg_pll_cal_auto2['VTUNE_WAIT_N<7:0>']=VTUNE_WAIT_N reg_pll_cal_auto3=self.chip.getRegisterByName('PLL_CAL_AUTO3') reg_pll_cal_auto3['VCO_SEL_FREQ_MAX<7:0>']=VCO_SEL_FREQ_MAX reg_pll_cal_auto3['VCO_SEL_FREQ_MIN<7:0>']=VCO_SEL_FREQ_MIN # Start VCO Auto-Tuning Process reg_pll_cal_auto0=self.chip.getRegisterByName('PLL_CAL_AUTO0') reg_pll_cal_auto0['FCAL_START']=1 # Wait for VCO Auto-Tuning to Finish while(True): reg_pll_cal_auto0=self.chip.getRegisterByName('PLL_CAL_AUTO0') if (reg_pll_cal_auto0['FCAL_START']==0): break # Evaluate Calibration Results reg_pll_cal_auto0=self.chip.getRegisterByName('PLL_CAL_AUTO0') if (reg_pll_cal_auto0['VCO_SEL_FINAL_VAL'] and reg_pll_cal_auto0['FREQ_FINAL_VAL']): VCO_SEL_FINAL=reg_pll_cal_auto0['VCO_SEL_FINAL<1:0>'] VCO_FREQ_FINAL=reg_pll_cal_auto0['FREQ_FINAL<7:0>'] else: self.chip.log("Calibration Failed!!!!") return False # Disable Calibration reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_CALIBRATION_EN']=0 # Write Calibration Results to the Dedicated VCO Registers in the Chosen Profile reg_vco_freq=self.chip.getRegisterByName('PLL_VCO_FREQ_'+str(PROFILE)) reg_vco_freq['VCO_FREQ_'+str(PROFILE)+'<7:0>']=VCO_FREQ_FINAL reg_vco_cfg=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) reg_vco_cfg['VCO_SEL_'+str(PROFILE)+'<1:0>']=VCO_SEL_FINAL if (dbgMode): self.chip.log("Calibration Done!!!") self.chip.log("Configured PLL Profile=%d" %(PROFILE)) self.chip.log("Target VCO Frequency [MHz]= %.5f" %(FVCO_TARGET/1.0e6)) self.chip.log("Frequency Error [Hz]= %.2e" %(abs(FVCO_TARGET-F_TARGET))) self.chip.log("VCO_SEL_FINAL= %d" %(VCO_SEL_FINAL)) self.chip.log("VCO_FREQ_FINAL= %d" %(VCO_FREQ_FINAL)) self.chip.log('') self.chip.log('') if (dbgMode): self.chip.PLL.infoLOCK() # Go back to the initial PLL profile if (PROFILE_OLD!=PROFILE): self.chip.PLL.ACTIVE_PROFILE=PROFILE_OLD self.chip.setImmediateMode(Imd_Mode) return True def vco_manual_cloop_tune(self, F_TARGET, PROFILE=0, XBUF_SLFBEN=1, IntN_Mode=False, PDIV2=False, dbgMode=False): Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Store the current PLL Profile Index before proceeding to the new one for configuration PROFILE_OLD=self.chip.PLL.ACTIVE_PROFILE if (PROFILE_OLD!=PROFILE): self.chip.PLL.ACTIVE_PROFILE=PROFILE # Determine the FB-DIV configuration for targeted VCO frequency and self.fRef reference frequency (N_INT, N_FRAC, N_FIX)=self.calc_fbdiv(F_TARGET, IntN_Mode, PDIV2) # The exact value of targetec VCO frequency that will be used in automatic coarse-tune algorithm # If IntN-Mode is chosen, VCO will be locked to the closest integer multiple of reference frequency FVCO_TARGET=N_FIX*(N_INT+N_FRAC/2.0**20)*self.fRef # Calculate the fractional division words N_FRAC_H=int(math.floor(N_FRAC/2**16)) N_FRAC_L=int(N_FRAC-N_FRAC_H*(2**16)) # Enable PLL self.enablePLL(PDIV2, IntN_Mode, XBUF_SLFBEN, PROFILE) # Define VCO reg_vco_cfg=self.chip.getRegisterByName("PLL_VCO_CFG_"+str(PROFILE)) # Define SDM & FB-DIV Modulus reg_sdm_cfg=self.chip.getRegisterByName("PLL_SDM_CFG_"+str(PROFILE)) if (IntN_Mode or N_FRAC==0): reg_sdm_cfg['INTMOD_EN_'+str(PROFILE)]=1 else: reg_sdm_cfg['INTMOD_EN_'+str(PROFILE)]=0 reg_sdm_cfg['INTMOD_'+str(PROFILE)+'<9:0>']=int(N_INT) reg_fracmod_l=self.chip.getRegisterByName("PLL_FRACMODL_"+str(PROFILE)) reg_fracmod_l['FRACMODL_'+str(PROFILE)+'<15:0>']=N_FRAC_L reg_fracmod_h=self.chip.getRegisterByName("PLL_FRACMODH_"+str(PROFILE)) reg_fracmod_h['FRACMODH_'+str(PROFILE)+'<3:0>']=N_FRAC_H # Reset PLL, Enable Manual Calibration Mode reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 reg_pll_cfg['PLL_CALIBRATION_EN']=1 reg_pll_cfg['PLL_CALIBRATION_MODE']=1 reg_pll_cal_man=self.chip.getRegisterByName('PLL_CAL_MAN') # 1st step is to determine the correct VCO core for targeted frequency reg_pll_cal_man['VCO_SEL_MAN<1:0>']=2 reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=15 sleep(0.01) # wait 10ms for PLL loop to settle reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') if (reg_pll_status['VTUNE_LOW']==1): reg_pll_cal_man['VCO_SEL_MAN<1:0>']=1 else: reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=240 sleep(0.01) reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') if (reg_pll_status['VTUNE_HIGH']==1): reg_pll_cal_man['VCO_SEL_MAN<1:0>']=3 # 2nd step is to determine optimal cap bank configuration of selected VCO core for the targeted frequency value freq_low=0 freq_high=255 freq=int((freq_high+freq_low+1)/2) iter_num=0 while (freq_low<freq_high and iter_num<=8): iter_num+=1 reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=freq sleep(0.01) reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') if (reg_pll_status['VTUNE_HIGH']==1): freq_low=freq freq=int((freq_high+freq_low+1)/2.0) elif (reg_pll_status['VTUNE_LOW']==1): freq_high=freq freq=int((freq_high+freq_low+1)/2.0) else: if (reg_pll_status['PLL_LOCK']==1): # Cap. bank configuration for which PLL is locked at the targeted frequency is found # This is the starting point for the next step break else: self.chip.log("Calibration Failed.") return False # Find 1st cap. bank configuration above initial one, for which stands VTUNE_LOW=1 reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') freq_init=freq while(reg_pll_status['VTUNE_LOW']==0): freq=freq+1 if (freq>=255): break reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=freq sleep(0.01) reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') freq_max=freq # Find 1st cap. bank configuration bellow initial one, for which stands VTUNE_HIGH=1 freq=freq_init reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=freq sleep(0.01) while(reg_pll_status['VTUNE_HIGH']==0): freq=freq-1 if (freq<=1): break reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=freq sleep(0.01) reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') # In some VCO_FREQ<7:0> regions, FVCO vs VCO_FREQ<7:0> is not monotonic # Next line detects that condition and exits the loop to prevent false results if (reg_pll_status['VTUNE_LOW']==1): break freq_min=freq # Optimal cap. bank configuration is between freq_min and freq_max # It can be arithmetic or geometric average of boundary values #freq_opt=int(math.sqrt(freq_min*freq_max)) freq_opt=int((freq_min+freq_max)/2.0) sel_opt=reg_pll_cal_man['VCO_SEL_MAN<1:0>'] # Exit the manual calibration mode, enter the normal PLL operation mode reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 reg_pll_cfg['PLL_CALIBRATION_EN']=0 reg_pll_cfg['PLL_CALIBRATION_MODE']=0 # Write the results of calibration to the dedicated registers inside the chosen PLL profile reg_vco_freq=self.chip.getRegisterByName('PLL_VCO_FREQ_'+str(PROFILE)) reg_vco_freq['VCO_FREQ_'+str(PROFILE)+'<7:0>']=freq_opt reg_vco_cfg=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) reg_vco_cfg['VCO_SEL_'+str(PROFILE)+'<1:0>']=sel_opt if (dbgMode): self.chip.log("") self.chip.log("Closed-Loop Manual Calibration Done!!!") self.chip.log("Configured PLL Profile= %d" %(PROFILE)) self.chip.log("Target VCO Frequency [MHz]= %.5f" % (FVCO_TARGET/1.0e6)) self.chip.log("Frequency Error [Hz]= %.2e" %(abs(FVCO_TARGET-F_TARGET))) self.chip.log("VCO_SEL_FINAL= %d" %(sel_opt)) self.chip.log("VCO_FREQ_FINAL= %d" %(freq_opt)) self.chip.log("VCO_FREQ_INIT= %d" %(freq_init)) self.chip.log("VCO_FREQ_MIN= %d" %(freq_min)) self.chip.log("VCO_FREQ_MAX= %d" %(freq_max)) self.chip.log('') self.chip.log('') if (dbgMode): self.chip.PLL.infoLOCK() # Go back to the initial PLL profile if (PROFILE_OLD!=PROFILE): self.chip.PLL.ACTIVE_PROFILE=PROFILE_OLD self.chip.setImmediateMode(Imd_Mode) return True def vco_manual_ctune(self, F_TARGET, XBUF_SLFBEN=1, PROFILE=0, IntN_Mode=False, PDIV2=False, VTUNE_VCT=2, dbgMode=False): """Selects the tuning curve where VCO frequency @ VTUNE_VCT is closest to F_TARGET (greater/equal than targeted frequecy)""" Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Store the current PLL Profile Index before proceeding to the new one for configuration PROFILE_OLD=self.chip.PLL.ACTIVE_PROFILE if (PROFILE_OLD!=PROFILE): self.chip.PLL.ACTIVE_PROFILE=PROFILE # Determine the FB-DIV configuration for targeted VCO frequency and self.fRef reference frequency (N_INT, N_FRAC, N_FIX)=self.calc_fbdiv(F_TARGET, IntN_Mode, PDIV2) # The exact value of targetec VCO frequency that will be used in automatic coarse-tune algorithm # If IntN-Mode is chosen, VCO will be locked to the closest integer multiple of reference frequency FVCO_TARGET=N_FIX*(N_INT+N_FRAC/2.0**20)*self.fRef # Calculate the fractional division words N_FRAC_H=int(math.floor(N_FRAC/2**16)) N_FRAC_L=int(N_FRAC-N_FRAC_H*(2**16)) # Enable PLL self.enablePLL(PDIV2, IntN_Mode, XBUF_SLFBEN, PROFILE) # Define VCO reg_vco_cfg=self.chip.getRegisterByName("PLL_VCO_CFG_"+str(PROFILE)) # Set the VCO tuning voltage value during coarse-tuning reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>']=VTUNE_VCT # Define SDM & FB-DIV Modulus reg_sdm_cfg=self.chip.getRegisterByName("PLL_SDM_CFG_"+str(PROFILE)) if (IntN_Mode or N_FRAC==0): reg_sdm_cfg['INTMOD_EN_'+str(PROFILE)]=1 else: reg_sdm_cfg['INTMOD_EN_'+str(PROFILE)]=0 reg_sdm_cfg['INTMOD_'+str(PROFILE)+'<9:0>']=int(N_INT) reg_fracmod_l=self.chip.getRegisterByName("PLL_FRACMODL_"+str(PROFILE)) reg_fracmod_l['FRACMODL_'+str(PROFILE)+'<15:0>']=N_FRAC_L reg_fracmod_h=self.chip.getRegisterByName("PLL_FRACMODH_"+str(PROFILE)) reg_fracmod_h['FRACMODH_'+str(PROFILE)+'<3:0>']=N_FRAC_H # Reset PLL, Enable Calibration Mode reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 reg_pll_cfg['CTUNE_RES<1:0>']=3 reg_pll_cfg['PLL_CALIBRATION_EN']=1 reg_pll_cfg['PLL_CALIBRATION_MODE']=1 # Write to PLL_CAL_MAN Register reg_pll_cal_man=self.chip.getRegisterByName('PLL_CAL_MAN') # Enable Coarse-Tuning Frequency Comparator reg_pll_cal_man['CTUNE_EN']=1 # Initial Value for VCO_SEL reg_pll_cal_man['VCO_SEL_MAN<1:0>']=2 # Find optimal VCO Core # 24.02.2017. - overlap between VCO cores 2 and 3 is quite large, therefore value 240 for upper boundary can be decreased down to 200 #reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=240 reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=200 reg_pll_cal_man['CTUNE_START']=1 # Start the coarse-tuning step # Wait for CTUNE_STEP_DONE #while (reg_pll_cal_man['CTUNE_STEP_DONE']==0): # reg_pll_cal_man=self.chip.getRegisterByName('PLL_CAL_MAN') # Read the result of coarse-tuning step freq_high=reg_pll_cal_man['FREQ_HIGH'] freq_equal=reg_pll_cal_man['FREQ_EQUAL'] freq_low=reg_pll_cal_man['FREQ_LOW'] # Reset the frequency comparator reg_pll_cal_man['CTUNE_START']=0 if (freq_low==1): reg_pll_cal_man['VCO_SEL_MAN<1:0>']=3 else: #reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=15 reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=8 # Start the coarse-tuning step reg_pll_cal_man['CTUNE_START']=1 # Wait for CTUNE_STEP_DONE #while (reg_pll_cal_man['CTUNE_STEP_DONE']==0): # reg_pll_cal_man=self.chip.getRegisterByName('PLL_CAL_MAN') # Read the result of coarse-tuning step freq_high=reg_pll_cal_man['FREQ_HIGH'] freq_equal=reg_pll_cal_man['FREQ_EQUAL'] freq_low=reg_pll_cal_man['FREQ_LOW'] # Reset the frequency comparator reg_pll_cal_man['CTUNE_START']=0 if (freq_high==1): reg_pll_cal_man['VCO_SEL_MAN<1:0>']=1 # Find the optimal VCO_FREQ value bit_pos=7 bit_mask=0 freq=0 while (bit_pos>=0): freq+=2**bit_pos reg_pll_cal_man['VCO_FREQ_MAN<7:0>']=freq # Start the coarse-tuning step reg_pll_cal_man['CTUNE_START']=1 # Wait for CTUNE_STEP_DONE #while (reg_pll_cal_man['CTUNE_STEP_DONE']==0): # reg_pll_cal_man=self.chip.getRegisterByName('PLL_CAL_MAN') # Read the result of coarse-tuning step freq_high=reg_pll_cal_man['FREQ_HIGH'] freq_equal=reg_pll_cal_man['FREQ_EQUAL'] freq_low=reg_pll_cal_man['FREQ_LOW'] # Reset the frequency comparator reg_pll_cal_man['CTUNE_START']=0 bit_mask=(2**bit_pos)*(1-freq_low) bit_val=(freq&bit_mask)>>bit_pos if (bit_val==1): freq-=2**bit_pos if (bit_pos==0 and freq_low): reg_pll_cal_man['VCO_FREQ_MAN<7:0>']+=1 # In the last pass, set VTUNE_VCT to minimum value of 300 mV reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>']=0 # Start the coarse-tuning step reg_pll_cal_man['CTUNE_START']=1 # Wait for CTUNE_STEP_DONE #while (reg_pll_cal_man['CTUNE_STEP_DONE']==0): # reg_pll_cal_man=self.chip.getRegisterByName('PLL_CAL_MAN') # Read the result of coarse-tuning step freq_high=reg_pll_cal_man['FREQ_HIGH'] freq_equal=reg_pll_cal_man['FREQ_EQUAL'] freq_low=reg_pll_cal_man['FREQ_LOW'] # Reset the frequency comparator reg_pll_cal_man['CTUNE_START']=0 # Set-Back the VTUNE_VCT to the initial value reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>']=VTUNE_VCT if (freq_high==1): reg_pll_cal_man['VCO_FREQ_MAN<7:0>']-=1 bit_pos-=1 sel_opt=reg_pll_cal_man['VCO_SEL_MAN<1:0>'] freq_opt=reg_pll_cal_man['VCO_FREQ_MAN<7:0>'] # Disable Frequency Comparator reg_pll_cal_man['CTUNE_EN']=0 # Exit the manual calibration mode, enter the normal PLL operation mode reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 reg_pll_cfg['PLL_CALIBRATION_EN']=0 reg_pll_cfg['PLL_CALIBRATION_MODE']=0 # Write the results of calibration to the dedicated registers inside the chosen PLL profile reg_vco_freq=self.chip.getRegisterByName('PLL_VCO_FREQ_'+str(PROFILE)) reg_vco_freq['VCO_FREQ_'+str(PROFILE)+'<7:0>']=freq_opt reg_vco_cfg=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) reg_vco_cfg['VCO_SEL_'+str(PROFILE)+'<1:0>']=sel_opt if (dbgMode): self.chip.log("Open-Loop Manual Calibration Done!!!") self.chip.log("Configured PLL Profile= %d" %(PROFILE)) self.chip.log("Target VCO Frequency [MHz]= %.5f" %(FVCO_TARGET/1.0e6)) self.chip.log("Frequency Error [Hz]= %.2e" %(abs(FVCO_TARGET-F_TARGET))) self.chip.log("VCO_SEL_FINAL= %d" %(sel_opt)) self.chip.log("VCO_FREQ_FINAL= %d" %(freq_opt)) self.chip.log('') self.chip.log('') if (dbgMode): self.chip.PLL.infoLOCK() # Go back to the initial PLL profile if (PROFILE_OLD!=PROFILE): self.chip.PLL.ACTIVE_PROFILE=PROFILE_OLD self.chip.setImmediateMode(Imd_Mode) return True def optimLPF(self, PM_deg=49.8, fc=80.0e3, PROFILE=0, dbgMode=False): PM_rad=PM_deg*math.pi/180 wc=2*math.pi*fc # Check VCO_SEL reg_vco_cfg=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) vco_sel=reg_vco_cfg['VCO_SEL_'+str(PROFILE)+'<1:0>'] # Use Average for KVCO in Calculations if (vco_sel==1): KVCO_avg=44.404e6 elif (vco_sel==2): KVCO_avg=33.924e6 elif (vco_sel==3): KVCO_avg=41.455e6 else: self.chip.log('Ext. LO selected in PLL_PROFILE %d.' % (PROFILE)) return None # Read CP Current Value reg_pll_cp_cfg0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) PULSE=reg_pll_cp_cfg0['PULSE_'+str(PROFILE)+'<5:0>'] reg_pll_cp_cfg1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) ICT_CP=reg_pll_cp_cfg1['ICT_CP_'+str(PROFILE)+'<4:0>'] Icp=ICT_CP*25.0e-6/16.0*PULSE # Read Feedback-Divider Modulus reg_pll_enable=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) PDIV2=reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)] reg_pll_sdm_cfg=self.chip.getRegisterByName('PLL_SDM_CFG_'+str(PROFILE)) N_INT=reg_pll_sdm_cfg['INTMOD_'+str(PROFILE)+'<9:0>'] INTMOD_EN=reg_pll_sdm_cfg['INTMOD_EN_'+str(PROFILE)] reg_pll_fracmodl=self.chip.getRegisterByName('PLL_FRACMODL_'+str(PROFILE)) N_FRACL=reg_pll_fracmodl['FRACMODL_'+str(PROFILE)+'<15:0>'] reg_pll_fracmodh=self.chip.getRegisterByName('PLL_FRACMODH_'+str(PROFILE)) N_FRACH=reg_pll_fracmodh['FRACMODH_'+str(PROFILE)+'<3:0>'] N_FRAC=N_FRACH*2**16+N_FRACL N=N_INT+(1-INTMOD_EN)*N_FRAC*1.0/2.0**20 Kvco=2*math.pi*KVCO_avg Kphase=Icp/(2*math.pi) gamma=1.045 T31=0.1 # Approx. formula, Dean Banerjee T1=(1.0/math.cos(PM_rad)-math.tan(PM_rad))/(wc*(1+T31)) T3=T1*T31; T2=gamma/((wc**2)*(T1+T3)); A0=(Kphase*Kvco)/((wc**2)*N)*math.sqrt((1+(wc**2)*(T2**2))/((1+(wc**2)*(T1**2))*(1+(wc**2)*(T3**2)))); A2=A0*T1*T3; A1=A0*(T1+T3); C1=A2/(T2**2)*(1+math.sqrt(1+T2/A2*(T2*A0-A1))); C3=(-(T2**2)*(C1**2)+T2*A1*C1-A2*A0)/((T2**2)*C1-A2); C2=A0-C1-C3; R2=T2/C2; R3=A2/(C1*C3*T2); if (dbgMode): self.chip.log('Loop-Filter Optimization') self.chip.log('-'*45) self.chip.log('Input Parameters') self.chip.log('\tIcp=%.2f uA' %(Icp/1.0e-6)) self.chip.log('\tKVCO=%.2f MHz/V' %(KVCO_avg/1.0e6)) self.chip.log('\tNDIV=%.2f' % (N)) self.chip.log('-'*45) self.chip.log('Ideal LPF Values') self.chip.log('\tC1= %.2f pF' %(C1/1.0e-12)) self.chip.log('\tC2= %.2f pF' %(C2/1.0e-12)) self.chip.log('\tR2= %.2f kOhm' %(R2/1.0e3)) self.chip.log('\tC3= %.2f pF' %(C3/1.0e-12)) self.chip.log('\tR3= %.2f kOhm' %(R3/1.0e3)) self.chip.log('') self.chip.log('') C1_CODE=int(round(C1/1.2e-12)) C2_CODE=int(round((C2-150.0e-12)/10.0e-12)) C3_CODE=int(round((C3-5.0e-12)/1.2e-12)) C1_CODE=int(min(max(C1_CODE,0),15)) C2_CODE=int(min(max(C2_CODE,0),15)) C3_CODE=int(min(max(C3_CODE,0),15)) R2_CODE=int(round(24.6e3/R2)) R3_CODE=int(round(14.9e3/R3)) R2_CODE=min(max(R2_CODE,1),15) R3_CODE=min(max(R3_CODE,1),15) self.setLPF(C1=C1_CODE, C2=C2_CODE, R2=R2_CODE, C3=C3_CODE, R3=R3_CODE, PROFILE=PROFILE) def getNDIV(self, PROFILE=0): """ Returns float that represents PLL feedback division ratio for configuration in PLL profile PROFILE. """ # Set Immediate Mode for LMS8001 EVB Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_pll_enable=self.chip.getRegisterByName('PLL_ENABLE_'+str(PROFILE)) PDIV2=reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)] reg_fracmodl=self.chip.getRegisterByName('PLL_FRACMODL_'+str(PROFILE)) reg_fracmodh=self.chip.getRegisterByName('PLL_FRACMODH_'+str(PROFILE)) reg_pll_sdm_cfg=self.chip.getRegisterByName('PLL_SDM_CFG_'+str(PROFILE)) NINT=reg_pll_sdm_cfg['INTMOD_'+str(PROFILE)+'<9:0>'] NFRAC=reg_fracmodh['FRACMODH_'+str(PROFILE)+'<3:0>']*2**16+reg_fracmodl['FRACMODL_'+str(PROFILE)+'<15:0>'] self.chip.setImmediateMode(Imd_Mode) return 2**PDIV2*1.0*(NINT*1.0+NFRAC*1.0/2**20) def getNFFDIV(self, PROFILE=0): """ Returns float that represents PLL feedforward division ratio for configuration in PLL profile PROFILE. """ # Set Immediate Mode for LMS8001 EVB Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) reg_pll_ff_cfg=self.chip.getRegisterByName('PLL_FF_CFG_'+str(PROFILE)) if (reg_pll_ff_cfg['FFDIV_SEL_'+str(PROFILE)]==0): return 1.0 else: return 2.0**int(reg_pll_ff_cfg['FFMOD_'+str(PROFILE)]) self.chip.setImmediateMode(Imd_Mode) def getNIQDIV2(self, channel, PROFILE=0): """ Returns float that represents PLL IQ-DivBy2 division ratio for configuration in PLL profile PROFILE for desired LO channel. """ if (PROFILE>=8): self.chip.log('Wrong PLL Profile Number. Valid values 0-7.') return None # Set Immediate Mode for LMS8001 EVB Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) if (channel=='A' or channel==0): reg_pll_lodist_cfg=self.chip.getRegisterByName('PLL_LODIST_CFG_'+str(PROFILE)) IQ_EXP=(reg_pll_lodist_cfg["PLL_LODIST_FSP_OUT0_"+str(PROFILE)+"<2:0>"]&4)>>2 elif (channel=='B' or channel==1): reg_pll_lodist_cfg=self.chip.getRegisterByName('PLL_LODIST_CFG_'+str(PROFILE)) IQ_EXP=(reg_pll_lodist_cfg["PLL_LODIST_FSP_OUT1_"+str(PROFILE)+"<2:0>"]&4)>>2 elif (channel=='C' or channel==2): reg_pll_lodist_cfg=self.chip.getRegisterByName('PLL_LODIST_CFG_'+str(PROFILE)) IQ_EXP=(reg_pll_lodist_cfg["PLL_LODIST_FSP_OUT2_"+str(PROFILE)+"<2:0>"]&4)>>2 elif (channel=='D' or channel==3): reg_pll_lodist_cfg=self.chip.getRegisterByName('PLL_LODIST_CFG_'+str(PROFILE)) IQ_EXP=(reg_pll_lodist_cfg["PLL_LODIST_FSP_OUT3_"+str(PROFILE)+"<2:0>"]&4)>>2 else: self.chip.log('Wrong LO channel selected. Valid values: "A" or 0, "B" or 1, "C" or 2, "D" or 3.') return None self.chip.setImmediateMode(Imd_Mode) return 2.0**(1.0-IQ_EXP) def get_LOfreq(self, channel, PROFILE=0): """ Returns the exact value of LO frequency at chosen LO channel. """ if (PROFILE>=8): self.chip.log('Wrong PLL Profile Number. Valid values 0-7.') return None # Set Immediate Mode for LMS8001 EVB Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Get Feedback-Divider Division Modulus N_FBDIV=self.getNDIV(PROFILE=PROFILE) # Get Feedforward-Divider Division Modulus N_FFDIV=self.getNFFDIV(PROFILE=PROFILE) # Get IQ-DivBy2 Division Modulus N_IQDIV2=self.getNIQDIV2(channel, PROFILE) self.chip.setImmediateMode(Imd_Mode) return (N_FBDIV)*self.fRef/N_FFDIV/N_IQDIV2 def centerVTUNE(self, PROFILE=0, dbgMode=False): """ This method should be used when coarse tuning algorithm converges to the subband at which PLL locks with VTUNE_HIGH=1 or VTUNE_LOW=1 If it's possible, this method tweaks different VCO setings in order to get PLL locked at desired frequency with VTUNE_HIGH=VTUNE_LOW=0 The purpose of this method is same as of centerVTUNE method. Algorithm is different. """ # Set Immediate Mode for LMS8001 EVB Imd_Mode=self.chip.getImmediateMode() self.chip.setImmediateMode(True) # Reset PLL reg_pll_cfg=self.chip.getRegisterByName('PLL_CFG') reg_pll_cfg['PLL_RSTN']=0 reg_pll_cfg['PLL_RSTN']=1 # Here set active PLL profile to the value given by argument PROFILE self.chip.PLL.ACTIVE_PROFILE=PROFILE # Get register with VTUNE_HIGH and VTUNE_LOW Indicators and PLL_LOCK bit reg_pll_status=self.chip.getRegisterByName('PLL_CFG_STATUS') # Get register with VCO_FREQ_n<7:0> word #reg_pll_vco_freq=self.chip.getRegisterByName('PLL_VCO_FREQ_'+str(PROFILE)) # Get register with VDIV_SWVDD_n<1:0> word reg_pll_vco_cfg=self.chip.getRegisterByName('PLL_VCO_CFG_'+str(PROFILE)) # Get Initial value for VCO_FREQ<1:0> word #freq_init=reg_pll_vco_freq['VCO_FREQ_'+str(PROFILE)+'<7:0>'] # Get Initial value for VDIV_SWVDD<1:0> word vdiv_swvdd_init=reg_pll_vco_cfg['VDIV_SWVDD_'+str(PROFILE)+'<1:0>'] #sel_init=reg_pll_vco_cfg['VCO_SEL_'+str(PROFILE)+'<1:0>'] # Get Initial Value for VCO_AMP<7:0> and VCO_AAC_EN amp_init=reg_pll_vco_cfg['VCO_AMP_'+str(PROFILE)+'<6:0>'] aac_en_init=reg_pll_vco_cfg['VCO_AAC_EN_'+str(PROFILE)] # Get VTUNE_HIGH, VTUNE_LOW, PLL_LOCK bit values vtune_high=reg_pll_status['VTUNE_HIGH'] vtune_low=reg_pll_status['VTUNE_LOW'] pll_lock=reg_pll_status['PLL_LOCK'] if (vtune_high==0 and vtune_low==0): if (dbgMode): self.chip.log('Centering of VTUNE not needed.') self.chip.setImmediateMode(Imd_Mode) return True swvdd_list=range(0,4) swvdd_list.reverse() amp_list=range(0,4) amp_list.reverse() # Try to center VTUNE by changing Bias Voltages of MOS switches in Capacitor Bank and VCO Amp control and reruning VCO Auto-Tuning State-Machine reg_pll_vco_cfg['VCO_AAC_EN_'+str(PROFILE)]=1 for amp in amp_list: reg_pll_vco_cfg['VCO_AMP_'+str(PROFILE)+'<6:0>']=amp for vdiv_swvdd in swvdd_list: if not (amp_init==amp and vdiv_swvdd_init==vdiv_swvdd): reg_pll_vco_cfg['VDIV_SWVDD_'+str(PROFILE)+'<1:0>']=vdiv_swvdd # changed FREQ_INIT_POS to 5 # The VCO Auto-Tuning State Machine will not be re-runed again for each amp and swvdd combination # The following two commands can be commented #autotune_status=self.vco_auto_ctune(F_TARGET=F_TARGET, PROFILE=0, XBUF_SLFBEN=1, IntN_Mode=INTMOD_EN, PDIV2=PDIV2_EN, VTUNE_VCT=1, VCO_SEL_FORCE=1, VCO_SEL_INIT=sel_init, FREQ_INIT_POS=5, FREQ_INIT=freq_init, dbgMode=dbgMode) #sleep(0.001) vtune_high=reg_pll_status['VTUNE_HIGH'] vtune_low=reg_pll_status['VTUNE_LOW'] pll_lock=reg_pll_status['PLL_LOCK'] if (vtune_high==0 and vtune_low==0): if (dbgMode): self.chip.log('VTUNE voltage centered successfuly.') self.chip.log('New VCO control values: VDIV_AMP<6:0>= %d, VCO_AAC_EN=1, VDIV_SWVDD<1:0>= %d' %(amp, vdiv_swvdd)) self.chip.log('') self.chip.PLL.infoLOCK() self.chip.setImmediateMode(Imd_Mode) # Set back PLL_CAL_AUTO1 to starting values # Uncomment these lines bellow if autotuning was invoked for each step of centering VTUNE #reg_pll_cal_auto1['VCO_SEL_FORCE']=vco_sel_force_init #reg_pll_cal_auto1['VCO_SEL_INIT<1:0>']=vco_sel_init #reg_pll_cal_auto1['FREQ_INIT_POS<2:0>']=vco_freq_init_pos #reg_pll_cal_auto1['FREQ_INIT<7:0>']=vco_freq_init return True if (dbgMode): self.chip.log("Centering VTUNE failed.") # Set back VDIV_SWVDD<1:0> and FREQ<7:0> to inital values reg_pll_vco_cfg['VDIV_SWVDD_'+str(PROFILE)+'<1:0>']=vdiv_swvdd_init #reg_pll_vco_freq['VCO_FREQ_'+str(PROFILE)+'<7:0>']=freq_init # Set back VCO amplitude controls to initial values reg_pll_vco_cfg['VCO_AMP_'+str(PROFILE)+'<6:0>']=amp_init reg_pll_vco_cfg['VCO_AAC_EN_'+str(PROFILE)]=aac_en_init # Set back the inital value of Immediate mode for LMS8001 EVB self.chip.setImmediateMode(Imd_Mode) return False def setLOFREQ(self, F_LO, XBUF_SLFBEN=1, IQ=False, IntN_Mode=False, CTUNE_METHOD='OPEN-LOOP', PROFILE=0, dbgMode=False): """ This methods configures PLL-LODIST subsystems of LMS8001 IC to generate desired LO frequency. Frequency Range Available with Quadrature Divider By 2 enabled: 260 MHz<=F_LO<=4.55 GHz, Frequency Range Available with Quadrature Divider By 2 disabled:, 520 MHz<=F_LO<=9.11 GHz. Frequencies bellow 520 MHz can only be synthesized using IQ generator. CTUNE_METHOD='OPEN-LOOP' calls the vco_auto_tune method to tune VCO to the desired frequency CTUNE_METHOD='OPEN-LOOP-MANUAL' calls the vco_manual_ctune method to tune VCO to the desired frequency CTUNE_METHOD='CLOSE-LOOP' calls the vco_manual_cloop_tune method to tune VCO to the desired frequency """ if (IQ): if not (260.0e6<=F_LO<=4.55e9): self.chip.log("F_LO should be between 260 MHz and 4.55 GHz, with argument IQ=True. Failed to set LO Freq.") return False DIV2IQ=1 else: if not (260.0e6<=F_LO<=9.11e9): self.chip.log("F_LO should be between 260 MHz and 9.11 GHz. Failed to set LO Freq.") return False if (260e6<=F_LO<=520e6): self.chip.log("F_LO values between 260 MHz and 520 MHz can only be generated with argument IQ=True. Failed to set LO Freq.") return False DIV2IQ=0 FFMOD=0 F_VCO=(2.0**DIV2IQ)*(2.0**FFMOD)*F_LO while not (4.1e9<=F_VCO<=9.11e9): FFMOD+=1 F_VCO=(2.0**DIV2IQ)*(2**FFMOD)*F_LO if (dbgMode): self.chip.log('') self.chip.log('Setting LO Frequency') self.chip.log('-'*60) self.chip.log('Required FF-DIV Modulus: %d (%d)' %(2**FFMOD, FFMOD)) self.chip.log('IQ DIV2 Gen: %s' %(str(IQ))) self.chip.log('Targeted VCO Frequency: %.5f GHz' %(F_VCO/1.0e9)) self.chip.log('IntN-Mode: %s' %(str(IntN_Mode))) self.chip.log('-'*60) self.chip.log('') # Set FF-DIV Control Signals self.setFFDIV(FFMOD=FFMOD, PROFILE=PROFILE) if (CTUNE_METHOD=='OPEN-LOOP'): # Read VCO AUTO-CAL Registers - use user defined values reg_pll_cal_auto1=self.chip.getRegisterByName('PLL_CAL_AUTO1') VCO_SEL_FORCE=reg_pll_cal_auto1['VCO_SEL_FORCE'] VCO_SEL_INIT=reg_pll_cal_auto1['VCO_SEL_INIT<1:0>'] FREQ_INIT_POS=reg_pll_cal_auto1['FREQ_INIT_POS<2:0>'] FREQ_INIT=reg_pll_cal_auto1['FREQ_INIT<7:0>'] reg_pll_cal_auto2=self.chip.getRegisterByName('PLL_CAL_AUTO2') FREQ_SETTLING_N=reg_pll_cal_auto2['FREQ_SETTLING_N<3:0>'] VTUNE_WAIT_N=reg_pll_cal_auto2['VTUNE_WAIT_N<7:0>'] reg_pll_cal_auto3=self.chip.getRegisterByName('PLL_CAL_AUTO3') VCO_SEL_FREQ_MAX=reg_pll_cal_auto3['VCO_SEL_FREQ_MAX<7:0>'] VCO_SEL_FREQ_MIN=reg_pll_cal_auto3['VCO_SEL_FREQ_MIN<7:0>'] # Read PLL_EN_FB_PDIV2_n value - use user defined values reg_pll_enable=self.chip.getRegisterByName("PLL_ENABLE_"+str(PROFILE)) PDIV2=reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)] # Read VTUNE_VCT_n value - use user defined values reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) VTUNE_VCT=reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>'] ctune_status=self.vco_auto_ctune(F_TARGET=F_VCO, PROFILE=PROFILE, XBUF_SLFBEN=XBUF_SLFBEN, IntN_Mode=IntN_Mode, PDIV2=PDIV2, VTUNE_VCT=VTUNE_VCT, VCO_SEL_FORCE=VCO_SEL_FORCE, VCO_SEL_INIT=VCO_SEL_INIT, FREQ_INIT_POS=FREQ_INIT_POS, FREQ_INIT=FREQ_INIT, FREQ_SETTLING_N=FREQ_SETTLING_N, VTUNE_WAIT_N=VTUNE_WAIT_N, VCO_SEL_FREQ_MAX=VCO_SEL_FREQ_MAX, VCO_SEL_FREQ_MIN=VCO_SEL_FREQ_MIN, dbgMode=dbgMode) elif (CTUNE_METHOD=='OPEN-LOOP-MANUAL'): # Read PLL_EN_FB_PDIV2_n value - use user defined values reg_pll_enable=self.chip.getRegisterByName("PLL_ENABLE_"+str(PROFILE)) PDIV2=reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)] # Read VTUNE_VCT_n value - use user defined values reg_pll_lpf_cfg2=self.chip.getRegisterByName('PLL_LPF_CFG2_'+str(PROFILE)) VTUNE_VCT=reg_pll_lpf_cfg2['VTUNE_VCT_'+str(PROFILE)+'<1:0>'] ctune_status=self.vco_manual_ctune(F_TARGET=F_VCO, XBUF_SLFBEN=XBUF_SLFBEN, PROFILE=PROFILE, IntN_Mode=IntN_Mode, PDIV2=PDIV2, VTUNE_VCT=VTUNE_VCT, dbgMode=dbgMode) elif (CTUNE_METHOD=='CLOSE-LOOP'): # Read PLL_EN_FB_PDIV2_n value - use user defined values reg_pll_enable=self.chip.getRegisterByName("PLL_ENABLE_"+str(PROFILE)) PDIV2=reg_pll_enable['PLL_EN_FB_PDIV2_'+str(PROFILE)] ctune_status=self.vco_manual_cloop_tune(F_VCO, PROFILE=PROFILE, XBUF_SLFBEN=XBUF_SLFBEN, IntN_Mode=IntN_Mode, PDIV2=PDIV2, dbgMode=dbgMode) else: if (dbgMode): self.chip.log('Bad CTUNE_METHOD selected. Possible Options: OPEN-LOOP and CLOSE-LOOP.') self.chip.log('Setting LO Frequency failed.') return False if not (self.chip.PLL.VTUNE_HIGH==0 and self.chip.PLL.VTUNE_LOW==0): self.centerVTUNE(PROFILE=PROFILE, dbgMode=dbgMode) if (ctune_status): if (dbgMode): self.chip.log('Setting LO Frequency finished succesfully.') return True else: self.chip.log('Setting LO Frequency failed.') return False def optim_PLL_LoopBW(self, PM_deg=49.8, fc=120.0e3, FIT_KVCO=False, PROFILE=0, dbgMode=False): """ This method finds optimal PLL configuration, CP pulse current and LPF element values. Optimization finds maximal CP current which can results with targeted PLL Loop BW using Loop-Filter elements which can be implemented in LMS8001 IC. Result should be PLL configuration with best phase noise performance for targeted loop bandwidth. """ # Get initial CP current settings reg_pll_cp_cfg0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) PULSE_INIT=reg_pll_cp_cfg0['PULSE_'+str(PROFILE)+'<5:0>'] OFS_INIT=reg_pll_cp_cfg0['OFS_'+str(PROFILE)+'<5:0>'] reg_pll_cp_cfg1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) ICT_CP_INIT=reg_pll_cp_cfg1['ICT_CP_'+str(PROFILE)+'<4:0>'] # Pulse control word of CP inside LMS8001 will be swept from 63 to 4. # First value that gives implementable PLL configuration will be used. cp_pulse_vals=range(4,64) cp_pulse_vals.reverse() # Estimate the value of KVCO for settings in the PLL Profile PROFILE KVCO_avg=self.estim_KVCO(FIT_KVCO=FIT_KVCO, PROFILE=PROFILE) # Read Feedback-Divider Modulus N=self.getNDIV(PROFILE=PROFILE) #Kvco=2*math.pi*KVCO_avg for cp_pulse in cp_pulse_vals: # Calculate CP Current Value Icp=ICT_CP_INIT*25.0e-6/16.0*cp_pulse gamma=1.045 T31=0.1 LPF_IDEAL_VALS=self.calc_ideal_LPF(fc=fc, PM_deg=PM_deg, Icp=Icp, KVCO_HzV=KVCO_avg, N=N, gamma=gamma, T31=T31) (LPFvals_OK, LPF_REAL_VALS)=self.calc_real_LPF(LPF_IDEAL_VALS) if (LPFvals_OK): # Set CP Pulse Current to the optimized value self.setCP(PULSE=cp_pulse, OFS=OFS_INIT, ICT_CP=ICT_CP_INIT, PROFILE=PROFILE) # Set LPF Components to the optimized values self.setLPF(C1=LPF_REAL_VALS['C1_CODE'], C2=LPF_REAL_VALS['C2_CODE'], R2=LPF_REAL_VALS['R2_CODE'], C3=LPF_REAL_VALS['C3_CODE'], R3=LPF_REAL_VALS['R3_CODE'], PROFILE=PROFILE) if (dbgMode): self.chip.log('PLL LoopBW Optimization finished successfuly.') self.chip.log('-'*45) self.chip.log('\tIcp=%.2f uA' %(Icp/1.0e-6)) self.chip.log('\tUsed Value for KVCO=%.2f MHz/V' %(KVCO_avg/1.0e6)) self.chip.log('\tNDIV=%.2f' % (N)) self.chip.log('-'*45) self.chip.log('') self.chip.log('Ideal LPF Values') self.chip.log('-'*45) self.chip.log('\tC1= %.2f pF' %(LPF_IDEAL_VALS['C1']/1.0e-12)) self.chip.log('\tC2= %.2f pF' %(LPF_IDEAL_VALS['C2']/1.0e-12)) self.chip.log('\tR2= %.2f kOhm' %(LPF_IDEAL_VALS['R2']/1.0e3)) self.chip.log('\tC3= %.2f pF' %(LPF_IDEAL_VALS['C3']/1.0e-12)) self.chip.log('\tR3= %.2f kOhm' %(LPF_IDEAL_VALS['R3']/1.0e3)) self.chip.log('') return True if (dbgMode): self.chip.log('PLL LoopBW Optimization failed.') self.chip.log('Some of the LPF component(s) out of implementable range.') # Set back to initial settings of CP self.setCP(PULSE=PULSE_INIT, OFS=OFS_INIT, ICT_CP=ICT_CP_INIT, PROFILE=PROFILE) return False def optimCPandLD(self, PROFILE=0, dbgMode=False): """This method checks if PLL works in fractional-N Mode. If this condition is true, it sets the offset CP current to optimize phase noise performance in FracN operation mode. When CP offset current is used, it is recommended to set ICP_OFS ~ 1.9% of ICP_PULSE for Frac-N Mode, 1.2% of ICP_PULSE for Int-N Mode""" # Check operating mode of LMS8001 PLL reg_pll_sdm_cfg=self.chip.getRegisterByName('PLL_SDM_CFG_'+str(PROFILE)) INTMOD_EN=reg_pll_sdm_cfg['INTMOD_EN_'+str(PROFILE)] # Read CP current configuration reg_pll_cp_cfg0=self.chip.getRegisterByName('PLL_CP_CFG0_'+str(PROFILE)) reg_pll_cp_cfg1=self.chip.getRegisterByName('PLL_CP_CFG1_'+str(PROFILE)) PULSE=reg_pll_cp_cfg0['PULSE_'+str(PROFILE)+'<5:0>'] OFS=reg_pll_cp_cfg0['OFS_'+str(PROFILE)+'<5:0>'] ICT_CP=reg_pll_cp_cfg1['ICT_CP_'+str(PROFILE)+'<4:0>'] # Read Lock Detector Threashold Voltage LD_VCT=reg_pll_cp_cfg1['LD_VCT_'+str(PROFILE)+'<1:0>'] # Calculate OFS and LD_VCT optimal values if (INTMOD_EN): # Set Offset Current and Lock Detector Threashold for IntN-Operating Mode LD_VCT=2 Icp=(25.0*ICT_CP/16.0)*PULSE # Calculate Target Value for Offset Current, as 1.2% of Pulse current value Icp_OFS=1.2/100.0*Icp Icp_OFS_step=(25.0*ICT_CP/16.0)*0.25 OFS=int(round(Icp_OFS/Icp_OFS_step)) else: # Set Offset Current and Lock Detector Threashold for FracN-Operating Mode LD_VCT=0 Icp=(25.0*ICT_CP/16.0)*PULSE # Calculate Target Value for Offset Current, as 1.9% of Pulse current value Icp_OFS=1.9/100.0*Icp Icp_OFS_step=(25.0*ICT_CP/16.0)*0.25 OFS=int(max(1, round(Icp_OFS/Icp_OFS_step))) self.setCP(PULSE=PULSE, OFS=OFS, ICT_CP=ICT_CP, PROFILE=PROFILE) self.setLD(LD_VCT=LD_VCT, PROFILE=PROFILE) if (dbgMode): self.chip.log('') self.chip.log('Optimization of CP-OFS and LD-VCT Settings') self.chip.log('-'*60) self.chip.log('OFS=%d' %(OFS)) self.chip.log('LD_VCT=%d' %(LD_VCT)) self.chip.log('-'*60) self.chip.log('') return True def configPLL(self, F_LO, IQ=False, autoConfXBUF=True, autoConfVREG=True, IntN_Mode=False, LoopBW=340.0e3, PM=55.0, FIT_KVCO=True, BWEF=1.0, FLOCK_N=200, SKIP_STEPS=[], CTUNE_METHOD='OPEN-LOOP', FLOCK_METHOD='SIMPLE', FLOCK_VCO_SPDUP=1, PROFILE=0, dbgMode=False): """This method does complete configuration of LMS8001 IC PLL in 5 steps: 1. 'VCO_CTUNE' STEP Runs VCO Coarse Frequency Tuning and Sets FF-DIV Ratios needed for generation of F_LO frequency CTUNE_METHOD='OPEN-LOOP' calls the vco_auto_tune method to tune VCO to the desired frequency CTUNE_METHOD='OPEN-LOOP-MANUAL' calls the vco_manual_ctune method to tune VCO to the desired frequency CTUNE_METHOD='CLOSE-LOOP' calls the vco_manual_cloop_tune method to tune VCO to the desired frequency 2. 'OPTIM_PLL_LOOPBW' STEP Optimizes PLL configuration for targeted LoopBW and Phase Margin (PM) 3. 'OPTIM_CP_OFFSET' STEP Optimize CP offset current and Lock-Detector threashold settings depending on chosen PLL operating mode 4. 'OPTIM_FAST_LOCK' STEP Sets Fast-Lock Settings for PLL Profile PROFILE """ # Calculate Loop-Crossover frequency fc=LoopBW/1.65 # Set VCO Bias Parameters if (autoConfVREG): self.setVCOBIAS(EN=1, BYP_VCOREG=1) else: self.chip.PLL.EN_VCOBIAS=1 # Set XBUF_SLFBEN Parameter if (autoConfXBUF): XBUF_SLFBEN=1 else: XBUF_SLFBEN=self.chip.PLL.PLL_XBUF_SLFBEN # Step 1 - Tune PLL to generate F_LO frequency at LODIST outputs that should be manualy enabled outside this method if not ((1 in SKIP_STEPS) or ('VCO_CTUNE' in SKIP_STEPS)): # Set VCO Core Parameters self.setVCO(AMP=3, VDIV_SWVDD=2, PROFILE=PROFILE) status1=self.setLOFREQ(F_LO, IQ=IQ, XBUF_SLFBEN=XBUF_SLFBEN, IntN_Mode=IntN_Mode, CTUNE_METHOD=CTUNE_METHOD, PROFILE=PROFILE, dbgMode=dbgMode) if not (status1): self.chip.log('PLL Tuning to F_LO=%.5f GHz failed.' %(F_LO/1.0e9)) return status1 else: status1=True # Step 2 - Optimize PLL settings for targeted LoopBW if not ((2 in SKIP_STEPS) or ('OPTIM_PLL_LOOPBW' in SKIP_STEPS)): status2=self.optim_PLL_LoopBW(PM_deg=PM, fc=fc, FIT_KVCO=FIT_KVCO, PROFILE=PROFILE, dbgMode=dbgMode) if not (status2): self.chip.log('Optimization of PLL at F_LO=%.5f GHz, LoopBW=%.2f kHz and PM=%.2f deg failed.' %(F_LO/1.0e9, LoopBW/1.0e3, PM)) else: status2=True # Step 3 - Optimize CP offset current Lock Detector Threashold depending on operating mode chosen (IntN or FracN) if not ((3 in SKIP_STEPS) or ('OPTIM_CP_OFFSET' in SKIP_STEPS)): status3=self.optimCPandLD(PROFILE=PROFILE, dbgMode=dbgMode) if not (status3): self.chip.log('Optimization of CP-OFS and LD-VCT at F_LO=%.5f GHz.' %(F_LO/1.0e9)) else: status3=True # Step 4 - Configure Fast-Lock Mode Registers if not ((4 in SKIP_STEPS) or ('OPTIM_FAST_LOCK' in SKIP_STEPS)): if (BWEF>=1.0): self.setFLOCK(BWEF, LoopBW=BWEF*LoopBW, PM=PM, FLOCK_N=FLOCK_N, Ch_EN=[], METHOD=FLOCK_METHOD, FIT_KVCO=FIT_KVCO, FLOCK_VCO_SPDUP=FLOCK_VCO_SPDUP, PROFILE=PROFILE) else: status4=True return (status1 and status2 and status3)
python
# Generated by Django 2.1.14 on 2019-12-02 11:19 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('djautotask', '0030_task_phase'), ('djautotask', '0028_task_secondary_resources'), ] operations = [ ]
python
# -*- coding: utf-8 -*- import dataiku from dataiku.customrecipe import * import pandas as pd import networkx as nx from networkx.algorithms import bipartite # Read recipe config input_name = get_input_names_for_role('Input Dataset')[0] output_name = get_output_names_for_role('Output Dataset')[0] needs_eig = get_recipe_config()['eigenvector_centrality'] needs_clu = get_recipe_config()['clustering'] needs_tri = get_recipe_config()['triangles'] needs_clo = get_recipe_config()['closeness'] needs_pag = get_recipe_config()['pagerank'] needs_squ = get_recipe_config()['sq_clustering'] node_A=get_recipe_config()['node_A'] node_B=get_recipe_config()['node_B'] print get_recipe_config() # Recipe input df = dataiku.Dataset(input_name).get_dataframe() print "[+] Dataset loaded..." # Creating the bipartite graph graph = nx.Graph() graph.add_edges_from(zip(df[node_A].values.tolist(),df[node_B].values.tolist())) print "[+] Created bipartite graph..." # Always run: nodes degree print "[+] Computing degree..." deg = pd.Series(nx.degree(graph), name='degree') stats = pd.DataFrame(list(deg),columns=['node_name','degree']) if needs_eig: print "[+] Computing eigenvector centrality..." eig = pd.Series(nx.eigenvector_centrality_numpy(graph), name='eigenvector_centrality').reset_index() eig.columns=['node_name','eigenvector_centrality'] if needs_clu: print "[+] Computing clustering coefficient..." clu = pd.Series(nx.clustering(graph), name='clustering_coefficient').reset_index() clu.columns=['node_name','clustering_coefficient'] if needs_tri: print "[+] Computing number of triangles..." tri = pd.Series(nx.triangles(graph), name='triangles').reset_index() tri.columns=['node_name','triangles'] if needs_clo: print "[+] Computing closeness centrality..." clo = pd.Series(nx.closeness_centrality(graph), name='closeness_centrality').reset_index() clo.columns=['node_name','closeness_centrality'] if needs_pag: print "[+] Computing pagerank..." pag = pd.Series(nx.pagerank(graph), name='pagerank').reset_index() pag.columns=['node_name','pagerank'] if needs_squ: print "[+] Computing square clustering..." squ = pd.Series(nx.square_clustering(graph), name='square_clustering_coefficient').reset_index() squ.columns=['node_name','square_clustering_coefficient'] # Always run: connected components _cco = {} for i, c in enumerate(nx.connected_components(graph)): for e in c: _cco[e] = i cco = pd.Series(_cco, name='connected_component_id').reset_index() cco.columns=['node_name','connected_component_id'] # Putting all together stats = stats.merge(cco,how='left') if needs_eig: stats = stats.merge(eig,how='left') if needs_clu: stats = stats.merge(clu,how='left') if needs_tri: stats = stats.merge(tri,how='left') if needs_clo: stats = stats.merge(clo,how='left') if needs_pag: stats = stats.merge(pag,how='left') if needs_squ: stats = stats.merge(squ,how='left') _s = stats["connected_component_id"].value_counts().reset_index() _s.columns = ['connected_component_id', 'connected_component_size'] stats = stats.merge(_s, on="connected_component_id", how="left") # Recipe outputs print "[+] Writing output dataset..." graph = dataiku.Dataset(output_name) graph.write_with_schema(stats)
python
import json import gmplot import os import random import collections # FIX FOR MISSING MARKERS # 1. Open gmplot.py in Lib/site-packages/gmplot # 2. Replace line 29 (self.coloricon.....) with the following two lines: # self.coloricon = os.path.join(os.path.dirname(__file__), 'markers/%s.png') # self.coloricon = self.coloricon.replace('/', '\\').replace('\\', '\\\\') def create_range_map(user_json, date, start, end, position_json, show_trips): nice_colors = collections.deque(['#006699', '#6e4673', '#649e0b', '#f6921e', '#d14343', '#00afaf', '#66bbed', '#95609c', '#a1c964', '#faaf40', '#e56f6f', '#46dbdb']) start_set = False gmap = None # Go through selected trips. for i in range(start, end + 1): latt_list = [] long_list = [] transport = int(user_json['TripDocuments'][date]['TripList'][i]['Transport']['$numberInt']) print(transport) if transport == 0: # WALK map_marker = '#000000' elif transport == 1: # BIKE map_marker = '#0000FF' elif transport == 2: # CAR map_marker = '#0000CD' else: # TRANSIT map_marker = '#00BFFF' # Go through logs in a trip. for log in user_json['TripDocuments'][date]['TripList'][i]['TripPositions']: latt_list.append(float(log['Latitude']['$numberDouble'])) long_list.append(float(log['Longitude']['$numberDouble'])) # Set the start of the map at the first trip. if not start_set: gmap = gmplot.GoogleMapPlotter(latt_list[0], long_list[0], 13) gmap.apikey = 'AIzaSyDPVbZkJPURllC7bFlR44iZhoLfwNSS5JI' start_set = True for log in user_json['TripDocuments'][date]['TripList'][i]['TripPositions']: gmap.marker(float(log['Latitude']['$numberDouble']), float(log['Longitude']['$numberDouble']), color=map_marker, title=f"SPEED: {log['Speed']}") color = None if nice_colors.count == 0: color = "#%06x" % random.randint(0, 0xFFFFFF) else: color = nice_colors[0] nice_colors.popleft() gmap.plot(latt_list, long_list, color, edge_width=5) ''''# Add markers for trip. if show_trips: for idx, log in enumerate(user_json['TripDocuments'][date]['TripList'][i]['TripPositions']): if idx == 0: gmap.marker(float(log['Latitude']['$numberDouble']), float(log['Longitude']['$numberDouble']), '#7FFF00', title=f'TRIP: {str(i)} START') elif idx == len(user_json['TripDocuments'][date]['TripList'][i]['TripPositions']) + 1: gmap.marker(float(log['Latitude']['$numberDouble']), float(log['Longitude']['$numberDouble']), '#A52A2A', title=f'TRIP: {str(i)} END') else: gmap.marker(float(log['Latitude']['$numberDouble']), float(log['Longitude']['$numberDouble']), '#4682B4') ''' # Add markers for positions. if not show_trips: for pos in position_json: gmap.marker(float(pos['Latitude']['$numberDouble']), float(pos['Longitude']['$numberDouble']), '#FFA500') gmap.draw(os.path.join(os.getcwd(), 'plots', f'result.html')) def generate_map_gui(): # Load JSON. collection = open('raw.json', 'r').readlines() users = [] for user in collection: users.append(json.loads(user)) # Select user. print('\nShowing users:') for idx, user in enumerate(users): print(f"[{idx}]: {user['_id']}") user_select = int(input('Please select a user: ')) while user_select > len(users) - 1: print('Wrong input!') user_select = int(input('Please select a user: ')) # Show trip date overview. print(f"\nShowing dates for user: {users[user_select]['_id']}") for idx, date in enumerate(users[user_select]['TripDocuments']): print(f"[{idx}]: {date['_id']}") # Select date. date_select = int(input('Please select a date: ')) while date_select > len(users[user_select]['TripDocuments']) - 1: print('Wrong input!') date_select = int(input('Please select a date: ')) # Show trip overview for chosen date. print(f"\nShowing trips for date: {users[user_select]['TripDocuments'][date_select]['_id']}") for idx, trip in enumerate(users[user_select]['TripDocuments'][date_select]['TripList']): print(f"[{idx}]: {trip['_id']}") # Range select print('\nPlease select a range of trips to map. Give the same number twice to only map one.') start_range = int(input('Start range: ')) end_range = int(input('End range: ')) pos_json = None ''''# Get positions for user. pos_collection = open('rawPos.json', 'r').readlines() pos_json = None for user_positions in pos_collection: user_pos_data = json.loads(user_positions) if user_pos_data['_id'] == users[user_select]['_id']: # Get pos doc for selected date. for doc in user_pos_data['Documents']: if doc['_id'] == users[user_select]['TripDocuments'][date_select]['_id']: pos_json = doc['PositionList']''' create_range_map(users[user_select], date_select, start_range, end_range, pos_json, True) print('\nMap created in plots/result.html') if __name__ == '__main__': generate_map_gui()
python
import pytest from cx_const import Number, StepperDir from cx_core.stepper import MinMax, Stepper, StepperOutput class FakeStepper(Stepper): def __init__(self) -> None: super().__init__(MinMax(0, 1), 1) def step(self, value: Number, direction: str) -> StepperOutput: return StepperOutput(next_value=0, next_direction=None) @pytest.mark.parametrize( "direction_input, previous_direction, expected_direction", [ (StepperDir.UP, StepperDir.UP, StepperDir.UP), (StepperDir.DOWN, StepperDir.DOWN, StepperDir.DOWN), (StepperDir.UP, StepperDir.DOWN, StepperDir.UP), (StepperDir.DOWN, StepperDir.UP, StepperDir.DOWN), (StepperDir.TOGGLE, StepperDir.UP, StepperDir.DOWN), (StepperDir.TOGGLE, StepperDir.DOWN, StepperDir.UP), ], ) def test_get_direction( direction_input: str, previous_direction: str, expected_direction: str ) -> None: stepper = FakeStepper() stepper.previous_direction = previous_direction direction_output = stepper.get_direction(0, direction_input) assert direction_output == expected_direction @pytest.mark.parametrize( "direction_input, expected_sign", [ (StepperDir.UP, 1), (StepperDir.DOWN, -1), (StepperDir.UP, 1), (StepperDir.DOWN, -1), ], ) def test_sign(direction_input: str, expected_sign: int) -> None: stepper = FakeStepper() sign_output = stepper.sign(direction_input) assert sign_output == expected_sign
python
# Generated by Django 2.1.5 on 2019-01-25 19:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0008_shoppingcart'), ] operations = [ migrations.AddField( model_name='shoppingcart', name='total_price', field=models.IntegerField(default=-1), ), migrations.AddField( model_name='shoppingcart', name='user_address', field=models.CharField(default='unknown', max_length=200), ), migrations.AddField( model_name='shoppingcart', name='user_name', field=models.CharField(default='unknown', max_length=30), ), ]
python
import numpy as np def Adam_Opt(X_0, function, gradient_function, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8, max_iter=500, disp=False, tolerance=1e-5, store_steps=False): """ To be passed into Scipy Minimize method https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize https://github.com/sagarvegad/Adam-optimizer/blob/master/Adam.py https://arxiv.org/abs/1412.6980 Args: function (callable): Stochastic objective function gradient_function (callable): function to obtain gradient of Stochastic objective X0 (np.array): Initial guess learning_rate (float): Step size beta_1 (float): The exponential decay rate for the 1st moment estimates. beta_2 (float): The exponential decay rate for the 2nd moment estimates. epsilon (float): Constant (small) for numerical stability Attributes: t (int): Timestep m_t (float): first moment vector v_t (float): second moment vector """ input_vectors=[] output_results=[] # initialization t=0 # timestep m_t = 0 #1st moment vector v_t = 0 #2nd moment vector X_t = X_0 while(t<max_iter): if store_steps is True: input_vectors.append(X_t) output_results.append(function(X_t)) t+=1 g_t = gradient_function(X_t) m_t = beta_1*m_t + (1-beta_1)*g_t #updates the moving averages of the gradient (biased first moment estimate) v_t = beta_2*v_t + (1-beta_2)*(g_t*g_t) #updates the moving averages of the squared gradient (biased 2nd # raw moment estimate) m_cap = m_t / (1 - (beta_1 ** t)) # Compute bias-corrected first moment estimate v_cap = v_t / (1 - (beta_2 ** t)) # Compute bias-corrected second raw moment estimate X_t_prev = X_t X_t = X_t_prev - (learning_rate * m_cap) / (np.sqrt(v_cap) + epsilon) # updates the parameters if disp is True: output = function(X_t) print('step: {} input:{} obj_funct: {}'.format(t, X_t, output)) if np.isclose(X_t, X_t_prev, atol=tolerance).all(): # convergence check break if store_steps is True: return X_t, input_vectors, output_results else: return X_t if __name__ == '__main__': def Function_to_minimise(input_vect, const=2): # z = x^2 + y^2 + constant x = input_vect[0] y = input_vect[1] z = x ** 2 + y ** 2 + const return z def calc_grad(input_vect): # z = 2x^2 + y^2 + constant x = input_vect[0] y = input_vect[1] dz_dx = 2 * x dz_dy = 2 * y return np.array([dz_dx, dz_dy]) X0 = np.array([1,2]) GG = Adam_Opt(X0, calc_grad, learning_rate=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-8) print(Function_to_minimise(GG)) import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import numpy as np x = np.arange(-10, 10, 0.25) y = np.arange(-10, 10, 0.25) const = 2 x, y = np.meshgrid(x, y) z = x ** 2 + y ** 2 + const fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.viridis) plt.show() print('Minimum should be:', 2.0) ### for scipy ### # (fun, x0, args=args, jac=jac, hess=hess, hessp=hessp, # bounds=bounds, constraints=constraints, # callback=callback, **options) def fmin_ADAM(f, x0, fprime=None, args=(), gtol=1e-5, maxiter=500, full_output=0, disp=1, maxfev=500, retall=0, callback=None, learning_rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8): """ Minimize a function using the BFGS algorithm. Parameters ---------- f : callable f(x,*args) Objective function to be minimized. x0 : ndarray Initial guess. delta (float): stepsize to approximate gradient """ opts = {'gtol': gtol, 'disp': disp, 'maxiter': maxiter, 'return_all': retall} res = _adam_minimize(f, x0, fprime, args=args, callback=callback, xtol=gtol, maxiter=maxiter, disp=disp, maxfev=maxfev, return_all=retall, learning_rate = learning_rate, beta_1 = beta_1, beta_2 = beta_2, epsilon=epsilon, **opts) if full_output: retlist = (res['x'], res['fun'], #res['jac'], res['nfev'], res['status']) if retall: retlist += (res['allvecs'], ) return retlist else: if retall: return res['x'], res['allvecs'] else: return res['x'] return result from scipy.optimize.optimize import OptimizeResult, wrap_function, _status_message, _check_unknown_options from numpy import squeeze # _minimize_powell def _adam_minimize(func, x0, args=(), jac=None, callback=None, xtol=1e-8, maxiter=None, maxfev=None, disp=False, return_all=False, learning_rate = 0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8, **unknown_options): """ Minimization of scalar function of one or more variables using the modified Powell algorithm. Options ------- disp : bool Set to True to print convergence messages. xtol : float Relative error in solution `xopt` acceptable for convergence. ftol : float Relative error in ``fun(xopt)`` acceptable for convergence. maxiter, maxfev : int Maximum allowed number of iterations and function evaluations. Will default to ``N*1000``, where ``N`` is the number of variables, if neither `maxiter` or `maxfev` is set. If both `maxiter` and `maxfev` are set, minimization will stop at the first reached. direc : ndarray Initial set of direction vectors for the Powell method. return_all : bool, optional Set to True to return a list of the best solution at each of the iterations. """ _check_unknown_options(unknown_options) if jac is None: raise ValueError('Jacobian is required for Adam-CG method') if maxfev is None: maxfev = maxiter + 10 _, func = wrap_function(func, args) retall = return_all if retall: allvecs = [x0] all_jac_vecs=[jac(x0)] fval = squeeze(func(x0)) # initialization t=0 # timestep m_t = 0 # 1st moment vector v_t = 0 # 2nd moment vector X_t = x0 fcalls=0 iter = 0 while True: # ADAM Algorithm t+=1 g_t = jac(X_t) m_t = beta_1*m_t + (1-beta_1)*g_t #updates the moving averages of the gradient (biased first moment estimate) v_t = beta_2*v_t + (1-beta_2)*(g_t*g_t) #updates the moving averages of the squared gradient (biased 2nd # raw moment estimate) m_cap = m_t / (1 - (beta_1 ** t)) # Compute bias-corrected first moment estimate v_cap = v_t / (1 - (beta_2 ** t)) # Compute bias-corrected second raw moment estimate X_t_prev = X_t X_t = X_t_prev - (learning_rate * m_cap) / (np.sqrt(v_cap) + epsilon) # updates the parameters # Adam END # updates and termination criteria fcalls+=1 fval = func(X_t) iter += 1 if callback is not None: callback(X_t) if retall: allvecs.append(X_t) all_jac_vecs.append(g_t) if fcalls >= maxfev: # max function evaluation break if iter >= maxiter: # max no. of iterations break if np.isclose(X_t, X_t_prev, atol=xtol).all(): # convergence check break warnflag = 0 if fcalls >= maxfev: warnflag = 1 msg = _status_message['maxfev'] if disp: print("Warning: " + msg) elif iter >= maxiter: warnflag = 2 msg = _status_message['maxiter'] if disp: print("Warning: " + msg) elif np.isnan(fval) or np.isnan(x).any(): warnflag = 3 msg = _status_message['nan'] if disp: print("Warning: " + msg) else: msg = _status_message['success'] if disp: print(msg) print(" Current function value: %f" % fval) print(" Iterations: %d" % iter) print(" Function evaluations: %d" % fcalls) result = OptimizeResult(fun=fval, nit=iter, nfev=fcalls, status=warnflag, success=(warnflag == 0), message=msg, x=X_t) if retall: result['allvecs'] = allvecs result['jac'] = all_jac_vecs return result if __name__ == '__main__': def Function_to_minimise(input_vect, const=2): # z = x^2 + y^2 + constant x = input_vect[0] y = input_vect[1] z = x ** 2 + y ** 2 + const return z def calc_grad(input_vect): # z = 2x^2 + y^2 + constant x = input_vect[0] y = input_vect[1] dz_dx = 2 * x dz_dy = 2 * y return np.array([dz_dx, dz_dy]) X0 = np.array([1,2]) x = fmin_ADAM(Function_to_minimise, X0, fprime=calc_grad, learning_rate=1, maxiter=800, full_output=1, gtol=1e-5) #retall=1) print(x)
python
from __future__ import absolute_import from rest_framework.response import Response from sentry import options from sentry.api.bases.project import ProjectEndpoint from sentry.models import ProjectKey class ProjectDocsEndpoint(ProjectEndpoint): def get(self, request, project): data = options.get('sentry:docs') project_key = ProjectKey.get_default(project) context = { 'platforms': data['platforms'], } if project_key: context['dsn'] = project_key.dsn_private context['dsnPublic'] = project_key.dsn_public return Response(context)
python
import tensorflow as tf from groupy.gconv.make_gconv_indices import make_c4_z2_indices, make_c4_p4_indices,\ make_d4_z2_indices, make_d4_p4m_indices, flatten_indices from groupy.gconv.tensorflow_gconv.transform_filter import transform_filter_2d_nchw, transform_filter_2d_nhwc def gconv2d(input, filter, strides, padding, gconv_indices, gconv_shape_info, use_cudnn_on_gpu=None, data_format='NHWC', name=None): """ Tensorflow implementation of the group convolution. This function has the same interface as the standard convolution nn.conv2d, except for two new parameters, gconv_indices and gconv_shape_info. These can be obtained from gconv2d_util(), and are described below :param input: a tensor with (batch, height, width, in channels) axes. :param filter: a tensor with (ksize, ksize, in channels * in transformations, out channels) axes. The shape for filter can be obtained from gconv2d_util(). :param strides: A list of ints. 1-D of length 4. The stride of the sliding window for each dimension of input. Must be in the same order as the dimension specified with format. :param padding: A string from: "SAME", "VALID". The type of padding algorithm to use. :param gconv_indices: indices used in the filter transformation step of the G-Conv. Can be obtained from gconv2d_util() or using a command like flatten_indices(make_d4_p4m_indices(ksize=3)). :param gconv_shape_info: a tuple containing (num output channels, num output transformations, num input channels, num input transformations, kernel size) Can be obtained from gconv2d_util() :param use_cudnn_on_gpu: an optional bool. Defaults to True. :param data_format: the order of axes. Currently only NCHW is supported :param name: a name for the operation (optional) :return: tensor with (batch, out channels, height, width) axes. """ if data_format != 'NHWC': raise NotImplemented('Currently only NHWC data_format is supported. Got:' + str(data_format)) # Transform the filters transformed_filter = transform_filter_2d_nhwc(w=filter, flat_indices=gconv_indices, shape_info=gconv_shape_info) # Convolve input with transformed filters conv = tf.nn.conv2d(input=input, filter=transformed_filter, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, name=name) return conv def gconv2d_util(h_input, h_output, in_channels, out_channels, ksize): """ Convenience function for setting up static data required for the G-Conv. This function returns: 1) an array of indices used in the filter transformation step of gconv2d 2) shape information required by gconv2d 5) the shape of the filter tensor to be allocated and passed to gconv2d :param h_input: one of ('Z2', 'C4', 'D4'). Use 'Z2' for the first layer. Use 'C4' or 'D4' for later layers. :param h_output: one of ('C4', 'D4'). What kind of transformations to use (rotations or roto-reflections). The choice of h_output of one layer should equal h_input of the next layer. :param in_channels: the number of input channels. Note: this refers to the number of (3D) channels on the group. The number of 2D channels will be 1, 4, or 8 times larger, depending the value of h_input. :param out_channels: the number of output channels. Note: this refers to the number of (3D) channels on the group. The number of 2D channels will be 1, 4, or 8 times larger, depending on the value of h_output. :param ksize: the spatial size of the filter kernels (typically 3, 5, or 7). :return: gconv_indices """ if h_input == 'Z2' and h_output == 'C4': gconv_indices = flatten_indices(make_c4_z2_indices(ksize=ksize)) nti = 1 nto = 4 elif h_input == 'C4' and h_output == 'C4': gconv_indices = flatten_indices(make_c4_p4_indices(ksize=ksize)) nti = 4 nto = 4 elif h_input == 'Z2' and h_output == 'D4': gconv_indices = flatten_indices(make_d4_z2_indices(ksize=ksize)) nti = 1 nto = 8 elif h_input == 'D4' and h_output == 'D4': gconv_indices = flatten_indices(make_d4_p4m_indices(ksize=ksize)) nti = 8 nto = 8 else: raise ValueError('Unknown (h_input, h_output) pair:' + str((h_input, h_output))) w_shape = (ksize, ksize, in_channels * nti, out_channels) gconv_shape_info = (out_channels, nto, in_channels, nti, ksize) return gconv_indices, gconv_shape_info, w_shape def gconv2d_addbias(input, bias, nti=8): """ In a G-CNN, the feature maps are interpreted as functions on a group G instead of functions on the plane Z^2. Just like how we use a single scalar bias per 2D feature map, in a G-CNN we should use a single scalar bias per G-feature map. Failing to do this breaks the equivariance and typically hurts performance. A G-feature map usually consists of a number (e.g. 4 or 8) adjacent channels. This function will add a single bias vector to a stack of feature maps that has e.g. 4 or 8 times more 2D channels than G-channels, by replicating the bias across adjacent groups of 2D channels. :param input: tensor of shape (n, h, w, ni * nti), where n is the batch dimension, (h, w) are the height and width, ni is the number of input G-channels, and nti is the number of transformations in H. :param bias: tensor of shape (ni,) :param nti: number of transformations, e.g. 4 for C4/p4 or 8 for D4/p4m. :return: input with bias added """ # input = tf.reshape(input, ()) pass # TODO
python
# Generated by Django 2.0.9 on 2019-12-05 20:27 import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Curso', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('description', models.TextField()), ('create_at', models.DateTimeField(auto_now_add=True)), ('start', models.DateTimeField(blank=True, default=datetime.datetime(2019, 12, 5, 20, 27, 55, 729200, tzinfo=utc))), ('end', models.DateTimeField(blank=True, null=True)), ('document', models.FileField(blank=True, upload_to='documents/')), ], ), migrations.CreateModel( name='Interfaz', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.TextField(blank=True, null=True)), ('document', models.FileField(blank=True, null=True, upload_to='documents/')), ('photo', models.ImageField(blank=True, null=True, upload_to='fotos/')), ('curso', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='interfaz', to='cursos.Curso')), ], ), ]
python
class SeedsNotFound(Exception): pass class ZoneNotFound(Exception): pass class TooManyZones(Exception): pass
python
""" @author: acfromspace """ """ Notes: Find the most common word from a paragraph that can't be a banned word. """ from collections import Counter class Solution: def most_common_word(self, paragraph: str, banned: [str]) -> str: unbanned = [] for character in "!?',;.": paragraph = paragraph.replace(character, " ") paragraph_list = paragraph.lower().split() for word in paragraph_list: if word not in banned: unbanned.append(word) # Get the `most_common` element, which holds a key value, which then we need the key. return Counter(unbanned).most_common(1)[0][0] test = Solution() paragraph = "kraq and jeff are talking about the problems with kraq jeff JEFF KRAQ are" banned = "jeff kraq" print("most_common_word():", test.most_common_word(paragraph, banned)) """ Time complexity: O(p+b). "p" is the size of the `paragraph` and "b" is the size of `banned`. Space complexity: O(p+b). To store the `paragraph_list` and the `banned` data structures. """
python
import itertools import os import random import pytest from polyswarmd.utils.bloom import BloomFilter @pytest.fixture def log_entries(): def _mk_address(): return os.urandom(20) def _mk_topic(): return os.urandom(32) return [(_mk_address(), [_mk_topic() for _ in range(1, random.randint(0, 4))]) for _ in range(1, random.randint(0, 30))] def check_bloom(bloom, log_entries): for address, topics in log_entries: assert address in bloom for topic in topics: assert topic in bloom def test_bloom_filter_add_method(log_entries): bloom = BloomFilter() for address, topics in log_entries: bloom.add(address) for topic in topics: bloom.add(topic) check_bloom(bloom, log_entries) def test_bloom_filter_extend_method(log_entries): bloom = BloomFilter() for address, topics in log_entries: bloom.extend([address]) bloom.extend(topics) check_bloom(bloom, log_entries) def test_bloom_filter_from_iterable_method(log_entries): bloomables = itertools.chain.from_iterable( itertools.chain([address], topics) for address, topics in log_entries ) bloom = BloomFilter.from_iterable(bloomables) check_bloom(bloom, log_entries) def test_casting_to_integer(): bloom = BloomFilter() assert int(bloom) == 0 bloom.add(b'value 1') bloom.add(b'value 2') assert int(bloom) == int( '63119152483043774890037882090529841075600744123634985501563996' '49538536948165624479433922134690234594539820621615046612478986' '72305890903532059401028759565544372404512800814146245947429340' '89705729059810916441565944632818634262808769353435407547341248' '57159120012171916234314838712163868338766358254974260070831608' '96074485863379577454706818623806701090478504217358337630954958' '46332941618897428599499176135798020580888127915804442383594765' '16518489513817430952759084240442967521334544396984240160630545' '50638819052173088777264795248455896326763883458932483359201374' '72931724136975431250270748464358029482656627802817691648' ) def test_casting_to_binary(): bloom = BloomFilter() assert bin(bloom) == '0b0' bloom.add(b'value 1') bloom.add(b'value 2') assert bin(bloom) == ( '0b1000000000000000000000000000000000000000001000000100000000000000' '000000000000000000000000000000000000000000000010000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000001000000' '000000000000000000000000000000000000000000000000000000000000000010' '000000000000000000000000000000000000000100000000000000000000001000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000010000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000010000000000001000000000000001000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000001000000000000000000000000000000000000000000000000000100000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000000100000000000000000' '00000000000000000000000000000000000001000000000000000000000000' ) def test_combining_filters(): b1 = BloomFilter() b2 = BloomFilter() b1.add(b'a') b1.add(b'b') b1.add(b'c') b2.add(b'd') b2.add(b'e') b2.add(b'f') b1.add(b'common') b2.add(b'common') assert b'a' in b1 assert b'b' in b1 assert b'c' in b1 assert b'a' not in b2 assert b'b' not in b2 assert b'c' not in b2 assert b'd' in b2 assert b'e' in b2 assert b'f' in b2 assert b'd' not in b1 assert b'e' not in b1 assert b'f' not in b1 assert b'common' in b1 assert b'common' in b2 b3 = b1 | b2 assert b'a' in b3 assert b'b' in b3 assert b'c' in b3 assert b'd' in b3 assert b'e' in b3 assert b'f' in b3 assert b'common' in b3 b4 = b1 + b2 assert b'a' in b4 assert b'b' in b4 assert b'c' in b4 assert b'd' in b4 assert b'e' in b4 assert b'f' in b4 assert b'common' in b4 b5 = BloomFilter(int(b1)) b5 |= b2 assert b'a' in b5 assert b'b' in b5 assert b'c' in b5 assert b'd' in b5 assert b'e' in b5 assert b'f' in b5 assert b'common' in b5 b6 = BloomFilter(int(b1)) b6 += b2 assert b'a' in b6 assert b'b' in b6 assert b'c' in b6 assert b'd' in b6 assert b'e' in b6 assert b'f' in b6 assert b'common' in b6
python
# -*- coding: utf-8 -*- """Unit test package for fv3config."""
python
from SimPy.SimulationRT import Simulation, Process, hold import numpy as np import scipy as sp import scipy.io as spio import networkx as nx import matplotlib.pyplot as plt import ConfigParser from pylayers.util.project import * import pylayers.util.pyutil as pyu from pylayers.network.network import Network, Node, PNetwork from pylayers.gis.layout import Layout import copy import pickle import pdb import os class Save(Process): """ Save all variables of a simulnet simulation. Save process can be setup with the save.ini file from /<project>/ini Attributes ---------- net : pylayers.network.network() sim : SimPy.SimulationRT() savemat : dictionnary with all the saved results from a simulation ( obtained after self.export() ) Methods ------- run (): save the current simulation every k steps (setup into save.ini) load(): Load saved results of a simulation. file extension .pck export(etype) : export the results into the etype format. available format : - 'python' - 'matlab' """ def __init__(self, **args): defaults = {'L': None, 'net': None, 'sim': None} ## initialize attributes for key, value in defaults.items(): if key in args: setattr(self, key, args[key]) else: setattr(self, key, value) args[key] = value self.args = args Process.__init__(self, name='save', sim=self.args['sim']) self.C = ConfigParser.ConfigParser() self.C.read(pyu.getlong('save.ini','ini')) self.opt = dict(self.C.items('config')) self.pos = dict(self.C.items('position')) self.ldp = dict(self.C.items('ldp')) self.wstd = dict(self.C.items('wstd')) self.lpos = eval(self.pos['position']) self.lldp = eval(self.ldp['ldp']) self.lwstd = eval(self.wstd['wstd']) self.sim = args['sim'] self.net = args['net'] def load(self,filename=[]): """ Load a saved trace simulation Examples -------- >>> from pylayers.util.save import * >>> S=Save() >>> S.load() """ if filename == []: filename = self.filename out=[0] infile = open(os.path.join(basename,pstruc['DIRNETSAVE'],filename), 'r') while 1: try: out.append(pickle.load(infile)) except (EOFError, pickle.UnpicklingError): break out.pop(0) infile.close() dout= dict(out[-1]) return dout def mat_export(self): """ export save simulation to a matlab file Examples -------- >>> from pylayers.util.save import * >>> S=Save() >>> S.mat_export() """ self.save=self.load() self.savemat=copy.deepcopy(self.save) nodes=self.save['saveopt']['type'].keys() for inn,n in enumerate(nodes): self.savemat['node_'+n]=self.save[n] for n2 in nodes: if n2 != n: try: self.savemat['node_'+n]['node_'+n2]=self.save[n][n2] del self.savemat[n][n2] except: pass del self.savemat[n] for o in self.save['saveopt']: if o =='subnet' and inn == 0: for r in self.save['saveopt']['lwstd']: li=self.save['saveopt'][o][r] self.savemat['saveopt'][o][r]=['node_'+l for l in li] else : try: self.savemat['saveopt'][o]['node_'+n]=self.save['saveopt'][o][n] del self.savemat['saveopt'][o][n] except: pass spio.savemat(os.path.join(basename,pstruc['DIRNETSAVE'],self.filename),self.savemat) self.save=self.load() def run(self): """ Run the save Result process """ self.save={} self.filename = eval(self.opt['filename']) self.file=open(os.path.join(basename,pstruc['DIRNETSAVE'],self.filename),'write') self.save['saveopt'] = {} self.save['saveopt']['lpos'] = self.lpos self.save['saveopt']['lldp'] = self.lldp self.save['saveopt']['lwstd'] = self.lwstd self.save['saveopt']['nbsamples'] = np.ceil(eval(self.sim.sim_opt['duration'])/eval(self.opt['save_update_time']))+1 self.save['saveopt']['duration'] = eval(self.sim.sim_opt['duration']) self.save['saveopt']['save_update_time'] = eval(self.opt['save_update_time']) pickle.dump(self.save, self.file) self.file.close() self.idx=0 ### init save dictionnary self.save['saveopt']['Layout'] = self.L._filename self.save['saveopt']['type'] = nx.get_node_attributes(self.net,'type') self.save['saveopt']['epwr'] = nx.get_node_attributes(self.net,'epwr') self.save['saveopt']['sens'] = nx.get_node_attributes(self.net,'sens') self.save['saveopt']['subnet']={} for wstd in self.lwstd: self.save['saveopt']['subnet'][wstd]=self.net.SubNet[wstd].nodes() [self.save.update({n:{}}) for n in self.net.nodes()] # find the size of save array regarding the simulation duwstdion and # the saved sample time nb_sample=np.ceil(eval(self.sim.sim_opt['duration'])/eval(self.opt['save_update_time']))+1 # create void array to be fill with simulation data for n in self.net.nodes(): for position in self.lpos: self.save[n][position]=np.zeros((nb_sample,2))*np.nan for e in self.net.edges(): self.save[e[0]][e[1]]={} self.save[e[1]][e[0]]={} for wstd in self.lwstd: self.save[e[0]][e[1]][wstd]={} self.save[e[1]][e[0]][wstd]={} for ldp in self.lldp: self.save[e[0]][e[1]][wstd][ldp]=np.zeros((nb_sample,2))*np.nan self.save[e[1]][e[0]][wstd][ldp]=np.zeros((nb_sample,2))*np.nan while True: rl={} for wstd in self.lwstd: for ldp in self.lldp: rl[wstd+ldp]=nx.get_edge_attributes(self.net.SubNet[wstd],ldp) for n in self.net.nodes(): for position in self.lpos: try: p = nx.get_node_attributes(self.net,position) self.save[n][position][self.idx]=p[n] except: pass for e in self.net.edges(): for wstd in self.lwstd: for ldp in self.lldp: try: le=tuple([e[0],e[1],wstd]) self.save[e[0]][e[1]][wstd][ldp][self.idx]=rl[wstd+ldp][le] self.save[e[1]][e[0]][wstd][ldp][self.idx]=rl[wstd+ldp][le] except: pass self.file=open(os.path.join(basename,pstruc['DIRNETSAVE'],self.filename),'a') pickle.dump(self.save, self.file) self.file.close() self.idx=self.idx+1 yield hold, self, eval(self.opt['save_update_time'])
python
# Import libraries from bs4 import BeautifulSoup import requests import psycopg2 import dateutil.parser as p from colorama import Fore, Back, Style # Insert the results to the database def insert_datatable(numberOfLinks, selected_ticker, filtered_links_with_dates, conn, cur): if filtered_links_with_dates: for link in filtered_links_with_dates: cur.execute("INSERT INTO articles (SYMBOL, LINK, ARTICLE_DATE) VALUES ('{a}', '{b}', '{c}')".format(a=selected_ticker, b=link[0], c=link[1])) conn.commit() print(f"{Fore.RED}{numberOfLinks}.{Style.RESET_ALL}\t{Fore.CYAN}{link[1]}{Style.RESET_ALL}\t{Fore.GREEN}{link[0]}{Style.RESET_ALL}") numberOfLinks += 1 else: print(f"{Fore.GREEN}No links have been found in the date range given{Style.RESET_ALL}") print('\n') # Filter out any irrelevant article based on dates def extract_date(x, dateToBegin, dateToEnd): if x[1] >= dateToBegin and x[1] <= dateToEnd: return x # Scrape the web pages and get the links def get_news(dateToBegin, dateToEnd, endpoint, port, dbName, usr, masterUserPassword, selected_tickers): # Get the year, month and day of the ending date in the query endingDate = dateToEnd.strftime('%Y-%m-%d').split("-") year = endingDate[0] month = endingDate[1] day = endingDate[2] headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} # Open database connection conn = psycopg2.connect(host=endpoint, port=port, database=dbName, user=usr, password=masterUserPassword) cur = conn.cursor() # Scrape article links and dates for selected_ticker in selected_tickers: print('\n') print(f"{Fore.MAGENTA}The following links have been collected and written to the database for{Style.RESET_ALL} {Fore.CYAN}{selected_ticker}: {Style.RESET_ALL}") print('\n') # Find the url of the page of the ending date base_url = "https://www.marketwatch.com/search?q="+selected_ticker+"&m=Ticker&rpp=100&mp=2005&bd=true&bd=false&bdv="+month+"%2F"+day+"%2F"+year+"&rs=true" page = 1 nav = "Next" numberOfLinks = 1 # Keep crawling for more pages while nav == "Next": if page > 1: new_page = "&o="+str(page) else: new_page = "" # Scrape the target page active_url = base_url + new_page r = requests.get(active_url, headers=headers) c = r.content soup = BeautifulSoup(c, "html.parser") # Find all results with the article links and dates try: resultlist = soup.findAll('div', attrs={'class' : 'resultlist'})[0] except: break # Extract the links search_results = resultlist.findAll('div', attrs={'class' : 'searchresult'}) links = [x.find('a')['href'] for x in search_results] # Extract the dates dates_and_times = resultlist.findAll('div', attrs={'class' : 'deemphasized'}) dates_extracted = [x.find('span').text.split("m")[-1].replace(".", "").lstrip() for x in dates_and_times] article_dates = [p.parse(x).date() for x in dates_extracted] # Merge links and dates links_with_dates = list(zip(links, article_dates)) # Filter out any links that the dates are outside the query range filtered_links_with_dates = list(filter(None, [extract_date(x, dateToBegin, dateToEnd) for x in links_with_dates])) # Insert the results to the database insert_datatable(numberOfLinks, selected_ticker, filtered_links_with_dates, conn, cur) # Check if the next page is relevant numberOfRelevantArticles = len(filtered_links_with_dates) if numberOfRelevantArticles == 100: try: nav_links = soup.findAll('div', attrs={'class' : 'nextprevlinks'}) for nav_link in nav_links: if "Next" in nav_link.text: nav = "Next" page += 100 numberOfLinks += 100 break except: nav = "" else: nav = ""
python
import random import torch.nn as nn import torch.nn.functional as F from torch import LongTensor from torch import from_numpy, ones, zeros from torch.utils import data from . import modified_linear PATH_TO_SAVE_WEIGHTS = 'saved_weights/' def get_layer_dims(dataname): res_ = [1,2,2,4] if dataname in ['dsads'] else [1,2,4] if dataname in ['opp'] else [0.5, 1, 2] \ if dataname in ['hapt', 'milan', 'pamap', 'aruba'] else [500, 500] if dataname in ['cifar100'] else [100, 100, 100] \ if dataname in ['mnist', 'permuted_mnist'] else [1,2,2] return res_ class Net(nn.Module): def __init__(self, input_dim, n_classes, dataname, lwf=False, cosine_liner=False): super(Net, self).__init__() self.dataname = dataname layer_nums = get_layer_dims(self.dataname) self.layer_sizes = layer_nums if self.dataname in ['cifar100', 'mnist'] else\ [int(input_dim / num) for num in layer_nums] self.fc0 = nn.Linear(input_dim, self.layer_sizes[0]) if len(self.layer_sizes) == 2: self.fc_penultimate = nn.Linear(self.layer_sizes[0], self.layer_sizes[1]) elif len(self.layer_sizes) == 3: self.fc1 = nn.Linear(self.layer_sizes[0], self.layer_sizes[1]) self.fc_penultimate = nn.Linear(self.layer_sizes[1], self.layer_sizes[2]) elif (len(self.layer_sizes) == 4): self.fc1 = nn.Linear(self.layer_sizes[0], self.layer_sizes[1]) self.fc2 = nn.Linear(self.layer_sizes[1], self.layer_sizes[2]) self.fc_penultimate = nn.Linear(self.layer_sizes[2], self.layer_sizes[3]) final_dim = self.fc_penultimate.out_features self.fc = modified_linear.CosineLinear(final_dim, n_classes) if cosine_liner \ else nn.Linear(final_dim, n_classes, bias=lwf==False) # no biases for LwF def forward(self, x): x = F.relu(self.fc0(x)) if len(self.layer_sizes) > 2: x = F.relu(self.fc1(x)) if len(self.layer_sizes) > 3: x = F.relu(self.fc2(x)) x = F.relu(self.fc_penultimate(x)) x = x.view(x.size(0), -1) x = self.fc(x) return x class Dataset(data.Dataset): def __init__(self, features, labels): self.labels = labels self.features = features def __len__(self): return len(self.features) def __getitem__(self, idx): X = from_numpy(self.features[idx]) y = self.labels[idx] y = LongTensor([y]) return X, y def get_sample(self, sample_size): return random.sample(self.features, sample_size) class BiasLayer(nn.Module): def __init__(self, device): super(BiasLayer, self).__init__() self.beta = nn.Parameter(ones(1, requires_grad=True, device=device)) self.gamma = nn.Parameter(zeros(1, requires_grad=True, device=device)) def forward(self, x): return self.beta * x + self.gamma def printParam(self, i): print(i, self.beta.item(), self.gamma.item()) def get_beta(self): return self.beta def get_gamma(self): return self.gamma def set_beta(self, new_beta): self.beta = new_beta def set_gamma(self, new_gamma): self.gamma = new_gamma def set_grad(self, bool_value): self.beta.requires_grad = bool_value self.gamma.requires_grad = bool_value
python
from core.advbase import * def module(): return Pia class Pia(Adv): conf = {} conf['slots.a'] = [ 'Dragon_and_Tamer', 'Flash_of_Genius', 'Astounding_Trick', 'The_Plaguebringer', 'Dueling_Dancers' ] conf['slots.d'] = 'Vayu' conf['acl'] = """ `dragon(c3-s-end), not energy()=5 and s1.check() `s3, not buff(s3) `s2 `s4 `s1, buff(s3) `fs, x=5 """ conf['coabs'] = ['Blade','Dragonyule_Xainfried','Bow'] conf['share'] = ['Tobias'] if __name__ == '__main__': from core.simulate import test_with_argv test_with_argv(None, *sys.argv)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Benjamin Vial # License: MIT """ The :mod:`pytheas.homogenization.twoscale2D` module implements tools for the two scale convergence homogenization of 2D metamaterials for TM polarization """ from .femmodel import TwoScale2D
python
import os.path as osp import numpy as np import numpy.linalg as LA import random import open3d as o3 import torch import common3Dfunc as c3D from asm_pcd import asm from ASM_Net import pointnet """ Path setter """ def set_paths( dataset_root, category ): paths = {} paths["trainset_path"] = osp.join(dataset_root,category,"train") """ paths["testset_path"] = osp.join(dataset_root,category,"test") paths["valset_path"] = osp.join(dataset_root,category,"val") paths["original_path"] = osp.join(dataset_root,category,"original") paths["sorted_path"] = osp.join(dataset_root,category,"sorted") paths["trainmodels_path"] = osp.join(dataset_root,category,"train_models") paths["testmodels_path"] = osp.join(dataset_root,category,"test_models") paths["valmodels_path"] = osp.join(dataset_root,category,"val_models") """ for p in paths.values(): if osp.exists(p) is not True: print("!!ERROR!! Path not found. Following path is not found.") print(p) return False return paths def load_asmds( root, synset_names ): """ load multiple Active Shape Model Deformations Args: root(str): Root directory synset_names(str): List of class names. The first element "BG" is ignored. Return: dict: A dictionary of ASMDeformation """ print("Root dir:", root ) asmds = {} for s in range(len(synset_names)-1): paths = set_paths( root, synset_names[s+1] ) trainset_path = paths["trainset_path"] info = np.load( osp.join(trainset_path,"info.npz")) asmd = asm.ASMdeformation( info ) asmds[synset_names[s+1]] = asmd return asmds def load_models( root, dirname, n_epoch, synset_names, ddim, n_points, device ): """ Load multiple network weights (for experiments) Args: root(str): Path to dataset root dirname(str): Directory name of weights n_epoch(int): choose the epoch of weights synset_names(str): The first element is "BG" should be ignored. use_dim(int): # of dimensions used to deformation n_points(int): # of points fed to the networks device(str): device("cuda:0" or "cpu") Return: A dictionary of weights """ print("Root dir:", root ) models = {} for s in range(len(synset_names)-1): path = osp.join(root, synset_names[s+1], "weights", dirname, "model_"+str(n_epoch)+".pth") print(" loading:", path ) total_dim = ddim+1 # deformation(ddim) + scale(1) model = pointnet.ASM_Net(k = total_dim, num_points = n_points) model.load_state_dict( torch.load(path) ) model.to(device) model.eval() models[synset_names[s+1]] = model return models def load_models_release( root, synset_names, ddim, n_points, device ): """ Load multiple network weights (for release) Args: root(str): Path to model root synset_names(str): The first element is "BG" should be ignored. use_dim(int): # of dimensions used to deformation n_points(int): # of points fed to the networks device(str): device("cuda:0" or "cpu") Return: A dictionary of weights """ print("Root dir:", root ) models = {} for s in range(len(synset_names)-1): path = osp.join(root, synset_names[s+1], "model.pth") print(" loading:", path ) total_dim = ddim+1 # deformation(ddim) + scale(1) model = pointnet.ASM_Net(k = total_dim, num_points = n_points) model.load_state_dict( torch.load(path) ) model.to(device) model.eval() models[synset_names[s+1]] = model return models def get_pcd_from_rgbd( im_c, im_d, intrinsic ): """ generate point cloud from cv2 image Args: im_c(ndarray 3ch): RGB image im_d(ndarray 1ch): Depth image intrinsic(PinholeCameraIntrinsic): intrinsic parameter Return: open3d.geometry.PointCloud: point cloud """ color_raw = o3.geometry.Image(im_c) depth_raw = o3.geometry.Image(im_d) rgbd_image = o3.geometry.RGBDImage.create_from_color_and_depth( color_raw, depth_raw, depth_scale=1000.0, depth_trunc=3.0, convert_rgb_to_intensity=False ) pcd = o3.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic ) return pcd def generate_pose(): """ generate pose from hemisphere-distributed viewpoints """ # y axis(yr): -pi - pi # x axis(xr): 0 - 0.5pi # view_direction(ar): -0.1pi - 0.1pi yr = (random.random()*2.0*np.pi)-np.pi xr = (random.random()*0.5*np.pi) ar = (random.random()*0.2*np.pi)-(0.1*np.pi) # x,y-axis y = c3D.RPY2Matrix4x4( 0, yr, 0 )[:3,:3] x = c3D.RPY2Matrix4x4( xr, 0, 0 )[:3,:3] rot = np.dot( x, y ) # rotation around view axis v = np.array([0.,0.,-1.]) #basis vector rot_v = np.dot(x,v) # prepare axis q = np.hstack([ar,rot_v]) # generate quaternion q = q/LA.norm(q) # unit quaternion pose = c3D.quaternion2rotation(q) rot = np.dot(pose,rot) return rot def get_mask( mask_info, choice="pred" ): """ Args: mask_info(dict): object mask of "GT" and "Mask RCNN used NOCS_CVPR2019) choice(str): choice of mask.gt(GT) or pred(Mask-RCNN). Return: tuple: mask """ key_id = choice+"_class_ids" key_mask = choice+"_masks" class_ids = mask_info[key_id] mask = mask_info[key_mask] return np.asarray(mask), np.asarray(class_ids) def get_model_scale( image_path, model_root ): model_path = None meta_path = image_path + '_meta.txt' sizes = [] class_ids = [] pcds = [] with open(meta_path, 'r') as f: lines = f.readlines() for i, line in enumerate(lines): words = line[:-1].split(' ') model_path = osp.join( model_root, words[-1]+".obj") pcd = o3.io.read_triangle_mesh(model_path) bb = pcd.get_axis_aligned_bounding_box() bbox = bb.get_max_bound() - bb.get_min_bound() size = np.linalg.norm(bbox) sizes.append(size) class_ids.append(int(words[1])) pcds.append(pcd) return np.asarray(sizes), np.asarray(class_ids), pcds
python
import gym import gym_maze import copy #env = gym.make("maze-random-10x10-plus-v0") #env = gym.make("maze-sample-100x100-v0") #env = gym.make("maze-random-30x30-plus-v0") env_name= "maze-sample-10x10-v0" env = gym.make(env_name) state_size = env.observation_space.shape[0] action_size = env.action_space.n max_steps = env._max_episode_steps threshold = env.spec.reward_threshold print(state_size, action_size, max_steps, threshold) #print(dir(env.action_space)) #env1 = copy.copy(env) #env2 = copy.copy(env) for i in range(10): print(f"*** RUNNING ENVIRONMENT {i+1}") copy_env = copy.copy(env) observation = copy_env.reset() st = 0 while True: st += 1 copy_env.render() action = copy_env.action_space.sample() #print(observation, action) observation, reward, done, info = copy_env.step(action) if done or (st == copy_env._max_episode_steps - 1): copy_env.close() break #done = False #observation = env.reset() #while True: # env.render() # action = env.action_space.sample() # print(observation, action) # observation, reward, done, info = env.step(action)
python
# program that asks user for number and prompts user to guess number untill the user guess the right number # helen o'shea # 20210211 import random number = random.randint(0,100) guess = int(input("Please guess the number between 0 and 100: ")) attempt = 1 while guess!=number: if guess<number: attempt +=1 guess = int(input("your guess is too low please guess again: ")) else: attempt += 1 guess = int(input("your guess is too high please guess again: ")) print("you guessed {} correctly in {} attempts".format(guess, attempt))
python
# -*- coding: utf-8 -*- """ Script to retrieve regobs data relevant for forecast analysis at NVE. """ __author__ = 'kmu' import datetime as dt import pandas as pd from varsomdata import getobservations as go def get_snow_obs(from_date, to_date): all_data_snow = go.get_all_observations(from_date, to_date, geohazard_tids=10) return all_data_snow def get_weak_layers_from_snow_profiles(from_date, to_date): snow_profiles = go.get_snow_profile('2018-12-13', '2018-12-26') def get_danger_signs(from_date, to_date, region_ids): ds_list = go.get_danger_sign(from_date, to_date, region_ids=None, location_id=None, group_id=None, observer_ids=None, observer_nick=None, observer_competence=None, output='List', geohazard_tids=10, lang_key=1) df = go._make_data_frame(ds_list) return df def get_incident(from_date, to_date, region_ids=None, location_id=None, group_id=None, observer_ids=None, observer_nick=None, observer_competence=None, output='List', geohazard_tids=None, lang_key=1): inc_list = go.get_incident(from_date, to_date, region_ids=None, location_id=None, group_id=None, observer_ids=None, observer_nick=None, observer_competence=None, output='List', geohazard_tids=10, lang_key=1) inc_list = [i.to_dict() for i in inc_list] df = pd.DataFrame(inc_list) return df def get_stability_tests_for_article(from_date, to_date, region_ids): st_list = go.get_column_test(from_date, to_date, region_ids) _st = [] for st in st_list: _st.append(st.OriginalData) return _st if __name__ == "__main__": region_ids = [3003, 3007, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3022, 3023, 3024, 3027, 3028, 3029, 3031, 3032, 3034, 3035] from_date = dt.date(2018, 12, 1) to_date = dt.date(2019, 1, 31) #all_data_snow = get_snow_obs(from_date, to_date) #ds = get_danger_signs(from_date, to_date, region_ids) #inc = get_incident(from_date, to_date, region_ids=region_ids) #inc.to_csv('../localstorage/aval_incidents_2013_2019.csv', index_label='index') st_list = get_stability_tests_for_article(from_date, to_date, region_ids) df = pd.DataFrame(st_list) df.to_csv('../localstorage/stability_tests.csv', index_label='index') k = 'm' #aw_dict = gf.get_avalanche_warnings(region_ids, from_date, to_date, lang_key=1, as_dict=True) #df = pandas.DataFrame(aw_dict) #df.to_csv('../localstorage/norwegian_avalanche_warnings_season_17_18.csv', index_label='index')
python
def f(*a<caret>rgs): """ """
python
#!/usr/bin/python # This creates the level1 fsf's and the script to run the feats on condor import os import glob studydir ='/mnt/40TB-raid6/Experiments/FCTM_S/FCTM_S_Data/Analyses' fsfdir="%s/group/lvl2_B_hab_feats_v1"%(studydir) subdirs=glob.glob("%s/1[0-9][0-9][0-9][0-9]"%(studydir)) #subdirs=glob.glob("%s/18301"%(studydir)) setnum = 'B' for dir in list(subdirs): splitdir = dir.split('/') splitdir_sub = splitdir[7] # You will need to edit this subnum=splitdir_sub[-5:] # You also may need to edit this subfeats=glob.glob("%s/model/B_hab_lvl1_v1/B_run[0-9].feat"%(dir)) if len(subfeats)==6: # Add your own second loop for 2 feat cases print(subnum) replacements = {'17271':subnum} with open("%s/lvl2_B.fsf"%(fsfdir)) as infile: with open("%s/B_hab-lvl2fe-TEMP%s.fsf"%(fsfdir, subnum), 'w') as outfile: for line in infile: for src, target in replacements.iteritems(): line = line.replace(src, target) outfile.write(line)
python
import tempfile import mdtraj import pandas as pd from kmbio import PDB from kmtools import sequence_tools, structure_tools from .distances_and_orientations import ( construct_residue_df, construct_residue_pairs_df, residue_df_to_row, residue_pairs_df_to_row, validate_residue_df, validate_residue_pairs_df, ) def get_interaction_dataset(structure, r_cutoff=5): """Copied from "datapkg/pdb-analysis/notebooks/extract_pdb_interactions.ipynb" """ interactions = structure_tools.get_interactions(structure, r_cutoff=r_cutoff, interchain=False) interactions_core, interactions_interface = structure_tools.process_interactions(interactions) interactions_core_aggbychain = structure_tools.process_interactions_core( structure, interactions_core ) # Not neccessary to drop duplicates in our cases # interactions_core, interactions_core_aggbychain = structure_tools.drop_duplicates_core( # interactions_core, interactions_core_aggbychain # ) return interactions_core, interactions_core_aggbychain def get_interaction_dataset_wdistances(structure_file, model_id, chain_id, r_cutoff=12): structure = PDB.load(structure_file) chain = structure[0][chain_id] num_residues = len(list(chain.residues)) dd = structure_tools.DomainDef(model_id, chain_id, 1, num_residues) domain = structure_tools.extract_domain(structure, [dd]) distances_core = structure_tools.get_distances( domain.to_dataframe(), r_cutoff, groupby="residue" ) assert (distances_core["residue_idx_1"] <= distances_core["residue_idx_2"]).all() return domain, distances_core GET_ADJACENCY_WITH_DISTANCES_ROW_ATTRIBUTES = [ "structure_id", "model_id", "chain_id", "sequence", "s_start", "s_end", "q_start", "q_end", "sseq", "a2b", "b2a", "residue_idx_1_corrected", "residue_idx_2_corrected", ] def get_adjacency_with_distances_and_orientations( row, max_cutoff=12, min_cutoff=None, structure_url_prefix="rcsb://" ): """""" missing_attributes = [ attr for attr in GET_ADJACENCY_WITH_DISTANCES_ROW_ATTRIBUTES if not hasattr(row, attr) ] assert not missing_attributes, missing_attributes # === Parse input structure === # Load structure url = f"{structure_url_prefix}{row.structure_id.lower()}.cif.gz" structure = PDB.load(url) # Template sequence chain_sequence = structure_tools.get_chain_sequence( structure[row.model_id][row.chain_id], if_unknown="replace" ) template_sequence = chain_sequence[int(row.s_start - 1) : int(row.s_end)] assert len(template_sequence) == len(row.a2b) # Target sequence target_sequence = row.sequence[int(row.q_start - 1) : int(row.q_end)] assert len(target_sequence) == len(row.b2a) # Extract domain dd = structure_tools.DomainDef(row.model_id, row.chain_id, int(row.s_start), int(row.s_end)) domain = structure_tools.extract_domain(structure, [dd]) assert template_sequence == structure_tools.get_chain_sequence(domain, if_unknown="replace") assert template_sequence == row.sseq.replace("-", "") # === Generate mdtraj trajectory === with tempfile.NamedTemporaryFile(suffix=".pdb") as pdb_file: PDB.save(domain, pdb_file.name) traj = mdtraj.load(pdb_file.name) assert template_sequence == traj.top.to_fasta()[0] # === Extract residues and residue-residue interactions === # Residue info residue_df = construct_residue_df(traj) validate_residue_df(residue_df) residue_df["residue_idx_corrected"] = pd.array( residue_df["residue_idx"].apply( lambda idx: sequence_tools.convert_residue_index_a2b(idx, row.b2a) ), dtype=pd.Int64Dtype(), ) # Residue pair info residue_pairs_df = construct_residue_pairs_df(traj) validate_residue_pairs_df(residue_pairs_df) for i in [1, 2]: residue_pairs_df[f"residue_idx_{i}_corrected"] = pd.array( residue_pairs_df[f"residue_idx_{i}"].apply( lambda idx: sequence_tools.convert_residue_index_a2b(idx, row.b2a) ), dtype=pd.Int64Dtype(), ) # === Sanity check === # Get the set of interactions interactions_1 = set( residue_pairs_df[ ( residue_pairs_df["residue_idx_1_corrected"] < residue_pairs_df["residue_idx_2_corrected"] ) & (residue_pairs_df["distance"] <= 5.0) ][["residue_idx_1_corrected", "residue_idx_2_corrected"]].apply(tuple, axis=1) ) # Get the reference set of interactions interactions_2 = { (int(r1), int(r2)) if r1 <= r2 else (int(r2), int(r1)) for r1, r2 in zip(row.residue_idx_1_corrected, row.residue_idx_2_corrected) if pd.notnull(r1) and pd.notnull(r2) } assert not interactions_1 ^ interactions_2, interactions_1 ^ interactions_2 return {**residue_df_to_row(residue_df), **residue_pairs_df_to_row(residue_pairs_df)} def get_adjacency_with_distances( row, max_cutoff=12, min_cutoff=None, structure_url_prefix="rcsb://" ): """ Notes: - This is the 2018 version, where we calculated distnaces only. """ missing_attributes = [ attr for attr in GET_ADJACENCY_WITH_DISTANCES_ROW_ATTRIBUTES if not hasattr(row, attr) ] assert not missing_attributes, missing_attributes # Load structure url = f"{structure_url_prefix}{row.structure_id.lower()}.cif.gz" structure = PDB.load(url) # Template sequence chain_sequence = structure_tools.get_chain_sequence( structure[row.model_id][row.chain_id], if_unknown="replace" ) template_sequence = chain_sequence[int(row.s_start - 1) : int(row.s_end)] assert len(template_sequence) == len(row.a2b) # Target sequence target_sequence = row.sequence[int(row.q_start - 1) : int(row.q_end)] assert len(target_sequence) == len(row.b2a) # Extract domain dd = structure_tools.DomainDef(row.model_id, row.chain_id, int(row.s_start), int(row.s_end)) domain = structure_tools.extract_domain(structure, [dd]) assert template_sequence == structure_tools.get_chain_sequence(domain, if_unknown="replace") assert template_sequence == row.sseq.replace("-", "") # Get interactions distances_core = structure_tools.get_distances( domain, max_cutoff, min_cutoff, groupby="residue" ) assert (distances_core["residue_idx_1"] <= distances_core["residue_idx_2"]).all() # Map interactions to target for i in [1, 2]: distances_core[f"residue_idx_{i}_corrected"] = distances_core[f"residue_idx_{i}"].apply( lambda idx: sequence_tools.convert_residue_index_a2b(idx, row.b2a) ) # Remove missing values distances_core = distances_core[ distances_core["residue_idx_1_corrected"].notnull() & distances_core["residue_idx_2_corrected"].notnull() ] # Convert to integers distances_core[["residue_idx_1_corrected", "residue_idx_2_corrected"]] = distances_core[ ["residue_idx_1_corrected", "residue_idx_2_corrected"] ].astype(int) # Sanity check assert ( distances_core["residue_idx_1_corrected"] < distances_core["residue_idx_2_corrected"] ).all() # Get the set of interactions interactions_1 = set( distances_core[(distances_core["distance"] <= 5)][ ["residue_idx_1_corrected", "residue_idx_2_corrected"] ].apply(tuple, axis=1) ) # Get the reference set of interactions interactions_2 = { (int(r1), int(r2)) if r1 <= r2 else (int(r2), int(r1)) for r1, r2 in zip(row.residue_idx_1_corrected, row.residue_idx_2_corrected) if pd.notnull(r1) and pd.notnull(r2) } assert not interactions_1 ^ interactions_2 return ( distances_core["residue_idx_1_corrected"].values, distances_core["residue_idx_2_corrected"].values, distances_core["distance"].values, )
python
# -*- coding: UTF-8 -*- # Copyright (c) 2010 - 2014, Pascal Volk # See COPYING for distribution information. """ vmm.password ~~~~~~~~~~~~~~~~~~~~~~~~~~~ vmm's password module to generate password hashes from passwords or random passwords. This module provides following functions: hashed_password = pwhash(password[, scheme][, user]) random_password = randompw() scheme, encoding = verify_scheme(scheme) schemes, encodings = list_schemes() scheme = extract_scheme(hashed_password) """ import hashlib import re from base64 import b64encode from binascii import b2a_hex from crypt import crypt from random import SystemRandom from subprocess import Popen, PIPE from gettext import gettext as _ from vmm import ENCODING from vmm.emailaddress import EmailAddress from vmm.common import get_unicode, version_str from vmm.constants import VMM_ERROR from vmm.errors import VMMError SALTCHARS = "./0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" PASSWDCHARS = "._-+#*23456789abcdefghikmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ" DEFAULT_B64 = (None, "B64", "BASE64") DEFAULT_HEX = (None, "HEX") CRYPT_ID_MD5 = 1 CRYPT_ID_BLF = "2a" CRYPT_ID_SHA256 = 5 CRYPT_ID_SHA512 = 6 CRYPT_SALT_LEN = 2 CRYPT_BLF_ROUNDS_MIN = 4 CRYPT_BLF_ROUNDS_MAX = 31 CRYPT_BLF_SALT_LEN = 22 CRYPT_MD5_SALT_LEN = 8 CRYPT_SHA2_ROUNDS_DEFAULT = 5000 CRYPT_SHA2_ROUNDS_MIN = 1000 CRYPT_SHA2_ROUNDS_MAX = 999999999 CRYPT_SHA2_SALT_LEN = 16 SALTED_ALGO_SALT_LEN = 4 cfg_dget = lambda option: None _sys_rand = SystemRandom() _choice = _sys_rand.choice def _get_salt(s_len): return "".join(_choice(SALTCHARS) for _ in range(s_len)) def _doveadmpw(password, scheme, encoding): """Communicates with Dovecot's doveadm and returns the hashed password: {scheme[.encoding]}hash """ if encoding: scheme = ".".join((scheme, encoding)) cmd_args = [ cfg_dget("bin.doveadm"), "pw", "-s", scheme, "-p", get_unicode(password), ] process = Popen(cmd_args, stdout=PIPE, stderr=PIPE) stdout, stderr = process.communicate() if process.returncode: raise VMMError(stderr.strip().decode(ENCODING), VMM_ERROR) hashed = stdout.strip().decode(ENCODING) if not hashed.startswith("{%s}" % scheme): raise VMMError( "Unexpected result from %s: %s" % (cfg_dget("bin.doveadm"), hashed), VMM_ERROR, ) return hashed def _md4_new(): """Returns an new MD4-hash object if supported by the hashlib - otherwise `None`. """ try: return hashlib.new("md4") except ValueError as err: if err.args[0].startswith("unsupported hash type"): return None else: raise def _format_digest(digest, scheme, encoding): """Formats the arguments to a string: {scheme[.encoding]}digest.""" if not encoding: return "{%s}%s" % (scheme, digest) return "{%s.%s}%s" % (scheme, encoding, digest) def _clear_hash(password, scheme, encoding): """Generates a (encoded) CLEARTEXT/PLAIN 'hash'.""" password = password.decode(ENCODING) if encoding: if encoding == "HEX": password = b2a_hex(password.encode()).decode() else: password = b64encode(password.encode()).decode() return _format_digest(password, scheme, encoding) return "{%s}%s" % (scheme, password) def _get_crypt_blowfish_salt(): """Generates a salt for Blowfish crypt.""" rounds = cfg_dget("misc.crypt_blowfish_rounds") if rounds < CRYPT_BLF_ROUNDS_MIN: rounds = CRYPT_BLF_ROUNDS_MIN elif rounds > CRYPT_BLF_ROUNDS_MAX: rounds = CRYPT_BLF_ROUNDS_MAX return "$%s$%02d$%s" % (CRYPT_ID_BLF, rounds, _get_salt(CRYPT_BLF_SALT_LEN)) def _get_crypt_sha2_salt(crypt_id): """Generates a salt for crypt using the SHA-256 or SHA-512 encryption method. *crypt_id* must be either `5` (SHA-256) or `6` (SHA-512). """ assert crypt_id in (CRYPT_ID_SHA256, CRYPT_ID_SHA512), ( "invalid crypt " "id: %r" % crypt_id ) if crypt_id is CRYPT_ID_SHA512: rounds = cfg_dget("misc.crypt_sha512_rounds") else: rounds = cfg_dget("misc.crypt_sha256_rounds") if rounds < CRYPT_SHA2_ROUNDS_MIN: rounds = CRYPT_SHA2_ROUNDS_MIN elif rounds > CRYPT_SHA2_ROUNDS_MAX: rounds = CRYPT_SHA2_ROUNDS_MAX if rounds == CRYPT_SHA2_ROUNDS_DEFAULT: return "$%d$%s" % (crypt_id, _get_salt(CRYPT_SHA2_SALT_LEN)) return "$%d$rounds=%d$%s" % (crypt_id, rounds, _get_salt(CRYPT_SHA2_SALT_LEN)) def _crypt_hash(password, scheme, encoding): """Generates (encoded) CRYPT/MD5/{BLF,MD5,SHA{256,512}}-CRYPT hashes.""" if scheme == "CRYPT": salt = _get_salt(CRYPT_SALT_LEN) elif scheme == "BLF-CRYPT": salt = _get_crypt_blowfish_salt() elif scheme in ("MD5-CRYPT", "MD5"): salt = "$%d$%s" % (CRYPT_ID_MD5, _get_salt(CRYPT_MD5_SALT_LEN)) elif scheme == "SHA256-CRYPT": salt = _get_crypt_sha2_salt(CRYPT_ID_SHA256) else: salt = _get_crypt_sha2_salt(CRYPT_ID_SHA512) encrypted = crypt(password.decode(ENCODING), salt) if encoding: if encoding == "HEX": encrypted = b2a_hex(encrypted.encode()).decode() else: encrypted = b64encode(encrypted.encode()).decode() return _format_digest(encrypted, scheme, encoding) def _md4_hash(password, scheme, encoding): """Generates encoded PLAIN-MD4 hashes.""" md4 = _md4_new() if md4: md4.update(password) if encoding in DEFAULT_HEX: digest = md4.hexdigest() else: digest = b64encode(md4.digest()).decode() return _format_digest(digest, scheme, encoding) return _doveadmpw(password, scheme, encoding) def _md5_hash(password, scheme, encoding, user=None): """Generates DIGEST-MD5 aka PLAIN-MD5 and LDAP-MD5 hashes.""" md5 = hashlib.md5() if scheme == "DIGEST-MD5": md5.update(user.localpart.encode() + b":" + user.domainname.encode() + b":") md5.update(password) if (scheme in ("PLAIN-MD5", "DIGEST-MD5") and encoding in DEFAULT_HEX) or ( scheme == "LDAP-MD5" and encoding == "HEX" ): digest = md5.hexdigest() else: digest = b64encode(md5.digest()).decode() return _format_digest(digest, scheme, encoding) def _ntlm_hash(password, scheme, encoding): """Generates NTLM hashes.""" md4 = _md4_new() if md4: password = b"".join(bytes(x) for x in zip(password, bytes(len(password)))) md4.update(password) if encoding in DEFAULT_HEX: digest = md4.hexdigest() else: digest = b64encode(md4.digest()).decode() return _format_digest(digest, scheme, encoding) return _doveadmpw(password, scheme, encoding) def _create_hashlib_hash(algorithm, with_salt=False): def hash_password(password, scheme, encoding): # we default to an empty byte-string to keep the internal logic # clean as it behaves like we would not have used a salt salt = _get_salt(SALTED_ALGO_SALT_LEN).encode() if with_salt else b"" _hash = algorithm(password + salt) if encoding in DEFAULT_B64: digest = b64encode(_hash.digest() + salt).decode() else: digest = _hash.hexdigest() + b2a_hex(salt).decode() return _format_digest(digest, scheme, encoding) return hash_password _sha1_hash = _create_hashlib_hash(hashlib.sha1) _sha256_hash = _create_hashlib_hash(hashlib.sha256) _sha512_hash = _create_hashlib_hash(hashlib.sha512) _smd5_hash = _create_hashlib_hash(hashlib.md5, with_salt=True) _ssha1_hash = _create_hashlib_hash(hashlib.sha1, with_salt=True) _ssha256_hash = _create_hashlib_hash(hashlib.sha256, with_salt=True) _ssha512_hash = _create_hashlib_hash(hashlib.sha512, with_salt=True) _scheme_info = { "CLEAR": (_clear_hash, 0x2010DF00), "CLEARTEXT": (_clear_hash, 0x10000F00), "CRAM-MD5": (_doveadmpw, 0x10000F00), "CRYPT": (_crypt_hash, 0x10000F00), "DIGEST-MD5": (_md5_hash, 0x10000F00), "HMAC-MD5": (_doveadmpw, 0x10000F00), "LANMAN": (_doveadmpw, 0x10000F00), "LDAP-MD5": (_md5_hash, 0x10000F00), "MD5": (_crypt_hash, 0x10000F00), "MD5-CRYPT": (_crypt_hash, 0x10000F00), "NTLM": (_ntlm_hash, 0x10000F00), "OTP": (_doveadmpw, 0x10100A01), "PLAIN": (_clear_hash, 0x10000F00), "PLAIN-MD4": (_md4_hash, 0x10000F00), "PLAIN-MD5": (_md5_hash, 0x10000F00), "RPA": (_doveadmpw, 0x10000F00), "SCRAM-SHA-1": (_doveadmpw, 0x20200A01), "SHA": (_sha1_hash, 0x10000F00), "SHA1": (_sha1_hash, 0x10000F00), "SHA256": (_sha256_hash, 0x10100A01), "SHA512": (_sha512_hash, 0x20000B03), "SKEY": (_doveadmpw, 0x10100A01), "SMD5": (_smd5_hash, 0x10000F00), "SSHA": (_ssha1_hash, 0x10000F00), "SSHA256": (_ssha256_hash, 0x10200A04), "SSHA512": (_ssha512_hash, 0x20000B03), } def extract_scheme(password_hash): """Returns the extracted password scheme from *password_hash*. If the scheme couldn't be extracted, **None** will be returned. """ scheme = re.match(r"^\{([^\}]{3,37})\}", password_hash) if scheme: return scheme.groups()[0] return scheme def list_schemes(): """Returns the tuple (schemes, encodings). `schemes` is an iterator for all supported password schemes (depends on the used Dovecot version and features of the libc). `encodings` is a tuple with all usable encoding suffixes. """ dcv = cfg_dget("misc.dovecot_version") schemes = (k for (k, v) in _scheme_info.items() if v[1] <= dcv) encodings = (".B64", ".BASE64", ".HEX") return schemes, encodings def verify_scheme(scheme): """Checks if the password scheme *scheme* is known and supported by the configured `misc.dovecot_version`. The *scheme* maybe a password scheme's name (e.g.: 'PLAIN') or a scheme name with a encoding suffix (e.g. 'PLAIN.BASE64'). If the scheme is known and supported by the used Dovecot version, a tuple ``(scheme, encoding)`` will be returned. The `encoding` in the tuple may be `None`. Raises a `VMMError` if the password scheme: * is unknown * depends on a newer Dovecot version * has a unknown encoding suffix """ assert isinstance(scheme, str), "Not a str: {!r}".format(scheme) scheme_encoding = scheme.upper().split(".") scheme = scheme_encoding[0] if scheme not in _scheme_info: raise VMMError(_("Unsupported password scheme: '%s'") % scheme, VMM_ERROR) if cfg_dget("misc.dovecot_version") < _scheme_info[scheme][1]: raise VMMError( _("The password scheme '%(scheme)s' requires Dovecot " ">= v%(version)s.") % {"scheme": scheme, "version": version_str(_scheme_info[scheme][1])}, VMM_ERROR, ) if len(scheme_encoding) > 1: if scheme_encoding[1] not in ("B64", "BASE64", "HEX"): raise VMMError( _("Unsupported password encoding: '%s'") % scheme_encoding[1], VMM_ERROR ) encoding = scheme_encoding[1] else: encoding = None return scheme, encoding def pwhash(password, scheme=None, user=None): """Generates a password hash from the plain text *password* string. If no *scheme* is given the password scheme from the configuration will be used for the hash generation. When 'DIGEST-MD5' is used as scheme, also an EmailAddress instance must be given as *user* argument. """ if not isinstance(password, str): raise TypeError("Password is not a string: %r" % password) password = password.encode(ENCODING).strip() if not password: raise ValueError("Could not accept empty password.") if scheme is None: scheme = cfg_dget("misc.password_scheme") scheme, encoding = verify_scheme(scheme) if scheme == "DIGEST-MD5": assert isinstance(user, EmailAddress) return _md5_hash(password, scheme, encoding, user) return _scheme_info[scheme][0](password, scheme, encoding) def randompw(pw_len): """Generates a plain text random password. The length of the password can be configured in the ``vmm.cfg`` (account.password_length). """ if pw_len < 8: pw_len = 8 return "".join(_sys_rand.sample(PASSWDCHARS, pw_len)) # Check for Blowfish/SHA-256/SHA-512 support in crypt.crypt() if "$2a$04$0123456789abcdefABCDE.N.drYX5yIAL1LkTaaZotW3yI0hQhZru" == crypt( "08/15!test~4711", "$2a$04$0123456789abcdefABCDEF$" ): _scheme_info["BLF-CRYPT"] = (_crypt_hash, 0x20000B06) if ( "$5$rounds=1000$0123456789abcdef$K/DksR0DT01hGc8g/kt9McEgrbFMKi9qrb1jehe7hn4" == crypt("08/15!test~4711", "$5$rounds=1000$0123456789abcdef$") ): _scheme_info["SHA256-CRYPT"] = (_crypt_hash, 0x20000B06) if ( "$6$rounds=1000$0123456789abcdef$ZIAd5WqfyLkpvsVCVUU1GrvqaZTqvhJoouxdSqJO71l9Ld3" "tVrfOatEjarhghvEYADkq//LpDnTeO90tcbtHR1" == crypt("08/15!test~4711", "$6$rounds=1000$0123456789abcdef$") ): _scheme_info["SHA512-CRYPT"] = (_crypt_hash, 0x20000B06) del cfg_dget
python
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from django.contrib.auth.forms import UserChangeForm, UserCreationForm from django.utils.translation import gettext as _ from .models import * class MyUserCreationForm(UserCreationForm): def __init__(self, *args, **kwargs): super(MyUserCreationForm, self).__init__(*args, **kwargs) self.fields['email'].required = True class Meta(UserCreationForm.Meta): model = student fields = ('username', 'email', 'first_name', 'last_name', 'state', 'city', 'educational_role', 'institute', 'language', 'password1', 'password2') class MyUserChangeForm(UserChangeForm): class Meta(UserChangeForm.Meta): model = student class MyUserAdmin(UserAdmin): form = MyUserChangeForm add_form = MyUserCreationForm fieldsets = UserAdmin.fieldsets + ( (None, {'fields': ('username', 'email', )}), (_('Personal info'), {'fields': ('first_name', 'last_name', 'state', 'city', 'educational_role', 'institute', 'language')}), (_('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser', 'groups', 'user_permissions')}), (_('Important dates'), {'fields': ('last_login', 'date_joined')}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('username', 'email', 'first_name', 'last_name', 'state', 'city', 'educational_role', 'institute', 'language', 'password1', 'password2')} ), ) admin.site.register(board) admin.site.register(exam) try: admin.site.unregister(User) except: pass admin.site.register(student, MyUserAdmin) admin.site.register(educational_institute) admin.site.register(search_result)
python
from memoria import * class Filas(): def __init__(self, dic_process_id): self.filas = [[],[],[],[]] self.dic_process_id = dic_process_id self.memoria = Memoria() self.ultimo_executado = None self.qtd_processos = len(dic_process_id) # qtd de processos. self.aging = 5 # tanto de tempo para aumentar a prioridade. self.qtd_proc_fin = 0 return def insere_processo(self, processo) : ## insere um processo de acordo com sua prioridade na lista """verifico aqui se há espaço para ser executado ou na hora de executar? """ prioridade = processo.prioridade if (prioridade == 0 ): self.filas[0].append(processo.id) elif (prioridade == 1): self.filas[1].append(processo.id) elif (prioridade == 2): self.filas[2].append(processo.id) elif (prioridade == 3): self.filas[3].append(processo.id) return def executa_processo(self): """ verifica qual é o processoa ser executado. e executa o mesmo. se acabar o tempo, apaga ele da fila. """ def _executa( id , fila_atual): """retorna true se um processo acabou. Falso se não. """ self.ultimo_executado = id if ( self.dic_process_id[id].tempo_processador > 0): self.dic_process_id[id].tempo_processador -= 1 if (self.dic_process_id[id].tempo_processador == 0 ) : self.qtd_proc_fin += 1 self.remove_processo(fila_atual) # retorna se acabou return True #retorna q não acabou return False self.ultimo_executado = None for i in range(0,4): if (len(self.filas[i]) > 0): acabou =_executa(self.filas[i][0] , i) return acabou return False def remove_processo(self, fila_atual): ## remove um processo de acordo com sua fila self.filas[fila_atual] = self.filas[fila_atual][1:] return def aumenta_prioridade(self): #print(self.filas) for filas in self.filas: for processo in filas: pid = processo #print('pid',pid,'\t','ultimo',self.ultimo_executado) if (pid != self.ultimo_executado): self.dic_process_id[pid].tempo_ultima_execucao += 1 # se tiver passado de 10 sem executar aumenta em 1 a prioridade. if (self.dic_process_id[pid].tempo_ultima_execucao >= self.aging): if (self.dic_process_id[pid].prioridade > 1): prio = self.dic_process_id[pid].prioridade #remove o processo da fila antiga self.filas[prio] = [x for x in self.filas[prio] if x != pid] self.dic_process_id[pid].prioridade -= 1 self.insere_processo(self.dic_process_id[pid]) self.dic_process_id[pid].tempo_ultima_execucao = 0 else: self.dic_process_id[pid].tempo_ultima_execucao = 0 return def log_filas(self): log = set() for filas in self.filas: for pid in filas: log.add(pid) return log if len(log) > 0 else set([None]) def __repr__(self): return str(self.filas)
python
def assert_keys_exist(obj, keys): assert set(keys) <= set(obj.keys())
python
#!/usr/bin/env python3 import requests from datetime import datetime, timedelta import time import numpy as np import pandas as pd import psycopg2 from psycopg2.extras import execute_values import config as cfg def connect_to_rds(): conn = psycopg2.connect( host=cfg.HOST, database=cfg.DATABASE, user=cfg.UID, password=cfg.PWD) return conn def get_epoch_and_pst_24hr(): utc = datetime.utcnow() pst = timedelta(hours=7) current_hour = (utc - pst).hour epoch = round(utc.timestamp()) return current_hour, epoch def remove_agency_tag(id_string): underscore_loc = id_string.find('_') final = int(id_string[underscore_loc+1:]) return(final) def query_active_trips(key, endpoint): call_text = endpoint + key response = requests.get(call_text) response = response.json() return response def clean_active_trips(response): active_trip_statuses = response['data']['list'] to_remove = [] # Find indices of trips that are inactive or have no data for i, bus in enumerate(response['data']['list']): if bus['tripId'] == '' or bus['status'] == 'CANCELED' or bus['location'] == None: to_remove.append(i) # Remove inactive trips starting with the last index for index in sorted(to_remove, reverse=True): del active_trip_statuses[index] return active_trip_statuses def upload_to_rds(to_upload, conn, collected_time): to_upload_list = [] for bus_status in to_upload: to_upload_list.append( (str(remove_agency_tag(bus_status['tripId'])), str(remove_agency_tag(bus_status['vehicleId'])), str(round(bus_status['location']['lat'], 10)), str(round(bus_status['location']['lon'], 10)), str(round(bus_status['tripStatus']['orientation'])), str(bus_status['tripStatus']['scheduleDeviation']), str(round(bus_status['tripStatus']['totalDistanceAlongTrip'], 10)), str(round(bus_status['tripStatus']['distanceAlongTrip'], 10)), str(remove_agency_tag(bus_status['tripStatus']['closestStop'])), str(remove_agency_tag(bus_status['tripStatus']['nextStop'])), str(bus_status['tripStatus']['lastLocationUpdateTime'])[:-3], str(collected_time))) with conn.cursor() as curs: try: args_str = ','.join(curs.mogrify('(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)', x).decode('utf-8') for x in to_upload_list) query_str = 'INSERT INTO active_trips_study (tripid, vehicleid, lat, lon, orientation, scheduledeviation, totaltripdistance, tripdistance, closeststop, nextstop, locationtime, collectedtime) VALUES ' + args_str curs.execute(query_str) conn.commit() except: # Catch all errors and continue to keep server up and running conn.rollback() return query_str def main_function(): endpoint = 'http://api.pugetsound.onebusaway.org/api/where/vehicles-for-agency/1.json?key=' conn = connect_to_rds() current_hour, current_epoch = get_epoch_and_pst_24hr() while current_hour < 19: response = query_active_trips(cfg.API_KEY, endpoint) current_hour, current_epoch = get_epoch_and_pst_24hr() cleaned_response = clean_active_trips(response) args_str = upload_to_rds(cleaned_response, conn, current_epoch) time.sleep(8) conn.close() if __name__ == "__main__": main_function()
python
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from itertools import product, count from matplotlib.colors import LinearSegmentedColormap # it produce more vectors pointing diagonally than vectors pointing along # an axis # # generate uniform unit vectors # def generate_unit_vectors(n): # 'Generates matrix NxN of unit length vectors' # v = np.random.uniform(-1, 1, (n, n, 2)) # l = np.sqrt(v[:, :, 0] ** 2 + v[:, :, 1] ** 2).reshape(n, n, 1) # v /= l # return v def generate_unit_vectors(n,m): 'Generates matrix NxN of unit length vectors' phi = np.random.uniform(0, 2*np.pi, (n, m)) v = np.stack((np.cos(phi), np.sin(phi)), axis=-1) return v # quintic interpolation def qz(t): return t * t * t * (t * (t * 6 - 15) + 10) # cubic interpolation def cz(t): return -2 * t * t * t + 3 * t * t def generate_2D_perlin_noise(size = (200,200), ns=1): ''' generate_2D_perlin_noise(size, ns) Generate 2D array of size x size filled with Perlin noise. Parameters ---------- size : int or (int, int) Size of 2D array size x size. ns : int Distance between nodes. Returns ------- m : ndarray The 2D array filled with Perlin noise. ''' if type(size) == int: size = (size, size) assert size[0]%ns==0 and size[1]%ns==0, 'divisible error. re-set node distance(ns)' nc = [int(size[0] / ns), int(size[1] / ns)] # number of nodes grid_size_h = int(size[0] / ns + 1) # number of points in grid grid_size_w = int(size[1] / ns + 1) # number of points in grid # generate grid of vectors v = generate_unit_vectors(grid_size_h, grid_size_w) # generate some constans in advance ad, ar = np.arange(ns), np.arange(-ns, 0, 1) bd, br = np.arange(ns), np.arange(-ns, 0, 1) # vectors from each of the 4 nearest nodes to a point in the NSxNS patch vd = np.zeros((ns, ns, 4, 1, 2)) # for (l1, l2), c in zip(product((ad, ar), repeat=2), count()): vd[:, :, 0, 0] = np.stack(np.meshgrid(bd, ad, indexing='xy'), axis=2) vd[:, :, 1, 0] = np.stack(np.meshgrid(br, ad, indexing='xy'), axis=2) vd[:, :, 2, 0] = np.stack(np.meshgrid(bd, ar, indexing='xy'), axis=2) vd[:, :, 3, 0] = np.stack(np.meshgrid(br, ar, indexing='xy'), axis=2) # interpolation coefficients d = qz(np.stack((np.zeros((ns, ns, 2)), np.stack(np.meshgrid(ad, bd, indexing='ij'), axis=2)), axis=2)/ns) dd = np.stack(np.meshgrid(ad, bd, indexing='ij'), axis=2) dd = dd.astype('float') d[:, :, 0] = 1 - d[:, :, 1] # make copy and reshape for convenience d0 = d[..., 0].copy().reshape(ns, ns, 1, 2) d1 = d[..., 1].copy().reshape(ns, ns, 2, 1) # print(d0,d1) # make an empy matrix m = np.zeros((size[0], size[1])) # reshape for convenience t = m.reshape(nc[0], ns, nc[1], ns) # calculate values for a NSxNS patch at a time for i in np.arange(nc[0]): for j in np.arange(nc[1]): # loop through the grid # get four node vectors av = v[i:i+2, j:j+2].reshape(4, 2, 1) # 'vector from node to point' dot 'node vector' at = np.matmul(vd, av).reshape(ns, ns, 2, 2) # horizontal and vertical interpolation t[i, :, j, :] = np.matmul(np.matmul(d0, at), d1).reshape(ns, ns) return m if __name__ == "__main__": img = generate_2D_perlin_noise(200, 20) plt.figure() plt.imshow(img, cmap=cm.gray) img = generate_2D_perlin_noise((200,300), 10) print(type(img), img.shape, img.min(), img.max()) plt.figure() plt.imshow(img, cmap=cm.gray) plt.axis('off') img = generate_2D_perlin_noise((200,50), 25) print(type(img), img.shape, img.min(), img.max()) plt.figure() plt.imshow(img, cmap=cm.gray) plt.axis('off') plt.figure() plt.imshow(img>3, cmap=cm.gray) plt.figure() plt.imshow(img>1, cmap=cm.gray) # generate "sky" #img0 = generate_2D_perlin_noise(400, 80) #img1 = generate_2D_perlin_noise(400, 40) #img2 = generate_2D_perlin_noise(400, 20) #img3 = generate_2D_perlin_noise(400, 10) # #img = (img0 + img1 + img2 + img3) / 4 #cmap = LinearSegmentedColormap.from_list('sky', # [(0, '#0572D1'), # (0.75, '#E5E8EF'), # (1, '#FCFCFC')]) #img = cm.ScalarMappable(cmap=cmap).to_rgba(img) #plt.imshow(img)
python
from aiogram import Dispatcher from bulletin_board_bot.misc.user_data import UserDataStorage from bulletin_board_bot.dependencies import DIContainer from bulletin_board_bot.middlewares.di import DIContainerMiddleware from bulletin_board_bot.middlewares.userdata import UserDataMiddleware def setup_middlewares(dp: Dispatcher, user_data_storage: UserDataStorage, container: DIContainer): dp.setup_middleware(UserDataMiddleware(user_data_storage)) dp.setup_middleware(DIContainerMiddleware(container))
python
from django.contrib import admin from core.models import Profile, BraFitting, Suggestion, Resource # Register your models here. @admin.register(BraFitting) class BraFittingAdmin(admin.ModelAdmin): pass @admin.register(Profile) class ProfileAdmin(admin.ModelAdmin): pass @admin.register(Suggestion) class SuggestionAdmin(admin.ModelAdmin): pass @admin.register(Resource) class ResourceAdmin(admin.ModelAdmin): pass
python
"""Tests for _get_tablename_schema_names association schemas function.""" import pytest from open_alchemy.schemas import association class TestGetTablenameSchemaNames: """Tests for _get_tablename_schema_names.""" # pylint: disable=protected-access TESTS = [ pytest.param({}, set(), {}, id="empty"), pytest.param({"Schema1": {}}, set(), {}, id="single not constructable"), pytest.param( {"Schema1": {"x-tablename": "table 1"}}, set("table 2"), {}, id="single miss", ), pytest.param( {"Schema1": {"x-tablename": "table 1"}}, {"table 1"}, {"table 1": ("Schema1", ["Schema1"])}, id="single hit", ), pytest.param( { "Schema1": { "allOf": [ {"$ref": "#/components/schemas/RefSchema"}, {"x-inherits": True}, ] }, "RefSchema": {"x-tablename": "table 1"}, }, {"table 1"}, {"table 1": ("RefSchema", ["Schema1", "RefSchema"])}, id="single hit $ref first", ), pytest.param( { "RefSchema": {"x-tablename": "table 1"}, "Schema1": { "allOf": [ {"$ref": "#/components/schemas/RefSchema"}, {"x-inherits": True}, ] }, }, {"table 1"}, {"table 1": ("RefSchema", ["RefSchema", "Schema1"])}, id="single hit $ref second", ), pytest.param( {"Schema1": {"allOf": [{"x-tablename": "table 1"}]}}, {"table 1"}, {"table 1": ("Schema1", ["Schema1"])}, id="single hit allOf", ), pytest.param( { "Schema1": { "allOf": [ {"x-tablename": "table 1"}, {"$ref": "#/components/schemas/RefSchema"}, ] }, "RefSchema": {"x-tablename": "ref_table"}, }, {"table 1"}, {"table 1": ("Schema1", ["Schema1"])}, id="single hit allOf local $ref local first", ), pytest.param( { "Schema1": { "allOf": [ {"$ref": "#/components/schemas/RefSchema"}, {"x-tablename": "table 1"}, ] }, "RefSchema": {"x-tablename": "ref_table"}, }, {"table 1"}, {"table 1": ("Schema1", ["Schema1"])}, id="single hit allOf local $ref $ref first", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, }, set(), {}, id="multiple miss", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, }, {"table 1"}, {"table 1": ("Schema1", ["Schema1"])}, id="multiple first hit", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, }, {"table 2"}, {"table 2": ("Schema2", ["Schema2"])}, id="multiple second hit", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, }, {"table 1", "table 2"}, {"table 1": ("Schema1", ["Schema1"]), "table 2": ("Schema2", ["Schema2"])}, id="multiple all hit", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 1"}, }, {"table 1"}, {"table 1": ("Schema2", ["Schema1", "Schema2"])}, id="multiple same tablename", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, "Schema3": {"x-tablename": "table 3"}, }, {"table 1", "table 2", "table 3"}, { "table 1": ("Schema1", ["Schema1"]), "table 2": ("Schema2", ["Schema2"]), "table 3": ("Schema3", ["Schema3"]), }, id="many different tablename", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 1"}, "Schema3": {"x-tablename": "table 3"}, }, {"table 1", "table 2", "table 3"}, { "table 1": ("Schema2", ["Schema1", "Schema2"]), "table 3": ("Schema3", ["Schema3"]), }, id="many different first middle same tablename", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, "Schema3": {"x-tablename": "table 1"}, }, {"table 1", "table 2", "table 3"}, { "table 1": ("Schema3", ["Schema1", "Schema3"]), "table 2": ("Schema2", ["Schema2"]), }, id="many first last same tablename", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 2"}, "Schema3": {"x-tablename": "table 2"}, }, {"table 1", "table 2", "table 3"}, { "table 1": ("Schema1", ["Schema1"]), "table 2": ("Schema3", ["Schema2", "Schema3"]), }, id="many middle last same tablename", ), pytest.param( { "Schema1": {"x-tablename": "table 1"}, "Schema2": {"x-tablename": "table 1"}, "Schema3": {"x-tablename": "table 1"}, }, {"table 1", "table 2", "table 3"}, {"table 1": ("Schema3", ["Schema1", "Schema2", "Schema3"])}, id="many all same tablename", ), ] @staticmethod @pytest.mark.parametrize("schemas, tablenames, expected_mapping", TESTS) @pytest.mark.schemas @pytest.mark.association def test_(schemas, tablenames, expected_mapping): """ GIVEN schemas, tablenames and expected mappng WHEN _get_tablename_schema_names is called with the schemas and tablenames THEN the expected mapping is returned. """ returned_mapping = association._get_tablename_schema_names( schemas=schemas, tablenames=tablenames ) assert returned_mapping == expected_mapping
python
from django.template import Library from ..classes import Menu, SourceColumn register = Library() def _navigation_resolve_menu(context, name, source=None, sort_results=None): result = [] menu = Menu.get(name) link_groups = menu.resolve( context=context, source=source, sort_results=sort_results ) if link_groups: result.append( { 'link_groups': link_groups, 'menu': menu } ) return result @register.simple_tag(takes_context=True) def navigation_get_sort_field_querystring(context, column): return column.get_sort_field_querystring(context=context) @register.simple_tag def navigation_get_source_columns( source, exclude_identifier=False, names=None, only_identifier=False ): return SourceColumn.get_for_source( source=source, exclude_identifier=exclude_identifier, names=names, only_identifier=only_identifier ) @register.simple_tag(takes_context=True) def navigation_resolve_menu(context, name, source=None, sort_results=None): return _navigation_resolve_menu( context=context, name=name, source=source, sort_results=sort_results ) @register.simple_tag(takes_context=True) def navigation_resolve_menus(context, names, source=None, sort_results=None): result = [] for name in names.split(','): result.extend( _navigation_resolve_menu( context=context, name=name, source=source, sort_results=sort_results ) ) return result @register.simple_tag(takes_context=True) def navigation_source_column_get_sort_icon(context, column): if column: result = column.get_sort_icon(context=context) return result else: return '' @register.simple_tag(takes_context=True) def navigation_source_column_resolve(context, column): if column: result = column.resolve(context=context) return result else: return ''
python
from esipy.client import EsiClient from waitlist.utility.swagger.eve import get_esi_client from waitlist.utility.swagger import get_api from waitlist.utility.swagger.eve.universe.responses import ResolveIdsResponse,\ CategoriesResponse, CategoryResponse, GroupResponse, GroupsResponse,\ TypesResponse, TypeResponse from typing import List from esipy.exceptions import APIException class UniverseEndpoint(object): def __init__(self, client: EsiClient = None) -> None: if client is None: self.__client: EsiClient = get_esi_client( token=None, noauth=True, retry_request=True) self.__api: App = get_api() else: self.__client: EsiClient = client self.__api: App = get_api() def resolve_ids(self, ids_list: [int]) -> ResolveIdsResponse: """ :param list maximum of 1000 ids allowed at once """ resp = self.__client.request( self.__api.op['post_universe_names'](ids=ids_list)) return ResolveIdsResponse(resp) def get_categories(self) -> CategoriesResponse: """ Get response containing a list of all category ids """ resp = self.__client.request( self.__api.op['get_universe_categories']()) return CategoriesResponse(resp) def get_category(self, category_id: int) -> CategoryResponse: """ Get response containing information about the category """ resp = self.__client.request( self.__api.op['get_universe_categories_category_id']( category_id=category_id)) return CategoryResponse(resp) def get_category_multi(self, category_ids: List[int]) -> List[CategoryResponse]: ops = [] for category_id in category_ids: ops.append(self.__api.op['get_universe_categories_category_id']( category_id=category_id)) response_infos = self.__client.multi_request(ops) return [CategoryResponse(info[1]) for info in response_infos] def get_groups(self) -> List[GroupsResponse]: """ Get response containing a list of all group ids """ resp = self.__client.head( self.__api.op['get_universe_groups'](page=1)) if (resp.status != 200): raise APIException("", resp.status) pages = 1 if 'X-Pages' in resp.header: pages = int(resp.header['X-Pages'][0]) ops = [] for page in range(1, pages+1): ops.append(self.__api.op['get_universe_groups'](page=page)) responses = self.__client.multi_request(ops) response_list: List[GroupsResponse] = [] for data_tuple in responses: # (request, response) response_list.append(GroupsResponse(data_tuple[1])) return response_list def get_group(self, group_id: int) -> GroupResponse: """ Get response containing information about the group """ resp = self.__client.request( self.__api.op['get_universe_groups_group_id']( group_id=group_id)) return GroupResponse(resp) def get_group_multi(self, group_ids: List[int]) -> List[GroupResponse]: ops = [] for group_id in group_ids: ops.append(self.__api.op['get_universe_groups_group_id']( group_id=group_id)) response_infos = self.__client.multi_request(ops) return [GroupResponse(info[1]) for info in response_infos] def get_types(self) -> List[TypesResponse]: """ Get response containing a list of all type ids """ resp = self.__client.head( self.__api.op['get_universe_types'](page=1)) if (resp.status != 200): raise APIException("", resp.status) pages = 1 if 'X-Pages' in resp.header: pages = int(resp.header['X-Pages'][0]) ops = [] for page in range(1, pages+1): ops.append(self.__api.op['get_universe_types'](page=page)) responses = self.__client.multi_request(ops) response_list: List[TypesResponse] = [] for data_tuple in responses: # (request, response) response_list.append(TypesResponse(data_tuple[1])) return response_list def get_type(self, type_id: int) -> TypeResponse: """ Get response containing information about the type """ resp = self.__client.request( self.__api.op['get_universe_types_type_id']( type_id=type_id)) return TypeResponse(resp) def get_type_multi(self, type_ids: List[int]) -> List[TypeResponse]: ops = [] for type_id in type_ids: ops.append(self.__api.op['get_universe_types_type_id']( type_id=type_id)) response_infos = self.__client.multi_request(ops) return [TypeResponse(info[1]) for info in response_infos]
python
titulo = str(input('qual o titulo: ')) autor = str(input('escritor: ')) comando = ['/give @p written_book{pages:[', "'", '"','] ,title:', ',author:', '}', titulo, autor] #estrutura do comando l = str(input('cole aqui: ')) #livro em si. tl = len(l) #total de caracteres do livro print(tl) qcn = (tl/256) #quantidade de cortes nessessarios print(qcn) qbn = 256 #quantidade de caracteres suportado aux = 1 #variavel auxiliar input('s? ') for ndp in range(0, int(qcn)): qnd = (l[aux -1:qbn]) comando.append(qnd) print(qnd) qbn = qbn + 256 if tl > 255: aux = aux + 256 print('fim conferencia') print(comando[0], comando[1], comando[2], comando[8],comando[2], comando[1],',', comando[1], comando[2], comando[9],comando[2], comando[1], ',', comando[1], comando[2], comando[10],comando[2], comando[1], ',', comando[1], comando[2], comando[11],comando[2], comando[1], ',', comando[1], comando[2], comando[12],comando[2], comando[1], ',', comando[1], comando[2], comando[13],comando[2], comando[1], ',', comando[1], comando[2], comando[14],comando[2], comando[1], ',', comando[1], comando[2], comando[15],comando[2], comando[1], ',', comando[1], comando[2], comando[16],comando[2], comando[1], ',', comando[1], comando[2], comando[17],comando[2], comando[1], ',', comando[1], comando[2], comando[18],comando[2], comando[1], ',', comando[1], comando[2], comando[19],comando[2], comando[1], ',', comando[1], comando[2], comando[20],comando[2], comando[1], ',', comando[1], comando[2], comando[21],comando[2], comando[1], ',', comando[1], comando[2], comando[22],comando[2], comando[1], ',', comando[1], comando[2], comando[23],comando[2], comando[1], ',', comando[1], comando[2], comando[24],comando[2], comando[1], ',', comando[1], comando[2], comando[25],comando[2], comando[1], ',', comando[1], comando[2], comando[26],comando[2], comando[1], ',', comando[1], comando[2], comando[27],comando[2], comando[1], ',', comando[1], comando[2], comando[28],comando[2], comando[1], ',', comando[1], comando[2], comando[29],comando[2], comando[1], ',', comando[1], comando[2], comando[30],comando[2], comando[1], ',', comando[1], comando[2], comando[31],comando[2], comando[1], ',', comando[1], comando[2], comando[32],comando[2], comando[1], ',', comando[1], comando[2], comando[33],comando[2], comando[1], ',', comando[1], comando[2], comando[34],comando[2], comando[1], ',', comando[1], comando[2], comando[35],comando[2], comando[1], ',', comando[1], comando[2], comando[36],comando[2], comando[1], ',', comando[1], comando[2], comando[37],comando[2], comando[1], ',', comando[1], comando[2], comando[38],comando[2], comando[1], ',', comando[1], comando[2], comando[39],comando[2], comando[1], ',', comando[1], comando[2], comando[40],comando[2], comando[1], ',', comando[1], comando[2], comando[41],comando[2], comando[1], ',', comando[1], comando[2], comando[42],comando[2], comando[1], ',', comando[1], comando[2], comando[43],comando[2], comando[1], ',', comando[1], comando[2], comando[44],comando[2], comando[1], ',', comando[1], comando[2], comando[45],comando[2], comando[1], ',', comando[1], comando[2], comando[46],comando[2], comando[1], ',', comando[1], comando[2], comando[47],comando[2], comando[1], ',', comando[1], comando[2], comando[48],comando[2], comando[1], ',', comando[1], comando[2], comando[49],comando[2], comando[1], ',', comando[1], comando[2], comando[50],comando[2], comando[1], ',', comando[1], comando[2], comando[51],comando[2], comando[1], ',', comando[1], comando[2], comando[52],comando[2], comando[1], ',', comando[1], comando[2], comando[53],comando[2], comando[1], ',', comando[1], comando[2], comando[54],comando[2], comando[1], ',', comando[1], comando[2], comando[55],comando[2], comando[1], ',', comando[1], comando[2], comando[56],comando[2], comando[1], ',', comando[1], comando[2], comando[57],comando[2], comando[1], ',', comando[1], comando[2], comando[58],comando[2], comando[1], ',', comando[1], comando[2], comando[59],comando[2], comando[1], ',', comando[1], comando[2], comando[60],comando[2], comando[1], ',', comando[1], comando[2], comando[61],comando[2], comando[1], ',', comando[1], comando[2], comando[62],comando[2], comando[1], ',', comando[1], comando[2], comando[63],comando[2], comando[1], ',', comando[1], comando[2], comando[64],comando[2], comando[1], ',', comando[1], comando[2], comando[65],comando[2], comando[1], ',', comando[1], comando[2], comando[66],comando[2], comando[1], ',', comando[1], comando[2], comando[67],comando[2], comando[1], ',', comando[1], comando[2], comando[68],comando[2], comando[1], ',', comando[1], comando[2], comando[69],comando[2], comando[1], ',', comando[1], comando[2], comando[70],comando[2], comando[1], ',', comando[1], comando[2], comando[71],comando[2], comando[1], ',', comando[1], comando[2], comando[72],comando[2], comando[1], ',', comando[1], comando[2], comando[73],comando[2], comando[1], ',', comando[1], comando[2], comando[74],comando[2], comando[1], ',', comando[1], comando[2], comando[75],comando[2], comando[1], ',', comando[1], comando[2], comando[76],comando[2], comando[1], ',', comando[1], comando[2], comando[77],comando[2], comando[1], ',', comando[1], comando[2], comando[78],comando[2], comando[1], ',', comando[1], comando[2], comando[79],comando[2], comando[1], ',', comando[1], comando[2], comando[80],comando[2], comando[1], ',', comando[1], comando[2], comando[81],comando[2], comando[1], ',', comando[1], comando[2], comando[82],comando[2], comando[1], ',', comando[1], comando[2], comando[83],comando[2], comando[1], ',', comando[1], comando[2], comando[84],comando[2], comando[1], ',', comando[1], comando[2], comando[85],comando[2], comando[1], ',', comando[1], comando[2], comando[86],comando[2], comando[1], ',', comando[1], comando[2], comando[87],comando[2], comando[1], ',', comando[1], comando[2], comando[88],comando[2], comando[1], ',', comando[1], comando[2], comando[89],comando[2], comando[1], ',', comando[1], comando[2], comando[90],comando[2], comando[1], ',', comando[1], comando[2], comando[91],comando[2], comando[1], ',', comando[1], comando[2], comando[92],comando[2], comando[1], ',', comando[1], comando[2], comando[93],comando[2], comando[1], ',', comando[1], comando[2], comando[94],comando[2], comando[1], ',', comando[1], comando[2], comando[95],comando[2], comando[1], ',', comando[1], comando[2], comando[96],comando[2], comando[1], ',', comando[1], comando[2], comando[97],comando[2], comando[1], ',', comando[1], comando[2], comando[98],comando[2], comando[1], ',', comando[1], comando[2], comando[99],comando[2], comando[1], ',', comando[1], comando[2], comando[100],comando[2], comando[1], ',', comando[1], comando[2], comando[101],comando[2], comando[1], ',', comando[1], comando[2], comando[102],comando[2], comando[1], ',', comando[1], comando[2], comando[103],comando[2], comando[1], ',', comando[1], comando[2], comando[104],comando[2], comando[1], ',', comando[1], comando[2], comando[105],comando[2], comando[1], ',', comando[1], comando[2], comando[106],comando[2], comando[1], ',', comando[1], comando[2], comando[107],comando[2], comando[1], comando[3],comando[2], comando[6],comando[2], comando[4],comando[2], comando[7],comando[2], comando[5])
python
r""" Super Partitions AUTHORS: - Mike Zabrocki A super partition of size `n` and fermionic sector `m` is a pair consisting of a strict partition of some integer `r` of length `m` (that may end in a `0`) and an integer partition of `n - r`. This module provides tools for manipulating super partitions. Super partitions are the indexing set for symmetric functions in super space. Super partitions may be input in two different formats: one as a pair consisiting of fermionic (strict partition) and a bosonic (partition) part and the other as a list of integer values where the negative entries come first and are listed in strict order followed by the positive values in weak order. A super partition is displayed as two partitions separated by a semicolon as a default. Super partitions may also be displayed as a weakly increasing sequence of integers that are strict if the numbers are not positive. These combinatorial objects index the space of symmetric polynomials in two sets of variables, one commuting and one anti-commuting, and they are known as symmetric functions in super space (hence the origin of the name super partitions). EXAMPLES:: sage: SuperPartitions() Super Partitions sage: SuperPartitions(2) Super Partitions of 2 sage: SuperPartitions(2).cardinality() 8 sage: SuperPartitions(4,2) Super Partitions of 4 and of fermionic sector 2 sage: [[2,0],[1,1]] in SuperPartitions(4,2) True sage: [[1,0],[1,1]] in SuperPartitions(4,2) False sage: [[1,0],[2,1]] in SuperPartitions(4) True sage: [[1,0],[2,2,1]] in SuperPartitions(4) False sage: [[1,0],[2,1]] in SuperPartitions() True sage: [[1,1],[2,1]] in SuperPartitions() False sage: [-2, 0, 1, 1] in SuperPartitions(4,2) True sage: [-1, 0, 1, 1] in SuperPartitions(4,2) False sage: [-2, -2, 2, 1] in SuperPartitions(7,2) False REFERENCES: - [JL2016]_ """ #***************************************************************************** # Copyright (C) 2018 Mike Zabrocki <zabrocki at mathstat.yorku.ca> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function, absolute_import, division from six import add_metaclass from functools import reduce from sage.structure.list_clone import ClonableArray from sage.structure.unique_representation import UniqueRepresentation from sage.structure.parent import Parent from sage.structure.richcmp import richcmp, richcmp_method from sage.combinat.partition import Partition, Partitions, _Partitions from sage.combinat.composition import Composition from sage.categories.enumerated_sets import EnumeratedSets from sage.rings.integer import Integer from sage.structure.global_options import GlobalOptions from sage.rings.all import ZZ from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.misc.all import uniq @richcmp_method @add_metaclass(InheritComparisonClasscallMetaclass) class SuperPartition(ClonableArray): r""" A super partition. A *super partition* of size `n` and fermionic sector `m` is a pair consisting of a strict partition of some integer `r` of length `m` (that may end in a `0`) and an integer partition of `n - r`. EXAMPLES:: sage: sp = SuperPartition([[1,0],[2,2,1]]); sp [1, 0; 2, 2, 1] sage: sp[0] (1, 0) sage: sp[1] (2, 2, 1) sage: sp.fermionic_degree() 2 sage: sp.bosonic_degree() 6 sage: sp.length() 5 sage: sp.conjugate() [4, 2; ] """ @staticmethod def __classcall_private__(cls, lst): r""" Construct a superpartition in the correct parent EXAMPLES:: sage: SuperPartition([[1],[1]]).parent() Super Partitions sage: SuperPartition([[1],[1]]) [1; 1] sage: SuperPartition([-1, 1]) [1; 1] sage: SuperPartition([[1,1],[1]]) Traceback (most recent call last): ... ValueError: [[1, 1], [1]] not in Super Partitions sage: SuperPartition([-1,1]) [1; 1] sage: SuperPartition([]) [; ] sage: SP = SuperPartitions(8,4)([[3,2,1,0],[2]]) sage: SuperPartition(SP) is SP True """ if isinstance(lst, SuperPartition): return lst SPs = SuperPartitions() if not lst: return SPs([[],[]]) elif isinstance(lst[0], (list, tuple)): return SPs([[Integer(a) for a in lst[0]], [Integer(a) for a in lst[1]]]) else: return SPs([[-a for a in lst if a <= 0], [a for a in lst if a > 0]]) def __init__(self, parent, lst, check=True, immutable=True): """ Initialize ``self``. EXAMPLES:: sage: SP = SuperPartition([[1],[1]]) sage: TestSuite(SP).run() """ if check and lst not in parent: raise ValueError("%s not in %s" % (lst, parent)) lst = [tuple(lst[0]), tuple(lst[1])] ClonableArray.__init__(self, parent, lst, False, immutable) def check(self): """ Check that ``self`` is a valid super partition. EXAMPLES:: sage: SP = SuperPartition([[1],[1]]) sage: SP.check() """ if self not in self.parent(): raise ValueError("%s not in %s"%(self, self.parent())) def __richcmp__(self, other, op): r""" Check whether ``self`` is equal to ``other``. .. TODO:: This overwrites the equality check of :class:`~sage.structure.list_clone.ClonableArray` in order to circumvent the coercion framework. Eventually this should be solved more elegantly. For now, two elements are compared by their defining lists. """ if isinstance(other, SuperPartition): return richcmp(list(self), list(other), op) else: return richcmp(list(self), other, op) def _hash_(self): """ Return the hash of ``self``. EXAMPLES:: sage: SP = SuperPartition([[1],[1]]) sage: hash(tuple(SP)) == hash(SP) True """ return hash(tuple(self)) def _repr_(self): r""" Return a string representation of ``self``. A super partition is represented by the antisymmetric and symmetric parts separated by a semicolon. EXAMPLES:: sage: SuperPartition([[1],[1]]) [1; 1] sage: SuperPartition([[],[1]]) [; 1] sage: SuperPartition([]) [; ] sage: SuperPartitions.options.display = "list" sage: SuperPartition([[1],[1]]) [-1, 1] sage: SuperPartition([[],[1]]) [1] sage: SuperPartition([-2,-1,0,2,1]) [-2, -1, 0, 2, 1] sage: SuperPartitions.options.display = "pair" sage: SuperPartition([[1],[1]]) [[1], [1]] sage: SuperPartition([[],[1]]) [[], [1]] sage: SuperPartition([-2,-1,0,2,1]) [[2, 1, 0], [2, 1]] sage: SuperPartitions.options._reset() """ display = self.parent().options.display if display == "default": return '['+', '.join(str(a) for a in self.antisymmetric_part())+\ '; '+', '.join(str(a) for a in self.symmetric_part())+']' elif display == "pair": return self._repr_pair() elif display == "list": return self._repr_list() def _repr_pair(self): r""" Represention of a super partition as a pair. A super partition is represented by a list consisting of the antisymmetric and symmetric parts. EXAMPLES:: sage: SuperPartition([[1],[1]])._repr_pair() '[[1], [1]]' sage: SuperPartition([[],[1]])._repr_pair() '[[], [1]]' sage: SuperPartition([[],[]])._repr_pair() '[[], []]' """ return repr(self.to_list()) def _repr_list(self): r""" Represention of a super partition as a list. A super partition is represented by a list consisting of the negative values for the antisymmetric part listed first followed by positive values for the symmetric part EXAMPLES:: sage: SuperPartition([[1],[1]])._repr_list() '[-1, 1]' sage: SuperPartition([[],[1]])._repr_list() '[1]' sage: SuperPartition([[],[]])._repr_list() '[]' """ return repr([-a for a in self[0]] + list(self[1])) def _latex_(self): r""" Latex a super partition. A super partition is represented by the antisymmetric and symmetric parts separated by a semicolon. EXAMPLES:: sage: latex(SuperPartition([[1],[1]])) (1; 1) sage: latex(SuperPartition([[],[1]])) (; 1) """ return ('(' + ','.join(str(a) for a in self.antisymmetric_part()) + '; ' + ', '.join(str(a) for a in self.symmetric_part()) + ')') def to_list(self): r""" The list of two lists with the antisymmetric and symmetric parts. EXAMPLES:: sage: SuperPartition([[1],[1]]).to_list() [[1], [1]] sage: SuperPartition([[],[1]]).to_list() [[], [1]] """ return [list(self[0]), list(self[1])] def to_composition(self): r""" Concatenate the antisymmetric and symmetric parts to a composition. OUTPUT: - a (possibly weak) composition EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).to_composition() [3, 1, 2, 2, 1] sage: SuperPartition([[2,1,0],[3,3]]).to_composition() [2, 1, 0, 3, 3] sage: SuperPartition([[2,1,0],[3,3]]).to_composition().parent() Compositions of non-negative integers """ return Composition(self[0] + self[1]) def to_partition(self): r""" Concatenate and sort the antisymmetric and symmetric parts to a partition. OUTPUT: - a partition EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).to_partition() [3, 2, 2, 1, 1] sage: SuperPartition([[2,1,0],[3,3]]).to_partition() [3, 3, 2, 1] sage: SuperPartition([[2,1,0],[3,3]]).to_partition().parent() Partitions """ return Partition(sorted(self[0] + self[1], reverse=True)) def antisymmetric_part(self): r""" The antisymmetric part as a list of strictly decreasing integers. OUTPUT: - a list EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).antisymmetric_part() [3, 1] sage: SuperPartition([[2,1,0],[3,3]]).antisymmetric_part() [2, 1, 0] """ return list(self[0]) a_part = antisymmetric_part def symmetric_part(self): r""" The symmetric part as a list of weakly decreasing integers. OUTPUT: - a list EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).symmetric_part() [2, 2, 1] sage: SuperPartition([[2,1,0],[3,3]]).symmetric_part() [3, 3] """ return list(self[1]) s_part = symmetric_part def bosonic_degree(self): r""" Return the bosonic degree of ``self``. The *bosonic degree* is the sum of the sizes of the antisymmetric and symmetric parts. OUTPUT: - an integer EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).bosonic_degree() 9 sage: SuperPartition([[2,1,0],[3,3]]).bosonic_degree() 9 """ return sum(self.antisymmetric_part() + self.symmetric_part()) degree = bosonic_degree def fermionic_degree(self): r""" Return the fermionic degree of ``self``. The *fermionic degree* is the length of the antisymmetric part. OUTPUT: - an integer EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).fermionic_degree() 2 sage: SuperPartition([[2,1,0],[3,3]]).fermionic_degree() 3 """ return len(self.antisymmetric_part()) fermionic_sector = fermionic_degree def bi_degree(self): r""" Return the bidegree of ``self``, which is a pair consisting of the bosonic and fermionic degree. OUTPUT: - a tuple of two integers EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).bi_degree() (9, 2) sage: SuperPartition([[2,1,0],[3,3]]).bi_degree() (9, 3) """ return (self.bosonic_degree(), self.fermionic_degree()) def length(self): r""" Return the length of ``self``, which is the sum of the lengths of the antisymmetric and symmetric part. OUTPUT: - an integer EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).length() 5 sage: SuperPartition([[2,1,0],[3,3]]).length() 5 """ return self.fermionic_degree()+len(self.symmetric_part()) def bosonic_length(self): r""" Return the length of the partition of the symmetric part. OUTPUT: - an integer EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).bosonic_length() 3 sage: SuperPartition([[2,1,0],[3,3]]).bosonic_length() 2 """ return len(self.symmetric_part()) def shape_circled_diagram(self): r""" A concatenated partition with an extra cell for each antisymmetric part OUTPUT: - a partition EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).shape_circled_diagram() [4, 2, 2, 2, 1] sage: SuperPartition([[2,1,0],[3,3]]).shape_circled_diagram() [3, 3, 3, 2, 1] """ return Partition(sorted([a+1 for a in self.antisymmetric_part()] + self.symmetric_part(), reverse=True)) @staticmethod def from_circled_diagram(shape, corners): r""" Construct a super partition from a circled diagram. A circled diagram consists of a partition of the concatenation of the antisymmetric and symmetric parts and a list of addable cells of the partition which indicate the location of the circled cells. INPUT: - ``shape`` -- a partition or list of integers - ``corners`` -- a list of removable cells of ``shape`` OUTPUT: - a :class:`SuperPartition` EXAMPLES:: sage: SuperPartition.from_circled_diagram([3, 2, 2, 1, 1], [(0, 3), (3, 1)]) [3, 1; 2, 2, 1] sage: SuperPartition.from_circled_diagram([3, 3, 2, 1], [(2, 2), (3, 1), (4, 0)]) [2, 1, 0; 3, 3] sage: from_cd = SuperPartition.from_circled_diagram sage: all(sp == from_cd(*sp.to_circled_diagram()) for sp in SuperPartitions(4)) True """ return SuperPartition([sorted([c[1] for c in corners], reverse=True), [shape[i] for i in range(len(shape)) if i not in [c[0] for c in corners]]]) def to_circled_diagram(self): r""" The shape of the circled diagram and a list of addable cells A circled diagram consists of a partition for the outer shape and a list of removable cells of the partition indicating the location of the circled cells OUTPUT: - a list consisting of a partition and a list of pairs of integers EXAMPLES:: sage: SuperPartition([[3,1],[2,2,1]]).to_circled_diagram() [[3, 2, 2, 1, 1], [(0, 3), (3, 1)]] sage: SuperPartition([[2,1,0],[3,3]]).to_circled_diagram() [[3, 3, 2, 1], [(2, 2), (3, 1), (4, 0)]] sage: from_cd = SuperPartition.from_circled_diagram sage: all(sp == from_cd(*sp.to_circled_diagram()) for sp in SuperPartitions(4)) True """ shape = self.to_partition() corners = [c for c in shape.addable_cells() if c[1] in self.antisymmetric_part()] return [shape, corners] def conjugate(self): r""" Conjugate of a super partition. The *conjugate* of a super partition is defined by conjugating the circled diagram. OUPUT: - a :class:`SuperPartition` EXAMPLES:: sage: SuperPartition([[3, 1, 0], [4, 3, 2, 1]]).conjugate() [6, 4, 1; 3] sage: all(sp == sp.conjugate().conjugate() for sp in SuperPartitions(4)) True sage: all(sp.conjugate() in SuperPartitions(3,2) for sp in SuperPartitions(3,2)) True """ sd = self.to_circled_diagram() return SuperPartition.from_circled_diagram(sd[0].conjugate(), [(j,i) for (i,j) in sd[1]]) def zee(self): r""" Return the centralizer size of a permutation of cycle type symmetric part of ``self``. OUTPUT: - a positive integer EXAMPLES:: sage: SuperPartition([[1,0],[3,1,1]]).zee() 6 sage: SuperPartition([[1],[2,2,1]]).zee() 8 sage: sum(1/sp.zee() for sp in SuperPartitions(6,0)) 1 """ return Partition(self.symmetric_part()).centralizer_size() def sign(self): r""" Return the sign of a permutation of cycle type the symmetric part of ``self``. OUTPUT: - either `1` or `-1` EXAMPLES:: sage: SuperPartition([[1,0],[3,1,1]]).sign() -1 sage: SuperPartition([[1,0],[3,2,1]]).sign() 1 sage: sum(sp.sign()/sp.zee() for sp in SuperPartitions(6,0)) 0 """ return (-1)**(self.degree()-len(self.symmetric_part())) def dominates(self, other): r""" Return ``True`` if and only if ``self`` dominates ``other``. If the symmetric and anti-symmetric parts of ``self`` and ``other`` are not the same size then the result is ``False``. EXAMPLES:: sage: LA = SuperPartition([[2,1],[2,1,1]]) sage: LA.dominates([[2,1],[3,1]]) False sage: LA.dominates([[2,1],[1,1,1,1]]) True sage: LA.dominates([[3],[2,1,1]]) False sage: LA.dominates([[1],[1]*6]) False """ return (self.degree() == sum(other[0]) + sum(other[1]) and Partition(self.antisymmetric_part()).dominates(other[0]) and Partition(self.symmetric_part()).dominates(other[1])) def add_horizontal_border_strip_star(self, h): r""" Return a list of super partitions that differ from ``self`` by a horizontal strip. The notion of horizontal strip comes from the Pieri rule for the Schur-star basis of symmetric functions in super space (see Theorem 7 from [JL2016]_). INPUT: - ``h`` -- number of cells in the horizontal strip OUPUT: - a list of super partitions EXAMPLES:: sage: SuperPartition([[4,1],[3]]).add_horizontal_border_strip_star(3) [[4, 1; 3, 3], [4, 1; 4, 2], [3, 1; 5, 2], [4, 1; 5, 1], [3, 1; 6, 1], [4, 0; 4, 3], [3, 0; 5, 3], [4, 0; 5, 2], [3, 0; 6, 2], [4, 1; 6], [3, 1; 7]] sage: SuperPartition([[2,1],[3]]).add_horizontal_border_strip_star(2) [[2, 1; 3, 2], [2, 1; 4, 1], [2, 0; 3, 3], [2, 0; 4, 2], [2, 1; 5]] """ sp1, circ_list = self.to_circled_diagram() nsp = [list(la) + [0] for la in sp1.add_horizontal_border_strip(h)] sp1 = sp1 + [0] out = [] for elt in nsp: row_changed = [row1-row2 for row1,row2 in zip(elt,sp1)] new_sp = [elt, [(i[0]+1, elt[i[0]+1]) for i in circ_list if row_changed[i[0]] != 0] # TODO: Check that this is not suppose to be # a tuple of size 1 + [(i) for i in circ_list if row_changed[i[0]] == 0]] if len(uniq([k for (j,k) in new_sp[1]])) == len(new_sp[1]): out += [SuperPartition.from_circled_diagram(*new_sp)] return out def add_horizontal_border_strip_star_bar(self, h): r""" List super partitions that differ from ``self`` by a horizontal strip. The notion of horizontal strip comes from the Pieri rule for the Schur-star-bar basis of symmetric functions in super space (see Theorem 10 from [JL2016]_). INPUT: - ``h`` -- number of cells in the horizontal strip OUPUT: - a list of super partitions EXAMPLES:: sage: SuperPartition([[4,1],[5,4]]).add_horizontal_border_strip_star_bar(3) [[4, 3; 5, 4, 1], [4, 1; 5, 4, 3], [4, 2; 5, 5, 1], [4, 1; 5, 5, 2], [4, 2; 6, 4, 1], [4, 1; 6, 4, 2], [4, 1; 6, 5, 1], [4, 1; 7, 4, 1], [4, 3; 5, 5], [4, 3; 6, 4], [4, 2; 6, 5], [4, 2; 7, 4], [4, 1; 7, 5], [4, 1; 8, 4]] sage: SuperPartition([[3,1],[5]]).add_horizontal_border_strip_star_bar(2) [[3, 2; 5, 1], [3, 1; 5, 2], [4, 1; 5, 1], [3, 1; 6, 1], [4, 2; 5], [3, 2; 6], [4, 1; 6], [3, 1; 7]] """ sp1, circ_list = self.to_circled_diagram() nsp = [list(la) + [0] for la in sp1.add_horizontal_border_strip(h)] sp1 = sp1 + [0] out = [] for asp in nsp: asp = asp + [0] change_in_rows = [asp[i] - sp1[i] for i in range(len(sp1))] moved_circ_list = [[] for i in range(len(circ_list))] for i,pos in enumerate(circ_list): if change_in_rows[pos[0]] == 0: moved_circ_list[i].append(pos) else: if pos[0] == 0: moved_circ_list[i].append((0, pos[1]+change_in_rows[0])) if pos[1] == asp[1]: moved_circ_list[i].append((1, asp[1])) else: if pos[1] + change_in_rows[pos[0]] < sp1[pos[0]-1]: moved_circ_list[i].append((pos[0], pos[1]+change_in_rows[pos[0]])) if asp[pos[0]+1] == sp1[pos[0]]: moved_circ_list[i].append((pos[0]+1, pos[1])) out += [[moved_circ_list, asp]] result = [] for i in out: if not i[0]: result += [[i[1],i[0]]] else: x = reduce(lambda a,b: [item_a + item_b for item_a in a for item_b in b], i[0]) for j in x: result += [[i[1], list(zip(j,j[1:]))[::2]]] return [SuperPartition.from_circled_diagram(*i) for i in result if len(i[1]) == len(self[0])] class SuperPartitions(UniqueRepresentation, Parent): r""" Super partitions. A super partition of size `n` and fermionic sector `m` is a pair consisting of a strict partition of some integer `r` of length `m` (that may end in a `0`) and an integer partition of `n - r`. INPUT: - ``n`` -- an integer (optional: default ``None``) - ``m`` -- if ``n`` is specified, an integer (optional: default ``None``) Super partitions are the indexing set for symmetric functions in super space. EXAMPLES:: sage: SuperPartitions() Super Partitions sage: SuperPartitions(2) Super Partitions of 2 sage: SuperPartitions(2).cardinality() 8 sage: SuperPartitions(4,2) Super Partitions of 4 and of fermionic sector 2 sage: [[2,0],[1,1]] in SuperPartitions(4,2) True sage: [[1,0],[1,1]] in SuperPartitions(4,2) False sage: [[1,0],[2,1]] in SuperPartitions(4) True sage: [[1,0],[2,2,1]] in SuperPartitions(4) False sage: [[1,0],[2,1]] in SuperPartitions() True sage: [[1,1],[2,1]] in SuperPartitions() False """ @staticmethod def __classcall_private__(self, n=None, m=None, **kwargs): r""" Return the corresponding parent based upon input. TESTS:: sage: from sage.combinat.superpartition import * sage: isinstance(SuperPartitions(), SuperPartitions_all) True sage: isinstance(SuperPartitions(3), SuperPartitions_n) True sage: isinstance(SuperPartitions(3,2), SuperPartitions_n_m) True :: sage: SP = SuperPartitions(5,2) sage: SP2 = SuperPartitions(int(5),int(2)) sage: SP3 = SuperPartitions(ZZ(5),int(2)) sage: SP is SP2 True sage: SP is SP3 True :: sage: SP = SuperPartitions(5) sage: SP2 = SuperPartitions(int(5)) sage: SP3 = SuperPartitions(ZZ(5)) sage: SP is SP2 True sage: SP is SP3 True """ if n is None: return SuperPartitions_all() elif n in ZZ: if m is None: return SuperPartitions_n(n) elif m in ZZ: return SuperPartitions_n_m(n, m) raise ValueError("m must be an integer") raise ValueError("n must be an integer") def __init__(self, is_infinite=False): """ Initialize ``self``. EXAMPLES:: sage: SP = SuperPartitions() sage: TestSuite(SP).run() """ cat = EnumeratedSets() if is_infinite: cat = cat.Infinite() else: cat = cat.Finite() Parent.__init__(self, category=cat) Element = SuperPartition class options(GlobalOptions): """ Set the global options for elements of the SuperPartition class. The defaults are for Super Partitions to be displayed in a list notation with the fermionic part and the bosonic part separated by a semicolon. There is a slight disadvantage to this notation because a list containing a semicolon can not be used as input for a super partition. @OPTIONS@ EXAMPLES:: sage: sp = SuperPartition([[1, 0], [2, 2, 1]]) sage: SuperPartitions.options.display default sage: sp [1, 0; 2, 2, 1] sage: SuperPartitions.options.display = 'list' sage: sp [-1, 0, 2, 2, 1] sage: SuperPartitions.options._reset() """, NAME = 'SuperPartition' module = 'sage.combinat.superpartition' display = dict(default="default", description="Specifies how the super partitions should " "be printed", values=dict(list="the super partitions are displayed in " "a list of two lists", pair="the super partition is displayed as a " "list of integers", default="the super partition is displayed in " "a form [fermionic part; bosonic part]"), case_sensitive=False) def _element_constructor_(self, lst, check=True): """ Construct an element with ``self`` as parent. EXAMPLES:: sage: SP = SuperPartitions() sage: SP([[],[3,3,1]]) [; 3, 3, 1] sage: SP([[],[3,3,1]]) in SP True sage: SP([[],[3,3,1]]).parent() Super Partitions sage: SuperPartitions(7)([[],[3,3,1]]) [; 3, 3, 1] sage: SuperPartitions(7,0)([[],[3,3,1]]) [; 3, 3, 1] sage: SuperPartitions(7,1)([[],[3,3,1]]) Traceback (most recent call last): ... ValueError: [[], [3, 3, 1]] not in Super Partitions of 7 and of fermionic sector 1 """ if not lst: return self.element_class(self, [[], []], check=check) if isinstance(lst, SuperPartition): lst = list(lst) if isinstance(lst[0], (list, tuple)): return self.element_class(self, [lst[0], [a for a in lst[1] if a > 0]], check=check) else: return self.element_class(self, [[-a for a in lst if a <= 0], [a for a in lst if a > 0]], check=check) def __contains__(self, x): """ TESTS:: sage: [[1],[2,1]] in SuperPartitions() True sage: [[],[]] in SuperPartitions() True sage: [[0],[]] in SuperPartitions() True sage: [[],[0]] in SuperPartitions() True sage: [-1, 2, 1] in SuperPartitions() True sage: [2, -1, 1, 0] in SuperPartitions() True sage: [2, 0, 1, -1] in SuperPartitions() False sage: [] in SuperPartitions() True sage: [0] in SuperPartitions() True """ if isinstance(x, SuperPartition): return True if isinstance(x, (list, tuple)) and all(isinstance(i, (int, Integer)) or i in ZZ for i in x): sp = [a for a in x if a <= 0] return (all(sp[i] > sp[i-1] for i in range(1,len(sp))) and [a for a in x if a > 0] in _Partitions) elif (isinstance(x, (list, tuple)) and len(x) == 2 and isinstance(x[0], (list, tuple)) and isinstance(x[1], (list, tuple))): for i in x[0] + x[1]: if i not in ZZ: return False if i < 0: return False return (all(x[0][i] > x[0][i+1] for i in range(len(x[0])-1)) and all(x[1][i] >= x[1][i+1] for i in range(len(x[1])-1)) and ((not x[0]) or x[0][-1] >= 0) and ((not x[1]) or x[1][-1] >= 0)) else: return False class SuperPartitions_n_m(SuperPartitions): def __init__(self, n, m): """ Initialize ``self``. TESTS:: sage: SP = SuperPartitions(3,2) sage: TestSuite(SP).run() """ self.n = n self.m = m SuperPartitions.__init__(self, False) def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: repr(SuperPartitions(3,2)) 'Super Partitions of 3 and of fermionic sector 2' """ return "Super Partitions of %s and of fermionic sector %s"%(self.n, self.m) def __contains__(self, x): """ TESTS:: sage: [[3,2,1,0],[2]] in SuperPartitions(8,4) True sage: [[3,2,1,0],[]] in SuperPartitions(6,3) False sage: [[],[]] in SuperPartitions(0,0) True sage: [[0],[]] in SuperPartitions(0,1) True sage: [[],[]] in SuperPartitions(0,1) False sage: [-3,-2,-1,0,2] in SuperPartitions(8,4) True sage: [0] in SuperPartitions(0,0) False sage: [] in SuperPartitions(0,0) True sage: [0] in SuperPartitions(0,1) True """ if x in SuperPartitions(): if not x: return self.n == 0 and self.m == 0 if isinstance(x[0], (list, tuple)): n = sum(x[0] + x[1]) m = len(x[0]) else: n = sum(abs(a) for a in x) m = len([a for a in x if a <= 0]) return n == self.n and m == self.m else: return False def __iter__(self): r""" An iterator for super partitions of degree ``n`` and sector ``m``. EXAMPLES:: sage: SuperPartitions(6,2).cardinality() 28 sage: SuperPartitions(6,4).first() [3, 2, 1, 0; ] """ for r in range(self.n+1): for p1 in Partitions(r): for p0 in Partitions(self.n-r, max_slope=-1, length=self.m): yield self.element_class(self, [list(p0), list(p1)]) for p0 in Partitions(self.n-r, max_slope=-1, length=self.m-1): yield self.element_class(self, [list(p0)+[0], list(p1)]) class SuperPartitions_n(SuperPartitions): def __init__(self, n): """ Initialize ``self``. TESTS:: sage: SP = SuperPartitions(3) sage: TestSuite(SP).run() """ self.n = n SuperPartitions.__init__(self, False) def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: repr(SuperPartitions(3)) 'Super Partitions of 3' """ return "Super Partitions of %s"%self.n def __contains__(self, x): """ EXAMPLES:: sage: SuperPartitions(7)([[],[3,3,1]]) in SuperPartitions() True sage: SuperPartitions()([[],[3,3,1]]) in SuperPartitions(7) True sage: [[],[]] in SuperPartitions(0) True sage: [[0],[]] in SuperPartitions(0) True sage: [0] in SuperPartitions(0) True sage: [] in SuperPartitions(0) True sage: [1] in SuperPartitions(0) False """ if x in SuperPartitions(): if not x: return self.n == 0 if isinstance(x[0], (list, tuple)): n = sum(x[0] + x[1]) else: n = sum(abs(a) for a in x) return n == self.n else: return False def __iter__(self): r""" An iterator for super partitions of degree ``n``. EXAMPLES:: sage: SuperPartitions(1).list() [[; 1], [1; ], [0; 1], [1, 0; ]] sage: SuperPartitions(6).cardinality() 80 """ m = 0 while self.n >= m * (m-1) // 2: for LA in SuperPartitions(self.n, m): yield self.element_class(self, LA) m += 1 class SuperPartitions_all(SuperPartitions): def __init__(self): """ Initialize ``self``. TESTS:: sage: SP = SuperPartitions() sage: TestSuite(SP).run() """ SuperPartitions.__init__(self, True) def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: repr(SuperPartitions()) 'Super Partitions' """ return "Super Partitions" def __iter__(self): """ Iterate over all super partitions. EXAMPLES:: sage: SP = SuperPartitions() sage: it = SP.__iter__() sage: [next(it) for i in range(6)] [[; ], [0; ], [; 1], [1; ], [0; 1], [1, 0; ]] """ n = 0 while True: for sp in SuperPartitions(n): yield self.element_class(self, list(sp)) n += 1
python
from ..job.job_context import JobContext from ..task.task_context import TaskContext from ..tc.tc_context import TcContext class VerticalContext: def __init__(self, sys_conf_dict, task_context: TaskContext = None, job_context: JobContext = None, tc_context: TcContext = None): self.sys_conf_dict = sys_conf_dict self.task_context = task_context self.job_context = job_context self.tc_context = tc_context
python
import numpy as np import random import heapq from itertools import count def time_fun(x, slope, shift): return 1/(1+np.exp((slope*x - shift))) class eligibility_trace(): def __init__(self, lambda_v, r, slope=3, shift=5): self.E = 0 self.lambda_v = lambda_v self.r = r self.slope = slope self.shift = shift def get_trace(self): return time_fun(self.E, slope=self.slope, shift=self.shift) def general_iterate(self): self.E = self.r*self.lambda_v*self.E def is_pushed(self): self.E += 1 class Transition_tuple(): def __init__(self, state, action, action_mean, reward, curiosity, next_state, done_mask, t): #expects as list of items for each initalization variable self.state = np.array(state) self.action = np.array(action) self.action_mean = np.array(action_mean) self.reward = np.array(reward) self.curiosity = np.array(curiosity) self.next_state = np.array(next_state) self.done_mask = np.array(done_mask) self.t = np.array(t) def get_all_attributes(self): return [self.state, self.action, self.action_mean, self.reward, self.curiosity, self.next_state, self.done_mask, self.t] class Reservoir_with_Cur_n_Time_Restirction_Replay_Memory(): def __init__(self, capacity=10000, lambda_v=0.5, r=1, slope=3, shift=5): self.capacity = capacity self.storage = [] self.tiebreaker = count() self.time_eligibilty_trace = eligibility_trace(lambda_v=lambda_v, r=r, slope=slope, shift=shift) def push(self, state, action, action_mean, reward, curiosity, next_state, done_mask, t): ran = random.uniform(0,1) self.time_eligibilty_trace.general_iterate() if ran < self.time_eligibilty_trace.get_trace(): data = (state, action, action_mean, reward, curiosity, next_state, done_mask, t) priority = curiosity.item() d = (priority, next(self.tiebreaker), data) if len(self.storage) < self.capacity: heapq.heappush(self.storage, d) return True elif priority > self.storage[0][0]: heapq.heapreplace(self.storage, d) self.time_eligibilty_trace.is_pushed() return True else: return False else: return False def sample(self, batch_size): indices = self.get_sample_indices(batch_size) state, action, action_mean, reward, curiosity, next_state, done_mask, t_array = self.encode_sample(indices=indices) return Transition_tuple(state, action, action_mean, reward, curiosity, next_state, done_mask, t_array) def encode_sample(self, indices): state, action, action_mean, reward, curiosity, next_state, done_mask, t_array = [], [], [], [], [], [], [], [] for i in indices: data = self.storage[i][2] s, a, a_m, r, c, n_s, d, t = data state.append(s) action.append(a) action_mean.append(a_m) reward.append(r) curiosity.append(c) next_state.append(n_s) done_mask.append(d) t_array.append(t) return state, action, action_mean, reward, curiosity, next_state, done_mask, t_array def get_sample_indices(self, batch_size): if len(self.storage) < self.capacity: indices = np.random.choice(len(self.storage), batch_size) else: indices = np.random.choice(self.capacity, batch_size) return indices def __len__(self): return len(self.storage)
python
''' true_env = ["../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/online_learning/esarsa/step50k/gridsearch_realenv/"] k1_notimeout = ["../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k1_notimeout/esarsa/step10k/optimalfixed_eps0/"] k1_timeout1000 = ["../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k1_timeout1000/esarsa/step10k/optimalfixed_eps0/"] k3ensemble_notimeout = [ "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_notimeout/esarsa/step10k/drop0.2/ensembleseed1/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_notimeout/esarsa/step10k/drop0.2/ensembleseed2/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_notimeout/esarsa/step10k/drop0.2/ensembleseed3/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_notimeout/esarsa/step10k/drop0.2/ensembleseed4/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_notimeout/esarsa/step10k/drop0.2/ensembleseed5/optimalfixed_eps0/" ] k3ensemble_timeout1000 = [ "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_timeout1000/esarsa/step10k/drop0.2/ensembleseed1/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_timeout1000/esarsa/step10k/drop0.2/ensembleseed2/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_timeout1000/esarsa/step10k/drop0.2/ensembleseed3/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_timeout1000/esarsa/step10k/drop0.2/ensembleseed4/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_timeout1000/esarsa/step10k/drop0.2/ensembleseed5/optimalfixed_eps0/" ] k3ensemble_adversarial_notimeout = [ "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_adversarial_notimeout/esarsa/step10k/drop0.2/ensembleseed1/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_adversarial_notimeout/esarsa/step10k/drop0.2/ensembleseed2/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_adversarial_notimeout/esarsa/step10k/drop0.2/ensembleseed3/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_adversarial_notimeout/esarsa/step10k/drop0.2/ensembleseed4/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3ensemble_adversarial_notimeout/esarsa/step10k/drop0.2/ensembleseed5/optimalfixed_eps0/" ] k3ensemble_adverarial_timeout1000 = [ "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed1/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed2/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed3/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed4/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed5/optimalfixed_eps0/" ] AcrobotdistantStart_regularTrans_timeout200 = [ "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout200_distantStart_regularTrans/esarsa/step10k/drop0.2/ensembleseed1/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout200_distantStart_regularTrans/esarsa/step10k/drop0.2/ensembleseed2/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout200_distantStart_regularTrans/esarsa/step10k/drop0.2/ensembleseed3/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout200_distantStart_regularTrans/esarsa/step10k/drop0.2/ensembleseed4/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout200_distantStart_regularTrans/esarsa/step10k/drop0.2/ensembleseed5/optimalfixed_eps0/" ] AcrobottrueStart_adversarialTrans_timeout1000 = [ "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed1/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed2/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed3/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed4/optimalfixed_eps0/", "../../../../../../Downloads/data_timeoutsAndtransitions_acrobot/acrobot/randomrestarts/offline_learning/knn-ensemble/k3_50k_timeout1000_trueStart_adversarialTrans/esarsa/step10k/drop0.2/ensembleseed5/optimalfixed_eps0/", ] ''' ''' data2500_eps0_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step2500/optimalfixed_eps0"] data2500_eps10_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step2500/optimalfixed_eps10"] data2500_eps25_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step2500/optimalfixed_eps25"] data2500_eps50_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step2500/optimalfixed_eps50"] data2500_eps75_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step2500/optimalfixed_eps75"] data2500_eps100_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step2500/optimalfixed_eps100"] data2500_eps0_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step2500/optimalfixed_eps0"] data2500_eps10_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step2500/optimalfixed_eps10"] data2500_eps25_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step2500/optimalfixed_eps25"] data2500_eps50_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step2500/optimalfixed_eps50"] data2500_eps75_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step2500/optimalfixed_eps75"] data2500_eps100_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step2500/optimalfixed_eps100"] data2500_eps0_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step2500/optimalfixed_eps0"] data2500_eps10_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step2500/optimalfixed_eps10"] data2500_eps25_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step2500/optimalfixed_eps25"] data2500_eps50_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step2500/optimalfixed_eps50"] data2500_eps75_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step2500/optimalfixed_eps75"] data2500_eps100_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step2500/optimalfixed_eps100"] data5k_eps0_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step5k/optimalfixed_eps0"] data5k_eps10_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step5k/optimalfixed_eps10"] data5k_eps25_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step5k/optimalfixed_eps25"] data5k_eps50_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step5k/optimalfixed_eps50"] data5k_eps75_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step5k/optimalfixed_eps75"] data5k_eps100_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step5k/optimalfixed_eps100"] data5k_eps0_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step5k/optimalfixed_eps0"] data5k_eps10_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step5k/optimalfixed_eps10"] data5k_eps25_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step5k/optimalfixed_eps25"] data5k_eps50_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step5k/optimalfixed_eps50"] data5k_eps75_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step5k/optimalfixed_eps75"] data5k_eps100_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step5k/optimalfixed_eps100"] data5k_eps0_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step5k/optimalfixed_eps0"] data5k_eps10_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step5k/optimalfixed_eps10"] data5k_eps25_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step5k/optimalfixed_eps25"] data5k_eps50_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step5k/optimalfixed_eps50"] data5k_eps75_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step5k/optimalfixed_eps75"] data5k_eps100_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step5k/optimalfixed_eps100"] data10k_eps0_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step10k/optimalfixed_eps0"] data10k_eps10_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step10k/optimalfixed_eps10"] data10k_eps25_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step10k/optimalfixed_eps25"] data10k_eps50_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step10k/optimalfixed_eps50"] data10k_eps75_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step10k/optimalfixed_eps75"] data10k_eps100_k1_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k1/esarsa/step10k/optimalfixed_eps100"] data10k_eps0_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step10k/optimalfixed_eps0"] data10k_eps10_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step10k/optimalfixed_eps10"] data10k_eps25_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step10k/optimalfixed_eps25"] data10k_eps50_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step10k/optimalfixed_eps50"] data10k_eps75_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step10k/optimalfixed_eps75"] data10k_eps100_k3_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k3/esarsa/step10k/optimalfixed_eps100"] data10k_eps0_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step10k/optimalfixed_eps0"] data10k_eps10_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step10k/optimalfixed_eps10"] data10k_eps25_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step10k/optimalfixed_eps25"] data10k_eps50_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step10k/optimalfixed_eps50"] data10k_eps75_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step10k/optimalfixed_eps75"] data10k_eps100_k5_p0 = ["../../data/hyperparam/acrobot/offline_learning/knn/k5/esarsa/step10k/optimalfixed_eps100"] ''' ''' data10k_eps10_k5_p20_ens = [ "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed1/transfer_optimalfixed_eps10", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed2/transfer_optimalfixed_eps10", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed3/transfer_optimalfixed_eps10", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed4/transfer_optimalfixed_eps10", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed5/transfer_optimalfixed_eps10" ] data10k_eps25_k5_p20_ens = [ "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed1/transfer_optimalfixed_eps25", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed2/transfer_optimalfixed_eps25", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed3/transfer_optimalfixed_eps25", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed4/transfer_optimalfixed_eps25", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed5/transfer_optimalfixed_eps25" ] data10k_eps50_k5_p20_ens = [ "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed1/transfer_optimalfixed_eps50", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed2/transfer_optimalfixed_eps50", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed3/transfer_optimalfixed_eps50", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed4/transfer_optimalfixed_eps50", "../../data/hyperparam/acrobot/offline_learning/knn-ensemble/k5/esarsa/step10k/drop0.2/ensembleseed5/transfer_optimalfixed_eps50" ] ''' ''' ac_true = ["../../../../../../Downloads/transferabledata/new/hyperparam_ap_CEM_gridsearch/data/hyperparam_ap/acrobot/online_learning/esarsa/step15k/sweep/"] ac_rnd = [34, 4, 43, 30, 24, 32, 40, 11, 20, 30, 3, 16, 53, 45, 0, 21, 43, 23, 44, 50, 9, 41, 37, 37, 11, 2, 26, 33, 18, 20] ac_offline = ["../../../../../../Downloads/transferabledata/new/hyperparam_ap_CEM_gridsearch/data/hyperparam_ap/acrobot/offline_learning/k3_timeout750/esarsa/step15k/optimalfixed_eps0/sweep/"] ac_cemOffline = ["../../../../../../Downloads/transferabledata/new/hyperparam_ap_CEM_gridsearch/data/hyperparam_ap/acrobot/list/CEMoffline_onlineEvaluation/esarsa/step15k/sweep/"] ac_cemOnline = ["../../../../../../Downloads/transferabledata/new/hyperparam_ap_CEM_gridsearch/data/hyperparam_ap/acrobot/list/CEMonline_onlineEvaluation/esarsa/step15k/sweep/"] ''' ac_true_temp = ["../../data/hyperparam_v5/acrobot/online_learning/esarsa/step15k/sweep/"] ac_true_dqn = ["../../data/hyperparam_v5/acrobot/online_learning/dqn/step600k/sweep/"] ac_laplace_knn_5k_dqn = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout20k/dqn/step5k_env/data_optimal/drop0/sweep_rep1/"] ac_knn_15k = ["../../data/hyperparam_v4.8/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step15k_env/data_optimal/drop0/sweep/"] ac_knn_10k = ["../../data/hyperparam_v4.8/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step10k_env/data_optimal/drop0/sweep/"] ac_knn_5k = ["../../data/hyperparam_v4.8/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step5k_env/data_optimal/drop0/sweep/"] ac_knn_2p5k = ["../../data/hyperparam_v4.8/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step2.5k_env/data_optimal/drop0/sweep/"] ac_knn_1k = ["../../data/hyperparam_v4.8/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step1k_env/data_optimal/drop0/sweep/"] ac_knn_500 = ["../../data/hyperparam_v4.8/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step500_env/data_optimal/drop0/sweep/"] # ac_knn_15k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step15k_env/data_optimal/drop0/sweep/"] # ac_knn_10k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step10k_env/data_optimal/drop0/sweep/"] # ac_knn_5k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step5k_env/data_optimal/drop0/sweep/"] # ac_knn_2p5k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step2.5k_env/data_optimal/drop0/sweep/"] # ac_knn_1k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step1k_env/data_optimal/drop0/sweep/"] # ac_knn_500 = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3/timeout500/esarsa/step500_env/data_optimal/drop0/sweep/"] ac_laplace_knn_15k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step15k_env/data_optimal/drop0/sweep_rep1/"] ac_laplace_knn_10k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step10k_env/data_optimal/drop0/sweep_rep1/"] ac_laplace_knn_5k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step5k_env/data_optimal/drop0/sweep_rep1/"] ac_laplace_knn_2p5k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step2.5k_env/data_optimal/drop0/sweep_rep1/"] ac_laplace_knn_1k = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step1k_env/data_optimal/drop0/sweep_rep1/"] ac_laplace_knn_500 = ["../../data/hyperparam_v5/acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step500_env/data_optimal/drop0/sweep_rep1/"] ac_scale_network_15k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_separated/timeout500/esarsa/step15k_env/data_optimal/sweep"] ac_scale_network_10k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_separated/timeout500/esarsa/step10k_env/data_optimal/sweep"] ac_scale_network_5k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_separated/timeout500/esarsa/step5k_env/data_optimal/sweep"] ac_scale_network_2p5k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_separated/timeout500/esarsa/step2.5k_env/data_optimal/sweep"] ac_scale_network_1k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_separated/timeout500/esarsa/step1k_env/data_optimal/sweep"] ac_scale_network_500 = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_separated/timeout500/esarsa/step500_env/data_optimal/sweep"] ac_scale_laplace_network_15k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step15k_env/data_optimal/sweep"] ac_scale_laplace_network_10k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step10k_env/data_optimal/sweep"] ac_scale_laplace_network_5k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step5k_env/data_optimal/sweep"] ac_scale_laplace_network_2p5k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step2.5k_env/data_optimal/sweep"] ac_scale_laplace_network_1k = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step1k_env/data_optimal/sweep"] ac_scale_laplace_network_500 = ["../../data/hyperparam_v5/acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step500_env/data_optimal/sweep"] ac_rnd = [34, 4, 43, 30, 24, 32, 40, 11, 20, 30, 3, 16, 53, 45, 0, 21, 43, 23, 44, 50, 9, 41, 37, 37, 11, 2, 26, 33, 18, 20] basepath = "../../../../../../Downloads/transferabledata/new/data_dcp/final/data/hyperparam_v5/" ac_true = [basepath + "acrobot/online_learning/esarsa/step15k/sweep/"] ac_optim_knn = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step15k_env/data_optimal/drop0/sweep_rep1/"] ac_suboptim_knn = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step15k_env/data_suboptimal/drop0/sweep_rep1/"] ac_subsuboptim_knn = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step15k_env/data_subsuboptimal/drop0/sweep_rep1/"] ac_optim_network = [basepath + "acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step15k_env/data_optimal/sweep/"] ac_suboptim_network = [basepath + "acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step15k_env/data_suboptimal/sweep/"] ac_subsuboptim_network = [basepath + "acrobot/offline_learning/network/learning/clip_scale_laplace_separated/timeout500/esarsa/step15k_env/data_subsuboptimal/sweep/"] ac_fqi_eps0 = ["../../data/hyperparam_v5/acrobot/offline_learning/fqi/eps0/fqi/fqi-adam/alpha_hidden_epsilon/step15k_env/optimalfixed_eps0/lambda1e-3/lockat_baseline_online/"] ac_fqi_eps0p1 = ["../../data/hyperparam_v5/acrobot/offline_learning/fqi/eps0.1/fqi/fqi-adam/alpha_hidden_epsilon/step15k_env/optimalfixed_eps0/lambda1e-3/lockat_baseline_online/"] ac_rnd = [34, 4, 43, 30, 24, 32, 40, 11, 20, 30, 3, 16, 53, 45, 0, 21, 43, 23, 44, 50, 9, 41, 37, 37, 11, 2, 26, 33, 18, 20] basepath = "../../data/finalPlots/data/hyperparam_v5/" ac_true = [basepath + "acrobot/online_learning/esarsa/step15k/sweep/"] ac_knnlaplace_optim_5k_plot1 = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step5k_env/data_optimal/drop0/sweep_rep1/"] ac_knnlaplace_optim_500_plot2 = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step500_env/data_optimal/drop0/sweep_rep1/"] ac_knnlaplace_optim_1k_plot2 = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step1k_env/data_optimal/drop0/sweep_rep1/"] ac_knnlaplace_optim_2500_plot2 = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step2.5k_env/data_optimal/drop0/sweep_rep1/"] ac_knnlaplace_optim_5k_plot2 = [basepath + "acrobot/offline_learning/knn/learning/k3_laplace/timeout500/esarsa/step5k_env/data_optimal/drop0/sweep_rep1/"]
python
# Copyright 2021 Universidade da Coruña # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # Miguel Ángel Abella González <[email protected]> # Gabriel Rodríguez <[email protected]> # # Contact: # Gabriel Rodríguez <[email protected]> """<replace_with_module_description>""" from benchmarks.polybench import PolyBench from benchmarks.polybench_classes import ArrayImplementation from benchmarks.polybench_classes import PolyBenchOptions, PolyBenchSpec from numpy.core.multiarray import ndarray import numpy as np class Trmm(PolyBench): def __new__(cls, options: PolyBenchOptions, parameters: PolyBenchSpec): implementation = options.POLYBENCH_ARRAY_IMPLEMENTATION if implementation == ArrayImplementation.LIST: return _StrategyList.__new__(_StrategyList, options, parameters) elif implementation == ArrayImplementation.LIST_PLUTO: return _StrategyListPluto.__new__(_StrategyListPluto, options, parameters) elif implementation == ArrayImplementation.LIST_FLATTENED: return _StrategyListFlattened.__new__(_StrategyListFlattened, options, parameters) elif implementation == ArrayImplementation.NUMPY: return _StrategyNumPy.__new__(_StrategyNumPy, options, parameters) elif implementation == ArrayImplementation.LIST_FLATTENED_PLUTO: return _StrategyListFlattenedPluto.__new__(_StrategyListFlattenedPluto, options, parameters) def __init__(self, options: PolyBenchOptions, parameters: PolyBenchSpec): super().__init__(options, parameters) # The parameters hold the necessary information obtained from "polybench.spec" file params = parameters.DataSets.get(self.DATASET_SIZE) if not isinstance(params, dict): raise NotImplementedError(f'Dataset size "{self.DATASET_SIZE.name}" not implemented ' f'for {parameters.Category}/{parameters.Name}.') # Set up problem size from the given parameters (adapt this part with appropriate parameters) self.M = params.get('M') self.N = params.get('N') def run_benchmark(self): # Create data structures (arrays, auxiliary variables, etc.) alpha = 1.5 A = self.create_array(2, [self.M, self.M], self.DATA_TYPE(0)) B = self.create_array(2, [self.M, self.N], self.DATA_TYPE(0)) # Initialize data structures self.initialize_array(alpha, A, B) # Benchmark the kernel self.time_kernel(alpha, A, B) # Return printable data as a list of tuples ('name', value). # Each tuple element must have the following format: # (A: str, B: matrix) # - A: a representative name for the data (this string will be printed out) # - B: the actual data structure holding the computed result # # The syntax for the return statement would then be: # - For single data structure results: # return [('data_name', data)] # - For multiple data structure results: # return [('matrix1', m1), ('matrix2', m2), ... ] return [('B', B)] class _StrategyList(Trmm): def __new__(cls, options: PolyBenchOptions, parameters: PolyBenchSpec): return object.__new__(_StrategyList) def __init__(self, options: PolyBenchOptions, parameters: PolyBenchSpec): super().__init__(options, parameters) def initialize_array(self, alpha, A: list, B: list): for i in range(0, self.M): for j in range(0, i): A[i][j] = self.DATA_TYPE((i + j) % self.M) / self.M A[i][i] = 1.0 for j in range(0, self.N): B[i][j] = self.DATA_TYPE((self.N + (i - j)) % self.N) / self.N def print_array_custom(self, B: list, name: str): for i in range(0, self.M): for j in range(0, self.N): if (i * self.M + j) % 20 == 0: self.print_message('\n') self.print_value(B[i][j]) def kernel(self, alpha, A: list, B: list): # BLAS parameters # SIDE = 'L' # UPLO = 'L' # TRANSA = 'T' # DIAG = 'U' # = > Form B := alpha * A ** T * B. # A is MxM # B is MxN # scrop begin for i in range(0, self.M): for j in range(0, self.N): for k in range(i + 1, self.M): B[i][j] += A[k][i] * B[k][j] B[i][j] = alpha * B[i][j] # scop end class _StrategyListPluto(_StrategyList): def __new__(cls, options: PolyBenchOptions, parameters: PolyBenchSpec): return object.__new__(_StrategyListPluto) def kernel(self, alpha, A: list, B: list): # scop begin if((self.M-1>= 0) and (self.N-1>= 0)): if((self.M-2>= 0)): for c1 in range ((self.N-1)+1): for c2 in range ((self.M-2)+1): for c3 in range (c2 + 1 , (self.M-1)+1): B[c2][c1] += A[c3][c2] * B[c3][c1] for c1 in range ((self.M-1)+1): for c2 in range ((self.N-1)+1): B[c1][c2] = alpha * B[c1][c2] # scop end class _StrategyListFlattened(Trmm): def __new__(cls, options: PolyBenchOptions, parameters: PolyBenchSpec): return object.__new__(_StrategyListFlattened) def __init__(self, options: PolyBenchOptions, parameters: PolyBenchSpec): super().__init__(options, parameters) if options.LOAD_ELIMINATION: self.kernel = self.kernel_le else: self.kernel = self.kernel_regular def initialize_array(self, alpha, A: list, B: list): for i in range(0, self.M): for j in range(0, i): A[self.M * i + j] = self.DATA_TYPE((i+j) % self.M) / self.M A[self.M * i + i] = 1.0 for j in range(0, self.N): B[self.N * i + j] = self.DATA_TYPE((self.N+(i-j)) % self.N) / self.N def print_array_custom(self, B: list, name: str): for i in range(0, self.M): for j in range(0, self.N): if (i * self.M + j) % 20 == 0: self.print_message('\n') self.print_value(B[self.N * i + j]) # Regular version def kernel_regular(self, alpha, A: list, B: list): # scrop begin for i in range(0, self.M): for j in range(0, self.N): for k in range(i + 1, self.M): B[self.N * i + j] += A[self.M * k + i] * B[self.N * k + j] B[self.N * i + j] = alpha * B[self.N * i + j] # scop end # Load elimination def kernel_le(self, alpha, A: list, B: list): # scrop begin for i in range(0, self.M): for j in range(0, self.N): tmp = B[self.N*i+j] for k in range(i + 1, self.M): tmp += A[self.M * k + i] * B[self.N * k + j] B[self.N * i + j] = alpha * tmp # scop end class _StrategyNumPy(Trmm): def __new__(cls, options: PolyBenchOptions, parameters: PolyBenchSpec): return object.__new__(_StrategyNumPy) def __init__(self, options: PolyBenchOptions, parameters: PolyBenchSpec): super().__init__(options, parameters) def initialize_array(self, alpha, A: list, B: list): for i in range(0, self.M): for j in range(0, i): A[i, j] = self.DATA_TYPE((i + j) % self.M) / self.M A[i, i] = 1.0 for j in range(0, self.N): B[i, j] = self.DATA_TYPE((self.N + (i - j)) % self.N) / self.N def print_array_custom(self, B: ndarray, name: str): for i in range(0, self.M): for j in range(0, self.N): if (i * self.M + j) % 20 == 0: self.print_message('\n') self.print_value(B[i, j]) def kernel(self, alpha, A: ndarray, B: ndarray): # BLAS parameters # SIDE = 'L' # UPLO = 'L' # TRANSA = 'T' # DIAG = 'U' # = > Form B := alpha * A ** T * B. # A is MxM # B is MxN # scop begin for i in range(0, self.M): B[i,0:self.N] += (A[i+1:self.M,i,np.newaxis] * B[i+1:self.M,0:self.N]).sum(axis=0) B[i,0:self.N] = alpha * B[i,0:self.N] # scop end class _StrategyListFlattenedPluto(_StrategyListFlattened): def __new__(cls, options: PolyBenchOptions, parameters: PolyBenchSpec): return object.__new__(_StrategyListFlattenedPluto) def __init__(self, options: PolyBenchOptions, parameters: PolyBenchSpec): super().__init__(options, parameters) self.kernel_vectorizer = self.kernel_pluto self.kernel = getattr( self, "kernel_%s" % (options.POCC) ) def kernel_pluto(self, alpha, A: list, B: list): # --pluto # scop begin if((self.M-1>= 0) and (self.N-1>= 0)): if((self.M-2>= 0)): for c1 in range ((self.N-1)+1): for c2 in range ((self.M-2)+1): for c3 in range (c2 + 1 , (self.M-1)+1): B[self.N*(c2) + c1] += A[self.M*(c3) + c2] * B[self.N*(c3) + c1] for c1 in range ((self.M-1)+1): for c2 in range ((self.N-1)+1): B[self.N*(c1) + c2] = alpha * B[self.N*(c1) + c2] # scop end def kernel_maxfuse(self, alpha, A: list, B: list): # --pluto --pluto-fuse maxfuse # scop begin if((self.M-1>= 0) and (self.N-1>= 0)): if((self.M-2>= 0)): for c0 in range ((self.N-1)+1): for c1 in range ((self.M-2)+1): for c4 in range (c1 + 1 , (self.M-1)+1): B[(c1)*self.N + c0] += A[(c4)*self.M + c1] * B[(c4)*self.N + c0] B[(c1)*self.N + c0] = alpha * B[(c1)*self.N + c0] B[(self.M + -1)*self.N + c0] = alpha * B[(self.M + -1)*self.N + c0] if self.M == 1: for c0 in range ((self.N-1)+1): B[(0)*self.N + c0] = alpha * B[(0)*self.N + c0] # scop end
python
""" Code for the paper "Mesh Classification with Dilated Mesh Convolutions." published in 2021 IEEE International Conference on Image Processing. Code Author: Vinit Veerendraveer Singh. Copyright (c) VIMS Lab and its affiliates. We adapt MeshNet to perform dilated convolutions by replacing the Stacked Dilated Mesh Convolution block in place of its Mesh Convolution block. This file test this redesigned model after training. Note: For the ease of exposition and to keep this file coherent with the train.py in the original MeshNet code, we do not add code comments to this file. """ import os import random import numpy as np import torch from torch.autograd import Variable import torch.nn as nn import torch.utils.data as data from config import get_test_config from data import ModelNet40 from models import MeshNet dataset = 'ModelNet40' cfg = get_test_config(dataset=dataset) os.environ['CUDA_VISIBLE_DEVICES'] = cfg['cuda_devices'] data_set = ModelNet40(cfg=cfg[dataset], part='test') data_loader = data.DataLoader(data_set, batch_size=1, num_workers=4, shuffle=True, pin_memory=False) def test_model(model): correct_num = 0 for (centers, corners, normals, neighbors, rings, targets) in data_loader: corners = corners - torch.cat([centers, centers, centers], 1) centers = Variable(torch.cuda.FloatTensor(centers.cuda())) corners = Variable(torch.cuda.FloatTensor(corners.cuda())) normals = Variable(torch.cuda.FloatTensor(normals.cuda())) for idx, ring in enumerate(rings): rings[idx] = Variable(torch.cuda.LongTensor(ring.cuda())) targets = Variable(torch.cuda.LongTensor(targets.cuda())) outputs, _ = model(centers, corners, normals, neighbors, rings) _, preds = torch.max(outputs, 1) if preds[0] == targets[0]: correct_num += 1 print('Accuracy: {:.4f}'.format(float(correct_num) / len(data_set))) if __name__ == '__main__': os.environ['PYTHONHASHSEED'] = str(0) np.random.seed(0) random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed_all(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.set_deterministic(False) model_ft = MeshNet(cfg=cfg['MeshNet'], require_fea=True) model_ft.cuda() model_ft = nn.DataParallel(model_ft) model_ft.load_state_dict(torch.load(cfg[dataset]['load_model'])) model_ft.eval() test_model(model_ft)
python
from collections import namedtuple import hexbytes from eth_utils import is_checksum_address from relay.signing import eth_sign, eth_validate, keccak256 EcSignature = namedtuple("EcSignature", "v r s") class Order(object): def __init__( self, exchange_address: str, maker_address: str, taker_address: str, maker_token: str, taker_token: str, fee_recipient: str, maker_token_amount: int, taker_token_amount: int, maker_fee: int, taker_fee: int, expiration_timestamp_in_sec: int, salt: int, v: int, r: hexbytes.HexBytes, s: hexbytes.HexBytes, filled_maker_token_amount: int = 0, filled_taker_token_amount: int = 0, cancelled_maker_token_amount: int = 0, cancelled_taker_token_amount: int = 0, ) -> None: self.exchange_address = exchange_address self.maker_address = maker_address self.taker_address = taker_address self.maker_token = maker_token self.taker_token = taker_token self.fee_recipient = fee_recipient self.maker_token_amount = maker_token_amount self.taker_token_amount = taker_token_amount self.maker_fee = maker_fee self.taker_fee = taker_fee self.expiration_timestamp_in_sec = expiration_timestamp_in_sec self.salt = salt self.v = v self.r = r self.s = s self.filled_maker_token_amount = filled_maker_token_amount self.filled_taker_token_amount = filled_taker_token_amount self.cancelled_maker_token_amount = cancelled_maker_token_amount self.cancelled_taker_token_amount = cancelled_taker_token_amount @property def price(self) -> float: return self.taker_token_amount / self.maker_token_amount @property def available_maker_token_amount(self) -> float: return ( self.maker_token_amount - self.filled_maker_token_amount - self.cancelled_maker_token_amount ) @property def available_taker_token_amount(self) -> float: return ( self.taker_token_amount - self.filled_taker_token_amount - self.cancelled_taker_token_amount ) @property def ec_signature(self): return EcSignature(self.v, self.r, self.s) def validate(self) -> bool: return self.validate_signature() and self.validate_addresses() def validate_signature(self) -> bool: return eth_validate(self.hash(), (self.v, self.r, self.s), self.maker_address) def validate_addresses(self) -> bool: for address in [ self.exchange_address, self.maker_token, self.taker_token, self.fee_recipient, ]: if not is_checksum_address(address): return False return True def is_expired(self, current_timestamp_in_sec: int) -> bool: return current_timestamp_in_sec > self.expiration_timestamp_in_sec def is_filled(self) -> bool: return ( self.available_maker_token_amount <= 0 or self.available_taker_token_amount <= 0 ) def hash(self) -> hexbytes.HexBytes: return hexbytes.HexBytes( keccak256( self.exchange_address, self.maker_address, self.taker_address, self.maker_token, self.taker_token, self.fee_recipient, self.maker_token_amount, self.taker_token_amount, self.maker_fee, self.taker_fee, self.expiration_timestamp_in_sec, self.salt, ) ) def __eq__(self, other: object) -> bool: if isinstance(other, Order): return self.hash() == other.hash() else: return False class SignableOrder(Order): def __init__( self, exchange_address: str, maker_address: str, taker_address: str, maker_token: str, taker_token: str, fee_recipient: str, maker_token_amount: int, taker_token_amount: int, maker_fee: int, taker_fee: int, expiration_timestamp_in_sec: int, salt: int, ) -> None: super().__init__( exchange_address, maker_address, taker_address, maker_token, taker_token, fee_recipient, maker_token_amount, taker_token_amount, maker_fee, taker_fee, expiration_timestamp_in_sec, salt, v=0, r=hexbytes.HexBytes(b""), s=hexbytes.HexBytes(b""), ) def sign(self, key) -> None: v, r, s = eth_sign(self.hash(), key) self.v = v self.r = hexbytes.HexBytes(r) self.s = hexbytes.HexBytes(s)
python
#!/usr/bin/env python3 # Test whether a client subscribed to a topic receives its own message sent to that topic, for long topics. from mosq_test_helper import * def do_test(topic, succeeds): rc = 1 mid = 53 keepalive = 60 connect_packet = mosq_test.gen_connect("subpub-qos0-test", keepalive=keepalive) connack_packet = mosq_test.gen_connack(rc=0) subscribe_packet = mosq_test.gen_subscribe(mid, topic, 0) suback_packet = mosq_test.gen_suback(mid, 0) publish_packet = mosq_test.gen_publish(topic, qos=0, payload="message") port = mosq_test.get_port() broker = mosq_test.start_broker(filename=os.path.basename(__file__), port=port) try: sock = mosq_test.do_client_connect(connect_packet, connack_packet, timeout=20, port=port) if succeeds == True: mosq_test.do_send_receive(sock, subscribe_packet, suback_packet, "suback") mosq_test.do_send_receive(sock, publish_packet, publish_packet, "publish") else: mosq_test.do_send_receive(sock, subscribe_packet, b"", "suback") rc = 0 sock.close() except mosq_test.TestError: pass finally: broker.terminate() broker.wait() (stdo, stde) = broker.communicate() if rc: print(stde.decode('utf-8')) exit(rc) do_test("/"*200, True) # 200 max hierarchy limit do_test("abc/"*199+"d", True) # 200 max hierarchy limit, longer overall string than 200 do_test("/"*201, False) # Exceeds 200 max hierarchy limit do_test("abc/"*201+"d", False) # Exceeds 200 max hierarchy limit, longer overall string than 200 exit(0)
python
import numpy as np from pydeeprecsys.rl.agents.agent import ReinforcementLearning from typing import Any, List, Optional from pydeeprecsys.rl.experience_replay.experience_buffer import ExperienceReplayBuffer from pydeeprecsys.rl.experience_replay.buffer_parameters import ( ExperienceReplayBufferParameters, ) from pydeeprecsys.rl.neural_networks.policy_estimator import PolicyEstimator from torch import FloatTensor class ReinforceAgent(ReinforcementLearning): """Policy estimator using a value estimator as a baseline. It's on-policy, for discrete action spaces, and episodic environments.""" def __init__( self, n_actions: int, state_size: int, hidden_layers: Optional[List[int]] = None, discount_factor: int = 0.99, # a.k.a gamma learning_rate=1e-3, ): self.episode_count = 0 if not hidden_layers: hidden_layers = [state_size * 2, state_size * 2] self.policy_estimator = PolicyEstimator( state_size, hidden_layers, n_actions, learning_rate=learning_rate, ) self.discount_factor = discount_factor # starts the buffer self.reset_buffer() def reset_buffer(self): self.buffer = ExperienceReplayBuffer( ExperienceReplayBufferParameters(10000, 1, 1) ) def top_k_actions_for_state(self, state: Any, k: int = 1) -> List[int]: return self.policy_estimator.predict(state, k=k) def action_for_state(self, state: Any) -> int: return self.top_k_actions_for_state(state)[0] def store_experience( self, state: Any, action: Any, reward: float, done: bool, new_state: Any ): state_flat = state.flatten() new_state_flat = new_state.flatten() self.buffer.store_experience(state_flat, action, reward, done, new_state_flat) # FIXME: should learn after every episode, or after every N experiences? if done: # and self.buffer.ready_to_predict(): self.learn_from_experiences() self.reset_buffer() def discounted_rewards(self, rewards: np.array) -> np.array: """From a list of rewards obtained in an episode, we calculate the return minus the baseline. The baseline is the list of discounted rewards minus the mean, divided by the standard deviation.""" discount_r = np.zeros_like(rewards) timesteps = range(len(rewards)) reward_sum = 0 for i in reversed(timesteps): reward_sum = rewards[i] + self.discount_factor * reward_sum discount_r[i] = reward_sum return_mean = discount_r.mean() return_std = discount_r.std() baseline = (discount_r - return_mean) / return_std return baseline def learn_from_experiences(self): experiences = list(self.buffer.experience_queue) states, actions, rewards, dones, next_states = zip(*experiences) advantages = self.discounted_rewards(rewards) advantages_tensor = FloatTensor(advantages).to( device=self.policy_estimator.device ) self.policy_estimator.update(states, advantages_tensor, actions)
python
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.api import monitored_resource_pb2 # type: ignore from google.cloud.logging_v2.types import log_entry from google.protobuf import duration_pb2 # type: ignore from google.rpc import status_pb2 # type: ignore __protobuf__ = proto.module( package='google.logging.v2', manifest={ 'DeleteLogRequest', 'WriteLogEntriesRequest', 'WriteLogEntriesResponse', 'WriteLogEntriesPartialErrors', 'ListLogEntriesRequest', 'ListLogEntriesResponse', 'ListMonitoredResourceDescriptorsRequest', 'ListMonitoredResourceDescriptorsResponse', 'ListLogsRequest', 'ListLogsResponse', 'TailLogEntriesRequest', 'TailLogEntriesResponse', }, ) class DeleteLogRequest(proto.Message): r"""The parameters to DeleteLog. Attributes: log_name (str): Required. The resource name of the log to delete: :: "projects/[PROJECT_ID]/logs/[LOG_ID]" "organizations/[ORGANIZATION_ID]/logs/[LOG_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]/logs/[LOG_ID]" "folders/[FOLDER_ID]/logs/[LOG_ID]" ``[LOG_ID]`` must be URL-encoded. For example, ``"projects/my-project-id/logs/syslog"``, ``"organizations/1234567890/logs/cloudresourcemanager.googleapis.com%2Factivity"``. For more information about log names, see [LogEntry][google.logging.v2.LogEntry]. """ log_name = proto.Field( proto.STRING, number=1, ) class WriteLogEntriesRequest(proto.Message): r"""The parameters to WriteLogEntries. Attributes: log_name (str): Optional. A default log resource name that is assigned to all log entries in ``entries`` that do not specify a value for ``log_name``: :: "projects/[PROJECT_ID]/logs/[LOG_ID]" "organizations/[ORGANIZATION_ID]/logs/[LOG_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]/logs/[LOG_ID]" "folders/[FOLDER_ID]/logs/[LOG_ID]" ``[LOG_ID]`` must be URL-encoded. For example: :: "projects/my-project-id/logs/syslog" "organizations/1234567890/logs/cloudresourcemanager.googleapis.com%2Factivity" The permission ``logging.logEntries.create`` is needed on each project, organization, billing account, or folder that is receiving new log entries, whether the resource is specified in ``logName`` or in an individual log entry. resource (google.api.monitored_resource_pb2.MonitoredResource): Optional. A default monitored resource object that is assigned to all log entries in ``entries`` that do not specify a value for ``resource``. Example: :: { "type": "gce_instance", "labels": { "zone": "us-central1-a", "instance_id": "00000000000000000000" }} See [LogEntry][google.logging.v2.LogEntry]. labels (Mapping[str, str]): Optional. Default labels that are added to the ``labels`` field of all log entries in ``entries``. If a log entry already has a label with the same key as a label in this parameter, then the log entry's label is not changed. See [LogEntry][google.logging.v2.LogEntry]. entries (Sequence[google.cloud.logging_v2.types.LogEntry]): Required. The log entries to send to Logging. The order of log entries in this list does not matter. Values supplied in this method's ``log_name``, ``resource``, and ``labels`` fields are copied into those log entries in this list that do not include values for their corresponding fields. For more information, see the [LogEntry][google.logging.v2.LogEntry] type. If the ``timestamp`` or ``insert_id`` fields are missing in log entries, then this method supplies the current time or a unique identifier, respectively. The supplied values are chosen so that, among the log entries that did not supply their own values, the entries earlier in the list will sort before the entries later in the list. See the ``entries.list`` method. Log entries with timestamps that are more than the `logs retention period <https://cloud.google.com/logging/quota-policy>`__ in the past or more than 24 hours in the future will not be available when calling ``entries.list``. However, those log entries can still be `exported with LogSinks <https://cloud.google.com/logging/docs/api/tasks/exporting-logs>`__. To improve throughput and to avoid exceeding the `quota limit <https://cloud.google.com/logging/quota-policy>`__ for calls to ``entries.write``, you should try to include several log entries in this list, rather than calling this method for each individual log entry. partial_success (bool): Optional. Whether valid entries should be written even if some other entries fail due to INVALID_ARGUMENT or PERMISSION_DENIED errors. If any entry is not written, then the response status is the error associated with one of the failed entries and the response includes error details keyed by the entries' zero-based index in the ``entries.write`` method. dry_run (bool): Optional. If true, the request should expect normal response, but the entries won't be persisted nor exported. Useful for checking whether the logging API endpoints are working properly before sending valuable data. """ log_name = proto.Field( proto.STRING, number=1, ) resource = proto.Field( proto.MESSAGE, number=2, message=monitored_resource_pb2.MonitoredResource, ) labels = proto.MapField( proto.STRING, proto.STRING, number=3, ) entries = proto.RepeatedField( proto.MESSAGE, number=4, message=log_entry.LogEntry, ) partial_success = proto.Field( proto.BOOL, number=5, ) dry_run = proto.Field( proto.BOOL, number=6, ) class WriteLogEntriesResponse(proto.Message): r"""Result returned from WriteLogEntries. """ class WriteLogEntriesPartialErrors(proto.Message): r"""Error details for WriteLogEntries with partial success. Attributes: log_entry_errors (Mapping[int, google.rpc.status_pb2.Status]): When ``WriteLogEntriesRequest.partial_success`` is true, records the error status for entries that were not written due to a permanent error, keyed by the entry's zero-based index in ``WriteLogEntriesRequest.entries``. Failed requests for which no entries are written will not include per-entry errors. """ log_entry_errors = proto.MapField( proto.INT32, proto.MESSAGE, number=1, message=status_pb2.Status, ) class ListLogEntriesRequest(proto.Message): r"""The parameters to ``ListLogEntries``. Attributes: resource_names (Sequence[str]): Required. Names of one or more parent resources from which to retrieve log entries: :: "projects/[PROJECT_ID]" "organizations/[ORGANIZATION_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]" "folders/[FOLDER_ID]" May alternatively be one or more views projects/[PROJECT_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] organization/[ORGANIZATION_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] billingAccounts/[BILLING_ACCOUNT_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] folders/[FOLDER_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] Projects listed in the ``project_ids`` field are added to this list. filter (str): Optional. A filter that chooses which log entries to return. See `Advanced Logs Queries <https://cloud.google.com/logging/docs/view/advanced-queries>`__. Only log entries that match the filter are returned. An empty filter matches all log entries in the resources listed in ``resource_names``. Referencing a parent resource that is not listed in ``resource_names`` will cause the filter to return no results. The maximum length of the filter is 20000 characters. order_by (str): Optional. How the results should be sorted. Presently, the only permitted values are ``"timestamp asc"`` (default) and ``"timestamp desc"``. The first option returns entries in order of increasing values of ``LogEntry.timestamp`` (oldest first), and the second option returns entries in order of decreasing timestamps (newest first). Entries with equal timestamps are returned in order of their ``insert_id`` values. page_size (int): Optional. The maximum number of results to return from this request. Default is 50. If the value is negative or exceeds 1000, the request is rejected. The presence of ``next_page_token`` in the response indicates that more results might be available. page_token (str): Optional. If present, then retrieve the next batch of results from the preceding call to this method. ``page_token`` must be the value of ``next_page_token`` from the previous response. The values of other method parameters should be identical to those in the previous call. """ resource_names = proto.RepeatedField( proto.STRING, number=8, ) filter = proto.Field( proto.STRING, number=2, ) order_by = proto.Field( proto.STRING, number=3, ) page_size = proto.Field( proto.INT32, number=4, ) page_token = proto.Field( proto.STRING, number=5, ) class ListLogEntriesResponse(proto.Message): r"""Result returned from ``ListLogEntries``. Attributes: entries (Sequence[google.cloud.logging_v2.types.LogEntry]): A list of log entries. If ``entries`` is empty, ``nextPageToken`` may still be returned, indicating that more entries may exist. See ``nextPageToken`` for more information. next_page_token (str): If there might be more results than those appearing in this response, then ``nextPageToken`` is included. To get the next set of results, call this method again using the value of ``nextPageToken`` as ``pageToken``. If a value for ``next_page_token`` appears and the ``entries`` field is empty, it means that the search found no log entries so far but it did not have time to search all the possible log entries. Retry the method with this value for ``page_token`` to continue the search. Alternatively, consider speeding up the search by changing your filter to specify a single log name or resource type, or to narrow the time range of the search. """ @property def raw_page(self): return self entries = proto.RepeatedField( proto.MESSAGE, number=1, message=log_entry.LogEntry, ) next_page_token = proto.Field( proto.STRING, number=2, ) class ListMonitoredResourceDescriptorsRequest(proto.Message): r"""The parameters to ListMonitoredResourceDescriptors Attributes: page_size (int): Optional. The maximum number of results to return from this request. Non-positive values are ignored. The presence of ``nextPageToken`` in the response indicates that more results might be available. page_token (str): Optional. If present, then retrieve the next batch of results from the preceding call to this method. ``pageToken`` must be the value of ``nextPageToken`` from the previous response. The values of other method parameters should be identical to those in the previous call. """ page_size = proto.Field( proto.INT32, number=1, ) page_token = proto.Field( proto.STRING, number=2, ) class ListMonitoredResourceDescriptorsResponse(proto.Message): r"""Result returned from ListMonitoredResourceDescriptors. Attributes: resource_descriptors (Sequence[google.api.monitored_resource_pb2.MonitoredResourceDescriptor]): A list of resource descriptors. next_page_token (str): If there might be more results than those appearing in this response, then ``nextPageToken`` is included. To get the next set of results, call this method again using the value of ``nextPageToken`` as ``pageToken``. """ @property def raw_page(self): return self resource_descriptors = proto.RepeatedField( proto.MESSAGE, number=1, message=monitored_resource_pb2.MonitoredResourceDescriptor, ) next_page_token = proto.Field( proto.STRING, number=2, ) class ListLogsRequest(proto.Message): r"""The parameters to ListLogs. Attributes: parent (str): Required. The resource name that owns the logs: :: "projects/[PROJECT_ID]" "organizations/[ORGANIZATION_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]" "folders/[FOLDER_ID]". page_size (int): Optional. The maximum number of results to return from this request. Non-positive values are ignored. The presence of ``nextPageToken`` in the response indicates that more results might be available. page_token (str): Optional. If present, then retrieve the next batch of results from the preceding call to this method. ``pageToken`` must be the value of ``nextPageToken`` from the previous response. The values of other method parameters should be identical to those in the previous call. resource_names (Sequence[str]): Optional. The resource name that owns the logs: projects/[PROJECT_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] organization/[ORGANIZATION_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] billingAccounts/[BILLING_ACCOUNT_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] folders/[FOLDER_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID] To support legacy queries, it could also be: "projects/[PROJECT_ID]" "organizations/[ORGANIZATION_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]" "folders/[FOLDER_ID]". """ parent = proto.Field( proto.STRING, number=1, ) page_size = proto.Field( proto.INT32, number=2, ) page_token = proto.Field( proto.STRING, number=3, ) resource_names = proto.RepeatedField( proto.STRING, number=8, ) class ListLogsResponse(proto.Message): r"""Result returned from ListLogs. Attributes: log_names (Sequence[str]): A list of log names. For example, ``"projects/my-project/logs/syslog"`` or ``"organizations/123/logs/cloudresourcemanager.googleapis.com%2Factivity"``. next_page_token (str): If there might be more results than those appearing in this response, then ``nextPageToken`` is included. To get the next set of results, call this method again using the value of ``nextPageToken`` as ``pageToken``. """ @property def raw_page(self): return self log_names = proto.RepeatedField( proto.STRING, number=3, ) next_page_token = proto.Field( proto.STRING, number=2, ) class TailLogEntriesRequest(proto.Message): r"""The parameters to ``TailLogEntries``. Attributes: resource_names (Sequence[str]): Required. Name of a parent resource from which to retrieve log entries: :: "projects/[PROJECT_ID]" "organizations/[ORGANIZATION_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]" "folders/[FOLDER_ID]" May alternatively be one or more views: "projects/[PROJECT_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID]" "organization/[ORGANIZATION_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID]" "folders/[FOLDER_ID]/locations/[LOCATION_ID]/buckets/[BUCKET_ID]/views/[VIEW_ID]". filter (str): Optional. A filter that chooses which log entries to return. See `Advanced Logs Filters <https://cloud.google.com/logging/docs/view/advanced_filters>`__. Only log entries that match the filter are returned. An empty filter matches all log entries in the resources listed in ``resource_names``. Referencing a parent resource that is not in ``resource_names`` will cause the filter to return no results. The maximum length of the filter is 20000 characters. buffer_window (google.protobuf.duration_pb2.Duration): Optional. The amount of time to buffer log entries at the server before being returned to prevent out of order results due to late arriving log entries. Valid values are between 0-60000 milliseconds. Defaults to 2000 milliseconds. """ resource_names = proto.RepeatedField( proto.STRING, number=1, ) filter = proto.Field( proto.STRING, number=2, ) buffer_window = proto.Field( proto.MESSAGE, number=3, message=duration_pb2.Duration, ) class TailLogEntriesResponse(proto.Message): r"""Result returned from ``TailLogEntries``. Attributes: entries (Sequence[google.cloud.logging_v2.types.LogEntry]): A list of log entries. Each response in the stream will order entries with increasing values of ``LogEntry.timestamp``. Ordering is not guaranteed between separate responses. suppression_info (Sequence[google.cloud.logging_v2.types.TailLogEntriesResponse.SuppressionInfo]): If entries that otherwise would have been included in the session were not sent back to the client, counts of relevant entries omitted from the session with the reason that they were not included. There will be at most one of each reason per response. The counts represent the number of suppressed entries since the last streamed response. """ class SuppressionInfo(proto.Message): r"""Information about entries that were omitted from the session. Attributes: reason (google.cloud.logging_v2.types.TailLogEntriesResponse.SuppressionInfo.Reason): The reason that entries were omitted from the session. suppressed_count (int): A lower bound on the count of entries omitted due to ``reason``. """ class Reason(proto.Enum): r"""An indicator of why entries were omitted.""" REASON_UNSPECIFIED = 0 RATE_LIMIT = 1 NOT_CONSUMED = 2 reason = proto.Field( proto.ENUM, number=1, enum='TailLogEntriesResponse.SuppressionInfo.Reason', ) suppressed_count = proto.Field( proto.INT32, number=2, ) entries = proto.RepeatedField( proto.MESSAGE, number=1, message=log_entry.LogEntry, ) suppression_info = proto.RepeatedField( proto.MESSAGE, number=2, message=SuppressionInfo, ) __all__ = tuple(sorted(__protobuf__.manifest))
python
from source.exceptions.not_found import NotFoundException from source.repositories.player_tournament import PlayerTournamentRepository import source.commons.message as message class PlayerTournamentBusiness: def __init__(self): self.player_tournament_repository = PlayerTournamentRepository() def find_all(self): result = self.player_tournament_repository.find_all() if not result: raise NotFoundException(None, message.REGISTER_NOT_FOUND) return result def get_ranking(self, tournament_id): result = self.player_tournament_repository.get_ranking(tournament_id) if not result: raise NotFoundException(None, message.REGISTER_NOT_FOUND) return result def get_player_tournament(self, data): result = self.player_tournament_repository.get_player_tournament(data) if not result: raise NotFoundException(None, message.REGISTER_NOT_FOUND) return result def find_by_id(self, field_id): result = self.player_tournament_repository.find_by_id(field_id) if not result: raise NotFoundException(None, message.REGISTER_NOT_FOUND) return result def save(self, data): return self.player_tournament_repository.save( data.get('player_id'), data.get('tournament_id'), data.get('position'), data.get('points_acum'), data.get('adm') ) def update(self, field_id, data): if not self.player_tournament_repository.find_by_id(field_id): raise NotFoundException(None, message.PLAYER_NOT_FOUND) for i in data: self.player_tournament_repository.update(field_id, i, data[i]) return [] def delete(self, field_id): if not self.player_tournament_repository.find_by_id(field_id): raise NotFoundException(None, message.PLAYER_NOT_FOUND) self.player_tournament_repository.delete(field_id) return []
python
from datetime import datetime from pathlib import Path from typing import Optional, Tuple, Union, Sequence, List from pydantic import BaseModel, validator class MdocSectionData(BaseModel): """Data model for section data in a SerialEM mdoc file. https://bio3d.colorado.edu/SerialEM/hlp/html/about_formats.htm """ ZValue: Optional[int] TiltAngle: Optional[float] PieceCoordinates: Optional[Tuple[float, float, int]] StagePosition: Tuple[float, float] StageZ: Optional[float] Magnification: Optional[float] CameraLength: Optional[float] MagIndex: Optional[int] Intensity: Optional[float] SuperMontCoords: Optional[Tuple[float, float]] PixelSpacing: Optional[float] ExposureDose: Optional[float] DoseRate: Optional[float] SpotSize: Optional[float] Defocus: Optional[float] TargetDefocus: Optional[float] ImageShift: Optional[Tuple[float, float]] RotationAngle: Optional[float] ExposureTime: Optional[float] Binning: Optional[int] UsingCDS: Optional[bool] CameraIndex: Optional[int] DividedBy2: Optional[bool] LowDoseConSet: Optional[int] MinMaxMean: Optional[Tuple[float, float, float]] PriorRecordDose: Optional[float] XedgeDxy: Optional[Tuple[float, float]] YedgeDxy: Optional[Tuple[float, float]] XedgeDxyVS: Optional[Tuple[float, float]] YedgeDxyVS: Optional[Tuple[float, float]] StageOffsets: Optional[Tuple[float, float]] AlignedPieceCoords: Optional[Tuple[float, float]] AlignedPieceCoordsVS: Optional[Tuple[float, float]] SubFramePath: Optional[Path] NumSubFrames: Optional[int] FrameDosesAndNumbers: Optional[Sequence[Tuple[float, int]]] DateTime: Optional[datetime] NavigatorLabel: Optional[str] FilterSlitAndLoss: Optional[Tuple[float, float]] ChannelName: Optional[str] MultiShotHoleAndPosition: Optional[Union[Tuple[int, int], Tuple[int, int, int]]] CameraPixelSize: Optional[float] Voltage: Optional[float] @validator( 'PieceCoordinates', 'SuperMontCoords', 'ImageShift', 'MinMaxMean', 'StagePosition', 'XedgeDxy', 'YedgeDxy', 'XedgeDxyVS', 'XedgeDxyVS', 'StageOffsets', 'AlignedPieceCoords', 'AlignedPieceCoordsVS', 'FrameDosesAndNumbers', 'FilterSlitAndLoss', 'MultiShotHoleAndPosition', pre=True) def multi_number_string_to_tuple(cls, value: str): return tuple(value.split()) @validator('DateTime', pre=True) def mdoc_datetime_to_datetime(cls, value: str): return datetime.strptime(value, '%d-%b-%y %H:%M:%S', ) @classmethod def from_lines(cls, lines: List[str]): lines = [line.strip('[]') for line in lines if len(line) > 0] key_value_pairs = [line.split('=') for line in lines] key_value_pairs = [ (k.strip(), v.strip()) for k, v in key_value_pairs ] lines = {k: v for k, v in key_value_pairs} return cls(**lines)
python
from logging import getLogger from typing import List from sqlalchemy import Column, ForeignKey, Integer, String from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.orm import backref, relationship from app.models import orm from app.settings import env_settings logger = getLogger(__name__) class ActorEntryAssociation(orm.Base): actor_id = Column(Integer, ForeignKey("actor.id"), primary_key=True) entry_id = Column(Integer, ForeignKey("entry.id"), primary_key=True) role = Column(String) def __init__(self, actor_id: int, role: str): self.actor_id = actor_id self.role = role def __repr__(self): if not env_settings().is_dev(): logger.warning( f"Calling {self.__class__.__name__} __repr__ might cause additional select queries" ) return "entry actor: %s: %s:%s " % ( self.entry.title[:40] + "..." if len(self.entry.title) > 40 else self.entry.title, self.actor.registered_name, self.role, ) def csv_format(self, sep: str): return self.actor.registered_name + sep + self.role class EntryTagAssociation(orm.Base): entry_id = Column(Integer, ForeignKey("entry.id"), primary_key=True) tag_id = Column(Integer, ForeignKey("tag.id"), primary_key=True) entry = relationship(orm.Entry, back_populates="tags") tag = relationship(orm.Tag, backref=backref("entries_tag")) group_name = Column(String, nullable=True) config = Column(JSONB) def __init__(self, tag: orm.Tag, group_name: str): self.tag = tag self.group_name = group_name def __repr__(self): if not env_settings().is_dev(): logger.warning( f"Calling {self.__class__.__name__} __repr__ might cause additional select queries" ) return "entry tag: %s -> %s " % ( self.entry.title[:40] + "..." if len(self.entry.title) > 40 else self.entry.title, self.tag.value, ) class EntryEntryAssociation(orm.Base): id = Column(Integer, primary_key=True, autoincrement=True) source_id = Column(Integer, ForeignKey("entry.id")) destination_id = Column(Integer, ForeignKey("entry.id")) source = relationship(orm.Entry, foreign_keys=[source_id]) destination = relationship(orm.Entry, foreign_keys=[destination_id]) # maybe also primary_key=True, if there could be multiple types of links between 2 entries # reference_type = Column(String, index=True, nullable=True) reference = Column(JSONB, nullable=True, default={}) def __init__(self, source: orm.Entry, destination: orm.Entry, reference: dict): self.source = source self.destination = destination self.reference = reference def __repr__(self): return ( f"Entry-Entry ref: {self.source.id}/{self.source.slug} -> " f"{self.destination.id}/{self.destination.slug}: {self.reference}" ) class EntryTranslation(orm.Base): id = Column(Integer, primary_key=True) entries = relationship("Entry", back_populates="translation_group") # we should have this so that no issue is raised def __init__(self, entries: List[orm.Entry]): self.entries = entries # class ActorTagAssociation(orm.Base): # actor_id = Column(Integer, ForeignKey("actor.id"), primary_key=True) # tag_id = Column(Integer, ForeignKey("tag.id"), primary_key=True) # # def __repr__(self): # if not env_settings().is_dev(): # logger.warning( # f"Calling {self.__class__.__name__} __repr__ might cause additional select queries" # ) # return "actor tag: %s: %s " % ( # self.entry.title[:40] + "..." # if len(self.entry.title) > 40 # else self.entry.title, # self.actor.registered_name, # )
python
import numpy as np import pandas as pd import os import sklearn from sklearn.decomposition import PCA import matplotlib.pyplot as plt # normalize numerical columns # one-hot categorical columns def get_data(classification=True, regression=False, download=False): url = 'https://raw.githubusercontent.com/Shane-Neeley/DrugMarket/master/drugmarket/drugmarket_dataframe.tsv' if download: df = pd.read_csv('drugmarket_dataframe.tsv', dtype={'MC':np.int64}, sep="\t") else: df = pd.read_csv(url, dtype={'MC':np.int64}, sep="\t") # remove outliers df = df[df['MC'] > 0] # df = df[ (df['Phase 4'] > 0) | (df['Phase 3'] > 0) | (df['Phase 2'] > 0) | (df['Phase 1'] > 0)] # has any trials # df = df[ (df['Phase 4'] < 500) | (df['Phase 3'] < 500) | (df['Phase 2'] < 500) | (df['Phase 1'] < 500)] # has too many trials df = df[df['Symbol'] != "SYK"] # stryker an outlier # easier to work with numpy array data = df.values # create a final output column of a category # 1 = >$1Billion market cap, 0 = less categ = np.array(data[:, -1] > 1e9, dtype=bool).astype(int) categ = np.array([categ]).T data = np.concatenate((data,categ),1) # shuffle it np.random.shuffle(data) # split features and labels X = data[:, 3:-2].astype(np.int64) # this just pulled excluded the last two columns if (classification == True): Y = data[:, -1].astype(np.int64) # this is the last column, 0 or 1 class for billion dollar valuation if (regression == True): Y = data[:, -2].astype(np.int64) # continuous value for marketcap # print(df) print(X) # print('X.shape before') # print(X.shape) # Too many tags, do dimensionality reduction just on the tags (column 4 and on ..) pca = PCA() reduced = pca.fit_transform(X[:, 4:]) # print('reduced.shape before') # print(reduced.shape) # plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Y, alpha=0.5) # plt.title('reduced') # plt.show() reduced = reduced[:, :25] # .. however much cutoff u want # print('reduced.shape after cutoff') # print(reduced.shape) # make new X X = np.concatenate((X[:,:4], reduced),1) #X = X[:,:4] # without tag data # print('X.shape after concatenate') # print(X.shape) # print(X) # plt.plot(pca.explained_variance_ratio_) # plt.title('explained_variance_ratio_') # plt.show() # cumulative variance # choose k = number of dimensions that gives us 95-99% variance cumulative = [] last = 0 for v in pca.explained_variance_ratio_: cumulative.append(last + v) last = cumulative[-1] # plt.plot(cumulative) # plt.title('cumulative') # plt.show() print('size X: ' + str(X.shape)) print('size Y: ' + str(Y.shape)) # normalize phase columns by X - mean / std for i in (0, 1, 2, 3): m = X[:, i].mean() s = X[:, i].std() X[:, i] = (X[:, i] - m) / s return X, Y, data if __name__ == '__main__': get_data()
python
import logging, sys, os, json, uuid from datapackage_pipelines.wrapper import ingest, spew from datapackage_pipelines.utilities.resources import PROP_STREAMING CLI_MODE = len(sys.argv) > 1 and sys.argv[1] == '--cli' if CLI_MODE: logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) logging.debug("CLI MODE!") parameters, datapackage, resources = {}, {}, [] else: parameters, datapackage, resources = ingest() default_parameters = {"num-rows": int(os.environ.get("NUM_ROWS", "10"))} parameters = dict(default_parameters, **parameters) logging.info(parameters) stats = {} aggregations = {"stats": stats} def get_resource(): for i in range(0, parameters["num-rows"]): yield {"uuid": str(uuid.uuid1()), "row_num": i} if CLI_MODE: for row in get_resource(): print(row) else: resource_descriptor = {PROP_STREAMING: True, "name": "noise", "path": "noise.csv", "schema": {"fields": [{"name": "uuid", "type": "string"}, {"name": "row_num", "type": "integer"}], "primaryKey": ["uuid"]}} spew(dict(datapackage, resources=[resource_descriptor]), [get_resource()], aggregations["stats"])
python
#!/usr/bin/python import logging import os import json import io import uuid # -------------------------------------------------------------------------------------- # Save this code in file "process_wrapper.py" and adapt as indicated in inline comments. # # Notes: # - This is a Python 3 script. # - The inputs will be given values by name, thus their order has no importance ... # - ... except that the inputs with a default value must be listed last. # - Parameter names are automatically converted into valid Python variable names. # - Any empty line or line starting with a '#' character will be ignored. # -------------------------------------------------------------------------------------- logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) stream = io.StringIO() handler = logging.StreamHandler(stream) logger.addHandler(handler) max_cpu=8 def execute(out_dir, collection_dir, models_dir, tilesAndShapes_json, daterange_json): """ Inputs: collection_dir -- collection_dir -- 45/User String models_dir -- models_dir -- 45/User String tilesAndShapes_json -- tilesAndShapes_json -- 45/User String daterange_json -- daterange_json -- 45/User String Outputs: segmentedfiles_json -- segmentedfiles_json -- 45/User String exceptionLog -- exceptionLog -- 45/User String Main Dependency: mep-wps/uc-bundle-1 Software Dependencies: pywps-4 Processing Resources: ram -- 15 disk -- 10 cpu -- 8 """ segmentedfiles_json = None exceptionLog=None # ---------------------------------------------------------------------------------- # Insert your own code below. # The files generated by your code must be stored in the "out_dir" folder. # Only the content of that folder is persisted in the datastore. # Give appropriate values to the output parameters. These will be passed to the next # process(es) following the workflow connections. # ---------------------------------------------------------------------------------- try: logger.info("Starting...") out_dir=os.path.join('/'.join(models_dir.split('/')[:-1]),'output',str(uuid.uuid4().hex)) os.makedirs(out_dir,exist_ok=True) logger.info("Overriding out_dir to "+str(out_dir)) logger.info("Contents of out_dir: "+str(os.listdir(path=str(out_dir)))) #os.environ['JAVA_HOME']='/usr/local/jre' #os.environ['JRE_HOME']='/usr/local/jre' ncpu=1 import subprocess try: ncpu=int(subprocess.check_output("/usr/bin/nproc")) except: pass if ncpu>max_cpu: ncpu=max_cpu logger.info("Using {} cores".format(str(ncpu))) logger.info("Loading dependencies...") from parcel.feature.segmentation.segmentation_filebased import main_segmentation from asb_usecases.logic.common import polygon2bboxwindow logger.info("Loading input jsons...") tilesAndShapes=json.loads(tilesAndShapes_json) daterange=json.loads(daterange_json) logger.info("Computing...") segmentedfiles=[] for i in range(len(tilesAndShapes)): workdir=os.path.join(str(out_dir),str(i)) #workdir=os.path.join(models_dir,str(i)) os.makedirs(workdir,exist_ok=True) iresults={} for tile,shape in tilesAndShapes[i].items(): # TODO this needs to be merged with segmentation, not to glob twice bbox=polygon2bboxwindow.compute(collection_dir+'/*/01/*/*'+tile+'*/**/*'+tile+'*.tif', shape) outimg=main_segmentation( imgdir=collection_dir, maskdir=os.path.join(models_dir,'convmasks10m'), modeldir=os.path.join(models_dir,'models'), outdir=workdir, tiles=tile, startdate=daterange['start'], enddate=daterange['end'], maxcloudcover=int(100), bbox=bbox, #nwindowspermodel=5, ncpu=ncpu ) iresults[tile]=outimg segmentedfiles.append(iresults) logger.info("Contents of out_dir: "+str(os.listdir(path=str(out_dir)))) logger.info("Dumping results into json...") segmentedfiles_json=json.dumps(segmentedfiles) logger.info("Finished...") except Exception as e: logger.exception("Exception in wrapper.") logging.shutdown() stream.flush() exceptionLog=stream.getvalue() # ---------------------------------------------------------------------------------- # The wrapper must return a dictionary that contains the output parameter values. # ---------------------------------------------------------------------------------- return { "segmentedfiles_json": segmentedfiles_json, "exceptionLog": exceptionLog }
python
from spec2wav.modules import Generator, Audio2Mel, Audio2Cqt from pathlib import Path import yaml import torch import os def get_default_device(): if torch.cuda.is_available(): return "cuda" else: return "cpu" def load_model(spec2wav_path, device=get_default_device()): """ Args: spec2wav_path (str or Path): path to the root folder of dumped text2mel device (str or torch.device): device to load the model """ root = Path(spec2wav_path) with open(root / "args.yml", "r") as f: args = yaml.load(f, Loader=yaml.FullLoader) netG = Generator(args.n_mel_channels, args.ngf, args.n_residual_layers).to(device) netG.load_state_dict(torch.load(root / "best_netG.pt", map_location=device)) return netG class MelVocoder: def __init__( self, path, device=get_default_device(), github=False, model_name="multi_speaker", ): #self.fft = Audio2Mel().to(device) self.fft = Audio2Cqt().to(device) if github: netG = Generator(80, 32, 3).to(device) root = Path(os.path.dirname(__file__)).parent netG.load_state_dict( torch.load(root / f"models/{model_name}.pt", map_location=device) ) self.spec2wav = netG else: self.spec2wav = load_model(path, device) self.device = device def __call__(self, audio): """ Performs audio to mel conversion (See Audio2Mel in spec2wav/modules.py) Args: audio (torch.tensor): PyTorch tensor containing audio (batch_size, timesteps) Returns: torch.tensor: log-mel-spectrogram computed on input audio (batch_size, 80, timesteps) """ return self.fft(audio.unsqueeze(1).to(self.device)) def inverse(self, mel): """ Performs mel2audio conversion Args: mel (torch.tensor): PyTorch tensor containing log-mel spectrograms (batch_size, 80, timesteps) Returns: torch.tensor: Inverted raw audio (batch_size, timesteps) """ with torch.no_grad(): return self.spec2wav(mel.to(self.device)).squeeze(1)
python
from app import app app.run('0.0.0.0')
python
import concurrent.futures as cf import numpy as np from multiprocessing import cpu_count from tqdm import tqdm from worms.util import jit, InProcessExecutor from worms.search.result import ResultJIT from worms.clashgrid import ClashGrid def prune_clashes( ssdag, crit, rslt, max_clash_check=-1, ca_clash_dis=4.0, parallel=False, approx=0, verbosity=0, merge_bblock=None, pbar=False, pbar_interval=10.0, context_structure=None, **kw, ): # print('todo: clash check should handle symmetry') if max_clash_check == 0: return rslt max_clash_check = min(max_clash_check, len(rslt.idx)) if max_clash_check < 0: max_clash_check = len(rslt.idx) if not pbar: print( f"mbb{f'{merge_bblock:04}' if merge_bblock else 'none'} checking clashes", max_clash_check, "of", len(rslt.err), ) verts = tuple(ssdag.verts) # exe = cf.ProcessPoolExecutor if parallel else InProcessExecutor exe = InProcessExecutor with exe() as pool: futures = list() for i in range(max_clash_check): dirns = tuple([v.dirn for v in verts]) iress = tuple([v.ires for v in verts]) chains = tuple([ ssdag.bbs[k][verts[k].ibblock[rslt.idx[i, k]]].chains for k in range(len(ssdag.verts)) ]) ncacs = tuple([ ssdag.bbs[k][verts[k].ibblock[rslt.idx[i, k]]].ncac for k in range(len(ssdag.verts)) ]) if isinstance(context_structure, ClashGrid): clash = False for pos, ncac in zip(rslt.pos[i], ncacs): xyz = pos @ ncac[..., None] if context_structure.clashcheck(xyz.squeeze()): clash = True break if clash: continue futures.append( pool.submit( _check_all_chain_clashes, dirns=dirns, iress=iress, idx=rslt.idx[i], pos=rslt.pos[i], chn=chains, ncacs=ncacs, thresh=ca_clash_dis * ca_clash_dis, approx=approx, )) futures[-1].index = i if pbar: desc = "checking clashes " if merge_bblock is not None and merge_bblock >= 0: desc = f"{desc} mbb{merge_bblock:04d}" if merge_bblock is None: merge_bblock = 0 futures = tqdm( cf.as_completed(futures), desc=desc, total=len(futures), mininterval=pbar_interval, position=merge_bblock + 1, ) ok = np.zeros(max_clash_check, dtype="?") for f in futures: ok[f.index] = f.result() return ResultJIT( rslt.pos[:max_clash_check][ok], rslt.idx[:max_clash_check][ok], rslt.err[:max_clash_check][ok], rslt.stats, ) @jit def _chain_bounds(dirn, ires, chains, spliced_only=False, trim=8): "return bounds for only spliced chains, with spliced away sequence removed" chains = np.copy(chains) bounds = [] seenchain = -1 if dirn[0] < 2: ir = ires[0] for i in range(len(chains)): lb, ub = chains[i] if lb <= ir < ub: chains[i, dirn[0]] = ir + trim * (1, -1)[dirn[0]] bounds.append((chains[i, 0], chains[i, 1])) seenchain = i if dirn[1] < 2: ir = ires[1] for i in range(len(chains)): lb, ub = chains[i] if lb <= ir < ub: chains[i, dirn[1]] = ir + trim * (1, -1)[dirn[1]] if seenchain == i: if dirn[1]: tmp = bounds[0][0], chains[i, 1] else: tmp = chains[i, 0], bounds[0][1] # bounds[0][dirn[1]] = chains[i, dirn[1]] bounds[0] = tmp else: bounds.append((chains[i, 0], chains[i, 1])) if spliced_only: return np.array(bounds, dtype=np.int32) else: return chains @jit def _has_ca_clash(position, ncacs, i, ichntrm, j, jchntrm, thresh, step=1): for ichain in range(len(ichntrm)): ilb, iub = ichntrm[ichain] for jchain in range(len(jchntrm)): jlb, jub = jchntrm[jchain] for ir in range(ilb, iub, step): ica = position[i] @ ncacs[i][ir, 1] for jr in range(jlb, jub, step): jca = position[j] @ ncacs[j][jr, 1] d2 = np.sum((ica - jca)**2) if d2 < thresh: return True return False @jit def _check_all_chain_clashes(dirns, iress, idx, pos, chn, ncacs, thresh, approx): pos = pos.astype(np.float64) for step in (3, 1): # 20% speedup.... ug... need BVH... # only adjacent verts, only spliced chains for i in range(len(dirns) - 1): ichn = _chain_bounds(dirns[i], iress[i][idx[i]], chn[i], 1, 8) for j in range(i + 1, i + 2): jchn = _chain_bounds(dirns[j], iress[j][idx[j]], chn[j], 1, 8) if _has_ca_clash(pos, ncacs, i, ichn, j, jchn, thresh, step): return False if step == 1 and approx == 2: return True # only adjacent verts, all chains for i in range(len(dirns) - 1): ichn = _chain_bounds(dirns[i], iress[i][idx[i]], chn[i], 0, 8) for j in range(i + 1, i + 2): jchn = _chain_bounds(dirns[j], iress[j][idx[j]], chn[j], 0, 8) if _has_ca_clash(pos, ncacs, i, ichn, j, jchn, thresh, step): return False if step == 1 and approx == 1: return True # all verts, all chains for i in range(len(dirns) - 1): ichn = _chain_bounds(dirns[i], iress[i][idx[i]], chn[i], 0, 8) for j in range(i + 1, len(dirns)): jchn = _chain_bounds(dirns[j], iress[j][idx[j]], chn[j], 0, 8) if _has_ca_clash(pos, ncacs, i, ichn, j, jchn, thresh, step): return False return True
python
import os # os.environ["CUDA_VISIBLE_DEVICES"] = "0" from ResNet import ResNet import argparse from utils import * import time from common.utils import allocate_gpu def find_next_time(path_list, default=-1): if default > -1: return default run_times = [int(path.split('_')[0]) for path in path_list] # last_time = max(run_times) if default == -1: next_time = max(run_times) + 1 if run_times else 0 return next_time elif default == -2: return max(run_times) if run_times else 0 def find_next_time(path_list,default=-1): run_times=[int(path.split('_')[0]) for path in path_list ] # print(run_times) last_time=max(run_times) if run_times else 0 if default == -1: return last_time+1 else: return default """parsing and configuration""" def parse_args(): GPU = -1 GPU_ID = allocate_gpu(GPU) print('Using GPU %d'%GPU_ID) gpuNo = 'gpu10_%d'%GPU_ID optimizer_name='adashift' #adam adashift amsgrad sgd lr=0.01 beta1=0.9 beta2=0.999 keep_num=10 pred_g_op='max' epoch_num = 50 desc = "Tensorflow implementation of ResNet" parser = argparse.ArgumentParser(description=desc) parser.add_argument('--phase', type=str, default='train', help='train or test ?') parser.add_argument('--dataset', type=str, default='cifar10', help='[cifar10, mnist, fashion-mnist, tiny') parser.add_argument('--epoch', type=int, default=epoch_num, help='The number of epochs to run') parser.add_argument('--test_span', type=int, default=20, help='step interval for test') parser.add_argument('--batch_size', type=int, default=128, help='The size of batch per gpu') parser.add_argument('--res_n', type=int, default=18, help='18, 34, 50, 101, 152') parser.add_argument('--gpuNo', type=str, default=gpuNo, help='which gpu to use') parser.add_argument('--run_time', type=int, default=-1, help="which time to run this experiment, used in the identifier of experiment. -1 automaticly add one to last time, -2 keep last record") # parser.add_argument('--GPU', type=int, default=-1, help="which gpu to use") # parser.add_argument('--T', type=str, default=T, help='identifier of experiment') parser.add_argument('--optimizer_name', type=str, default=optimizer_name, help='[sgd, adam, amsgrad, adashift') parser.add_argument('--lr', type=float, default=lr, help='initial learning rate') parser.add_argument('--beta1', type=float, default=beta1, help='beta1 for optimizer') parser.add_argument('--beta2', type=float, default=beta2, help='beta2 for optimizer') parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for optimizer') parser.add_argument('--keep_num', type=int, default=keep_num, help='keep_num for adashift optimizer') parser.add_argument('--pred_g_op', type=str, default=pred_g_op, help='pred_g_op for adashift optimizer') parser.add_argument('--checkpoint_dir', type=str, default="", help='Directory name to save the checkpoints') parser.add_argument('--log_dir', type=str, default="", help='Directory name to save training logs') return check_args(parser.parse_args()) """checking arguments""" def check_args(args): # # --checkpoint_dir # check_folder(args.checkpoint_dir) # # # --result_dir # check_folder(args.log_dir) # --epoch try: assert args.epoch >= 1 except: print('number of epochs must be larger than or equal to one') # --batch_size try: assert args.batch_size >= 1 except: print('batch size must be larger than or equal to one') return args if __name__ == '__main__': # parse arguments args = parse_args() if not os.path.exists('./logs'): os.makedirs('./logs') # return args if args is None: exit() run_time=find_next_time(os.listdir('./logs'),args.run_time) T='%d_%s_%s_%d_%.3f_%.2f_%.3f'%(run_time,args.optimizer_name,args.pred_g_op,args.keep_num,args.lr,args.beta1,args.beta2) args.T = T print('Check params: %s'%T) if args.run_time ==-1: time.sleep(6) log_dir='./logs/%s'%T if not os.path.exists('./logs'): os.makedirs('./logs') if not os.path.exists(log_dir): os.makedirs(log_dir) checkpoint_dir='./checkpoints/model_%s'%T if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) args.log_dir = log_dir args.checkpoint_dir = checkpoint_dir # open session config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, intra_op_parallelism_threads=4, inter_op_parallelism_threads=4) config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: cnn = ResNet(sess, args) # build graph cnn.build_model() # show network architecture show_all_variables() if args.phase == 'train' : # launch the graph in a session result=cnn.train() print(" [:)] Training finished! \n") cnn.test() print(" [:)] Test finished!") if args.phase == 'test' : cnn.test() print(" [:)] Test finished!")
python
#!/usr/bin/env python # Copyright (C) 2015 Apple Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of Apple puter, Inc. ("Apple") nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import re import sys import os def lookFor(relativePath): return os.path.isfile(sys.argv[1] + relativePath) def fileContains(relativePath, regexp): with open(sys.argv[1] + relativePath) as file: for line in file: if regexp.search(line): return True return False print("/* Identifying AVFoundation Support */") if lookFor("/include/AVFoundationCF/AVCFBase.h"): print("#define HAVE_AVCF 1") if lookFor("/include/AVFoundationCF/AVCFPlayerItemLegibleOutput.h"): print("#define HAVE_AVCF_LEGIBLE_OUTPUT 1") if lookFor("/include/AVFoundationCF/AVCFAssetResourceLoader.h"): print("#define HAVE_AVFOUNDATION_LOADER_DELEGATE 1") if lookFor("/include/AVFoundationCF/AVCFAsset.h"): regexp = re.compile("AVCFURLAssetIsPlayableExtendedMIMEType") if fileContains("/include/AVFoundationCF/AVCFAsset.h", regexp): print("#define HAVE_AVCFURL_PLAYABLE_MIMETYPE 1") if lookFor("/include/QuartzCore/CACFLayer.h"): regexp = re.compile("CACFLayerSetContentsScale") if fileContains("/include/QuartzCore/CACFLayer.h", regexp): print("#define HAVE_CACFLAYER_SETCONTENTSSCALE 1") if lookFor("/include/AVFoundationCF/AVCFPlayerItemLegibleOutput.h"): regexp = re.compile("kAVCFPlayerItemLegibleOutput_CallbacksVersion_2") if fileContains("/include/AVFoundationCF/AVCFPlayerItemLegibleOutput.h", regexp): print("#define HAVE_AVCFPLAYERITEM_CALLBACK_VERSION_2 1")
python
import os,sys model = sys.argv[1] stamp = int(sys.argv[2]) lr = float(sys.argv[3]) dropout = float(sys.argv[4]) bsize = int(sys.argv[5]) filein = 'test_result/' + model + '_' + str(dropout) + '_' + str(lr) + '_x_test.npy' fileout = 'test_result/' + model + '_' + str(dropout) + '_' + str(lr) + '_x_test_' + str(stamp) + '.npy' os.rename(filein, fileout) filein = 'test_result/' + model + '_' + str(dropout) + '_' + str(lr) + '_y_test.npy' fileout = 'test_result/' + model + '_' + str(dropout) + '_' + str(lr) + '_y_test_' + str(stamp) + '.npy' os.rename(filein, fileout)
python
from tkinter import * from tkinter.ttk import Combobox from qiskit import IBMQ import qiskit import math # THIS PART IS THE QUANTUM SHIT SO PUCKER YOUR BUTTHOLES _backend = qiskit.BasicAer.get_backend('qasm_simulator') _circuit = None _bitCache = '' def setqbits(n): global _circuit qr = qiskit.QuantumRegister(n) cr = qiskit.ClassicalRegister(n) _circuit = qiskit.QuantumCircuit(qr, cr) _circuit.h(qr) # Apply Hadamard gate to qubits _circuit.measure(qr, cr) # Collapses qubit to either 1 or 0 w/ equal prob. setqbits(8) # Default Circuit is 8 Qubits def set_backend(b='qasm_simulator'): global _backend if b == 'ibmqx4' or b == 'ibmqx5': _backend = IBMQ.get_backend(b) setqbits(5) elif b == 'ibmq_16_melbourne': _backend = IBMQ.get_backend(b) setqbits(16) elif b == 'ibmq_qasm_simulator': _backend = IBMQ.get_backend(b) setqbits(32) else: _backend = qiskit.BasicAer.get_backend('qasm_simulator') setqbits(8) # Strips QISKit output to just a bitstring. def bitcount(counts): return [k for k, v in counts.items() if v == 1][0] # Populates the bitCache with at least n more bits. def _request_bits(n): global _bitCache iterations = math.ceil(n / _circuit.width()) for _ in range(iterations): # Create new job and run the quantum circuit job = qiskit.execute(_circuit, _backend, shots=1) _bitCache += bitcount(job.result().get_counts()) # Returns a random n-bit string by popping n bits from bitCache. def bitstring(n): global _bitCache if len(_bitCache) < n: _request_bits(n - len(_bitCache)) bitString = _bitCache[0:n] _bitCache = _bitCache[n:] return bitString # Returns a random integer between and including [min, max]. # Running time is probabalistic but complexity is still O(n) def randint(min, max): delta = max - min n = math.floor(math.log(delta, 2)) + 1 result = int(bitstring(n), 2) while (result > delta): result = int(bitstring(n), 2) return result + min def roll(nb_dice, nb_face): roll_list = [] for i in range(nb_dice): roll_list.append(randint(1, nb_face)) return roll_list root = Tk() class App: # define the widgets def __init__(self, master): self.title = Label(master, fg="black", text="The Quantum Dice", font=('arial', 40)) self.nb_dices_entry = Combobox(master, values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]) self.nb_faces_entry = Combobox(master, values=[4, 6, 8, 10, 12, 20, 100]) self.mod_entry = Combobox(master, values=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]) self.nb_dices_label = Label(master, fg="black", text="How many dices? ", font=('arial', 20)) self.nb_faces_label = Label(master, fg="black", text="How many side?", font=('arial', 20)) self.mod_label = Label(master, fg="black", text="Would you like to include a modifier?", font=('arial', 20)) self.generate_button = Button(master, text="ROLL DICE", command=self.get_output) self.list_output_int = Label(master, fg="black", bg="white", text="? ? ?") # TODO: add text function self.mod_output_int = Label(master, fg="black", bg="white", text="0") self.final_output_int = Label(master, fg="black", bg="white", text="0") self.space = Label(master, fg="black", bg="white", text="") self.list_output_lab = Label(master, fg="black", bg="white", text="Dices Thrown: ") # TODO: add text function self.mod_output_lab = Label(master, fg="black", bg="white", text="Modifier: ") self.final_output_lab = Label(master, fg="black", bg="white", text="Final: ") # Call the widgets self.title.grid(row=0, columnspan=3) self.nb_dices_entry.grid(row=2, column=1) self.nb_dices_entry.current(3) self.nb_dices_label.grid(row=2, sticky=E) self.nb_faces_entry.grid(row=3, column=1) self.nb_faces_entry.current(4) self.nb_faces_label.grid(row=3, sticky=E) self.mod_entry.grid(row=4, column=1) self.mod_entry.current(0) self.mod_label.grid(row=4, sticky=E) self.generate_button.grid(row=6, columnspan=3) self.space.grid(row=7, columnspan=3) self.list_output_lab.grid(row=8, sticky=E) self.list_output_int.grid(row=8, column=1) self.mod_output_lab.grid(row=9, sticky=E) self.mod_output_int.grid(row=9, column=1) self.final_output_lab.grid(row=10, sticky=E) self.final_output_int.grid(row=10, column=1) def get_output(self): nb_dice = int(self.nb_dices_entry.get()) nb_face = int(self.nb_faces_entry.get()) output = roll(nb_dice, nb_face) mod = int(self.mod_entry.get()) final = sum(output) + mod self.list_output_int["text"] = output self.mod_output_int["text"] = mod self.final_output_int["text"] = final app = App(root) root.mainloop()
python
from selenium import webdriver from bs4 import BeautifulSoup import time driver = webdriver.PhantomJS() client_info_search_url = "https://xclient.info/search/s/" app_list = ["cleanmymac", "alfred", "betterzip", "beyond compare", "iina", "Navicat Premium", "charles", "DaisyDisk", "paw", "Typora"] class update(): def execute(self): for app_name in app_list: # app_name = input("请输入App名称: ") driver.get(client_info_search_url + app_name) tags = BeautifulSoup(driver.page_source, 'lxml').findAll("div", class_="main") for tag in tags: name = tag.a["title"] if app_name.lower() in name.lower(): name_list = name.split(" ") name_list.pop(len(name_list) - 1) name_version = "" for item in name_list: name_version += item href = tag.a["href"] + "#versions" date = tag.find("span", class_="item date").text print(date + " - " + name_version + " - " + href) time.sleep(2) update().execute()
python
__author__='Pablo Leal' import argparse from keras.callbacks import LambdaCallback import trainer.board as board import trainer.loader as loader import trainer.modeller as modeller import trainer.saver as saver from trainer.constans import BATCH_SIZE, CHECKPOINT_PERIOD from trainer.constans import EPOCHS from trainer.constans import PREDICTION_LENGTH from trainer.constans import WINDOW_LENGTH def saveModelToCloud(epoch, period=1): if epoch % period = 0: server.saveModelToCloud(model, pathToJobDir + '/epochs_' + jobname, '{:03d}'.format(epoch)) if __name__='__main__': parser = argparse.ArgumentParser() parser.add_argument( '-train-file', help='GCS or local paths to training data', required=True ) parser.add_argument( '-job-name', help='GCS to write checkpoints and export models', required=True ) parser.add_argument( '-job-dir', help='GCS to write checkpoints and export models', required=True ) args=parser.parse_args() arguments = args.__dict__ pathToJobDir = arguments.pop('job_dir') jobName = arguments.pop('job_name') pathToData = arguments.pop('train_file') trainingDataDict, trainingLabelsDict, testingDataDict, testingLabelsDict = \ loader.loadObjectFromPickle(pathToData) model = modeller.buildModel(WINDOW_LENGTH - PREDICTION_LENGTH, PREDICTION_LENGTH) epochCallback = LambdaCallback (on_epoch_end=lambda epoch, logs: saveModelToCloud(epoch, CHECKPOINT_PERIOD)) model.fit( [ trainingDataDict["weightedAverage"], trainingDataDict["volume"], ], [ trainingLabelsDict["weightedAverage"] ], validation_data=( [ testingDataDict["weightedAverage"], testingDataDict["volume"], ], [ testingLabelsDict["weightedAverage"] ]), epochs=EPOCHS, batch_size=BATCH_SIZE, shuffle=True, callback=[ board.createTensorboardConfig(pathToJobDir + "/logs"), epochCallback ]) server.saveModelToCloud(model, pathToJobDir)
python
# -*- coding: utf-8 -*- """ awsecommerceservice This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ class ItemSearchRequest(object): """Implementation of the 'ItemSearchRequest' model. TODO: type model description here. Attributes: actor (string): TODO: type description here. artist (string): TODO: type description here. availability (AvailabilityEnum): TODO: type description here. audience_rating (list of AudienceRatingEnum): TODO: type description here. author (string): TODO: type description here. brand (string): TODO: type description here. browse_node (string): TODO: type description here. composer (string): TODO: type description here. condition (ConditionEnum): TODO: type description here. conductor (string): TODO: type description here. director (string): TODO: type description here. item_page (int): TODO: type description here. keywords (string): TODO: type description here. manufacturer (string): TODO: type description here. maximum_price (int): TODO: type description here. merchant_id (string): TODO: type description here. minimum_price (int): TODO: type description here. min_percentage_off (int): TODO: type description here. music_label (string): TODO: type description here. orchestra (string): TODO: type description here. power (string): TODO: type description here. publisher (string): TODO: type description here. related_item_page (object): TODO: type description here. relationship_type (list of string): TODO: type description here. response_group (list of string): TODO: type description here. search_index (string): TODO: type description here. sort (string): TODO: type description here. title (string): TODO: type description here. release_date (string): TODO: type description here. include_reviews_summary (string): TODO: type description here. truncate_reviews_at (int): TODO: type description here. """ # Create a mapping from Model property names to API property names _names = { "actor":'Actor', "artist":'Artist', "availability":'Availability', "audience_rating":'AudienceRating', "author":'Author', "brand":'Brand', "browse_node":'BrowseNode', "composer":'Composer', "condition":'Condition', "conductor":'Conductor', "director":'Director', "item_page":'ItemPage', "keywords":'Keywords', "manufacturer":'Manufacturer', "maximum_price":'MaximumPrice', "merchant_id":'MerchantId', "minimum_price":'MinimumPrice', "min_percentage_off":'MinPercentageOff', "music_label":'MusicLabel', "orchestra":'Orchestra', "power":'Power', "publisher":'Publisher', "related_item_page":'RelatedItemPage', "relationship_type":'RelationshipType', "response_group":'ResponseGroup', "search_index":'SearchIndex', "sort":'Sort', "title":'Title', "release_date":'ReleaseDate', "include_reviews_summary":'IncludeReviewsSummary', "truncate_reviews_at":'TruncateReviewsAt' } def __init__(self, actor=None, artist=None, availability=None, audience_rating=None, author=None, brand=None, browse_node=None, composer=None, condition=None, conductor=None, director=None, item_page=None, keywords=None, manufacturer=None, maximum_price=None, merchant_id=None, minimum_price=None, min_percentage_off=None, music_label=None, orchestra=None, power=None, publisher=None, related_item_page=None, relationship_type=None, response_group=None, search_index=None, sort=None, title=None, release_date=None, include_reviews_summary=None, truncate_reviews_at=None): """Constructor for the ItemSearchRequest class""" # Initialize members of the class self.actor = actor self.artist = artist self.availability = availability self.audience_rating = audience_rating self.author = author self.brand = brand self.browse_node = browse_node self.composer = composer self.condition = condition self.conductor = conductor self.director = director self.item_page = item_page self.keywords = keywords self.manufacturer = manufacturer self.maximum_price = maximum_price self.merchant_id = merchant_id self.minimum_price = minimum_price self.min_percentage_off = min_percentage_off self.music_label = music_label self.orchestra = orchestra self.power = power self.publisher = publisher self.related_item_page = related_item_page self.relationship_type = relationship_type self.response_group = response_group self.search_index = search_index self.sort = sort self.title = title self.release_date = release_date self.include_reviews_summary = include_reviews_summary self.truncate_reviews_at = truncate_reviews_at @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary actor = dictionary.get('Actor') artist = dictionary.get('Artist') availability = dictionary.get('Availability') audience_rating = dictionary.get('AudienceRating') author = dictionary.get('Author') brand = dictionary.get('Brand') browse_node = dictionary.get('BrowseNode') composer = dictionary.get('Composer') condition = dictionary.get('Condition') conductor = dictionary.get('Conductor') director = dictionary.get('Director') item_page = dictionary.get('ItemPage') keywords = dictionary.get('Keywords') manufacturer = dictionary.get('Manufacturer') maximum_price = dictionary.get('MaximumPrice') merchant_id = dictionary.get('MerchantId') minimum_price = dictionary.get('MinimumPrice') min_percentage_off = dictionary.get('MinPercentageOff') music_label = dictionary.get('MusicLabel') orchestra = dictionary.get('Orchestra') power = dictionary.get('Power') publisher = dictionary.get('Publisher') related_item_page = dictionary.get('RelatedItemPage') relationship_type = dictionary.get('RelationshipType') response_group = dictionary.get('ResponseGroup') search_index = dictionary.get('SearchIndex') sort = dictionary.get('Sort') title = dictionary.get('Title') release_date = dictionary.get('ReleaseDate') include_reviews_summary = dictionary.get('IncludeReviewsSummary') truncate_reviews_at = dictionary.get('TruncateReviewsAt') # Return an object of this model return cls(actor, artist, availability, audience_rating, author, brand, browse_node, composer, condition, conductor, director, item_page, keywords, manufacturer, maximum_price, merchant_id, minimum_price, min_percentage_off, music_label, orchestra, power, publisher, related_item_page, relationship_type, response_group, search_index, sort, title, release_date, include_reviews_summary, truncate_reviews_at)
python
a, b, c = map(int, input().split()) print((a+b)%c) print((a%c+b%c)%c) print((a*b)%c) print((a%c*b%c)%c)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- #=============================================================================== from __future__ import unicode_literals #=============================================================================== def read_input(strip=True): return raw_input().strip() if strip else raw_input() def read_input_multi(strip=True): return read_input(strip).split() def read_int(): return int(read_input()) def read_int_multi(): return [int(s) for s in read_input_multi()] def print_solution(i, solution): print('Case #{}: {}'.format(i, solution)) #=============================================================================== def solve_matrix(n, soldier_lists): solution = [] used_edges = [] for iteration in xrange(n): valid_soldiers = [(i, l) for i, l in enumerate(soldier_lists) if i not in used_edges] # print valid_soldiers top_left = min([min([x for j, x in enumerate(l) if j >= iteration]) for i, l in valid_soldiers]) #print("top: {}".format(top_left)) edges = [l for i, l in valid_soldiers if l[iteration] == top_left] used_edges += [i for i, l in valid_soldiers if l[iteration] == top_left] if len(edges) == 2: edge_heights = edges[0] + edges[1] # print edge_heights for soldiers in soldier_lists: value = soldiers[iteration] # print "value: " + str(value) edge_heights.remove(value) solution.append(edge_heights[0]) used_edges else: solution.append(edges[0][iteration]) return ' '.join([str(x) for x in solution]) #------------------------------------------------------------------------------ def solve(): n = read_int() num_lists = 2 * n - 1 soldier_lists = [read_int_multi() for _ in xrange(num_lists)] line = solve_matrix(n, soldier_lists) return line #=============================================================================== if __name__ == '__main__': test_cases = read_int() for t in xrange(test_cases): solution = solve() print_solution(t + 1, solution)
python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import re from typing import Any import pytest from _pytest.python_api import RaisesContext from omegaconf import DictConfig, OmegaConf from hydra._internal import utils from hydra._internal.utils import _locate from hydra.types import ObjectConf from tests import AClass, Adam, AnotherClass, ASubclass, NestingClass, Parameters @pytest.mark.parametrize( # type: ignore "matrix,expected", [ ([["a"]], [1]), ([["a", "bb"]], [1, 2]), ([["a", "bb"], ["aa", "b"]], [2, 2]), ([["a"], ["aa", "b"]], [2, 1]), ([["a", "aa"], ["bb"]], [2, 2]), ([["a"]], [1]), ([["a"]], [1]), ([["a"]], [1]), ], ) def test_get_column_widths(matrix: Any, expected: Any) -> None: assert utils.get_column_widths(matrix) == expected @pytest.mark.parametrize( # type: ignore "config, expected, warning", [ pytest.param( OmegaConf.create({"_target_": "foo"}), "foo", False, id="ObjectConf:target" ), pytest.param( OmegaConf.create({"cls": "foo"}), "foo", "cls", id="DictConfig:cls" ), pytest.param( OmegaConf.create({"class": "foo"}), "foo", "class", id="DictConfig:class" ), pytest.param( OmegaConf.create({"target": "foo"}), "foo", "target", id="DictConfig:target", ), pytest.param( OmegaConf.create({"cls": "foo", "_target_": "bar"}), "bar", False, id="DictConfig:cls_target", ), pytest.param( OmegaConf.create({"class": "foo", "_target_": "bar"}), "bar", "class", id="DictConfig:class_target", ), # check that `target` is prioritized over `cls`/`class`. pytest.param( OmegaConf.create({"cls": "foo", "_target_": "bar"}), "bar", "cls", id="DictConfig:pri_cls", ), pytest.param( OmegaConf.create({"class": "foo", "_target_": "bar"}), "bar", "class", id="DictConfig:pri_class", ), pytest.param( OmegaConf.create({"target": "foo", "_target_": "bar"}), "bar", "target", id="DictConfig:pri_target", ), ], ) def test_get_class_name( config: DictConfig, expected: Any, warning: Any, recwarn: Any ) -> None: assert utils._get_cls_name(config) == expected target_field_deprecated = ( "\nConfig key '{key}' is deprecated since Hydra 1.0 and will be removed in Hydra 1.1." "\nUse '_target_' instead of '{field}'." "\nSee https://hydra.cc/docs/next/upgrades/0.11_to_1.0/object_instantiation_changes" ) if warning is not False: assert recwarn[0].category == UserWarning assert recwarn[0].message.args[0] == target_field_deprecated.format( key=warning, field=warning ) # TODO: why? # @pytest.mark.skipif( # type: ignore # sys.version_info < (3, 7), reason="requires python3.7" # ) @pytest.mark.parametrize( # type: ignore "name,expected", [ ("tests.Adam", Adam), ("tests.Parameters", Parameters), ("tests.AClass", AClass), ("tests.ASubclass", ASubclass), ("tests.NestingClass", NestingClass), ("tests.AnotherClass", AnotherClass), ("", pytest.raises(ImportError, match=re.escape("Empty path"))), ( "not_found", pytest.raises( ImportError, match=re.escape("Error loading module 'not_found'") ), ), ( "tests.b.c.Door", pytest.raises(ImportError, match=re.escape("No module named 'tests.b'")), ), ], ) def test_locate(name: str, expected: Any) -> None: if isinstance(expected, RaisesContext): with expected: _locate(name) else: assert _locate(name) == expected def test_object_conf_deprecated() -> None: msg = ( "\nObjectConf is deprecated in favor of TargetConf since Hydra 1.0.0rc3 and will be removed in Hydra 1.1." "\nSee https://hydra.cc/docs/next/upgrades/0.11_to_1.0/object_instantiation_changes" ) with pytest.warns( expected_warning=UserWarning, match=msg, ): ObjectConf(target="foo")
python
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'QuestionnaireText' db.create_table('cmsplugin_questionnairetext', ( ('cmsplugin_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['cms.CMSPlugin'], unique=True, primary_key=True)), ('body', self.gf('django.db.models.fields.TextField')()), ('depends_on_answer', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='trigger_text', null=True, to=orm['cms_saq.Answer'])), )) db.send_create_signal('cms_saq', ['QuestionnaireText']) def backwards(self, orm): # Deleting model 'QuestionnaireText' db.delete_table('cmsplugin_questionnairetext') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'cms.cmsplugin': { 'Meta': {'object_name': 'CMSPlugin'}, 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 10, 23, 0, 0)'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '15', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.CMSPlugin']", 'null': 'True', 'blank': 'True'}), 'placeholder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Placeholder']", 'null': 'True'}), 'plugin_type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'position': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.page': { 'Meta': {'ordering': "('site', 'tree_id', 'lft')", 'object_name': 'Page'}, 'changed_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'created_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_navigation': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'limit_visibility_in_menu': ('django.db.models.fields.SmallIntegerField', [], {'default': 'None', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'moderator_state': ('django.db.models.fields.SmallIntegerField', [], {'default': '1', 'blank': 'True'}), 'navigation_extenders': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '80', 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['cms.Page']"}), 'placeholders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cms.Placeholder']", 'symmetrical': 'False'}), 'publication_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publication_end_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publisher_is_draft': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'publisher_public': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'publisher_draft'", 'unique': 'True', 'null': 'True', 'to': "orm['cms.Page']"}), 'publisher_state': ('django.db.models.fields.SmallIntegerField', [], {'default': '0', 'db_index': 'True'}), 'reverse_id': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '40', 'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}), 'soft_root': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'template': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.placeholder': { 'Meta': {'object_name': 'Placeholder'}, 'default_width': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slot': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) }, 'cms_saq.answer': { 'Meta': {'ordering': "('question', 'order', 'slug')", 'unique_together': "(('question', 'slug'),)", 'object_name': 'Answer'}, 'help_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'answers'", 'to': "orm['cms_saq.Question']"}), 'score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'cms_saq.bulkanswer': { 'Meta': {'object_name': 'BulkAnswer', 'db_table': "'cmsplugin_bulkanswer'", '_ormbases': ['cms.CMSPlugin']}, 'answer_value': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'cms_saq.formnav': { 'Meta': {'object_name': 'FormNav', 'db_table': "'cmsplugin_formnav'", '_ormbases': ['cms.CMSPlugin']}, 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'end_page': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'formnav_ends'", 'null': 'True', 'to': "orm['cms.Page']"}), 'end_page_condition_question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms_saq.Question']", 'null': 'True', 'blank': 'True'}), 'end_page_label': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'end_submission_set': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'next_page': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'formnav_nexts'", 'null': 'True', 'to': "orm['cms.Page']"}), 'next_page_label': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'prev_page': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'formnav_prevs'", 'null': 'True', 'to': "orm['cms.Page']"}), 'prev_page_label': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'submission_set_tag': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'cms_saq.groupedanswer': { 'Meta': {'ordering': "('group', 'order', 'slug')", 'object_name': 'GroupedAnswer', '_ormbases': ['cms_saq.Answer']}, 'answer_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms_saq.Answer']", 'unique': 'True', 'primary_key': 'True'}), 'group': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'cms_saq.progressbar': { 'Meta': {'object_name': 'ProgressBar', 'db_table': "'cmsplugin_progressbar'", '_ormbases': ['cms.CMSPlugin']}, 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'count_optional': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'cms_saq.question': { 'Meta': {'object_name': 'Question', 'db_table': "'cmsplugin_question'", '_ormbases': ['cms.CMSPlugin']}, 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'depends_on_answer': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'trigger_questions'", 'null': 'True', 'to': "orm['cms_saq.Answer']"}), 'help_text': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'optional': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'question_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}) }, 'cms_saq.questionnairetext': { 'Meta': {'object_name': 'QuestionnaireText', 'db_table': "'cmsplugin_questionnairetext'"}, 'body': ('django.db.models.fields.TextField', [], {}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'depends_on_answer': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'trigger_text'", 'null': 'True', 'to': "orm['cms_saq.Answer']"}) }, 'cms_saq.scoresection': { 'Meta': {'ordering': "('order', 'label')", 'object_name': 'ScoreSection'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sections'", 'to': "orm['cms_saq.SectionedScoring']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'tag': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'cms_saq.sectionedscoring': { 'Meta': {'object_name': 'SectionedScoring', 'db_table': "'cmsplugin_sectionedscoring'", '_ormbases': ['cms.CMSPlugin']}, 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}) }, 'cms_saq.submission': { 'Meta': {'ordering': "('submission_set', 'user', 'question')", 'unique_together': "(('question', 'user', 'submission_set'),)", 'object_name': 'Submission'}, 'answer': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'score': ('django.db.models.fields.IntegerField', [], {}), 'submission_set': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'submissions'", 'null': 'True', 'to': "orm['cms_saq.SubmissionSet']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'saq_submissions'", 'to': "orm['auth.User']"}) }, 'cms_saq.submissionset': { 'Meta': {'object_name': 'SubmissionSet'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'saq_submissions_sets'", 'to': "orm['auth.User']"}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'taggit.tag': { 'Meta': {'object_name': 'Tag'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}) }, 'taggit.taggeditem': { 'Meta': {'object_name': 'TaggedItem'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'taggit_taggeditem_tagged_items'", 'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'taggit_taggeditem_items'", 'to': "orm['taggit.Tag']"}) } } complete_apps = ['cms_saq']
python
def fibonacci(n): for i in range(n+1): fibo = [0, 1] if i == 0: print ("fibo( 0 ) = ", 0) elif i == 1: print ("fibo( 1 ) = ", 1) else: flag = True for j in range(2, i): if flag: # Replace first element fibonacci(n) + fibonacci(fibo[1]) fibo[0] = fibo[1] + fibo[0] else: # Replace second element fibonacci(n) + fibonacci(fibo[0]) fibo[1] = fibo[0] + fibo[1] flag = not flag print (fibo[0]+fibo[1]) if __name__ == "__main__": fibonacci(40)
python
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ''' Contains function to identify bad channels based on time and freq domain methods. authors: Niko Kampel, [email protected] Praveen Sripad, [email protected] ''' import numpy as np import mne from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import euclidean_distances from .jumeg_utils import check_read_raw def compute_euclidean_stats(epoch, sensitivity, mode='adaptive', fraction=None): ''' Compute the Euclidean matrix along with necessary statistics for data from one single epoch. Function can also be used for psd. (generic function) Parameters epoch: np.array The data from which to compute the Euclidean matrices. sensitivity: float in range of [0,100] Percentile to compute threshold used for clustering, which must be between 0 and 100 inclusive. mode: str The mode in which to return the statistics results. Can be 'fixed' for fixed threshold or 'nearest' for nearest neighbour points. When a fixed threshold is used, a single percentile based value is used for all the epochs/windows of the data. If adaptive is chosen, a threshold value for every epoch is used. Note: Fixed threshold is currently incompletely implemented and we do not suggest using it. fraction: float | None Ratio of the number of samples to be chosen for clustering. Returns If mode is fixed returns a fixed percentile threshold. If mode is nearest, returns the nearest neighbour. #TODO doc needs to be updated ''' if fraction: number_of_samples = int(epoch.shape[1]*fraction) sorted_peaks = np.sort(np.square(np.diff(epoch)), axis=1) # just keep 1% of the samples afp = sorted_peaks[:, sorted_peaks.shape[1]-number_of_samples:] else: # do not do reduced sampling fro psds afp = epoch # slightly confusing, this part actually handles psd code mydist = euclidean_distances(afp, afp) # average_distances = np.average(mydist, axis=1) if mode == 'adaptive': # adaptive threshold depending on epochs nearest_neighbour = np.sort(mydist, axis=1)[:, 1] selected_threshold = np.percentile(np.tril(mydist), sensitivity) return afp, nearest_neighbour, selected_threshold elif mode == 'fixed': # fixed threshold for all epochs # not to be used fixed_threshold = np.percentile(np.tril(mydist), sensitivity) return afp, fixed_threshold else: raise RuntimeError('Mode should be one of fixed or nearest') def clustered_afp(epochs, sensitivity_steps, fraction, mode='adaptive', min_samples=1, n_jobs = None): ''' Perform clustering on difference in signals from one sample to another. This method helps us to identify flux jumps and largespikes in the data. Parameters epochs: mne.Epochs sensitivity_steps: float in range of [0,100] Percentile to compute threshold used for clusterin signals, which must be between 0 and 100 inclusive. picks: list Picks of the channels to be used. min_samples: int Number of samples to be chosen for DBSCAN clustering. Returns afps: np.array Power spectral density values (n_epochs, n_chans, n_freqs) afp_suspects: list Suspected bad channels. afp_nearest_neighbour: list The nearest neighbour identified before DBSCAN clustering. zlimit_afp: float A scaling value used for plotting. ''' # epochs = epochs.get_data() afps, afp_suspects, afp_percentiles, afp_nearest_neighbour = [], [], [], [] # statistics for every epoch for epoch in epochs: if mode == 'adaptive': afp, nearest_neighbour, selected_threshold = \ compute_euclidean_stats(epoch, sensitivity_steps, mode='adaptive') afp_nearest_neighbour.append(nearest_neighbour) afp_percentiles.append(selected_threshold) elif mode == 'fixed': # TODO complete fixed threshold computation # statistics and clustering for every epoch for fixed threshold afp, selected_threshold = compute_euclidean_stats(epoch, sensitivity_steps, mode='fixed') afp_percentiles.append(selected_threshold) else: raise RuntimeError('Mode unknown.') # do the clustering for every epoch db = DBSCAN(eps=selected_threshold, min_samples=min_samples, metric='euclidean',n_jobs = n_jobs).fit(afp) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True suspect = [i for i, x in enumerate(db.labels_) if x] afps.append(afp) afp_suspects.append(suspect) afps = np.asarray(afps) afp_nearest_neighbour = np.asarray(afp_nearest_neighbour) # hack to get a limit for plotting (this is not supposd to be here) zlimit_afp = np.percentile(afp_percentiles, 50) * 4 return afps, afp_suspects, afp_nearest_neighbour, zlimit_afp def clustered_psd(epochs, sensitivity_psd, picks, min_samples=1, n_jobs = None): ''' Perform clustering on PSDs to identify bad channels. Parameters epochs: mne.Epochs sensitivity_psd: float in range of [0,100] Percentile to compute threshold used for clustering PSDs, which must be between 0 and 100 inclusive. picks: list Picks of the channels to be used. min_samples: int Number of samples to be chosen for DBSCAN clustering. Returns psds: np.array Power spectral density values (n_epochs, n_chans, n_freqs) psd_suspects: list Suspected bad channels. psd_nearest_neighbour: list The nearest neighbour identified before DBSCAN clustering. zlimit_psd: float A scaling value used for plotting. ''' psds, freqs = mne.time_frequency.psd_welch(epochs, fmin=2., fmax=200., picks=picks) psd_percentiles, psd_nearest_neighbour, psd_suspects = [], [], [] for ipsd in psds: psd, nearest_neighbour, selected_threshold = \ compute_euclidean_stats(ipsd, sensitivity_psd, mode='adaptive') psd_nearest_neighbour.append(nearest_neighbour) psd_percentiles.append(selected_threshold) db = DBSCAN(eps=selected_threshold, min_samples=min_samples, metric='euclidean', n_jobs = n_jobs).fit(psd) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True suspect = [i for i, x in enumerate(db.labels_) if x] psd_suspects.append(suspect) psd_nearest_neighbour = np.asarray(psd_nearest_neighbour) zlimit_psd = np.percentile(psd_percentiles, 50) * 4 return psds, psd_suspects, psd_nearest_neighbour, zlimit_psd def make_minimap(picks, afp_suspects, psd_suspects): ''' Make a minimap with bad channels identifed using time domain and freq domain methods. Helper function for plotting the values ''' # values inside minimap are a workaround for colormap 'brg' minimap = np.zeros((len(picks), len(afp_suspects))) # 0 if channel is regular for e in range(0, len(afp_suspects)): for c in afp_suspects[e]: minimap[c, e] = 3 # yellow if afp is unusual for e in range(0, len(afp_suspects)): for c in psd_suspects[e]: if minimap[c, e] == 3: minimap[c, e] = 2 # red if afp+psd is unusual else: minimap[c, e] = 1 # purple if psd is unusual # minimap marker # coordinates for markers x_afp, y_afp, x_psd, y_psd, x_both, y_both = [], [], [], [], [], [] for e in range(0, minimap.shape[1]): for c in range(0, len(minimap)): if minimap[c, e] == 3: # condition for afp x_afp.append(e) y_afp.append(c) if minimap[c, e] == 1: # condition for psd x_psd.append(e) y_psd.append(c) if minimap[c, e] == 2: # condition for both x_both.append(e) y_both.append(c) return minimap, x_afp, y_afp, x_psd, y_psd, x_both, y_both def validation_marker(minimap, picks_bad, picks_fp): ''' Helper function for plotting bad channels identified using time domain (afp) or freq domain (psd) methods. Using the validation marker helps compare already marked bad channels with automatically identified ones for testing purposes. ''' x_miss, y_miss, x_hit, y_hit, x_fp, y_fp = [], [], [], [], [], [] for e in range(0, minimap.shape[1]): for c in range(0, len(minimap)): if c in picks_bad and minimap[c, e] > 0: # condition for hit x_hit.append(e) y_hit.append(c) if c in picks_bad and minimap[c, e] == 0: # condition for miss x_miss.append(e) y_miss.append(c) if c in picks_fp and minimap[c, e] > 0: # condition for miss x_fp.append(e) y_fp.append(c) return x_miss, y_miss, x_hit, y_hit, x_fp, y_fp def plot_autosuggest_summary(afp_nearest_neighbour, psd_nearest_neighbour, picks, afp_suspects, psd_suspects, picks_bad, picks_fp, zlimit_afp, zlimit_psd, epoch_length, marks, validation=False): ''' Plot showing the automated identification of bad channels using time and frequency domain methods. #TODO Improve documentation. ''' import matplotlib.pyplot as plt plt.style.use(['seaborn-deep']) # calculate data for summary_plot minimap, x_afp, y_afp, x_psd, y_psd, x_both, y_both = \ make_minimap(picks, afp_suspects, psd_suspects) # calculate validation markers if necessary (for testing purposes only) if validation: x_miss, y_miss, x_hit, y_hit, x_fp, y_fp = \ validation_marker(minimap, picks_bad, picks_fp) # do the actual plotting summary_plot = plt.figure(figsize=(16, 10)) plt.subplots_adjust(hspace=0.2) t = np.arange(len(minimap[1])) # minimap ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=2) ax1.xaxis.tick_top() ax1.set_xticks((t)) plt.xticks(t, (t+1)*epoch_length-epoch_length/2) # align minimap with clusterplots ax1.grid(which='both') plt.xlim([0, len(t)-1]) plt.ylim([len(minimap), 0]) plt.yticks(marks, [x+1 for x in marks]) # only tick channels of interest +1 cause numpy and mne coordinates are differnt plt.ylabel('channel number') # plt.xlabel('raw_fname = '+"'"+raw_fname+"'" + ' ; marked_chn = '+str(list(marks))) ax1.xaxis.set_label_position('top') #TODO find better way to find zlimit # zlimit_afp = np.percentile(afp_percentiles, 50) * 4 plt.imshow(np.clip(afp_nearest_neighbour, 0, zlimit_afp).T*-1, aspect='auto', interpolation='nearest', cmap='Blues') # mark the default points plt.scatter(x_afp, y_afp, s=60, marker='o', color='gold') plt.scatter(x_both, y_both, s=60, marker='o', color='red') # validation marker if validation: plt.scatter(x_miss, y_miss, s=10, marker='s', color='r') plt.scatter(x_hit, y_hit, s=10, marker='s', color='limegreen') plt.scatter(x_fp, y_fp, s=10, marker='s', color='gold') # plot the AFP clustering ax2 = plt.subplot2grid((4, 1), (2, 0), rowspan=2) ax2.xaxis.tick_top() ax2.set_xticks((t)) plt.xticks(t, (t+1)*epoch_length-epoch_length/2) # align minimap with clusterplots ax2.grid(which='both') plt.xlim([0, len(t)-1]) plt.ylim([len(minimap), 0]) plt.yticks(marks, [x+1 for x in marks]) # only tick channels of interest +1 cause numpy and mne coordinates are differnt plt.ylabel('channel number') plt.xlabel('time') plt.scatter(x_psd, y_psd, s=60, marker='o', color='purple') plt.scatter(x_both, y_both, s=60, marker='o', color='red') # validation marker if validation: plt.scatter(x_miss, y_miss, s=20, marker='s', color='r') plt.scatter(x_hit, y_hit, s=20, marker='s', color='limegreen') plt.scatter(x_fp, y_fp, s=20, marker='s', color='gold') #TODO find better way to find zlimit # zlimit_psd = np.percentile(psd_percentiles, 50) * 4 ax2.imshow(np.clip(psd_nearest_neighbour, 0, zlimit_psd).T*-1, aspect='auto', interpolation='nearest', cmap='Blues') plt.close() return summary_plot def suggest_bads(raw, sensitivity_steps=97, sensitivity_psd=95, fraction=0.001, epoch_length=None, summary_plot=False, show_raw=False, n_jobs = 1, validation=True): ''' Function to suggest bad channels. The bad channels are identified using time domain methods looking for sharp jumps in short windows of data and in the frequency domain looking for channels with unusual power spectral densities. Note: This function is still in the development stage and contains a lot of hard coded values. Parameters ---------- raw: str | mne.io.Raw Filename or the raw object. epoch_length: int | None Length of the window to apply methods on. summary_plot: bool Set True to generate a summary plot showing suggested bads. # parameters for step detection (AFP) # in %, 0 marks all chanels 100 marks none; percentile of # parameter for frequency analysis # in %, 0 marks all chanels 100 marks none; percentile of Returns ------- suggest_bads: list List of suggested bad channels. raw: mne.io.Raw Raw object updated with suggested bad channels. ''' raw = check_read_raw(raw, preload=False) picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, ecg=False, exclude=[]) # if epoch length is not provided, chose a suitable length if not epoch_length: epoch_length = int(raw.n_times/(raw.info['sfreq'] * 20)) print('epoch_length of %d chosen' % epoch_length) # add 0.01 to avoid 'dropping' of first epoch events = mne.make_fixed_length_events(raw, 42, start=0.01, duration=epoch_length) epochs = mne.Epochs(raw, events, event_id=42, tmin=-epoch_length/2, tmax=epoch_length/2, picks=picks) picks_bad = [raw.ch_names.index(l) for l in raw.info['bads']] # compute differences in time domain to identify abrupt jumps in the data afps, afp_suspects, afp_nearest_neighbour, zlimit_afp = \ clustered_afp(epochs, sensitivity_steps, fraction, n_jobs = n_jobs) # compute the psds and do the clustering to identify unusual channels psds, psd_suspects, psd_nearest_neighbour, zlimit_psd = \ clustered_psd(epochs, sensitivity_psd, picks, n_jobs = n_jobs) # if any of the channels' psds are all zeros, mark as suspect zero_suspects = [ind for ind in range(psds.shape[1]) if not np.any(psds[:, ind, :])] # reduce lists of marked epochs to lists of bad channels picks_autodetect = \ list(set().union([item for sublist in psd_suspects for item in sublist], [item for sublist in afp_suspects for item in sublist])) # get the bads suggested but not previosuly marked picks_fp = [x for x in set(picks_autodetect) if x not in set(picks_bad)] # marks are all channels of interest, including premarked bad channels # and zero channels (channel indices) jumps = list(set([item for sublist in afp_suspects for item in sublist])) jumps_ch_names = [raw.ch_names[i] for i in jumps] unusual = list(set([item for sublist in psd_suspects for item in sublist])) unusual_ch_names = [raw.ch_names[i] for i in unusual] dead_ch_names = [raw.ch_names[i] for i in zero_suspects] print("Suggested bads [jumps]:", jumps_ch_names) print("Suggested bads [unusual]:", unusual_ch_names) print("Suggested bads [dead]:", dead_ch_names) marks = list(set(picks_autodetect) | set(picks_bad) | set(zero_suspects)) # show summary plot for enhanced manual inspection #TODO zero suspects do not have any colour coding for the moment if summary_plot: fig = \ plot_autosuggest_summary(afp_nearest_neighbour, psd_nearest_neighbour, picks, afp_suspects, psd_suspects, picks_bad, picks_fp, zlimit_afp, zlimit_psd, epoch_length, marks, validation=False) fig.show() # channel names in str suggested = [raw.ch_names[i] for i in marks] # add suggested channels to the raw.info raw.info['bads'] = suggested print('Suggested bad channels: ', suggested) if show_raw: raw.plot(block=True) visual = raw.info['bads'] visual.sort() print('Bad channels after visual inspection: ', visual) return visual, raw else: return suggested, raw
python
#!/usr/bin/python # coding=utf-8 ################################################################################ from __future__ import with_statement from test import CollectorTestCase from test import get_collector_config from test import unittest from mock import Mock from mock import patch from diamond.collector import Collector from powerdns import PowerDNSCollector ################################################################################ class TestPowerDNSCollector(CollectorTestCase): def setUp(self): config = get_collector_config('PowerDNSCollector', { 'interval': 1, 'bin': 'true', 'use_sudo': False, }) self.collector = PowerDNSCollector(config, None) @patch('os.access', Mock(return_value=True)) @patch.object(Collector, 'publish') def test_should_work_with_fake_data(self, publish_mock): with patch('subprocess.Popen.communicate', Mock(return_value=( self.getFixture('pdns_control-2.9.22.6-1.el6-A').getvalue(), ''))): self.collector.collect() self.assertPublishedMany(publish_mock, {}) with patch('subprocess.Popen.communicate', Mock(return_value=( self.getFixture('pdns_control-2.9.22.6-1.el6-B').getvalue(), ''))): self.collector.collect() metrics = { 'corrupt-packets': 1.0, 'deferred-cache-inserts': 2.0, 'deferred-cache-lookup': 3.0, 'latency': 4.0, 'packetcache-hit': 5.0, 'packetcache-miss': 6.0, 'packetcache-size': 7.0, 'qsize-q': 8.0, 'query-cache-hit': 9.0, 'query-cache-miss': 10.0, 'recursing-answers': 11.0, 'recursing-questions': 12.0, 'servfail-packets': 13.0, 'tcp-answers': 14.0, 'tcp-queries': 15.0, 'timedout-packets': 16.0, 'udp-answers': 17.0, 'udp-queries': 18.0, 'udp4-answers': 19.0, 'udp4-queries': 20.0, 'udp6-answers': 21.0, 'udp6-queries': 22.0, } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) ################################################################################ if __name__ == "__main__": unittest.main()
python
"""Testing phantombuild.""" import tempfile from pathlib import Path import pytest import phantombuild as pb from phantombuild.phantombuild import ( CompileError, HDF5LibraryNotFound, PatchError, RepoError, ) VERSION = '3252f52501cac9565f9bc40527346c0e224757b9' def test_get_phantom(): """Test getting Phantom from GitHub.""" with tempfile.TemporaryDirectory() as tmpdirname: path = Path(tmpdirname) / 'phantom' pb.get_phantom(path) pb.get_phantom(path) (path / '.git/config').unlink() with pytest.raises(RepoError): pb.get_phantom(path) def test_checkout_phantom_version_clean(): """Test checking out a Phantom version.""" with tempfile.TemporaryDirectory() as tmpdirname: path = Path(tmpdirname) / 'phantom' pb.get_phantom(path) pb.checkout_phantom_version(path=path, version=VERSION) pb.checkout_phantom_version(path=path, version=VERSION) def test_checkout_phantom_version_dirty(): """Test checking out a Phantom version.""" with tempfile.TemporaryDirectory() as tmpdirname: path = Path(tmpdirname) / 'phantom' pb.get_phantom(path) (path / 'src/main/phantom.F90').unlink() pb.checkout_phantom_version(path=path, version=VERSION) def test_phantom_patch(): """Test patching Phantom.""" with tempfile.TemporaryDirectory() as tmpdirname: path = Path(tmpdirname) / 'phantom' pb.get_phantom(path) pb.checkout_phantom_version(path=path, version=VERSION) patch = Path(__file__).parent / 'stub' / 'test.patch' pb.patch_phantom(path=path, patch=patch) kwargs = {'path': path, 'patch': patch} with pytest.raises(PatchError): pb.patch_phantom(**kwargs) def test_build_phantom(): """Test building Phantom.""" with tempfile.TemporaryDirectory() as tmpdirname: path = Path(tmpdirname) / 'phantom' hdf5_path = Path('non_existent_dir') pb.get_phantom(path) pb.build_phantom( path=path, setup='empty', system='gfortran', extra_options={'MAXP': '1000000'}, ) kwargs = { 'path': path, 'setup': 'empty', 'system': 'gfortran', 'hdf5_path': hdf5_path, } with pytest.raises(HDF5LibraryNotFound): pb.build_phantom(**kwargs) kwargs = { 'path': path, 'setup': 'FakeSetup', 'system': 'gfortran', } with pytest.raises(CompileError): pb.build_phantom(**kwargs) def test_setup_calculation(): """Test setting up Phantom calculation.""" with tempfile.TemporaryDirectory() as tmpdirname: phantom_path = Path(tmpdirname) / 'phantom' run_path = Path(tmpdirname) / 'run_path' input_dir = Path(__file__).parent / 'stub' in_file = input_dir / 'disc.in' setup_file = input_dir / 'disc.setup' pb.get_phantom(phantom_path) pb.build_phantom( path=phantom_path, version=VERSION, setup='disc', system='gfortran' ) pb.setup_calculation( prefix='disc', setup_file=setup_file, in_file=in_file, run_path=run_path, phantom_path=phantom_path, )
python
import os import time from github import Github from django.db import models from calaccess_raw import get_model_list from django.template.loader import render_to_string from calaccess_raw.management.commands import CalAccessCommand class Command(CalAccessCommand): help = 'Create GitHub issues for fields missing verbose and/or help text' def add_arguments(self, parser): """ Adds custom arguments specific to this command. """ super(Command, self).add_arguments(parser) parser.add_argument( "--dry-run", action="store_true", dest="dry_run", default=False, help="Print text of issues without sending to Github" ) def handle(self, *args, **options): super(Command, self).handle(*args, **options) """ Connect to Github using token stored in environment, loop over model fields, and \ create an issue for any choice field missing """ self.dry_run = options["dry_run"] # set up connect to Github account self.gh = Github(os.getenv('GITHUB_TOKEN')) self.org = self.gh.get_organization("california-civic-data-coalition") self.repo = self.org.get_repo("django-calaccess-raw-data") self.labels = [ self.repo.get_label("small"), self.repo.get_label("documentation"), self.repo.get_label("enhancement"), ] self.header( "Creating GitHub issues for model choice fields" ) model_list = sorted( get_model_list(), key=lambda x: (x().klass_group, x().klass_name) ) models_to_fix = [] for m in model_list: fields_to_fix = {} for f in m._meta.fields: if f.name == 'id': continue # test for verbose name if not f.__dict__['_verbose_name']: fields_to_fix[f] = {'no_verbose': True, 'no_help': False} elif len(f.__dict__['_verbose_name']) == 0: fields_to_fix[f] = {'no_verbose': True, 'no_help': False} # test for help text if len(f.help_text) == 0: try: fields_to_fix[f]['no_help'] = True except KeyError: fields_to_fix[f] = {'no_verbose': False, 'no_help': True} if len(fields_to_fix) > 0: fs = [] for k, v in fields_to_fix.items(): fs.append((k, v)) models_to_fix.append( (m, tuple(fs)) ) for model, fields in models_to_fix: context = dict( model_name=model.__name__, model_docs=model().DOCUMENTCLOUD_PAGES, file_name=model.__module__.split('.')[-1] + '.py', fields=fields, ) title = "Add verbose and/or help text fields on {model_name} (in \ {file_name})".format(**context) body = render_to_string( 'toolbox/createverboseandhelptextissues.md', context, ) self.log("-- Creating issue for {model_name}".format(**context)) if self.dry_run: print '==========================' print title print '--------------------------' print body print '==========================' else: self.repo.create_issue( title, body=body, labels=self.labels, ) time.sleep(2.5)
python
""" just run this script with python converter.py . It will convert pytorch.ipynb to html page docs/pytorch-examples.html """ import nbformat import markdown from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import HtmlFormatter notebook = nbformat.read('Pytorch.ipynb', as_version=nbformat.NO_CONVERT) content = '' cache = '' for cell in notebook['cells']: if cell['cell_type'] == 'code': source = cell['source'] if source.startswith('#left') or source.startswith('#right'): trimmed_source = source[source.index('\n') + 1:] cache += "<div>{}</div>".format(highlight(trimmed_source, PythonLexer(), HtmlFormatter())) if source.startswith('#right'): content += "<div class='leftright-wrapper'><div class='leftright-cells'>{}</div></div> ".format(cache) cache = '' elif cell['cell_type'] == 'markdown': content += "<div class='markdown-cell'>{}</div>".format(markdown.markdown(cell['source'])) else: raise RuntimeError('not expected type of cell' + cell['cell_type']) styles = HtmlFormatter().get_style_defs('.highlight') styles += ''' body { padding: 50px 10px; } .leftright-wrapper { text-align: center; overflow-x: auto; } .leftright-cells { display: inline-flex; text-align: left; } .leftright-cells > div { padding: 0px 10px; min-width: 350px; } .markdown-cell{ max-width: 700px; margin: 0px auto; } h1 { text-align: center; padding: 10px 0px 0px; } ''' meta_tags = ''' <meta property="og:title" content="Writing better code with pytorch and einops"> <meta property="og:description" content="Learning by example: rewriting and fixing popular code fragments"> <meta property="og:image" content="http://arogozhnikov.github.io/images/einops/einops_video.gif"> <meta property="og:video" content="http://arogozhnikov.github.io/images/einops/einops_video.mp4" /> <meta property="og:url" content="https://arogozhnikov.github.io/einops/pytorch-examples.html"> <meta name="twitter:card" content="summary_large_image"> <!-- Non-Essential, But Recommended --> <meta property="og:site_name" content="Writing better code with pytorch and einops"> <meta name="twitter:image:alt" content="Learning by example: rewriting and fixing popular code fragments"> ''' github_ribbon = ''' <a href="https://github.com/arogozhnikov/einops" class="github-corner" aria-label="View source on GitHub"> <svg width="80" height="80" viewBox="0 0 250 250" style="fill:#151513; color:#fff; position: absolute; top: 0; border: 0; right: 0;" aria-hidden="true"> <path d="M0,0 L115,115 L130,115 L142,142 L250,250 L250,0 Z"></path><path d="M128.3,109.0 C113.8,99.7 119.0,89.6 119.0,89.6 C122.0,82.7 120.5,78.6 120.5,78.6 C119.2,72.0 123.4,76.3 123.4,76.3 C127.3,80.9 125.5,87.3 125.5,87.3 C122.9,97.6 130.6,101.9 134.4,103.2" fill="currentColor" style="transform-origin: 130px 106px;" class="octo-arm"></path> <path d="M115.0,115.0 C114.9,115.1 118.7,116.5 119.8,115.4 L133.7,101.6 C136.9,99.2 139.9,98.4 142.2,98.6 C133.8,88.0 127.5,74.4 143.8,58.0 C148.5,53.4 154.0,51.2 159.7,51.0 C160.3,49.4 163.2,43.6 171.4,40.1 C171.4,40.1 176.1,42.5 178.8,56.2 C183.1,58.6 187.2,61.8 190.9,65.4 C194.5,69.0 197.7,73.2 200.1,77.6 C213.8,80.2 216.3,84.9 216.3,84.9 C212.7,93.1 206.9,96.0 205.4,96.6 C205.1,102.4 203.0,107.8 198.3,112.5 C181.9,128.9 168.3,122.5 157.7,114.1 C157.9,116.9 156.7,120.9 152.7,124.9 L141.0,136.5 C139.8,137.7 141.6,141.9 141.8,141.8 Z" fill="currentColor" class="octo-body"></path> </svg></a> <style>.github-corner:hover .octo-arm{animation:octocat-wave 560ms ease-in-out}@keyframes octocat-wave{0%,100%{transform:rotate(0)}20%,60%{transform:rotate(-25deg)}40%,80%{transform:rotate(10deg)}}@media (max-width:500px){.github-corner:hover .octo-arm{animation:none}.github-corner .octo-arm{animation:octocat-wave 560ms ease-in-out}}</style> ''' result = f''' <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> {meta_tags} <title>Writing better code with pytorch+einops</title> <style>{styles}</style> </head> <body> {github_ribbon} {content} </body> </html> ''' with open('../pytorch-examples.html', 'w') as f: f.write(result)
python
#!/usr/bin/env python3 """This is an example to train a task with CMA-ES. Here it runs CartPole-v1 environment with 100 epoches. Results: AverageReturn: 100 RiseTime: epoch 38 (itr 760), but regression is observed in the course of training. """ from metarl import wrap_experiment from metarl.envs import MetaRLEnv from metarl.experiment import LocalTFRunner from metarl.experiment.deterministic import set_seed from metarl.np.algos import CMAES from metarl.np.baselines import LinearFeatureBaseline from metarl.sampler import OnPolicyVectorizedSampler from metarl.tf.policies import CategoricalMLPPolicy @wrap_experiment def cma_es_cartpole(ctxt=None, seed=1): """Train CMA_ES with Cartpole-v1 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) with LocalTFRunner(ctxt) as runner: env = MetaRLEnv(env_name='CartPole-v1') policy = CategoricalMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32)) baseline = LinearFeatureBaseline(env_spec=env.spec) n_samples = 20 algo = CMAES(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=100, n_samples=n_samples) runner.setup(algo, env, sampler_cls=OnPolicyVectorizedSampler) runner.train(n_epochs=100, batch_size=1000) cma_es_cartpole()
python
import uvicorn from .main import app uvicorn.run(app)
python
import collections from torch.optim.lr_scheduler import LambdaLR def chunk(seq, num): avg = len(seq) / float(num) out = [] last = 0.0 while last < len(seq): out.append(seq[int(last):int(last + avg)]) last += avg return out def flatten(d, parent_key='', sep='__'): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def unflatten(dictionary, sep='__'): out_dict = dict() for key, value in dictionary.items(): parts = key.split(sep) d = out_dict for part in parts[:-1]: if part not in d: d[part] = dict() d = d[part] d[parts[-1]] = value return out_dict def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1): """ Create a schedule with a learning rate that decreases linearly after linearly increasing during a warmup period. """ def lr_lambda(current_step): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))) return LambdaLR(optimizer, lr_lambda, last_epoch)
python
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import scipy import random # Titan modules import create_model ## Generate initial data set N = 400 sig3 = 1 # 3-sigma error (controls the statistical fluctuation) a = 10 # radius of the helix b = 33/(2*np.pi) # 2*pi*b step of the helix epsihelical = 1 # -1 or 1 theta = np.zeros((N, 1)) #Initialise column vector for i in range(0, N): theta[i] = 100/b*random.random() X1 = a*np.cos(theta) X2 = a*epsihelical*np.sin(theta) X3 = b*theta fig = plt.figure(1) ax = fig.add_subplot(111, projection='3d') ax.scatter(X1,X2,X3, c='b', marker='o', s=0.5) ax.set_xlim(-20,20) ax.set_ylim(-20,20) ax.set_zlim(-10,100) # We add the statistical fluctuation X1_ = np.zeros((N, 1)) #Initialise column vector X2_ = np.zeros((N, 1)) #Initialise column vector X3_ = np.zeros((N, 1)) #Initialise column vector for i in range(0, N): X1_[i] = X1[i] + sig3/3*random.gauss(0, 1) X2_[i] = X2[i] + sig3/3*random.gauss(0, 1) X3_[i] = X3[i] + sig3/3*random.gauss(0, 1) fig = plt.figure(2) ax = fig.add_subplot(111, projection='3d') ax.scatter(X1_,X2_,X3_, c='b', marker='o', s=0.5) ax.set_xlim(-20,20) ax.set_ylim(-20,20) ax.set_zlim(-10,100) ## 3 - Create probabilistic representation of the data PLoM_model = create_model.TitanPLoM() PLoM_model.Type = 'PLoM' PLoM_model.ExpDesign.X = np.concatenate((X1_, X2_), axis=1) #X must be column vectors PLoM_model.ExpDesign.Y = X3_ PLoM_model.Opt.scaling = 0 PLoM_model.Opt.optimizationm = 0 PLoM_model.Opt.epsvalue = 1.57 # value of the smoothing parameter (is not determined with the optimization procedure) PLoM_model.Opt.m = 4 PLoM_model.titan_PLoM() plt.show() # 4 - Sample new realizations from the probabilistic representation of the data PLoM_model.Itoopt.nMC = 10 PLoM_model.Itoopt.M0 = 110 PLoM_model.Itoopt.l0 = 0 PLoM_model.Itoopt.dt = 0.1196 Y = titan_PLoM_eval(PLoM_model) # # 5 - Processing of new realizations # nMC = Metamodel.Itoopt.nMC # X1new = zeros(N*nMC,1) # X2new = zeros(N*nMC,1) # X3new = zeros(N*nMC,1) # for ll=1:nMC # for ii=1:N # X1new((ll-1)*N+ii) = Y(1,ii,ll) # X2new((ll-1)*N+ii) = Y(2,ii,ll) # X3new((ll-1)*N+ii) = Y(3,ii,ll) # end # end # figure # scatter3(X1,X2,X3,'blue') # hold on # scatter3(X1new,X2new,X3new,'red') # xlim([-20,20]) # ylim([-20,20]) # zlim([-10,100]) # figure # plot(X1new) # figure # plot(X2new) # figure # plot(X3new)
python
from ast.Expresion import Expresion from ast.Symbol import Symbol from ast.Expresion import Expresion from ast.Symbol import TIPOVAR as Tipo from ast.Sentencia import Sentencia import Reportes.ReporteD as Sentencias class Select(Sentencia): #SELECT selectclausules FROM selectbody wherecondicion #Selecttable : SELECT selectclausules FROM selectbody wherecondicion #St[0] = Select(t[2],t[4],t.slice[1].lineno,find_column(t.slice[1]),t[5]) def __init__(self,id,value,line, column,declare): self.id = id self.line= line self.column = column self.value = value self.type = declare def ejecutar(self,entorno,tree): print("zVV Select") #print("sentencias v "+Expres.id) y= {} try: if self.id.type=="*": print("xxc") try: print("zVV 1") if self.value.type=="ID": y = self.value.value print(" y= "+str(y)) SentenciasR = Sentencias.ReporteD() print("7000a ") SentenciasR.write(y,"Select*from "+y,entorno,tree) print("7001 ") except: pass except: pass tree.agregarnodos(self) return False
python
"""Function wrapping logic.""" import importlib import os import sys import logging import tempfile import atexit import functools import typing import traceback from flask import request import dploy_kickstart.errors as pe import dploy_kickstart.transformers as pt import dploy_kickstart.annotations as pa log = logging.getLogger(__name__) def nb_to_py(nb_file: str, location: str) -> str: """Convery .ipynb to temporary .py file.""" try: import nbformat import nbconvert except ImportError as e: raise pe.ScriptImportError( f"{e}\nCannot import notebook conversion libraries." + "Please add `jupyter` (or `nbformat` and `nbconvert`)" + " to your dependencies.", ) handle, filename = tempfile.mkstemp(text=True, suffix=".py") with os.fdopen(handle, "w") as tf: with open(os.path.join(location, nb_file)) as fh: nb = nbformat.reads(fh.read(), nbformat.NO_CONVERT) exporter = nbconvert.PythonExporter() src, _ = exporter.from_notebook_node(nb) tf.writelines(src) # delete file on exit atexit.register(functools.partial(os.remove, filename)) return os.path.basename(filename), os.path.dirname(filename) def get_func_annotations(mod: typing.Generic) -> typing.List[pa.AnnotatedCallable]: """Scan usercode for function annotations.""" cm = [] # check which functions have relevant args and return 'em for name, val in mod.__dict__.items(): if callable(val): ac = pa.AnnotatedCallable(val) if ac.has_args(): cm.append(ac) return cm def import_entrypoint(entrypoint: str, location: str) -> typing.Generic: """Import entrypoint from user code.""" # assert if entrypoint contains a path prefix and if so add it to location if os.path.dirname(entrypoint) != "": location = os.path.join(location, os.path.dirname(entrypoint)) entrypoint = os.path.basename(entrypoint) # add location to path for mod importing sys.path.insert(0, location) # switch to location to allow for relative asset loading in usercode os.chdir(location) _, ext = os.path.splitext(entrypoint) if ext == ".ipynb": entrypoint, location = nb_to_py(entrypoint, location) # add location of temporary .py file so it can be imported sys.path.insert(0, location) elif ext == ".py": pass else: log.error(f"unsupportered entrypoint: {entrypoint}") raise pe.UnsupportedEntrypoint(entrypoint) mod_file, _ = os.path.splitext(entrypoint) msg = "loading module '{}' (modfile: {}) from location '{}'".format( entrypoint, mod_file, location ) log.debug(msg) try: mod = importlib.import_module(mod_file, location) except Exception as e: raise pe.ScriptImportError(f"{msg}: {e}") return mod def func_wrapper(f: pa.AnnotatedCallable) -> typing.Callable: """Wrap functions with request logic.""" def exposed_func() -> typing.Callable: # preprocess input for callable try: res = pt.MIME_TYPE_REQ_MAPPER[request.is_json](f, request) except Exception: raise pe.UserApplicationError( message=f"error in executing '{f.__name__()}' method.", traceback=traceback.format_exc(), ) # determine whether or not to process response before sending it back to caller try: return pt.MIME_TYPE_RES_MAPPER[res.__class__.__name__](res) except Exception: raise pe.UserApplicationError( message=f"error in executing '{f.__name__()}' method, the return type " f"{res.__class__.__name__} is not supported", traceback=traceback.format_exc(), ) return exposed_func
python
#!/usr/bin/python # minimal imports for faster startup import os from logger import logger def run(): import time import sys import signal import json os.environ["QT_QPA_PLATFORM"] = "xcb" # window oddly resizes when regaining focus from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QHBoxLayout from PyQt5.QtCore import QThread, QObject, pyqtSignal, pyqtSlot, Qt from PyQt5.QtGui import QFont # local from unix_socket import UnixSocket SOCKET_PATH = "/tmp/speech_gui.sock" class Server(QThread): update_signal = pyqtSignal(str) def __init__(self): super().__init__() self._quit = False self.state = { "pause": False, "hold": False, "shift": False, "ctrl": False, "alt": False, "win": False, "key": "" } def run(self): self._update() while not self._quit: try: os.unlink(SOCKET_PATH) except OSError: if os.path.exists(SOCKET_PATH): raise sock = UnixSocket(SOCKET_PATH, 100) sock.listen() while True: logger.info('Wait for a connection') sock.accept() logger.info('Connected. Listening for keys ...') try: # Receive the data in small chunks and retransmit it while True: msg = sock.receive() self.state["pause"] = msg[0] == "1" self.state["hold"] = msg[1] == "1" self.state["shift"] = msg[2] == "1" self.state["ctrl"] = msg[3] == "1" self.state["alt"] = msg[4] == "1" self.state["win"] = msg[5] == "1" self.state["key"] = msg[6:] self._update() except RuntimeError as err: logger.info(err) finally: logger.info('Clean up the connection') sock.close_connection() exit() def _update(self): message = json.dumps(self.state) logger.info(message) self.update_signal.emit(message) def quit(self): self._quit = True class App(QObject): colors = { "background": "#B7EBB9", "mods": "#8875E4DE", "mods_hold": "#88F3E803", "mod_active": "#8804C1E1", "mod_active_hold": "#88F6AC0D" } labels = {} def __init__(self): super().__init__() modsLayout = QHBoxLayout() self.modsWidget = QWidget() self.modsWidget.setLayout(modsLayout) self.modsWidget.setStyleSheet(''' QLabel { font-size: 12pt; min-width: 14px; } .QWidget { border-bottom-left-radius: 10px; border-top-left-radius: 10px; } ''') layout = QHBoxLayout() layout.addWidget(self.modsWidget) self.widget = QWidget() self.widget.setLayout(layout) self.widget.setStyleSheet(''' QLabel { font-size: 12pt; } QWidget { background-color: #88B7EBB9 } ''') self.widget.setAttribute(Qt.WA_TranslucentBackground, True) self.widget.setWindowFlags(Qt.FramelessWindowHint) for labelKey in ['shift', 'ctrl', 'alt', 'win']: label = QLabel() label.setText(labelKey[0]) label.setAlignment(Qt.AlignCenter) modsLayout.addWidget(label) self.labels[labelKey] = label self.labelKey = QLabel() self.labelKey.setText('') self.labelKey.setFixedWidth(100) layout.addWidget(self.labelKey) # layout.addStretch() layout.setAlignment(Qt.AlignLeft) layout.setSpacing(0) self.widget.setWindowTitle("speechwindow") self.widget.show() class PostResizeThread(QThread): def __init__(self, widget): super().__init__() self.widget = widget def run(self): time.sleep(.1) self.widget.setGeometry(0, 0, 130, 40) self.post_resize_thread = PostResizeThread(self.widget) self.post_resize_thread.start() @pyqtSlot(str) def update(self, message): data = json.loads(message) modsBGColor = self.colors['mods_hold'] if data['hold'] else self.colors['mods'] self.modsWidget.setStyleSheet(""" QLabel { font-size: 12pt; min-width: 14px; } .QWidget { border-bottom-left-radius: 10px; border-top-left-radius: 10px; background-color: %s} """ % (modsBGColor)) for key, label in self.labels.items(): if data[key]: colorKey = f"mod_active{'_hold' if data['hold'] else ''}" label.setStyleSheet(f"background-color: {self.colors[colorKey]}") else: label.setStyleSheet(f"background-color: none") self.labelKey.setText(" " + data["key"]) qapp = QApplication(sys.argv) app = App() serverthread = Server() # thread safe communication, QtGui requires all gui related code to be called from the same thread serverthread.update_signal.connect(app.update, Qt.QueuedConnection) # design flaw, see https://stackoverflow.com/q/4938723/6040478 signal.signal(signal.SIGINT, signal.SIG_DFL) serverthread.start() qapp.exec_() logger.info('Quit, collecting threads.') serverthread.quit() serverthread.wait() # signal.pause() run()
python
from __future__ import print_function, absolute_import import abc import six from lazy import lazy from pyreference.utils.genomics_utils import iv_from_pos_range, \ iv_from_pos_directional_before_after, dict_to_iv class GenomicRegion(object): """ Base class for both Gene and Transcript """ def __init__(self, reference, accession_id, data_dict): self.reference = reference self.accession_id = accession_id self._dict = data_dict def get_id(self): return self.accession_id @property def biotype(self): return '/'.join(sorted(self.get_biotypes())) def get_biotypes(self): # On gene it's a string biotype = self._dict["biotype"] if isinstance(biotype, six.string_types): biotypes = biotype.split(",") elif isinstance(biotype, list): biotypes = biotype return biotypes @lazy def iv(self): return dict_to_iv(self._dict) @lazy def tss(self): """ (Representative) Transcript Start Site This is NOT the most 5' position (use iv.start_d_as_pos for that) """ transcript_iv = self.get_representative_transcript().iv return transcript_iv.start_d_as_pos def get_promoter_iv(self, promoter_range=1000): return iv_from_pos_range(self.tss, promoter_range) def get_promoter_sequence(self, promoter_range=1000): iv = self.get_promoter_iv(promoter_range) return self.reference.get_sequence_from_iv(iv) def get_promoter_iv_custom_range(self, upstream_distance, downstream_distance): """Get any interval surrounding TSS Note: total length of interval = upstream_distance + downstream_distance (The TSS base is included in downstream_distance)""" return iv_from_pos_directional_before_after(self.tss, upstream_distance, downstream_distance) def get_promoter_sequence_custom_range(self, upstream_distance, downstream_distance): iv = self.get_promoter_iv_custom_range(upstream_distance, downstream_distance) return self.reference.get_sequence_from_iv(iv) @abc.abstractmethod def get_representative_transcript(self): pass
python
import os import dill import unittest import collections from swamp.utils import remove from swamp.mr.mrresults import MrResults RESULTS = collections.namedtuple('results', ['results']) WORKDIR = os.path.join(os.environ['CCP4_SCR'], 'test_workdir') MR_DIR = os.path.join(WORKDIR, 'swamp_mr') class MrResultsTestCase(unittest.TestCase): def test_1(self): search_1 = os.path.join(MR_DIR, 'search_1') search_1_run_1 = os.path.join(MR_DIR, 'search_1', 'run_1') search_2 = os.path.join(MR_DIR, 'search_2') search_2_run_1 = os.path.join(MR_DIR, 'search_2', 'run_1') search_2_run_2 = os.path.join(MR_DIR, 'search_2', 'run_2') directories = [WORKDIR, MR_DIR, search_1, search_1_run_1, search_2, search_2_run_1, search_2_run_2] for directory in directories: if not os.path.isdir(directory): os.mkdir(directory) self.addCleanup(remove, WORKDIR) results = RESULTS( results=[['SEARCH_1', 'RUN_1', 'LLG', 'TFZ', 'local_CC', 'overall_CC', 'rfree', 'rfactor', 'local_CC', 'overall_CC', '15', 'acl', 'is_extended', 'solution']]) with open(os.path.join(search_1_run_1, 'results.pckl'), 'wb') as fhandle: dill.dump(results, fhandle) results = RESULTS( results=[['SEARCH_2', 'RUN_1', 'LLG', 'TFZ', 'local_CC', 'overall_CC', 'rfree', 'rfactor', 'local_CC', 'overall_CC', '45', 'acl', 'is_extended', 'solution']]) with open(os.path.join(search_2_run_1, 'results.pckl'), 'wb') as fhandle: dill.dump(results, fhandle) results = RESULTS( results=[['SEARCH_2', 'RUN_2', 'LLG', 'TFZ', 'local_CC', 'overall_CC', 'rfree', 'rfactor', 'local_CC', 'overall_CC', '9', 'acl', 'is_extended', 'solution']]) with open(os.path.join(search_2_run_2, 'results.pckl'), 'wb') as fhandle: dill.dump(results, fhandle) results = MrResults(swamp_workdir=WORKDIR) self.assertListEqual(sorted((os.path.join(search_1_run_1, 'results.pckl'), os.path.join(search_2_run_2, 'results.pckl'), os.path.join(search_2_run_1, 'results.pckl'))), sorted(results.pickle_list)) self.assertListEqual([['SEARCH_2', 'RUN_2', 'LLG', 'TFZ', 'local_CC', 'overall_CC', 'rfree', 'rfactor', 'local_CC', 'overall_CC', '9', 'acl', 'is_extended', 'solution'], ['SEARCH_2', 'RUN_1', 'LLG', 'TFZ', 'local_CC', 'overall_CC', 'rfree', 'rfactor', 'local_CC', 'overall_CC', '45', 'acl', 'is_extended', 'solution'], ['SEARCH_1', 'RUN_1', 'LLG', 'TFZ', 'local_CC', 'overall_CC', 'rfree', 'rfactor', 'local_CC', 'overall_CC', '15', 'acl', 'is_extended', 'solution']] , results.results) self.assertListEqual(["SEARCH ID", "RUN ID", "LLG", "TFZ", "PHSR_CC_LOC", "PHSR_CC_ALL", "RFMC_RFREE", "RFMC_RFACT", "RFMC_CC_LOC", "RFMC_CC_ALL", "SHXE_CC", "SHXE_ACL", "IS_EXTENDED", "SOLUTION"], results._result_table_fields) self.assertEqual(results.logger_header, """\n******************************************************************\ **** ******************* SWAMP-MR RESULTS *************** ********************************************************************** Recovering results now... """)
python
import functools import itertools import math from evm.constants import ( UINT_255_MAX, UINT_256_CEILING, ) def int_to_big_endian(value): byte_length = math.ceil(value.bit_length() / 8) return (value).to_bytes(byte_length, byteorder='big') def big_endian_to_int(value): return int.from_bytes(value, byteorder='big') def int_to_byte(value): return bytes([value]) byte_to_int = ord def ceilXX(value, ceiling): remainder = value % ceiling if remainder == 0: return value else: return value + ceiling - remainder ceil32 = functools.partial(ceilXX, ceiling=32) ceil8 = functools.partial(ceilXX, ceiling=8) def unsigned_to_signed(value): if value <= UINT_255_MAX: return value else: return value - UINT_256_CEILING def signed_to_unsigned(value): if value < 0: return value + UINT_256_CEILING else: return value def safe_ord(value): if isinstance(value, int): return value else: return ord(value) def is_even(value): return value % 2 == 0 def is_odd(value): return value % 2 == 1 def get_highest_bit_index(value): value >>= 1 for bit_length in itertools.count(): if not value: return bit_length value >>= 1
python
""" Copyright 2014-2016 University of Illinois Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. file: populate/pop_rules.py Author: Jon Gunderson """ from __future__ import print_function from __future__ import absolute_import import sys import os import django from django.core.exceptions import ObjectDoesNotExist import re fp = os.path.realpath(__file__) path, filename = os.path.split(fp) fae2_path = path.split('/populate')[0] sys.path.append(fae2_path) os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fae2.settings') from django.conf import settings django.setup() import json from abouts.models import FAQ def addFAQ(seq, title, description): try: faq = FAQ.objects.get(seq=seq) print("Updated FAQ: " + title) faq.title = title faq.description = description except: print("Created FAQ: " + title) faq = FAQ(seq=seq, title=title, description=description) faq.save() desc = """ There are two major reasons why FAE 2.0 and AInspector Sidebar evaluation results may be different: 1. When a page includes dynamically loaded content, the DOM that FAE 2.0 sees will often be different from the DOM that AInspector Sidebar sees, resulting in different evaluation results. The more dynamic the content in the page, the more possibility of a discrepancy. 1. Pages that are responsive to screen dimensions will have different content rendered depending on the width of the screen. FAE 2.0 generally has a wide screen and AInspector Sidebar will analyze the content based on the current screen width. **Note:** AInspector Sidebar will generally be more accurate than FAE for looking at Individual Pages. """ addFAQ(1, "FAE 2.0 and AInspector Sidebar evaluation results different?", desc) desc = """ The rules are designed to help users understand what accessibility issues they need to consider in the design of a website. Manual checks help users identify what they need to learn about accessibility inorder to insure their web resource is accessible. Currently manual checks help inform users of what they need to understand about accessibility, but in FAE 2.1 users will be able to update manual checks to Pass, Fail or Not Applicable to update the report details, summary and implementation scores for rules and rule catagories. """ addFAQ(2, "Why report manual checking results?", desc)
python
""" A complex number is a number in the form a + b * i where a and b are real and i satisfies i^2 = -1. `a` is called the real part and `b` is called the imaginary part of `z`. The conjugate of the number `a + b * i` is the number `a - b * i`. The absolute value of a complex number `z = a + b * i` is a real number `|z| = sqrt(a^2 + b^2)`. The square of the absolute value `|z|^2` is the result of multiplication of `z` by its complex conjugate. The sum/difference of two complex numbers involves adding/subtracting their real and imaginary parts separately: `(a + i * b) + (c + i * d) = (a + c) + (b + d) * i`, `(a + i * b) - (c + i * d) = (a - c) + (b - d) * i.` Multiplication result is by definition `(a + i * b) * (c + i * d) = (a * c - b * d) + (b * c + a * d) * i`. The reciprocal of a non-zero complex number is `1 / (a + i * b) = a/(a^2 + b^2) - b/(a^2 + b^2) * i`. Dividing a complex number a + i * b by another c + i * d gives: `(a + i * b) / (c + i * d) = (a * c + b * d)/(c^2 + d^2) + (b * c - a * d)/(c^2 + d^2) * i`. Raising `e` to a complex exponent can be expressed as: `e^(a + i * b) = e^a * e^(i * b)`, the last term of which is given by Euler's formula `e^(i * b) = cos(b) + i * sin(b)`. Task: Implement the following operations: - addition, subtraction, multiplication and division of two complex numbers, - conjugate, absolute value, exponent of a given complex number. Assume the programming language you are using does not have an implementation of complex numbers. """ from math import sqrt, cos, sin, exp from typing import Union class ComplexNumber: """ A Class to emulate Complex Numbers """ REAL_SET = {int, float} def __init__(self, real: Union[int, float], imaginary: Union[int, float] = 0): self._real = real self._imag = imaginary self._validate() def _validate(self): if (type(self.real) not in self.REAL_SET or type(self.imaginary) not in self.REAL_SET): raise ValueError("Both the real and imaginary parts of the complex number must be real!!") @property def real(self): """ :return: Real part of the Complex Number """ return self._real @property def imaginary(self): """ :return: Imaginary part of the Complex Number """ return self._imag def __eq__(self, other): return self.real == other.real and self.imaginary == other.imaginary def __add__(self, other): return self.__class__(self.real + other.real, self.imaginary + other.imaginary) def __mul__(self, other): return self.__class__(self.real * other.real - self.imaginary * other.imaginary, self.real * other.imaginary + self.imaginary * other.real) def __sub__(self, other): return self + self.__class__(-other.real, -other.imaginary) # Since the square of absolute value of a Complex Number will have `imaginary == 0` def _abs_square(self): return (self * self.conjugate()).real def _reciprocal(self): return self.__class__(self.real / self._abs_square(), -self.imaginary / self._abs_square()) def __truediv__(self, other): return self * other._reciprocal() def __abs__(self): return sqrt(self._abs_square()) def conjugate(self): """ :return: The Complex Conjugate of the Complex Number """ return self.__class__(self.real, -self.imaginary) # Calculate value of e^ib as per Euler's Formula def _exp_imag_only(self): return self.__class__(cos(self.imaginary), sin(self.imaginary)) def exp(self): """ :return: The value of `e` raised to the power of the Complex Number """ return self.__class__(exp(self.real)) * self._exp_imag_only()
python
""" Module: 'sys' on pyboard 1.13.0-95 """ # MCU: (sysname='pyboard', nodename='pyboard', release='1.13.0', version='v1.13-95-g0fff2e03f on 2020-10-03', machine='PYBv1.1 with STM32F405RG') # Stubber: 1.3.4 argv = None byteorder = 'little' def exit(): pass implementation = None maxsize = 2147483647 modules = None path = None platform = 'pyboard' def print_exception(): pass stderr = None stdin = None stdout = None version = '3.4.0' version_info = None
python
# Copyright 2009-2010 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GridFS is a specification for storing large objects in Mongo. The :mod:`gridfs` package is an implementation of GridFS on top of :mod:`pymongo`, exposing a file-like interface. """ from __future__ import absolute_import, division from twisted.internet import defer from txmongo._gridfs.errors import NoFile from txmongo._gridfs.grid_file import GridIn, GridOut, GridOutIterator from txmongo import filter from txmongo.filter import ASCENDING, DESCENDING from txmongo.database import Database assert GridOutIterator class GridFS(object): """An instance of GridFS on top of a single Database. """ def __init__(self, database, collection="fs"): """Create a new instance of :class:`GridFS`. Raises :class:`TypeError` if `database` is not an instance of :class:`~pymongo.database.Database`. :Parameters: - `database`: database to use - `collection` (optional): root collection to use .. note:: Instantiating a GridFS object will implicitly create it indexes. This could leads to errors if the underlying connection is closed before the indexes creation request has returned. To avoid this you should use the defer returned by :meth:`GridFS.indexes_created`. .. versionadded:: 1.6 The `collection` parameter. """ if not isinstance(database, Database): raise TypeError("TxMongo: database must be an instance of Database.") self.__database = database self.__collection = database[collection] self.__files = self.__collection.files self.__chunks = self.__collection.chunks self.__indexes_created_defer = defer.DeferredList([ self.__files.create_index( filter.sort(ASCENDING("filename") + ASCENDING("uploadDate"))), self.__chunks.create_index( filter.sort(ASCENDING("files_id") + ASCENDING("n")), unique=True) ]) def indexes_created(self): """Returns a defer on the creation of this GridFS instance's indexes """ d = defer.Deferred() self.__indexes_created_defer.chainDeferred(d) return d def new_file(self, **kwargs): """Create a new file in GridFS. Returns a new :class:`~gridfs.grid_file.GridIn` instance to which data can be written. Any keyword arguments will be passed through to :meth:`~gridfs.grid_file.GridIn`. :Parameters: - `**kwargs` (optional): keyword arguments for file creation .. versionadded:: 1.6 """ return GridIn(self.__collection, **kwargs) def put(self, data, **kwargs): """Put data in GridFS as a new file. Equivalent to doing: >>> f = new_file(**kwargs) >>> try: >>> f.write(data) >>> finally: >>> f.close() `data` can be either an instance of :class:`str` or a file-like object providing a :meth:`read` method. Any keyword arguments will be passed through to the created file - see :meth:`~gridfs.grid_file.GridIn` for possible arguments. Returns the ``"_id"`` of the created file. :Parameters: - `data`: data to be written as a file. - `**kwargs` (optional): keyword arguments for file creation .. versionadded:: 1.6 """ grid_file = GridIn(self.__collection, **kwargs) def _finally(result): return grid_file.close().addCallback(lambda _: result) return grid_file.write(data)\ .addBoth(_finally)\ .addCallback(lambda _: grid_file._id) def get(self, file_id): """Get a file from GridFS by ``"_id"``. Returns an instance of :class:`~gridfs.grid_file.GridOut`, which provides a file-like interface for reading. :Parameters: - `file_id`: ``"_id"`` of the file to get .. versionadded:: 1.6 """ def ok(doc): if doc is None: raise NoFile("TxMongo: no file in gridfs with _id {0}".format(repr(file_id))) return GridOut(self.__collection, doc) return self.__collection.files.find_one({"_id": file_id}).addCallback(ok) def get_version(self, filename=None, version=-1): """Get a file from GridFS by ``"filename"``. Returns a version of the file in GridFS whose filename matches `filename` and whose metadata fields match the supplied keyword arguments, as an instance of :class:`~gridfs.grid_file.GridOut`. Version numbering is a convenience atop the GridFS API provided by MongoDB. If more than one file matches the query (either by `filename` alone, by metadata fields, or by a combination of both), then version ``-1`` will be the most recently uploaded matching file, ``-2`` the second most recently uploaded, etc. Version ``0`` will be the first version uploaded, ``1`` the second version, etc. So if three versions have been uploaded, then version ``0`` is the same as version ``-3``, version ``1`` is the same as version ``-2``, and version ``2`` is the same as version ``-1``. Note that searching by random (unindexed) meta data is not supported here. Raises :class:`~gridfs.errors.NoFile` if no such version of that file exists. :Parameters: - `filename`: ``"filename"`` of the file to get, or `None` - `version` (optional): version of the file to get (defaults to -1, the most recent version uploaded) """ query = {"filename": filename} skip = abs(version) if version < 0: skip -= 1 myorder = DESCENDING("uploadDate") else: myorder = ASCENDING("uploadDate") def ok(cursor): if cursor: return GridOut(self.__collection, cursor[0]) raise NoFile("no version %d for filename %r" % (version, filename)) return self.__files.find(query, filter=filter.sort(myorder), limit=1, skip=skip)\ .addCallback(ok) def count(self, filename): """Count the number of versions of a given file. Returns an integer number of versions of the file in GridFS whose filename matches `filename`, or raises NoFile if the file doesn't exist. :Parameters: - `filename`: ``"filename"`` of the file to get version count of """ return self.__files.count({"filename": filename}) def get_last_version(self, filename): """Get a file from GridFS by ``"filename"``. Returns the most recently uploaded file in GridFS with the name `filename` as an instance of :class:`~gridfs.grid_file.GridOut`. Raises :class:`~gridfs.errors.NoFile` if no such file exists. An index on ``{filename: 1, uploadDate: -1}`` will automatically be created when this method is called the first time. :Parameters: - `filename`: ``"filename"`` of the file to get .. versionadded:: 1.6 """ def ok(doc): if doc is None: raise NoFile("TxMongo: no file in gridfs with filename {0}".format(repr(filename))) return GridOut(self.__collection, doc) return self.__files.find_one({"filename": filename}, filter = filter.sort(DESCENDING("uploadDate"))).addCallback(ok) # TODO add optional safe mode for chunk removal? def delete(self, file_id): """Delete a file from GridFS by ``"_id"``. Removes all data belonging to the file with ``"_id"``: `file_id`. .. warning:: Any processes/threads reading from the file while this method is executing will likely see an invalid/corrupt file. Care should be taken to avoid concurrent reads to a file while it is being deleted. :Parameters: - `file_id`: ``"_id"`` of the file to delete .. versionadded:: 1.6 """ return defer.DeferredList([ self.__files.remove({"_id": file_id}, safe=True), self.__chunks.remove({"files_id": file_id}) ]) def list(self): """List the names of all files stored in this instance of :class:`GridFS`. .. versionchanged:: 1.6 Removed the `collection` argument. """ return self.__files.distinct("filename")
python
#!/usr/bin/python #:deploy:OHsentinel:/usr/local/bin #standard imports import sys import ConfigParser import logging import os #custom imports if os.path.isdir("/usr/local/share/OHsentinel"): sys.path.append("/usr/local/share/OHsentinel") elif os.path.isdir("/usr/share/OHsentinel"): sys.path.append("/usr/share/OHsentinel") try: import OHcommons import OHssdp import OHcustoms except: print 'Could not import OHcli modules. Please check /usr/local/share/OHsentinel and /usr/share/OHsentinel. lxml and tabulate are also required.' sys.exit(4) def init(): "reading config and parameters" config = {} devices = {} if True:#try: conf = ConfigParser.ConfigParser() if os.path.isfile('/etc/OHsentinel.conf'): conf.read('/etc/OHsentinel.conf') else: conf.read('./OHsentinel.conf') else:#except: print 'Could not read config file' sys.exit(1) if conf.has_section('OHproduct'): for item in conf.items('OHproduct'): devices['product', item[0]] = item[1] if conf.has_section('OHsender'): for item in conf.items('OHsender'): devices['sender', item[0]] = item[1] if conf.has_section('OHradio'): config['stations'] = conf.get('OHradio', 'stations').split(',') if conf.has_section('fakeradio'): for station in conf.items('fakeradio'): config['fakeradio', station[0]] = station[1] if conf.has_option('resources', 'xmlpath'): config['xmlpath'] = conf.get('resources', 'xmlpath') else: config['xmlpath'] = '/usr/local/share/OHsentinel/xml' if conf.has_option('resources', 'xslpath'): config['xslpath'] = conf.get('resources', 'xslpath') else: config['xslpath'] = '/usr/local/share/OHsentinel/xsl' if conf.has_option('resources', 'logfile'): config['logfile'] = conf.get('resources', 'logfile') else: config['logfile'] = './OHsentinel.log' if conf.has_option('resources', 'cmdport'): config['cmdport'] = conf.get('resources', 'cmdport') else: config['cmdport'] = 8891 if conf.has_option('resources', 'remote'): config['remote'] = conf.get('resources', 'remote') else: config['remote'] = 'http://localhost' if conf.has_option('misc', 'xmltagdelimiter'): config['xmltagdelimiter'] = conf.get('misc', 'xmltagdelimiter') else: config['xmltagdelimiter'] = ';;' if conf.has_option('misc', 'maxcolumnwidth'): config['maxcolumnwidth'] = conf.getint('misc', 'maxcolumnwidth') if conf.has_option('misc', 'standardtags'): config['standardtags'] = conf.get('misc', 'standardtags') config['searchstring', 'product'] = "urn:av-openhome-org:service:Product:1" config['searchstring', 'sender'] = "urn:av-openhome-org:service:Sender:1" config['searchstring', 'all'] = "ssdp:all" config['searchtypes'] = ['product', 'sender', 'all'] if conf.has_section('customsearch'): for st in conf.items('customsearch'): config['searchstring', st[0]] = st[1] config['searchtypes'].append(st[0]) "parse arguments" args = OHcustoms.set_arguments(None, config['searchtypes']) "setup logging" numeric_level = getattr(logging, args.loglevel[0].upper(), None) if args.log == ["screen"]: logging.basicConfig(level=numeric_level, format='%(asctime)s - %(levelname)s - %(message)s') logging.debug('logging started') elif args.log == ["file"]: log_handler = logging.handlers.WatchedFileHandler(config['logfile']) log_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) logger = logging.getLogger() logger.setLevel(numeric_level) logger.addHandler(log_handler) logging.debug('logging started') elif args.log == ["syslog"]: log_handler = logging.handlers.SysLogHandler(address = '/dev/log') log_handler.setFormatter(logging.Formatter('OHsentinel - cli: %(levelname)s - %(message)s')) logger = logging.getLogger() logger.setLevel(numeric_level) logger.addHandler(log_handler) logging.debug('logging started') elif args.log == ["systemd"]: from systemd.journal import JournalHandler logger = logging.getLogger() logger.setLevel(numeric_level) logger.addHandler(JournalHandler(SYSLOG_IDENTIFIER='OHsentinel')) logging.debug('logging started') logging.debug('Used configuration: ' + str(config)) logging.debug('Known devices: ' + str(devices)) return args, config, devices args, config, devices = init() logging.debug(args) if args.mode == 'search': OHcommons.search(args, devices, config) elif args.mode == 'command': if args.unit[0] == 'Custom': "Process command in custom unit" OHcustoms.command(args, devices, config) else: "Process standard command" OHcommons.command(args, devices, config) elif args.mode == 'explore': OHcommons.explore(args, devices, config) elif args.mode == 'remote': OHcommons.remote(args, devices, config)
python
import unittest from policosm.utils.levels import get_level class LevelsTestCase(unittest.TestCase): def test_known(self): for highway in ['construction', 'demolished', 'raceway', 'abandoned', 'disused', 'foo', 'no','projected', 'planned','proposed','razed','dismantled','historic']: self.assertEqual(0, get_level(highway)) for highway in ['stairway', 'elevator', 'corridor', 'hallway', 'slide']: self.assertEqual(1, get_level(highway)) for highway in ['services', 'busway', 'bus_guideway', 'access','bus_stop', 'via_ferrata', 'access_ramp', 'emergency_access_point', 'emergency_bay','service', 'footway', 'traffic_island', 'virtual', 'cyleway', 'cycleway', 'byway', 'path', 'track', 'pedestrian', 'steps', 'platform', 'bridleway', 'rest_area', 'escape','footway']: self.assertEqual(2, get_level(highway)) for highway in ['residential', 'yes', 'unclassified', 'crossing', 'unknown', 'bridge', 'lane', 'ford', 'psv', 'living_street','alley']: self.assertEqual(3, get_level(highway)) for highway in ['tertiary', 'tertiary_link', 'turning_circle', 'road', 'roundabout', 'ice_road']: self.assertEqual(4, get_level(highway)) for highway in ['secondary', 'secondary_link']: self.assertEqual(5, get_level(highway)) for highway in ['primary', 'primary_link']: self.assertEqual(6, get_level(highway)) for highway in ['trunk', 'trunk_link']: self.assertEqual(7, get_level(highway)) for highway in ['motorway', 'motorway_link','ramp']: self.assertEqual(8, get_level(highway)) def test_unknown(self): self.assertEqual(3, get_level('zzz')) if __name__ == '__main__': unittest.main()
python
import torch import torch.nn as nn from torchsummary import summary from lib.medzoo.BaseModelClass import BaseModel """ Code was borrowed and modified from this repo: https://github.com/josedolz/HyperDenseNet_pytorch """ def conv(nin, nout, kernel_size=3, stride=1, padding=1, bias=False, layer=nn.Conv2d, BN=False, ws=False, activ=nn.LeakyReLU(0.2), gainWS=2): convlayer = layer(nin, nout, kernel_size, stride=stride, padding=padding, bias=bias) layers = [] # if ws: # layers.append(WScaleLayer(convlayer, gain=gainWS)) if BN: layers.append(nn.BatchNorm2d(nout)) if activ is not None: if activ == nn.PReLU: # to avoid sharing the same parameter, activ must be set to nn.PReLU (without '()') layers.append(activ(num_parameters=1)) else: # if activ == nn.PReLU(), the parameter will be shared for the whole network ! layers.append(activ) layers.insert(ws, convlayer) return nn.Sequential(*layers) class ResidualConv(nn.Module): def __init__(self, nin, nout, bias=False, BN=False, ws=False, activ=nn.LeakyReLU(0.2)): super(ResidualConv, self).__init__() convs = [conv(nin, nout, bias=bias, BN=BN, ws=ws, activ=activ), conv(nout, nout, bias=bias, BN=BN, ws=ws, activ=None)] self.convs = nn.Sequential(*convs) res = [] if nin != nout: res.append(conv(nin, nout, kernel_size=1, padding=0, bias=False, BN=BN, ws=ws, activ=None)) self.res = nn.Sequential(*res) activation = [] if activ is not None: if activ == nn.PReLU: # to avoid sharing the same parameter, activ must be set to nn.PReLU (without '()') activation.append(activ(num_parameters=1)) else: # if activ == nn.PReLU(), the parameter will be shared for the whole network ! activation.append(activ) self.activation = nn.Sequential(*activation) def forward(self, input): out = self.convs(input) return self.activation(out + self.res(input)) def upSampleConv_Res(nin, nout, upscale=2, bias=False, BN=False, ws=False, activ=nn.LeakyReLU(0.2)): return nn.Sequential( nn.Upsample(scale_factor=upscale), ResidualConv(nin, nout, bias=bias, BN=BN, ws=ws, activ=activ) ) def conv_block(in_dim, out_dim, act_fn, kernel_size=3, stride=1, padding=1, dilation=1): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation), nn.BatchNorm2d(out_dim), act_fn, ) return model def conv_block_1(in_dim, out_dim): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=1), nn.BatchNorm2d(out_dim), nn.PReLU(), ) return model def conv_block_Asym(in_dim, out_dim, kernelSize): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=[kernelSize, 1], padding=tuple([2, 0])), nn.Conv2d(out_dim, out_dim, kernel_size=[1, kernelSize], padding=tuple([0, 2])), nn.BatchNorm2d(out_dim), nn.PReLU(), ) return model def conv_block_Asym_Inception(in_dim, out_dim, kernel_size, padding, dilation=1): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=[kernel_size, 1], padding=tuple([padding * dilation, 0]), dilation=(dilation, 1)), nn.BatchNorm2d(out_dim), nn.ReLU(), nn.Conv2d(out_dim, out_dim, kernel_size=[1, kernel_size], padding=tuple([0, padding * dilation]), dilation=(dilation, 1)), nn.BatchNorm2d(out_dim), nn.ReLU(), ) return model def conv_block_Asym_Inception_WithIncreasedFeatMaps(in_dim, mid_dim, out_dim, kernel_size, padding, dilation=1): model = nn.Sequential( nn.Conv2d(in_dim, mid_dim, kernel_size=[kernel_size, 1], padding=tuple([padding * dilation, 0]), dilation=(dilation, 1)), nn.BatchNorm2d(mid_dim), nn.ReLU(), nn.Conv2d(mid_dim, out_dim, kernel_size=[1, kernel_size], padding=tuple([0, padding * dilation]), dilation=(dilation, 1)), nn.BatchNorm2d(out_dim), nn.ReLU(), ) return model def conv_block_Asym_ERFNet(in_dim, out_dim, kernelSize, padding, drop, dilation): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=[kernelSize, 1], padding=tuple([padding, 0]), bias=True), nn.ReLU(), nn.Conv2d(out_dim, out_dim, kernel_size=[1, kernelSize], padding=tuple([0, padding]), bias=True), nn.BatchNorm2d(out_dim, eps=1e-03), nn.ReLU(), nn.Conv2d(in_dim, out_dim, kernel_size=[kernelSize, 1], padding=tuple([padding * dilation, 0]), bias=True, dilation=(dilation, 1)), nn.ReLU(), nn.Conv2d(out_dim, out_dim, kernel_size=[1, kernelSize], padding=tuple([0, padding * dilation]), bias=True, dilation=(1, dilation)), nn.BatchNorm2d(out_dim, eps=1e-03), nn.Dropout2d(drop), ) return model def conv_block_3_3(in_dim, out_dim): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.BatchNorm2d(out_dim), nn.PReLU(), ) return model # TODO: Change order of block: BN + Activation + Conv def conv_decod_block(in_dim, out_dim, act_fn): model = nn.Sequential( nn.ConvTranspose2d(in_dim, out_dim, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(out_dim), act_fn, ) return model def dilation_conv_block(in_dim, out_dim, act_fn, stride_val, dil_val): model = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=stride_val, padding=1, dilation=dil_val), nn.BatchNorm2d(out_dim), act_fn, ) return model def maxpool(): pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) return pool def avrgpool05(): pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) return pool def avrgpool025(): pool = nn.AvgPool2d(kernel_size=2, stride=4, padding=0) return pool def avrgpool0125(): pool = nn.AvgPool2d(kernel_size=2, stride=8, padding=0) return pool def maxpool(): pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) return pool def maxpool_1_4(): pool = nn.MaxPool2d(kernel_size=2, stride=4, padding=0) return pool def maxpool_1_8(): pool = nn.MaxPool2d(kernel_size=2, stride=8, padding=0) return pool def maxpool_1_16(): pool = nn.MaxPool2d(kernel_size=2, stride=16, padding=0) return pool def maxpool_1_32(): pool = nn.MaxPool2d(kernel_size=2, stride=32, padding=0) def conv_block_3(in_dim, out_dim, act_fn): model = nn.Sequential( conv_block(in_dim, out_dim, act_fn), conv_block(out_dim, out_dim, act_fn), nn.Conv2d(out_dim, out_dim, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_dim), ) return model def classificationNet(D_in): H = 400 D_out = 1 model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, int(H / 4)), torch.nn.ReLU(), torch.nn.Linear(int(H / 4), D_out) ) return model # from layers import * def croppCenter(tensorToCrop, finalShape): org_shape = tensorToCrop.shape diff = org_shape[2] - finalShape[2] croppBorders = int(diff / 2) return tensorToCrop[:, :, croppBorders:org_shape[2] - croppBorders, croppBorders:org_shape[3] - croppBorders, croppBorders:org_shape[4] - croppBorders] def convBlock(nin, nout, kernel_size=3, batchNorm=False, layer=nn.Conv3d, bias=True, dropout_rate=0.0, dilation=1): if batchNorm == False: return nn.Sequential( nn.PReLU(), nn.Dropout(p=dropout_rate), layer(nin, nout, kernel_size=kernel_size, bias=bias, dilation=dilation) ) else: return nn.Sequential( nn.BatchNorm3d(nin), nn.PReLU(), nn.Dropout(p=dropout_rate), layer(nin, nout, kernel_size=kernel_size, bias=bias, dilation=dilation) ) def convBatch(nin, nout, kernel_size=3, stride=1, padding=1, bias=False, layer=nn.Conv2d, dilation=1): return nn.Sequential( layer(nin, nout, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias, dilation=dilation), nn.BatchNorm2d(nout), # nn.LeakyReLU(0.2) nn.PReLU() ) class HyperDenseNet_2Mod(BaseModel): def __init__(self, in_channels=2, classes=4): super(HyperDenseNet_2Mod, self).__init__() self.num_classes = classes assert in_channels == 2, "input channels must be two for this architecture" # Path-Top self.conv1_Top = convBlock(1, 25) self.conv2_Top = convBlock(50, 25, batchNorm=True) self.conv3_Top = convBlock(100, 25, batchNorm=True) self.conv4_Top = convBlock(150, 50, batchNorm=True) self.conv5_Top = convBlock(250, 50, batchNorm=True) self.conv6_Top = convBlock(350, 50, batchNorm=True) self.conv7_Top = convBlock(450, 75, batchNorm=True) self.conv8_Top = convBlock(600, 75, batchNorm=True) self.conv9_Top = convBlock(750, 75, batchNorm=True) # Path-Bottom self.conv1_Bottom = convBlock(1, 25) self.conv2_Bottom = convBlock(50, 25, batchNorm=True) self.conv3_Bottom = convBlock(100, 25, batchNorm=True) self.conv4_Bottom = convBlock(150, 50, batchNorm=True) self.conv5_Bottom = convBlock(250, 50, batchNorm=True) self.conv6_Bottom = convBlock(350, 50, batchNorm=True) self.conv7_Bottom = convBlock(450, 75, batchNorm=True) self.conv8_Bottom = convBlock(600, 75, batchNorm=True) self.conv9_Bottom = convBlock(750, 75, batchNorm=True) self.fully_1 = nn.Conv3d(1800, 400, kernel_size=1) self.fully_2 = nn.Conv3d(400, 200, kernel_size=1) self.fully_3 = nn.Conv3d(200, 150, kernel_size=1) self.final = nn.Conv3d(150, classes, kernel_size=1) def forward(self, input): # ----- First layer ------ # # get 2 of the channels as 5D tensors # pdb.set_trace() print("input shape ", input.shape) y1t = self.conv1_Top(input[:, 0:1, :, :, :]) y1b = self.conv1_Bottom(input[:, 1:2, :, :, :]) # ----- Second layer ------ # # concatenate y2t_i = torch.cat((y1t, y1b), dim=1) y2b_i = torch.cat((y1b, y1t), dim=1) y2t_o = self.conv2_Top(y2t_i) y2b_o = self.conv2_Bottom(y2b_i) # ----- Third layer ------ # y2t_i_cropped = croppCenter(y2t_i, y2t_o.shape) y2b_i_cropped = croppCenter(y2b_i, y2t_o.shape) # concatenate y3t_i = torch.cat((y2t_i_cropped, y2t_o, y2b_o), dim=1) y3b_i = torch.cat((y2b_i_cropped, y2b_o, y2t_o), dim=1) y3t_o = self.conv3_Top(y3t_i) y3b_o = self.conv3_Bottom(y3b_i) # ------ Fourth layer ----- # y3t_i_cropped = croppCenter(y3t_i, y3t_o.shape) y3b_i_cropped = croppCenter(y3b_i, y3t_o.shape) # concatenate y4t_i = torch.cat((y3t_i_cropped, y3t_o, y3b_o), dim=1) y4b_i = torch.cat((y3b_i_cropped, y3b_o, y3t_o), dim=1) y4t_o = self.conv4_Top(y4t_i) y4b_o = self.conv4_Bottom(y4b_i) # ------ Fifth layer ----- # y4t_i_cropped = croppCenter(y4t_i, y4t_o.shape) y4b_i_cropped = croppCenter(y4b_i, y4t_o.shape) # concatenate y5t_i = torch.cat((y4t_i_cropped, y4t_o, y4b_o), dim=1) y5b_i = torch.cat((y4b_i_cropped, y4b_o, y4t_o), dim=1) y5t_o = self.conv5_Top(y5t_i) y5b_o = self.conv5_Bottom(y5b_i) # ------ Sixth layer ----- # y5t_i_cropped = croppCenter(y5t_i, y5t_o.shape) y5b_i_cropped = croppCenter(y5b_i, y5t_o.shape) # concatenate y6t_i = torch.cat((y5t_i_cropped, y5t_o, y5b_o), dim=1) y6b_i = torch.cat((y5b_i_cropped, y5b_o, y5t_o), dim=1) y6t_o = self.conv6_Top(y6t_i) y6b_o = self.conv6_Bottom(y6b_i) # ------ Seventh layer ----- # y6t_i_cropped = croppCenter(y6t_i, y6t_o.shape) y6b_i_cropped = croppCenter(y6b_i, y6t_o.shape) # concatenate y7t_i = torch.cat((y6t_i_cropped, y6t_o, y6b_o), dim=1) y7b_i = torch.cat((y6b_i_cropped, y6b_o, y6t_o), dim=1) y7t_o = self.conv7_Top(y7t_i) y7b_o = self.conv7_Bottom(y7b_i) # ------ Eight layer ----- # y7t_i_cropped = croppCenter(y7t_i, y7t_o.shape) y7b_i_cropped = croppCenter(y7b_i, y7t_o.shape) # concatenate y8t_i = torch.cat((y7t_i_cropped, y7t_o, y7b_o), dim=1) y8b_i = torch.cat((y7b_i_cropped, y7b_o, y7t_o), dim=1) y8t_o = self.conv8_Top(y8t_i) y8b_o = self.conv8_Bottom(y8b_i) # ------ Ninth layer ----- # y8t_i_cropped = croppCenter(y8t_i, y8t_o.shape) y8b_i_cropped = croppCenter(y8b_i, y8t_o.shape) # concatenate y9t_i = torch.cat((y8t_i_cropped, y8t_o, y8b_o), dim=1) y9b_i = torch.cat((y8b_i_cropped, y8b_o, y8t_o), dim=1) y9t_o = self.conv9_Top(y9t_i) y9b_o = self.conv9_Bottom(y9b_i) ##### Fully connected layers y9t_i_cropped = croppCenter(y9t_i, y9t_o.shape) y9b_i_cropped = croppCenter(y9b_i, y9t_o.shape) outputPath_top = torch.cat((y9t_i_cropped, y9t_o, y9b_o), dim=1) outputPath_bottom = torch.cat((y9b_i_cropped, y9b_o, y9t_o), dim=1) inputFully = torch.cat((outputPath_top, outputPath_bottom), dim=1) y = self.fully_1(inputFully) y = self.fully_2(y) y = self.fully_3(y) return self.final(y) def test(self, device='cpu'): input_tensor = torch.rand(1, 2, 22, 22, 22) ideal_out = torch.rand(1, self.num_classes, 22, 22, 22) out = self.forward(input_tensor) # assert ideal_out.shape == out.shape # summary(self.to(torch.device(device)), (2, 22, 22, 22),device=device) # torchsummaryX.summary(self,input_tensor.to(device)) print("HyperDenseNet test is complete", out.shape) class HyperDenseNet(BaseModel): def __init__(self, in_channels=3, classes=4): super(HyperDenseNet, self).__init__() assert in_channels == 3, "HyperDensenet supports 3 in_channels. For 2 in_channels use HyperDenseNet_2Mod " self.num_classes = classes # Path-Top self.conv1_Top = convBlock(1, 25) self.conv2_Top = convBlock(75, 25, batchNorm=True) self.conv3_Top = convBlock(150, 25, batchNorm=True) self.conv4_Top = convBlock(225, 50, batchNorm=True) self.conv5_Top = convBlock(375, 50, batchNorm=True) self.conv6_Top = convBlock(525, 50, batchNorm=True) self.conv7_Top = convBlock(675, 75, batchNorm=True) self.conv8_Top = convBlock(900, 75, batchNorm=True) self.conv9_Top = convBlock(1125, 75, batchNorm=True) # Path-Middle self.conv1_Middle = convBlock(1, 25) self.conv2_Middle = convBlock(75, 25, batchNorm=True) self.conv3_Middle = convBlock(150, 25, batchNorm=True) self.conv4_Middle = convBlock(225, 50, batchNorm=True) self.conv5_Middle = convBlock(375, 50, batchNorm=True) self.conv6_Middle = convBlock(525, 50, batchNorm=True) self.conv7_Middle = convBlock(675, 75, batchNorm=True) self.conv8_Middle = convBlock(900, 75, batchNorm=True) self.conv9_Middle = convBlock(1125, 75, batchNorm=True) # Path-Bottom self.conv1_Bottom = convBlock(1, 25) self.conv2_Bottom = convBlock(75, 25, batchNorm=True) self.conv3_Bottom = convBlock(150, 25, batchNorm=True) self.conv4_Bottom = convBlock(225, 50, batchNorm=True) self.conv5_Bottom = convBlock(375, 50, batchNorm=True) self.conv6_Bottom = convBlock(525, 50, batchNorm=True) self.conv7_Bottom = convBlock(675, 75, batchNorm=True) self.conv8_Bottom = convBlock(900, 75, batchNorm=True) self.conv9_Bottom = convBlock(1125, 75, batchNorm=True) self.fully_1 = nn.Conv3d(4050, 400, kernel_size=1) self.fully_2 = nn.Conv3d(400, 200, kernel_size=1) self.fully_3 = nn.Conv3d(200, 150, kernel_size=1) self.final = nn.Conv3d(150, classes, kernel_size=1) def forward(self, input): # ----- First layer ------ # # get the 3 channels as 5D tensors y1t = self.conv1_Top(input[:, 0:1, :, :, :]) y1m = self.conv1_Middle(input[:, 1:2, :, :, :]) y1b = self.conv1_Bottom(input[:, 2:3, :, :, :]) # ----- Second layer ------ # # concatenate y2t_i = torch.cat((y1t, y1m, y1b), dim=1) y2m_i = torch.cat((y1m, y1t, y1b), dim=1) y2b_i = torch.cat((y1b, y1t, y1m), dim=1) y2t_o = self.conv2_Top(y2t_i) y2m_o = self.conv2_Middle(y2m_i) y2b_o = self.conv2_Bottom(y2b_i) # ----- Third layer ------ # y2t_i_cropped = croppCenter(y2t_i, y2t_o.shape) y2m_i_cropped = croppCenter(y2m_i, y2t_o.shape) y2b_i_cropped = croppCenter(y2b_i, y2t_o.shape) # concatenate y3t_i = torch.cat((y2t_i_cropped, y2t_o, y2m_o, y2b_o), dim=1) y3m_i = torch.cat((y2m_i_cropped, y2m_o, y2t_o, y2b_o), dim=1) y3b_i = torch.cat((y2b_i_cropped, y2b_o, y2t_o, y2m_o), dim=1) y3t_o = self.conv3_Top(y3t_i) y3m_o = self.conv3_Middle(y3m_i) y3b_o = self.conv3_Bottom(y3b_i) # ------ Fourth layer ----- # y3t_i_cropped = croppCenter(y3t_i, y3t_o.shape) y3m_i_cropped = croppCenter(y3m_i, y3t_o.shape) y3b_i_cropped = croppCenter(y3b_i, y3t_o.shape) # concatenate y4t_i = torch.cat((y3t_i_cropped, y3t_o, y3m_o, y3b_o), dim=1) y4m_i = torch.cat((y3m_i_cropped, y3m_o, y3t_o, y3b_o), dim=1) y4b_i = torch.cat((y3b_i_cropped, y3b_o, y3t_o, y3m_o), dim=1) y4t_o = self.conv4_Top(y4t_i) y4m_o = self.conv4_Middle(y4m_i) y4b_o = self.conv4_Bottom(y4b_i) # ------ Fifth layer ----- # y4t_i_cropped = croppCenter(y4t_i, y4t_o.shape) y4m_i_cropped = croppCenter(y4m_i, y4t_o.shape) y4b_i_cropped = croppCenter(y4b_i, y4t_o.shape) # concatenate y5t_i = torch.cat((y4t_i_cropped, y4t_o, y4m_o, y4b_o), dim=1) y5m_i = torch.cat((y4m_i_cropped, y4m_o, y4t_o, y4b_o), dim=1) y5b_i = torch.cat((y4b_i_cropped, y4b_o, y4t_o, y4m_o), dim=1) y5t_o = self.conv5_Top(y5t_i) y5m_o = self.conv5_Middle(y5m_i) y5b_o = self.conv5_Bottom(y5b_i) # ------ Sixth layer ----- # y5t_i_cropped = croppCenter(y5t_i, y5t_o.shape) y5m_i_cropped = croppCenter(y5m_i, y5t_o.shape) y5b_i_cropped = croppCenter(y5b_i, y5t_o.shape) # concatenate y6t_i = torch.cat((y5t_i_cropped, y5t_o, y5m_o, y5b_o), dim=1) y6m_i = torch.cat((y5m_i_cropped, y5m_o, y5t_o, y5b_o), dim=1) y6b_i = torch.cat((y5b_i_cropped, y5b_o, y5t_o, y5m_o), dim=1) y6t_o = self.conv6_Top(y6t_i) y6m_o = self.conv6_Middle(y6m_i) y6b_o = self.conv6_Bottom(y6b_i) # ------ Seventh layer ----- # y6t_i_cropped = croppCenter(y6t_i, y6t_o.shape) y6m_i_cropped = croppCenter(y6m_i, y6t_o.shape) y6b_i_cropped = croppCenter(y6b_i, y6t_o.shape) # concatenate y7t_i = torch.cat((y6t_i_cropped, y6t_o, y6m_o, y6b_o), dim=1) y7m_i = torch.cat((y6m_i_cropped, y6m_o, y6t_o, y6b_o), dim=1) y7b_i = torch.cat((y6b_i_cropped, y6b_o, y6t_o, y6m_o), dim=1) y7t_o = self.conv7_Top(y7t_i) y7m_o = self.conv7_Middle(y7m_i) y7b_o = self.conv7_Bottom(y7b_i) # ------ Eight layer ----- # y7t_i_cropped = croppCenter(y7t_i, y7t_o.shape) y7m_i_cropped = croppCenter(y7m_i, y7t_o.shape) y7b_i_cropped = croppCenter(y7b_i, y7t_o.shape) # concatenate y8t_i = torch.cat((y7t_i_cropped, y7t_o, y7m_o, y7b_o), dim=1) y8m_i = torch.cat((y7m_i_cropped, y7m_o, y7t_o, y7b_o), dim=1) y8b_i = torch.cat((y7b_i_cropped, y7b_o, y7t_o, y7m_o), dim=1) y8t_o = self.conv8_Top(y8t_i) y8m_o = self.conv8_Middle(y8m_i) y8b_o = self.conv8_Bottom(y8b_i) # ------ Ninth layer ----- # y8t_i_cropped = croppCenter(y8t_i, y8t_o.shape) y8m_i_cropped = croppCenter(y8m_i, y8t_o.shape) y8b_i_cropped = croppCenter(y8b_i, y8t_o.shape) # concatenate y9t_i = torch.cat((y8t_i_cropped, y8t_o, y8m_o, y8b_o), dim=1) y9m_i = torch.cat((y8m_i_cropped, y8m_o, y8t_o, y8b_o), dim=1) y9b_i = torch.cat((y8b_i_cropped, y8b_o, y8t_o, y8m_o), dim=1) y9t_o = self.conv9_Top(y9t_i) y9m_o = self.conv9_Middle(y9m_i) y9b_o = self.conv9_Bottom(y9b_i) ##### Fully connected layers y9t_i_cropped = croppCenter(y9t_i, y9t_o.shape) y9m_i_cropped = croppCenter(y9m_i, y9t_o.shape) y9b_i_cropped = croppCenter(y9b_i, y9t_o.shape) outputPath_top = torch.cat((y9t_i_cropped, y9t_o, y9m_o, y9b_o), dim=1) outputPath_middle = torch.cat((y9m_i_cropped, y9m_o, y9t_o, y9b_o), dim=1) outputPath_bottom = torch.cat((y9b_i_cropped, y9b_o, y9t_o, y9m_o), dim=1) inputFully = torch.cat((outputPath_top, outputPath_middle, outputPath_bottom), dim=1) y = self.fully_1(inputFully) y = self.fully_2(y) y = self.fully_3(y) return self.final(y) def test(self, device='cpu'): device = torch.device(device) input_tensor = torch.rand(1, 3, 20, 20, 20) ideal_out = torch.rand(1, self.num_classes, 20, 20, 20) out = self.forward(input_tensor) # assert ideal_out.shape == out.shape summary(self, (3, 16, 16, 16)) # torchsummaryX.summary(self, input_tensor.to(device)) print("HyperDenseNet test is complete!!!", out.shape) # m = HyperDenseNet(1,4) # m.test()
python
from sht3x_raspberry_exporter.sht3x import _crc8 def test_crc8(): assert _crc8(0xBE, 0xEF, 0x92)
python
import choraconfig, os.path tool = choraconfig.clone_tool("chora") tool["displayname"] = "CHORA:sds" tool["shortname"] = "chora:sds" tool["cmd"] = [choraconfig.parent(2,choraconfig.testroot) + "/duet.native","-chora-debug-recs","-chora-summaries","-chora-debug-squeeze","-chora","{filename}"]
python
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import numpy as np from ...core.loop.candidate_point_calculators import RandomSampling from ...core.loop.loop_state import create_loop_state from ...core.loop.model_updaters import NoopModelUpdater from ...core.loop.outer_loop import OuterLoop from ...core.parameter_space import ParameterSpace class RandomSearch(OuterLoop): def __init__( self, space: ParameterSpace, x_init: np.ndarray = None, y_init: np.ndarray = None, cost_init: np.ndarray = None ): """ Simple loop to perform random search where in each iteration points are sampled uniformly at random over the input space. :param space: Input space where the optimization is carried out. :param x_init: 2d numpy array of shape (no. points x no. input features) of initial X data :param y_init: 2d numpy array of shape (no. points x no. targets) of initial Y data :param cost_init: 2d numpy array of shape (no. points x no. targets) of initial cost of each function evaluation """ model_updaters = NoopModelUpdater() candidate_point_calculator = RandomSampling(parameter_space=space) if x_init is not None and y_init is not None: loop_state = create_loop_state(x_init, y_init, cost=cost_init) else: loop_state = None super().__init__(candidate_point_calculator, model_updaters, loop_state=loop_state)
python