content
stringlengths
0
894k
type
stringclasses
2 values
import os import sys import glob import json import scipy.signal as signal import numpy.ma as ma import numpy as np import matplotlib import matplotlib.pylab as plt import matplotlib.dates as mdates import datetime import statsmodels.api as sm lowess = sm.nonparametric.lowess def savitzky_golay(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. From http://scipy-cookbook.readthedocs.io/items/SavitzkyGolay.html Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References ---------- .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688 """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order+1) half_window = (window_size -1) // 2 # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] ) lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve( m[::-1], y, mode='valid') matplotlib.rcParams['font.size'] = 8 def process(f, i): path = 'time_series_images/' + os.path.basename(f) + '.png' if os.path.exists(path): print('Exists, skipping ...') return j = json.loads(open(f).read()) p = j['features'][0]['properties'] # fr = p['water_area_filled_fraction'] t = p['water_area_time'] v1 = p['water_area_value'] v2 = p['water_area_filled'] t_jrc = p['water_area_time_jrc'] v_jrc = p['water_area_value_jrc'] filled_fr = list(zip(v1, v2)) filled_fr = [(o[1]-o[0])/o[1] for o in filled_fr] mask = ma.masked_greater_equal(filled_fr, 0.5) # t = list(ma.masked_array(t, mask).compressed()) # v1 = list(ma.masked_array(v1, mask).compressed()) # v2 = list(ma.masked_array(v2, mask).compressed()) if not len(t): print('Empty, skipping ...') return years = mdates.YearLocator() # every year v2_filtered = savitzky_golay(np.array(v2), window_size=15, order=4) # v2_filtered = signal.medfilt(v2, 7) # v2_filtered = lowess(v2, t) # v2_filtered = lowess(v2, t, frac=1./50) t = [datetime.datetime.fromtimestamp(tt / 1000) for tt in t] t_jrc = [datetime.datetime.fromtimestamp(tt_jrc / 1000) for tt_jrc in t_jrc] s_scale = 'Scale: {:.2f}'.format(p['scale']) + '$m$' s_area = 'Area: {:.2f}'.format(p['area']/(1000*1000)) + '$km^2$, ' + '{:.2f}'.format(100 * p['area']/(1000*1000)) + '$ha$' title = s_scale + ', ' + s_area fig = plt.figure(figsize=(11, 4)) ax = fig.add_subplot(111) ax.xaxis.set_major_locator(years) # fig.autofmt_xdate() ax.set_xlim([datetime.date(1985, 1, 1), datetime.date(2019, 1, 1)]) ax.grid(color='k', linestyle='-', linewidth=1, alpha=0.2) plt.title(title) plt.xticks(rotation=90) ax.plot(t_jrc, v_jrc, marker='.', c='r', markersize=2, linewidth=0, alpha=0.05) ax.plot(t, v1, marker='.', c='b', markersize=2, linewidth=0, alpha=0.05) ax.plot(t, v2, marker='.', c='k', markersize=3, linewidth=0, alpha=0.8) # for SG if len(t) != len(v2_filtered): print('Bad, shapes are not equal, skipping line plotting ...') else: ax.plot(t, v2_filtered, marker='.', c='k', markersize=0, linewidth=2, alpha=0.1) # for LOWESS # v2_filtered_t = [datetime.datetime.fromtimestamp(t / 1000) for t in v2_filtered[:, 0]] # ax.plot(v2_filtered_t, v2_filtered[:, 1], marker='.', c='k', markersize=0, linewidth=2, alpha=0.1) path = 'time_series_images/' + os.path.basename(f) + '.png' print(str(i) + ' ' + path) plt.tight_layout() plt.savefig(path, dpi=150) plt.close() # ========================== JRC # fig = plt.figure(figsize=(11, 4)) # ax = fig.add_subplot(111) # ax.xaxis.set_major_locator(years) # ax.set_xlim([datetime.date(1985, 1, 1), datetime.date(2019, 1, 1)]) # ax.grid(color='k', linestyle='-', linewidth=1, alpha=0.2) # plt.title(title) # plt.xticks(rotation=90) # ax.plot(t_jrc, v_jrc, marker='.', c='r', markersize=2, linewidth=0, alpha=0.8) # ax.plot(t, v1, marker='.', c='b', markersize=2, linewidth=0, alpha=0.05) # ax.plot(t, v2, marker='.', c='k', markersize=3, linewidth=0, alpha=0.05) # for SG # if len(t) != len(v2_filtered): # print('Bad, shapes are not equal, skipping line plotting ...') # else: # ax.plot(t, v2_filtered, marker='.', c='k', markersize=0, linewidth=2, alpha=0.1) # path = 'time_series_images/' + os.path.basename(f) + '-jrc.png' # print(str(i) + ' ' + path) # plt.tight_layout() # plt.savefig(path, dpi=150) # plt.close() offset = 0 for (i, f) in enumerate(glob.glob('time_series/*.geojson')[offset:]): print('Processing ' + str(i) + ' ...') process(f, i + offset)
python
#!/usr/bin/env python # # Copyright 2019 YugaByte, Inc. and Contributors # # Licensed under the Polyform Free Trial License 1.0.0 (the "License"); you # may not use this file except in compliance with the License. You # may obtain a copy of the License at # # https://github.com/YugaByte/yugabyte-db/blob/master/licenses/POLYFORM-FREE-TRIAL-LICENSE-1.0.0.txt from ybops.cloud.common.base import AbstractPerCloudCommand from ybops.cloud.common.command import InstanceCommand from ybops.cloud.common.method import ConfigureInstancesMethod, ListInstancesMethod, \ InitYSQLMethod, CronCheckMethod from ybops.cloud.onprem.method import OnPremCreateInstancesMethod, OnPremDestroyInstancesMethod, \ OnPremProvisionInstancesMethod, OnPremValidateMethod, \ OnPremFillInstanceProvisionTemplateMethod, OnPremListInstancesMethod class OnPremInstanceCommand(InstanceCommand): """Subclass for on premise specific instance command baseclass. Supplies overrides for method hooks. """ def __init__(self): super(OnPremInstanceCommand, self).__init__() def add_methods(self): self.add_method(OnPremProvisionInstancesMethod(self)) self.add_method(OnPremCreateInstancesMethod(self)) self.add_method(ConfigureInstancesMethod(self)) self.add_method(OnPremDestroyInstancesMethod(self)) self.add_method(OnPremListInstancesMethod(self)) self.add_method(OnPremValidateMethod(self)) self.add_method(OnPremFillInstanceProvisionTemplateMethod(self)) self.add_method(InitYSQLMethod(self)) self.add_method(CronCheckMethod(self))
python
from __future__ import print_function import json import logging import sys import os this_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append("{0}/../lib".format(this_dir)) sys.path.append("{0}/../src".format(this_dir)) from jsonschema import validate from generator.generator import convert_to_imacro log = logging.getLogger() log.setLevel(logging.DEBUG) def handler(event, context): # input_json = json.dumps(event) with open(os.path.join(this_dir, '../resources/schema.json'), 'r') as myfile: schema = json.loads(myfile.read()) try: validate(event, schema) except Exception as e: return "The input failed validation\n{0}".format(repr(e)) try: output = convert_to_imacro(event) except Exception as e: return "An internal error occured during response generation\n{0}".format(repr(e)) return output
python
import argparse import traceback import warnings import torch import wandb from gym_carla.envs.carla_env import CarlaEnv from gym_carla.envs.carla_pid_env import CarlaPidEnv from termcolor import colored from torch.utils.data import DataLoader from bc.train_bc import get_collate_fn from models.carlaAffordancesDataset import HLCAffordanceDataset, AffordancesDataset from sac.replay_buffer import OnlineReplayBuffer from sac.sac_agent import SACAgent from sac.trainer import SACTrainer if __name__ == '__main__': parser = argparse.ArgumentParser(description="SAC Trainer", formatter_class=argparse.ArgumentDefaultsHelpFormatter) # carla parameters carla_config = parser.add_argument_group('CARLA config') carla_config.add_argument('--host', default='172.18.0.1', type=str, help='IP address of CARLA host.') carla_config.add_argument('--port', default=2008, type=int, help='Port number of CARLA host.') carla_config.add_argument('--vehicles', default=100, type=int, help='Number of vehicles in the simulation.') carla_config.add_argument('--walkers', default=50, type=int, help='Number of walkers in the simulation.') # SAC parameters rl_group = parser.add_argument_group('RL Config') rl_group.add_argument('--num-seed', default=2000, type=int, help='Number of seed steps before starting to train.') rl_group.add_argument('--control-frequency', default=4, type=int, help='Number of times that a control signal' 'is going to be repeated to the environment') rl_group.add_argument('--act-mode', default="pid", type=str, help="Action space.") rl_group.add_argument('--max-episode-steps', default=200, type=int, help='Maximum number of steps per episode.') rl_group.add_argument('--num-eval-episodes', default=3, type=int, help='Number of evaluation episodes.') rl_group.add_argument('--num-train-steps', default=1e6, type=int, help='Number of training steps.') rl_group.add_argument('--eval-frequency', default=10, type=int, help='number of episodes between evaluations.') rl_group.add_argument('--learn-temperature', action='store_true', help='Whether to lean alpha value or not.') rl_group.add_argument('--reward-scale', default=1, type=float, help='Reward scale factor (positive)') rl_group.add_argument('--speed-reward-weight', default=1, type=float, help='Speed reward weight.') rl_group.add_argument('--collision-reward-weight', default=1, type=float, help='Collision reward weight') rl_group.add_argument('--lane-distance-reward-weight', default=1, type=float, help='Lane distance reward weight') models_parameters = parser.add_argument_group('Actor-Critic config') models_parameters.add_argument('--actor-hidden-dim', type=int, default=128, help='Size of hidden layer in the ' 'actor model.') models_parameters.add_argument('--critic-hidden-dim', type=int, default=128, help='Size of hidden layer in the ' 'critic model.') models_parameters.add_argument('--actor-weights', type=str, default=None, help='Path to actor weights') models_parameters.add_argument('--critic-weights', type=str, default=None, help='Path to critic weights') loss_parameters = parser.add_argument_group('Loss parameters') loss_parameters.add_argument('--actor-l2', type=float, default=4e-2, help='L2 regularization for the actor model.') loss_parameters.add_argument('--critic-l2', type=float, default=4e-2, help='L2 regularization for the critic model.') buffer_group = parser.add_argument_group('Buffer config') buffer_group.add_argument('--batch-size', default=1024, type=int, help='Batch size.') buffer_group.add_argument('--online-memory-size', default=8192, type=int, help='Number of steps to be stored in the' 'online buffer') # in case of using behavioral cloning bc_group = parser.add_argument_group('Behavioral cloning config') bc_group.add_argument('--bc', default=None, type=str, help='path to dataset (without extensions)') bc_group.add_argument('--wandb', action='store_true', help='Whether or not to use wandb') args = parser.parse_args() warnings.filterwarnings("ignore") device = 'cuda' if torch.cuda.is_available() else 'cpu' control_action_dim = 2 if args.act_mode == "pid" else 3 action_range = (-1, 1) if args.act_mode == "raw" else (-1, 5) offline_dataset_path = args.bc if args.wandb: wandb.init(project='tsad', entity='autonomous-driving') carla_env = None if args.eval_frequency > 0: print(colored("[*] Initializing environment", "white")) desired_speed = 6 env_params = { # carla connection parameters+ 'host': args.host, 'port': args.port, # connection port 'town': 'Town01', # which town to simulate 'traffic_manager_port': 8000, # simulation parameters 'verbose': False, 'vehicles': args.vehicles, # number of vehicles in the simulation 'walkers': args.walkers, # number of walkers in the simulation 'obs_size': 224, # sensor width and height 'max_past_step': 1, # the number of past steps to draw 'dt': 1 / 30, # time interval between two frames 'reward_weights': [1, 1, 1], # reward weights [speed, collision, lane distance] 'continuous_steer_range': [-1, 1], 'ego_vehicle_filter': 'vehicle.lincoln*', # filter for defining ego vehicle 'max_time_episode': args.max_episode_steps, # maximum timesteps per episode 'max_waypt': 12, # maximum number of waypoints 'd_behind': 12, # distance behind the ego vehicle (meter) 'out_lane_thres': 2.0, # threshold for out of lane 'desired_speed': desired_speed, # desired speed (m/s) 'speed_reduction_at_intersection': 0.75, 'max_ego_spawn_times': 200, # maximum times to spawn ego vehicle } if args.act_mode == "pid": env_params.update({ 'continuous_speed_range': [0, desired_speed] }) carla_env = CarlaPidEnv(env_params) else: env_params.update({ 'continuous_throttle_range': [0, 1], 'continuous_brake_range': [0, 1] }) carla_env = CarlaEnv(env_params) carla_env.reset() print(colored(f"[+] Environment ready " f"(max_steps={args.max_episode_steps}," f"action_frequency={args.control_frequency})!", "green")) print(colored(f"[*] Initializing data structures", "white")) online_replay_buffer = OnlineReplayBuffer(args.online_memory_size) bc_loaders = None if offline_dataset_path: print(colored("RL + BC mode")) dataset = AffordancesDataset(args.bc) custom_collate_fn = get_collate_fn(args.act_mode) bc_loaders = {hlc: DataLoader(HLCAffordanceDataset(dataset, hlc=hlc), batch_size=args.batch_size, collate_fn=custom_collate_fn, shuffle=True) for hlc in [0, 1, 2, 3]} else: print(colored("Full DRL mode")) print(colored("[*] Data structures are ready!", "green")) agent = SACAgent(observation_dim=15, action_range=action_range, device=device, action_dim=control_action_dim, batch_size=args.batch_size, actor_weight_decay=args.actor_l2, critic_weight_decay=args.critic_l2, learnable_temperature=args.learn_temperature) agent.train(True) print(colored("Training", "white")) trainer = SACTrainer(env=carla_env, agent=agent, buffer=online_replay_buffer, dataloaders=bc_loaders, device=device, eval_frequency=args.eval_frequency, num_seed_steps=args.num_seed, num_train_steps=args.num_train_steps, num_eval_episodes=args.num_eval_episodes, seed=42) try: trainer.run() except Exception as e: print(colored("\nEarly stopping due to exception", "red")) traceback.print_exc() print(e) finally: print(colored("\nTraning finished!", "green")) trainer.end()
python
from odio_urdf import * def assign_inertia(im): return Inertia(ixx=im[0], ixy=im[1], ixz=im[2], iyy=im[3], iyz=im[4], izz=im[5]) my_robot = Robot("walker_a") contact = Contact(Lateral_Friction("100")) s = 1 inertia_matrix_body = [0.6363636364, 4.908571429, 4.51012987, 4.51012987, 0.6363636364, 4.908571429] inertia_arm_0 = [3.11E-04, 0.003766478343, 0.007532956685, 0.007532956685, 2.25E-03, 0.003766478343] inertia_arm_1 = [0.4103896104, 0.003291744093, 0.04189009822, 0.04189009822, 0.04194319087, 0.003291744093] mass_body = str(40 * s * s * s) mass_arm_0 = str(2 * s * s * s) mass_arm_1 = str(2 * s * s * s) joint_X_0_loc = [str( 0.35*s) +", " + str(-0.3 *s) + ", 0", str( 0.35*s) +", " + str( 0.3 *s) + ", 0", str(-0.35*s) +", " + str( 0.3 *s) + ", 0", str(-0.35*s) +", " + str(-0.3 *s) + ", 0"] joint_X_0_rot = ["0, 0, 0", "0, 0, 0", "0, 0, 3.14159", "0, 0, 3.14159"] leg_X_0_inertial = str(0.05*s) + ", 0, 0" joint_X_1_loc = str(0.15*s) + ", 0, 0" leg_X_1_inertial = "0, 0, " + str(-0.21*s) joint_X_2_loc = "0, 0, " + str(-0.50*s) leg_X_2_inertial = "0, 0, " + str(-0.21*s) inertia_matrix_body = [x * s * s for x in inertia_matrix_body] inertia_arm_0 = [x * s * s for x in inertia_arm_0] inertia_arm_1 = [x * s * s for x in inertia_arm_1] inertia_body = assign_inertia(inertia_matrix_body) inertia_arm_0 = assign_inertia(inertia_arm_0) inertia_arm_1 = assign_inertia(inertia_arm_1) base_link = Link("base_link", contact, Inertial(inertia_body, Mass(mass_body)), Visual(Geometry(Mesh(filename="body.obj", scale=f"{s} {s} {s}"))), Collision(Geometry(Mesh(filename="body.obj", scale=f"{s} {s} {s}"))) ) link_X_0 = [] for i in range(4): link_X_0.append(Link("link_" + str(i) + "_0", contact, Inertial(inertia_arm_0, Mass(mass_arm_0), Origin(leg_X_0_inertial)), Visual(Geometry(Mesh(filename="leg_X_0.obj", scale=f"{s} {s} {s}"))), Collision(Geometry(Mesh(filename="leg_X_0.obj", scale=f"{s} {s} {s}"))) )) link_X_1 = [] for i in range(4): link_X_1.append(Link(f"link_{i}_1", contact, Inertial(inertia_arm_0, Mass(mass_arm_0), Origin(leg_X_1_inertial)), Visual(Geometry(Mesh(filename="leg_X_1.obj", scale=f"{s} {s} {s}"))), Collision(Geometry(Mesh(filename="leg_X_1.obj", scale=f"{s} {s} {s}"))) )) link_X_2 = [] for i in range(4): link_X_2.append(Link(f"link_{i}_2", contact, Inertial(inertia_arm_0, Mass(mass_arm_0), Origin(leg_X_1_inertial)), Visual(Geometry(Mesh(filename="leg_X_1.obj", scale=f"{s} {s} {s}"))), Collision(Geometry(Mesh(filename="leg_X_1.obj", scale=f"{s} {s} {s}"))) )) #Add first elements to robot my_robot(base_link, link_X_0[0], link_X_1[0], link_X_2[0], link_X_0[1], link_X_1[1], link_X_2[1], link_X_0[2], link_X_1[2], link_X_2[2], link_X_0[3], link_X_1[3], link_X_2[3]) joint_X_0 = [] for i in range(4): joint_X_0.append(Joint(Parent("base_link"), Child("link_" + str(i) + "_0"), Origin(xyz=joint_X_0_loc[i], rpy=joint_X_0_rot[i]), Axis("1, 0, 0"), type="continuous", name=f"joint_{i}_0")) joint_X_1 = [] for i in range(4): joint_X_1.append(Joint(Parent("link_{}_0".format(i)), Child(f"link_{i}_1"), Origin(xyz=joint_X_1_loc), Axis("0, 1, 0"), type="continuous", name=f"joint_{i}_1")) joint_X_2 = [] for i in range(4): joint_X_2.append(Joint(Parent("link_{}_1".format(i)), Child(f"link_{i}_2"), Origin(xyz=joint_X_2_loc), Axis("0, 1, 0"), type="continuous", name=f"joint_{i}_2")) my_robot(joint_X_0[0], joint_X_1[0], joint_X_2[0], joint_X_0[1], joint_X_1[1], joint_X_2[1], joint_X_0[2], joint_X_1[2], joint_X_2[2], joint_X_0[3], joint_X_1[3], joint_X_2[3],) f = open("walker_a/urdf/walker_a_0_5.urdf", "w") f.write(str(my_robot)) f.close()
python
import argparse import constants from data_support.tfrecord_wrapper import TFRecordWriter if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("data_dir", type=str, default='../resources/tf_data', help="Directory where tfrecord files are stored") parser.add_argument("--model", default=f"bert-{constants.SIZE_BASE}-{constants.LANGUAGE_MULTILINGUAL}-{constants.CASING_CASED}", help="Transformer model name (see: https://huggingface.co/transformers/pretrained_models.html)") args = parser.parse_args() models = [args.model] data_spec = [ # ('train', 'en', 'dep_distance,dep_depth,lex_distance,lex_depth,pos_distance,pos_depth,rnd_distance,rnd_depth', # "/net/data/universal-dependencies-2.6/UD_English-EWT/en_ewt-ud-train.conllu"), # ('dev', 'en', 'dep_distance,dep_depth,lex_distance,lex_depth,pos_distance,pos_depth,rnd_distance,rnd_depth', # "/net/data/universal-dependencies-2.6/UD_English-EWT/en_ewt-ud-dev.conllu"), # ('test', 'en', 'dep_distance,dep_depth,lex_distance,lex_depth,pos_distance,pos_depth,rnd_distance,rnd_depth', # "/net/data/universal-dependencies-2.6/UD_English-EWT/en_ewt-ud-test.conllu"), # ('train', 'es','dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Spanish-AnCora/es_ancora-ud-train.conllu"), # ('dev', 'es', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Spanish-AnCora/es_ancora-ud-dev.conllu"), # ('test', 'es', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Spanish-AnCora/es_ancora-ud-test.conllu"), # ('train', 'sl','dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Slovenian-SSJ/sl_ssj-ud-train.conllu"), # ('dev', 'sl', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Slovenian-SSJ/sl_ssj-ud-dev.conllu"), # ('test', 'sl', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Slovenian-SSJ/sl_ssj-ud-test.conllu"), # ('train', 'zh','dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Chinese-GSD/zh_gsd-ud-train.conllu"), # ('dev', 'zh', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Chinese-GSD/zh_gsd-ud-dev.conllu"), # ('test', 'zh', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Chinese-GSD/zh_gsd-ud-test.conllu"), # ('train', 'id', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Indonesian-GSD/id_gsd-ud-train.conllu"), # ('dev', 'id', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Indonesian-GSD/id_gsd-ud-dev.conllu"), # ('test', 'id', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', # "/net/data/universal-dependencies-2.6/UD_Indonesian-GSD/id_gsd-ud-test.conllu") ('train', 'fi', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Finnish-TDT/fi_tdt-ud-train.conllu"), ('dev', 'fi', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Finnish-TDT/fi_tdt-ud-dev.conllu"), ('test', 'fi', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Finnish-TDT/fi_tdt-ud-test.conllu"), ('train', 'ar', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Arabic-PADT/ar_padt-ud-train.conllu"), ('dev', 'ar', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Arabic-PADT/ar_padt-ud-dev.conllu"), ('test', 'ar', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Arabic-PADT/ar_padt-ud-test.conllu"), ('train', 'fr', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_French-GSD/fr_gsd-ud-train.conllu"), ('dev', 'fr', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_French-GSD/fr_gsd-ud-dev.conllu"), ('test', 'fr', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_French-GSD/fr_gsd-ud-test.conllu"), ('train', 'eu', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Basque-BDT/eu_bdt-ud-train.conllu"), ('dev', 'eu', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Basque-BDT/eu_bdt-ud-dev.conllu"), ('test', 'eu', 'dep_distance,dep_depth,lex_distance,lex_depth,rnd_distance,rnd_depth,pos_distance,pos_depth', "/net/data/universal-dependencies-2.6/UD_Basque-BDT/eu_bdt-ud-test.conllu") ] tf_writer = TFRecordWriter(models, data_spec, args.data_dir) tf_writer.compute_and_save(args.data_dir)
python
import copy import json import time from io import open from .exceptions import ( WebpackBundleLookupError, WebpackError, WebpackLoaderBadStatsError, WebpackLoaderTimeoutError, ) class WebpackLoader(object): _assets = {} def __init__(self, name, config): self.name = name self.config = config def load_assets(self): # TODO # poll when debugging and block request until bundle is compiled # or the build times out try: with open(self.config["MANIFEST_FILE"], encoding="utf-8") as f: return json.load(f) except IOError: raise IOError( "Error reading {0}. Are you sure webpack has generated " "the file and the path is correct?".format(self.config["MANIFEST_FILE"]) ) def get_assets(self): if self.config["CACHE"]: if self.name not in self._assets: self._assets[self.name] = self.load_assets() return self._assets[self.name] return self.load_assets() def filter_chunks(self, chunks): for chunk in chunks: ignore = any(regex.match(chunk["url"]) for regex in self.config["ignores"]) if not ignore: chunk["url"] = self.get_chunk_url(chunk) yield chunk def get_chunk_url(self, chunk): url = chunk["url"] if self.config.get("web_framework", None) == "django": from django.contrib.staticfiles.storage import staticfiles_storage from django.conf import settings if url.startswith("http"): # webpack dev server return url else: prefix = settings.STATIC_URL url_without_static_prefix = url[ url.startswith(prefix) and len(prefix) : ] return staticfiles_storage.url(url_without_static_prefix) else: return url def get_bundle(self, bundle_name): assets = copy.copy(self.get_assets()) try: # keep the order js = assets["entrypoints"][bundle_name]["assets"].get("js", []) css = assets["entrypoints"][bundle_name]["assets"].get("css", []) js_css = js + css assets.pop("entrypoints") # so url is the key reversed_assets = {value: key for (key, value) in assets.items()} chunks = [{"name": reversed_assets[url], "url": url,} for url in js_css] except Exception: raise WebpackBundleLookupError( "Cannot resolve bundle {0}.".format(bundle_name) ) return self.filter_chunks(chunks)
python
import os import shutil from ptest.assertion import assert_true from ptest.decorator import TestClass, BeforeMethod, Test, AfterMethod from watchdog.events import FileCreatedEvent from shirp.event import EventConf from shirp.handler import HDFSHandler HDFS_GROUP = "grp-hdfs" @TestClass(run_mode="singleline") class HDFSHandlerTest: def __init__(self, hdfs_put_handler=None, hdfs_get_handler=None, put_event_conf=None, get_event_conf=None): """ :param hdfs_put_handler: :type hdfs_put_handler: HDFSHandler :param hdfs_get_handler: :type hdfs_get_handler: HDFSHandler :param put_event_conf: :type put_event_conf: EventConf :param get_event_conf: :type get_event_conf: EventConf """ self.hdfs_put_handler = hdfs_put_handler self.hdfs_get_handler = hdfs_get_handler self.put_event_conf = put_event_conf self.get_event_conf = get_event_conf self.current_dir = os.path.dirname(os.path.realpath(__file__)) self.result = False @BeforeMethod(group=HDFS_GROUP) def before_hdfs_test(self): self.put_event_conf = EventConf(True, "test move", "hdfs", HDFSHandler.TYPE_PUT, "D:\\Users\\Cedric\\PycharmProjects\\event-manager\\rep_test\\in", ["test_????.txt"], "/user/hduser", {"hdfsUrl": "http://192.168.1.24:50070", "hdfsUser": "hduser"}) self.get_event_conf = EventConf(True, "test move", "hdfs", HDFSHandler.TYPE_GET, "/user/hduser", ["test_????.txt"], "D:\\Users\\Cedric\\PycharmProjects\\event-manager\\rep_test\\out", {"hdfsUrl": "http://192.168.1.24:50070", "hdfsUser": "hduser"}) HDFSHandler.FILE_LOG = self.current_dir + os.path.sep + "events.log" self.hdfs_put_handler = HDFSHandler(self.put_event_conf, self.put_event_conf.subtype) self.hdfs_get_handler = HDFSHandler(self.get_event_conf, self.get_event_conf.subtype) @Test(group=HDFS_GROUP) def move_test(self): shutil.copy("D:\\Users\\Cedric\\PycharmProjects\\event-manager\\rep_test\\test_2208.txt", self.put_event_conf.directory) event = FileCreatedEvent(self.put_event_conf.directory + os.path.sep + "test_2208.txt") assert_true(self.hdfs_put_handler.on_created(event)) assert_true(self.hdfs_get_handler.process("/user/hduser/test_2208.txt")) assert_true(os.path.exists(self.get_event_conf.destination + os.path.sep + "test_2208.txt")) @AfterMethod(group=HDFS_GROUP) def after_hdfs_test(self): os.remove(self.get_event_conf.destination + os.path.sep + "test_2208.txt")
python
"""Project-level configuration and state.""" import os.path class Project(object): """A Project tracks the overall build configuration, filesystem paths, registered plugins/keys, etc. and provides services that relate to that.""" def __init__(self, root, build_dir): """Creates a Project. root: path to root of project structure. build_dir: path to build directory. """ self.root = root self.build_dir = build_dir self.named_envs = {} self.packages = {} self.ninja_rules = { 'cobble_symlink_product': { 'command': 'ln -sf $target $out', 'description': 'SYMLINK $out', }, } # TODO: rename something like static_path? def inpath(self, *parts): """Creates a path to an input resource within the project tree by separating the given path components by the path separator character.""" return os.path.join(self.root, *parts) def outpath(self, env, *parts): """Creates a path to an output resource within the build directory. Output resources are distinguished by their environments; the same product may be built several times, in different environments, and stored in separate places. Thus, 'outpath' requires the environment to be provided. """ return os.path.join(self.build_dir, 'env', env.digest, *parts) def linkpath(self, *parts): """Creates a path into the 'latest' symlinks in the build directory.""" return os.path.join(self.build_dir, 'latest', *parts) def add_package(self, package): """Registers 'package' with the project.""" assert package.relpath not in self.packages, \ "duplicate package at %s" % package.relpath assert package.project is self, "package project misconfigured" self.packages[package.relpath] = package def find_target(self, ident): """Finds the 'Target' named by an 'ident'. 'find_target' at the 'Project' level requires absolute identifiers, e.g. '//foo/bar:target'. """ assert ident.startswith('//'), "bad identifier: %r" % ident parts = ident[2:].split(':') if len(parts) == 1: # Target name not specified pkg_path = parts[0] target_name = os.path.basename(pkg_path) elif len(parts) == 2: # Explicit target name pkg_path = parts[0] target_name = parts[1] else: raise Exception('Too many colons in identifier: %r' % ident) assert pkg_path in self.packages, \ "Reference to unknown package: %r" % ident assert target_name in self.packages[pkg_path].targets, \ "Target %s not found in package %s" % (target_name, pkg_path) return self.packages[pkg_path].targets[target_name] def define_environment(self, name, env): """Defines a named environment in the project. Named environments are defined in BUILD.conf, and provide the basis for all other environments. """ assert name not in self.named_envs, \ "more than one environment named %s" % name self.named_envs[name] = env def add_ninja_rules(self, rules): """Extends the set of Ninja rules used in the project. Ninja rules are represented as dicts with keys matching the attributes of Ninja's rule syntax. """ for k, v in rules.items(): if k in self.ninja_rules: assert v == self.ninja_rules[k], \ "ninja rule %s defined incompatibly in multiple places" % k else: self.ninja_rules[k] = v def files(self): """Returns an iterator over the build files and BUILD.conf.""" yield self.inpath('BUILD.conf') for p in self.packages.values(): yield p.inpath('BUILD') def targets(self): """Returns an iterator over all Targets in the project.""" for p in self.packages.values(): for t in p.targets.values(): yield t def concrete_targets(self): """Returns an iterator over the concrete Targets in the project.""" return filter(lambda t: t.concrete, self.targets()) class Package(object): def __init__(self, project, relpath): """Creates a Package and registers it with 'project'.""" self.project = project self.relpath = os.path.normpath(relpath) self.targets = {} project.add_package(self) def add_target(self, target): """Adds a 'Target' to the package.""" assert target.name not in self.targets, \ "duplicate target %s in package %s" % (target.name, self.relpath) self.targets[target.name] = target def outpath(self, env, *parts): """Creates a path to an output resource within this package.""" return self.project.outpath(env, self.relpath, *parts) def inpath(self, *parts): """Creates a path to an input resource within this package.""" return self.project.inpath(self.relpath, *parts) def linkpath(self, *parts): """Creates a path into the 'latest' symlinks for this package.""" return self.project.linkpath(self.relpath, *parts) def make_absolute(self, ident): """Makes an ident, which may be relative to this package, absolute.""" if ident.startswith('//'): return ident if ident.startswith(':'): return '//' + self.relpath + ident raise Exception('Unexpected ident: %r' % ident) def find_target(self, ident): """Finds a target relative to this package. This enables local references using the ':foo' syntax.""" if ident.startswith(':'): return self.project.find_target('//' + self.relpath + ident) return self.project.find_target(ident)
python
# -*- coding: utf-8 -*- import json from bs4 import BeautifulSoup from django.contrib.auth import get_user_model from django.test import TestCase class BaseTestCase(TestCase): fixtures = [ 'users.json', ] USER_PWD = 'password' # Superuser - admin/adminpassword # User - neo/password @staticmethod def get_soup(response): return BeautifulSoup(response.content) @staticmethod def get_json(response): return json.loads(response.content.decode('utf-8')) def setUp(self): User = get_user_model() self.user = User.objects.get(username='neo') def login(self, username='neo'): self.client.logout() self.client.login( username=username, password=self.USER_PWD ) class BaseTestLoginCase(BaseTestCase): def setUp(self): super(BaseTestLoginCase, self).setUp() self.login()
python
from django.contrib import sitemaps from django.urls import reverse from booru.models import Post class PostSitemap(sitemaps.Sitemap): priority = 0.8 changefreq = 'daily' def items(self): return Post.objects.approved() def location(self, item): return item.get_absolute_url() def lastmod(self, item): return item.update_timestamp class TagsSitemap(sitemaps.Sitemap): priority = 0.5 def items(self): return Post.tags.most_common()[:25] def location(self, item): return item.get_search_url() def lastmod(self, item): return item.update_timestamp class PostListSitemap(sitemaps.Sitemap): priority = 0.6 changefreq = 'daily' def items(self): return ['posts'] def location(self, item): return reverse('booru:posts')
python
from .utils import check_token from .models import Entry from .checks_models import EntryCheck open_entry_checks = EntryCheck() open_entry = Entry()
python
import requests import pytest from helpers import (create_user, get_random_email, login_user, refresh_token, get_user) from requests import HTTPError HOST = 'localhost:5000' def test_register(): email = get_random_email() new_user = create_user(email, 'pass') assert new_user['email'] == email def test_register_user_twice(): email = get_random_email() create_user(email, 'pass') with pytest.raises(requests.HTTPError): create_user(email, 'pass') def test_login(): email = get_random_email() create_user(email, 'pass') token = login_user(email, 'pass') token = refresh_token(token) def test_token_guard(): email = get_random_email() create_user(email, 'pass') token = login_user(email, 'pass') with pytest.raises(HTTPError): token = refresh_token(token + '1') def test_login_with_bad_password(): email = get_random_email() create_user(email, 'pass') with pytest.raises(HTTPError): login_user(email, 'wrong_pass') def test_get_current(): email = get_random_email() create_user(email, 'pass') token = login_user(email, 'pass') user = get_user(token=token) assert user['email'] == email assert user['balance'] == 2.5
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. currentmodule:: test_Point .. moduleauthor:: Pat Daburu <[email protected]> This is a unit test module. """ import unittest from djio.geometry import GeometryException class TestGeometryExceptionSuite(unittest.TestCase): def test_initWithoutInner_verify(self): ge = GeometryException(message='Test Message') self.assertEqual('Test Message', ge.message) self.assertIsNone(ge.inner) def test_initWithInner_verify(self): inner = Exception() ge = GeometryException(message='Test Message', inner=inner) self.assertEqual('Test Message', ge.message) self.assertTrue(ge.inner == inner)
python
#!/usr/bin/env python import os import uuid import time import zlib import random import numpy as np from string import ascii_lowercase list_chars = list(c.encode('utf8') for c in ascii_lowercase) # Number of objects #num_files_list = [1] num_files_list = [1, 100, 1000, 10000, 100000, 1000000] # Hash functions #compression_levels = [0, 1, 3, 5, 7, 9] compression_levels = [1] # Total target size total_size_target = 100000000 for num_files in num_files_list: size = total_size_target // num_files data = {} start = time.time() for _ in range(num_files): filename = str(uuid.uuid4().hex) ## Method 1 content = os.urandom(size) ## Method 2 #content = b"".join(np.random.choice(list_chars, size)) ## Method 3 #with open('test.dat', 'rb') as fhandle: # content = fhandle.read(size) #content = (content + content)[:size] #assert len(content) == size data[filename] = content tot_time = time.time() - start total_size = sum(len(content) for content in data.values()) print('{} objects generated in {} s. Total size: {} bytes (~{:.3f} MB).'.format(num_files, tot_time, total_size, (total_size / 1024) / 1024)) for compression_level in compression_levels: print('TESTING FOR ZLIB COMPRESSION WITH LEVEL {}'.format(compression_level)) v = {} start = time.time() for key, val in data.items(): v[key] = zlib.compress(val, compression_level) tot_time = time.time() - start tot_compressed_size = sum(len(compressed_string) for compressed_string in v.values()) print('Total time to compress {} objects: {} s (final size: {} MB, speed: {} MB/s)'.format(num_files, tot_time, tot_compressed_size / 1024 / 1024, total_size/1024/1024/tot_time)) # Decompress start = time.time() for compressed_string in v.values(): zlib.decompress(compressed_string) tot_time = time.time() - start print('Total time to decompress back: {} s (speed: {} MB/s)'.format(tot_time, total_size/1024/1024/tot_time)) print('-'*72) print('='*72)
python
_base_ = ['./rotated_retinanet_obb_r50_fpn_1x_dota_le90.py'] fp16 = dict(loss_scale='dynamic')
python
from tksheet import Sheet import tkinter as tk class Sheet_Listbox(Sheet): def __init__(self, parent, values = []): Sheet.__init__(self, parent = parent, show_horizontal_grid = False, show_vertical_grid = False, show_header = False, show_row_index = False, show_top_left = False, empty_horizontal = 0, empty_vertical = 0) if values: self.values(values) def values(self, values = []): self.set_sheet_data([[v] for v in values], reset_col_positions = False, reset_row_positions = False, redraw = False, verify = False) self.set_all_cell_sizes_to_text() class demo(tk.Tk): def __init__(self): tk.Tk.__init__(self) self.grid_columnconfigure(0, weight = 1) self.grid_rowconfigure(0, weight = 1) self.listbox = Sheet_Listbox(self, values = [f"_________ Item {i} _________" for i in range(2000)]) self.listbox.grid(row = 0, column = 0, sticky = "nswe") #self.listbox.values([f"new values {i}" for i in range(50)]) set values app = demo() app.mainloop()
python
# 1. # C = float(input('输入摄氏温度')) # F = (9/5)*C + 32 # print('%.2F 华氏度' %F) # 2. # import math # r = float(input('输入圆柱半径:')) # l = float(input('输入圆柱高:')) # area = r*r*math.pi # volume = area*l # print('面积:%.2f' %area) # print('体积:%.2f' %volume) # 3. # feet = float(input('请输入英尺数:')) # meters = feet * 0.305 # print('%.1ffeet is %.4fmeters'%(feet,meters)) # 4. # M = float(input('输入按千克计算的水量:')) # initialTemperature = float(input('输入水的初始温度:')) # finalTemperature = float(input('输入水的最终温度:')) # Q = M * (finalTemperature-initialTemperature)*4184 # print('所需能量:%.1f%Q',Q) # 5. # balance = float(input('输入差额:')) # interest_rate = float(input('输入年利率:')) # interest = balance*(interest_rate/1200) # print('下月需付利息:%.5f' %interest) # 6. # v0 = float(input('输入初始速度:')) # v1 = float(input('输入末速度:')) # t = float(input('输入速度变化所占用的时间:')) # a =(v1-v0)/t # print('平均加速度为:%.4f' %a) # 7. # num = float(input('输入每月存款数:')) # rate =0.05/12 # interest = 1+rate # count=[0] # for i in range(6): # month = (100+count[i]*interest) # count.append(month) # print('六个月后的账户总额:%.2f' %count[6]) 8. # num = int(input("请输入1-1000的一个整数:")) # bai = int(num%10) # shi = int(num/10%10) # ge = int(num/100) # sum = ge + shi + bai # print('各位数字之和:' ,sum) # 9. # import math # r = float(input('输入顶点到中心的距离:')) # s = 2*r*math.sin(math.pi/5) # area = 5*s*s/(4*math.tan(math.pi/5)) # print('五边形的面积%.2f' %area) # 10. # import math # print ('输入第一个坐标:') # x1 = float(input('>')) # y1 = float(input('>')) # print ('输入第二个坐标:') # x2 = float(input('>')) # y2 = float(input('>')) # radius = 6371.01 # math.radians = float(input('输入地球表面的经度:')) # math.arccoss = float(input('输入地球表面的纬度:')) # d = math.radians * math.arccos(math.sin(math.radians(x1)) * math.sin(math.radians(x2)) + math.cos(math.radians(x1)) * math.cos(math.radians(x2)) * math.cos(math.radians(y1-y2)) # print ('%d' %d) 10. # import math # x1,y1 = eval(input('Please input point1(latitude and longitude) in degrees:')) # x2,y2 = eval(input('Please input point2(latitude and longitude) in degrees:')) # radius = 6371.01 # x11 = math.radians(x1) #math.radians()函数将度数转换成弧度数 # y11 = math.radians(y1) # x22 = math.radians(x2) # y22 = math.radians(y2) # d = radius * math.acos(math.sin(x11) * math.sin(x22) + math.cos(x11) * math.cos(x22) * math.cos(y11-y22)) # print('The distance between the two points is %5.2f km'%d) # 11. # import math # s = float(input('输入五角星的边长:')) # area = (5*s*s)/(4*math.tan(math.pi/5)) # print('五角星的面积为:%.2f',area) # 12. # import math # n = int(input('输入边数:')) # s = float(input('输入正多边形的边长:')) # area = (n * s * s) / (4 * math.tan (math.pi / n)) # print('%.2f',area) # 13. # ASCII = int(input('输入整数=>')) # print(chr(ASCII)) # 14. # name = (input('姓名:')) # workhour = int(input('一周工作时间:')) # many = float(input('每小时的报酬:')) # lianbang = float(input('联邦预扣税率:')) # zhou = float(input('州预扣税率:')) # rate1 = workhour * many # print(rate1) # print('Deduction:') # faderal = rate1 * lianbang # print(faderal) # state = rate1 * zhou # print(state) # zongmany = rate1 -(faderal + state) # print(zongmany) 15. # num = input('输入一个四位整数数字:') # for i in range(len(num)): # print(num[-i + len(num)-1],end='') # # 16. # import hashlib # a = input('请输入一行文本:') # m = hashlib.md5() # b = a.encode(encoding='utf-8') # m.update(b) # a_md5 = m.hexdigest # print('md5加密前为:'+a) # print('md5加密前为:'+a_md5)
python
# You are provided with a code that raises many exceptions. Fix it, so it works correctly. # numbers_list = input().split(", ") # result = 0 # # for i in range(numbers_list): # number = numbers_list[i + 1] # if number < 5: # result *= number # elif number > 5 and number > 10: # result /= number # # print(result) numbers_list = map(int, input().split(", ")) result = 1 for number in numbers_list: if number <= 5: result *= number elif number <= 10: result /= number print(int(result))
python
#! /usr/bin/env python3 """This is a prototype work manager which reads work requests from a file and submits them as messages to a RabbitMQ queue. This is development only. For a real system, you would get work from a database or other entity. """ import os import sys import json import logging from argparse import ArgumentParser from time import sleep import proton from proton import Message from proton.utils import BlockingConnection from proton.handlers import IncomingMessageHandler logger = None SYSTEM = 'PROTO' COMPONENT = 'work-manager' MSG_SERVICE_STRING = None MSG_WORK_QUEUE = None MSG_STATUS_QUEUE = None class LoggingFilter(logging.Filter): """Standard logging filter for using Mesos """ def __init__(self, system='', component=''): super(LoggingFilter, self).__init__() self.system = system self.component = component def filter(self, record): record.system = self.system record.component = self.component return True class ExceptionFormatter(logging.Formatter): """Standard logging formatter with special execption formatting """ def __init__(self, fmt=None, datefmt=None): std_fmt = ('%(asctime)s.%(msecs)03d' ' %(levelname)-8s' ' %(system)s' ' %(component)s' ' %(message)s') std_datefmt = '%Y-%m-%dT%H:%M:%S' if fmt is not None: std_fmt = fmt if datefmt is not None: std_datefmt = datefmt super(ExceptionFormatter, self).__init__(fmt=std_fmt, datefmt=std_datefmt) def formatException(self, exc_info): result = super(ExceptionFormatter, self).formatException(exc_info) return repr(result) def format(self, record): s = super(ExceptionFormatter, self).format(record) if record.exc_text: s = s.replace('\n', ' ') s = s.replace('\\n', ' ') return s def setup_logging(args): """Configure the message logging components """ global logger # Setup the logging level logging_level = logging.INFO if args.debug: logging_level = args.debug handler = logging.StreamHandler(sys.stdout) msg_formatter = ExceptionFormatter() msg_filter = LoggingFilter(SYSTEM, COMPONENT) handler.setFormatter(msg_formatter) handler.addFilter(msg_filter) logger = logging.getLogger() logger.setLevel(logging_level) logger.addHandler(handler) def retrieve_command_line(): """Read and return the command line arguments """ description = 'Prototype Work Manager' parser = ArgumentParser(description=description) parser.add_argument('--job-filename', action='store', dest='job_filename', required=False, metavar='TEXT', help='JSON job file to use') parser.add_argument('--dev-mode', action='store_true', dest='dev_mode', required=False, default=False, help='Run in developer mode') parser.add_argument('--debug', action='store', dest='debug', required=False, type=int, default=0, metavar='DEBUG_LEVEL', help='Log debug messages') return parser.parse_args() def get_env_var(variable, default): """Read variable from the environment and provide a default value """ result = os.environ.get(variable, default) if not result: raise RuntimeError('You must specify {} in the environment' .format(variable)) return result def get_jobs(job_filename): """Reads jobs from a known job file location """ jobs = list() if job_filename and os.path.isfile(job_filename): with open(job_filename, 'r') as input_fd: data = input_fd.read() job_dict = json.loads(data) del data for job in job_dict['jobs']: jobs.append(job) os.unlink(job_filename) return jobs def main(): """Main processing for the application """ global MSG_SERVICE_STRING global MSG_WORK_QUEUE global MSG_STATUS_QUEUE # Example connection string: amqp://<username>:<password>@<host>:<port> MSG_SERVICE_STRING = get_env_var('PROTO_MSG_SERVICE_CONNECTION_STRING', None) MSG_WORK_QUEUE = get_env_var('PROTO_MSG_WORK_QUEUE', None) MSG_STATUS_QUEUE = get_env_var('PROTO_MSG_STATUS_QUEUE', None) args = retrieve_command_line() # Configure logging setup_logging(args) logger.info('Begin Processing') try: while True: try: # Create the connection connection = BlockingConnection(MSG_SERVICE_STRING) # Create a sender sender = connection.create_sender(MSG_WORK_QUEUE) jobs = get_jobs(args.job_filename) for job in jobs: message_json = json.dumps(job, ensure_ascii=False) try: sender.send(Message(body=message_json)) # TODO - This prototype doesn't care, but we # TODO - should probably update the status at # TODO - the work source. print('Queued Message = {}'.format(message_json)) except proton.ConnectionException: # TODO - This prototype doesn't care, but does # TODO - something need to be done if this # TODO - happens? print('Returned Message = {}'.format(message_json)) finally: connection.close() sleep(60) except KeyboardInterrupt: pass #except pika.exceptions.ConnectionClosed: # pass logger.info('Terminated Processing') if __name__ == '__main__': main()
python
# coding: utf-8 import numpy as np from numpy import matrix as mat import cv2 import os import math def undistort(img, # image data fx, fy, cx, cy, # camera intrinsics k1, k2, # radial distortion parameters p1=None, p2=None, # tagential distortion parameters radial_ud_only=True): """ undistort image using distort model test gray-scale image only """ if img is None: print('[Err]: empty image.') return is_bgr = len(img.shape) == 3 if is_bgr: H, W, C = img.shape elif len(img.shape) == 2: H, W = img.shape else: print('[Err]: image format wrong!') return img_undistort = np.zeros_like(img, dtype=np.uint8) # fill in each pixel in un-distorted image for v in range(H): for u in range(W): # u,v are pixel coordinates # convert to camera coordinates by camera intrinsic parameters x1 = (u - cx) / fx y1 = (v - cy) / fy r_square = (x1 * x1) + (y1 * y1) r_quadric = r_square * r_square if radial_ud_only: # do radial undistortion only x2 = x1 * (1.0 + k1 * r_square + k2 * r_quadric) y2 = y1 * (1.0 + k1 * r_square + k2 * r_quadric) else: # do radial undistortion and tangential undistortion x2 = x1 * (1.0 + k1 * r_square + k2 * r_quadric) + \ 2.0 * p1 * x1 * y1 + p2 * (r_square + 2.0 * x1 * x1) y2 = y1 * (1.0 + k1 * r_square + k2 * r_quadric) + \ p1 * (r_square + 2.0 * y1 * y1) + 2.0 * p2 * x1 * y1 # convert back to pixel coordinates # using nearest neighbor interpolation u_corrected = int(fx * x2 + cx + 0.5) v_corrected = int(fy * y2 + cy + 0.5) # @Todo: using bilinear interpolation... # processing pixel outside the image area if u_corrected < 0 or u_corrected >= W \ or v_corrected < 0 or v_corrected >= H: if is_bgr: img_undistort[v, u, :] = 0 else: img_undistort[v, u] = 0 else: if is_bgr: img_undistort[v, u, :] = img[v_corrected, u_corrected, :] # y, x else: img_undistort[v, u] = img[v_corrected, u_corrected] # y, x return img_undistort.astype('uint8') def test_undistort_img(): img_path = './distorted.png' fx = 458.654 fy = 457.296 cx = 367.215 cy = 248.375 camera_intrinsics = [fx, fy, cx, cy] k1 = -0.28340811 k2 = 0.07395907 p1 = 0.00019359 p2 = 1.76187114e-05 # Init parameters to be optimized params = np.array([[-0.1], [0.1]]) # k1k2 # ---------- Run LM optimization LM_Optimize(params) k1 = params[0][0] k2 = params[1][0] # ---------- undistort_img(img_path, camera_intrinsics, k1, k2, p1, p2) def undistort_img(img_path, camera_intrinsics, k1, k2, p1=None, p2=None, is_color=True): """ undistort of image given camera matrix and distortion coefficients """ # LM_Optimize() fx = camera_intrinsics[0] fy = camera_intrinsics[1] cx = camera_intrinsics[2] cy = camera_intrinsics[3] if not os.path.isfile(img_path): print('[Err]: invalid image path.') return img_orig = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) if is_color: img = cv2.imread(img_path, cv2.IMREAD_COLOR) else: img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) if img is None: print('[Err]: empty image.') return # ---------- Do undistortion img_undistort = undistort(img, fx, fy, cx, cy, k1, k2, p1, p2) # ---------- cv2.imshow('origin', img_orig) cv2.imshow('undistort', img_undistort) cv2.waitKey() def show_points_of_curve(): """ visualize points on the curve """ pts_on_curve = [ [546, 20], [545, 40], [543, 83], [536, 159], [535, 170], [534, 180], [531, 200], [530, 211], [529, 218], [526, 236], [524, 253], [521, 269], [519, 281], [517, 293], [515, 302], [514, 310], [512, 320], [510, 329], [508, 341], [506, 353], [505, 357] ] print('Total {:d} points on the curve.'.format(len(pts_on_curve))) img_path = './distorted.png' if not os.path.isfile(img_path): print('[Err]: invalid image path.') return img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) if img is None: print('[Err]: empty image.') return # Draw points and centroid centroid_x, centroid_y = 0.0, 0.0 for pt in pts_on_curve: centroid_x += pt[0] centroid_y += pt[1] cv2.circle(img, tuple(pt), 5, (0, 255, 0), -1) centroid_x /= float(len(pts_on_curve)) centroid_y /= float(len(pts_on_curve)) centroid_x = int(centroid_x + 0.5) centroid_y = int(centroid_y + 0.5) cv2.circle(img, (centroid_x, centroid_y), 7, (0, 0, 255), -1) # Draw line of endpoints cv2.line(img, tuple(pts_on_curve[0]), tuple( pts_on_curve[-1]), (255, 0, 0), 2) cv2.imshow('Curve', img) cv2.waitKey() def line_equation(first_x, first_y, second_x, second_y): # Ax+By+C=0 A = second_y - first_y B = first_x - second_x C = second_x*first_y - first_x*second_y # k = -1.0 * A / B # b = -1.0 * C / B return A, B, C def dist_of_pt_to_line(pt, A, B, C): """ 2D space point to line distance """ # tmp = abs(A*pt[0] + B*pt[1] + C) / math.sqrt(A*A + B*B) tmp = -(A*pt[0] + B*pt[1] + C) / math.sqrt(A*A + B*B) return tmp # return math.sqrt(tmp * tmp) def undistort_point(u, v, fx, fy, cx, cy, k1, k2, p1=None, p2=None, radial_ud_only=True): """ """ # convert to camera coordinates by camera intrinsic parameters x1 = (u - cx) / fx y1 = (v - cy) / fy # compute r^2 and r^4 r_square = (x1 * x1) + (y1 * y1) r_quadric = r_square * r_square if radial_ud_only: # do radial undistortion only x2 = x1 * (1.0 + k1 * r_square + k2 * r_quadric) y2 = y1 * (1.0 + k1 * r_square + k2 * r_quadric) else: # do radial undistortion and tangential undistortion x2 = x1 * (1.0 + k1 * r_square + k2 * r_quadric) + \ 2.0 * p1 * x1 * y1 + p2 * (r_square + 2.0 * x1 * x1) y2 = y1 * (1.0 + k1 * r_square + k2 * r_quadric) + \ p1 * (r_square + 2.0 * y1 * y1) + 2.0 * p2 * x1 * y # convert back to pixel coordinates # using nearest neighbor interpolation u_corrected = fx * x2 + cx v_corrected = fy * y2 + cy return [u_corrected, v_corrected] # the function def test_undistort_pts_on_curve(): """ """ fx = 458.654 fy = 457.296 cx = 367.215 cy = 248.375 k1 = -0.28340811 k2 = 0.07395907 k1k2 = np.array([[k1], [k2]]) pts_orig = [ [546, 20], [545, 40], [543, 83], [536, 159], [535, 170], [534, 180], [531, 200], [530, 211], [529, 218], [526, 236], [524, 253], [521, 269], [519, 281], [517, 293], [515, 302], [514, 310], [512, 320], [510, 329], [508, 341], [506, 353], [505, 357] ] pts_corrected = undistort_point( pts_orig[:, 0], pts_orig[:, 1], fx, fy, cx, cy, k1k2[0][0], k1k2[1][0] ) img_path = './distorted.png' img_orig = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) def Func(fx, fy, cx, cy, k1k2, input_list): ret = np.zeros(len(input_list)) for i, input_i in enumerate(input_list): # using numpy array for SIMD pts_orig = np.array(input_i) # # applying undistortion of points pts_corrected = undistort_point( pts_orig[:, 0], pts_orig[:, 1], fx, fy, cx, cy, k1k2[0][0], k1k2[1][0] ) # compute centroid of undistorted points centroid = np.sum(pts_corrected, axis=1) # get sum by column centroid /= float(pts_orig.shape[0]) # build line of undistorted endpoints A, B, C = line_equation(pts_corrected[0][0], pts_corrected[0][1], pts_corrected[-1][0], pts_corrected[-1][1]) # build loss function and return dist = dist_of_pt_to_line(centroid, A, B, C) ret[i] = dist ret = np.array(ret) ret = np.reshape(ret, (-1, 1)) return ret def Deriv(fx, fy, cx, cy, k1k2, input_list, i): """ """ k1k2_delta_1 = k1k2.copy() k1k2_delta_2 = k1k2.copy() k1k2_delta_1[i, 0] -= 0.000001 k1k2_delta_2[i, 0] += 0.000001 p1 = Func(fx, fy, cx, cy, k1k2_delta_1, input_list) p2 = Func(fx, fy, cx, cy, k1k2_delta_2, input_list) d = (p2 - p1) * 1.0 / (0.000002) return d def test_func(): pts_orig = [ [546, 20], [545, 40], [543, 83], [536, 159], [535, 170], [534, 180], [531, 200], [530, 211], [529, 218], [526, 236], [524, 253], [521, 269], [519, 281], [517, 293], [515, 302], [514, 310], [512, 320], [510, 329], [508, 341], [506, 353], [505, 357] ] input_list = [] input_list.append(pts_orig) fx = 458.654 fy = 457.296 cx = 367.215 cy = 248.375 # k1k2 = np.array([[0.1], # [0.1]]) k1 = -0.28340811 k2 = 0.07395907 k1k2 = np.array([[k1], [k2]]) dists = Func(fx, fy, cx, cy, k1k2, input_list) # N×1 print('Dist: {:.3f}'.format(dists[0][0])) def LM_Optimize(params, max_iter=100): """ """ # Known parameters(camera intrinsics) fx = 458.654 fy = 457.296 cx = 367.215 cy = 248.375 # Input pts_orig = [ [546, 20], [545, 40], [543, 83], [536, 159], [535, 170], [534, 180], [531, 200], [530, 211], [529, 218], [526, 236], [524, 253], [521, 269], [519, 281], [517, 293], [515, 302], [514, 310], [512, 320], [510, 329], [508, 341], [506, 353], [505, 357] ] input_list = [] input_list.append(pts_orig) N = len(input_list) # 数据个数 print('Total {:d} data.'.format(N)) u, v = 1, 2 step = 0 last_mse = 0.0 while max_iter: step += 1 mse, mse_tmp = 0.0, 0.0 # loss loss = Func(fx, fy, cx, cy, params, input_list) mse += sum(loss**2) mse /= N # normalize # build Jacobin matrix J = mat(np.zeros((N, 2))) # 雅克比矩阵 for i in range(2): J[:, i] = Deriv(fx, fy, cx, cy, params, input_list, i) print('Jacobin matrix:\n', J) H = J.T*J + u*np.eye(2) # 2×2 params_delta = -H.I * J.T*fx # # update parameters params_tmp = params.copy() params_tmp += params_delta # current loss loss_tmp = Func(fx, fy, cx, cy, params_tmp, input_list) mse_tmp = sum(loss_tmp[:, 0]**2) mse_tmp /= N # adaptive adjustment q = float((mse - mse_tmp) / ((0.5*params_delta.T*(u*params_delta - J.T*loss))[0, 0])) if q > 0: s = 1.0 / 3.0 v = 2 mse = mse_tmp params = params_tmp temp = 1 - pow(2.0*q-1, 3) if s > temp: u = u*s else: u = u*temp else: u = u*v v = 2*v params = params_tmp print("step = %d, abs(mse-lase_mse) = %.8f" % (step, abs(mse-last_mse))) if abs(mse - last_mse) < 0.000001: break last_mse = mse # 记录上一个 mse 的位置 max_iter -= 1 print('\nFinal optimized parameters:\n', params) if __name__ == '__main__': test_undistort_img() # show_points_of_curve() # test_func() print('=> Test done.')
python
from http import HTTPStatus import json from src.common.encoder import PynamoDbEncoder class HTTPResponse(object): @classmethod def to_json_response(cls, http_status, message=None): """ Access-Control-Allow-Origin is needed for CORS to work Access-Control-Allow-Credentials is needed for cookies """ _message = http_status.description if message: _message = message return { "statusCode": http_status.value, "headers": { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Credentials": True }, "body": json.dumps({"message": _message})} @classmethod def to_ok_json(cls, body, encoder=PynamoDbEncoder): return { "statusCode": HTTPStatus.OK.value, "headers": { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Credentials": True }, "body": json.dumps(body, cls=encoder) }
python
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-11-26 09:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('libretto', '0044_auto_20190917_1200'), ] operations = [ migrations.AlterField( model_name='source', name='folio', field=models.CharField(blank=True, help_text='Sans «\xa0f.\xa0». Exemple\xa0: «\xa03\xa0».', max_length=15, verbose_name='folio'), ), migrations.AlterField( model_name='source', name='page', field=models.CharField(blank=True, db_index=True, help_text='Sans «\xa0p.\xa0». Exemple\u202f: «\xa03\xa0»', max_length=15, verbose_name='page'), ), ]
python
from setuptools import setup, find_packages classifiers = ['Development Status :: 4 - Beta', 'Operating System :: POSIX :: Linux', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Topic :: Software Development', 'Topic :: System :: Hardware'] setup(name='ST7735', version='0.0.2', description='Library to control an ST7735 168x80 TFT LCD display.', long_description=open('README.rst').read() + '\n' + open('CHANGELOG.txt').read(), license='MIT', author='Philip Howard', author_email='[email protected]', classifiers=classifiers, url='https://github.com/pimoroni/st7735-160x80-python/', packages=find_packages())
python
"""============================================================================ The input is a file containing lines of the following form: equation_name arg1 ... For example: energy 5.4 3.7 99 something 7 280.01 energy 88.94 73 21.2 whizbang 83.34 14.34 356.43 139593.7801 something .001 25 You must pass the name of the input file on the command-line. Do not hard-code the input file name in the source code. You must validate the name of the physics equation and the number of arguments. If the name of the equation is invalid, write an error message and skip to the next line. If the equation name is valid, but has the wrong number of arguments, write an error message and skip to the next line. If the equation name and number of arguments is correct, call the equation with the arguments and print the answer like this: physics_equation_name(arg1, arg2 ...) = answer ============================================================================""" from physequations import grav_potential_energy, kin_energy, work_energy from pprint import pprint # print('<--checking equations hardcoded with rounding-->') # print(grav_potential_energy(2, 6.4)) # print(round(grav_potential_energy(2, 6.4), 2)) # print(kin_energy(2, 5)) # print(work_energy(2, 5, 30)) # print(round(work_energy(2, 5, 30), 2)) # print() def isint(s): """Checks to see if input is an interger""" try: int(s) except: return False return True # string = 'this is a string' # print(string.split()) # print() """logic: find if the index element is not an int then start a new line""" f = open('resources/equations_input.txt', 'r') flines = f.readlines() # pprint(flines) equations = [] for line in flines: spline = line.split() # print(spline) equations.append(spline) # print('===> equations') # pprint(equations) for equation in equations: eqname = equation[0] # print(eqname) if eqname != 'grav_potential_energy' and eqname != 'kin_energy' and \ eqname !='work_energy': print(f'{eqname} is not valid') # print(equation) numargs = len(equation) - 1 if eqname == 'grav_potential_energy': if numargs != 2: print(f'Wrong number of arguments: {equation}') else: mass = float(equation[1]) height = float(equation[2]) ans = grav_potential_energy(float(equation[1]), float(equation[2])) # {mass, height} creates a tuple # ({mass}, {height}) is another way to format it print(f'{eqname}{mass, height} = {ans}') if eqname == 'kin_energy': if numargs != 2: print(f'Wrong number of arguments: {equation}') else: mass = float(equation[1]) velocity = float(equation[2]) ans = kin_energy(float(equation[1]), float(equation[2])) # {mass, velocity} creates a tuple # ({mass}, {velocity}) is another way to format it print(f'{eqname}{mass, velocity} = {ans}') if eqname == 'work_energy': if numargs != 3: print(f'Wrong number of arguments: {equation}') else: force = float(equation[1]) displacement = float(equation[2]) angle = float(equation[3]) ans = work_energy(float(equation[1]), float(equation[2]), float(equation[3])) # {force, displacement, angle} creates a tuple # ({force}, {displacement}, {angle}) is another way to format it print(f'{eqname}{force, displacement, angle} = {ans}')
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from sympy import init_printing,Integral,latex,pretty,pprint,sqrt,symbols,srepr init_printing(use_unicode=True) x,y,z = symbols('x y z') print(Integral(sqrt(1/x),x)) print(srepr(Integral(sqrt(1/x), x))) pprint(Integral(sqrt(1/x), x), use_unicode=False) print(pretty(Integral(sqrt(1/x), x), use_unicode=False)) print(latex(Integral(sqrt(1/x), x))) from sympy.printing.mathml import print_mathml print_mathml(Integral(sqrt(1/x), x)) from sympy.printing.dot import dotprint from sympy.abc import x print(dotprint(x+2))
python
from django.contrib import admin from django.contrib.admin import register from bbbs.main.models import Main from bbbs.users.utils import AdminOnlyPermissionsMixin from .forms import MainAdminForm @register(Main) class MainAdmin(AdminOnlyPermissionsMixin, admin.ModelAdmin): empty_value_display = "-пусто-" filter_horizontal = ("questions", "articles", "movies") form = MainAdminForm def has_add_permission(self, request): if Main.objects.first(): return False return True def has_delete_permission(self, request, obj=None): return False
python
""" uTorrent migration to qBittorrent module """ from tkinter import Tk, StringVar, N, W, E, S, filedialog, messagebox, HORIZONTAL from tkinter.ttk import Frame, Entry, Button, Label, Progressbar from shutil import copy from os import path from hashlib import sha1 from time import time from re import compile as re_compile from tpp.bencodepy import encode as bencode from tpp.bencodepy import decode as bdecode from tpp.bencodepy import DecodingError FIELD_MAP = {"active_time" : 0, "added_time" : 0, "allocation" : "full", "announce_to_dht" : 1, "announce_to_lsd" : 1, "announce_to_trackers" : 1, "auto_managed" : 1, "banned_peers" : "", "banned_peers6" : "", "blocks per piece" : 0, "completed_time" : 0, "download_rate_limit" : 0, "file sizes" : [[0, 0], [0, 0], [0, 0]], "file-format" : "libtorrent resume file", "file-version" : 1, "file_priority" : [2, 0, 1], "finished_time" : 0, "info-hash" : "", "last_download" : 0, "last_scrape" : 0, "last_seen_complete" : 0, "last_upload" : 0, "libtorrent-version" : "0.16.19.0", "mapped_files" : ["relative\\path\\to\\file1.ext", "r\\p\\t\\file2.ext", "file3.ext"], "max_connections" : 100, "max_uploads" : 16777215, "num_downloaders" : 16777215, "num_incomplete" : 0, "num_seeds" : 0, "paused" : 0, "peers" : "", "peers6" : "", "piece_priority" : "", "pieces" : "", "seed_mode" : 0, "seeding_time" : 0, "sequential_download" : 0, "super_seeding" : 0, "total_downloaded" : 0, "total_uploaded" : 0, "upload_rate_limit" : 0, "trackers" : [["https://tracker"]]} def mkfr(res, tor): """ Creates libtorrent fast resume file. @res uTorrent data. @tor Torrent File. """ qbt_torrent = FIELD_MAP time_now = int(time()) pieces_num = int(tor['info']['pieces'].size / 20) # SHA1 hash is 20 bytes qbt_torrent['added_time'] = int(res['added_on']) qbt_torrent['completed_time'] = int(res['completed_on']) qbt_torrent['active_time'] = int(res['runtime']) qbt_torrent['seeding_time'] = qbt_torrent['active_time'] qbt_torrent['blocks per piece'] = int(int(tor['info']['piece length']) / int(res['blocksize'])) qbt_torrent['info-hash'] = sha1(bencode(tor['info'])).digest() qbt_torrent['paused'] = 1 if res['started'] == 0 else 0 qbt_torrent['auto_managed'] = 0 qbt_torrent['total_downloaded'] = int(res['downloaded']) qbt_torrent['total_uploaded'] = int(res['uploaded']) qbt_torrent['upload_rate_limit'] = int(res['upspeed']) qbt_torrent['trackers'] = [[tracker] for tracker in res['trackers']] #wat? qbt_torrent['piece_priority'] = "".join(bin(hexik)[2:]*pieces_num for hexik in res["have"]) #wat? qbt_torrent['pieces'] = qbt_torrent['piece_priority'] qbt_torrent['finished_time'] = time_now - qbt_torrent['completed_time'] qbt_torrent['last_seen_complete'] = int(time_now) if qbt_torrent["finished_time"] else 0 qbt_torrent['last_download'] = qbt_torrent['finished_time'] qbt_torrent['last_scrape'] = qbt_torrent['finished_time'] qbt_torrent['last_upload'] = qbt_torrent['finished_time'] qbt_torrent['mapped_files'] = [] qbt_torrent['file sizes'] = [] # Per file fields: ########## # mapped_files # file_priority # file sizes #wat? get_hex = re_compile("[0-9A-Fa-f][0-9A-Fa-f]") qbt_torrent["file_priority"] = [(1 if int(hex_number, 16) in range(1, 9) else (2 if int(hex_number, 16) in range(9, 16) else (0))) for hex_number in get_hex.split(res["prio"])] fmt = 0 if "files" in tor['info']: for file_index in range(len(tor['info']['files'])): tor_file = tor['info']['files'][file_index] qbt_torrent['mapped_files'].append(path.normpath(tor_file)) if not "modtimes" in res: fmt = int(res['modtimes'][file_index]) else: fmt = 0 res_file = path.join(res['path'], qbt_torrent['mapped_files'][-1]) if path.isfile(res_file) and not fmt: fmt = int(path.getmtime(res_file)) if qbt_torrent['file_priority'][file_index]: qbt_torrent['file sizes'].append([int(tor_file['length']), fmt]) else: qbt_torrent['file sizes'].append([0, 0]) qbt_torrent['qBt-savePath'] = res['path'] else: qbt_torrent['qBt-savePath'] = path.dirname(res['path']) if "modtimes" in res: fmt = int(res['modtimes'][0]) # file time to avoid checking / not presen in ut2.2 else: fmt = 0 res_file = res['path'] if path.isfile(res_file) and not fmt: fmt = int(path.getmtime(res_file)) if qbt_torrent['file_priority'][0]: qbt_torrent['file sizes'].append([int(tor['info']['length']), fmt]) else: qbt_torrent['file sizes'].append([0, 0]) ########## # qBittorrent 3.1+ Fields ########## if "label" in res: qbt_torrent['qBt-label'] = res['label'] qbt_torrent['qBt-queuePosition'] = -1 # -1 for completed qbt_torrent['qBt-seedDate'] = qbt_torrent['completed_time'] qbt_torrent['qBt-ratioLimit'] = "-2" # -2 = Use Global, -1 = No limit, other number = actual ratio? return qbt_torrent def punchup(res, tor, dotracker=True, doname=False): torrent = tor if dotracker: utrax = res['trackers'] if len(utrax) > 1: if "announce-list" in torrent: if not set(torrent['announce-list']) == set(utrax): torrent['announce-list'] = [[element] for element in set(utrax)] elif "announce" in torrent: if not torrent['announce'] == utrax[0]: torrent['announce'] = utrax[0] if doname: res_path = res['path'] if not "files" in torrent: torrent['info']['name'] = path.basename(res_path) return torrent def convertor(ut_data: str, qbt_dir: str): """ Converts from uTorrent resume.dat to qBt @ut_data Path to uT resum.data @qbt_dir Path to store results """ message = messagebox """ backup_data = ".".join((ut_data, "old")) try: copy(ut_data, backup_data) except IOError: if message.askyesno("Backup error", "Cannot back-up UT data\nIs it ok?"): backup_data = "" else: return """ with open(ut_data, 'rb') as ut_fd: data = ut_fd.read() try: torrents = bdecode(data) except DecodingError as error: message.showerror("Decoding error", "".join(("Cannot decode uTorrent data\n", "Error: ", str(error)))) return ut_folder = path.dirname(ut_data) print(torrents) for key, value in torrents.items(): torrent_file = path.join(ut_folder, key) with open(torrent_file, 'rb') as ut_fd: try: bdecoded_data = bdecode(ut_fd.read()) except BTFailure: continue tor_file = punchup(value, bdecoded_data) file_hash = sha1(bencode(tor_file["info"])).hexdigest().lower() #paths path_torrent_file = path.join(qbt_dir, ".".join((file_hash, "torrent"))) path_fast_resume = path.join(qbt_dir, ".".join((file_hash, "fastresume"))) if path.exists(path_torrent_file) or path.exists(path_fast_resume): continue fast_resume_file = mkfr(value, tor_file) with open(path_torrent_file, "wb") as tor_file: tor_file.write(bencode(tor_file)) with open(path_fast_resume, "wb") as tor_file: tor_file.write(bencode(fast_resume_file)) class qbtConvertor(Tk): """ GUI Application for migration from uTorrent to qBittorrent """ def __init__(self): Tk.__init__(self) self.title("uT to qBt convertor") #main frame self.main_frame = Frame(self, padding="3 3 12 12") self.main_frame.grid(column=0, row=0, sticky=(N, W, E, S)) self.main_frame.columnconfigure(0, weight=1) self.main_frame.rowconfigure(0, weight=1) #uT part self.ut_data = StringVar() self.ut_label = Label(self.main_frame, text="uT data") self.ut_label.grid(column=0, row=1, sticky=(W)) self.ut_entry = Entry(self.main_frame, width=100, textvariable=self.ut_data) self.ut_entry.grid(column=1, row=1, sticky=(W)) self.ut_button = Button(self.main_frame, text="Browse", command=self.load_file) self.ut_button.grid(column=2, row=1) #qBt part self.qbt_folder = StringVar() self.qbt_label = Label(self.main_frame, text="qBt folder") self.qbt_label.grid(column=0, row=4, sticky=(W)) self.qbt_entry = Entry(self.main_frame, width=100, textvariable=self.qbt_folder) self.qbt_entry.grid(column=1, row=4, sticky=(W)) self.qbt_button = Button(self.main_frame, text="Browse", command=self.open_dir) self.qbt_button.grid(column=2, row=4, sticky=(W, E)) #convertor self.convertor_button = Button(self.main_frame, text="Convert", command=self.convert, width=50) self.convertor_button.grid(column=1, columnspan=2, row=5) self.progress_bar = Progressbar(self.main_frame, orient=HORIZONTAL, length=300, mode="indeterminate") self.progress_bar.grid(column=1, columnspan=3, row=6) #set padding for each element for child in self.main_frame.winfo_children(): child.grid_configure(padx=5, pady=5) def convert(self): message = messagebox if not self.qbt_folder.get() or not self.ut_data.get(): message.showerror("ERROR", "Specify paths!") return self.progress_bar.start() convertor(self.ut_data.get(), self.qbt_folder.get()) self.progress_bar.stop() def load_file(self): file_name = filedialog.askopenfilename(filetypes=(("UT resume file", "*.dat"), ("All", "*"))) if file_name: self.ut_data.set(file_name) def open_dir(self): dir_name = filedialog.askdirectory() if dir_name: self.qbt_folder.set(dir_name) if __name__ == "__main__": app = qbtConvertor() app.geometry("800x160") app.mainloop()
python
#!/usr/bin/env python3 import argparse import logging import logging.config import os import sys import time import yaml from cluster_manager import setup_exporter_thread, \ manager_iteration_histogram, \ register_stack_trace_dump, \ update_file_modification_time sys.path.append( os.path.join(os.path.dirname(os.path.abspath(__file__)), "../utils")) from DataHandler import DataHandler CLUSTER_STATUS_EXPIRY = 1 JOBS_EXPIRY = 180 logger = logging.getLogger(__name__) def create_log(logdir='/var/log/dlworkspace'): if not os.path.exists(logdir): os.system("mkdir -p " + logdir) with open('logging.yaml') as f: logging_config = yaml.full_load(f) log_filename = os.path.join(logdir, "db_manager.log") logging_config["handlers"]["file"]["filename"] = log_filename logging.config.dictConfig(logging_config) def delete_old_cluster_status(days_ago): table = "clusterstatus" with DataHandler() as data_handler: num_rows = data_handler.count_rows(table) if num_rows <= 10: # Retain 10 rows for safety return logger.info("Deleting rows from table %s older than %s day(s)", table, days_ago) ret = data_handler.delete_rows_from_table_older_than_days( table, days_ago) ret_status = "succeeded" if ret is True else "failed" logger.info("Deleting rows from table %s older than %s day(s) %s", table, days_ago, ret_status) def delete_old_inactive_jobs(days_ago): table = "jobs" with DataHandler() as data_handler: logger.info( "Deleting inactive job records from table %s older than %s " "day(s)", table, days_ago) cond = {"jobStatus": ("IN", ["finished", "failed", "killed", "error"])} ret = data_handler.delete_rows_from_table_older_than_days( table, days_ago, col="lastUpdated", cond=cond) ret_status = "succeeded" if ret is True else "failed" logger.info( "Deleting inactive job records from table %s older than %s " "day(s) %s", table, days_ago, ret_status) def sleep_with_update(time_to_sleep, fn): for _ in range(int(time_to_sleep / 100)): fn() time.sleep(100) def run(): register_stack_trace_dump() create_log() update = lambda: update_file_modification_time("db_manager") while True: update() with manager_iteration_histogram.labels("db_manager").time(): try: delete_old_cluster_status(CLUSTER_STATUS_EXPIRY) # query below is too time consuming since lastUpdated in job table is not indexed # delete_old_inactive_jobs(JOBS_EXPIRY) except: logger.exception("Deleting old cluster status failed") sleep_with_update(86400, update) if __name__ == '__main__': # TODO: This can be made as a separate service to GC DB and orphaned pods parser = argparse.ArgumentParser() parser.add_argument("--port", "-p", help="port of exporter", type=int, default=9209) args = parser.parse_args() setup_exporter_thread(args.port) run()
python
import itertools from numbers import Number from graphgallery.utils.type_check import is_iterable def repeat(src, length): if src is None: return [None for _ in range(length)] if src == [] or src == (): return [] if isinstance(src, (Number, str)): return list(itertools.repeat(src, length)) if (len(src) > length): return src[:length] if (len(src) < length): return list(src) + list(itertools.repeat(src[-1], length - len(src))) return src def get_length(obj): if is_iterable(obj): length = len(obj) else: length = 1 return length
python
from __future__ import absolute_import from __future__ import unicode_literals import inspect import logging LOG = logging.getLogger(__name__) def is_generator(func): """Return True if `func` is a generator function.""" return inspect.isgeneratorfunction(func)
python
#! /usr/bin/python # -*- coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # Copyright (C) 2012 by Xose Pérez # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. __author__ = "Xose Pérez" __contact__ = "[email protected]" __copyright__ = "Copyright (C) 2012-2013 Xose Pérez" __license__ = 'GPL v3' import yaml class Config(object): """ Simple YAML configuration parser """ config = None def __init__(self, filename): """ Constructor, parses and stores the configuration """ handler = file(filename, 'r') self.config = yaml.load(handler) handler.close() def get(self, section, key=None, default=None): """ Retrieves a given section/key combination, if not existent it return a default value """ try: if key is None: return self.config[section] else: return self.config[section][key] except: return default
python
def countPattern(genome, pattern): """ Find the number of specific pattern in a genome sequence """ count = 0 for index in range(0, len(genome)-len(pattern)+1): if genome[index:index+len(pattern)] == pattern: count += 1 return count def findPattern(genome, pattern): """ find the indexes of the pattern in a given genome sequence """ indexes = [] for index in range(0, len(genome) - len(pattern) + 1): if genome[index:index + len(pattern)] == pattern: indexes.append(index) return indexes
python
import logging import asyncio from ..Errors import * from ..utils import Url logger = logging.getLogger(__name__) class Commander: """ Manages looping through the group wall and checking for commands or messages Attributes ----------- prefix: :class:`str` The command prefix """ async def start_listening(self, client, commands, listening_to): self.__commands = commands self.__client = client self.__listening_to = listening_to self.__already_seen = [] self.__is_first = True self.prefix = client.prefix self.__access = Url("groups", "/v1/groups/%group_id%/wall/posts?limit=10&sortOrder=Desc", group_id=self.__listening_to.id) await self.start_loop() async def start_loop(self): await self.__client._emit("start_listening", (self.__listening_to,)) while True: await self.__client._emit("check_messages", (self.__listening_to,)) await self.check_messages() await asyncio.sleep(5) async def check_messages(self): hook = await self.__access.get() for msg in hook.json['data']: if self.__is_first: self.__already_seen.append(msg["id"]) if await self.check_entity(msg): await self.process_new_message(msg) if self.__is_first: self.__is_first = False async def check_entity(self, msg): if not msg["id"] in self.__already_seen: self.__already_seen.append(msg["id"]) return True return False async def process_new_message(self, msg): text = msg["body"] flags = str.split(text, " ") ctx = await self.generate_context(msg) await self.__client._emit("message", ctx) if flags[0].startswith(self.prefix): flags[0] = flags[0].replace(self.prefix, "") await self.process_command(flags, ctx) async def process_command(self, flags, ctx): function_name = flags.pop(0) args = tuple(flags) try: await self.__client.push_command(function_name, ctx, args) except TypeError as e: if await self.__client._emit("error", (ctx, e)): return raise BadArguments( function_name ) async def generate_context(self, msg): try: member = await self.__listening_to.get_member(msg["poster"]["username"]) except: member = await self.__client.get_user(msg["poster"]["username"]) return Context(member, msg["body"]) class Context: """ Context object for message on group wall .. note:: This objects checks if its `__user_or_member` has a group to determine wether it is a user or not Attributes ----------- user: :class:`.BloxUser` The user that sent this message, may be :class:`None` member: :class:`.BloxMember` The member that sent this message, may be :class:`None` content: :class:`str` The content of the message sent """ def __init__(self, user, ctt): self.__user_or_member = user self.content = ctt @property def member(self): if self.__user_or_member.group: return self.__user_or_member return None @property def user(self): if not self.__user_or_member.group: return self.__user_or_member return None
python
"""Class implementation for the scale_x_from_center interface. """ from typing import Dict from apysc._animation.animation_scale_x_from_center_interface import \ AnimationScaleXFromCenterInterface from apysc._type.attr_linking_interface import AttrLinkingInterface from apysc._type.number import Number from apysc._type.revert_interface import RevertInterface class ScaleXFromCenterInterface( AnimationScaleXFromCenterInterface, RevertInterface, AttrLinkingInterface): _scale_x_from_center: Number def _initialize_scale_x_from_center_if_not_initialized(self) -> None: """ Initialize the `_scale_x_from_center` attribute if it hasn't been initialized yet. """ import apysc as ap with ap.DebugInfo( callable_=self. _initialize_scale_x_from_center_if_not_initialized, locals_=locals(), module_name=__name__, class_=ScaleXFromCenterInterface): if hasattr(self, '_scale_x_from_center'): return self._scale_x_from_center = ap.Number(1.0) self._append_scale_x_from_center_attr_linking_setting() def _append_scale_x_from_center_attr_linking_setting(self) -> None: """ Append a scale-x attribute linking setting. """ import apysc as ap with ap.DebugInfo( callable_=self. _append_scale_x_from_center_attr_linking_setting, locals_=locals(), module_name=__name__, class_=ScaleXFromCenterInterface): self._append_applying_new_attr_val_exp( new_attr=self._scale_x_from_center, attr_name='scale_x_from_center') self._append_attr_to_linking_stack( attr=self._scale_x_from_center, attr_name='scale_x_from_center') @property def scale_x_from_center(self) -> Number: """ Get a scale-x value from the center of this instance. Returns ------- scale_x_from_center : ap.Number Scale-x value from the center of this instance. References ---------- - GraphicsBase scale_x_from_center and scale_y_from_center interfaces - https://bit.ly/3ityoCX Examples -------- >>> import apysc as ap >>> stage: ap.Stage = ap.Stage() >>> sprite: ap.Sprite = ap.Sprite() >>> sprite.graphics.begin_fill(color='#0af') >>> rectangle: ap.Rectangle = sprite.graphics.draw_rect( ... x=50, y=50, width=50, height=50) >>> rectangle.scale_x_from_center = ap.Number(1.5) >>> rectangle.scale_x_from_center Number(1.5) """ import apysc as ap with ap.DebugInfo( callable_='scale_x_from_center', locals_=locals(), module_name=__name__, class_=ScaleXFromCenterInterface): from apysc._type import value_util self._initialize_scale_x_from_center_if_not_initialized() return value_util.get_copy(value=self._scale_x_from_center) @scale_x_from_center.setter def scale_x_from_center(self, value: Number) -> None: """ Update a scale-x value from the center of this instance. Parameters ---------- value : ap.Number Scale-x value from the center of this instance. References ---------- - GraphicsBase scale_x_from_center and scale_y_from_center interfaces - https://bit.ly/3ityoCX """ import apysc as ap with ap.DebugInfo( callable_='scale_x_from_center', locals_=locals(), module_name=__name__, class_=ScaleXFromCenterInterface): from apysc._validation import number_validation self._initialize_scale_x_from_center_if_not_initialized() number_validation.validate_num(num=value) if not isinstance(value, ap.Number): value = ap.Number(value) before_value: ap.Number = self._scale_x_from_center self._scale_x_from_center = value self._append_scale_x_from_center_update_expression( before_value=before_value) self._append_scale_x_from_center_attr_linking_setting() def _append_scale_x_from_center_update_expression( self, *, before_value: Number) -> None: """ Append the scale-x from the center of this instance updating expression. Parameters ---------- before_value : ap.Number Before updating value. """ import apysc as ap with ap.DebugInfo( callable_=self._append_scale_x_from_center_update_expression, locals_=locals(), module_name=__name__, class_=ScaleXFromCenterInterface): from apysc._type import value_util before_value_str: str = value_util.get_value_str_for_expression( value=before_value) after_value_str: str = value_util.get_value_str_for_expression( value=self._scale_x_from_center) expression: str = ( f'{self.variable_name}.scale(1 / {before_value_str}, 1);' f'\n{self.variable_name}.scale({after_value_str}, 1);' f'\n{before_value_str} = {after_value_str};' ) ap.append_js_expression(expression=expression) _scale_x_from_center_snapshots: Dict[str, float] def _make_snapshot(self, *, snapshot_name: str) -> None: """ Make a value's snapshot. Parameters ---------- snapshot_name : str Target snapshot name. """ self._initialize_scale_x_from_center_if_not_initialized() self._set_single_snapshot_val_to_dict( dict_name='_scale_x_from_center_snapshots', value=self._scale_x_from_center._value, snapshot_name=snapshot_name) def _revert(self, *, snapshot_name: str) -> None: """ Revert a value if snapshot exists. Parameters ---------- snapshot_name : str Target snapshot name. """ if not self._snapshot_exists(snapshot_name=snapshot_name): return self._scale_x_from_center._value = \ self._scale_x_from_center_snapshots[snapshot_name]
python
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent import pytest from pants.backend.shell.lint.shfmt.rules import ShfmtFieldSet, ShfmtRequest from pants.backend.shell.lint.shfmt.rules import rules as shfmt_rules from pants.backend.shell.target_types import ShellSourcesGeneratorTarget from pants.backend.shell.target_types import rules as target_types_rules from pants.core.goals.fmt import FmtResult from pants.core.goals.lint import LintResult, LintResults from pants.core.util_rules import config_files, external_tool, source_files from pants.core.util_rules.source_files import SourceFiles, SourceFilesRequest from pants.engine.addresses import Address from pants.engine.fs import CreateDigest, Digest, FileContent from pants.engine.target import Target from pants.testutil.rule_runner import QueryRule, RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: return RuleRunner( rules=[ *shfmt_rules(), *config_files.rules(), *external_tool.rules(), *source_files.rules(), *target_types_rules(), QueryRule(LintResults, [ShfmtRequest]), QueryRule(FmtResult, [ShfmtRequest]), QueryRule(SourceFiles, [SourceFilesRequest]), ], target_types=[ShellSourcesGeneratorTarget], ) GOOD_FILE = "! foo bar >a &\n" BAD_FILE = "! foo bar >a &\n" # If config is loaded correctly, shfmt will indent the case statements. NEEDS_CONFIG_FILE = dedent( """\ case foo in PATTERN_1) \tbar \t;; *) \tbaz \t;; esac """ ) FIXED_NEEDS_CONFIG_FILE = dedent( """\ case foo in \tPATTERN_1) \t\tbar \t\t;; \t*) \t\tbaz \t\t;; esac """ ) def run_shfmt( rule_runner: RuleRunner, targets: list[Target], *, extra_args: list[str] | None = None, ) -> tuple[tuple[LintResult, ...], FmtResult]: rule_runner.set_options( ["--backend-packages=pants.backend.shell.lint.shfmt", *(extra_args or ())], env_inherit={"PATH"}, ) field_sets = [ShfmtFieldSet.create(tgt) for tgt in targets] lint_results = rule_runner.request(LintResults, [ShfmtRequest(field_sets)]) input_sources = rule_runner.request( SourceFiles, [ SourceFilesRequest(field_set.sources for field_set in field_sets), ], ) fmt_result = rule_runner.request( FmtResult, [ ShfmtRequest(field_sets, prior_formatter_result=input_sources.snapshot), ], ) return lint_results.results, fmt_result def get_digest(rule_runner: RuleRunner, source_files: dict[str, str]) -> Digest: files = [FileContent(path, content.encode()) for path, content in source_files.items()] return rule_runner.request(Digest, [CreateDigest(files)]) def test_passing(rule_runner: RuleRunner) -> None: rule_runner.write_files({"f.sh": GOOD_FILE, "BUILD": "shell_sources(name='t')"}) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="f.sh")) lint_results, fmt_result = run_shfmt(rule_runner, [tgt]) assert len(lint_results) == 1 assert lint_results[0].exit_code == 0 assert lint_results[0].stderr == "" assert fmt_result.stdout == "" assert fmt_result.output == get_digest(rule_runner, {"f.sh": GOOD_FILE}) assert fmt_result.did_change is False def test_failing(rule_runner: RuleRunner) -> None: rule_runner.write_files({"f.sh": BAD_FILE, "BUILD": "shell_sources(name='t')"}) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="f.sh")) lint_results, fmt_result = run_shfmt(rule_runner, [tgt]) assert len(lint_results) == 1 assert lint_results[0].exit_code == 1 assert "f.sh.orig" in lint_results[0].stdout assert fmt_result.stdout == "f.sh\n" assert fmt_result.output == get_digest(rule_runner, {"f.sh": GOOD_FILE}) assert fmt_result.did_change is True def test_multiple_targets(rule_runner: RuleRunner) -> None: rule_runner.write_files( {"good.sh": GOOD_FILE, "bad.sh": BAD_FILE, "BUILD": "shell_sources(name='t')"} ) tgts = [ rule_runner.get_target(Address("", target_name="t", relative_file_path="good.sh")), rule_runner.get_target(Address("", target_name="t", relative_file_path="bad.sh")), ] lint_results, fmt_result = run_shfmt(rule_runner, tgts) assert len(lint_results) == 1 assert lint_results[0].exit_code == 1 assert "bad.sh.orig" in lint_results[0].stdout assert "good.sh" not in lint_results[0].stdout assert "bad.sh\n" == fmt_result.stdout assert fmt_result.output == get_digest(rule_runner, {"good.sh": GOOD_FILE, "bad.sh": GOOD_FILE}) assert fmt_result.did_change is True def test_config_files(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "a/f.sh": NEEDS_CONFIG_FILE, "a/BUILD": "shell_sources()", "a/.editorconfig": "[*.sh]\nswitch_case_indent = true\n", "b/f.sh": NEEDS_CONFIG_FILE, "b/BUILD": "shell_sources()", } ) tgts = [ rule_runner.get_target(Address("a", relative_file_path="f.sh")), rule_runner.get_target(Address("b", relative_file_path="f.sh")), ] lint_results, fmt_result = run_shfmt(rule_runner, tgts) assert len(lint_results) == 1 assert lint_results[0].exit_code == 1 assert "a/f.sh.orig" in lint_results[0].stdout assert "b/f.sh.orig" not in lint_results[0].stdout assert fmt_result.stdout == "a/f.sh\n" assert fmt_result.output == get_digest( rule_runner, {"a/f.sh": FIXED_NEEDS_CONFIG_FILE, "b/f.sh": NEEDS_CONFIG_FILE} ) assert fmt_result.did_change is True def test_passthrough_args(rule_runner: RuleRunner) -> None: rule_runner.write_files({"f.sh": NEEDS_CONFIG_FILE, "BUILD": "shell_sources(name='t')"}) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="f.sh")) lint_results, fmt_result = run_shfmt(rule_runner, [tgt], extra_args=["--shfmt-args=-ci"]) assert len(lint_results) == 1 assert lint_results[0].exit_code == 1 assert "f.sh.orig" in lint_results[0].stdout assert fmt_result.stdout == "f.sh\n" assert fmt_result.output == get_digest(rule_runner, {"f.sh": FIXED_NEEDS_CONFIG_FILE}) assert fmt_result.did_change is True def test_skip(rule_runner: RuleRunner) -> None: rule_runner.write_files({"f.sh": BAD_FILE, "BUILD": "shell_sources(name='t')"}) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="f.sh")) lint_results, fmt_result = run_shfmt(rule_runner, [tgt], extra_args=["--shfmt-skip"]) assert not lint_results assert fmt_result.skipped is True assert fmt_result.did_change is False
python
#!/usr/bin/env python __author__ = "Yaroslav Litvinov" __copyright__ = "Copyright 2016, Rackspace Inc." __email__ = "[email protected]" from os import system import psycopg2 import argparse import configparser from pymongo import DESCENDING from collections import namedtuple from datetime import datetime from mongo_reader.reader import mongo_reader_from_settings from gizer.psql_requests import PsqlRequests from gizer.psql_requests import psql_conn_from_settings from gizer.all_schema_engines import get_schema_engines_as_dict from gizer.etlstatus_table import PsqlEtlStatusTable from gizer.etlstatus_table import PsqlEtlStatusTableManager from gizer.etlstatus_table import STATUS_INITIAL_LOAD from gizer.etlstatus_table import STATUS_OPLOG_SYNC from gizer.etlstatus_table import STATUS_OPLOG_APPLY from gizer.etlstatus_table import STATUS_OPLOG_RESYNC from gizer.opconfig import psql_settings_from_config from gizer.opconfig import load_mongo_replicas_from_setting def getargs(): """ get args from cmdline """ default_request = '{}' parser = argparse.ArgumentParser() parser.add_argument("-psql-schema-name", help="", type=str) parser.add_argument("-psql-table-name-prefix", help="", type=str) args = parser.parse_args() return args def main(): """ main """ parser = argparse.ArgumentParser() parser.add_argument("--config-file", action="store", help="Config file with settings", type=file, required=True) parser.add_argument("-init-load-status", action="store_true", help="will get exit status=0 if init load not needed,\ or status=-1 if otherwise; Also print 1 - if in progress, 0 - if not.") parser.add_argument("-init-load-start-save-ts", action="store_true", help='Save latest oplog timestamp to psql etlstatus table') parser.add_argument("-init-load-finish", help='values are: "ok" or "error"', type=str) args = parser.parse_args() config = configparser.ConfigParser() config.read_file(args.config_file) psql_settings = psql_settings_from_config(config, 'psql') psql_main = PsqlRequests(psql_conn_from_settings(psql_settings)) oplog_settings = load_mongo_replicas_from_setting(config, 'mongo-oplog') status_table = PsqlEtlStatusTable(psql_main.cursor, config['psql']['psql-schema-name'], sorted(oplog_settings.keys())) res = 0 if args.init_load_status: status = status_table.get_recent() if status: if (status.status == STATUS_OPLOG_SYNC or \ status.status == STATUS_OPLOG_APPLY or \ status.status == STATUS_INITIAL_LOAD or \ status.status == STATUS_OPLOG_RESYNC) and not status.error: delta = datetime.now() - status.time_start # if operation is running to long if status.time_end: res = 0 elif delta.total_seconds() < 32400: # < 9 hours res = 0 if not status.time_end: print 1 # means etl in progress else: print 0 # means not etl in progress else: # takes to much time -> do init load res = -1 else: # error status -> do init load res = -1 else: # empty status table -> do init load res = -1 elif args.init_load_start_save_ts: # create oplog read transport/s to acquire ts max_ts_dict = {} for oplog_name, settings_list in oplog_settings.iteritems(): print 'Fetch timestamp from oplog: %s' % oplog_name # settings list is a replica set (must be at least one in list) reader = mongo_reader_from_settings(settings_list, 'oplog.rs', {}) reader.make_new_request({}) reader.cursor.sort('ts', DESCENDING) reader.cursor.limit(1) timestamp = reader.next() if timestamp: max_ts_dict[oplog_name] = timestamp['ts'] else: max_ts_dict[oplog_name] = None print 'Initload ts: %s, oplog: %s' % (max_ts_dict[oplog_name], oplog_name) status_manager = PsqlEtlStatusTableManager(status_table) status_manager.init_load_start(max_ts_dict) elif args.init_load_finish: status_manager = PsqlEtlStatusTableManager(status_table) if args.init_load_finish == "ok": status_manager.init_load_finish(False) # ok else: status_manager.init_load_finish(True) # error return res if __name__ == "__main__": exit(main())
python
# -*- coding: utf-8 -*- from django.urls import path,re_path from . import views app_name = 'ajunivel' urlpatterns = [ path('', views.index, name='index'), path('index.html', views.index, name='index'), path('index', views.index, name='index'), path('menu', views.menu, name='menu'), ]
python
import os import socket from pathlib import Path class Config(object): """ Basic configuration, like socket default timeout, headers """ def __init__(self): super(Config, self).__init__() self.socket_timeout = 20 # set socket layer timeout as 20s socket.setdefaulttimeout(self.socket_timeout) # self.headers = {'User-Agent': 'Mozilla/5.0'} self.url = "http://www.tianqihoubao.com/aqi/" self.headers = {'user-agent': 'my-app/0.0.1'} self.folder_json = self.makedirs('json') self.folder_csv = self.makedirs('csv') self.log_path = self.makedirs('logging') self.timeout = 500 self.max_retries = 30 def makedirs(self, path): path = Path.cwd().parent.joinpath(path) if not path.exists(): os.makedirs(path) return path
python
from dataclasses import dataclass @dataclass class ModelException: pass
python
import numpy as np from torchmeta.utils.data import Task, MetaDataset class Relu(MetaDataset): """ Parameters ---------- num_samples_per_task : int Number of examples per task. num_tasks : int (default: 2) Overall number of tasks to sample. noise_std : float, optional Amount of noise to include in the targets for each task. If `None`, then nos noise is included, and the target is either a sine function, or a linear function of the input. transform : callable, optional A function/transform that takes a numpy array of size (1,) and returns a transformed version of the input. target_transform : callable, optional A function/transform that takes a numpy array of size (1,) and returns a transformed version of the target. dataset_transform : callable, optional A function/transform that takes a dataset (ie. a task), and returns a transformed version of it. E.g. `torchmeta.transforms.ClassSplitter()`. """ def __init__(self, num_samples_per_task, num_tasks=2, noise_std=None, transform=None, target_transform=None, dataset_transform=None, seed=None): super(Relu, self).__init__(meta_split='train', target_transform=target_transform, dataset_transform=dataset_transform, seed=seed) self.num_samples_per_task = num_samples_per_task self.num_tasks = num_tasks self.noise_std = noise_std self.transform = transform self._input_range = np.array([-5.0, 5.0]) self._signs = None @property def signs(self): if self._signs is None: self._signs = np.ones((self.num_tasks,), dtype=np.int) self._signs[self.num_tasks // 2:] = -1 self.np_random.shuffle(self._signs) return self._signs def __len__(self): return self.num_tasks def __getitem__(self, index): task = ReluTask(index, self.signs[index], self._input_range, self.noise_std, self.num_samples_per_task, self.transform, self.target_transform, np_random=self.np_random) if self.dataset_transform is not None: task = self.dataset_transform(task) return task class ReluTask(Task): def __init__(self, index, sign, input_range, noise_std, num_samples, transform=None, target_transform=None, np_random=None): super(ReluTask, self).__init__(index, None) # Regression task self.sign = sign self.input_range = input_range self.num_samples = num_samples self.noise_std = noise_std self.transform = transform self.target_transform = target_transform if np_random is None: np_random = np.random.RandomState(None) self._inputs = np_random.uniform(input_range[0], input_range[1], size=(num_samples, 1)) self._targets = sign * np.maximum(self._inputs, 0) if (noise_std is not None) and (noise_std > 0.): self._targets += noise_std * np_random.randn(num_samples, 1) def __len__(self): return self.num_samples def __getitem__(self, index): input, target = self._inputs[index], self._targets[index] if self.transform is not None: input = self.transform(input) if self.target_transform is not None: target = self.target_transform(target) return (input, target)
python
# flake8: noqa CLOUDWATCH_EMF_SCHEMA = { "properties": { "_aws": { "$id": "#/properties/_aws", "properties": { "CloudWatchMetrics": { "$id": "#/properties/_aws/properties/CloudWatchMetrics", "items": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items", "properties": { "Dimensions": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Dimensions", "items": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Dimensions/items", "items": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Dimensions/items/items", "examples": ["Operation"], "minItems": 1, "pattern": "^(.*)$", "title": "DimensionReference", "type": "string", }, "maxItems": 9, "minItems": 1, "title": "DimensionSet", "type": "array", }, "minItems": 1, "title": "The " "Dimensions " "Schema", "type": "array", }, "Metrics": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Metrics", "items": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Metrics/items", "minItems": 1, "properties": { "Name": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Metrics/items/properties/Name", "examples": ["ProcessingLatency"], "minLength": 1, "pattern": "^(.*)$", "title": "MetricName", "type": "string", }, "Unit": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Metrics/items/properties/Unit", "examples": ["Milliseconds"], "pattern": "^(Seconds|Microseconds|Milliseconds|Bytes|Kilobytes|Megabytes|Gigabytes|Terabytes|Bits|Kilobits|Megabits|Gigabits|Terabits|Percent|Count|Bytes\\/Second|Kilobytes\\/Second|Megabytes\\/Second|Gigabytes\\/Second|Terabytes\\/Second|Bits\\/Second|Kilobits\\/Second|Megabits\\/Second|Gigabits\\/Second|Terabits\\/Second|Count\\/Second|None)$", "title": "MetricUnit", "type": "string", }, }, "required": ["Name"], "title": "MetricDefinition", "type": "object", }, "minItems": 1, "title": "MetricDefinitions", "type": "array", }, "Namespace": { "$id": "#/properties/_aws/properties/CloudWatchMetrics/items/properties/Namespace", "examples": ["MyApp"], "minLength": 1, "pattern": "^(.*)$", "title": "CloudWatch " "Metrics " "Namespace", "type": "string", }, }, "required": ["Namespace", "Dimensions", "Metrics"], "title": "MetricDirective", "type": "object", }, "title": "MetricDirectives", "type": "array", }, "Timestamp": { "$id": "#/properties/_aws/properties/Timestamp", "examples": [1565375354953], "title": "The Timestamp " "Schema", "type": "integer", }, }, "required": ["Timestamp", "CloudWatchMetrics"], "title": "Metadata", "type": "object", } }, "required": ["_aws"], "title": "Root Node", "type": "object", }
python
import torch from torchvision import transforms, datasets import numpy as np from PIL import Image from skimage.color import rgb2lab, rgb2gray, lab2rgb def count_params(model): ''' returns the number of trainable parameters in some model ''' return sum(p.numel() for p in model.parameters() if p.requires_grad) class GrayscaleImageFolder(datasets.ImageFolder): ''' Custom dataloader for various operations on images before loading them. ''' def __getitem__(self, index): path, target = self.imgs[index] img = self.loader(path) if self.transform is not None: img_orig = self.transform(img) # apply transforms img_orig = np.asarray(img_orig) # convert to numpy array img_lab = rgb2lab(img_orig) # convert RGB image to LAB img_ab = img_lab[:, :, 1:3] # separate AB channels from LAB img_ab = (img_ab + 128) / 255 # normalize the pixel values # transpose image from HxWxC to CxHxW and turn it into a tensor img_ab = torch.from_numpy(img_ab.transpose((2, 0, 1))).float() img_orig = rgb2gray(img_orig) # convert RGB to grayscale # add a channel axis to grascale image and turn it into a tensor img_orig = torch.from_numpy(img_orig).unsqueeze(0).float() if self.target_transform is not None: target = self.target_transform(target) return img_orig, img_ab, target def load_gray(path, max_size=360, shape=None): ''' load an image as grayscale, change the shape as per input, perform transformations and convert it to model compatable shape. ''' img_gray = Image.open(path).convert('L') if max(img_gray.size) > max_size: size = max_size else: size = max(img_gray.size) if shape is not None: size = shape img_transform = transforms.Compose([ transforms.Resize(size), transforms.ToTensor() ]) img_gray = img_transform(img_gray).unsqueeze(0) return img_gray def to_rgb(img_l, img_ab): ''' concatinates Lightness (grayscale) and AB channels, and converts the resulting LAB image to RGB ''' if img_l.shape == img_ab.shape: img_lab = torch.cat((img_l, img_ab), 1).numpy().squeeze() else: img_lab = torch.cat( (img_l, img_ab[:, :, :img_l.size(2), :img_l.size(3)]), dim=1 ).numpy().squeeze() img_lab = img_lab.transpose(1, 2, 0) # transpose image to HxWxC img_lab[:, :, 0] = img_lab[:, :, 0] * 100 # range pixel values from 0-100 img_lab[:, :, 1:] = img_lab[:, :, 1:] * 255 - 128 # un-normalize img_rgb = lab2rgb(img_lab.astype(np.float64)) # convert LAB image to RGB return img_rgb
python
from datetime import date ano = int (input ('Digite o ano de nascimento: ')) idade = date.today().year - ano if idade <= 9: print ('Sua idade {}, Até 9 anos: Mirim'.format(idade)) elif idade > 9 and idade <= 14: print ('Sua idade {}, Até 14 anos: Infantil'.format(idade)) elif idade > 14 and idade <= 19: print ('Sua idade {}, Até 19 anos: Junior'.format(idade)) elif idade == 20: print ('Sua idade {}, Até 20 anos: Sênior'.format(idade)) else: print ('Sua idade {}, Acima de 20 anos: Master'.format(idade))
python
# -*- coding: utf-8 -*- """ """ from flask import flash, redirect, url_for, render_template, request from sayhello import app, db from sayhello.forms import HelloForm from sayhello.models import Message @app.route('/', methods=['GET', 'POST']) def index(): """ # TODO 分页BUG未解决 """ form = HelloForm() if form.validate_on_submit(): name = form.name.data body = form.body.data message = Message(body=body, name=name) db.session.add(message) db.session.commit() flash('添加成功') return redirect(url_for('index')) messages = Message.query.order_by(Message.timestamp.desc()).all() total_page = divmod(len(messages),10)[0]+1 if divmod(len(messages),10)[1] else divmod(len(messages),10)[0] page_num = request.args.get('page_num') and int(request.args.get('page_num')) li_list = [] if not page_num: start_page = 1 end_page = 5 page_num = 0 else: start_page = int(request.args.get('start_page')) end_page = int(request.args.get('end_page')) mid_page = (int(start_page) + int(end_page)) // 2 offset_page = page_num - mid_page if offset_page > 0: start_page += offset_page end_page += offset_page if end_page > total_page: end_page = total_page for i in range(start_page, end_page+1): standard_li = '<li><a href="/?page_num={0}&start_page={1}&end_page={2}">{0}</a></li>'.format(i,start_page,end_page) li_list.append(standard_li) page_block = "".join(li_list) messages = Message.query.order_by(Message.timestamp.desc()).offset(page_num).limit(100000).all() return render_template('index.html', form=form, messages=messages,page_block=page_block)
python
from aws_google_auth import exit_if_unsupported_python try: from StringIO import StringIO except ImportError: from io import StringIO import unittest import sys import mock class TestPythonFailOnVersion(unittest.TestCase): @mock.patch('sys.stdout', new_callable=StringIO) def test_python26(self, mock_stdout): with mock.patch.object(sys, 'version_info') as v_info: v_info.major = 2 v_info.minor = 6 with self.assertRaises(SystemExit): exit_if_unsupported_python() self.assertIn("aws-google-auth requires Python 2.7 or higher.", mock_stdout.getvalue()) def test_python27(self): with mock.patch.object(sys, 'version_info') as v_info: v_info.major = 2 v_info.minor = 7 try: exit_if_unsupported_python() except SystemExit: self.fail("exit_if_unsupported_python() raised SystemExit unexpectedly!") def test_python30(self): with mock.patch.object(sys, 'version_info') as v_info: v_info.major = 3 v_info.minor = 0 try: exit_if_unsupported_python() except SystemExit: self.fail("exit_if_unsupported_python() raised SystemExit unexpectedly!")
python
import json from django.contrib.auth import login, logout, authenticate from django.contrib.auth.mixins import LoginRequiredMixin from django.http import HttpResponse from django.http import HttpResponseBadRequest from django.http import JsonResponse from django.shortcuts import render, redirect import re import logging from apps.goods.models import SKU logger = logging.getLogger('django') # Create your views here. from django.urls import reverse from django.views import View from django_redis import get_redis_connection from apps.areas.models import Area from apps.users.models import User, Address from apps.users.utils import check_active_token, generic_access_token_url from utils.response_code import RETCODE class RegisterView(View): def get(self,request): return render(request,'register.html') def post(self,request): data = request.POST username = data.get('username') password=data.get('password') password2=data.get('password2') mobile=data.get('mobile') sms_code = data.get('sms_code') if not all([username,password,password2,mobile]): return HttpResponseBadRequest('参数不全') if not re.match(r'[a-zA-Z0-9]{5,20}',username): return HttpResponseBadRequest('用户名不满足条件') if not re.match(r'[a-zA-Z0-9]{8,20}',password): return HttpResponseBadRequest('密码不符合规则') if password2 != password: return HttpResponseBadRequest('密码不一致') if not re.match(r'^1[3-9]\d{9}$',mobile): return HttpResponseBadRequest('手机号错误') redis_conn = get_redis_connection('code') smskey = 'sms_%s'%mobile a = redis_conn.get(smskey) print(a) print(type(a)) print(sms_code) if redis_conn.get(smskey).decode() != sms_code: return HttpResponseBadRequest('验证码错误') # ③ 保存数据 user = User.objects.create_user(username=username, password=password, mobile=mobile) login(request, user) return redirect(reverse('contents:index')) class isUnique(View): def get(self, request, username): count = User.objects.filter(username=username).count() return JsonResponse({'count': count,'username':username}) class MobileUnique(View): def get(self,request,mobile): print(mobile) count = User.objects.filter(mobile=mobile).count() return JsonResponse({'count':count,'mobile':mobile}) class LoginView(View): def get(self,request): return render(request,'login.html') # 1.相应状态码可以帮助我们分析问题 # 2.面试会问 # 405 Method Not Allowed 没有实现对应的请求方法 def post(self,request): # ① 接收数据 username=request.POST.get('username') password=request.POST.get('pwd') remembered = request.POST.get('remembered') # ② 验证数据 (参数是否齐全,是否符合规则) if not all([username,password]): return HttpResponseBadRequest('参数不全') # 用户名,密码是否符合正则,此处省略 # ③ 再判断用户名和密码是否匹配一致 from django.contrib.auth import authenticate # 认证成功返回User对象 # 认证失败返回None from django.contrib.auth.backends import ModelBackend user = authenticate(username=username,password=password) if user is None: return HttpResponseBadRequest('用户名或密码错误') # ④ 状态保持 login(request,user) # ⑤ 记住登陆 if remembered == 'on': #记住登陆 2周 request.session.set_expiry(None) else: #不记住登陆 request.session.set_expiry(0) # ⑥ 返回相应 response = redirect(reverse('contents:index')) #设置cookie response.set_cookie('username',user.username,max_age=3600*24*14) from apps.carts.utils import merge_cookie_to_redis response=merge_cookie_to_redis(request,user,response) return response class LogoutView(View): def get(self,request): logout(request) response = redirect(reverse('contents:index')) response.delete_cookie('username') return response class UserCenterInfoView(LoginRequiredMixin,View): def get(self,request): context = { 'username':request.user.username, 'mobile':request.user.mobile, 'email':request.user.email, 'email_active':request.user.email_active, } return render(request,'user_center_info.html',context=context) class EmailView(View): def put(self,request): data = json.loads(request.body.decode()) email = data.get('email') if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$',email): return JsonResponse({{'code':RETCODE.PARAMERR,'errmsg':'邮箱不符合规则'}}) request.user.email = email request.user.save() # from django.core.mail import send_mail # # #subject, message, from_email, recipient_list, # #subject 主题 # subject='美多商场激活邮件' # #message, 内容 # message='' # #from_email, 谁发的 # from_email = '欢乐玩家<[email protected]>' # #recipient_list, 收件人列表 # recipient_list = ['[email protected]'] # # html_mesage="<a href='http://www.huyouni.com'>戳我有惊喜</a>" # # send_mail(subject=subject, # message=message, # from_email=from_email, # recipient_list=recipient_list, # html_message=html_mesage) from celery_tasks.email.tasks import send_active_email send_active_email.delay(request.user.id, email) print(email) # ⑤ 返回相应 return JsonResponse({'code':RETCODE.OK,'errmsg':'ok'}) class EmailActiveView(View): def get(self,request): token = request.GET.get('token') if token is None: return HttpResponseBadRequest('缺少参数') data = check_active_token(token) if data == None: return HttpResponseBadRequest('验证失败') id = data.get('id') email = data.get('email') try: user = User.objects.get(id=id,email=email) except User.DoesNotExist: return HttpResponseBadRequest('验证失败') user.email_active = True user.save() return redirect(reverse('users:center')) class UserCenterSiteView(View): def get(self,request): user=request.user addresses = Address.objects.filter(user=user, is_deleted=False) address_dict_list = [] for address in addresses: address_dict = { "id": address.id, "title": address.title, "receiver": address.receiver, "province": address.province.name, "province_id":address.province_id, "city": address.city.name, "city_id":address.city_id, "district": address.district.name, "district_id":address.district_id, "place": address.place, "mobile": address.mobile, "tel": address.tel, "email": address.email } address_dict_list.append(address_dict) context = { 'default_address_id':user.default_address_id, 'addresses':address_dict_list } return render(request,'user_center_site.html',context=context) class CreateView(View): def post(self,request): count = Address.objects.filter(user=request.user,is_deleted=False).count() if count >= 20: return JsonResponse({'code': RETCODE.THROTTLINGERR, 'errmsg': '超过地址数量上限'}) data = json.loads(request.body.decode()) receiver=data.get('receiver') province_id=data.get('province_id') city_id=data.get('city_id') district_id=data.get('district_id') place=data.get('place') mobile=data.get('mobile') tel=data.get('tel') email=data.get('email') if not all([receiver,province_id,city_id,district_id,place,mobile]): return HttpResponseBadRequest('参数不全') if not re.match(r'^1[3-9]\d{9}$', mobile): return HttpResponseBadRequest('电话号码输入有误') if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return HttpResponseBadRequest('参数tel有误') if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return HttpResponseBadRequest('参数email有误') try: ads = Address.objects.create(user=request.user, title=receiver, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email) except Exception as e: logger.error(e) return HttpResponseBadRequest('保存失败') address = { "receiver": ads.receiver, "province": ads.province.name, "city": ads.city.name, "district": ads.district.name, "place": ads.place, "mobile": ads.mobile, "tel": ads.tel, "email": ads.email, "id": ads.id, "title": ads.title, } return JsonResponse({'code': RETCODE.OK, 'errmsg': '新增地址成功', 'address': address}) class DefaultView(View): def put(self,request,address_id): try: default_address = Address.objects.get(id=address_id) request.user.default_address = default_address request.user.save() except Exception as e: logger.error(e) return HttpResponseBadRequest('出错') return JsonResponse({'code':RETCODE.OK,'errmsg': '设置成功'}) class UpdateView(View): def put(self,request,address_id): data = json.loads(request.body.decode()) receiver=data.get('receiver') province_id=data.get('province_id') city_id=data.get('city_id') district_id=data.get('district_id') place=data.get('place') mobile=data.get('mobile') tel=data.get('tel') email=data.get('email') if not all([receiver,province_id,city_id,district_id,place,mobile]): return HttpResponseBadRequest('参数不全') if not re.match(r'^1[3-9]\d{9}$', mobile): return HttpResponseBadRequest('电话号码输入有误') if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return HttpResponseBadRequest('参数tel有误') if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return HttpResponseBadRequest('参数email有误') try: update_address = Address.objects.filter(id=address_id) update_address.update( user=request.user, title=receiver, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email, ) except Exception as e: logger.error(e) return HttpResponseBadRequest('更新失败') update_address = Address.objects.get(id=address_id) address_dict = { "id": update_address.id, "title": update_address.title, "receiver": update_address.receiver, "province": update_address.province.name, "city": update_address.city.name, "district": update_address.district.name, "place": update_address.place, "mobile": update_address.mobile, "tel": update_address.tel, "email": update_address.email } return JsonResponse({'code': RETCODE.OK, 'errmsg': '更新地址成功', 'address': address_dict}) def delete(self,request,address_id): try: delete_address = Address.objects.filter(id=address_id) delete_address.update(is_deleted=True) except Exception as e: logger.error(e) return HttpResponseBadRequest('删除失败') return JsonResponse({'code': RETCODE.OK, 'errmsg': '删除地址成功'}) class UpdateTitleView(View): def put(self,request,address_id): data = json.loads(request.body.decode()) title = data.get('title') try: update_title_address = Address.objects.filter(id=address_id) update_title_address.update(title=title) except Exception as e: logger.error(e) return HttpResponseBadRequest('修改标题失败') return JsonResponse({'code': RETCODE.OK, 'errmsg': '设置地址标题成功'}) class ChangePassword(View): def get(self,request): return render(request,'user_center_pass.html') def post(self, request): """实现修改密码逻辑""" # 1.接收参数 old_password = request.POST.get('old_password') new_password = request.POST.get('new_password') new_password2 = request.POST.get('new_password2') # 2.验证参数 if not all([old_password, new_password, new_password2]): return HttpResponseBadRequest('缺少必传参数') if not re.match(r'^[0-9A-Za-z]{8,20}$', new_password): return HttpResponseBadRequest('密码最少8位,最长20位') if new_password != new_password2: return HttpResponseBadRequest('两次输入的密码不一致') # 3.检验旧密码是否正确 if not request.user.check_password(old_password): return render(request, 'user_center_pass.html', {'origin_password_errmsg': '原始密码错误'}) # 4.更新新密码 try: request.user.set_password(new_password) request.user.save() except Exception as e: logger.error(e) return render(request, 'user_center_pass.html', {'change_password_errmsg': '修改密码失败'}) # 5.退出登陆,删除登陆信息 logout(request) # 6.跳转到登陆页面 response = redirect(reverse('users:login')) response.delete_cookie('username') return response class UserHistoryView(LoginRequiredMixin,View): def post(self,request): user = request.user data = json.loads(request.body.decode()) sku_id = data.get('sku_id') try: sku = SKU.objects.get(id=sku_id) except SKU.DoesNotExist: return JsonResponse({'code':RETCODE.NODATAERR,'errmsg':'没有此商品'}) redis_conn = get_redis_connection('history') pipeline = redis_conn.pipeline() pipeline.lrem('history_%s'%user.id,0,sku_id) pipeline.lpush('history_%s' % user.id, sku_id) pipeline.ltrim('history_%s'%user.id,0,4) pipeline.execute() return JsonResponse({'code':RETCODE.OK,'errmsg':'ok'}) def get(self, request): """获取用户浏览记录""" # 获取Redis存储的sku_id列表信息 redis_conn = get_redis_connection('history') sku_ids = redis_conn.lrange('history_%s' % request.user.id, 0, -1) # 根据sku_ids列表数据,查询出商品sku信息 skus = [] for sku_id in sku_ids: sku = SKU.objects.get(id=sku_id) skus.append({ 'id': sku.id, 'name': sku.name, 'default_image_url': sku.default_image.url, 'price': sku.price }) return JsonResponse({'code': RETCODE.OK, 'errmsg': 'OK', 'skus': skus}) class FindPasswordView(View): def get(self,request): return render(request,'find_password.html') class Form_1_On_Submit(View): def get(self, request, username, user=None): data = request.GET text = data.get('text') image_code_id = data.get('image_code_id') if not all([text]): return HttpResponseBadRequest('参数不全') try: user = User.objects.get(username=username) except User.DoesNotExist: return HttpResponseBadRequest('用户不存在') redis_conn = get_redis_connection('code') check_code = redis_conn.get('img_%s'%image_code_id).decode() if check_code.lower() != text.lower(): return HttpResponseBadRequest('图片验证码错误') mobile = user.mobile access_token = generic_access_token_url(user.username,user.mobile) return JsonResponse({'mobile':mobile,'access_token':access_token}) class Form_2_On_Submit(View): def get(self,request,username): sms_code = request.GET.get('sms_code') try: user = User.objects.get(username=username) mobile = user.mobile except User.DoesNotExist: return HttpResponseBadRequest('用户不存在') redis_conn = get_redis_connection('code') code = redis_conn.get('find_sms_%s'%mobile) if int(sms_code) != int(code): return HttpResponseBadRequest('验证码错误') access_token = generic_access_token_url(user.username, user.mobile) return JsonResponse({ 'user_id': user.id, 'access_token': access_token, }) class FindChangePasswordView(View): def post(self,request,userid): data = json.loads(request.body.decode()) new_password = data.get('password') re_password = data.get('password2') access_token = data.get('access_token') if new_password != re_password: return HttpResponseBadRequest('输入不一致') try: user = User.objects.get(id=userid) user.set_password(new_password) user.save() except Exception: return HttpResponseBadRequest('失败') return JsonResponse({'message':'ok'})
python
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: variable Author: ken CreateDate: 5/21/2018 AD Description: ------------------------------------------------- """ __author__ = 'ken'
python
import chess from .external_chess_player import ExternalChessPlayer MAX_RETRIES = 3 class ChessPlayer(object): def __init__(self, external_player): """ :param external_player: :type external_player: ExternalChessPlayer """ self.ext_player = external_player def end_game(self, board): self.ext_player.end_game(board) def send_move_uci(self, uci_move): self.ext_player.send_move_uci(uci_move) def make_move_uci(self, board): try: return True, self.try_get_uci_move() except Exception: return False, Exception def try_get_uci_move(self, board): tries = MAX_RETRIES while tries > 0: move = self.ext_player.make_move_uci(board) if move in board.legal_moves: return move raise RuntimeError("Too many bad moves")
python
import numpy as np import matplotlib.pyplot as plt from matplotlib import rc from meanfield import MeanField def d_tanh(x): """Derivative of tanh.""" return 1. / np.cosh(x)**2 def simple_plot(x, y): plt.plot(x, y) plt.xlim(0.5, 3) plt.ylim(0, 0.25) plt.xlabel('$\sigma_\omega^2$', fontsize=16) plt.ylabel('$\sigma_b^2$', fontsize=16) plt.show() def plot(x, y): fontsize = 12 plt.figure(figsize=(4, 3.1)) plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('xtick', labelsize=int(fontsize / 1.5)) plt.rc('ytick', labelsize=int(fontsize / 1.5)) # plot critical line plt.plot(x, y, linewidth=2, color='black') # plot dashed line for sb= 0.05 x_c = np.interp(0.05, y, x) # 1.7603915227624916 line_dict = dict(linewidth=1.5, linestyle='dashed', color='black') plt.plot([0.5, x_c], [0.05, 0.05], **line_dict) plt.plot([x_c, x_c], [0.00, 0.05], **line_dict) # fill ordered and chaotic phase plt.fill_betweenx(y, x, 3.0, facecolor='#ffdad3') plt.fill_betweenx(y, 0.5, x, facecolor='#d3e4ff') # setting fontsize = 12 plt.xlim(0.5, 3) plt.ylim(0, 0.25) plt.xlabel('$\sigma_\omega^2$', fontsize=fontsize) plt.ylabel('$\sigma_b^2$', fontsize=fontsize) plt.xlabel(r'$\sigma_w^2$', fontsize=fontsize) plt.ylabel(r'$\sigma_b^2$', fontsize=fontsize) # add text text_dict = dict(fontsize=fontsize, horizontalalignment='center', verticalalignment='center') plt.text(1.25, 0.15, r'\textbf{Ordered Phase}', **text_dict) plt.text(1.25, 0.125, r'$\max(\chi_{q^*}, \chi_{c^*}) < 1$', **text_dict) plt.text(2.475, 0.08, r'\textbf{Chaotic Phase}', **text_dict) plt.text(2.475, 0.055, r'$\max(\chi_{q^*}, \chi_{c^*}) > 1$', **text_dict) # show plot plt.tight_layout() plt.show() if __name__ == "__main__": # run mean field experiment. mf = MeanField(np.tanh, d_tanh) qrange = np.linspace(1e-5, 2.25, 50) sw_sbs = [mf.sw_sb(q, 1.0) for q in qrange] sw = [sw_sb[0] for sw_sb in sw_sbs] sb = [sw_sb[1] for sw_sb in sw_sbs] # for simplified figure simple_plot(sw, sb) # for creating the actual figure in the paper. plot(sw, sb)
python
from tests.conftest import JiraTestCase class PrioritiesTests(JiraTestCase): def test_priorities(self): priorities = self.jira.priorities() self.assertEqual(len(priorities), 5) def test_priority(self): priority = self.jira.priority("2") self.assertEqual(priority.id, "2") self.assertEqual(priority.name, "High")
python
""" Please implement a `test` (e.g. pytest - this is up to you) for the method `compute_phenotype_similarity()` - The details are up to you - use whatever testing framework you prefer. """
python
# Aula 10 - Desafio 31: Custo da viagem # Pedir a distancia de uma viagem em seguida: # se a viagem for até 200Km de distancia, o valor da passagem será de R$0,50 por Km rodado # se for maior que 200 Km, o valor sera de R$0,45 por Km rodado d = int(input('Informe a distancia em Km da sua viagem: ')) if d <= 200: print(f'O preço da passagem eh de R${d*0.5:.2f}') else: print(f'O preço da passagem eh de R${d*0.45:.2f}') ''' # Outra maneira preço = d * 0.5 if d <= 200 else d * 0.45 print(f'O preço da passagem eh de R${preço:.2f}') '''
python
import os,shutil from .ExtensibleFileObject import ExtensibleFileObject def file_list_dedup(file_list): new_list=list(set(file_list)) new_list.sort(key=file_list.index) return new_list def relpath(a,b): pass def check_vfile(func): pass def refresh_directory(path): if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) def create_file(path,text): text = [text] if isinstance(text,str) else list(text) if os.path.exists(path): os.remove(path) fo = ExtensibleFileObject(keyword='UHDL') fo.write('\n'.join(text)) fo.write_version('1.0.1') fo.save(path=path) #with open(path,'w') as fp: # fp.write('\n'.join(text)) #fp.close() #fp = open(path,'w') return path if __name__ == "__main__": #ListProcess.relpath('a/b/c','d/e/f') create_file('./test.v',['456'])
python
import nuke t=nuke.menu("Nodes") u=t.addMenu("Pixelfudger", icon="PxF_Menu.png") t.addCommand( "Pixelfudger/PxF_Bandpass", "nuke.createNode('PxF_Bandpass')", icon="PxF_Bandpass.png" ) t.addCommand( "Pixelfudger/PxF_ChromaBlur", "nuke.createNode('PxF_ChromaBlur')", icon="PxF_ChromaBlur.png") t.addCommand( "Pixelfudger/PxF_Distort", "nuke.createNode('PxF_Distort')", icon="PxF_Distort.png") t.addCommand( "Pixelfudger/PxF_Erode", "nuke.createNode('PxF_Erode')", icon="PxF_Erode.png") t.addCommand( "Pixelfudger/PxF_Filler", "nuke.createNode('PxF_Filler')", icon="PxF_Filler.png") t.addCommand( "Pixelfudger/PxF_Grain", "nuke.createNode('PxF_Grain')", icon="PxF_Grain.png") t.addCommand( "Pixelfudger/PxF_HueSat", "nuke.createNode('PxF_HueSat')", icon="PxF_HueSat.png") t.addCommand( "Pixelfudger/PxF_IDefocus", "nuke.createNode('PxF_IDefocus')", icon="PxF_IDefocus.png") t.addCommand( "Pixelfudger/PxF_KillSpill", "nuke.createNode('PxF_KillSpill')", icon="PxF_KillSpill.png") t.addCommand( "Pixelfudger/PxF_Line", "nuke.createNode('PxF_Line')", icon="PxF_Line.png" ) t.addCommand( "Pixelfudger/PxF_MergeWrap", "nuke.createNode('PxF_MergeWrap')", icon="PxF_MergeWrap.png" ) t.addCommand( "Pixelfudger/PxF_ScreenClean", "nuke.createNode('PxF_ScreenClean')", icon="PxF_ScreenClean.png")
python
BOT_NAME = 'naver_movie' SPIDER_MODULES = ['naver_movie.spiders'] NEWSPIDER_MODULE = 'naver_movie.spiders' ROBOTSTXT_OBEY = False DOWNLOAD_DELAY = 2 COOKIES_ENABLED = True DEFAULT_REQUEST_HEADERS = { "Referer": "https://movie.naver.com/" } DOWNLOADER_MIDDLEWARES = { 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'scrapy.downloadermiddlewares.retry.RetryMiddleware': None, 'scrapy_fake_useragent.middleware.RandomUserAgentMiddleware': 400, 'scrapy_fake_useragent.middleware.RetryUserAgentMiddleware': 401, } RETRY_ENABLED = True RETRY_TIMES = 2 ITEM_PIPELINES = { 'naver_movie.pipelines.NaverMoviePipeline': 300, }
python
import asyncio import uvloop from apscheduler.schedulers.asyncio import AsyncIOScheduler from scrapper import scrap asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) if __name__ == "__main__": scheduler = AsyncIOScheduler() scheduler.add_job(scrap, 'interval', seconds=5) scheduler.start() try: asyncio.get_event_loop().run_forever() except (KeyboardInterrupt, SystemExit): pass
python
from ..classes import WorkflowAction class TestWorkflowAction(WorkflowAction): label = 'test workflow state action' def execute(self, context): context['workflow_instance']._workflow_state_action_executed = True
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Written by Lucas Sinclair and Paul Rougieux. JRC biomass Project. Unit D1 Bioeconomy. """ # Built-in modules # import os # Third party modules # # First party modules # from autopaths import Path from autopaths.auto_paths import AutoPaths from autopaths.dir_path import DirectoryPath from plumbing.cache import property_cached from plumbing.databases.access_database import AccessDatabase # Internal modules # from cbmcfs3_runner.pump.dataframes import multi_index_pivot # Constants # default_path = "C:/Program Files (x86)/Operational-Scale CBM-CFS3/Admin/DBs/ArchiveIndex_Beta_Install.mdb" default_path = Path(default_path) ############################################################################### class AIDB(object): """ This class enables us to switch the famous "ArchiveIndexDatabase", between the Canadian standard and the European standard. It also provides access to the data within this database. """ all_paths = """ /orig/aidb_eu.mdb """ def __init__(self, parent): # Default attributes # self.parent = parent # Automatically access paths based on a string of many subpaths # self.paths = AutoPaths(self.parent.data_dir, self.all_paths) def __repr__(self): return "%s object at '%s'" % (self.__class__, self.paths.aidb) def switch(self): default_path.remove() self.paths.aidb.copy(default_path) @property_cached def database(self): database = AccessDatabase(self.paths.aidb) database.convert_col_names_to_snake = True return database @property_cached def dm_table(self): """Main disturbance matrix.""" # Load # df = self.database['tblDM'] # Rename # df = df.rename(columns={ "name": "dist_desc_dm", "description": "dist_desc_long"}) # Return # return df @property_cached def source(self): """Name of source pools.""" # Load # df = self.database['tblSourceName'] # Rename # df = df.rename(columns={ 'row': 'dm_row', 'description': 'row_pool'}) # Return # return df @property_cached def sink(self): """Name of sink pools.""" # Load # df = self.database['tblSinkName'] # Rename # df = df.rename(columns={ 'column': 'dm_column', 'description': 'column_pool'}) # Return # return df @property_cached def lookup(self): """Proportion by source and sink.""" # Load # df = self.database['tblDMValuesLookup'] # Return # return df @property_cached def dist_type_default(self): """Link between dist_type_id and dist_desc_aidb.""" # Load # df = self.database['tbldisturbancetypedefault'] # Rename # df = df.rename(columns = {'dist_type_name': 'dist_desc_aidb'}) # Return # return df @property_cached def dm_assoc_default(self): """ Link between default_dist_type_id, default_ec_id, and dmid Pay attention to the tricky annual_order which might generate errors in some cases (see also libcbm aidb import efforts) Shape in the EU AIDB: 110180 rows × 6 columns """ # Load # df = self.database['tbldmassociationdefault'] # Rename # # TODO, check if dist_type_id is exactly the correct name df = df.rename(columns = {'default_disturbance_type_id': 'dist_type_id', 'name': 'assoc_name', 'description': 'assoc_desc'}) # Return # return df @property_cached def dm_assoc_default_short(self): """Same as above but with any "Annual order" > 1 dropped.""" # Load # df = self.dm_assoc_default # Collapse # df = df.query("annual_order < 2").copy() # Check that the combination of dist_type_id and dmid # is unique on dist_type_id a = len(set(df['dist_type_id'])) b = len(df[['dmid', 'dist_type_id']].drop_duplicates()) assert a == b # Keep only a couple columns # df = df[['dmid', 'dist_type_id']].drop_duplicates() # Return # return df @property_cached def dm_assoc_spu_default(self): """ Link between default_dist_type_id, spuid and dmid. Warning, it contains only wildfire distances in the EU AIDB. Shape in the EU aidb: 920 rows × 6 columns """ # Load # df = self.database['tbldmassociationspudefault'] # Rename # TODO check if dist_type_id is exactly the correct name df = df.rename(columns = {'default_disturbance_type_id': 'dist_type_id', 'name': 'spu_name', 'description': 'spu_desc'}) # Return # return df @property_cached def dist_matrix_long(self): """ Recreates the disturbance matrix in long format. Join lookup and the disturbance matrix table 'tblDM', Then join source and sink to add description of the origin and destination pools. To be continued based on /notebooks/disturbance_matrix.ipynb There is a many-to-one relationship between dist_type_name and dmid (disturbance matrix id), i.e for each dist_type_name there is one and only one dmid. The opposite is not true, as there are more dist_type_name than dmid. Columns are: ['dist_desc_input', 'dist_desc_aidb', 'dist_type_id', 'dmid', 'dm_column', 'dm_structure_id', 'dm_row', 'proportion', 'dist_desc_dm', 'dist_desc_long', 'row_pool', 'column_pool', 'on_off_switch', 'description', 'is_stand_replacing', 'is_multi_year', 'multi_year_count', 'dist_type_name'], """ # Load tables from the aidb # dm_table = self.dm_table source = self.source sink = self.sink lookup = self.lookup assoc_short = self.dm_assoc_default_short dist_default = self.dist_type_default # Load tables from orig_data # map_disturbance = self.parent.associations.map_disturbance dist_types = self.parent.orig_data.disturbance_types # Join lookup and dm_table to add the description for each `dmid` # dm_lookup = (lookup .set_index('dmid') .join(dm_table.set_index('dmid')) .reset_index()) # Indexes # index_source = ['dm_row', 'dm_structure_id'] index_sink = ['dm_column', 'dm_structure_id'] # Add source and sink descriptions # df = (dm_lookup.set_index(index_source) .join(source.set_index(index_source)) .reset_index() .set_index(index_sink) .join(sink.set_index(index_sink)) .reset_index()) # Add 'dist_type_name' corresponding to orig/disturbance_types.csv df = df.left_join(assoc_short, 'dmid') df = df.left_join(dist_default, 'dist_type_id') df = df.left_join(map_disturbance, 'dist_desc_aidb') df = df.left_join(dist_types, 'dist_desc_input') # Return # return df @property_cached def dist_matrix(self): """ The disturbance matrix is reshaped in the form of a matrix with source pools in rows and sink pools in columns. """ # Load # df = self.dist_matrix_long.copy() # Make pool description columns suitable as column names # # Adds a number at the end of the disturbance name # df['row_pool'] = (df['row_pool'].str.replace(' ', '_') + '_' + df['dm_row'].astype(str)) df['column_pool'] = (df['column_pool'].str.replace(' ','_') + '_' + df['dm_column'].astype(str)) # Filter proportions # # TODO correct missing name from the index (see HU for example) index = ['dmid', 'dm_structure_id', 'dm_row', 'name', 'row_pool'] df = (df .set_index(index) .query('proportion>0')) # Pivot # df = multi_index_pivot(df, columns='column_pool', values='proportion') # Reorder columns by the last digit number col_order = sorted(df.columns, key=lambda x: str(x).replace("_", "0")[-2:]) # Exclude index columns from the re-ordering of columns df = df.set_index(index)[col_order[:-5]].reset_index() # Return # return df @property_cached def merch_biom_rem(self): """ Retrieve the percentage of merchantable biomass removed from every different disturbance type used in the silviculture treatments. The column "perc_merch_biom_rem" comes from silviculture.csv The column "proportion" comes from aidb.mdb and multiple joins. """ # Load # df = self.dist_matrix_long dist_types = self.parent.orig_data.disturbance_types treats = self.parent.silviculture.treatments # Filter dist_mat to take only disturbances that are actually used # selector = df['dist_type_name'].isin(dist_types['dist_type_name']) df = df[selector].copy() # Take only products # df = df.query("column_pool == 'products'") df = df.query("row_pool == 'Softwood merchantable' or row_pool == 'Hardwood merch'") # Join # df = treats.left_join(df, 'dist_type_name') # Take columns of interest # cols = ['dist_type_name', 'perc_merch_biom_rem', 'dist_desc_aidb', 'row_pool', 'proportion'] df = df[cols] # Compute difference # df['diff']= df['perc_merch_biom_rem'] - df['proportion'] # NaNs appear because of natural disturbances # df = df.fillna(0) # Check # assert all(df['diff'].abs() < 1e-3) # Return # return df @property_cached def dmid_map(self): """Map the dist_type_name to its dmid for the current country. Only returns the unique available combinations of dmid and dist_type_name. Note two dist_type_name can map to the same dmid. Columns: ['dist_type_name', 'dmid', 'dist_desc_aidb'] """ # Load # dist_mat = self.dist_matrix_long # Keep only two columns # columns_of_interest = ['dist_type_name', 'dmid', 'dist_desc_aidb'] df = dist_mat[columns_of_interest].drop_duplicates() # Check # #assert not any(df['dmid'] == numpy.nan) # Return # return df #-------------------------- Special Methods ------------------------------# def symlink(self): # Where is the data, default case # aidb_repo = DirectoryPath("~/repos/libcbm_aidb/") # But you can override that with an environment variable # if os.environ.get("CBMCFS3_AIDB"): aidb_repo = DirectoryPath(os.environ['CBMCFS3_AIDB']) # The source # source = aidb_repo + self.parent.iso2_code + '/orig/aidb_eu.mdb' # Special case for ZZ # if self.parent.iso2_code == 'ZZ': source = aidb_repo + 'LU/orig/aidb_eu.mdb' # Check the AIDB exists # assert source # The destination # destin = self.paths.aidb # Remove destination if it already exists # destin.remove() # Symlink # source.link_to(destin) # Return # return 'Symlink success for ' + self.parent.iso2_code + '.'
python
import numpy as np import interconnect import copy # # VARIABLES N = 3001 # max clock cycles +1 FW = 16 # flit width FPP = 32 # flits per packet def get_header(FW=16): ''' generates a random header for a flit-width of FW) ''' return np.random.random_integers(0, (1 << FW)-1) # data, day = np.load('./videos/traffic_pictures_day.npz'), 1 data, day = np.load('./videos/traffic_pictures_night.npz'), 0 # data = np.load('./videos/traffic_features.npz') sim = np.load('./res_simulator/sensors_to_memory.npz') mux = sim['mux_matrices'] DHs = [get_header(16) for i in range(int(N))] D0s = data['pic1'].astype(int) # pixel samples D1s = data['pic2'].astype(int) D2s = data['pic3'].astype(int) D3s = data['pic4'].astype(int) D4s = data['pic5'].astype(int) D5s = data['pic6'].astype(int) D0s = np.add(D0s[0::2, :], (1 << 8)*D0s[1::2, :]) # attach two for flit D1s = np.add(D1s[0::2, :], (1 << 8)*D1s[1::2, :]) D2s = np.add(D2s[0::2, :], (1 << 8)*D2s[1::2, :]) D3s = np.add(D3s[0::2, :], (1 << 8)*D3s[1::2, :]) D4s = np.add(D4s[0::2, :], (1 << 8)*D4s[1::2, :]) D5s = np.add(D5s[0::2, :], (1 << 8)*D5s[1::2, :]) ic2D = interconnect.Interconnect(B=16, wire_spacing=0.3e-6, # 2D IC wire_width=0.3e-6, wire_length=100e-6) ic3D = interconnect.Interconnect(16, 0.6e-6, 0.3e-6, wire_length=0, # 3D IC TSVs=True, TSV_radius=2e-6, TSV_pitch=8e-6) E3dLink0bitlevel = [] E2dLink1bitlevel = [] E2dLink2bitlevel = [] E3dLink0highlevel = [] E2dLink1highlevel = [] E2dLink2highlevel = [] E3dLink0ref = [] E2dLink1ref = [] E2dLink2ref = [] # # MAIN PART for coding in range(8): # run the simulation for # 0: NO-CODING; 1: NEGK1; 2: NEGK0 # 3: NEGCORR; 4:NEG(K0+CORR); 5:NEG(K1+CORR) D_true = [] cD = [] # counter for the different data types DH = interconnect.DataStream(np.copy(DHs), 16) # headers not coded D0 = interconnect.DataStream(D0s.flatten()[:N], 16) # DATA STREAMS UNCO D1 = interconnect.DataStream(D1s.flatten()[:N], 16) D2 = interconnect.DataStream(D2s.flatten()[:N], 16) D3 = interconnect.DataStream(D3s.flatten()[:N], 16) D4 = interconnect.DataStream(D4s.flatten()[:N], 16) D5 = interconnect.DataStream(D5s.flatten()[:N], 16) # coding correlated data streams if coding == 1: D0, D1 = D0.k0_encoded().invert, D1.k0_encoded().invert D2, D3 = D2.k0_encoded().invert, D3.k0_encoded().invert D4, D5 = D4.k0_encoded().invert, D5.k0_encoded().invert elif coding == 2: D0, D1 = D0.k1_encoded().invert, D1.k1_encoded().invert D2, D3 = D2.k1_encoded().invert, D3.k1_encoded().invert D4, D5 = D4.k1_encoded().invert, D5.k1_encoded().invert elif coding == 3: D0, D1 = D0.corr_encoded().invert, D1.corr_encoded().invert D2, D3 = D2.corr_encoded().invert, D3.corr_encoded().invert D4, D5 = D4.corr_encoded().invert, D5.corr_encoded().invert elif coding == 4: D0 = D0.k0_encoded().corr_encoded().invert D1 = D1.k0_encoded().corr_encoded().invert D2 = D2.k0_encoded().corr_encoded().invert D3 = D3.k0_encoded().corr_encoded().invert D4 = D4.k0_encoded().corr_encoded().invert D5 = D5.k0_encoded().corr_encoded().invert elif coding == 5: D0 = D0.k1_encoded().corr_encoded().invert D1 = D1.k1_encoded().corr_encoded().invert D2 = D2.k1_encoded().corr_encoded().invert D3 = D3.k1_encoded().corr_encoded().invert D4 = D4.k1_encoded().corr_encoded().invert D5 = D5.k1_encoded().corr_encoded().invert elif coding == 6: D0 = D0.corr_encoded().k0_encoded().invert D1 = D1.corr_encoded().k0_encoded().invert D2 = D2.corr_encoded().k0_encoded().invert D3 = D3.corr_encoded().k0_encoded().invert D4 = D4.corr_encoded().k0_encoded().invert D5 = D5.corr_encoded().k0_encoded().invert elif coding == 7: D0 = D0.corr_encoded().k1_encoded().invert D1 = D1.corr_encoded().k1_encoded().invert D2 = D2.corr_encoded().k1_encoded().invert D3 = D3.corr_encoded().k1_encoded().invert D4 = D4.corr_encoded().k1_encoded().invert D5 = D5.corr_encoded().k1_encoded().invert # # # for i in range(len(sim['links'])): d_link = [0] # data going over the link (init val 0) # copy of single data streams as list h = np.copy(DH.samples).tolist() d0, d1 = np.copy(D0.samples).tolist(), np.copy(D1.samples).tolist() d2, d3 = np.copy(D2.samples).tolist(), np.copy(D3.samples).tolist() d4, d5 = np.copy(D4.samples).tolist(), np.copy(D5.samples).tolist() d_list = [h, d0, d1, d2, d3, d4, d5] counter = [0, 0, 0, 0, 0, 0, 0] seq = sim['true_values'][i].astype(int) # pattern sequence for j in range(1, len(seq)): if seq[j] < 7: d_link.append(d_list[seq[j]].pop(0)) counter[seq[j]] += 1 else: d_link.append(d_link[-1]) cD.append(counter) D_true.append(interconnect.DataStream(d_link, 16)) D_mux0 = interconnect.DataStreamProb([DH[:cD[0][0]], D0[:cD[0][1]], D1[:cD[0][2]], D2[:cD[0][3]], D3[:cD[0][4]], D4[:cD[0][5]], D5[:cD[0][6]]], mux[0]) D_mux1 = interconnect.DataStreamProb([DH[:cD[1][0]], D0, # D0-D2 not trans D1, D2, D3[:cD[1][4]], D4[:cD[1][5]], D5[:cD[1][6]]], mux[1]) D_mux2 = interconnect.DataStreamProb([DH[:cD[2][0]], D0, D1, D2, # only D3 transmitted D3[:cD[2][4]], D4, D5], mux[2]) D_noMux0 = copy.deepcopy(DH[:cD[0][0]]) D_noMux0.append(D0[:cD[0][1]]) D_noMux0.append(D1[:cD[0][2]]) D_noMux0.append(D2[:cD[0][3]]) D_noMux0.append(D3[:cD[0][4]]) D_noMux0.append(D4[:cD[0][5]]) D_noMux0.append(D5[:cD[0][6]]) D_noMux1 = copy.deepcopy(DH[:cD[1][0]]) D_noMux1.append(D3[:cD[1][4]]) D_noMux1.append(D4[:cD[1][5]]) D_noMux1.append(D5[:cD[1][6]]) D_noMux2 = copy.deepcopy(DH[:cD[2][0]]) D_noMux2.append(D3[:cD[2][4]]) # golden values (bit-level sim) E3dLink0bitlevel.append(ic3D.E(D_true[0])) E2dLink1bitlevel.append(ic2D.E(D_true[1])) E2dLink2bitlevel.append(ic2D.E(D_true[2])) # proposed high-level model E3dLink0highlevel.append(ic3D.E(D_mux0)) E2dLink1highlevel.append(ic2D.E(D_mux1)) E2dLink2highlevel.append(ic2D.E(D_mux2)) # ref bit level E3dLink0ref.append(ic3D.E(D_noMux0)) E2dLink1ref.append(ic2D.E(D_noMux1)) E2dLink2ref.append(ic2D.E(D_noMux2)) if day == 0: E3dLink0bitlevel_night = E3dLink0bitlevel E2dLink1bitlevel_night = E2dLink1bitlevel E2dLink2bitlevel_night = E2dLink2bitlevel E3dLink0highlevel_night = E3dLink0highlevel E2dLink1highlevel_night = E2dLink1highlevel E2dLink2highlevel_night = E2dLink2highlevel E3dLink0ref_night = E3dLink0ref E2dLink1ref_night = E2dLink1ref E2dLink2ref_night = E2dLink2ref else: E3dLink0bitlevel_day = E3dLink0bitlevel E2dLink1bitlevel_day = E2dLink1bitlevel E2dLink2bitlevel_day = E2dLink2bitlevel E3dLink0highlevel_day = E3dLink0highlevel E2dLink1highlevel_day = E2dLink1highlevel E2dLink2highlevel_day = E2dLink2highlevel E3dLink0ref_day = E3dLink0ref E2dLink1ref_day = E2dLink1ref E2dLink2ref_day = E2dLink2ref if 'E3dLink0ref_day' in locals() and 'E3dLink0ref_night' in locals(): packages = 2*sum(cD[0])/32 E3dLink0ref_tot = (N/packages)*(np.array(E3dLink0ref_day)+np.array(E3dLink0ref_night)) E2dLink1ref_tot = (N/packages)*(np.array(E2dLink1ref_day)+np.array(E2dLink1ref_night)) E2dLink2ref_tot = (N/packages)*(np.array(E2dLink2ref_day)+np.array(E2dLink2ref_night)) E3dLink0bitlevel_tot = (N/packages)*(np.array(E3dLink0bitlevel_day)+np.array(E3dLink0bitlevel_night)) E2dLink1bitlevel_tot = (N/packages)*(np.array(E2dLink1bitlevel_day)+np.array(E2dLink1bitlevel_night)) E2dLink2bitlevel_tot = (N/packages)*(np.array(E2dLink2bitlevel_day)+np.array(E2dLink2bitlevel_night)) E3dLink0highlevel_tot = (N/packages)*(np.array(E3dLink0highlevel_day)+np.array(E3dLink0highlevel_night)) E2dLink1highlevel_tot = (N/packages)*(np.array(E2dLink1highlevel_day)+np.array(E2dLink1highlevel_night)) E2dLink2highlevel_tot = (N/packages)*(np.array(E2dLink2highlevel_day)+np.array(E2dLink2highlevel_night))
python
from py_db import db import NSBL_helpers as helper # Re-computes the team hitting tables db = db('NSBL') def process(): print "processed_team_hitting" db.query("TRUNCATE TABLE `processed_team_hitting_basic`") db.query("TRUNCATE TABLE `processed_team_hitting_advanced`") yr_min, yr_max = db.query("SELECT MIN(year), MAX(year) FROM processed_league_averages_pitching")[0] for year in range(yr_min, yr_max+1): for _type in ('basic', 'advanced'): print str(year) + "\thitting\t" + _type table = 'processed_team_hitting_%s' % (_type) if _type == 'basic': entries = process_basic(year) elif _type == 'advanced': entries = process_advanced(year) if entries != []: db.insertRowDict(entries, table, replace=True, insertMany=True, rid=0) db.conn.commit() def process_basic(year): entries = [] qry = """SELECT r.team_abb, SUM(pa), SUM(ab), SUM(h), SUM(2B), SUM(3b), SUM(Hr), SUM(r), SUM(rbi), SUM(hbp), SUM(bb), SUM(k), SUM(sb), SUM(cs) FROM register_batting_primary r JOIN processed_compWAR_offensive o USING (player_name, team_abb, YEAR) JOIN processed_WAR_hitters w USING (pa, player_name, team_abb, YEAR) WHERE r.year = %s GROUP BY r.team_abb;""" query = qry % (year) res = db.query(query) for row in res: team_abb, pa, ab, h, _2, _3, hr, r, rbi, hbp, bb, k, sb, cs = row entry = {} entry["year"] = year entry["team_abb"] = team_abb _1 = h - _2 - _3 - hr avg = float(h)/float(ab) obp = (float(h)+float(bb)+float(hbp))/float(pa) slg = (float(_1)+2*float(_2)+3*float(_3)+4*float(hr))/float(pa) entry["avg"] = avg entry["obp"] = obp entry["slg"] = slg entry["pa"] = pa entry["ab"] = ab entry["h"] = h entry["2b"] = _2 entry["3b"] = _3 entry["hr"] = hr entry["r"] = r entry["rbi"] = rbi entry["hbp"] = hbp entry["bb"] = bb entry["k"] = k entry["sb"] = sb entry["cs"] = cs entries.append(entry) return entries def process_advanced(year): entries = [] qry = """SELECT r.team_abb, SUM(pa), SUM(pf*pa)/SUM(pa), SUM(wOBA*pa)/SUM(pa), SUM(park_wOBA*pa)/SUM(pa), SUM(OPS*pa)/SUM(pa), SUM(OPS_plus*pa)/SUM(pa), SUM(babip*pa)/SUM(pa), SUM(wRC), SUM(wRC_27*pa)/SUM(pa), SUM(wRC_plus*pa)/SUM(pa), SUM(rAA), SUM(w.oWAR) FROM register_batting_primary r JOIN processed_compWAR_offensive o USING (player_name, team_abb, YEAR) JOIN processed_WAR_hitters w USING (pa, player_name, team_abb, YEAR) WHERE r.year = %s GROUP BY r.team_abb;""" query = qry % (year) res = db.query(query) for row in res: team_abb, pa, pf, woba, park_woba, ops, ops_plus, babip, wrc, wrc_27, wrc_plus, raa, owar = row entry = {} entry["year"] = year entry["team_abb"] = team_abb entry["pa"] = pa entry["pf"] = pf entry["wOBA"] = woba entry["park_wOBA"] = park_woba entry["OPS"] = ops entry["OPS_plus"] = ops_plus entry["babip"] = babip entry["wRC"] = wrc entry["wRC_27"] = wrc_27 entry["wRC_plus"] = wrc_plus entry["rAA"] = raa entry["oWAR"] = owar entries.append(entry) return entries if __name__ == "__main__": process()
python
""" The MIT License (MIT) Copyright (c) 2020-Current Skelmis Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import logging from typing import TYPE_CHECKING, List, AsyncIterable, Dict from attr import asdict import orjson as json from antispam.abc import Cache from antispam.enums import ResetType from antispam.exceptions import GuildNotFound, MemberNotFound from antispam.dataclasses import Message, Member, Guild, Options if TYPE_CHECKING: from redis import asyncio as aioredis from antispam import AntiSpamHandler log = logging.getLogger(__name__) class RedisCache(Cache): """ A cache backend built to use Redis. Parameters ---------- handler: AntiSpamHandler The AntiSpamHandler instance redis: redis.asyncio.Redis Your redis connection instance. """ def __init__(self, handler: AntiSpamHandler, redis: aioredis.Redis): self.redis: aioredis.Redis = redis self.handler: AntiSpamHandler = handler async def get_guild(self, guild_id: int) -> Guild: log.debug("Attempting to return cached Guild(id=%s)", guild_id) resp = await self.redis.get(f"GUILD:{guild_id}") if not resp: raise GuildNotFound as_json = json.loads(resp.decode("utf-8")) guild: Guild = Guild(**as_json) # This is actually a dict here guild.options = Options(**guild.options) # type: ignore guild_members: Dict[int, Member] = {} for member_id in guild.members: # type: ignore member: Member = await self.get_member(member_id, guild_id) guild_members[member.id] = member guild.members = guild_members return guild async def set_guild(self, guild: Guild) -> None: log.debug("Attempting to set Guild(id=%s)", guild.id) # Store members separate for member in guild.members.values(): await self.set_member(member) guild.members = [member.id for member in guild.members.values()] as_json = json.dumps(asdict(guild, recurse=True)) await self.redis.set(f"GUILD:{guild.id}", as_json) async def delete_guild(self, guild_id: int) -> None: log.debug("Attempting to delete Guild(id=%s)", guild_id) await self.redis.delete(f"GUILD:{guild_id}") async def get_member(self, member_id: int, guild_id: int) -> Member: log.debug( "Attempting to return a cached Member(id=%s) for Guild(id=%s)", member_id, guild_id, ) resp = await self.redis.get(f"MEMBER:{guild_id}:{member_id}") if not resp: raise MemberNotFound as_json = json.loads(resp.decode("utf-8")) member: Member = Member(**as_json) messages: List[Message] = [] for message in member.messages: messages.append(Message(**message)) # type: ignore member.messages = messages return member async def set_member(self, member: Member) -> None: log.debug( "Attempting to cache Member(id=%s) for Guild(id=%s)", member.id, member.guild_id, ) # Ensure a guild exists try: guild = await self.get_guild(member.guild_id) guild.members = [m.id for m in guild.members.values()] guild.members.append(member.id) guild_as_json = json.dumps(asdict(guild, recurse=True)) await self.redis.set(f"GUILD:{guild.id}", guild_as_json) except GuildNotFound: guild = Guild(id=member.guild_id, options=self.handler.options) guild.members = [member.id] guild_as_json = json.dumps(asdict(guild, recurse=True)) await self.redis.set(f"GUILD:{guild.id}", guild_as_json) as_json = json.dumps(asdict(member, recurse=True)) await self.redis.set(f"MEMBER:{member.guild_id}:{member.id}", as_json) async def delete_member(self, member_id: int, guild_id: int) -> None: log.debug( "Attempting to delete Member(id=%s) in Guild(id=%s)", member_id, guild_id ) try: guild: Guild = await self.get_guild(guild_id) guild.members.pop(member_id) await self.set_guild(guild) except: pass await self.redis.delete(f"MEMBER:{guild_id}:{member_id}") async def add_message(self, message: Message) -> None: log.debug( "Attempting to add a Message(id=%s) to Member(id=%s) in Guild(id=%s)", message.id, message.author_id, message.guild_id, ) try: member: Member = await self.get_member(message.author_id, message.guild_id) except (MemberNotFound, GuildNotFound): member: Member = Member(message.author_id, guild_id=message.guild_id) member.messages.append(message) await self.set_member(member) async def reset_member_count( self, member_id: int, guild_id: int, reset_type: ResetType ) -> None: log.debug( "Attempting to reset counts on Member(id=%s) in Guild(id=%s) with type %s", member_id, guild_id, reset_type.name, ) try: member: Member = await self.get_member(member_id, guild_id) except (MemberNotFound, GuildNotFound): return if reset_type == ResetType.KICK_COUNTER: member.kick_count = 0 else: member.warn_count = 0 await self.set_member(member) async def drop(self) -> None: log.warning("Cache was just dropped") await self.redis.flushdb(asynchronous=True) async def get_all_guilds(self) -> AsyncIterable[Guild]: log.debug("Yielding all cached guilds") keys: List[bytes] = await self.redis.keys("GUILD:*") for key in keys: key = key.decode("utf-8").split(":")[1] yield await self.get_guild(int(key)) async def get_all_members(self, guild_id: int) -> AsyncIterable[Member]: log.debug("Yielding all cached members for Guild(id=%s)", guild_id) # NOOP await self.get_guild(guild_id) keys: List[bytes] = await self.redis.keys(f"MEMBER:{guild_id}:*") for key in keys: key = key.decode("utf-8").split(":")[2] yield await self.get_member(int(key), guild_id)
python
# -*- coding: utf-8 -*- try: import mdp use_mdp = True except ImportError: print 'mdp (modular data processing) module not installed. Cannot do PCA' use_mdp = False import numpy as np from neuropype import node from itertools import imap, repeat from copy import deepcopy, copy from neuropype import parameter import os from bisect import bisect_left from neuropype.ressources._common import boxfilter, findextrema, cross_threshold from neuropype.ressources._common import flatenList, filterValues import neuropype.ressources.progressbar as pgb from neuropype.datatypes import Time_list, Sweep from neuropype.gui.lassoExempl import LassoManager class DetectSpike(node.Node): """Detect events in a sweep * filter is a list of 4-tuples, (sniptype, property, comp, value) sniptype can be 'raw' or 'filtered', property can be any of the 'props' param or one PCA componant, comp can be 0 -- for < --, 1 -- for > --, 'in' or 'out', if comp is 0 or 1, value is a float if comp is 'in' or 'out', value must be a list of 2 floats, defining the window to keep/exclude""" def __init__(self, name, parent): # Inputs self.in_sweep = node.Input(['Sweep', 'SweepData']) self.in_numSweeps = node.Input('int') self.in_chanNames = node.Input('list') self.in_origin = node.Input('list') self.in_tag = node.Input('list') self.in_sweepInfo = node.Input('SweepInfo') # Outputs self.out_time = node.Output('Time_list') self.out_numSweeps = node.Output('int') self.out_sweep = node.Output('Sweep') self.out_chanNames = node.Output('list') self.out_origin = node.Output('list') self.out_tagTimeList = node.Output('list') self.out_sweepInfo = node.Output('SweepInfo') self.out_numSpikes = node.Output('int') self.out_snip_tag = node.Output('list') self.out_snip_sweepInfo = node.Output('SweepInfo') self.out_snip = node.Output('Sweep') self.out_snip_origin = node.Output('list') self.out_snip_chanNames = node.Output('list') super(DetectSpike, self).__init__(name, parent) self._inputGroups['sweep'] = {'sweep': 'in_sweep', 'numSweeps': 'in_numSweeps', 'chanNames': 'in_chanNames', 'origin': 'in_origin', 'tag' : 'in_tag', 'sweepInfo': 'in_sweepInfo'} self._outputGroups = {'time_list': {'time_list': 'out_time', 'numSweeps': 'out_numSweeps', 'tag': 'out_tagTimeList'}, 'filteredSweep': {'sweep': 'out_sweep', 'numSweeps': 'out_numSweeps', 'chanNames': 'out_chanNames', 'origin': 'out_origin', 'tag': 'out_tagTimeList', 'sweepInfo': 'out_sweepInfo'}, 'snippet': {'sweep': 'out_snip', 'numSweeps': 'out_numSpikes', 'chanNames': 'out_snip_chanNames', 'origin': 'out_snip_origin', 'tag': 'out_snip_tag', 'sweepInfo': 'out_snip_sweepInfo'}} # Default parameters: baseline = parameter.combobox('baseline', self, ['fixed', 'floating', 'mean', 'window', None], 'floating') fixed_baseline = parameter.float_param('fixed_baseline', self, 0, decimals= 9, singleStep= 1e-3) createUniv = CreateUniv(self) self.cU = createUniv chan = parameter.combobox('chan', self, [], 'None', func = createUniv) padding = parameter.combobox('padding', self, ['flatPad', 'zeroPad', 'keep'], 'flatPad') win0 = parameter.float_param('win0', self, 5e-3, minVal= 0, decimals= 9, singleStep= 1e-3) win1 = parameter.float_param('win1', self, 1e-3, minVal= 0, decimals= 9, singleStep= 1e-3) win2 = parameter.float_param('win2', self, 1.5e-3, minVal= 0, decimals= 9, singleStep= 1e-3) dt0 = parameter.float_param('dt0', self, 1.5e-3, minVal= 0, decimals= 9, singleStep= 1e-3) dt1 = parameter.float_param('dt1', self, 1.5e-3, minVal= 0, decimals= 9, singleStep= 1e-3) pointinterval = parameter.float_param('pointinterval', self, 1e-3, minVal= 0, decimals= 9, singleStep= 0.1e-3) numWins = parameter.integer('numWins', self, 1, minVal= 1, maxVal= 3) threshold = parameter.float_param('threshold', self, 0, decimals= 9, singleStep= 1e-3) maximum = parameter.boolean('maximum', self, Default = True) upwards = parameter.boolean('upwards', self, Default = True) cross_threshold_param = parameter.boolean('cross_threshold', self, Default = False) self._params={'chan': chan, 'maximum': maximum, 'upwards': upwards, 'threshold': threshold, 'cross_threshold': cross_threshold_param, 'pointinterval': pointinterval, 'baseline' : baseline, 'verbose' : 1, 'numWins': numWins, 'win0': win0, 'win1' : win1, 'win2' : win2, 'dt0' : dt0, 'dt1' : dt1, 'baseline_window': ['begin', 'end'], 'fixed_baseline': fixed_baseline, 'memory': 'store', 'snip_window' : [-2e-3,2e-3], 'props' :['sw_ind', 'max', 'min', 'median', 'mean', 'ptp', 'std', 'sum'], 'snip_memory' : ('store', 'all'), 'filter':[], 'padding': padding, 'graphviz':{'style': 'filled', 'fillcolor': 'lightyellow'}} #connecting outputs: self.out_time.output = self.time_list self.out_numSweeps.output = self.numSweeps self.out_chanNames.output = self.chanNames self.out_sweep.output = self.filteredSweep self.out_origin.output = self.origin self.out_tagTimeList.output = self.tag self.out_sweepInfo.output = self.sweepInfo self.out_numSpikes.output = self.numSpikes self.out_snip_tag.output = self.snip_tag self.out_snip.output = self.snippet self.out_snip_origin.origin = self.snippet_origin self.out_snip_sweepInfo.origin = self.snippet_sweepInfo self.out_snip_chanNames.output = self.snippet_chanNames def _ready_trace(self, data, time, debug = 0): '''do the filtering''' f0, f1, f2, dt0, dt1 = None, None, None, None, None dtype = None if data.dtype == 'int': dtype = data.dtype data = np.asarray(data, dtype ='float64') dt = float(time[1]-time[0]) #substracting baseline: baseline = self.get_param('baseline') if baseline == 'window': if self.get_param('baseline_window')[0] == 'begin': beg =0 else: baseline_window0 = float(self.get_param('baseline_window')[0]) beg = bisect_left(time, baseline_window0) if self.get_param('baseline_window')[1] == 'end': end = -1 else: baseline_window1 = float(self.get_param('baseline_window')[1]) end = bisect_left(time,baseline_window1) baseline = np.mean(data[beg:end]) data-=baseline elif baseline == 'fixed': baseline = float(self.get_param('fixed_baseline')) data-=baseline elif baseline == 'floating': numWins = self.get_param('numWins') cumsum = data.cumsum() win0 = int(self.get_param('win0')/dt) biggestWin = win0 f0 = boxfilter(data, win0, cumsum) if numWins==1: #simply substract baseline data-=f0 else: #kind of first order derivative dt0=int(float(self.get_param('dt0')/dt)) if dt0 == 0: dt0 = 1 win1 = int(self.get_param('win1')/dt) biggestWin = max(win1, biggestWin) f1 = boxfilter(data, win1, cumsum) if numWins==2: data = np.zeros_like(data) data[dt0/2:-dt0/2] = f1[dt0:] - f0[:-dt0] elif numWins==3: #kind of 2nd order derivative win2 = int(self.get_param('win2')/dt) biggestWin = max(win2, biggestWin) dt1=int(float(self.get_param('dt1')/dt)) if dt1 == 0: dt1=1 f2 = boxfilter(data, win2, cumsum) data = np.zeros_like(data) data[dt1/2:-dt1/2] = f2[dt1:]-2*f1[dt0:-dt1+dt0]-f0[:-dt1] else: raise ValueError('wrong numWins: %s'%numWins) padding = self.get_param('padding') if padding == 'zeroPad': data[:biggestWin] = np.zeros(biggestWin) data[-biggestWin:] = np.zeros(biggestWin) elif padding == 'flatPad': data[:biggestWin] = np.ones(biggestWin)*data[biggestWin] data[-biggestWin:] = np.ones(biggestWin)*data[biggestWin] elif baseline == 'mean': baseline=np.mean(data) data-=baseline if dtype is not None: data = np.asarray(data, dtype = dtype) if debug: return data, f0, f1, f2, dt0, dt1 return data def _detect(self, trace, time): '''Do the detection on trace, delete values in pointinterval and return the other''' params = self.params dt=time[1]-time[0] pointinterval=int(float(params['pointinterval']/dt)) if not params['cross_threshold']: temp = findextrema(trace, params['maximum'], params['threshold'], pointinterval) else: temp = cross_threshold(trace, params['upwards'], params['maximum'], params['threshold'], pointinterval) out = np.array([time[i] for i in temp]) return out def _spikeTimes(self, index_sweep): '''Return the list of spike times detected in sweep 'index_sweep' ''' if self.get_param('memory') == 'write': data, dataTot = None, None path = self.get_cache('path') if path is not None: dataTot = np.load(path) if 'Sw_'+str(index_sweep) in dataTot.files: data = dataTot['Sw_'+str(index_sweep)] elif self.get_param('memory') == 'store': if not self._cache.has_key('sp_times'): self._cache['sp_times']={} data = self._cache['sp_times'].get(index_sweep) elif self.get_param('memory') is None: data = None else: print 'param %s for memory not '%self.get_param('memory') + \ 'recognised, won\'t memorise anything' data = None if data is None: sweep = self._get_input_sweep(index_sweep) time = self._get_time(index_sweep) swdata = sweep._data[1] if sweep._data.shape[0]>1 else sweep._data[0] trace = self._ready_trace(deepcopy(swdata), time) data = self._detect(trace, time) if self.get_param('memory') == 'store': self._cache['sp_times'][index_sweep] = data elif self.get_param('memory') == 'write': if dataTot is not None: temp = {} for i in dataTot.files: temp[i]= dataTot[i] temp['Sw_'+str(index_sweep)] = data else: temp = {'Sw_'+str(index_sweep) : data} path = self.parent.home + self.parent.name + '_' +self.name + \ '_spikeTimes.npz' np.savez(path, **temp) self.set_cache('path', self.parent.home + self.parent.name + '_' + self.name + '_spikeTimes.npz', force = 1) dataTot.close() # if self.get_param('snip_memory') is not None: # snippet = self._extract_snippet(data, sweep._data[1], time) # self._saveSnip(index_sweep, snippet, 'raw') # snippet = self._extract_snippet(data, trace, time) # self._saveSnip(index_sweep, snippet, 'filtered') return data def all_times(self, list_sweep=None, groupbysweep=False, keepMasked = False): out = [] if list_sweep is None: list_sweep = xrange(self.numSweeps()) if not keepMasked: mask = self._mask() for i, sweep in enumerate(list_sweep): data = self._spikeTimes(sweep) if not keepMasked: b0, b1 = self._sweepBorder(sweep) data = data[mask[b0: b1]] out.append(data) if not groupbysweep: out = flatenList(out) return out def ISI(self,list_sweep=None, groupbysweep=False, keepMasked = False): out = [] if list_sweep is None: list_sweep = xrange(self.numSweeps()) if not keepMasked: mask = self._mask() for i, sweep in enumerate(list_sweep): data = self._spikeTimes(sweep) if not keepMasked: b0, b1 = self._sweepBorder(i) data = data[mask[b0: b1]] out.append(np.diff(data)) if not groupbysweep: out = flatenList(out) return out def time_list(self, index_sweep, keepMasked = False): sp_times = self._spikeTimes(index_sweep) if not keepMasked: b0, b1 = self._sweepBorder(index_sweep) mask = self._mask()[b0:b1] sp_times = sp_times[mask] name = 'SpikesOfSweep'+str(index_sweep) origin = self.in_origin(index_sweep)+ [str(self.get_param('chan'))] out = Time_list.Time_list(name, sp_times, origin, SweepIndex = index_sweep, nodeOfSweep = self, title = 'NoTitle', units = 's') out.tag = self.tag(index_sweep) return out def findOriginFromIndex(self, index, keepMasked = False): """return the index of the sweep and the spike in that sweep corresponding to spike index""" tempind = 0 func = self._spikeTimes if keepMasked else self.time_list if not keepMasked: for i in xrange(self.in_numSweeps()): length = len(self.time_list(i)) if index >= (tempind + length): #if it's not in this sweep tempind += length #note: add only the # of valid spikes else: index_trace = i index_time_list = index - tempind # index_time_list is the index of the spike in the time_list # with all its spike (even if partialTraces is Ignore) return index_trace, index_time_list raise ValueError('I haven\'t found snippet %s'%index) else: borders = self._borders() sortedSecondIndex = [borders[i][1] for i in range(self.in_numSweeps())] index_trace = np.searchsorted(sortedSecondIndex, index) if index_trace == 0: return index_trace, index if index_trace >= len(sortedSecondIndex): raise ValueError('I haven\'t found snippet %s'%index) index_time_list = index - sortedSecondIndex[index_trace - 1] def _sweepBorder(self, index, borderbefore = None): """index of first and last spikes of sweep in numSpikes""" if not self._cache.has_key('borders'): self._cache['borders'] = {} bord = self._cache['borders'] out = bord.get(index) if out is not None: return out if borderbefore is None: out = (self.findSpikeFromSweep(index, True), self.findSpikeFromSweep(index+1, True)) else: out = (borderbefore[1], self._spikeTimes(index).size+borderbefore[1]) bord[index] = out return out def _borders(self): borderbefore = None for i in range(self.numSweeps()): borderbefore = self._sweepBorder(i, borderbefore) return self.get_cache('borders') def numSpikes(self, list_sweep = None, keepMasked = False, verbose =1): """Count the number of spikes in list_sweep. if list_sweep is None, count on all the sweeps, if countMaskedSpikes, count the spikes before applying filter""" if list_sweep is None: list_sweep = xrange(self.numSweeps()) elif not list_sweep: return 0 if not hasattr(list_sweep, '__iter__'): list_sweep = [int(list_sweep)] if keepMasked: iterator = imap(self._spikeTimes, list_sweep) else: iterator = imap(self.time_list, list_sweep, repeat(False)) if verbose: print 'numSpikes in %s:'%self.name pbar = pgb.ProgressBar(maxval=len(list_sweep), term_width = 79).start() n=0 nspikes=len(iterator.next()) for i in iterator: n+=1 nspikes += len(i) if verbose: pbar.update(n) if verbose: pbar.finish() return nspikes def findSpikeFromSweep(self, index, keepMasked = False): return self.numSpikes(range(index), keepMasked, verbose = 0) def _extract_snippet(self, sp_times, trace, time): if not sp_times.size: return np.array([]) win0, win1 = self.get_param('snip_window') beg = time.searchsorted(sp_times + win0) end = time.searchsorted(sp_times + win1) midl = time.searchsorted(sp_times) length = int(np.ceil((win1-win0)/(time[1]-time[0]))) # ceil and have the smallest window that include totally the interval out = np.zeros((len(beg), length), dtype = trace.dtype) for i ,(s, b,e) in enumerate(zip(midl, beg, end)): if e - b == length: out[i] = trace[b:e] else: border0 = int(length/2) if s - b > border0 or border0+e -s > length: raise ValueError('ca bug') out[i, border0 - (s - b): border0 + (e-s)] = trace[b:e] out[i, :border0 - (s - b)]=trace[b] out[i, border0 + (e-s):] = trace[max(0,e-1)] #minus 1 cause e can be len(trace) return out def _saveSnip(self, index_sweep, snippet, sniptype): snip_memory = self.get_param('snip_memory') if snip_memory[0] != 'store': return if snip_memory[1] != 'all': saved = self.get_cache('snippet_'+sniptype) if saved is None: saved = {} if saved.has_key(index_sweep): return saved_index = self.get_cache('snippet_index_'+sniptype) if saved_index is None: saved_index = [] if isinstance(snip_memory[1], int): while len(saved_index) >= snip_memory: first = saved_index.pop(0) saved.pop(first) elif snip_memory[1] != 'all': return saved_index.append(index_sweep) saved[index_sweep] = snippet self.set_cache('snippet_'+sniptype, saved, force =1) self.set_cache('snippet_index_'+sniptype, saved_index, force =1) else: if not self._cache.has_key('snippet_'+sniptype): out = np.zeros((self.numSpikes(keepMasked = True), snippet.shape[1]), dtype = snippet.dtype) self._cache['snippet_'+sniptype] = out if not self._cache.has_key('snippet_index_'+sniptype): out = np.zeros(self.numSpikes(keepMasked=True), dtype = 'bool') self._cache['snippet_index_'+sniptype] = out b0, b1 = self._sweepBorder(index_sweep) self._cache['snippet_'+sniptype][b0:b1,:] = snippet self._cache['snippet_index_'+sniptype][b0:b1] = np.ones(b1-b0, dtype = 'bool') def _extract_one_sweep(self, index_sweep, sniptype): time = self._get_time(index_sweep) spike = self._spikeTimes(index_sweep) if not spike.size: return None sweep = self._get_input_sweep(index_sweep) sweep = sweep._data[1] if sweep._data.shape[0]>1 else sweep._data[0] if sniptype == 'filtered': sweep = self._ready_trace(sweep, time) elif sniptype != 'raw': raise ValueError('Unknown sniptype: %s'%sniptype) snip = self._extract_snippet(spike, sweep, time) return snip def _extract_all_snippet(self, sniptype): print 'extracting %s snippets in %s'%(sniptype, self.name) pbar = pgb.ProgressBar(maxval=self.numSweeps(), term_width = 79).start() for index_sweep in range(self.in_numSweeps()): snip = self._extract_one_sweep(index_sweep, sniptype) if snip is None: continue self._saveSnip(index_sweep, snip, sniptype) pbar.update(index_sweep) pbar.finish() def _getSnip(self, listindex, sniptype): if not isinstance(listindex, list): listindex = [int(listindex)] snip_memory = self.get_param('snip_memory') if snip_memory is not None and snip_memory[0] == 'store': if snip_memory[1] == 'last_sweep': arg_sort = np.argsort(listindex) saved_ind = self.get_cache('last_sweep_snip_ind_'+sniptype) saved = self.get_cache('last_sweep_snip_'+sniptype) if saved is None or saved_ind is None: saved = [] saved_ind = [] out = [] for arg in arg_sort: try: ind = saved_ind.index(listindex[arg_sort]) out.append(saved[ind]) except ValueError: index_sweep, indSpinSw = self.findOriginFromIndex(listindex[arg_sort], keepMasked = 1) time = self._get_time(index_sweep) spike = self._spikeTimes(index_sweep) sweep = self._get_input_sweep(index_sweep) sweep = sweep._data[1] if sweep._data.shape[0]>1 else sweep._data[0] if sniptype == 'filtered': sweep = self._ready_trace(sweep, time) snip = self._extract_snippet(spike, sweep, time) snipinds = np.arange(*self._borders()[index_sweep]) self.set_cache('last_sweep_snip_ind_'+sniptype, snipinds) self.set_cache('last_sweep_snip_'+sniptype, snip) out.append[snip[indSpinSw]] return out # out = {} # sweep_saved = self.get_cache('snippet_'+sniptype) # if not sweep_saved is None: # for i in listindex: # swind, spind = self.findOriginFromIndex(i) # not_saved = [] # for i in list_index: # sweep # saved_ind =[i for i in listindex if i in sweep_saved] elif snip_memory[1] == "all": inds = self.get_cache('snippet_index_'+sniptype) if inds is None or any([not inds[i] for i in listindex]): self._extract_all_snippet(sniptype) return np.array(self._cache['snippet_'+sniptype][listindex,:]) else: raise NotImplementedError() elif snip_memory is not None: raise NotImplementedError() out = None for index_snip in listindex: index_sweep, indSpinSw = self.findOriginFromIndex(index_snip, keepMasked = 1) time = self._get_time(index_sweep) spike = self._spikeTimes(index_sweep) if not spike.size: continue sweep = self._get_input_sweep(index_sweep) sweep = sweep._data[1] if sweep._data.shape[0]>1 else sweep._data[0] if sniptype == 'filtered': sweep = self._ready_trace(sweep, time) elif sniptype != 'raw': raise ValueError('Unknown sniptype: %s'%sniptype) snip = self._extract_snippet(spike, sweep, time) if out is None: out = snip[indSpinSw] else: out = np.vstack((out, snip[indSpinSw])) return snip # not saved # indices = [self.findOriginFromIndex(i) for i in listindex] # time = self._get_time(index_sweep) # time_list =self._time_list(index_sweep) # spike = time_list._data # sweep = self._get_input_sweep(index_sweep, dtype =self.get_param( # 'dtype'))._data[1] # if sniptype == 'filtered': # sweep = self._ready_trace(sweep, time) # elif sniptype != 'raw': # raise ValueError('Unknown sniptype: %s'%sniptype) # snip = self._extract_snippet(spike, sweep, time) # self._saveSnip(index_sweep, snip, sniptype) def _value_around_pic(self, list_index, props, sniptype): snip = self._getSnip(list_index, sniptype) if not isinstance(props, list): props = [props] out = np.zeros((len(props),snip.shape[0]), dtype = 'float') for i, v in enumerate(props): func = getattr(np, v) if hasattr(func, '__call__'): val = func(snip, axis = 1) else: print 'Prop is not callable, it might not be what you wanted' out[i] = val return out def PCA(self, sniptype): if not use_mdp: print 'mdp is not installed' return if self._cache.has_key('PCA_'+sniptype): return self.get_cache('PCA_'+sniptype) all_props = self.get_param('props') PCAnode = mdp.nodes.PCANode(input_dim=len(all_props), output_dim=len(all_props)-1) arr = self._getFilterArray(sniptype) PCAnode.train(arr) out = PCAnode(arr) self.set_cache('PCA_'+sniptype, out) return out def _getFilterArray(self, sniptype, list_sweep = None): if not self._cache.has_key('properties'): self._cache['properties'] = {} if self._cache['properties'].has_key(sniptype): return self.get_cache('properties')[sniptype] props = copy(self.get_param('props')) wasNone = False if list_sweep is None: wasNone = True list_sweep = range(self.numSweeps()) elif not isinstance(list_sweep, list): list_sweep = list(list_sweep) out = np.zeros((self.numSpikes(list_sweep, keepMasked = True), len(props)), dtype = 'float') print 'getting filter array for %s in %s'%(sniptype, self.name) inds = range(len(props)) try: indSw = props.index('sw_ind') props.pop(indSw) inds.pop(indSw) N = 0 for i in list_sweep: n = len(self._spikeTimes(i)) out[N:N+n, indSw] = np.ones(n, dtype = 'float')*i N+=n except ValueError: print 'sw_ind not in prop' pass if wasNone: out[:,inds] = self._value_around_pic(range(out.shape[0]), props, sniptype).T else: pbar = pgb.ProgressBar(maxval=len(list_sweep), term_width = 79).start() for i in list_sweep: b0, b1 = self._sweepBorder(i) if b0 != b1: data = self._value_around_pic(range(b0,b1), props, sniptype) out[b0:b1,inds] = data.T pbar.update(i) self._cache['properties'][sniptype] = out return out[:] def _mask(self): if self._cache.has_key('mask'): return self._cache['mask'] mask = np.ones(self.numSpikes(keepMasked = True), dtype = bool) Filter = self.get_param('filter') if Filter: for sniptype, prop, comp, value in Filter: val = np.array(self._getDataToPlot(keepMasked=True, prop=prop, sniptype=sniptype)) val = filterValues(val, comp, value) mask = np.logical_and(mask, val) if self._cache.has_key('lasso'): Lasso = self.get_cache('lasso') if Lasso: for ms in Lasso.values(): mask = np.logical_and(mask,ms) self._cache['mask'] = mask return mask def numSweeps(self): '''return the number of sweeps''' return self.in_numSweeps() def chanNames(self, index = 0): '''return the name of the channel used for the detection''' return [self.get_param('chan')] def origin(self, index): return self.in_origin(index) def filteredSweep(self, index_sweep, chan = None): '''return the trace on wich the detection is done''' sweep = self._get_input_sweep(index_sweep) time = self._get_time(index_sweep) swdata = sweep._data[1] if sweep._data.shape[0]>1 else sweep._data[0] data = np.array(self._ready_trace(swdata, time), dtype = 'float') chinf = [getattr(sweep, cname) for cname in sweep.chanNames()] out = Sweep.Sweep(sweep.name+'_filtered', np.vstack((time, data)), chinf,self.tag(index_sweep)) return out def snippet_chanNames(self, index = 0): return [self.get_param('chan')+i for i in ['_raw', '_filtered']] def snippet_origin(self, index, keepMasked = False): ind_sw, ind_sp = self.findOriginFromIndex(index, keepMasked = keepMasked) return self.in_origin(ind_sw)+ ['Spike_'+str(ind_sp)] def snippet_sweepInfo(self, index, keepMasked = False): if not keepMasked: index = self._findNotMaskedFromMaskedIndex(index) sw_ind, sp_ind = self.findOriginFromIndex(index, keepMasked = True) sw_inf = self.sweepInfo(sw_ind) sw_inf.numChans = 2 chInf = [copy(sw_inf.channelInfo[0]) for i in (0,1)] chInf[0].name = chInf[0].name + '_raw' chInf[1].name = chInf[1].name + '_filtered' sw_inf.channelInfo = chInf dt = sw_inf.dt win = self.get_param('snip_window') sw_inf.numPoints = int((win[1] - win[0])/dt) sw_inf.tend = sw_inf.numPoints sw_inf.t0 = 0 sw_inf.dt = 1 return sw_inf def snippet(self, index, chan = None, keepMasked = False): """return a snippet Arguments: - `index`: - `chan`: """ if not keepMasked: index = self._findNotMaskedFromMaskedIndex(index) sw_ind, sp_ind = self.findOriginFromIndex(index, keepMasked = True) snipRaw = self._getSnip(index, 'raw')[0] snipFiltered = self._getSnip(index, 'filtered')[0] data = np.zeros((3, snipRaw.size), dtype = snipRaw.dtype) data[0] = np.arange(data.shape[1]) data[1] = snipRaw data[2] = snipFiltered snipinf = self.snippet_sweepInfo(index, keepMasked) return Sweep.Sweep('Snippet_'+str(index)+'in_'+self.name, data, snipinf.channelInfo, tag = self.tag(sw_ind)) def snip_tag(self, index, keepMasked = False): '''Return the tags of sweep or time_list''' if not keepMasked: index = self._findNotMaskedFromMaskedIndex(index) sw_ind, sp_ind = self.findOriginFromIndex(index) return self.in_tag(sw_ind) def tag(self, index): '''Return the tags of sweep or time_list''' return self.in_tag(index) def sweepInfo(self, index): sw_inf = self.in_sweepInfo(index) cname = self.get_param('chan') ind = [i.name for i in sw_inf.channelInfo].index(cname) sw_inf.channelInfo = [sw_inf.channelInfo[ind]] sw_inf.numChans = 1 return sw_inf def _findNotMaskedFromMaskedIndex(self, maskedIndex): mask = self._mask() index = np.arange(mask.size) return index[mask][maskedIndex] def _get_input_sweep(self, sw_ind, *args, **kwargs): last = self.get_cache('last') if last is None or last[0] != sw_ind: if not kwargs.has_key('chan') and not args: kwargs['chan'] = self.get_param('chan') sw = self.in_sweep(sw_ind, *args, **kwargs) self.set_cache('last', (sw_ind, sw), force = 1) return copy(sw) return copy(last[1]) def _get_time(self, index_sweep): lasttime = self.get_cache('lasttime') if lasttime is None or lasttime[0] != index_sweep: node, out = self.inputs['in_sweep'] time = self.in_sweep(index_sweep, self.get_param('chan'))._data[0] if time.dtype == np.dtype('int16'): # no time line, need to create time, assume that dt # is constant on the sweep, does it matter? swinf = self.sweepInfo(index_sweep) time = np.arange(swinf.t0, swinf.tend, swinf.dt,dtype = 'float') self.set_cache('lasttime', (index_sweep, time), force =1) return copy(time) return copy(lasttime[1]) def save(self, what = None, path = None, force = 0): if what is None: what = ['SpikeTimes', 'Border', 'Mask', 'Prop', 'Lasso'] for i in what: getattr(self, 'save'+i)(force = force, name = path) def saveSpikeTimes(self, name = None, force = 0, mode = 'bn', delimiter = ',', keepMasked = True): '''Save spike times in file 'name' (can only save ALL the spike times at once) 'name' is absolute or relative to parent.home if 'force', replace existing file 'mode' can be 'bn', 'csv', 'txt' or 'vert_csv': 'bn': binary, saved in .npz 'csv' or 'txt': text file, value separeted by 'delimiter' (default ',') saved in lines 'vert_csv': text file, value and separeted by 'delimiter' (default ',') saved in columns ''' import os path = name if path is None: path = self.parent.name+'_'+self.name+'_spikeTimes' if path[0] != '/': path = self.parent.home + path data = self.all_times(keepMasked = True, groupbysweep = True) if mode == 'bn': path += '.npz' if not force: if os.path.isfile(path): print 'File %s already exist, change name or force'%path return kwargs = {} for i, value in enumerate(data): kwargs['Sw_'+str(i)] = value np.savez(path, **kwargs) elif mode == 'vert_csv': path += '_vertical.csv' if not force: if os.path.isfile(path): print 'File %s already exist, change name or force'%path return nspike = self.numSpikes() out = file(path, 'w') totspike = 0 index_spike = 0 while totspike < nspike: for index_sweep in range(self.numSweeps()): timelist = self.time_list(index_sweep) if len(timelist) > index_spike: out.write(str(timelist._data[index_spike])) totspike+=1 out.write(str(delimiter)) out.write('\n') index_spike += 1 totspike += 1 out.close() elif mode == 'csv' or mode =='txt': path += '.'+mode if not force: if os.path.isfile(path): print 'File %s already exist, change name or force'%path return out = file(path, 'w') for line in data: out.write(delimiter.join(np.array(line, dtype = 'str'))+'\n') out.close() else: print 'unknown mode %s'%mode def saveBorder(self, name = None, force =0): import os if name is None: name = self.parent.name+'_'+self.name+'_borders' if name[0] != '/': path = self.parent.home + name data = self._borders() outdata = np.zeros((self.numSweeps(), 2), dtype = 'int') for i, v in data.iteritems(): outdata[i] = v path += '.npy' if not force: if os.path.isfile(path): print 'File %s already exist, change name or force'%path return np.save(path, outdata) def saveMask(self, name = None, force = 0): if name is None: name = self.parent.name+'_'+self.name+'_mask' if name[0] != '/': path = self.parent.home + name path += '.npy' if not force: if os.path.isfile(path): print 'File %s already exist, change name or force'%path return data = self._mask() np.save(path, data) def saveLasso(self, name = None, force = 0): if name is None: name = self.parent.name+'_'+self.name+'_lasso' if name[0] != '/': path = self.parent.home + name path += '.npz' if not force: if os.path.isfile(path): print 'File %s already exist, change name or force'%path return data = self._lasso() if data: np.save(path, data) def saveProp(self, sniptype = ['raw', 'filtered'], name = None, force = 0): if not isinstance(sniptype, list): sniptype = [str(sniptype)] if name is None: name = self.parent.name+'_'+self.name+'_prop'+'_' if name[0] != '/': path = self.parent.home + name for sntp in sniptype: p = path+sntp+ '.npy' if not force: if os.path.isfile(p): print 'File %s already exist, change name or force'%p continue data = self._getFilterArray(sntp) np.save(p, data) def set_param(self, *args, **kwargs): if args: if len(args) == 2: kwargs[args[0]] = args[1] else: raise ValueError('set_param accept 0 or 2 positionnal arguments') for val in ['filter', 'props', 'lasso']: if kwargs.has_key('filter'): self.dirty('all', selfDirty = False) self._params['filter'] = kwargs.pop('filter') if self._cache.has_key('mask'): self._cache.pop('mask') if kwargs.has_key('lasso'): self._params['lasso'] = kwargs.pop('lasso') if self._cache.has_key('mask'): self._cache.pop('mask') for wn in ['win'+str(i) for i in [0,1,2]]: if kwargs.has_key(wn): if kwargs[wn] is None: kwargs[wn]=1e-5 if not kwargs: return # topop = ['snippet_indexraw', 'snippet_indexfiltered', 'snippetraw', # 'snippetfiltered'] # [self._cache.pop(i) for i in topop if self._cache.has_key(i)] return super(DetectSpike, self).set_param(**kwargs) def load(self, force = 0): self.loadSpikes(force= force) self.loadMask(force= force) self.loadBorders(force= force) try: self.loadProp(force= force) self.loadLasso(force= force) except Exception: print 'Could load only spike times and mask' def loadSpikes(self, path = None, force = 0): '''load spikes from a .npz file if memory is write, just load the path of the file if memory is store, store spike times from the file in cache''' if path is None: path = self.parent.home + self.parent.name + '_' + self.name + \ '_spikeTimes.npz' self.set_cache('sp_times', {}, force = force) cached = self._cache['sp_times'] if self.get_param('memory') == 'store': File = np.load(path) for name in File.files: cached[int(name[name.rfind('_')+1:])]= File[name] elif self.get_param('memory') == 'write': self.set_cache('path', path) def loadBorders(self, path = None, force = 0): '''load spikes from a .npz file or a .npy if memory is write, just load the path of the file if memory is store, store spike times from the file in cache''' if path is None: path = self.parent.home + self.parent.name + '_' + self.name + \ '_borders' if os.path.isfile(path+'.npy'): path+='.npy' elif os.path.isfile(path+'.npz'): path+='.npz' else: raise IOError('no file with npy or npz extension on this path:\n%s'% path) self.set_cache('borders', {}, force = force) cached = self._cache['borders'] if self.get_param('memory') == 'store': File = np.load(path) if path.split('.')[-1] == 'npz': for name in File.files: cached[int(name[name.rfind('_')+1:])]= File[name] else: for i, line in enumerate(File): cached[i] = line else: raise NotImplementedError() def loadProp(self, sniptype = ['raw', 'filtered'], path = None, force=0): if path is None: path = self.parent.home + self.parent.name + '_' + self.name + \ '_prop_' if not isinstance(sniptype, list): sniptype = [str(sniptype)] for sntp in sniptype: p = path + sntp+'.npy' File = np.load(p) if not self._cache.has_key('properties'): self._cache['properties'] = {} self._cache['properties'][sntp] = File def loadMask(self, path = None, force =0): if path is None: path = self.parent.home + self.parent.name + '_' + self.name + \ '_mask'+'.npy' File = np.load(path) self._cache['mask'] = File def loadLasso(self, path = None, force =0): import os if path is None: path = self.parent.home + self.parent.name + '_' + self.name + \ '_lasso'+'.npz' if os.path.isfile(path): File = np.load(path) self._cache['lasso'] = dict([(i, File[i]) for i in File.files]) def all_val(self, sniptype, list_sweep = None, groupbysweep = False, keepMasked = False): if list_sweep is None: list_sweep = range(self.numSweeps()) def _getDataToPlot(self, prop, sniptype, keepMasked): if prop.split('_')[0] == 'PCA': if not use_mdp: print 'mdp is not installed' return indPCA = prop.split('_')[1] data= self.PCA(sniptype=sniptype)[:,indPCA] else: props = self.get_param('props') indprop = props.index(prop) data = self._getFilterArray(sniptype)[:,indprop] if not keepMasked: mask = self._mask() data = data[mask] return data def prop_hist(self, fig, prop = 'props', sniptype = 'raw', keepMasked = False, **kwargs): fig.clear() ax = fig.add_subplot(111) if prop == 'props': data = self._getFilterArray(sniptype) if not keepMasked: data = data[self._mask(),:] labels = self.get_param('props') elif prop == 'PCA': if not use_mdp: print 'mdp is not installed' return labels = ['PCA_'+str(i) for i in range(len(self.get_param('props')))] data = self.PCA(sniptype) if not keepMasked: data = data[self._mask(),:] else: labels = prop data = None for i,p in enumerate(prop): out = self._getDataToPlot(p, sniptype, keepMasked) if data is None: data = np.zeros((out.size, len(prop))) data[:,i] = out out = ax.hist(data, label = labels, **kwargs) fig.canvas.draw() return out def select_snip(self, sniptype, prop, comp, value, keepMasked = True): allsnip = self._getSnip(range(self.numSpikes(keepMasked = True)), sniptype) p = self._getDataToPlot(prop, sniptype, keepMasked) toKeep = p >= value if not comp: toKeep = np.invert(toKeep) return allsnip[toKeep,:] def plot_selectedsnip(self, fig, sniptype, prop=None, comp=None, value= None, keepMasked = True, maxnum = 5000, **kwargs): if any([i is None for i in [prop, comp, value]]): snip = self._getSnip(range(self.numSpikes(keepMasked = True)), sniptype) if not keepMasked: snip = snip[self._mask(),:] else: snip = self.select_snip(sniptype,prop,comp, value, keepMasked) totnum = snip.shape[0] fig.clear() ax = fig.add_subplot(111) if snip.shape[0]> maxnum: snip = snip[:maxnum,:] ax.plot(snip.T, **kwargs) mean = snip.mean(axis = 0) ax.plot(mean, 'r') ax.set_title('%s snippets of %s\n(%s/%s plotted)'%(sniptype, self.name, snip.shape[0],totnum )) fig.canvas.draw() return snip, mean def prop_plot(self, figure, propx= 'min', propy = 'max', sniptype = 'raw', clear = True, keepMasked = False, **kwargs): print 'ploting properties in %s'%self.name self._fig = figure self._sniptype = sniptype self._keepMasked = keepMasked if clear: self._fig.clear() ax = self._fig.add_subplot(111) ax.set_xlabel(propx) ax.set_ylabel(propy) X = self._getDataToPlot(propx, sniptype, keepMasked) Y = self._getDataToPlot(propy, sniptype, keepMasked) if not kwargs.has_key('marker'): kwargs['marker']='.' ax.plot(X, Y, 'k',ls = '', picker = 5, label = '_nolegend_', **kwargs) ax.set_title('Properties of spikes from %s \n%s spikes plotted'%( self.name, X.size)) self._fig.canvas.mpl_connect('pick_event', self._picked) self._last_event = None self._fig.canvas.draw() self._temp = None return X, Y def _picked(self, event): if self._last_event is not None: if self._last_event.mouseevent is event.mouseevent: return line = self._last_event.artist line.set_mfc('k') line.set_zorder(1) self._last_event = event line = self._last_event.artist line.set_zorder(0) i = event.ind[0] x = np.array([line.get_xdata()[i]]) y = np.array([line.get_ydata()[i]]) if self._temp is None: self._temp, = self._fig.axes[0].plot(x, y, 'yo', ms = 10, alpha = .5) self._temp.set_zorder(2) self._temp.set_label('Spike %s'%i) else: self._temp.set_xdata(x) self._temp.set_ydata(y) self._temp.set_label('Spike %s'%i) self._fig.axes[0].legend((line, self._temp),(line.get_label(), self._temp.get_label()), loc = 2) self._fig.canvas.draw() ax = self._fig.add_axes([0.6,0.6,0.25,0.25], facecolor = 'none') ax.clear() index_sweep, index_spike = self.findOriginFromIndex(i, keepMasked = self._keepMasked) ax.set_title('Spike %s (%s in sweep %s)'%(i, index_spike, index_sweep)) ax.set_xlabel('index') ax.set_ylabel(self._sniptype + ' snippet') if not self._keepMasked: i = self._findNotMaskedFromMaskedIndex(i) snip = self._getSnip(i, self._sniptype) line = ax.plot(snip.T, 'k') self._fig.canvas.draw() def multi_prop_plot(self, fig, prop, sniptype = 'raw', keepMasked = False, **kwargs): """Plot all prop[i] vs prop[j] combination in one figure Use prop = PCA to plot all PCA components prop = props to plot all other properties""" if prop == 'PCA': prop = ['PCA_'+str(i) for i in range(len(self.get_param("props"))-2)] elif prop == 'props': prop = self.get_param('props') size = len(prop) fig.clear() data = [self._getDataToPlot(keepMasked=keepMasked,sniptype=sniptype, prop = i) for i in prop] axes =[] for line in range(1,size): datay = data[line] axes.append([fig.add_subplot(size-1,size-1,(line-1)*(size-1)+1+i) for i in range(line)]) [ax.plot(data[j],datay, **kwargs) for j,ax in enumerate(axes[-1])] [ax[0].set_ylabel(prop[i+1]) for i, ax in enumerate(axes)] [ax.set_xlabel(prop[i]) for i, ax in enumerate(axes[-1])] fig.canvas.draw() return fig def _lasso(self): if not self._cache.has_key('lasso'): self._cache['lasso'] = {} return self._cache['lasso'] def lasso_prop_plot(self, figure, propx= 'min', propy = 'max', sniptype = 'raw', clear = True, keepMasked = False, **kwargs): print 'ploting properties in %s'%self.name if clear: figure.clear() ax = figure.add_subplot(111) ax.set_xlabel(propx) ax.set_ylabel(propy) X = self._getDataToPlot(propx, sniptype, keepMasked) Y = self._getDataToPlot(propy, sniptype, keepMasked) self._lassoMask = self._mask() self._lassoManager = LassoManager(ax, np.vstack((X,Y)).T, sizes = (5,), **kwargs) ax.set_xlim(X.min(),X.max()) ax.set_ylim(Y.min(),Y.max()) figure.canvas.draw() return X, Y def keep_in_lasso(self, name = None): isinside = self._lassoManager.isinside mask = np.array(self._lassoMask) mask[mask] = np.logical_and(mask[mask], isinside) Lasso = self._lasso() if name is None: n = 0 while 'lasso_%s'%n in Lasso.keys(): n+=1 name = 'lasso_%s'%n self._cache['lasso'][name] = mask if self._cache.has_key('mask'): self.set_cache('mask', np.logical_and(self._mask(), mask), force = 1) return mask def exlude_lasso(self, name =None): isinside = self._lassoManager.isinside mask = np.array(self._lassoMask) mask[mask] = np.logical_and(mask[mask], np.logical_not(isinside)) Lasso = self._lasso() if name is None: n = 0 while 'lasso_%s'%n in Lasso.keys(): n+=1 name = 'lasso_%s'%n self._cache['lasso'][name] = mask if self._cache.has_key('mask'): self.set_cache('mask', np.logical_and(self._mask(), mask), force = 1) return mask class CreateUniv: def __init__(self, node): self.node = node def __call__(self): a = self.node.in_chanNames() a.append('None') return a
python
import json import codecs import tldextract urls = dict() duplicates = list() with codecs.open('/home/rkapoor/Documents/ISI/data/Network/intersecting-urls.jsonl', 'r', 'utf-8') as f: for line in f: doc = json.loads(line) url = doc['url'] if url in urls: urls[url] += 1 else: urls[url] = 1 # if url == 'http://flint.backpage.com/FemaleEscorts/unforgettable-new-staff-new-attitude/17626747': # duplicates.append(doc['name']) # for key, value in sorted(urls.items(), key=lambda x:x[1]): # if value > 10: # print("%s: %s" % (key, value)) # print("SIZE:",len(urls)) # # for key, value in urls.items(): # # if(value > 1): # # print(key,":",value) # print(duplicates) DATA_FILE = "/home/rkapoor/Documents/ISI/data/DIG-Nov-Eval/gt-v02-all.jl" def safe_copy_simple(json_from, json_to, field): if field in json_from and json_from[field] is not None: json_to[field] = json_from[field] def safe_copy(json_from, json_to, field): try: if field in json_from and json_from[field] is not None: distinct_values = set() for values in json_from[field]: results = values['result'] if type(results) is list: for result in results: distinct_values.add(result['value']) elif 'value' in results: distinct_values.add(results['value']) json_to[field] = list(distinct_values) except Exception: print(json_from[field]) def extract_data(json_document, outfile): extracted_document = {} extracted_document['high_precision'] = {} extracted_document['high_recall'] = {} safe_copy_simple(json_document, extracted_document, 'url') if 'high_precision' in json_document: safe_copy(json_document['high_precision'], extracted_document['high_precision'], 'city') safe_copy(json_document['high_precision'], extracted_document['high_precision'], 'name') safe_copy(json_document['high_precision'], extracted_document['high_precision'], 'phone') if 'high_recall' in json_document: safe_copy(json_document['high_recall'], extracted_document['high_recall'], 'city') safe_copy(json_document['high_recall'], extracted_document['high_recall'], 'name') safe_copy(json_document['high_recall'], extracted_document['high_recall'], 'phone') outfile.write(json.dumps(extracted_document)) outfile.write('\n') output_file_base = "intersecting.jl" count = 0 domain = 'backpage.com' outfile = codecs.open(domain+'/'+output_file_base, 'w', 'utf-8') with codecs.open(DATA_FILE, 'r', 'utf-8') as infile: for line in infile: count += 1 json_document = json.loads(line) if json_document['url'] in urls: extract_data(json_document, outfile) if(count % 100 == 0): print(count) outfile.close()
python
import subprocess from uuid import uuid1 import yaml from jinja2 import Environment, PackageLoader from sanetrain.workflow_builder import generate_training def test_generate_training(): env = Environment(loader=PackageLoader('sanetrain', 'templates')) template = env.get_template('test_template.py') with open('tests/test_model.yaml') as f: config = yaml.load(f, Loader=yaml.SafeLoader) train_script = generate_training(template, config) fname = 'tests/%s.py' % uuid1().hex with open(fname, 'w+') as fout: fout.write(train_script) subprocess.run(["python", fname])
python
#!/usr/bin/python import time fact_arr = [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] class memoize: def __init__(self, function): self.function = function self.memoized = {} def __call__(self, *args): try: return self.memoized[args[0]] except KeyError: self.memoized[args[0]] = self.function(*args) return self.memoized[args[0]] def fact(n): if n in (0, 1): return 1 return reduce(lambda x,y: x*y, xrange(2, n+1)) def sumofact(n): total = 0 while n > 0: total += fact_arr[n%10] n /= 10 return total #total = 0 #for d in str(n): # total += fact(int(d)) #return total #return reduce(lambda x,y: fact(int(x))+fact(int(y)), str(n)) @memoize def lochelper(n, s): if n in s: return 0 s.add(n) return 1 + lochelper(sumofact(n), s) def lengthochain(n): return lochelper(n, set([])) if __name__ == '__main__': #t = time.clock() count = 0 for i in xrange(1000000): if lengthochain(i) == 60: count += 1 print count #print time.clock()-t
python
#! /usr/bin/env python def condense(w): return w[0] + str(len(w)-2) + w[-1:] def expand(w): length = int(w[1:-1]) + 2 for word in get_words(length): if word.startswith(w[0]) and word.endswith(w[-1:]): print word def get_words(length, filename = '/usr/share/dict/words'): return (word.strip() for word in open(filename) if len(word) == length) if __name__ == "__main__": print "Words With Numbers In Them Thing" while(True): w = raw_input("Word: ") print "Condensed: " print ' '.join(condense(p) for p in w.split()) try: print "Expanded: " expand(w) except: print "Could not expand " + w
python
# # # Use: genKey(5) # => "xmckl" # # import math, random def genKey(n): alphabet = list("abcdefghijklmnopqrstuvwxyz") out = "" for i in range(n): out += alphabet[math.floor(random.randint(0, 25))] return out
python
linha1 = input().split(" ") linha2 = input().split(" ") cod1, qtde1, valor1 = linha1 cod2, qtde2, valor2 = linha2 total = (int(qtde1) * float(valor1)) + (int(qtde2) * float(valor2)) print("VALOR A PAGAR: R$ %0.2f" %total)
python
# https://github.com/dannysteenman/aws-toolbox # # License: MIT # # This script will set a CloudWatch Logs Retention Policy to x number of days for all log groups in the region that you exported in your cli. import argparse import boto3 cloudwatch = boto3.client("logs") def get_cloudwatch_log_groups(): kwargs = {"limit": 50} cloudwatch_log_groups = [] while True: # Paginate response = cloudwatch.describe_log_groups(**kwargs) cloudwatch_log_groups += [log_group for log_group in response["logGroups"]] if "NextToken" in response: kwargs["NextToken"] = response["NextToken"] else: break return cloudwatch_log_groups def cloudwatch_set_retention(args): retention = vars(args)["retention"] cloudwatch_log_groups = get_cloudwatch_log_groups() for group in cloudwatch_log_groups: print(group) if "retentionInDays" not in group or group["retentionInDays"] != retention: print(f"Retention needs to be updated for: {group['logGroupName']}") cloudwatch.put_retention_policy( logGroupName=group["logGroupName"], retentionInDays=retention ) else: print( f"CloudWatch Loggroup: {group['logGroupName']} already has the specified retention of {group['retentionInDays']} days." ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Set a retention in days for all your CloudWatch Logs in a single region." ) parser.add_argument( "retention", metavar="RETENTION", type=int, choices=[ 1, 3, 5, 7, 14, 30, 60, 90, 120, 150, 180, 365, 400, 545, 731, 1827, 3653, ], help="Enter the retention in days for the CloudWatch Logs.", ) args = parser.parse_args() cloudwatch_set_retention(args)
python
from backend.util.crypto_hash import crypto_hash HEX_TO_BINARY_CONVERSION_TABLE ={ '0': '0000', '1': '0001', '2': '0010', '3': '0011', '4': '0100', '5': '0101', '6': '0110', '7': '0111', '8': '1000', '9': '1001', 'a': '1010', 'b': '1011', 'c': '1100', 'd': '1101', 'e': '1110', 'f': '1111' } def hex_to_binary(hex_string): binary_string = '' for character in hex_string: binary_string += HEX_TO_BINARY_CONVERSION_TABLE[character] return binary_string def main(): number = 451 hex_number = hex(number)[2:] print(f'hex_number: {hex_number}') binary_number = hex_to_binary(hex_number) print(f'binary_number: {binary_number}') original_number = int(binary_number,2) print(f'original_number: {original_number}') hex_to_binary_crypto_hash = hex_to_binary(crypto_hash('test-data')) print(f'hex_to_binary_crypto_hash: {hex_to_binary_crypto_hash}') if __name__ =='__main__': main()
python
import numpy as np from numpy.linalg import inv, cholesky from scipy.stats import norm, rankdata from synthpop.method import NormMethod, smooth class NormRankMethod(NormMethod): # Adapted from norm by carrying out regression on Z scores from ranks # predicting new Z scores and then transforming back def fit(self, X_df, y_df): X_df, y_df = self.prepare_dfs(X_df=X_df, y_df=y_df, normalise_num_cols=True, one_hot_cat_cols=True) y_real_min, y_real_max = np.min(y_df), np.max(y_df) self.n_rows, n_cols = X_df.shape X = X_df.to_numpy() y = y_df.to_numpy() z = norm.ppf(rankdata(y).astype(int) / (self.n_rows + 1)) self.norm.fit(X, z) residuals = z - self.norm.predict(X) if self.proper: # looks like proper is not working quite yet as it produces negative values for a strictly possitive column # Draws values of beta and sigma for Bayesian linear regression synthesis of y given x according to Rubin p.167 # https://link.springer.com/article/10.1007/BF02924688 self.sigma = np.sqrt(np.sum(residuals**2) / np.random.chisquare(self.n_rows - n_cols)) # NOTE: I don't like the use of inv() V = inv(np.matmul(X.T, X)) self.norm.coef_ += np.matmul(cholesky((V + V.T) / 2), np.random.normal(scale=self.sigma, size=n_cols)) else: self.sigma = np.sqrt(np.sum(residuals**2) / (self.n_rows - n_cols - 1)) if self.smoothing: y = smooth(self.dtype, y, y_real_min, y_real_max) self.y_sorted = np.sort(y) def predict(self, X_test_df): X_test_df, _ = self.prepare_dfs(X_df=X_test_df, normalise_num_cols=True, one_hot_cat_cols=True, fit=False) n_test_rows = len(X_test_df) X_test = X_test_df.to_numpy() z_pred = self.norm.predict(X_test) + np.random.normal(scale=self.sigma, size=n_test_rows) y_pred_indices = (norm.pdf(z_pred) * (self.n_rows + 1)).astype(int) y_pred_indices = np.clip(y_pred_indices, 1, self.n_rows) y_pred = self.y_sorted[y_pred_indices] return y_pred
python
from caty.core.spectypes import UNDEFINED from caty.core.facility import Facility, AccessManager class MongoHandlerBase(Facility): am = AccessManager()
python
nome=input('digite seu nome completo =') nomeup=nome.upper() nomelo=nome.lower() nomese=nome.strip() dividido=nome.split() print('em maiusculas = {}'.format(nomeup.strip())) print('em minusculas = {}'.format(nomelo.strip())) print('o seu nome tem {} letras'.format(len(nomese)-nomese.count(' '))) print('o seu primeiro nome tem {}'.format(len(dividido[0])))
python
from flask import render_template, request from sqlalchemy import desc from app.proto import bp from app.models import Share @bp.route('/', methods=['GET', 'POST']) @bp.route('/index', methods=['GET', 'POST']) def index(): user_id = request.args.get('user_id') shares = Share.query.filter_by(user_id=user_id).order_by(desc(Share.timestamp)).all() return render_template('index.html', user_id=user_id, shares=shares) @bp.route('/register', methods=['GET', 'POST']) def register(): return render_template('register.html') @bp.route('/login', methods=['GET', 'POST']) def login(): return render_template('login.html')
python
import ProblemFileHandler as handler import OJTemplate # 生成一个题目文件 # 第一种方法:problem_text_file + test_cases_file text_file1 = '../resources/OJ/demo_problem1_text.txt' test_cases_file1 = '../resources/OJ/demo_problem1_test_cases.txt' output_file1 = '../resources/OJ/Problems/Problem1.plm' handler.generate_problem(problem_text_file=text_file1, test_cases_file=test_cases_file1, output_file=output_file1, overwrite=True) # 第二种方法:problem_text_file + standard_answer_func + test_inputs # 注意此时test_cases_file必须为None(默认) text_file2 = '../resources/OJ/demo_problem2_text.txt' answer_func = OJTemplate.standard_answer inputs = OJTemplate.test_inputs output_file2 = '../resources/OJ/Problems/Problem2.plm' handler.generate_problem(problem_text_file=text_file2, standard_answer_func=answer_func, test_inputs=inputs, output_file=output_file2, overwrite=True) # 读取Problem文件(.plm),返回包含'text'和'test_cases'两个key的字典 problem_dict1 = handler.load_problem_file(output_file1) problem_dict2 = handler.load_problem_file(output_file2) print(problem_dict1) print(problem_dict2)
python
import random import os import time import server import discord import ctypes import server from discord.ext import commands from cogs.musiccog import Music from cogs.funcog import Fun find_opus = ctypes.util.find_library('opus') discord.opus.load_opus(find_opus) TOKEN = os.getenv("DISCORD_TOKEN") # Silence useless bug reports messages bot = commands.Bot(command_prefix='!') bot.add_cog(Music(bot)) bot.add_cog(Fun(bot)) @bot.event async def on_ready(): print('Logged in as:\n{0.user.name}\n{0.user.id}'.format(bot)) server.server() bot.run(TOKEN)
python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch.nn as nn from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.layers.non_local import init_nl_module from .generalized_rcnn import GeneralizedRCNN import torch from maskrcnn_benchmark.layers import CoordConv2d from torch.nn.parameter import Parameter _DETECTION_META_ARCHITECTURES = {"GeneralizedRCNN": GeneralizedRCNN} def build_detection_model(cfg): # Define and load the original model meta_arch = _DETECTION_META_ARCHITECTURES[cfg.MODEL.META_ARCHITECTURE] model = meta_arch(cfg) dummy_checkpointer = DetectronCheckpointer(cfg, model) dummy_checkpointer.load(cfg.MODEL.WEIGHT) if cfg.MODEL.BACKBONE.COORDS: module_dict = { "input": {"parent": model.backbone.body.stem, "name": "conv1"}, "rpn_input": {"parent": model.rpn.head, "name": "conv"}} # "rpn_input": {"parent": model.rpn.head, "name": "conv"}} # } for identifier in cfg.MODEL.BACKBONE.COORDS: if identifier not in module_dict.keys(): continue parent_module = module_dict[identifier]["parent"] name = module_dict[identifier]["name"] old_conv = getattr(parent_module, name) out_ch, in_ch, h, w = old_conv.weight.shape new_weight = torch.cat([old_conv.weight, torch.zeros([out_ch, 2, h, w], dtype=torch.float32)], dim=1) kwargs = {"with_r": False} for key in ["in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups"]: kwargs[key] = getattr(old_conv, key) if old_conv.bias is None: kwargs["bias"] = False else: kwargs["bias"] = True # https://discuss.pytorch.org/t/how-can-i-modify-certain-layers-weight-and-bias/11638/3 new_conv = CoordConv2d(**kwargs) new_conv.conv.state_dict()["weight"].copy_(new_weight) if old_conv.bias is not None: new_conv.conv.state_dict()["bias"].copy_(old_conv.bias.data) delattr(parent_module, name) setattr(parent_module, name, new_conv) print("Replace", old_conv, "to", new_conv) # insert non-local block just before the last block of res4 (layer3) # if cfg.MODEL.BACKBONE.NON_LOCAL != "": # nl_block_type, _ = cfg.MODEL.BACKBONE.NON_LOCAL.split("_") # layer3_list = list(model.backbone.body.layer3.children()) # in_ch = list(layer3_list[-1].children())[0].in_channels # layer3_list.insert( # len(layer3_list) - 1, # init_nl_module(nl_block_type, in_ch, int(in_ch / 2))) # model.backbone.body.layer3 = nn.Sequential(*layer3_list) return model
python
# Copyright 2017 ForgeFlow S.L. # Copyright 2018 Carlos Dauden - Tecnativa <[email protected]> # License AGPL-3.0 or later (https://www.gnu.org/licenses/lgpl.html). from odoo import _, api, fields, models from odoo.exceptions import ValidationError class AccountPaymentMode(models.Model): _inherit = "account.payment.mode" show_bank_account = fields.Selection( selection=[ ("full", "Full"), ("first", "First n chars"), ("last", "Last n chars"), ("no", "No"), ], string="Show bank account", default="full", help="Show in invoices partial or full bank account number", ) show_bank_account_from_journal = fields.Boolean(string="Bank account from journals") show_bank_account_chars = fields.Integer( string="# of digits for customer bank account" ) @api.constrains("company_id") def account_invoice_company_constrains(self): for mode in self: if ( self.env["account.move"] .sudo() .search( [ ("payment_mode_id", "=", mode.id), ("company_id", "!=", mode.company_id.id), ], limit=1, ) ): raise ValidationError( _( "You cannot change the Company. There exists " "at least one Journal Entry with this Payment Mode, " "already assigned to another Company." ) ) @api.constrains("company_id") def account_move_line_company_constrains(self): for mode in self: if ( self.env["account.move.line"] .sudo() .search( [ ("payment_mode_id", "=", mode.id), ("company_id", "!=", mode.company_id.id), ], limit=1, ) ): raise ValidationError( _( "You cannot change the Company. There exists " "at least one Journal Item with this Payment Mode, " "already assigned to another Company." ) )
python
''' FUNCTIONS Functions are pieces(block) of code that does something. '''
python
from classifiers.base_stance_classifier import BaseStanceClassifier from classifiers.random_stance_classifier import RandomStanceClassifier from classifiers.greedy_stance_classifier import MSTStanceClassifier from classifiers.maxcut_stance_classifier import MaxcutStanceClassifier
python
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # import threading import time from opentelemetry.context import attach, detach, set_value from opentelemetry.sdk.metrics import Meter from opentelemetry.sdk.metrics.export import MetricsExportResult from azure_monitor.sdk.auto_collection.live_metrics import utils from azure_monitor.sdk.auto_collection.live_metrics.exporter import ( LiveMetricsExporter, ) from azure_monitor.sdk.auto_collection.live_metrics.sender import ( LiveMetricsSender, ) from azure_monitor.sdk.auto_collection.metrics_span_processor import ( AzureMetricsSpanProcessor, ) # Interval for failures threshold reached in seconds FALLBACK_INTERVAL = 60.0 # Ping interval for succesful requests in seconds PING_INTERVAL = 5.0 # Post interval for succesful requests in seconds POST_INTERVAL = 1.0 # Main process interval (Manager) in seconds MAIN_INTERVAL = 2.0 class LiveMetricsManager(threading.Thread): """Live Metrics Manager It will start Live Metrics process when instantiated, responsible for switching between ping and post actions. """ daemon = True def __init__( self, meter: Meter, instrumentation_key: str, span_processor: AzureMetricsSpanProcessor, ): super().__init__() self.thread_event = threading.Event() self.interval = MAIN_INTERVAL self._instrumentation_key = instrumentation_key self._is_user_subscribed = False self._meter = meter self._span_processor = span_processor self._exporter = LiveMetricsExporter( self._instrumentation_key, self._span_processor ) self._post = None self._ping = LiveMetricsPing(self._instrumentation_key) self.start() def run(self): self.check_if_user_is_subscribed() while not self.thread_event.wait(self.interval): self.check_if_user_is_subscribed() def check_if_user_is_subscribed(self): if self._ping: if self._ping.is_user_subscribed: # Switch to Post self._ping.shutdown() self._ping = None self._span_processor.is_collecting_documents = True self._post = LiveMetricsPost( self._meter, self._exporter, self._instrumentation_key ) if self._post: if not self._post.is_user_subscribed: # Switch to Ping self._span_processor.is_collecting_documents = False self._post.shutdown() self._post = None self._ping = LiveMetricsPing(self._instrumentation_key) def shutdown(self): if self._ping: self._ping.shutdown() if self._post: self._post.shutdown() self.thread_event.set() class LiveMetricsPing(threading.Thread): """Ping to Live Metrics service Ping to determine if user is subscribed and live metrics need to be send. """ daemon = True def __init__(self, instrumentation_key): super().__init__() self.instrumentation_key = instrumentation_key self.thread_event = threading.Event() self.interval = PING_INTERVAL self.is_user_subscribed = False self.last_send_succeeded = False self.last_request_success_time = 0 self.sender = LiveMetricsSender(self.instrumentation_key) self.start() def run(self): self.ping() while not self.thread_event.wait(self.interval): self.ping() def ping(self): envelope = utils.create_metric_envelope(self.instrumentation_key) token = attach(set_value("suppress_instrumentation", True)) response = self.sender.ping(envelope) detach(token) if response.ok: if not self.last_send_succeeded: self.interval = PING_INTERVAL self.last_send_succeeded = True self.last_request_success_time = time.time() if ( response.headers.get(utils.LIVE_METRICS_SUBSCRIBED_HEADER) == "true" ): self.is_user_subscribed = True else: self.last_send_succeeded = False if time.time() >= self.last_request_success_time + 60: self.interval = FALLBACK_INTERVAL def shutdown(self): self.thread_event.set() class LiveMetricsPost(threading.Thread): """Post to Live Metrics service Post to send live metrics data when user is subscribed. """ daemon = True def __init__(self, meter, exporter, instrumentation_key): super().__init__() self.instrumentation_key = instrumentation_key self.meter = meter self.thread_event = threading.Event() self.interval = POST_INTERVAL self.is_user_subscribed = True self.last_send_succeeded = False self.last_request_success_time = time.time() self.exporter = exporter self.start() def run(self): self.post() while not self.thread_event.wait(self.interval): self.post() def post(self): self.meter.collect() token = attach(set_value("suppress_instrumentation", True)) result = self.exporter.export(self.meter.batcher.checkpoint_set()) detach(token) self.meter.batcher.finished_collection() if result == MetricsExportResult.SUCCESS: self.last_request_success_time = time.time() if not self.last_send_succeeded: self.interval = POST_INTERVAL self.last_send_succeeded = True if not self.exporter.subscribed: self.is_user_subscribed = False else: self.last_send_succeeded = False if time.time() >= self.last_request_success_time + 20: self.interval = FALLBACK_INTERVAL def shutdown(self): self.thread_event.set()
python
from art import logo import os clear = lambda: os. system('cls') def new_bidder(): global greater_bid bidder = input("What's your name?: ") bid = int(input("What's your bid?: ")) new_bidder_dict = {"Bidder": bidder, "Bid": bid} if bid > greater_bid["Bid"]: greater_bid = new_bidder_dict bids_dictionary[len(bids_dictionary)+1] = new_bidder_dict print(logo) bids_dictionary = {} greater_bid = {"Bidder": "Start", "Bid": 0} while True: new_bidder() other_bidder = input("Are there any other bidders? Type 'yes' or 'no': ") clear() if other_bidder == "no": break print(f'The winner is {greater_bid["Bidder"]} with a bid of ${greater_bid["Bid"]}.')
python
from geocoder import main from geocoder import STARTTIME, NUM_DOCS import re import os from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from datetime import datetime #for testing time of script execution RE_URLS = 'http[s]?:\/\/(?:[a-z]|[0-9]|[$-_@.&amp;+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+' RE_AT_MENTIONS = '(?:@[\w_]+)' RE_HASHTAGS = '#' RE_EXTRA_WHITE_SPACE = '\s+' RE_INSIDE_PARENTHESIS = '\([^)]*\)' RE_SPECIAL_CHARS = "\.|\,|\\|\r|\n|\s|\(|\)|\"|\[|\]|\{|\}|\;|\:|\.|\°|\-|\/|\&|\(|\)|\||\*" #preserve question marks and exclamation marks for Vader EMOJI_PATTERN = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) "]+", flags=re.UNICODE) EMOJI_PATTERN2 = re.compile(u'(' u'\ud83c[\udf00-\udfff]|' u'\ud83d[\udc00-\ude4f\ude80-\udeff]|' u'[\u2600-\u26FF\u2700-\u27BF])+', re.UNICODE) class CleanText(): """ Clean the text of the tweet as well as the user description (for later analysis). Preserving things like emojis and exclamation marks for Vader Sentiment Analyzer, since it is able to interpret meaning / emotional value from these symbols. """ def clean_tweet(self, text): text = re.sub(RE_URLS, " ", str(text)) text = re.sub(RE_AT_MENTIONS, " ", text) text = re.sub(RE_HASHTAGS," ", text) text = re.sub(RE_SPECIAL_CHARS," ",text) text = text.strip() text = re.sub(RE_EXTRA_WHITE_SPACE, " ", text) return text def clean_user(self, text): # print(f'\n\nemoji pattern type: {type(EMOJI_PATTERN)}\n\n') text = re.sub(RE_URLS, " ", str(text)) text = re.sub(RE_AT_MENTIONS, " ", text) text = re.sub(RE_INSIDE_PARENTHESIS, " ", text) text = re.sub(RE_HASHTAGS," ", text) text = re.sub(EMOJI_PATTERN, " ", text) text = re.sub(EMOJI_PATTERN2, " ", text) text = re.sub(RE_SPECIAL_CHARS," ",text) text = text.strip() text = re.sub(RE_EXTRA_WHITE_SPACE, " ", text) return text class Analyzer(): def __init__(self, df): self.df = df def analyze_sentiment(self): self.df['text'] = self.df['text'].apply(CleanText().clean_tweet) self.df['user_description'] = self.df['user_description'].apply(CleanText().clean_user) all_tweets = list(self.df['text']) analyzer = SentimentIntensityAnalyzer() """ Can also include sentiment 'sub-scores' (i.e. negative, neutral, and positive), but for now only including composite sentiment. Others are commented out. """ # neg_sent = [] # neu_sent = [] # pos_sent = [] comp_sent = [] for tw in all_tweets: vs = analyzer.polarity_scores(tw) # neg_sent.append(vs['neg']) # neu_sent.append(vs['neu']) # pos_sent.append(vs['pos']) comp_sent.append(vs['compound']) # self.df['neg. sentiment'] = neg_sent # self.df['neu. sentiment'] = neu_sent # self.df['pos. sentiment'] = pos_sent self.df['comp. sentiment'] = comp_sent self.df['strong positive'] = self.df['comp. sentiment'].map(lambda x: 1 if x >= 0.8 else 0) self.df['strong negative'] = self.df['comp. sentiment'].map(lambda x: 1 if x <= -0.8 else 0) """CONSIDER FILTERING OUT SENTIMENTS THAT FALL WITHIN 'MIDDLE RANGE' (e.g. anything between -0.5 -- 0.5 ) """ """Will eventually return the resulting df, but for now printing it to csv for testing""" test_filename = 'sandbox/live_demo.csv' if os.path.exists(test_filename): print(f'\n\n{test_filename} already exists; removing it first\n') os.remove(test_filename) with open(test_filename, 'w') as f: self.df.to_csv(f, header=True) print("Successfully printed to csv!\n\n") return self.df if __name__ == '__main__': print(f"\n\nNumber of documents currently in DB: {NUM_DOCS}\n") df = main() print(f'Passing dataframe to the sentiment analyzer...') sentiment_analyzer = Analyzer(df) sentiment_analyzer.analyze_sentiment() print(f"Time to completion: {datetime.now() - STARTTIME}")
python
#Making List l l = [11, 12, 13, 14] #Using append function on list l.append(50) l.append(60) print("list after adding 50 & 60:- ", l) #Using remove function on list l.remove(11) l.remove(13) print("list after removing 11 & 13:- ", l) #Using the sort function with their parameters changed #Implementing sorting in a list l.sort(reverse=False) print("list after sortinng in ascending order:- ",l) l.sort(reverse=True) print("list after sorting in descending order:- ",l) #Implementing searching in a list if 13 in l: print("yes 13 is in the list") else: print("no 13 is not in the list") print("no of elements list have:- ",len(l)) #Implementing traversing in a list s = 0 oddsum = 0 evensum = 0 primesum = 0 for i in l: s = s + i if i % 2 == 0: evensum = evensum + i else: oddsum = oddsum + i count = 0 j = 1 while( j < len(l)): if l[j] % j == 0: count = count + 1 j = j+1 if count == 2: primesum = primesum + l[i] print("sum of elements in the list:- ",s) print("sum of odd elements in the list:- ",oddsum) print("sum of even elements in the list:- ",evensum) print("sum of prime elements in the list:- ",primesum) #Using clear function to delete all the data in list #Implementing delete functionality in a list by using predefined functions l.clear() print("list after using clear function:- ",l) del l
python
budget_wanted = float(input()) total = 0 money_full = False command = input() while command != "Party!": drink_name = command number_of_drinks = int(input()) price = int(len(drink_name)) drinks_price = price * number_of_drinks if drinks_price % 2 == 1: drinks_price -= drinks_price * 25 / 100 else: drinks_price = drinks_price total += drinks_price if total >= budget_wanted: print(f"Target acquired.") money_full = True break command = input() if command == "Party!" and total < budget_wanted: diff = budget_wanted - total print(f"We need {diff:.2f} leva more.") if money_full or command == "Party!": print(f"Club income - {total:.2f} leva.")
python
#!/usr/bin/env python # coding:utf-8 #DESCRICAO #Esse script foi desenvolvido para facilitar a forma como cadastramos, #alteramos ou excluímos os principais ativos em dois ou mais servidores zabbix. #A ideia é utilizar esse script para ambientes onde os eventos não estão sincronizados, #permitindo uma ótima facilidade e agilidade nesses processos. #A integracao e realizada via Zabbix API # Author: Vinicius Trancoso Bitencourt - <http:github/viniciustbitencourt> # # FileName: altera_hosts.py import sys from ConfigParser import SafeConfigParser from zabbix_api import ZabbixAPI #Arquivo de configuracao com os parametros conf.ini config = SafeConfigParser() config.read('conf.ini') #pega os valores do arquivo de configuracao host01 = config.get('zabbix01', 'hostname') usr01 = config.get('zabbix01', 'user') pwd01 = config.get('zabbix01', 'passwd') #pega os valores do arquivo de configuração host02 = config.get('zabbix02', 'hostname') usr02 = config.get('zabbix02', 'user') pwd02 = config.get('zabbix02', 'passwd') #API Zabbix com a URL de cada Servidor zapi = ZabbixAPI(host01) zapi2 = ZabbixAPI(host02) #Faz login com a API Zabbix zapi.login(usr01, pwd01) zapi2.login(usr02, pwd02) class AlteraHosts(object): pass ##TELA DE EXIBICAO print "***************************************************************************" print "*********** SCRIPT - ALTERA HOSTS EM DOIS SERVIDORES ZABBIX ***************" print "* FAVOR INSERIR TODOS OS DADOS CORRETAMENTE! *" print "***************************************************************************" print'1 - PARA ALTERAR O NOME DO EQUIPAMENTO' print'2 - PARA ALTERAR O IP DO EQUIPAMENTO' print'3 - PARA SAIR DESSA TELA !' #Pega opcao selecionada a = raw_input('Digite a Opção desejada: ') if a == '1': host = raw_input('Digite o NOME do HOST: ') rename = raw_input('Digite o nome que deseja alterar: ') #Funcao valida os dados digitados def valida_dados(host, rename): if host == "": print 'Digite corretamente o NOME do HOST corretamente!' sys.exit(0) elif rename == "": print 'Digite o NOME do HOST que deseja alterar corretamente!' sys.exit(0) valida_dados(host, rename) #Zabbix API - Altera no Zabbix for x in zapi.host.get({'filter': {'name': host}}): host_id = x['hostid'] altera = zapi.host.update({'hostid': host_id, 'host': rename, 'status': 0}) #Zabbix API - Altera no Zabbix for y in zapi2.host.get({'filter': {'name':host}}): host_id2 = y['hostid'] altera2 = zapi2.host.update({'hostid': host_id2, 'host': rename, 'status': 0}) print ('Equipamento - ' + host + ' - alterado NOME para: ' + rename) elif a == '2': host = raw_input('Digite o NOME do equipamento: ') rename = raw_input('Digite o IP que deseja alterar: ') #Funcao valida os dados digitados def valida_dados(host, rename): if host == "": print 'Digite corretamente o NOME do equipamento corretamente!' sys.exit(0) elif rename == "": print 'Digite o IP que deseja alterar corretamente!' sys.exit(0) valida_dados(host, rename) #Zabbix API - Altera IP Zabbix Primeiro Servidor for x in zapi.host.get({'filter': {'name': host}}): host_id = x['hostid'] for x in zapi.hostinterface.get({'hostids': host_id}): host_interface = x['interfaceid'] alteraip = zapi.hostinterface.update({'interfaceid': host_interface, 'ip': rename}) #Zabbix API - Altera IP Zabbix Segundo Servidor for y in zapi2.host.get({'filter': {'name': host}}): host_id2 = y['hostid'] for y in zapi2.hostinterface.get({'hostids': host_id2}): host_interface2 = y['interfaceid'] alteraip2 = zapi2.hostinterface.update({'interfaceid': host_interface2, 'ip': rename}) print ('Equipamento - ' + host +' - alterado IP para: '+ rename) else: print 'OPÇÃO INVALIDA - FIM!!' sys.exit(0)
python
# ToggleButton examples. import os from ocempgui.widgets import * from ocempgui.widgets.Constants import * def _create_vframe (text): frame = VFrame (Label (text)) frame.spacing = 5 frame.align = ALIGN_LEFT return frame def create_button_view (): states = ("STATE_NORMAL", "STATE_ENTERED", "STATE_ACTIVE", "STATE_INSENSITIVE") table = Table (2, 3) table.spacing = 5 table.set_row_align (0, ALIGN_TOP) table.set_row_align (1, ALIGN_TOP) # Frame with the states. frm_states = _create_vframe ("States") for i, s in enumerate (states): btn = ToggleButton (s) if STATE_TYPES[i] == STATE_INSENSITIVE: btn.sensitive = False else: btn.state = STATE_TYPES[i] frm_states.add_child (btn) table.add_child (0, 0, frm_states) # Frame with different padding. frm_padding = _create_vframe ("Padding") for i in xrange (5): btn = ToggleButton ("Padding: %dpx" % (i * 2)) btn.padding = i * 2 frm_padding.add_child (btn) table.add_child (0, 1, frm_padding) # Mnemonics. frm_mnemonic = _create_vframe ("Mnemonics") btn = ToggleButton ("#Simple Mnemonic") btn2 = ToggleButton ("#Activate using <ALT><Underlined Key>") frm_mnemonic.add_child (btn, btn2) table.add_child (0, 2, frm_mnemonic) # Multiline labeled buttons frm_multiline = _create_vframe ("Multiline labels") strings = ("Single lined ToggleButton", "Two lines on\na ToggleButton", "Two lines with a\n#mnemonic") for s in strings: button = ToggleButton (s) button.child.multiline = True frm_multiline.add_child (button) table.add_child (1, 0, frm_multiline) # Empty buttons with different minimum sizes frm_empty = _create_vframe ("Empty Buttons") for i in xrange (5): button = ToggleButton () button.minsize = (20 * i, 10 * i) frm_empty.add_child (button) table.add_child (1, 2, frm_empty) return table if __name__ == "__main__": # Initialize the drawing window. re = Renderer () re.create_screen (530, 400) re.title = "ToggleButton examples" re.color = (234, 228, 223) re.add_widget (create_button_view ()) # Start the main rendering loop. re.start ()
python
from sys import stdin def print_karte(karte): for i in range(len(karte)): liste = [str(x) for x in karte[i]] print(''.join(liste)) zeilen = [] max_x = 0 max_y = 0 for line in stdin: eingabe = line.strip() eingabe = eingabe.split(" ") eins = [int(x) for x in eingabe[0].split(",")] zwei = [int(x) for x in eingabe[2].split(",")] #if eins[0] == zwei[0] or eins[1] == zwei[1]: zeilen.append([eins[0], eins[1], zwei[0], zwei[1]]) if eins[0] > max_x: max_x = eins[0] if eins[1] > max_y: max_y = eins[1] if zwei[0] > max_x: max_x = zwei[0] if zwei[1] > max_y: max_y = zwei[1] max_x += 1 max_y += 1 karte = [["."]*max_x for x in range(max_y)] for zeile in zeilen: if zeile[0] == zeile[2]: if zeile[1] < zeile[3]: incrementer = 1 zahl = zeile[3]+1 else: incrementer = -1 zahl = zeile[3]-1 for i in range(zeile[1],zahl,incrementer): if karte[i][zeile[0]] == ".": karte[i][zeile[0]] = 1 else: karte[i][zeile[0]] += 1 elif zeile[1] == zeile[3]: if zeile[0] < zeile[2]: incrementer = 1 zahl = zeile[2]+1 else: incrementer = -1 zahl = zeile[2]-1 for i in range(zeile[0],zahl,incrementer): if karte[zeile[1]][i] == ".": karte[zeile[1]][i] = 1 else: karte[zeile[1]][i] += 1 else: pos_x = zeile[0] pos_y = zeile[1] if karte[pos_y][pos_x] == ".": karte[pos_y][pos_x] = 1 else: karte[pos_y][pos_x] += 1 if zeile[0] < zeile[2]: pos_x += 1 else: pos_x -= 1 if zeile[1] < zeile[3]: pos_y += 1 else: pos_y -= 1 while True: if karte[pos_y][pos_x] == ".": karte[pos_y][pos_x] = 1 else: karte[pos_y][pos_x] += 1 if zeile[0] < zeile[2]: pos_x += 1 else: pos_x -= 1 if zeile[1] < zeile[3]: pos_y += 1 else: pos_y -= 1 if zeile[0] < zeile[2]: if pos_x > zeile[2]: break else: if pos_x < zeile[2]: break gefahren_punkte = 0 for i in range(max_y): for ii in range(max_x): if karte[i][ii] != ".": if karte[i][ii] > 1: gefahren_punkte += 1 print(gefahren_punkte)
python
from django.apps import apps from .models import State, Workflow def create_builtin_workflows(sender, **kwargs): """ Receiver function to create a simple and a complex workflow. It is connected to the signal django.db.models.signals.post_migrate during app loading. """ if Workflow.objects.exists(): # If there is at least one workflow, then do nothing. return workflow_1 = Workflow(name="Simple Workflow") workflow_1.save(skip_autoupdate=True) state_1_1 = State( name="submitted", workflow=workflow_1, allow_create_poll=True, allow_support=True, allow_submitter_edit=True, ) state_1_1.save(skip_autoupdate=True) state_1_2 = State( name="accepted", workflow=workflow_1, recommendation_label="Acceptance", css_class="success", merge_amendment_into_final=1, ) state_1_2.save(skip_autoupdate=True) state_1_3 = State( name="rejected", workflow=workflow_1, recommendation_label="Rejection", css_class="danger", merge_amendment_into_final=-1, ) state_1_3.save(skip_autoupdate=True) state_1_4 = State( name="not decided", workflow=workflow_1, recommendation_label="No decision", css_class="default", merge_amendment_into_final=-1, ) state_1_4.save(skip_autoupdate=True) state_1_1.next_states.add(state_1_2, state_1_3, state_1_4) workflow_1.first_state = state_1_1 workflow_1.save(skip_autoupdate=True) workflow_2 = Workflow(name="Complex Workflow") workflow_2.save(skip_autoupdate=True) state_2_1 = State( name="published", workflow=workflow_2, allow_support=True, allow_submitter_edit=True, dont_set_identifier=True, ) state_2_1.save(skip_autoupdate=True) state_2_2 = State( name="permitted", workflow=workflow_2, recommendation_label="Permission", allow_create_poll=True, allow_submitter_edit=True, ) state_2_2.save(skip_autoupdate=True) state_2_3 = State( name="accepted", workflow=workflow_2, recommendation_label="Acceptance", css_class="success", merge_amendment_into_final=1, ) state_2_3.save(skip_autoupdate=True) state_2_4 = State( name="rejected", workflow=workflow_2, recommendation_label="Rejection", css_class="danger", merge_amendment_into_final=-1, ) state_2_4.save(skip_autoupdate=True) state_2_5 = State( name="withdrawed", workflow=workflow_2, css_class="default", merge_amendment_into_final=-1, ) state_2_5.save(skip_autoupdate=True) state_2_6 = State( name="adjourned", workflow=workflow_2, recommendation_label="Adjournment", css_class="default", merge_amendment_into_final=-1, ) state_2_6.save(skip_autoupdate=True) state_2_7 = State( name="not concerned", workflow=workflow_2, recommendation_label="No concernment", css_class="default", merge_amendment_into_final=-1, ) state_2_7.save(skip_autoupdate=True) state_2_8 = State( name="refered to committee", workflow=workflow_2, recommendation_label="Referral to committee", css_class="default", merge_amendment_into_final=-1, ) state_2_8.save(skip_autoupdate=True) state_2_9 = State( name="needs review", workflow=workflow_2, css_class="default", merge_amendment_into_final=-1, ) state_2_9.save(skip_autoupdate=True) state_2_10 = State( name="rejected (not authorized)", workflow=workflow_2, recommendation_label="Rejection (not authorized)", css_class="default", merge_amendment_into_final=-1, ) state_2_10.save(skip_autoupdate=True) state_2_1.next_states.add(state_2_2, state_2_5, state_2_10) state_2_2.next_states.add( state_2_3, state_2_4, state_2_5, state_2_6, state_2_7, state_2_8, state_2_9 ) workflow_2.first_state = state_2_1 workflow_2.save(skip_autoupdate=True) def get_permission_change_data(sender, permissions, **kwargs): """ Yields all necessary collections if 'motions.can_see' permission changes. """ motions_app = apps.get_app_config(app_label="motions") for permission in permissions: # There could be only one 'motions.can_see' and then we want to return data. if ( permission.content_type.app_label == motions_app.label and permission.codename == "can_see" ): yield from motions_app.get_startup_elements()
python
import os from codecs import open from setuptools import setup import suit_rq here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: long_description = f.read() os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-suit-rq', version=suit_rq.__version__, author='Ryan Senkbeil', author_email='[email protected]', description='Support the django-rq admin when using django-suit', long_description=long_description, url='https://github.com/gsmke/django-suit-rq', license='BSD', packages=['suit_rq'], zip_safe=False, include_package_data=True, platforms='any', install_requires=[ 'django-suit >=0.2.15, <0.3.0', 'django-rq >=0.8.0, <=1.2.0', ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Topic :: Internet :: WWW/HTTP', ] )
python
import os import wget ## Verify if directory exists. Create if it doesnt exist. def check_dir(file_path): directory = os.path.dirname(file_path) if not os.path.exists(directory): os.makedirs(directory) ## Download source Files from urls def download_files(urls, out_path='downloads/', silent=False): for url in urls: check_dir(out_path) print('Downloading', url) wget.download(url, out=out_path) print() # os.system('wget %s' % url) if __name__ == "__main__": urls=['https://gamepedia.cursecdn.com/darkestdungeon_gamepedia/c/ce/Vo_narr_tut_firstdungeon.ogg'] download_files(urls,'testing/') # check_dir('testing/')
python
"""Morse code handling""" from configparser import ConfigParser import os from pathlib import Path import sys import warnings import numpy as np import sklearn.cluster import sklearn.exceptions from .io import read_wave from .processing import smoothed_power, squared_signal class MorseCode: """Morse code Attributes: data (np.ndarray): 1D binary array, representing morse code in time """ _morse_to_char: dict = None def __init__(self, data: np.ndarray, sample_rate: int = None): """Initialize code with binary data Args: data (np.ndarray): 1D binary array, representing morse code in time sample_rate (np.ndarray): Audio sampling rate. Default: None. """ self.data = data self.sample_rate = sample_rate @classmethod def from_wavfile(cls, file: os.PathLike) -> "MorseCode": """Construct from wave file - Read in wave file - Calculate signal envelope (smoothing of 0.1 seconds) - Apply squaring (threshold: 50% of max smoothed data value) Args: file (os.PathLike): path to input WAV file Returns: MorseCode: class instance, with 1D binary input data """ sample_rate, wave = read_wave(file) window_size = int(0.01 * sample_rate) envelope = smoothed_power(wave, window_size) square_data = squared_signal(envelope) return cls(square_data) def decode(self) -> str: """Decode data Returns: str: Morse code content, in plain language Raises: UserWarning: dash/dot separation cannot be made unambiguosly """ on_samples, off_samples = self._on_off_samples() dash_dot_chars = self._dash_dot_characters(on_samples) char_break_idx, word_space_idx = self._break_spaces(off_samples) morse_words = self._morse_words(dash_dot_chars, char_break_idx, word_space_idx) return self._translate(morse_words) @classmethod @property def morse_to_char(cls) -> dict[str, str]: """Morse to character dictionary Read mappings from morse.ini and store them to class variable. Later, return directly from this class variable. Returns: dict[str, str]: Mapping of morse character string to letter """ if cls._morse_to_char is not None: return cls._morse_to_char config = ConfigParser() config.read(Path(__file__).parent / "morse.ini") chars = config["characters"] cls._morse_to_char = {chars[key]: key.upper() for key in chars} return cls._morse_to_char def _on_off_samples(self) -> tuple[np.ndarray, np.ndarray]: """Calculate signal ON/OFF durations Locate rising and falling edges in square wave at self.data. Calculate number of samples in each ON / OFF period. Returns: tuple[np.ndarray, np.ndarray]: on_samples, off_samples. Note that in addition to character and word spaces, off_samples also includes inter-character spaces. """ if len(self.data) == 0: return np.array([], dtype="int"), np.array([], dtype="int") square_diff = np.diff(self.data) rising_idx = np.nonzero(square_diff == 1)[0] falling_idx = np.nonzero(square_diff == -1)[0] # Case: data starts with ON - it started one sample before index 0 if falling_idx[0] < rising_idx[0]: rising_idx = np.insert(rising_idx, 0, -1) # Case: data ends with ON if rising_idx[-1] > falling_idx[-1]: falling_idx = np.insert(falling_idx, len(falling_idx), len(self.data) - 1) on_samples = falling_idx - rising_idx off_samples = rising_idx[1:] - falling_idx[: len(falling_idx) - 1] return on_samples, off_samples def _dash_dot_characters(self, on_samples: np.ndarray) -> np.ndarray: """Convert array of ON sample lengths to array of dashes and dots NOTE: It is expected, that the signal contains exactly two distinct lengths - those for a dash and for a dot. If the keying speed varies, or either character does not exist, then this method will fail. As a circumvention, 20 WPM is used as a guess Args: on_samples (np.ndarray): number of samples in each ON period in the signal. This comes from `MorseCode._on_off_samples`. Raises: UserWarning: if there are no distinct clusters (only dashes or dots in the input), and self.sample_rate is not set; thus no guess can be made on dash/dot. Returns: np.ndarray: array of dashes and dots, of object (string) type """ if len(on_samples) == 0: return np.array([], dtype="str") n_clusters = min(2, len(on_samples)) column_vec = on_samples.reshape(-1, 1) # Suppress ConvergenceWarning on too low distinct clusters; fix it later with warnings.catch_warnings(): warnings.simplefilter("ignore") clustering = sklearn.cluster.KMeans( n_clusters=n_clusters, random_state=0 ).fit(column_vec) distinct_clusters = len(set(clustering.labels_)) # It is not clear whether dash or dot -- use (20 wpm dot length) * 1.5 as limit if distinct_clusters == 1: if self.sample_rate is None: raise UserWarning("Cannot determine whether dash or dot") sys.stderr.write("WARNING: too little data, guessing based on 20 wpm") sample_length = clustering.cluster_centers_[0] is_dot = sample_length / (self.sample_rate * 60 / 1000) < 1.5 dot_label = 0 if is_dot else 1 dash_label = 1 if is_dot else 0 else: cluster_sort_idx = np.argsort( clustering.cluster_centers_.flatten() ).tolist() dot_label = cluster_sort_idx.index(0) dash_label = cluster_sort_idx.index(1) dash_dot_map = {dot_label: ".", dash_label: "-"} dash_dot_characters = np.vectorize(dash_dot_map.get)(clustering.labels_) return dash_dot_characters @staticmethod def _break_spaces(off_samples: np.ndarray) -> tuple[np.ndarray, np.ndarray]: """Convert array of OFF sample lengths to indices for char/word breaks NOTE: It is expected, that the signal contains exactly three distinct space lengths: inter-character space, character space and word space. If the keying speed varies, or word spaces do not exist, then this method will fail. Args: off_samples (np.ndarray): number of samples in each OFF period in the signal. This comes from `MorseCode._on_off_samples`. Returns: tuple[np.ndarray, np.ndarray]: indices for breaking dash/dot character array from `MorseCode._dash_dot_characters`. First array contains positions, where character breaks should be. Second array contains positions, where word spaces should be in the list of already resolved morse characters. """ if len(off_samples) == 0: return np.array([], dtype="int"), np.array([], dtype="int") n_clusters = min(3, len(off_samples)) column_vec = off_samples.reshape(-1, 1) # Suppress ConvergenceWarning on too low distinct clusters; fix it later with warnings.catch_warnings(): warnings.simplefilter("ignore") clustering = sklearn.cluster.KMeans( n_clusters=n_clusters, random_state=0 ).fit(column_vec) distinct_clusters = len(set(clustering.labels_)) cluster_sort_idx = np.argsort(clustering.cluster_centers_.flatten()).tolist() # This index breaks dashes/dots into characters intra_space_label = cluster_sort_idx.index(0) char_break_idx = np.nonzero(clustering.labels_ != intra_space_label)[0] + 1 char_or_word_space_arr = clustering.labels_[ clustering.labels_ != intra_space_label ] # This index breaks character list into word lists if distinct_clusters == 3: word_space_label = cluster_sort_idx.index(2) word_space_idx = ( np.nonzero(char_or_word_space_arr == word_space_label)[0] + 1 ) else: word_space_idx = np.array([], dtype="int") return char_break_idx, word_space_idx @staticmethod def _morse_words( raw_dash_dot: np.ndarray, char_break_idx: np.ndarray, word_space_idx: np.ndarray, ) -> list[list[str]]: """Convert character and space arrays to list of morse words Args: raw_dash_dot (np.ndarray): Numpy array of strings, contains '.' and '-' characters, as processed from self.data char_break_idx (np.ndarray): Index of locations in raw_dash_dot, where a character space or word space would exist. The array raw_dash_dot is first broken into characters with this index. word_space_idx (np.ndarray): Index for breaking character array into words. Contains locations of word spaces between natural language characters. Returns: list[list[str]]: Words in morse code. A single word is a list of dash-dot character combinations. """ char_start_idx = [0] + (char_break_idx).tolist() char_end_idx = (char_break_idx).tolist() + [len(raw_dash_dot)] morse_characters = [ "".join(raw_dash_dot[i:j].tolist()) for i, j in zip(char_start_idx, char_end_idx) ] word_start_idx = [0] + (word_space_idx).tolist() word_end_idx = (word_space_idx).tolist() + [len(morse_characters)] return [morse_characters[i:j] for i, j in zip(word_start_idx, word_end_idx)] def _translate(self, morse_words: list[list[str]]) -> str: """Translate list of morse-coded words to string Args: morse_words (list[list[str]]): List of words, having list of characters. The characters are in morse-coded dash/dot form, e.g. '.--' for 'w' Returns: str: Message contained in input """ char_dict = self.morse_to_char char_lists = [[char_dict.get(j, "") for j in i] for i in morse_words] return " ".join(["".join(word) for word in char_lists])
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from sklearn.preprocessing import StandardScaler X = [[0, 15], [1, -10]] # scale data according to computed scaling values print(StandardScaler().fit(X).transform(X))
python
#!/usr/bin/env python3 #Author: Stefan Toman if __name__ == '__main__': print("Hello, World!")
python
from l_00_inventory import inventory import json with open("m02_files/l_00_inventory.json", "w") as json_out: json_out.write(json.dumps(inventory)) with open("m02_files/l_00_inventory.json", "r") as json_in: json_inventory = json_in.read() print("l_00_inventory.json file:", json_inventory) print("\njson pretty version:") print(json.dumps(json.loads(json_inventory), indent=4))
python
import datetime import time as samay try: from pac import voice_io except ModuleNotFoundError: import voice_io def date(): x = datetime.datetime.now().strftime("%d/%m/%Y") voice_io.show(f"Today's date is {x} (DD/MM/YYYY)") def time(): #x=datetime.datetime.now().strftime("%H:%M:%S") localtime = samay.localtime() x = samay.strftime("%I:%M:%S %p", localtime) voice_io.show(f"The current time is {x}") def year(): x=datetime.datetime.now().strftime("%Y") voice_io.show(f"The current year is {x}") def month(): x=datetime.datetime.now().strftime("%B") voice_io.show(f"The current month is {x}") def day(): x=datetime.datetime.now().strftime("%A") voice_io.show(f"Today it is a {x}")
python
from settings import settings from office365.graph.graph_client import GraphClient def get_token_for_user(auth_ctx): """ Acquire token via user credentials :type auth_ctx: adal.AuthenticationContext """ token = auth_ctx.acquire_token_with_username_password( 'https://graph.microsoft.com', settings['user_credentials']['username'], settings['user_credentials']['password'], settings['client_credentials']['client_id']) return token def enum_folders_and_files(root_folder): drive_items = root_folder.children client.load(drive_items) client.execute_query() for drive_item in drive_items: item_type = drive_item.folder.is_server_object_null and "file" or "folder" print("Type: {0} Name: {1}".format(item_type, drive_item.name)) if not drive_item.folder.is_server_object_null and drive_item.folder.childCount > 0: enum_folders_and_files(drive_item) client = GraphClient(settings['tenant'], get_token_for_user) root = client.me.drive.root enum_folders_and_files(root)
python
import os import pytest import responses from ewhs.client import EwhsClient @pytest.fixture(scope="function") def client(): client = EwhsClient("test", "testpassword", "9fc05c82-0552-4ca5-b588-c64d77f117a9", "ewhs") return client @pytest.fixture(scope="session") def authenticated_client(): client = EwhsClient("test", "testpassword", "9fc05c82-0552-4ca5-b588-c64d77f117a9") client.access_token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpYXQiOjE2Mzg1NDM1NzUsImV4cCI6MTYzODU0NzE3NSwicm9sZXMiOlsiUk9MRV9TQ0FOTkVSIiwiUk9MRV9EQVNIQk9BUkRfUkVBRCIsIlJPTEVfREFTSEJPQVJEX1NUQVRVUyIsIlJPTEVfU1RPQ0tfUkVBRCIsIlJPTEVfU1RPQ0tfSU1QT1JUIiwiUk9MRV9TVE9DS19FWFBPUlQiLCJST0xFX1NUT0NLSElTVE9SWV9SRUFEIiwiUk9MRV9TVE9DS0hJU1RPUllfRVhQT1JUIiwiUk9MRV9NT0RJRklDQVRJT05fUkVBRCIsIlJPTEVfTU9ESUZJQ0FUSU9OX0NSRUFURSIsIlJPTEVfTU9ESUZJQ0FUSU9OX1VQREFURSIsIlJPTEVfTU9ESUZJQ0FUSU9OX0FQUFJPVkUiLCJST0xFX01PRElGSUNBVElPTl9FWFBPUlQiLCJST0xFX1RSQU5TRkVSX1JFQUQiLCJST0xFX1RSQU5TRkVSX0NSRUFURSIsIlJPTEVfVFJBTlNGRVJfVVBEQVRFIiwiUk9MRV9UUkFOU0ZFUl9ERUxFVEUiLCJST0xFX1RSQU5TRkVSX0NBTkNFTCIsIlJPTEVfVFJBTlNGRVJfVU5IT0xEIiwiUk9MRV9UUkFOU0ZFUl9VTkFTU0lHTiIsIlJPTEVfVFJBTlNGRVJfUkVWSUVXIiwiUk9MRV9UUkFOU0ZFUl9FWFBPUlQiLCJST0xFX0FSVElDTEVfUkVBRCIsIlJPTEVfQVJUSUNMRV9DUkVBVEUiLCJST0xFX0FSVElDTEVfVVBEQVRFX0JBUkNPREVTIiwiUk9MRV9BUlRJQ0xFX1VQREFURSIsIlJPTEVfQVJUSUNMRV9ERUxFVEUiLCJST0xFX0FSVElDTEVfSU1QT1JUIiwiUk9MRV9BUlRJQ0xFX1VQREFURV9ET0NVTUVOVFMiLCJST0xFX0FSVElDTEVfRVhQT1JUIiwiUk9MRV9WQVJJQU5UX1FVQVJBTlRJTkUiLCJST0xFX1NVUFBMSUVSX1JFQUQiLCJST0xFX1NVUFBMSUVSX0NSRUFURSIsIlJPTEVfU1VQUExJRVJfVVBEQVRFIiwiUk9MRV9TVVBQTElFUl9ERUxFVEUiLCJST0xFX0lOQk9VTkRfUkVBRCIsIlJPTEVfSU5CT1VORF9DUkVBVEUiLCJST0xFX0lOQk9VTkRfVVBEQVRFIiwiUk9MRV9JTkJPVU5EX0NBTkNFTCIsIlJPTEVfSU5CT1VORF9QUk9DRVNTIiwiUk9MRV9JTkJPVU5EX0NPTVBMRVRFIiwiUk9MRV9JTkJPVU5EX0VYUE9SVCIsIlJPTEVfT1JERVJfUkVBRCIsIlJPTEVfT1JERVJfQ1JFQVRFIiwiUk9MRV9PUkRFUl9VUERBVEUiLCJST0xFX09SREVSX1VQREFURV9QUk9DRVNTSU5HIiwiUk9MRV9PUkRFUl9VUERBVEVfUEFBWkwiLCJST0xFX09SREVSX1BBUlRJQUwiLCJST0xFX09SREVSX1VOSE9MRCIsIlJPTEVfT1JERVJfQ0FOQ0VMIiwiUk9MRV9PUkRFUl9DQU5DRUxfUFJPQ0VTU0lORyIsIlJPTEVfT1JERVJfUFJPQkxFTSIsIlJPTEVfT1JERVJfRVhQT1JUIiwiUk9MRV9PUkRFUl9QUklPUklUSVpFIiwiUk9MRV9PUkRFUl9JTVBPUlQiLCJST0xFX1BJQ0tMSVNUX1JFQUQiLCJST0xFX1BJQ0tMSVNUX0VYUE9SVCIsIlJPTEVfUElDS0xJU1RfVU5BU1NJR04iLCJST0xFX1BJQ0tMSVNUX1BSSU9SSVRJWkUiLCJST0xFX1NISVBNRU5UX1JFQUQiLCJST0xFX1NISVBNRU5UX1BSSU5UIiwiUk9MRV9TSElQTUVOVF9ET1dOTE9BRCIsIlJPTEVfU0hJUE1FTlRfRVhQT1JUIiwiUk9MRV9NQUlMU0hJUE1FTlRfUkVBRCIsIlJPTEVfTUFJTFNISVBNRU5UX1VQREFURSIsIlJPTEVfTUFJTFNISVBNRU5UX1BST0NFU1MiLCJST0xFX1RSQUNLSU5HREFUQV9SRUFEIiwiUk9MRV9UUkFDS0lOR0RBVEFfVVBEQVRFIiwiUk9MRV9UUkFDS0lOR0RBVEFfREVMRVRFIiwiUk9MRV9SRVRVUk5MQUJFTF9SRUFEIiwiUk9MRV9SRVRVUk5MQUJFTF9DUkVBVEUiLCJST0xFX1JFVFVSTkxBQkVMX1VQREFURSIsIlJPTEVfUkVUVVJOTEFCRUxfQ0FOQ0VMIiwiUk9MRV9QUklOVEVSX1JFQUQiLCJST0xFX1BSSU5URVJfVVBEQVRFIiwiUk9MRV9QUklOVEVSX0NSRUFURSIsIlJPTEVfUFJJTlRFUl9ERUxFVEUiLCJST0xFX1BBQ0tJTkdUQUJMRV9SRUFEIiwiUk9MRV9QQUNLSU5HVEFCTEVfQ1JFQVRFIiwiUk9MRV9QQUNLSU5HVEFCTEVfREVMRVRFIiwiUk9MRV9QQUNLSU5HVEFCTEVfVVBEQVRFIiwiUk9MRV9QQUNLSU5HVEFCTEVfVVBEQVRFX0FERFJFU1MiLCJST0xFX1BBQ0tJTkdUQUJMRV9VUERBVEVfU0hJUFBJTkdPUFRJT04iLCJST0xFX0ZJTExJTkdfUkVBRCIsIlJPTEVfRklMTElOR19FWFBPUlQiLCJST0xFX0ZJTExJTkdfSU1QT1JUIiwiUk9MRV9DT0xMT19SRUFEIiwiUk9MRV9DT0xMT19FWFBPUlQiLCJST0xFX0NPTExPX0lNUE9SVCIsIlJPTEVfQ1VTVE9NRVJfUkVBRCIsIlJPTEVfQ1VTVE9NRVJfQ1JFQVRFIiwiUk9MRV9DVVNUT01FUl9VUERBVEUiLCJST0xFX0NVU1RPTUVSX0lNUE9SVCIsIlJPTEVfQ1VTVE9NRVJfRVhQT1JUIiwiUk9MRV9DVVNUT01FUl9ERUxFVEUiLCJST0xFX0NVU1RPTUVSVVNFUl9SRUFEIiwiUk9MRV9DVVNUT01FUlVTRVJfQ1JFQVRFIiwiUk9MRV9DVVNUT01FUlVTRVJfVVBEQVRFIiwiUk9MRV9DVVNUT01FUlVTRVJfREVMRVRFIiwiUk9MRV9DVVNUT01FUlVTRVJfRVhQT1JUIiwiUk9MRV9DVVNUT01FUlVTRVJfSU1QT1JUIiwiUk9MRV9DVVNUT01FUkdST1VQX1JFQUQiLCJST0xFX0NVU1RPTUVSR1JPVVBfQ1JFQVRFIiwiUk9MRV9DVVNUT01FUkdST1VQX1VQREFURSIsIlJPTEVfQ1VTVE9NRVJHUk9VUF9ERUxFVEUiLCJST0xFX0FQSV9SRUFEIiwiUk9MRV9BUElfQ1JFQVRFIiwiUk9MRV9BUElfVVBEQVRFIiwiUk9MRV9BUElfREVMRVRFIiwiUk9MRV9SRVNUUklDVEVESVBfUkVBRCIsIlJPTEVfUkVTVFJJQ1RFRElQX1VQREFURSIsIlJPTEVfUkVTVFJJQ1RFRElQX0RFTEVURSIsIlJPTEVfRU1QTE9ZRUVfUkVBRCIsIlJPTEVfRU1QTE9ZRUVfQ1JFQVRFIiwiUk9MRV9FTVBMT1lFRV9VUERBVEUiLCJST0xFX0VNUExPWUVFX0RFTEVURSIsIlJPTEVfRU1QTE9ZRUVfRVhQT1JUIiwiUk9MRV9FTVBMT1lFRV9JTVBPUlQiLCJST0xFX0VNUExPWUVFR1JPVVBfUkVBRCIsIlJPTEVfRU1QTE9ZRUVHUk9VUF9DUkVBVEUiLCJST0xFX0VNUExPWUVFR1JPVVBfVVBEQVRFIiwiUk9MRV9FTVBMT1lFRUdST1VQX0RFTEVURSIsIlJPTEVfTE9DQVRJT05fUkVBRCIsIlJPTEVfTE9DQVRJT05fQ1JFQVRFIiwiUk9MRV9MT0NBVElPTl9VUERBVEUiLCJST0xFX0xPQ0FUSU9OX0RFTEVURSIsIlJPTEVfTE9DQVRJT05fSU1QT1JUIiwiUk9MRV9MT0NBVElPTl9FWFBPUlQiLCJST0xFX0xPQ0FUSU9OX1FVQVJBTlRJTkUiLCJST0xFX0xPQ0FUSU9OR1JPVVBfUkVBRCIsIlJPTEVfTE9DQVRJT05HUk9VUF9DUkVBVEUiLCJST0xFX0xPQ0FUSU9OR1JPVVBfVVBEQVRFIiwiUk9MRV9MT0NBVElPTkdST1VQX0RFTEVURSIsIlJPTEVfV0FSRUhPVVNFU19SRUFEIiwiUk9MRV9aT05FX1JFQUQiLCJST0xFX1pPTkVfQ1JFQVRFIiwiUk9MRV9aT05FX1VQREFURSIsIlJPTEVfWk9ORV9ERUxFVEUiLCJST0xFX1pPTkVfRVhQT1JUIiwiUk9MRV9aT05FX0lNUE9SVCIsIlJPTEVfUFJJTlRfQkFSQ09ERSIsIlJPTEVfU0hJUFBJTkdNQVRSSVhfUkVBRCIsIlJPTEVfU0hJUFBJTkdNQVRSSVhfVVBEQVRFIiwiUk9MRV9CVVNJTkVTU1JVTEVNQVRSSVhfUkVBRCIsIlJPTEVfQlVTSU5FU1NSVUxFTUFUUklYX1VQREFURSIsIlJPTEVfU0hJUFBJTkdNRVRIT0RfUkVBRCIsIlJPTEVfU0hJUFBJTkdNRVRIT0RfQ1JFQVRFIiwiUk9MRV9TSElQUElOR01FVEhPRF9VUERBVEUiLCJST0xFX0VYUE9SVF9SRUFEX0ZJTkFOQ0lBTCIsIlJPTEVfRVhQT1JUX1JFQURfQklMTElORyIsIlJPTEVfSVNTVUVfUkVBRCIsIlJPTEVfSVNTVUVfQVNTSUdOIiwiUk9MRV9JU1NVRV9DUkVBVEVfQ09NTUVOVCIsIlJPTEVfSVNTVUVfUkVBRF9DT01NRU5UIiwiUk9MRV9TSElQUElOR1RFTVBMQVRFX1JFQUQiLCJST0xFX1NISVBQSU5HVEVNUExBVEVfVVBEQVRFIiwiUk9MRV9DT05UUkFDVF9SRUFEIiwiUk9MRV9DT05UUkFDVF9DUkVBVEUiLCJST0xFX0NPTlRSQUNUX1VQREFURSIsIlJPTEVfQ1VTVE9NRVJQUklDRV9SRUFEIiwiUk9MRV9DVVNUT01FUlBSSUNFX1VQREFURSIsIlJPTEVfU0VSSUFMTlVNQkVSX1JFQUQiLCJST0xFX1NFUklBTE5VTUJFUl9FWFBPUlQiLCJST0xFX1NISVBQSU5HU09GVFdBUkVfUkVBRCIsIlJPTEVfU0hJUFBJTkdTT0ZUV0FSRV9FWFBPUlQiLCJST0xFX01JRERMRVdBUkVfUkVBRCIsIlJPTEVfSU5TVFJVQ1RJT05TX09WRVJWSUVXX1JFQUQiLCJST0xFX0lOU1RSVUNUSU9OU19ET1dOTE9BRF9BUEtfUkVBRCIsIlJPTEVfSU5TVFJVQ1RJT05TX1NFTEVDVF9XTVNfQVBQX1JFQUQiLCJST0xFX1dFQiIsIlJPTEVfVVNFUiJdLCJ1c2VybmFtZSI6ImZlcnJ5IiwidXNlcl9pZCI6IjlmZDNlZmYwLWZiMjgtMTFlNS05YzMyLWJjNWZmNGY3YWVmNCIsInVzZXJfdHlwZSI6ImVtcGxveWVlIiwiY3VzdG9tZXJfaWRzIjpbIjUzYjVhNTQzLTEyOWEtNDAzYy05YTZlLTNkOWM1MjVmZmE1YiIsImYxOTA5MDBhLWViZmQtNDI2Mi05ZGQ2LTA1ZGRkNjE3MjFiMCIsIjhjZTEwNWYwLWZjMWQtNDIzYS1iMDY2LWQ4NGM1ZWE1N2NhYSIsIjQ4ZTc3YTdhLWUwMzMtNDcxOS05MTkxLTc4YTlhMWI0NjQ5MiJdLCJyZXF1ZXN0X2lwIjoiMTkyLjE2OC4xMjguMSJ9.crcZ-2i9u1u5i3RBhV6tCMo-hrdeuQ91yDDVGT9k6iAFbF48k65RQbVPVkrIwZx9wN6hCvl6mMOOGkiLxFtweSi4nt_hGZeCsuieypQHZxf3MCdwo0zKtb0M8NmBB--D7_AvHWqcz6IEgoXMUtYLOkab4BPVdZlHmegbf7qRtNZlaKRVXPqgn3ReiPVvX_TGdK74VEXZzWPStoTxJwVkFvCFV9RFfYb_b9BgfTaSDJAYGFmSE-QxbW1K4TQBgUjuUAQSRh-y5diw4nuY9VJgcJ2LAD6ZX19do1zFCsc8zq2KUoTppPV9xO8WpOdxlXKGLu3rwfvLV9clhrc9ogmEAYF7UDcJkwgL5nHEfmsAD602T6_NtMjwP1dhTL9OeRz6oJwNRUb3hSe6uG7hvhlE7X-O8GwCafyWX8vgGT0D1NPh5ehwFsh8oc57M-W5PczDwZwQJ99jdHcAFRcsEKMJpKrs1G2LYAqDMS38i6IbZghPqN88Cnc6cpPfWVI6rs1BPZ4DxRBkQkXLWdamAVck6mCpW1QOA-YnNbmLn16d88PeMhzt7TN_jJfi0VAf2BK1DEbdy2sdSoqm3kCWqSzG11hTDLjvbpvJ0rCby7kz4c47qyxzxhyYOCBD4Rns9bNRW2xbE4BSJ0eKMeacaaWNQX0LeUaQy2Q6qPCVPO-hxAo" client.refresh_token = "91aff30e4f3bb35b923892e525bd848ab88cf68d9669b5ccf07ae0262934b43a67cf7df89ef6213ddbb47c400c1b2c32e4d9178790caa1420e28a94b892addb3" client.expires_at = 2638547175 return client class ImprovedRequestsMock(responses.RequestsMock): """Wrapper adding a few shorthands to responses.RequestMock.""" def get(self, url, filename, status=200): """Setup a mock response for a GET request.""" body = self._get_body(filename) self.add(responses.GET, url, body=body, status=status, content_type="application/json") def post(self, url, filename, status=200): """Setup a mock response for a POST request.""" body = self._get_body(filename) self.add(responses.POST, url, body=body, status=status, content_type="application/json") def delete(self, url, filename, status=204): """Setup a mock response for a DELETE request.""" body = self._get_body(filename) self.add(responses.DELETE, url, body=body, status=status, content_type="application/json") def patch(self, url, filename, status=200): """Setup a mock response for a PATCH request.""" body = self._get_body(filename) self.add(responses.PATCH, url, body=body, status=status, content_type="application/json") def _get_body(self, filename): """Read the response fixture file and return it.""" file = os.path.join(os.path.dirname(__file__), "responses", f"{filename}.json") with open(file, encoding="utf-8") as f: return f.read() @pytest.fixture def response(): """Setup the responses fixture.""" with ImprovedRequestsMock() as mock: yield mock
python
# -*- coding: utf-8 -*- """ chanjo.cli ~~~~~~~~~~~ Command line interface (console entry points). Based on Click_. .. _Click: http://click.pocoo.org/ """ from __future__ import absolute_import, unicode_literals from pkg_resources import iter_entry_points import click from . import __version__ from ._compat import text_type from .config import Config, config_file_name, markup from .store import Store @click.group() @click.option( '-c', '--config', default=config_file_name, type=click.File('w', encoding='utf-8'), help='path to config file') @click.option('--db', type=text_type, help='path/URI of the SQL database') @click.option( '-d', '--dialect', type=click.Choice(['sqlite', 'mysql']), help='type of SQL database') @click.version_option(__version__) @click.pass_context def cli(context, config, db, dialect): """Clinical sequencing coverage analysis tool.""" # avoid setting global defaults in Click options, do it below when # updating the config object context.obj = Config(config, markup=markup) # global defaults db_path = db or context.obj.get('db', 'coverage.sqlite3') db_dialect = dialect or context.obj.get('dialect', 'sqlite') context.db = Store(db_path, dialect=db_dialect) # update the context with new defaults from the config file context.default_map = context.obj # add subcommands dynamically to the CLI for entry_point in iter_entry_points('chanjo.subcommands'): cli.add_command(entry_point.load())
python