content
stringlengths
0
894k
type
stringclasses
2 values
ar = [float(i) for i in input().split()] ar_sq = [] for i in range(len(ar)): ar_sq.append(ar[i]**2) ar_sq = sorted(ar_sq) print(ar_sq[0], end = ' ') for i in range(1, len(ar_sq)): if ar_sq[i] != ar_sq[i-1]: print(ar_sq[i], end = ' ')
python
from chroniclr import window if __name__ == '__main__': window = window.AppWindow()
python
import atexit import sys import inspect import json import time from .Autocomplete import Autocomplete from .Connection import Connection, ConnectionError from .Controller import Controller, ControllerError, parse_key from .Device import (Device, DeviceError, parse_hex, parse_hsv, parse_hsv_normalized, parse_rgb, parse_rgb_normalized) from .Dialog import ask, prompt from .Sketch import Sketch, SketchError def no_controller(): if Controller.defined is False: sketches = [] for name, obj in inspect.getmembers(sys.modules['__main__'], inspect.isclass): if (obj is not Sketch) and (Sketch in inspect.getmro(obj)): sketches.append((obj, name)) num_sketches = len(sketches) if num_sketches == 0: raise SketchError('No sketches found') elif num_sketches == 1: sketch_class, sketch_name = sketches.pop() with Controller(sketch_class.config_path) as controller: controller.run_sketch(sketch_class) else: raise SketchError(f'Use Controller to run multiple sketches (found {num_sketches})') atexit.register(no_controller)
python
# pylint: disable=redefined-outer-name """ py.test dynamic configuration. For details needed to understand these tests, refer to: https://pytest.org/ http://pythontesting.net/start-here/ """ # Copyright © {{ cookiecutter.year }} {{ cookiecutter.full_name }} <{{ cookiecutter.email }}> # # ## LICENSE_SHORT ## import os import logging from pathlib import Path import pytest # Globally available fixtures @pytest.fixture(scope='session') def logger() -> logging.Logger: """Test logger instance as a fixture.""" level = os.getenv('TESTS_LOG_LEVEL', 'DEBUG') logging.basicConfig(level=getattr(logging, level)) return logging.getLogger('tests') @pytest.fixture(scope='session') def tests_dir() -> Path: """Directory where tests + data is located.""" return Path(__file__).parent @pytest.fixture(scope='session') def project_dir(tests_dir) -> Path: """ Root directory of the project. """ return tests_dir.parent.parent @pytest.fixture(scope='session') def build_dir(project_dir) -> Path: """Build directory for dynamic data (created if missing).""" result = project_dir / "build" result.mkdir(exist_ok=True) return result
python
import subprocess import codecs goal_goals = [] #txt_dirs = ['ted_originals/', 'ted_transcripts/'] #txt_dirs = ['orig_lower/'] txt_dirs = ['trans_preprocessed/', 'orig_preprocessed/'] for txt_dir in txt_dirs: with codecs.open('goal_goals.txt') as goal_goals_in: for line in goal_goals_in: if line[-1] == '\n': line = line[:-1] goal_goals.append((line.split(' ')[0],int(line.split(' ')[1]))) for myfile,number in goal_goals: with codecs.open('TestMaryamTexts.m','r','utf-8') as mat_in: mat = mat_in.read() mat = mat.replace('<filename_placeholder>',txt_dir + myfile.split("/")[-1]) mat = mat.replace('<number_placeholder>', '10') #str(number)) with codecs.open('TestMaryamTexts2.m','w','utf-8') as mat_out: mat_out.write(mat) subprocess.call("touch W/2", shell=True) subprocess.call("touch W/1", shell=True) subprocess.call("matlab -r \"try;run('TestMaryamTexts2.m');catch;end;quit;\"", shell=True) subprocess.call("mv W/1 " + txt_dir + "habibi75_1/" + myfile.split("/")[-1], shell=True) subprocess.call("mv W/2 " + txt_dir + "habibi75_2/" + myfile.split("/")[-1], shell=True)
python
import unittest import os NOT_FATAL = 0 iverilog = "iverilog -y./tb -y./main_unit/ -o ./tb/main_unit__adc_capture__tb.vvp ./tb/main_unit__adc_capture__tb.v" vvp = "vvp ./tb/main_unit__adc_capture__tb.vvp" class adc_capture(unittest.TestCase): def test_adc_capture(self): self.assertEqual(os.system(iverilog), NOT_FATAL) self.assertEqual(os.system(vvp), NOT_FATAL) if __name__ == '__main__': unittest.main()
python
import random import math import sys import copy # import os class Bracket: def __init__(self, teams): self.numTeams = 1 # self.numTeams = len(teams) self.teams = list(teams) self.maxScore = len(max(["Round "]+teams, key=len)) self.numRounds = int(math.ceil(math.log(self.numTeams, 2)) + 1) self.totalNumTeams = int(2**math.ceil(math.log(self.numTeams, 2))) self.totalTeams = self.addTeams() self.lineup = ["bye" if "-" in str(x) else x for x in self.totalTeams] self.numToName() self.count = 0 self.rounds = [] for i in range(0, self.numRounds): self.rounds.append([]) for _ in range(0, 2**(self.numRounds-i-1)): self.rounds[i].append("-"*self.maxScore) self.rounds[0] = list(self.totalTeams) def numToName(self): for i in range(0, self.numTeams): self.totalTeams[self.totalTeams.index(i+1)] = self.teams[i] def shuffle(self): random.shuffle(self.teams) self.totalTeams = self.addTeams() self.numToName() self.rounds[0] = list(self.totalTeams) def update(self, rounds, teams): lowercase = [team.lower() for team in self.rounds[rounds-2]] for team in teams: try: index = lowercase.index(team.lower()) self.rounds[rounds-1][int(index/2)] = self.rounds[rounds-2][index] except: return False if "-"*self.maxScore in self.rounds[rounds-1]: return False return True def show(self): self.count = 0 self.temp = copy.deepcopy(self.rounds) self.tempLineup = list(self.lineup) sys.stdout.write("Seed ") for i in range(1, self.numRounds+1): sys.stdout.write(("Round "+str(i)).rjust(self.maxScore+3)) print "" self.recurse(self.numRounds-1, 0) def recurse(self, num, tail): if num == 0: self.count += 1 if tail == -1: print str(self.tempLineup.pop(0)).rjust(4)+self.temp[0].pop(0).rjust(self.maxScore+3)+" \\" elif tail == 1: print str(self.tempLineup.pop(0)).rjust(4)+self.temp[0].pop(0).rjust(self.maxScore+3)+" /" else: self.recurse(num-1, -1) if tail == -1: print "".rjust(4)+"".rjust(( self.maxScore+3)*num)+self.temp[num].pop(0).rjust(self.maxScore+3)+" \\" elif tail == 1: print "".rjust(4)+"".rjust((self.maxScore+3)*num)+self.temp[num].pop(0).rjust(self.maxScore+3)+" /" else: print "".rjust(4)+"".rjust((self.maxScore+3)*num)+self.temp[num].pop(0).rjust(self.maxScore+3) self.recurse(num-1, 1) def addTeams(self): x = self.numTeams teams = [1] temp = [] count = 0 for i in range(2, x+1): temp.append(i) for i in range(0, int(2**math.ceil(math.log(x, 2))-x)): temp.append("-"*self.maxScore) for _ in range(0, int(math.ceil(math.log(x, 2)))): high = max(teams) for i in range(0, len(teams)): index = teams.index(high)+1 teams.insert(index, temp[count]) high -= 1 count += 1 return teams def getNumTeams(): print "How many players?", numTeams = 2 try: x = int(numTeams) if x > 1: return x else: print "Must be at least two players" return getNumTeams() except: return getNumTeams() def getTeamNames(numTeams): teams = [] for i in range(0, numTeams): correct = False """while not correct: print "Name of player "+str(i+1)+"?", teams.append(name) correct = True""" return teams def run(): numTeams = getNumTeams() teams = getTeamNames(numTeams) bracket = Bracket(teams) bracket.shuffle() bracket.show() for i in range(2, bracket.numRounds+1): updated = False while not updated: teams = [] updated = bracket.update(i, teams) bracket.show() print "" print bracket.rounds[-1][0]+" won!"
python
import re import numpy import os import pdb ### INPUT FILES rd_folder = "../raw_data/" traits_file = rd_folder+"data_dental_master.csv" bio_file_all = rd_folder+"data_sites_IUCN_narrowA.csv" occurence_file = rd_folder+"occurence_IUCN_%s.csv" bio_legend_file = rd_folder+"bio_legend.txt" ### OUTPUT FILES pr_folder = "../prepared_data/" agg_file = pr_folder+"IUCN_%s_agg.csv" aggrnd_file = pr_folder+"IUCN_%s_agg_rounded%d.csv" bio_file = pr_folder+"IUCN_%s_bio.csv" stats_file = "../misc/IUCN_ordfam_stats.tex" ### PARAMETERS continents = ["EU", "AF", "NA", "SA"] keep_traits = ["HYP","FCT_HOD","FCT_AL","FCT_OL","FCT_SF","FCT_OT","FCT_CM"] bool_traits = ["HYP:1", "HYP:2","HYP:3","FCT_HOD:1","FCT_HOD:2","FCT_HOD:3","FCT_AL","FCT_OL","FCT_SF","FCT_OT","FCT_CM"] keep_ordfam = ["FAMILY", "ORDER"] key_species = "TAXON" NA_val = "NA" files_thres_out = [{"ext": "_nbspc3+", "thres_type": "num", "thres_side": 0, "thres_col": "NB_SPC", "thres_min": 3}] round_dgt = 3 ### FUNCTIONS def load_legend_bio(bio_legend_file): leg = {} with open(bio_legend_file) as fp: for line in fp: parts = line.strip().split("=") leg[parts[0].strip()] = parts[0].strip()+":"+parts[1].strip() return leg def load_lines_bio(bio_file, remove_vars, key_var, trans_vars={}): lines_bio = {} key_col = None sep = "," with open(bio_file) as fp: for line in fp: parts = line.strip().split(sep) if key_col is None: key_col = parts.index(key_var) keep_cols = [key_col]+[k for (k,v) in enumerate(parts) if v not in remove_vars+[key_var]] lines_bio[None] = sep.join([trans_vars.get(parts[k], parts[k]) for k in keep_cols])+"\n" else: lines_bio[parts[key_col]] = sep.join([parts[k] for k in keep_cols])+"\n" return lines_bio def load_traits(traits_file, keep_traits, bool_traits, key_species): data_traits = {} head_traits = None sep = "\t" with open(traits_file) as fp: for line in fp: parts = line.strip().split(sep) if head_traits is None: head_traits = dict([(v,k) for (k,v) in enumerate(parts)]) else: if True: values = [] for kv in bool_traits: tmp = re.match("(?P<trait>.*):(?P<val>[0-9]+)$", kv) if tmp is not None: if parts[head_traits[tmp.group("trait")]] == NA_val: print parts[head_traits[key_species]], kv, "MISSING" values.append(0) else: values.append(1*(parts[head_traits[tmp.group("trait")]] == tmp.group("val"))) else: if parts[head_traits[kv]] == NA_val: print parts[head_traits[key_species]], kv, "MISSING" values.append(0) else: values.append(int(parts[head_traits[kv]])) data_traits[parts[head_traits[key_species]]] = values # except ValueError: # print parts[head_traits[key_species]], "MISSING" return data_traits, head_traits def aggregate_traits(occurence_file, agg_file, data_traits, head_traits, bool_traits, lines_bio=None, bio_file=None): data_occurence = {} head_occurence = None sep = "," if bio_file is not None and lines_bio is not None: flb = open(bio_file, "w") else: flb = None fo = open(agg_file, "w") with open(occurence_file) as fp: for line in fp: parts = line.strip().split(sep) if head_occurence is None: head_occurence = dict([(k,v) for (k,v) in enumerate(parts)]) fo.write(",".join(["ID"]+["MEAN_%s" % t for t in bool_traits]+["NB_SPC"])+"\n") if flb is not None: flb.write(lines_bio[None]) elif lines_bio is None or parts[0] in lines_bio: try: present = [head_occurence[i] for (i,v) in enumerate(parts) if v =="1"] except ValueError: print line pdb.set_trace() data_mat = numpy.array([data_traits[p] for p in present]) if data_mat.shape[0] == 0: fo.write(",".join([parts[0]]+["0" for t in bool_traits]+["0"])+"\n") else: fo.write(",".join([parts[0]]+["%f" % t for t in data_mat.mean(axis=0)]+["%d" % data_mat.shape[0]])+"\n") if flb is not None: flb.write(lines_bio[parts[0]]) if flb is not None: flb.close() fo.close() def filter_nbspc(files_in, files_thres_out): fps = [open(file_in) for file_in in files_in] heads = [] head_lines = [] for fp in fps: head_lines.append(fp.readline()) heads.append(dict([(v,k) for (k,v) in enumerate(head_lines[-1].strip().split(","))])) checked = [] for ooo in files_thres_out: out = dict(ooo) if out["thres_side"] >= 0 and out["thres_side"] < len(heads) and out["thres_col"] in heads[out["thres_side"]]: out["colid"] = heads[out["thres_side"]][out["thres_col"]] out["fps"] = [] out["fns"] = [] ### EXCLUDE FILTER COLUMN OR NOT excl = None # out["colid"] for file_in in files_in: parts = file_in.split("_") parts[-2]+= out["ext"] fname = "_".join(parts) out["fps"].append(open(fname, "w")) out["fns"].append(fname) for li, l in enumerate(head_lines): if li == out["thres_side"]: out["fps"][li].write(",".join([p for (pi, p) in \ enumerate(l.strip().split(",")) if pi != excl])+"\n") else: # out["fps"][li].write(l) # pdb.set_trace() ## out["fps"][li].write(l.strip('\n') + ",bioA:abs_bio13-bio14,bioB:bio4_corr"+"\n") out["fps"][li].write(l.strip('\n') + ",bioA:abs_bio13-bio14"+"\n") out["count_lines"] = 0 checked.append(out) stop = False while not stop: lines = [fp.readline() for fp in fps] if numpy.prod([len(line) for line in lines]) == 0: stop = True else: for out in checked: inclus = False if out["thres_type"] == "num": v = float(lines[out["thres_side"]].split(",")[out["colid"]]) inclus = ("thres_min" not in out or v >= out["thres_min"]) and \ ("thres_max" not in out or v <= out["thres_max"]) elif out["thres_type"] == "cat": v = lines[out["thres_side"]].split(",")[heads[out["thres_side"]][out["thres_col"]]] inclus = (v == out["thres_val"]) if inclus: for li, l in enumerate(lines): if li == out["thres_side"]: out["fps"][li].write(",".join([p for (pi, p) in \ enumerate(l.strip().split(",")) if pi != excl])+"\n") else: # out["fps"][li].write(l) # pdb.set_trace() parts = l.strip().split(",") valA = abs(float(parts[heads[li]['bio13:PWetM']]) - float(parts[heads[li]['bio14:PDryM']])) # valB = float(parts[heads[li]['bio4:TSeason']]) # if valA < 232 and float(parts[heads[li]['bio7:TRngY']]) > 30: # valB *= 10 # out["fps"][li].write(l.strip('\n') + (",%d,%d" % (valA, valB)) +"\n") out["fps"][li].write(l.strip('\n') + (",%f" % valA) +"\n") out["count_lines"] += 1 for out in checked: for fp in out["fps"]: fp.close() if out["count_lines"] == 0: for fn in out["fns"]: os.remove(fn) print "EMPTY %s removed..." % (", ".join(out["fns"])) for fp in fps: fp.close() return checked def round_values(in_file, out_file, round_dgt): ### first check that no information will be lost with open(in_file) as fp: head = fp.readline().strip().split(",") cols = [i for i,p in enumerate(head) if re.match("MEAN_", p)] D = numpy.loadtxt(in_file, delimiter=",", skiprows=2, usecols=cols) print ">>> CHECK FOR LOSS OF INFO (all values should be True)" print [numpy.unique(numpy.around(numpy.unique(D[:,i]), round_dgt)).shape[0] == numpy.unique(D[:,i]).shape[0] for i in range(D.shape[1])] ### then round values fo = open(out_file, "w") head = None fmt = "%."+str(round_dgt)+"f" with open(in_file) as fp: for line in fp: parts = line.strip().split(",") if head is None: head = parts fo.write(line) elif parts[0] == "enabled_col": fo.write(line) else: for i,p in enumerate(head): if re.match("MEAN_", p): parts[i] = fmt % numpy.around(float(parts[i]), round_dgt) fo.write(",".join(parts)+"\n") def collect_all(files_in, tk, continents, suffixes, round_dgt): for suffix in suffixes: for ffi, file_in in enumerate(files_in): parts = file_in.split("_") parts[-2]+= suffix fname = "_".join(parts) fpo = open(fname % tk, "w") if ffi == 0: fname_splits = fname % (tk+"-splits") fpos = open(fname_splits, "w") head = False for continent in continents: if os.path.exists(fname % continent): with open(fname % continent) as fp: for li, line in enumerate(fp): if li == 0: if not head: if ffi == 0: fpos.write(line.strip()+",folds_split_C\n") fpos.write(",".join(["enabled_col"]+ \ ["T" for i in range(len(line.strip().split(","))-2)]+["F,F\n"])) fpo.write(line) if ffi == 0: fpo.write(",".join(["enabled_col"]+ \ ["T" for i in range(len(line.strip().split(","))-1)])+"\n") else: fpo.write(",".join(["enabled_col"]+ \ ["T" for i in range(len(line.strip().split(","))-2)])+",F\n") head = True else: if ffi == 0: fpos.write(line.strip()+",F:%s\n" % continent) fpo.write(line) if ffi == 0: fpos.close() fpo.close() parts = fname_splits.split(".") fname_rnd = ".".join(parts[:-1])+("_rounded%d." % round_dgt) + parts[-1] round_values(fname_splits, fname_rnd, round_dgt) def load_ordfam(traits_file, keep_ordfam, key_species): data_ordfam = {} head_ordfam = None sep = "\t" with open(traits_file) as fp: for line in fp: parts = line.strip().split(sep) if head_ordfam is None: head_ordfam = dict([(v,k) for (k,v) in enumerate(parts)]) else: if True: values = [] for kv in keep_ordfam: if kv == "FAMILY": for f,t in [("Galagonidae", "Galagidae"), ("Loridae", "Lorisidae"), ("Rhinoceratidae", "Rhinocerotidae")]: if parts[head_ordfam[kv]] == f: parts[head_ordfam[kv]] = t if parts[head_ordfam[kv]] == NA_val: print parts[head_ordfam[key_species]], kv, "MISSING" values.append(0) else: values.append(parts[head_ordfam[kv]]) data_ordfam[parts[head_ordfam[key_species]]] = values # except ValueError: # print parts[head_ordfam[key_species]], "MISSING" return data_ordfam, head_ordfam def aggregate_counts(occurence_file, data_ordfam, head_ordfam, keep_ordfam, lines_bio=None): data_occurence = {} head_occurence = None sep = "," counts = {} # keep_ordfam = [ss.replace("_Kari", "") for ss in keep_ordfam] for ck in [0,3]: counts[ck] = dict([("SITES",0)]+[(kk, {}) for kk in keep_ordfam]) with open(occurence_file) as fp: for line in fp: parts = line.strip().split(sep) if head_occurence is None: head_occurence = dict([(k,v) for (k,v) in enumerate(parts)]) elif lines_bio is None or parts[0] in lines_bio: try: present = [head_occurence[i] for (i,v) in enumerate(parts) if v =="1"] except ValueError: print line pdb.set_trace() nb_spc = len(present) data_mat = [data_ordfam[p] for p in present] for ck in counts.keys(): if nb_spc >= ck: counts[ck]["SITES"] += 1 for i, cs in enumerate(map(set, zip(*data_mat))): for ck in counts.keys(): if nb_spc >= ck: for cc in cs: counts[ck][keep_ordfam[i]][cc] = counts[ck][keep_ordfam[i]].get(cc, 0) + 1 return counts def make_counts_table(data_ordfam, continents, counts_all): pairs = sorted(set([(ka, kb) for (kb,ka) in data_ordfam.values()])) table = """\\begin{table}[h] \\caption{Number of sites from each continent containing taxa from the given order or family, after/before filtering out sites with fewer than three taxa.}\\label{fig:spc_counts} \\vspace{2ex} \\centering \\begin{tabular}{@{\\hspace*{3ex}}l@{\\hspace*{2ex}}ccr@{~/~}rc@{\\hspace*{2ex}}cr@{~/~}rc@{\\hspace*{2ex}}cr@{~/~}rc@{\\hspace*{2ex}}cr@{~/~}rc@{\\hspace*{3ex}}} \n\\toprule\n""" table += " & & "+ "&".join(["\\multicolumn{4}{c}{\\textsc{%s}}" % c for c in continents]) +" \\\\\n\\midrule\n" table += " & & & ".join(["Nb.\ sites" ] + ["%d & %d" % tuple([counts_all[continent][ck]["SITES"] for ck in [3,0]]) for continent in continents])+" & \\\\\n" for pi, pair in enumerate(pairs): if pi == 0 or pairs[pi-1][0] != pair[0]: table += "[0.5em]\n"+" & & & ".join(["\\textbf{\\textit{%s}}" % pair[0]] + ["%d & %d" % tuple([counts_all[continent][ck]["ORDER"].get(pair[0], 0) for ck in [3,0]]) for continent in continents])+" & \\\\\n" table += " & & & ".join(["\\textit{%s}" % pair[1]] + ["%d & %d" % tuple([counts_all[continent][ck]["FAMILY"].get(pair[1], 0) for ck in [3,0]]) for continent in continents])+" & \\\\\n" table += """\\bottomrule\n\\end{tabular}\n\\end{table}""" return table ### MAIN data_traits, head_traits = load_traits(traits_file, keep_traits, bool_traits, key_species) bio_leg = load_legend_bio(bio_legend_file) bio_leg.update({"lon_bio":"longitude","lat_bio":"latitude", "SITE": "ID"}) lines_bio = load_lines_bio(bio_file_all, ["CONT","NO_SPECIES","NO_ORDERS","NO_FAMILIES","GlobalID"], "SITE", bio_leg) for continent in continents: aggregate_traits(occurence_file % continent, agg_file % continent, data_traits, head_traits, bool_traits, lines_bio, bio_file % continent) filter_nbspc([agg_file % continent, bio_file % continent], files_thres_out) collect_all([agg_file, bio_file], "all", continents, suffixes=[fto["ext"] for fto in files_thres_out], round_dgt=round_dgt) ############# COMPUTING COUNTS data_ordfam, head_ordfam = load_ordfam(traits_file, keep_ordfam, key_species) counts_all = {} for continent in continents: counts_all[continent] = aggregate_counts(occurence_file % continent, data_ordfam, head_ordfam, keep_ordfam, lines_bio) table = make_counts_table(data_ordfam, continents, counts_all) with open(stats_file, "w") as fo: fo.write(table)
python
# -*- coding: utf-8 -*- # # Copyright 2017-2020 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Renku migrations management. Migrations files are put in renku/core/management/migrations directory. Name of these files has m_1234__name.py format where 1234 is the migration version and name can be any alphanumeric and underscore combination. Migration files are sorted based on their lowercase name. Each migration file must define a public "migrate" function that accepts a client as its argument. When executing a migration, the migration file is imported as a module and the "migrate" function is executed. Migration version is checked against the Renku project version (in .renku/metadata.yml) and any migration which has a higher version is applied to the project. """ import hashlib import importlib import json import os import re import shutil from pathlib import Path import pkg_resources from jinja2 import Template from renku.core.errors import ( DockerfileUpdateError, MigrationError, MigrationRequired, ProjectNotSupported, TemplateUpdateError, ) from renku.core.utils.migrate import read_project_version SUPPORTED_PROJECT_VERSION = 8 def check_for_migration(client): """Checks if migration is required.""" if is_migration_required(client): raise MigrationRequired elif is_project_unsupported(client): raise ProjectNotSupported def is_migration_required(client): """Check if project requires migration.""" return is_renku_project(client) and _get_project_version(client) < SUPPORTED_PROJECT_VERSION def is_project_unsupported(client): """Check if this version of Renku cannot work with the project.""" return is_renku_project(client) and _get_project_version(client) > SUPPORTED_PROJECT_VERSION def is_template_update_possible(client): """Check if the project can be updated to a newer version of the project template.""" return _update_template(client, check_only=True) def is_docker_update_possible(client): """Check if the Dockerfile can be updated to a new version of renku-python.""" return _update_dockerfile(client, check_only=True) def migrate( client, force_template_update=False, skip_template_update=False, skip_docker_update=False, skip_migrations=False, progress_callback=None, ): """Apply all migration files to the project.""" template_updated = docker_updated = False if not is_renku_project(client): return False, template_updated, docker_updated if ( not skip_template_update and client.project.template_source and (force_template_update or client.project.automated_update) ): try: template_updated, _, _ = _update_template(client, progress_callback) except TemplateUpdateError: raise except (Exception, BaseException) as e: raise TemplateUpdateError("Couldn't update from template.") from e if not skip_docker_update: try: docker_updated = _update_dockerfile(client, progress_callback) except DockerfileUpdateError: raise except (Exception, BaseException) as e: raise DockerfileUpdateError("Couldn't update renku version in Dockerfile.") from e if skip_migrations: return False, template_updated, docker_updated project_version = _get_project_version(client) n_migrations_executed = 0 for version, path in get_migrations(): if version > project_version: module = importlib.import_module(path) if progress_callback: module_name = module.__name__.split(".")[-1] progress_callback(f"Applying migration {module_name}...") try: module.migrate(client) except (Exception, BaseException) as e: raise MigrationError("Couldn't execute migration") from e n_migrations_executed += 1 if n_migrations_executed > 0: client._project = None # NOTE: force reloading of project metadata client.project.version = str(version) client.project.to_yaml() if progress_callback: progress_callback(f"Successfully applied {n_migrations_executed} migrations.") return n_migrations_executed != 0, template_updated, docker_updated def _update_template(client, check_only=False, progress_callback=None): """Update local files from the remote template.""" from renku.core.commands.init import fetch_template project = client.project if not project.template_version: return False, None, None template_manifest, template_folder, template_source, template_version = fetch_template( project.template_source, project.template_ref, progress_callback ) current_version = None if template_source == "renku": current_version = pkg_resources.parse_version(template_version) template_version = pkg_resources.parse_version(project.template_version) if template_version >= current_version: return False, project.template_version, current_version else: if template_version == project.template_version: return False, project.template_version, template_version if check_only: return True, project.template_version, current_version if current_version else template_version if progress_callback: progress_callback("Updating project from template...") template_filtered = [ template_elem for template_elem in template_manifest if template_elem["folder"] == project.template_id ] if len(template_filtered) == 1: template_data = template_filtered[0] else: raise TemplateUpdateError(f'The template with id "{project.template_id}" is not available.') template_path = template_folder / template_data["folder"] metadata = json.loads(project.template_metadata) template_variables = set(template_data.get("variables", {}).keys()) metadata_keys = set(metadata.keys()) missing_keys = ", ".join(template_variables - metadata_keys) if missing_keys: raise TemplateUpdateError( f"Can't update template, it now requires variable(s) {missing_keys} which were not present on project " "creation." ) if not os.path.exists(client.template_checksums): raise TemplateUpdateError("Can't update template as there are no template checksums set on the project.") with open(client.template_checksums, "r") as checksum_file: checksums = json.load(checksum_file) updated_files = [] for file in template_path.glob("**/*"): rel_path = file.relative_to(template_path) destination = client.path / rel_path try: # parse file and process it template = Template(file.read_text()) rendered_content = template.render(metadata) sha256_hash = hashlib.sha256() content_bytes = rendered_content.encode("utf-8") blocksize = 4096 blocks = (len(content_bytes) - 1) // blocksize + 1 for i in range(blocks): byte_block = content_bytes[i * blocksize : (i + 1) * blocksize] sha256_hash.update(byte_block) new_template_hash = sha256_hash.hexdigest() current_hash = client._content_hash(destination) local_changes = current_hash != checksums[str(rel_path)] remote_changes = new_template_hash != checksums[str(rel_path)] if local_changes: if remote_changes and str(rel_path) in project.immutable_template_files: # NOTE: There are local changes in a file that should not be changed by users, # and the file as updated in the template as well. So the template can't be updated. raise TemplateUpdateError( f"Can't update template as immutable template file {rel_path} has local changes." ) continue elif not remote_changes: continue destination = Path(Template(str(destination)).render(metadata)) destination.write_text(rendered_content) except IsADirectoryError: destination.mkdir(parents=True, exist_ok=True) except TypeError: shutil.copy(file, destination) if progress_callback: updated = "\n".join(updated_files) progress_callback(f"Updated project from template, updated files:\n{updated}") return True, project.template_version, current_version if current_version else template_version def _update_dockerfile(client, check_only=False, progress_callback=None): """Update the dockerfile to the newest version of renku.""" from renku import __version__ if not client.docker_path.exists(): return False if progress_callback: progress_callback("Updating dockerfile...") with open(client.docker_path, "r") as f: dockercontent = f.read() current_version = pkg_resources.parse_version(__version__) m = re.search(r"^ARG RENKU_VERSION=(\d+\.\d+\.\d+)$", dockercontent, flags=re.MULTILINE) if not m: if check_only: return False raise DockerfileUpdateError( "Couldn't update renku-python version in Dockerfile, as it doesn't contain an 'ARG RENKU_VERSION=...' line." ) docker_version = pkg_resources.parse_version(m.group(1)) if docker_version >= current_version: return False if check_only: return True dockercontent = re.sub( r"^ARG RENKU_VERSION=\d+\.\d+\.\d+$", f"ARG RENKU_VERSION={__version__}", dockercontent, flags=re.MULTILINE, ) with open(client.docker_path, "w") as f: f.write(dockercontent) if progress_callback: progress_callback("Updated dockerfile.") return True def _get_project_version(client): try: return int(read_project_version(client)) except ValueError: return 1 def is_renku_project(client): """Check if repository is a renku project.""" try: return client.project is not None except ValueError: # Error in loading due to an older schema return client.renku_metadata_path.exists() def get_migrations(): """Return a sorted list of versions and migration modules.""" migrations = [] for file_ in pkg_resources.resource_listdir("renku.core.management", "migrations"): match = re.search(r"m_([0-9]{4})__[a-zA-Z0-9_-]*.py", file_) if match is None: # migration files match m_0000__[name].py format continue version = int(match.groups()[0]) path = "renku.core.management.migrations.{}".format(Path(file_).stem) migrations.append((version, path)) migrations = sorted(migrations, key=lambda v: v[1].lower()) return migrations
python
# -*- coding: utf-8 -*- import torch.nn as nn import math import torch.utils.model_zoo as model_zoo import torch from torchvision.models import resnet class BasicBlock1d(nn.Module): def __init__(self, inplanes, planes, stride, size,downsample): super(BasicBlock1d, self).__init__() self.conv1 = nn.Conv1d(inplanes, planes, kernel_size=size, stride=stride, bias=False) self.bn1 = nn.BatchNorm1d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv1d( planes, planes, kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm1d(planes) self.downsample = nn.Sequential( nn.Conv1d(inplanes, planes ,kernel_size=size, stride=stride, bias=False), nn.BatchNorm1d(planes)) self.dropout = nn.Dropout(.2) self.sigmoid = nn.Sigmoid() self.globalAvgPool =nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16)) self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes) def forward(self, x): x=x.squeeze(2) residual = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.dropout(out) out = self.bn2(out) out = self.conv2(out) #Squeeze-and-Excitation (SE) original_out = out out = self.globalAvgPool(out) out = out.view(out.size(0), -1) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.sigmoid(out) out = out.view(out.size(0), out.size(1),1) out = out * original_out #resnet out += residual out = self.relu(out) return out class BasicBlock2d(nn.Module): def __init__(self, inplanes, planes, stride, size,downsample): super(BasicBlock2d, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=(1,size), stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=(1,1), stride=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.downsample = nn.Sequential( nn.Conv2d(inplanes, planes ,kernel_size=(1,size), stride=stride, bias=False), nn.BatchNorm2d(planes)) self.dropout = nn.Dropout(.2) self.sigmoid = nn.Sigmoid() self.globalAvgPool = nn.AdaptiveAvgPool2d((1,1)) self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16)) self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes) def forward(self, x): residual = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.dropout(out) out = self.bn2(out) out = self.conv2(out) #Squeeze-and-Excitation (SE) original_out=out out = self.globalAvgPool(out) out = out.view(out.size(0), -1) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.sigmoid(out) out = out.view(out.size(0), out.size(1),1,1) out = out * original_out #resnet out += residual out = self.relu(out) return out class ECGNet(nn.Module): def __init__(self, BasicBlock1d,BasicBlock2d, num_classes=9): super(ECGNet, self).__init__() self.sizes=[5,7,9] self.external = 3 self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(12,32, kernel_size=(1,50), stride=(1,2),padding=(0,0),bias=False) self.bn1 = nn.BatchNorm2d(32) self.AvgPool = nn.AdaptiveAvgPool1d(1) self.layers=nn.Sequential() self.layers.add_module('layer_1',self._make_layer( BasicBlock2d,inplanes=32,planes=32,blocks=1,stride=(1,2),size=15)) self.layers.add_module('layer_2',self._make_layer( BasicBlock2d,inplanes=32,planes=32,blocks=1,stride=(1,2),size=15)) self.layers.add_module('layer_3',self._make_layer( BasicBlock2d,inplanes=32,planes=32,blocks=1,stride=(1,2),size=15)) self.layers1_list=nn.ModuleList() self.layers2_list=nn.ModuleList() for size in self.sizes: self.layers1=nn.Sequential() self.layers1.add_module('layer{}_1_1'.format(size),self._make_layer( BasicBlock2d,inplanes=32, planes=32,blocks=32, stride=(1,1),size=size)) self.layers2=nn.Sequential() self.layers2.add_module('layer{}_2_1'.format(size),self._make_layer(BasicBlock1d,inplanes=32, planes=256,blocks=1, stride=2,size=size)) self.layers2.add_module('layer{}_2_2'.format(size),self._make_layer(BasicBlock1d,inplanes=256, planes=256,blocks=1, stride=2,size=size)) self.layers2.add_module('layer{}_2_3'.format(size),self._make_layer(BasicBlock1d,inplanes=256, planes=256,blocks=1, stride=2,size=size)) self.layers2.add_module('layer{}_2_4'.format(size),self._make_layer(BasicBlock1d,inplanes=256, planes=256,blocks=1, stride=2,size=size)) self.layers1_list.append(self.layers1) self.layers2_list.append(self.layers2) self.fc = nn.Linear(256*len(self.sizes)+self.external, num_classes) def _make_layer(self, block,inplanes, planes, blocks, stride ,size,downsample = None): layers = [] for i in range(blocks): layers.append(block(inplanes, planes, stride, size,downsample)) return nn.Sequential(*layers) def forward(self, x0, fr): x0=x0.unsqueeze(2) x0 = self.conv1(x0) x0 = self.bn1(x0) x0 = self.relu(x0) x0 = self.layers(x0) xs=[] for i in range(len(self.sizes)): x=self.layers1_list[i](x0) x=torch.flatten(x,start_dim=2,end_dim=3) x=self.layers2_list[i](x0) x= self.AvgPool(x) xs.append(x) out = torch.cat(xs,dim=2) out = out.view(out.size(0), -1) out = torch.cat([out,fr], dim=1) out = self.fc(out) return out def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ECGNet(BasicBlock1d,BasicBlock2d,**kwargs) return model
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from sqlalchemy import MetaData from py_privatekonomi.utilities import common class ModelContext(object): def __init__(self, context = {}): self.__context = common.as_obj(context) self.__context._metadata = MetaData() @property def metadata(self): return self.__context._metadata
python
from setuptools import setup setup( name = 'json2html', packages = ['json2html'], version = '1.3.0', description = 'JSON to HTML Table Representation', long_description=open('README.rst').read(), author = 'Varun Malhotra', author_email = '[email protected]', url = 'https://github.com/softvar/json2html', download_url = 'https://github.com/softvar/json2html/tarball/1.3.0', keywords = ['json', 'HTML', 'Table'], license = 'MIT', python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*', classifiers = [ 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', ], )
python
class Solution: # @param {integer} A # @param {integer} B # @param {integer} C # @param {integer} D # @param {integer} E # @param {integer} F # @param {integer} G # @param {integer} H # @return {integer} def computeArea(self, A, B, C, D, E, F, G, H): def area(x, y): return 0 if x < 0 or y < 0 else x * y return area(C-A, D-B) + area(G-E, H-F) - \ area(min(C, G) - max(A, E), min(D, H) - max(B, F))
python
def roll_new(name, gender): pass def describe(character): pass
python
"""Integrate with NamecheapDNS.""" import asyncio from datetime import timedelta import logging import voluptuous as vol from homeassistant.const import CONF_HOST, CONF_ACCESS_TOKEN, CONF_DOMAIN import homeassistant.helpers.config_validation as cv from homeassistant.helpers.event import async_track_time_interval from homeassistant.helpers.aiohttp_client import async_get_clientsession DOMAIN = 'namecheapdns' UPDATE_URL = 'https://dynamicdns.park-your-domain.com/update' INTERVAL = timedelta(minutes=5) _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_HOST): cv.string, vol.Required(CONF_DOMAIN): cv.string, vol.Required(CONF_ACCESS_TOKEN): cv.string, }) }, extra=vol.ALLOW_EXTRA) @asyncio.coroutine def async_setup(hass, config): """Initialize the NamecheapDNS component.""" host = config[DOMAIN][CONF_HOST] domain = config[DOMAIN][CONF_DOMAIN] token = config[DOMAIN][CONF_ACCESS_TOKEN] session = async_get_clientsession(hass) result = yield from _update_namecheapdns(session, host, domain, token) if not result: return False @asyncio.coroutine def update_domain_interval(now): """Update the NamecheapDNS entry.""" yield from _update_namecheapdns(session, host, domain, token) async_track_time_interval(hass, update_domain_interval, INTERVAL) return result @asyncio.coroutine def _update_namecheapdns(session, host, domain, token): """Update NamecheapDNS.""" import xml.etree.ElementTree as ET params = { 'host': host, 'domain': domain, 'password': token, } resp = yield from session.get(UPDATE_URL, params=params) xml_string = yield from resp.text() root = ET.fromstring(xml_string) err_count = root.find('ErrCount').text if int(err_count) != 0: _LOGGER.warning('Updating Namecheap domain %s failed', domain) return False return True
python
celsius = float(input('Insira a temperatura em °C:')) fahrenheit = celsius * 1.8 + 32 kelvin = celsius + 273.15 print(f'{celsius}°C vale {fahrenheit}°F e {kelvin}K.')
python
""" A Python package module for simulating falling objects with simple aerodynamic drag. Developed by FIRST Robotics Competition Team 6343 - Steel Ridge Robotics Strong Trustworthy Empowering Effective Leadership """ __VERSION__ = "1.0.0b1"
python
""" pluginName = dashcam Senario Continuous Video Series like a Dashcam ---------------------------------------------- You want to take a series of videos like a dash cam. You can manage disk space and delete oldest videos when disk is close to full or run video session for a set number of minutes. Edit the settings below to suit your project needs. if config.py variable pluginEnable=True and pluginName=dashcam then these settings will override the config.py settings. """ # Customize Settings Below to Suit your Project Needs # --------------------------------------------------- imageWidth = 1280 # default= 1280 Full Size video Width in px imageHeight = 720 # default= 720 Full Size video Height in px imageVFlip = False # default= False True Flips image Vertically imageHFlip = False # default= False True Flips image Horizontally showDateOnImage = True # default= True False=Do Not display date/time text on images videoPath = "media/dashcam" # default= media/dashcam Storage folder path for videos videoPrefix = "dc-" # prefix for dasbca video filenames videoDuration = 120 # default= 120 seconds (2 min) for each video recording videoTimer = 0 # default= 0 0=Continuous or Set Total Session Minutes to Record then Exit videoFPS = 30 # default= 30 fps. Note slow motion can be achieved at 640x480 image resolution at 90 fps videoNumOn = False # default= False False=filenames by date/time True=filenames by sequence Number # Use settings below if motionNumOn = True videoNumRecycle = False # default= False when NumMax reached restart at NumStart instead of exiting videoNumStart = 1000 # default= 1000 Start of video filename number sequence videoNumMax = 0 # default= 20 Max number of videos desired. 0=Continuous # Manage Disk Space Settings #--------------------------- spaceTimerHrs = 1 # default= 0 0=off or specify hours frequency to perform free disk space check spaceFreeMB = 500 # default= 500 Target Free space in MB Required. spaceMediaDir = videoPath # default= videoPath per variable above spaceFileExt = 'mp4' # default= '' File extension to Delete Oldest Files # Do Not Change these Settings # ---------------------------- videoRepeatOn = True # Turn on Video Repeat Mode IMPORTANT Overrides timelapse and motion
python
load_dotenv('.env.txt')
python
import discord from discord.ext import commands from cogs.utils import checks from .utils.dataIO import dataIO, fileIO from __main__ import send_cmd_help import os import io import requests import json import asyncio import PIL from PIL import ImageFont from PIL import Image from PIL import ImageDraw creditIcon = "https://i.imgur.com/TP8GXZb.png" credits = "Bot by GR8 | Titan" class warlog: """Clash Royale Clan War log""" def __init__(self, bot): self.bot = bot self.auth = dataIO.load_json('cogs/auth.json') self.clans = dataIO.load_json('cogs/clans.json') def getAuth(self): return {"auth" : self.auth['token']} def save_clans(self): dataIO.save_json('cogs/clans.json', self.clans) def update_clans(self): self.clans = dataIO.load_json('cogs/clans.json') async def getLeague(self, trophies): if trophies >= 3000: return "legend" elif trophies >= 1500: return "gold" elif trophies >= 600: return "silver" else: return "bronze" async def findRank(self, lst, key, value): for i, dic in enumerate(lst): if dic[key] == value: return i return -1 async def genImage(self, leagueName, trophies, rank, clanName, participants, wins, crowns): font1 = ImageFont.truetype("data/warlog/ClashRoyale.ttf",27) font2 = ImageFont.truetype("data/warlog/ClashRoyale.ttf",37) font3 = ImageFont.truetype("data/warlog/ClashRoyale.ttf",41) img = Image.open("data/warlog/images/warlog.jpg") draw = ImageDraw.Draw(img) league = Image.open("data/warlog/images/{}.png".format(leagueName)) img.paste(league, (410, 55), league) # league draw.text((493, 75), "{:,}".format(int(trophies)), (255,255,255), font=font1) # Trophies # thin border x, y = 284, 192 fillcolor = "white" shadowcolor = "black" draw.text((x-2, y-2), rank, font=font2, fill=shadowcolor) draw.text((x+2, y-2), rank, font=font2, fill=shadowcolor) draw.text((x-2, y+2), rank, font=font2, fill=shadowcolor) draw.text((x+2, y+2), rank, font=font2, fill=shadowcolor) draw.text((x, y), rank, font=font2, fill=fillcolor) # Rank draw.text((347, 194), clanName, (255,255,255), font=font3) # Clan Name draw.text((682, 340), participants, (255,255,255), font=font1) # Participants draw.text((682, 457), wins, (255,255,255), font=font1) # Wins draw.text((682, 575), crowns, (255,255,255), font=font1) # Crowns # scale down and return scale = 0.5 scaled_size = tuple([x * scale for x in img.size]) img.thumbnail(scaled_size) return img async def getWarData(self, channel): self.update_clans() for clankey in self.clans.keys(): try: clandata = requests.get('https://api.royaleapi.com/clan/{}/warlog'.format(self.clans[clankey]['tag']), headers=self.getAuth(), timeout=10).json() except (requests.exceptions.Timeout, json.decoder.JSONDecodeError): return except requests.exceptions.RequestException as e: print(e) return standings = clandata[0]['standings'] clanRank = await self.findRank(standings, "tag", self.clans[clankey]['tag']) warTrophies = standings[clanRank]['warTrophies'] if self.clans[clankey]['warTrophies'] != warTrophies: clanLeague = await self.getLeague(warTrophies) image = await self.genImage(clanLeague, str(warTrophies), str(clanRank+1), standings[clanRank]['name'], str(standings[clanRank]['participants']), str(standings[clanRank]['wins']), str(standings[clanRank]['crowns'])) filename = "warlog-{}.png".format(clankey) with io.BytesIO() as f: image.save(f, "PNG") f.seek(0) await self.bot.send_file(channel, f, filename=filename) self.clans[clankey]['warTrophies'] = warTrophies self.save_clans() await asyncio.sleep(1) @commands.command(pass_context=True) async def warlog(self, ctx): """Track Clan wars""" channel = ctx.message.channel await self.getWarData(channel) def check_clans(): c = dataIO.load_json('cogs/clans.json') for clankey in c.keys(): if 'members' not in c[clankey]: c[clankey]['members'] = [] dataIO.save_json('cogs/clans.json', c) def check_files(): f = "cogs/auth.json" if not fileIO(f, "check"): print("enter your RoyaleAPI token in auth.json...") fileIO(f, "save", {"token" : "enter your RoyaleAPI token here!"}) def setup(bot): check_files() check_clans() bot.add_cog(warlog(bot))
python
""" Module to implement a plugin that looks for hard tabs in the files. """ from pymarkdown.plugin_manager import Plugin, PluginDetails class RuleMd040(Plugin): """ Class to implement a plugin that looks for hard tabs in the files. """ def get_details(self): """ Get the details for the plugin. """ return PluginDetails( # code, language plugin_name="fenced-code-language", plugin_id="MD040", plugin_enabled_by_default=True, plugin_description="Fenced code blocks should have a language specified", plugin_version="0.5.0", plugin_interface_version=1, ) # https://github.com/DavidAnson/markdownlint/blob/master/doc/Rules.md#md040---fenced-code-blocks-should-have-a-language-specified def next_token(self, context, token): """ Event that a new token is being processed. """ if token.is_fenced_code_block: if not token.extracted_text.strip(): self.report_next_token_error(context, token)
python
from django.dispatch import Signal # providing_args: "orderId", "recipientAmount" result_received = Signal()
python
""" Generic module for managing manual data transfer jobs using Galaxy's built-in file browser. This module can be used by various external services that are configured to transfer data manually. """ import logging, urllib2, re, shutil from data_transfer import * log = logging.getLogger( __name__ ) __all__ = [ 'ManualDataTransferPlugin' ] class ManualDataTransferPlugin( DataTransfer ): def __init__( self, app ): super( ManualDataTransferPlugin, self ).__init__( app ) def create_job( self, trans, **kwd ): if 'sample' in kwd and 'sample_datasets' in kwd and 'external_service' in kwd and 'external_service_type' in kwd: sample = kwd[ 'sample' ] sample_datasets = kwd[ 'sample_datasets' ] external_service = kwd[ 'external_service' ] external_service_type = kwd[ 'external_service_type' ] # TODO: is there a better way to store the protocol? protocol = external_service_type.data_transfer.keys()[0] host = external_service.form_values.content[ 'host' ] user_name = external_service.form_values.content[ 'user_name' ] password = external_service.form_values.content[ 'password' ] # TODO: In the future, we may want to implement a way for the user to associate a selected file with one of # the run outputs configured in the <run_details><results> section of the external service config file. The # following was a first pass at implementing something (the datatype was included in the sample_dataset_dict), # but without a way for the user to associate stuff it's useless. However, allowing the user this ability may # open a can of worms, so maybe we shouldn't do it??? # #for run_result_file_name, run_result_file_datatype in external_service_type.run_details[ 'results' ].items(): # # external_service_type.run_details[ 'results' ] looks something like: {'dataset1_name': 'dataset1_datatype'} # if run_result_file_datatype in external_service.form_values.content: # datatype = external_service.form_values.content[ run_result_file_datatype ] # # When the transfer is automatic (the process used in the SMRT Portal plugin), the datasets and datatypes # can be matched up to those configured in the <run_details><results> settings in the external service type config # (e.g., pacific_biosciences_smrt_portal.xml). However, that's a bit trickier here since the user is manually # selecting files for transfer. sample_datasets_dict = {} for sample_dataset in sample_datasets: sample_dataset_id = sample_dataset.id sample_dataset_dict = dict( sample_id = sample_dataset.sample.id, name = sample_dataset.name, file_path = sample_dataset.file_path, status = sample_dataset.status, error_msg = sample_dataset.error_msg, size = sample_dataset.size, external_service_id = sample_dataset.external_service.id ) sample_datasets_dict[ sample_dataset_id ] = sample_dataset_dict params = { 'type' : 'init_transfer', 'sample_id' : sample.id, 'sample_datasets_dict' : sample_datasets_dict, 'protocol' : protocol, 'host' : host, 'user_name' : user_name, 'password' : password } elif 'transfer_job_id' in kwd: params = { 'type' : 'finish_transfer', 'protocol' : kwd[ 'result' ][ 'protocol' ], 'sample_id' : kwd[ 'sample_id' ], 'result' : kwd[ 'result' ], 'transfer_job_id' : kwd[ 'transfer_job_id' ] } else: log.error( 'No job was created because kwd does not include "samples" and "sample_datasets" or "transfer_job_id".' ) return deferred_job = self.app.model.DeferredJob( state=self.app.model.DeferredJob.states.NEW, plugin='ManualDataTransferPlugin', params=params ) self.sa_session.add( deferred_job ) self.sa_session.flush() log.debug( 'Created a deferred job in the ManualDataTransferPlugin of type: %s' % params[ 'type' ] ) # TODO: error reporting to caller (if possible?) def check_job( self, job ): if self._missing_params( job.params, [ 'type' ] ): return self.job_states.INVALID if job.params[ 'type' ] == 'init_transfer': if job.params[ 'protocol' ] in [ 'http', 'https' ]: raise Exception( "Manual data transfer is not yet supported for http(s)." ) elif job.params[ 'protocol' ] == 'scp': if self._missing_params( job.params, [ 'protocol', 'host', 'user_name', 'password', 'sample_id', 'sample_datasets_dict' ] ): return self.job_states.INVALID # TODO: what kind of checks do we need here? return self.job_states.READY return self.job_states.WAIT if job.params[ 'type' ] == 'finish_transfer': if self._missing_params( job.params, [ 'transfer_job_id' ] ): return self.job_states.INVALID # Get the TransferJob object and add it to the DeferredJob so we only look it up once. if not hasattr( job, 'transfer_job' ): job.transfer_job = self.sa_session.query( self.app.model.TransferJob ).get( int( job.params[ 'transfer_job_id' ] ) ) state = self.app.transfer_manager.get_state( job.transfer_job ) if not state: log.error( 'No state for transfer job id: %s' % job.transfer_job.id ) return self.job_states.WAIT if state[ 'state' ] in self.app.model.TransferJob.terminal_states: return self.job_states.READY log.debug( "Checked on finish transfer job %s, not done yet." % job.id ) return self.job_states.WAIT else: log.error( 'Unknown job type for ManualDataTransferPlugin: %s' % str( job.params[ 'type' ] ) ) return self.job_states.INVALID
python
# coding: utf-8 # In[36]: # In[39]: import numpy as np import powerlaw edges= np.array([[1,2],[0,2],[0,3],[2,3],[3,4],[4,1]]) class karpatiGraphSolution: def __init__(self,edges): assert type(edges)==np.ndarray, "input is not an edge list" self.edgeList=edges self.numNodes=np.amax(edges)+1 def give_me_matrix(self): res=[[0] * self.numNodes for i in range(self.numNodes)] for edge in self.edgeList: res[edge[0]][edge[1]]=1 self.adjMat=res return res def isConnected(self): rowSums=np.asarray(self.adjMat).sum(0) colSums=np.asarray(self.adjMat).sum(1) print(rowSums) print(colSums) total=rowSums+colSums res=0 not in total return res def isStronglyConnected(self): rowSums=np.asarray(self.adjMat).sum(0) colSums=np.asarray(self.adjMat).sum(1) print(rowSums) print(colSums) res=0 not in rowSums & 0 not in colSums return res def MST(self): assert self.isConnected, "Sorry, your graph is not connected" treeMST=set() nodeInMST=set() nodeInMST.add(self.edgeList[0][0]) print(nodeInMST) for edge in self.edgeList: if (edge[1] in nodeInMST and edge[0] not in nodeInMST): print("LOL") treeMST.add((edge[0],edge[1])) nodeInMST.add(edge[0]) print(nodeInMST) elif (edge[0] in nodeInMST and edge[1] not in nodeInMST): print("LOL2") nodeInMST.add(edge[1]) treeMST.add((edge[1],edge[0])) print(nodeInMST) #nodeInMST.add(edge[1]) if len(nodeInMST)==self.numNodes: print("BREAKING") break return(treeMST) def fitPowerLaw(self): #get degree distribution rowSums=np.asarray(self.adjMat).sum(0) colSums=np.asarray(self.adjMat).sum(1) total=rowSums+colSums results=powerlaw.Fit(total) print("LOL") return(results.power_law.alpha,results.power_law.xmin) sol=karpatiGraphSolution(edges) cucc=sol.give_me_matrix() cucc3=sol.MST() print(cucc3) cucc4=sol.fitPowerLaw() print(cucc4) # In[144]: var = 100 if var == 200: print "1 - Got a true expression value" print var elif var == 150: print "2 - Got a true expression value" print var elif var == 100: print "3 - Got a true expression value" print var else: print "4 - Got a false expression value" print var print "Good bye!" # In[ ]: # In[ ]:
python
from direct.directnotify import DirectNotifyGlobal from direct.distributed.DistributedObjectAI import DistributedObjectAI class GuildManagerAI(DistributedObjectAI): notify = DirectNotifyGlobal.directNotify.newCategory('GuildManagerAI')
python
from xviz.builder.base_builder import XVIZBaseBuilder, CATEGORY from xviz.v2.core_pb2 import Pose, MapOrigin class XVIZPoseBuilder(XVIZBaseBuilder): """ # Reference [@xviz/builder/xviz-pose-builder]/(https://github.com/uber/xviz/blob/master/modules/builder/src/builders/xviz-pose-builder.js) """ def __init__(self, metadata, logger=None): super().__init__(CATEGORY.POSE, metadata, logger) self._poses = None self.reset() def reset(self): super().reset() self._category = CATEGORY.POSE self._temp_pose = Pose() def map_origin(self, longitude, latitude, altitude): self._temp_pose.map_origin.longitude = longitude self._temp_pose.map_origin.latitude = latitude self._temp_pose.map_origin.altitude = altitude return self def position(self, x, y, z): self._temp_pose.position.extend([x, y, z]) return self def orientation(self, roll, pitch, yaw): self._temp_pose.orientation.extend([roll, pitch, yaw]) return self def timestamp(self, timestamp): self._temp_pose.timestamp = timestamp return self def _flush(self): if not self._poses: self._poses = {} self._poses[self._stream_id] = self._temp_pose self._temp_pose = Pose() def get_data(self): if self._stream_id: self._flush() return self._poses
python
# SPDX-FileCopyrightText: 2022 Cedar Grove Maker Studios # SPDX-License-Identifier: MIT """ touch_calibrator_built_in.py 2022-01-21 v2.1 Author(s): JG for Cedar Grove Maker Studios On-screen touchscreen calibrator for built-in displays. When the test screen appears, use a stylus to swipe to the four edges of the visible display area. As the screen is calibrated, the small red square tracks the stylus tip (REPL_ONLY=False). Minimum and maximum calibration values will display on the screen and in the REPL. The calibration tuple can be copied and pasted into the calling code's touchscreen instantiation statement. DISPLAY_ROTATION: Display rotation value in degrees. Only values of None, 0, 90, 180, and 270 degrees are accepted. Defaults to None, the previous orientation of the display. REPL_ONLY: If False, calibration values are shown graphically on the screen and printed to the REPL. If True, the values are only printed to the REPL. Default value is False. """ import board import time import displayio import vectorio import terminalio from adafruit_display_text.label import Label import adafruit_touchscreen from simpleio import map_range # Operational parameters: DISPLAY_ROTATION = 0 # Specify 0, 90, 180, or 270 degrees REPL_ONLY = False # True to disable graphics # A collection of colors used for graphic objects class Colors: BLUE_DK = 0x000060 # Screen fill RED = 0xFF0000 # Boundary WHITE = 0xFFFFFF # Text # Instantiate the built-in display. display = board.DISPLAY # Check rotation value and update display. # Always set rotation before instantiating the touchscreen. if DISPLAY_ROTATION != None and DISPLAY_ROTATION in (0, 90, 180, 270): display.rotation = DISPLAY_ROTATION else: print("Warning: invalid rotation value -- defalting to zero") display.rotation = 0 time.sleep(1) # Activate the display graphics unless REPL_ONLY=True. if not REPL_ONLY: display_group = displayio.Group() display.show(display_group) # Instantiate touch screen without calibration or display size parameters if display.rotation == 0: ts = adafruit_touchscreen.Touchscreen( board.TOUCH_XL, board.TOUCH_XR, board.TOUCH_YD, board.TOUCH_YU, # calibration=((5200, 59000), (5250, 59500)), # size=(board.DISPLAY.width, board.DISPLAY.height), ) elif display.rotation == 90: ts = adafruit_touchscreen.Touchscreen( board.TOUCH_YU, board.TOUCH_YD, board.TOUCH_XL, board.TOUCH_XR, # calibration=((5250, 59500), (5200, 59000)), # size=(board.DISPLAY.width, board.DISPLAY.height), ) elif display.rotation == 180: ts = adafruit_touchscreen.Touchscreen( board.TOUCH_XR, board.TOUCH_XL, board.TOUCH_YU, board.TOUCH_YD, # calibration=((5200, 59000), (5250, 59500)), # size=(board.DISPLAY.width, board.DISPLAY.height), ) elif display.rotation == 270: ts = adafruit_touchscreen.Touchscreen( board.TOUCH_YD, board.TOUCH_YU, board.TOUCH_XR, board.TOUCH_XL, # calibration=((5250, 59500), (5200, 59000)), # size=(board.DISPLAY.width, board.DISPLAY.height), ) else: raise ValueError("Rotation value must be 0, 90, 180, or 270") # Define the graphic objects if REPL_ONLY = False. if not REPL_ONLY: # Define the text graphic objects font_0 = terminalio.FONT coordinates = Label( font=font_0, text="calib: ((x_min, x_max), (y_min, y_max))", color=Colors.WHITE, ) coordinates.anchor_point = (0.5, 0.5) coordinates.anchored_position = (board.DISPLAY.width // 2, board.DISPLAY.height // 4) display_rotation = Label( font=font_0, text="rotation: " + str(display.rotation), color=Colors.WHITE, ) display_rotation.anchor_point = (0.5, 0.5) display_rotation.anchored_position = (board.DISPLAY.width // 2, board.DISPLAY.height // 4 - 30) # Define graphic objects for the screen fill, boundary, and touch pen. target_palette = displayio.Palette(1) target_palette[0] = Colors.BLUE_DK screen_fill = vectorio.Rectangle( pixel_shader=target_palette, x=2, y=2, width=board.DISPLAY.width - 4, height=board.DISPLAY.height - 4, ) target_palette = displayio.Palette(1) target_palette[0] = Colors.RED boundary = vectorio.Rectangle( pixel_shader=target_palette, x=0, y=0, width=board.DISPLAY.width, height=board.DISPLAY.height, ) pen = vectorio.Rectangle( pixel_shader=target_palette, x=board.DISPLAY.width // 2, y=board.DISPLAY.height // 2, width=10, height=10, ) display_group.append(boundary) display_group.append(screen_fill) display_group.append(pen) display_group.append(coordinates) display_group.append(display_rotation) # Reset x and y values to raw touchscreen mid-point before measurement. x_min = x_max = y_min = y_max = 65535 // 2 print("Touchscreen Calibrator") print(" Use a stylus to swipe slightly beyond the") print(" four edges of the visible display area.") print(" ") print(f" display rotation: {display.rotation} degrees") print(" Calibration values follow:") print(" ") while True: time.sleep(0.100) touch = ts.touch_point # Check for touch if touch: if not REPL_ONLY: pen.x = int(map_range(touch[0], x_min, x_max, 0, board.DISPLAY.width)) - 5 pen.y = int(map_range(touch[1], y_min, y_max, 0, board.DISPLAY.height)) - 5 # Remember minimum and maximum values for the calibration tuple. x_min = min(x_min, touch[0]) x_max = max(x_max, touch[0]) y_min = min(y_min, touch[1]) y_max = max(y_max, touch[1]) # Show the calibration tuple. print(f"(({x_min}, {x_max}), ({y_min}, {y_max}))") if not REPL_ONLY: coordinates.text = f"calib: (({x_min}, {x_max}), ({y_min}, {y_max}))"
python
from spaceone.inventory.libs.schema.dynamic_field import TextDyField, ListDyField, \ DateTimeDyField, EnumDyField, SearchField from spaceone.inventory.libs.schema.resource import CloudServiceTypeResource, CloudServiceTypeResponse, \ CloudServiceTypeMeta cst_elb = CloudServiceTypeResource() cst_elb.name = 'LoadBalancer' cst_elb.provider = 'aws' cst_elb.group = 'ELB' cst_elb.labels = ['Networking'] cst_elb.is_primary = True cst_elb.is_major = True cst_elb.service_code = 'AWSELB' cst_elb.tags = { 'spaceone:icon': 'https://spaceone-custom-assets.s3.ap-northeast-2.amazonaws.com/console-assets/icons/cloud-services/aws/Elastic-Load-Balancing.svg', } cst_elb._metadata = CloudServiceTypeMeta.set_meta( fields=[ TextDyField.data_source('Name', 'data.load_balancer_name'), TextDyField.data_source('DNS Name', 'data.dns_name'), EnumDyField.data_source('State', 'data.state.code', default_state={ 'safe': ['active'], 'warning': ['provisioning'], 'alert': ['active_impaired', 'failed'] }), EnumDyField.data_source('Type', 'data.type', default_badge={ 'indigo.500': ['network'], 'coral.600': ['application'] }), ListDyField.data_source('Availability Zones', 'data.availability_zones', options={ 'sub_key': 'zone_name', 'delimiter': '<br>' }), DateTimeDyField.data_source('Created At', 'data.created_time'), TextDyField.data_source('ARN', 'data.load_balancer_arn', options={ 'is_optional': True }), TextDyField.data_source('Scheme', 'data.scheme', options={ 'is_optional': True }), TextDyField.data_source('VPC ID', 'data.vpc_id', options={ 'is_optional': True }), ListDyField.data_source('Subnet ID', 'data.availability_zones', options={ 'delimiter': '<br>', 'sub_key': 'subnet_id', 'is_optional': True }), ListDyField.data_source('Availability Zone', 'data.availability_zones', options={ 'delimiter': '<br>', 'sub_key': 'zone_name', 'is_optional': True }), TextDyField.data_source('Hosted Zone ID', 'data.canonical_hosted_zone_id', options={ 'is_optional': True }), ListDyField.data_source('Security Groups', 'data.security_group', options={ 'delimiter': '<br>', 'is_optional': True }), ListDyField.data_source('Listener IDs', 'data.listeners', options={ 'delimiter': '<br>', 'sub_key': 'listener_arn', 'is_optional': True }), ListDyField.data_source('Protocols', 'data.listeners', options={ 'delimiter': '<br>', 'sub_key': 'protocol', 'is_optional': True }), ListDyField.data_source('Ports', 'data.listeners', options={ 'delimiter': '<br>', 'sub_key': 'port', 'is_optional': True }), TextDyField.data_source('IP Address Type', 'data.ip_address_type', options={ 'is_optional': True }), TextDyField.data_source('Access Log S3 Bucket', 'data.attributes.access_logs_s3_bucket', options={ 'is_optional': True }), TextDyField.data_source('Routing HTTP2 Enabled', 'data.attributes.routing_http2_enabled', options={ 'is_optional': True }), TextDyField.data_source('Idel Timeout Seconds', 'data.attributes.idle_timeout_seconds', options={ 'is_optional': True }), TextDyField.data_source('Routing HTTP Drop Invalid Header Fields Enabled', 'data.attributes.routing_http_drop_invalid_header_fields_enabled', options={ 'is_optional': True }), TextDyField.data_source('WAF Fail Open Enabled', 'data.attributes.waf_fail_open_enabled', options={ 'is_optional': True }), TextDyField.data_source('Deletion Protection Enabled', 'data.attributes.deletion_protection_enabled', options={ 'is_optional': True }), TextDyField.data_source('Routing HTTP Desync Mitigation Mode', 'data.attributes.routing_http_desync_mitigation_mode', options={ 'is_optional': True }), TextDyField.data_source('Load Balancing Cross Zone Enabled', 'data.attributes.load_balancing_cross_zone_enabled', options={ 'is_optional': True }), TextDyField.data_source('AWS Account ID', 'data.account_id', options={ 'is_optional': True }) ], search=[ SearchField.set(name='Name', key='data.load_balancer_name'), SearchField.set(name='ARN', key='data.load_balancer_arn'), SearchField.set(name='DNS Name', key='data.dns_name'), SearchField.set(name='State', key='data.state'), SearchField.set(name='Type', key='data.type', enums={ 'application': {'label': 'Application'}, 'network': {'label': 'Network'}, }), SearchField.set(name='Scheme', key='data.scheme', enums={ 'internet-facing': {'label': 'Internet Facing'}, 'internal': {'label': 'Internal'}, }), SearchField.set(name='VPC ID', key='data.vpc_id'), SearchField.set(name='Availability Zone', key='data.availability_zones.zone_name'), SearchField.set(name='Subnet ID', key='data.availability_zones.subnet_id'), SearchField.set(name='Hosted Zone', key='data.canonical_hosted_zone_id'), SearchField.set(name='Protocol', key='data.listeners.protocol', enums={ 'HTTP': {'label': 'HTTP'}, 'HTTPS': {'label': 'HTTPS'}, 'TCP': {'label': 'TCP'}, 'UDP': {'label': 'UDP'}, 'TLS': {'label': 'TLS'}, 'TCP_UDP': {'label': 'TCP/UDP'}, }), SearchField.set(name='Port', key='data.listeners.port', data_type='integer'), SearchField.set(name='Deletion Protection', key='data.attributes.deletion_protection_enabled', data_type='boolean'), SearchField.set(name='Cross-Zone Load Balancing', key='data.attributes.load_balancing_cross_zone_enabled', data_type='boolean'), SearchField.set(name='Security Group ID', key='data.security_groups'), SearchField.set(name='Listener ARN', key='data.listeners.listener_arn'), SearchField.set(name='Created Time', key='data.created_time', data_type='datetime'), SearchField.set(name='Region', key='data.region_name'), SearchField.set(name='AWS Account ID', key='data.account_id'), ] ) cst_tg = CloudServiceTypeResource() cst_tg.name = 'TargetGroup' cst_tg.provider = 'aws' cst_tg.group = 'ELB' cst_tg.labels = ['Networking'] cst_tg.service_code = 'AWSELB' cst_tg.tags = { 'spaceone:icon': 'https://spaceone-custom-assets.s3.ap-northeast-2.amazonaws.com/console-assets/icons/cloud-services/aws/Elastic-Load-Balancing.svg', } cst_tg._metadata = CloudServiceTypeMeta.set_meta( fields=[ TextDyField.data_source('Name', 'data.target_group_name'), TextDyField.data_source('Port', 'data.port'), TextDyField.data_source('Protocol', 'data.protocol'), TextDyField.data_source('Target Type', 'data.target_type'), ListDyField.data_source('Load Balancers', 'data.load_balancer_arns', options={ 'delimiter': '<br>' }), EnumDyField.data_source('Health Check', 'data.health_check_enabled', default_badge={ 'indigo.500': ['true'], 'coral.600': ['false'] }), TextDyField.data_source('ARN', 'data.target_group_arn', options={ 'is_optional': True }), TextDyField.data_source('VPC ID', 'data.vpc_id', options={ 'is_optional': True }), TextDyField.data_source('Healthy Threshold Count', 'data.healthy_threshold_count', options={ 'is_optional': True }), TextDyField.data_source('Unhealthy Threshold Count', 'data.unhealthy_threshold_count', options={ 'is_optional': True }), TextDyField.data_source('Health Check Enabled', 'data.health_check_enabled', options={ 'is_optional': True }), TextDyField.data_source('Health Check Timeout Seconds', 'data.health_check_timeout_seconds', options={ 'is_optional': True }), TextDyField.data_source('Health Check Interval Seconds', 'data.health_check_interval_seconds', options={ 'is_optional': True }), TextDyField.data_source('Deregistration Delay Timeout Seconds', 'data.deregistration_delay_timeout_seconds', options={'is_optional': True}), TextDyField.data_source('Slow Start Duration Seconds', 'data.slow_start_duration_seconds', options={ 'is_optional': True }), TextDyField.data_source('Stickiness Enabled', 'data.stickiness_enabled', options={ 'is_optional': True }), TextDyField.data_source('Stickiness Type', 'data.stickiness_type', options={ 'is_optional': True }), TextDyField.data_source('Load Balancing Algorithm Type', 'data.load_balancing_algorithm_type', options={ 'is_optional': True }), TextDyField.data_source('Stickiness LB Cookie Duration Seconds', 'data.stickiness_lb_cookie_duration_seconds', options={'is_optional': True}), TextDyField.data_source('AWS Account ID', 'data.account_id', options={ 'is_optional': True }) ], search=[ SearchField.set(name='Name', key='data.target_group_name'), SearchField.set(name='ARN', key='data.'), SearchField.set(name='Protocol', key='data.protocol', enums={ 'HTTP': {'label': 'HTTP'}, 'HTTPS': {'label': 'HTTPS'}, 'TCP': {'label': 'TCP'}, 'UDP': {'label': 'UDP'}, 'TLS': {'label': 'TLS'}, 'TCP_UDP': {'label': 'TCP/UDP'}, }), SearchField.set(name='Port', key='data.port', data_type='integer'), SearchField.set(name='Target Type', key='data.target_type', enums={ 'instance': {'label': 'Instance'}, 'ip': {'label': 'IP'}, 'lambda': {'label': 'Lambda'}, }), SearchField.set(name='VPC ID', key='data.vpc_id'), SearchField.set(name='Stickiness', key='data.attributes.stickiness_enabled', enums={ 'Enabled': {'label': 'Enabled'}, 'Disabled': {'label': 'Disabled'} }), SearchField.set(name='Stickiness Type', key='data.attributes.stickiness_type', enums={ 'lb_cookie': {'label': 'LB Cookie'}, 'source_ip': {'label': 'Source IP'} }), SearchField.set(name='Region', key='data.region_name'), SearchField.set(name='AWS Account ID', key='data.account_id'), ] ) CLOUD_SERVICE_TYPES = [ CloudServiceTypeResponse({'resource': cst_elb}), CloudServiceTypeResponse({'resource': cst_tg}), ]
python
import csv import matplotlib.pyplot as plt import numpy as np CTEs = list() error = list() labels = list() with open('results.csv', 'r') as file: reader = csv.DictReader(file) for line in reader: labels.append(line['permutation'].replace(",","\n")) CTEs.append(float(line['accuracy'])) error.append(float(line['std'])) x_pos = np.arange(len(labels)) print(CTEs,error) # Build the plot fig, ax = plt.subplots() fig.set_size_inches(10, 5) ax.bar(x_pos, CTEs, yerr=error, align='center', alpha=0.5, ecolor='black', capsize=10) ax.set_ylabel('Accuracy') ax.set_xlabel('Feature Categories') ax.set_xticks(x_pos) ax.set_xticklabels(labels) ax.set_title('Model performance by feature categories') ax.yaxis.grid(True) # Save the figure and show plt.tight_layout() plt.savefig('subset.pdf') plt.show()
python
import numpy as np import uncertainties.unumpy as unp def center(): return None # or the arg-number of the center. def getCenter(args): # return the average return (args[1] + args[4])/2 def args(): return ('Amp1', 'Center1', 'Sigma1', 'Amp2', 'Center2', 'Sigma2', 'Offset') def f(x, A1, x01, sig1, A2, x02, sig2, offset): """ The normal function call for this function. Performs checks on valid arguments, then calls the "raw" function. :return: """ penalty = 10**10 * np.ones(len(x)) if A1 > 0 or A2 > 0: # Penalize positive amplitude fits. return penalty if offset > 1: return penalty if not (min(x) < x01 < max(x) and min(x) < x02 < max(x)): # penalize if center is not on the graph return penalty # assume that there's at least a little peak #if A1 < 1 or A2 < 1: # return penalty # The fitting of the second gaussian then sometimes assumes it's even broader than it is to make it an effective offset. #r = max(x) - min(x) #if sig1 > r/5 or sig2 > r/5: # return penalty return f_raw(x, A1, x01, sig1, A2, x02, sig2, offset) def f_raw(x, A1, x01, sig1, A2, x02, sig2, offset): """ The raw function call, performs no checks on valid parameters.. :return: """ return offset + A1 * np.exp(-(x-x01)**2/(2*sig1**2)) + A2 * np.exp(-(x-x02)**2/(2*sig2**2)) def f_unc(x, A1, x01, sig1, A2, x02, sig2, offset): """ similar to the raw function call, but uses unp instead of np for uncertainties calculations. :return: """ return offset + A1 * unp.exp(-(x-x01)**2/(2*sig1**2)) + A2 * unp.exp(-(x-x02)**2/(2*sig2**2)) def guess(key, values): """ Returns guess values for the parameters of this function class based on the input. Used for fitting using this class. :param key: :param values: :return: """ a = 0.6*min(values) - max(values) dx = max(key)-min(key) minLoc = key[np.argmin(values)] return [a, minLoc, dx/20, 0.8*a, minLoc+dx/9, #2*(min(key) + 0-5 * dx - minLoc) + minLoc # other side of middle dx/32, max(values)] def areas(A1, x01, sig1, A2, x02, sig2): return np.array([A1*sig1,A2*sig2])*np.sqrt(2*np.pi)
python
# check file encoding format # import chardet # f = open('test-1000.txt', 'rb') # result = chardet.detect(f.read()) # print(result) import codecs f = codecs.open("dev-1000.txt", 'r', 'GB18030') ff = f.read() file_object = codecs.open('dev-1000-new.txt', 'w', 'utf-8') file_object.write(ff) # with open("test-1000.txt", 'r') as file: # for line in file.readlines(): # print(line) # count = 3001 # with codecs.open("train-3000.txt", "a", "utf-8") as train: # with codecs.open("test-1000.txt", "r", "utf-8") as test: # train.write(test.read()) # for line in test.readlines(): # new_line = "" # new_line += str(count) + '\t' # for s in range(1, len(line.strip('\t'))): # if s == len(line.strip("\t")) - 1: # new_line += line.strip("\t")[s] + '\n' # else: # new_line += line.strip("\t")[s] + "\t" # train.write(new_line) # count += 1
python
from newGui import Ui_MainWindow import sys from pyqtgraph import PlotWidget ,PlotItem import os import pathlib import pyqtgraph as pg import pandas as pd import numpy as np from PyQt5 import QtCore, QtGui, QtWidgets ,QtPrintSupport #--------- to save as pdf ------------# def print_widget(widget, filename): printer =QtPrintSupport.QPrinter(QtPrintSupport.QPrinter.HighResolution) printer.setOutputFormat(QtGui.QtPrintSupport.QPrinter.PdfFormat) printer.setOutputFileName(filename) painter = QtGui.QPainter(printer) # start scale xscale = printer.pageRect().width() * 1.0 / widget.width() yscale = printer.pageRect().height() * 1.0 / widget.height() scale = min(xscale, yscale) painter.translate(printer.paperRect().center()) painter.scale(scale, scale) painter.translate(-widget.width() / 2, -widget.height() / 2) # end scale widget.render(painter) painter.end() class ApplicationWindow(QtWidgets.QMainWindow): def __init__(self): super(ApplicationWindow, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.actionsiganl_1.triggered.connect(lambda:self.opensignal1()) def readsignal1(self): self.fname1=QtGui.QFileDialog.getOpenFileName(self,'open only txt file',os.getenv('home'),"text(*.txt)") path=self.fname1[0] self.data1=np.genfromtxt(path) def opensignal1(self): self.readsignal1() self.data_line1 = self.ui.signal_1.plot(self.data1, name="mode2") self.ptr1 = 0 self.n = 0 # Set timer self.timer = pg.QtCore.QTimer() # Timer signal binding update_data function self.timer.timeout.connect(self.update_data) # The timer interval is 50ms, which can be understood as refreshing data once in 50ms self.timer.start(50) self.signal_1.show() #Data shift left def update_data(self): self.n += 10 self.data_line1.setData(self.data1[0 : 100+self.n]) self.data_line1.setPos(self.ptr1,0) #----- save as pdf ---# # def savepdf(self): # fn, _ = QtWidgets.QFileDialog.getSaveFileName( # self, "Export PDF", None, "PDF files (.pdf);;All Files()") # if fn: # if QtCore.QFileInfo(fn).suffix() == "": fn += ".pdf" # print_widget(MainWindow , fn) def main(): app = QtWidgets.QApplication(sys.argv) application = ApplicationWindow() application.show() app.exec_() if __name__ == "__main__": main()
python
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def export_to_tensorflow(self, path): """ Export frame to TensorFlow Records file on given path TensorFlow records are the standard data format for TensorFlow. The recommended format for TensorFlow is a TFRecords file containing tf.train.Example protocol buffers. The tf.train.Example protocol buffers encodes (which contain Features as a field). https://www.tensorflow.org/how_tos/reading_data During export, the API parses Spark SQL DataTypes to TensorFlow compatible DataTypes as below: * IntegerType or LongType => Int64List * FloatType or DoubleType => FloatList * ArrayType(Double) [Vector] => FloatList * Any other DataType (Ex: String) => BytesList Parameters ---------- :param path: (str) HDFS/Local path to export current frame as TensorFlow records Examples -------- >>> file_path = "../datasets/cities.csv" >>> frame = tc.frame.import_csv(file_path, "|", header=True) -etc- >>> frame.sort("rank") >>> frame.inspect() [#] rank city population_2013 population_2010 change county ============================================================================ [0] 1 Portland 609456 583776 4.40% Multnomah [1] 2 Salem 160614 154637 3.87% Marion [2] 3 Eugene 159190 156185 1.92% Lane [3] 4 Gresham 109397 105594 3.60% Multnomah [4] 5 Hillsboro 97368 91611 6.28% Washington [5] 6 Beaverton 93542 89803 4.16% Washington [6] 7 Bend 81236 76639 6.00% Deschutes [7] 8 Medford 77677 74907 3.70% Jackson [8] 9 Springfield 60177 59403 1.30% Lane [9] 10 Corvallis 55298 54462 1.54% Benton >>> destPath = "../tests/sandbox/output24.tfr" >>> import os ... if os.path.exists(filename) os.remove(destPath) >>> frame.export_to_tensorflow(destPath) Check for output24.tfr in specified destination path either on Local or HDFS file system """ self._scala.exportToTensorflow(path)
python
# Generated by Django 2.1 on 2019-06-19 12:32 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('articles', '0004_merge_20190618_0923'), ('articles', '0004_merge_20190618_1311'), ] operations = [ ]
python
from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from django.urls import path, include from django.conf.urls.static import static urlpatterns = [ path('', include('frontend.urls')), path('api/', include('backend.urls')), path('api/auth/', include('accounts.urls')), path('admin/', admin.site.urls), ] # Serve static files in development if settings.DEBUG: urlpatterns += static('/', document_root=settings.STATIC_ROOT)
python
import logging import matplotlib.pyplot as plt import mrcfile import numpy as np from scipy.linalg import lstsq import aspire.volume from aspire.nufft import anufft from aspire.numeric import fft, xp from aspire.utils import crop_pad_2d, grid_2d from aspire.utils.matrix import anorm logger = logging.getLogger(__name__) def _im_translate2(im, shifts): """ Translate image by shifts :param im: An Image instance to be translated. :param shifts: An array of size n-by-2 specifying the shifts in pixels. Alternatively, it can be a row vector of length 2, in which case the same shifts is applied to each image. :return: An Image instance translated by the shifts. TODO: This implementation has been moved here from aspire.aspire.abinitio and is faster than _im_translate. """ if not isinstance(im, Image): logger.warning( "_im_translate2 expects an Image, attempting to convert array." "Expects array of size n-by-L-by-L." ) im = Image(im) if shifts.ndim == 1: shifts = shifts[np.newaxis, :] n_shifts = shifts.shape[0] if shifts.shape[1] != 2: raise ValueError("Input `shifts` must be of size n-by-2") if n_shifts != 1 and n_shifts != im.n_images: raise ValueError("The number of shifts must be 1 or match the number of images") resolution = im.res grid = xp.asnumpy( fft.ifftshift(xp.asarray(np.ceil(np.arange(-resolution / 2, resolution / 2)))) ) om_y, om_x = np.meshgrid(grid, grid) phase_shifts = np.einsum("ij, k -> ijk", om_x, shifts[:, 0]) + np.einsum( "ij, k -> ijk", om_y, shifts[:, 1] ) # TODO: figure out how why the result of einsum requires reshape phase_shifts = phase_shifts.reshape(n_shifts, resolution, resolution) phase_shifts /= resolution mult_f = np.exp(-2 * np.pi * 1j * phase_shifts) im_f = xp.asnumpy(fft.fft2(xp.asarray(im.asnumpy()))) im_translated_f = im_f * mult_f im_translated = np.real(xp.asnumpy(fft.ifft2(xp.asarray(im_translated_f)))) return Image(im_translated) def normalize_bg(imgs, bg_radius=1.0, do_ramp=True): """ Normalize backgrounds and apply to a stack of images :param imgs: A stack of images in N-by-L-by-L array :param bg_radius: Radius cutoff to be considered as background (in image size) :param do_ramp: When it is `True`, fit a ramping background to the data and subtract. Namely perform normalization based on values from each image. Otherwise, a constant background level from all images is used. :return: The modified images """ L = imgs.shape[-1] grid = grid_2d(L, indexing="yx") mask = grid["r"] > bg_radius if do_ramp: # Create matrices and reshape the background mask # for fitting a ramping background ramp_mask = np.vstack( ( grid["x"][mask].flatten(), grid["y"][mask].flatten(), np.ones(grid["y"][mask].flatten().size), ) ).T ramp_all = np.vstack( (grid["x"].flatten(), grid["y"].flatten(), np.ones(L * L)) ).T mask_reshape = mask.reshape((L * L)) imgs = imgs.reshape((-1, L * L)) # Fit a ramping background and apply to images coeff = lstsq(ramp_mask, imgs[:, mask_reshape].T)[0] # RCOPT imgs = imgs - (ramp_all @ coeff).T # RCOPT imgs = imgs.reshape((-1, L, L)) # Apply mask images and calculate mean and std values of background imgs_masked = imgs * mask denominator = np.sum(mask) first_moment = np.sum(imgs_masked, axis=(1, 2)) / denominator second_moment = np.sum(imgs_masked**2, axis=(1, 2)) / denominator mean = first_moment.reshape(-1, 1, 1) variance = second_moment.reshape(-1, 1, 1) - mean**2 std = np.sqrt(variance) return (imgs - mean) / std class Image: def __init__(self, data, dtype=None): """ A stack of one or more images. This is a wrapper of numpy.ndarray which provides methods for common processing tasks. :param data: Numpy array containing image data with shape `(n_images, res, res)`. :param dtype: Optionally cast `data` to this dtype. Defaults to `data.dtype`. :return: Image instance storing `data`. """ assert isinstance( data, np.ndarray ), "Image should be instantiated with an ndarray" if data.ndim == 2: data = data[np.newaxis, :, :] if dtype is None: self.dtype = data.dtype else: self.dtype = np.dtype(dtype) self.data = data.astype(self.dtype, copy=False) self.ndim = self.data.ndim self.shape = self.data.shape self.n_images = self.shape[0] self.res = self.shape[1] assert data.shape[1] == data.shape[2], "Only square ndarrays are supported." def __getitem__(self, item): return self.data[item] def __setitem__(self, key, value): self.data[key] = value def __add__(self, other): if isinstance(other, Image): other = other.data return Image(self.data + other) def __sub__(self, other): if isinstance(other, Image): other = other.data return Image(self.data - other) def __mul__(self, other): if isinstance(other, Image): other = other.data return Image(self.data * other) def __neg__(self): return Image(-self.data) def sqrt(self): return Image(np.sqrt(self.data)) def flip_axes(self): return Image(np.transpose(self.data, (0, 2, 1))) def __repr__(self): return f"{self.n_images} images of size {self.res}x{self.res}" def asnumpy(self): return self.data def copy(self): return Image(self.data.copy()) def shift(self, shifts): """ Translate image by shifts. This method returns a new Image. :param shifts: An array of size n-by-2 specifying the shifts in pixels. Alternatively, it can be a column vector of length 2, in which case the same shifts is applied to each image. :return: The Image translated by the shifts, with periodic boundaries. """ if shifts.ndim == 1: shifts = shifts[np.newaxis, :] return self._im_translate(shifts) def downsample(self, ds_res): """ Downsample Image to a specific resolution. This method returns a new Image. :param ds_res: int - new resolution, should be <= the current resolution of this Image :return: The downsampled Image object. """ # compute FT with centered 0-frequency fx = fft.centered_fft2(self.data) # crop 2D Fourier transform for each image crop_fx = np.array([crop_pad_2d(fx[i], ds_res) for i in range(self.n_images)]) # take back to real space, discard complex part, and scale out = np.real(fft.centered_ifft2(crop_fx)) * (ds_res**2 / self.res**2) return Image(out) def filter(self, filter): """ Apply a `Filter` object to the Image and returns a new Image. :param filter: An object of type `Filter`. :return: A new filtered `Image` object. """ filter_values = filter.evaluate_grid(self.res) im_f = xp.asnumpy(fft.centered_fft2(xp.asarray(self.data))) if im_f.ndim > filter_values.ndim: im_f *= filter_values else: im_f = filter_values * im_f im = xp.asnumpy(fft.centered_ifft2(xp.asarray(im_f))) im = np.real(im) return Image(im) def rotate(self): raise NotImplementedError def save(self, mrcs_filepath, overwrite=False): with mrcfile.new(mrcs_filepath, overwrite=overwrite) as mrc: # original input format (the image index first) mrc.set_data(self.data.astype(np.float32)) def _im_translate(self, shifts): """ Translate image by shifts :param im: An array of size n-by-L-by-L containing images to be translated. :param shifts: An array of size n-by-2 specifying the shifts in pixels. Alternatively, it can be a row vector of length 2, in which case the same shifts is applied to each image. :return: The images translated by the shifts, with periodic boundaries. TODO: This implementation is slower than _im_translate2 """ im = self.data if shifts.ndim == 1: shifts = shifts[np.newaxis, :] n_shifts = shifts.shape[0] assert shifts.shape[-1] == 2, "shifts must be nx2" assert ( n_shifts == 1 or n_shifts == self.n_images ), "number of shifts must be 1 or match the number of images" # Cast shifts to this instance's internal dtype shifts = shifts.astype(self.dtype) L = self.res im_f = xp.asnumpy(fft.fft2(xp.asarray(im))) grid_shifted = fft.ifftshift( xp.asarray(np.ceil(np.arange(-L / 2, L / 2, dtype=self.dtype))) ) grid_1d = xp.asnumpy(grid_shifted) * 2 * np.pi / L om_x, om_y = np.meshgrid(grid_1d, grid_1d, indexing="ij") phase_shifts_x = -shifts[:, 0].reshape((n_shifts, 1, 1)) phase_shifts_y = -shifts[:, 1].reshape((n_shifts, 1, 1)) phase_shifts = ( om_x[np.newaxis, :, :] * phase_shifts_x + om_y[np.newaxis, :, :] * phase_shifts_y ) mult_f = np.exp(-1j * phase_shifts) im_translated_f = im_f * mult_f im_translated = xp.asnumpy(fft.ifft2(xp.asarray(im_translated_f))) im_translated = np.real(im_translated) return Image(im_translated) def norm(self): return anorm(self.data) @property def size(self): # probably not needed, transition return np.size(self.data) def backproject(self, rot_matrices): """ Backproject images along rotation :param im: An Image (stack) to backproject. :param rot_matrices: An n-by-3-by-3 array of rotation matrices \ corresponding to viewing directions. :return: Volume instance corresonding to the backprojected images. """ L = self.res assert ( self.n_images == rot_matrices.shape[0] ), "Number of rotation matrices must match the number of images" # TODO: rotated_grids might as well give us correctly shaped array in the first place pts_rot = aspire.volume.rotated_grids(L, rot_matrices) pts_rot = pts_rot.reshape((3, -1)) im_f = xp.asnumpy(fft.centered_fft2(xp.asarray(self.data))) / (L**2) if L % 2 == 0: im_f[:, 0, :] = 0 im_f[:, :, 0] = 0 im_f = im_f.flatten() vol = anufft(im_f, pts_rot[::-1], (L, L, L), real=True) / L return aspire.volume.Volume(vol) def show(self, columns=5, figsize=(20, 10)): """ Plotting Utility Function. :param columns: Number of columns in a row of plots. :param figsize: Figure size in inches, consult `matplotlib.figure`. """ # We never need more columns than images. columns = min(columns, self.n_images) plt.figure(figsize=figsize) for i, im in enumerate(self): plt.subplot(self.n_images // columns + 1, columns, i + 1) plt.imshow(im, cmap="gray") plt.show() class CartesianImage(Image): def expand(self, basis): return BasisImage(basis) class PolarImage(Image): def expand(self, basis): return BasisImage(basis) class BispecImage(Image): def expand(self, basis): return BasisImage(basis) class BasisImage(Image): def __init__(self, basis): self.basis = basis def evaluate(self): return CartesianImage() class FBBasisImage(BasisImage): pass
python
# -*- coding:utf-8 -*- # Copyright 2015 NEC Corporation. # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # from org.o3project.odenos.remoteobject.manager.system.event.component_connection_changed\ import ComponentConnectionChanged from org.o3project.odenos.remoteobject.transport.message_dispatcher\ import MessageDispatcher from org.o3project.odenos.core.component.logic\ import Logic from org.o3project.odenos.remoteobject.message.event import Event from org.o3project.odenos.remoteobject.message.response import Response from org.o3project.odenos.core.util.network_interface import NetworkInterface from org.o3project.odenos.core.component.network.topology.port import Port from org.o3project.odenos.core.component.network.topology.node import Node from org.o3project.odenos.core.component.network.topology.link import Link from org.o3project.odenos.core.component.network.flow.flow import Flow from org.o3project.odenos.core.component.network.packet.in_packet import InPacket from org.o3project.odenos.core.component.network.packet.out_packet import OutPacket from org.o3project.odenos.core.component.network.flow.basic.basic_flow_match import\ BasicFlowMatch from org.o3project.odenos.core.component.network.packet.in_packet_added\ import InPacketAdded from org.o3project.odenos.core.component.network.packet.out_packet_added\ import OutPacketAdded import unittest from contextlib import nested from mock import Mock, MagicMock, patch class LogicTest(unittest.TestCase): Message = MagicMock() value = {} result = {} def setUp(self): self.target = Logic( "cc_action", self.Message) def tearDown(self): self.target = None def test_constructor(self): conversion_table = self.target._conversion_table self.assertEqual( self.target._object_property._object_property["type"], "Logic") self.assertEqual( self.target._object_property._object_property["id"], "cc_action") self.assertEqual( conversion_table._ConversionTable__connection_type_map, {}) self.assertEqual( conversion_table._ConversionTable__network_conversion_table, {}) self.assertEqual( conversion_table._ConversionTable__node_conversion_table, {}) self.assertEqual( conversion_table._ConversionTable__port_conversion_table, {}) self.assertEqual( conversion_table._ConversionTable__link_conversion_table, {}) self.assertEqual( conversion_table._ConversionTable__flow_conversion_table, {}) self.assertEqual(self.target._network_interfaces, {}) self.assertEqual(self.target._Logic__subscription_table, {}) def test_conversion_table(self): self.assertEqual(self.target.conversion_table(), self.target._conversion_table) def test_do_event_componentconnectionchanged_add_action_not_Exist(self): with patch("logging.debug") as logging_debug: self.value = {"action": "add", "prev": None, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}} self.result = Response("add", self.value) self.target._do_event_componentconnectionchanged(self.result) self.assertEqual( self.target._network_interfaces["network1"].network_id, "network1") self.assertEqual( logging_debug.call_count, 4) def test_do_event_componentconnectionchanged_add_action_Exist(self): with patch("logging.debug") as logging_debug: self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = {"action": "add", "prev": None, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}} self.result = Response("add", self.value) self.target._do_event_componentconnectionchanged(self.result) self.assertEqual( self.target._network_interfaces["network1"].network_id, "network1") self.assertEqual( logging_debug.call_count, 3) def test_do_event_componentconnectionchanged_update_action(self): with patch("logging.debug") as logging_debug: self.value = {"action": "update", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}} self.result = Response("add", self.value) self.target._do_event_componentconnectionchanged(self.result) self.assertEqual( logging_debug.call_count, 3) def test_do_event_componentconnectionchanged_delete_action(self): self.target._network_interfaces = {"network1": "network1_value", "network2": "network2_value"} with patch("logging.debug") as logging_debug: self.value = {"action": "delete", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}, "curr": None} self.result = Response("add", self.value) self.target._do_event_componentconnectionchanged(self.result) self.assertEqual( self.target._network_interfaces, {"network1": "network1_value"}) self.assertEqual( logging_debug.call_count, 3) def test_do_event_componentconnectionchanged_other_action(self): with patch("logging.debug") as logging_debug: self.value = {"action": "other_action", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}, "curr": None} self.result = Response("add", self.value) self.target._do_event_componentconnectionchanged(self.result) self.assertEqual( logging_debug.call_count, 1) def test_do_event_componentconnectionchanged_Error(self): with nested(patch("logging.debug"), patch("logging.error")) as (logging_debug, logging_error): self.value = {"error": "other_action"} self.result = Response("add", self.value) self.target._do_event_componentconnectionchanged(self.result) self.assertEqual( logging_debug.call_count, 0) self.assertEqual( logging_error.call_count, 1) def test_connection_changed_added_pre(self): with patch("logging.debug") as logging_debug: self.value = {"action": "add", "prev": None, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}} self.value = ComponentConnectionChanged.create_from_packed( self.value) self.result = self.target._connection_changed_added_pre(self.value) self.assertEqual(self.result, True) def test_connection_changed_update_pre(self): self.value = {"action": "update", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}} self.value = ComponentConnectionChanged.create_from_packed(self.value) self.result = self.target._connection_changed_update_pre(self.value) self.assertEqual(self.result, True) def test_connection_changed_delete_pre(self): self.value = {"action": "delete", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}, "curr": None} self.value = ComponentConnectionChanged.create_from_packed(self.value) self.result = self.target._connection_changed_delete_pre(self.value) self.assertEqual(self.result, True) def test_connection_changed_added(self): with patch("logging.debug") as logging_debug: self.value = {"action": "add", "prev": None, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}} self.value =\ ComponentConnectionChanged.create_from_packed(self.value) self.result =\ self.target._connection_changed_update_pre(self.value) self.assertEqual( logging_debug.call_count, 1) def test_connection_changed_update(self): with patch("logging.debug") as logging_debug: self.value = {"action": "update", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}, "curr": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network2"}} self.value =\ ComponentConnectionChanged.create_from_packed(self.value) self.result =\ self.target._connection_changed_update_pre(self.value) self.assertEqual( logging_debug.call_count, 1) def test_connection_changed_delete(self): with patch("logging.debug") as logging_debug: self.value = {"action": "delete", "prev": {"id": "slicer1->network1", "type": "LogicAndNetwork", "connection_type": "original", "state": "initializing", "logic_id": "slicer1", "network_id": "network1"}, "curr": None} self.value =\ ComponentConnectionChanged.create_from_packed(self.value) self.result =\ self.target._connection_changed_update_pre(self.value) self.assertEqual( logging_debug.call_count, 1) def test_add_event_subscription_network_event_type(self): with patch("logging.debug") as logging_debug: self.result = self.target._add_event_subscription( "NodeChanged", "Network123") self.assertEqual( logging_debug.call_count, 1) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network123": None}) def test_add_event_subscription_packet_event_type(self): with patch("logging.debug") as logging_debug: self.result = self.target._add_event_subscription( "InPacketAdded", "Network123") self.assertEqual( logging_debug.call_count, 1) self.assertEqual( self.target._Logic__subscription_table, {"InPacketAdded::Network123": None}) def test_add_event_subscription_event_type_not_match(self): with patch("logging.debug") as logging_debug: self.result = self.target._add_event_subscription( "NotType", "Network123") self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {}) def test_add_event_subscription_event_type_None(self): with patch("logging.debug") as logging_debug: self.result = self.target._add_event_subscription( None, "Network123") self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {}) def test_add_event_subscription_network_id_None(self): with patch("logging.debug") as logging_debug: self.result = self.target._add_event_subscription( "InPacketAdded", None) self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {}) def test_add_event_subscription_event_type_network_id_None(self): with patch("logging.debug") as logging_debug: self.result = self.target._add_event_subscription( None, None) self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {}) def test_remove_event_subscription_network_event_type(self): with patch("logging.debug") as logging_debug: self.target._Logic__subscription_table =\ {"NodeChanged::Network123": None, "NodeChanged::Network456": None} self.result = self.target._remove_event_subscription( "NodeChanged", "Network123") self.assertEqual( logging_debug.call_count, 1) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network456": None}) def test_remove_event_subscription_packet_event_type(self): with patch("logging.debug") as logging_debug: self.target._Logic__subscription_table =\ {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None} self.result = self.target._remove_event_subscription( "OutPacketAdded", "Network123") self.assertEqual( logging_debug.call_count, 1) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network123": None}) def test_remove_event_subscription_event_type_not_match(self): with patch("logging.debug") as logging_debug: self.target._Logic__subscription_table =\ {"NodeChanged::Network123": None, "NotType::Network123": None} self.result = self.target._remove_event_subscription( "NotType", "Network123") self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network123": None, "NotType::Network123": None}) def test_remove_event_subscription_event_type_None(self): with patch("logging.debug") as logging_debug: self.target._Logic__subscription_table =\ {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None} self.result = self.target._remove_event_subscription( None, "Network123") self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None}) def test_remove_event_subscription_neteork_id_None(self): with patch("logging.debug") as logging_debug: self.target._Logic__subscription_table =\ {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None} self.result = self.target._remove_event_subscription( "NodeChanged", None) self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None}) def test_remove_event_subscription_event_type_neteork_id_None(self): with patch("logging.debug") as logging_debug: self.target._Logic__subscription_table =\ {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None} self.result = self.target._remove_event_subscription( None, None) self.assertEqual( logging_debug.call_count, 0) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::Network123": None, "OutPacketAdded::Network123": None}) def test_update_event_subscription_network_event_type(self): self.result = self.target._update_event_subscription( "NodeChanged", "Network123", ["attributes"]) self.assertEqual( self.target._Logic__subscription_table, {"NodeChanged::UPDATE::Network123": ["attributes"]}) def test_update_event_subscription_event_type_not_match(self): self.result = self.target._update_event_subscription( "NotType", "Network123", ["attributes"]) self.assertEqual( self.target._Logic__subscription_table, {}) def test_update_event_subscription_event_type_None(self): self.result = self.target._update_event_subscription( None, "Network123", ["attributes"]) self.assertEqual( self.target._Logic__subscription_table, {}) def test_update_event_subscription_neteork_id_None(self): self.result = self.target._update_event_subscription( "NodeChanged", None, ["attributes"]) self.assertEqual( self.target._Logic__subscription_table, {}) def test_update_event_subscription_event_type_neteork_id_None(self): self.result = self.target._update_event_subscription( None, None) self.assertEqual( self.target._Logic__subscription_table, {}) def test_do_event_nodechanged_add_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed")) as (logging_debug, logging_error, mock_node): self.target._on_node_added = Mock() self.target._Logic__subscription_table =\ {"NodeChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.value = {"id": "NodeId", "version": "0001", "action": "add", "prev": None, "curr": {"node": "node"}} mock_node.return_value = node self.result = Event("publisher_id", "NodeChanged", self.value) self.target._do_event_nodechanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_node_added.assert_called_once_with( "publisher_id", node) def test_do_event_nodechanged_update_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed")) as (logging_debug, logging_error, mock_node): self.target._on_node_update = Mock() self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.value = {"id": "NodeId", "version": "0001", "action": "update", "prev": {"node": "node"}, "curr": {"node": "node"}} self.result = Event("publisher_id", "NodeChanged", self.value) mock_node.return_value = node self.target._do_event_nodechanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_node_update.assert_called_once_with( "publisher_id", node, node, "subscription") def test_do_event_nodechanged_delete_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed")) as (logging_debug, logging_error, mock_node): self.target._on_node_delete = Mock() self.target._Logic__subscription_table =\ {"NodeChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.value = {"id": "NodeId", "version": "0001", "action": "delete", "prev": {"node": "node"}, "curr": None} mock_node.return_value = node self.result = Event("publisher_id", "NodeChanged", self.value) self.target._do_event_nodechanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_node_delete.assert_called_once_with( "publisher_id", node) def test_do_event_nodechanged_other_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed")) as (logging_debug, logging_error, mock_node): self.target._Logic__subscription_table =\ {"NodeChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.value = {"id": "NodeId", "version": "0001", "action": "Other", "prev": {"node": "node"}, "curr": None} mock_node.return_value self.result = Event("publisher_id", "NodeChanged", self.value) self.target._do_event_nodechanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 2) def test_do_event_nodechanged_key_error(self): with nested(patch("logging.debug"), patch("logging.error")) as (logging_debug, logging_error): self.target._on_node_delete = Mock() self.target._Logic__subscription_table =\ {"NodeChanged::publisher_id": "subscription"} self.value = {"node_id": "NodeId", "version": "0001", "action": "Other", "prev": {"node": "node"}, "curr": None} self.result = Event("publisher_id", "NodeChanged", self.value) self.target._do_event_nodechanged(self.result) self.assertEqual( logging_error.call_count, 1) self.assertEqual( logging_debug.call_count, 0) def test_do_event_portchanged_add_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed")) as (logging_debug, logging_error, mock_port): self.target._on_port_added = Mock() self.target._Logic__subscription_table =\ {"PortChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.value = {"node_id": "NodeId", "id": "PortId", "version": "0001", "action": "add", "prev": None, "curr": {"node": "node"}} mock_port.return_value = port self.result = Event("publisher_id", "PortChanged", self.value) self.target._do_event_portchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_port_added.assert_called_once_with( "publisher_id", port) def test_do_event_portchanged_update_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed")) as (logging_debug, logging_error, mock_port): self.target._on_port_update = Mock() self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.value = {"node_id": "NodeId", "id": "PortId", "version": "0001", "action": "update", "prev": {}, "curr": None} mock_port.return_value = port self.result = Event("publisher_id", "PortChanged", self.value) self.target._do_event_portchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_port_update.assert_called_once_with( "publisher_id", port, port, "subscription") def test_do_event_portchanged_delete_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed")) as (logging_debug, logging_error, mock_port): self.target._on_port_delete = Mock() self.target._Logic__subscription_table =\ {"PortChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.value = {"node_id": "NodeId", "id": "PortId", "version": "0001", "action": "delete", "prev": {}, "curr": None} mock_port.return_value = port self.result = Event("publisher_id", "PortChanged", self.value) self.target._do_event_portchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_port_delete.assert_called_once_with( "publisher_id", port) def test_do_event_portchanged_other_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed")) as (logging_debug, logging_error, mock_port): self.target._on_port_delete = Mock() self.target._Logic__subscription_table =\ {"PortChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.value = {"node_id": "NodeId", "id": "PortId", "version": "0001", "action": "other", "prev": {}, "curr": None} mock_port.return_value = port self.result = Event("publisher_id", "PortChanged", self.value) self.target._do_event_portchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 2) def test_do_event_portchanged_key_error(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed")) as (logging_debug, logging_error, mock_port): self.target._on_port_delete = Mock() self.target._Logic__subscription_table =\ {"PortChanged::publisher_id": "subscription"} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.value = {"node_id": "NodeId", "error_id": "PortId", "version": "0001", "action": "other", "prev": {}, "curr": None} mock_port.return_value = port self.result = Event("publisher_id", "PortChanged", self.value) self.target._do_event_portchanged(self.result) self.assertEqual( logging_error.call_count, 1) self.assertEqual( logging_debug.call_count, 0) def test_do_event_linkchanged_add_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed")) as (logging_debug, logging_error, mock_link): self.target._on_link_added = Mock() self.target._Logic__subscription_table =\ {"LinkChanged::publisher_id": "subscription"} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "add", "prev": None, "curr": {"node": "node"}} mock_link.return_value = link self.result = Event("publisher_id", "LinkChanged", self.value) self.target._do_event_linkchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_link_added.assert_called_once_with( "publisher_id", link) def test_do_event_linkchanged_update_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed")) as (logging_debug, logging_error, mock_link): self.target._on_link_update = Mock() self.target._Logic__subscription_table =\ {"LinkChanged::UPDATE::publisher_id": "subscription"} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "update", "prev": {"node": "node"}, "curr": {"node": "node"}} mock_link.return_value = link self.result = Event("publisher_id", "LinkChanged", self.value) self.target._do_event_linkchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_link_update.assert_called_once_with( "publisher_id", link, link, "subscription") def test_do_event_linkchanged_delete_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed")) as (logging_debug, logging_error, mock_link): self.target._on_link_delete = Mock() self.target._Logic__subscription_table =\ {"LinkChanged::publisher_id": "subscription"} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "delete", "prev": {"node": "node"}, "curr": None} mock_link.return_value = link self.result = Event("publisher_id", "LinkChanged", self.value) self.target._do_event_linkchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_link_delete.assert_called_once_with( "publisher_id", link) def test_do_event_linkchanged_other_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed")) as (logging_debug, logging_error, mock_link): self.target._Logic__subscription_table =\ {"LinkChanged::publisher_id": "subscription"} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "other", "prev": {"node": "node"}, "curr": None} mock_link.return_value = link self.result = Event("publisher_id", "LinkChanged", self.value) self.target._do_event_linkchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 2) def test_do_event_linkchanged_key_error(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed")) as (logging_debug, logging_error, mock_link): self.target._Logic__subscription_table =\ {"LinkChanged::publisher_id": "subscription"} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.value = {"node_id": "NodeId", "error_id": "PortId", "version": "0001", "action": "other", "prev": {"node": "node"}, "curr": None} mock_link.return_value = link self.result = Event("publisher_id", "LinkChanged", self.value) self.target._do_event_linkchanged(self.result) self.assertEqual( logging_error.call_count, 1) self.assertEqual( logging_debug.call_count, 0) def test_do_event_flowchanged_add_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed")) as (logging_debug, logging_error, mock_flow): self.target._on_flow_added = Mock() self.target._Logic__subscription_table =\ {"FlowChanged::publisher_id": "subscription"} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "add", "prev": None, "curr": {"type": "Flow"}} mock_flow.return_value = flow self.result = Event("publisher_id", "FlowChanged", self.value) self.target._do_event_flowchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_flow_added.assert_called_once_with( "publisher_id", flow) def test_do_event_flowchanged_update_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed")) as (logging_debug, logging_error, mock_flow): self.target._on_flow_update = Mock() self.target._Logic__subscription_table =\ {"FlowChanged::UPDATE::publisher_id": "subscription"} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "update", "prev": {"type": "Flow"}, "curr": {"type": "Flow"}} mock_flow.return_value = flow self.result = Event("publisher_id", "FlowChanged", self.value) self.target._do_event_flowchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_flow_update.assert_called_once_with( "publisher_id", flow, flow, "subscription") def test_do_event_flowchanged_delete_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed")) as (logging_debug, logging_error, mock_flow): self.target._on_flow_delete = Mock() self.target._Logic__subscription_table =\ {"FlowChanged::publisher_id": "subscription"} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "delete", "prev": {"type": "Flow"}, "curr": None} mock_flow.return_value = flow self.result = Event("publisher_id", "FlowChanged", self.value) self.target._do_event_flowchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_flow_delete.assert_called_once_with( "publisher_id", flow) def test_do_event_flowchanged_other_action(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed")) as (logging_debug, logging_error, mock_flow): self.target._Logic__subscription_table =\ {"FlowChanged::publisher_id": "subscription"} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.value = {"id": "PortId", "version": "0001", "action": "other", "prev": None, "curr": {"type": "Flow"}} mock_flow.return_value = flow self.result = Event("publisher_id", "FlowChanged", self.value) self.target._do_event_flowchanged(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 2) def test_do_event_flowchanged_key_error(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed")) as (logging_debug, logging_error, mock_flow): self.target._Logic__subscription_table =\ {"FlowChanged::publisher_id": "subscription"} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.value = {"error_id": "PortId", "version": "0001", "action": "add", "prev": None, "curr": {"type": "Flow"}} mock_flow.return_value = flow self.result = Event("publisher_id", "FlowChanged", self.value) self.target._do_event_flowchanged(self.result) self.assertEqual( logging_error.call_count, 1) self.assertEqual( logging_debug.call_count, 0) def test_do_event_inpacketadded_success(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet_added.InPacketAdded." "create_from_packed")) as (logging_debug, logging_error, mock_in_packet_added): mock_in_packet_added.return_value = "Dummy" self.target._on_in_packet_added_pre = Mock( return_value=True) self.target._add_in_packet_conversion = Mock( return_value="resp_list") self.target._on_in_packet_added_post = Mock() self.value = {"id": "InPacketAdded", "version": "0001"} self.result = Event("publisher_id", "InPacketAdded", self.value) self.target._do_event_inpacketadded(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_in_packet_added_pre.assert_called_once_with( "publisher_id", "Dummy") self.target._add_in_packet_conversion.assert_called_once_with( "publisher_id", "Dummy") self.target._on_in_packet_added_post.assert_called_once_with( "publisher_id", "Dummy", "resp_list") def test_do_event_inpacketadded_error(self): with nested(patch("logging.debug"), patch("logging.error")) as (logging_debug, logging_error): self.value = {"error_id": "InPacketAdded", "version": "0001"} self.result = Event("publisher_id", "InPacketAdded", self.value) self.target._do_event_inpacketadded(self.result) self.assertEqual( logging_error.call_count, 1) self.assertEqual( logging_debug.call_count, 0) def test_on_in_packet_added_pre(self): with patch("logging.debug") as logging_debug: self.target._on_in_packet_added_pre("network_id", "msg") self.assertEqual( logging_debug.call_count, 1) def test_on_in_packet_added_post(self): with patch("logging.debug") as logging_debug: self.target._on_in_packet_added_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_do_event_outpacketadded_success(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet_added.OutPacketAdded." "create_from_packed")) as (logging_debug, logging_error, mock_out_packet_added): mock_out_packet_added.return_value = "Dummy" self.target._on_out_packet_added_pre = Mock( return_value=True) self.target._add_out_packet_conversion = Mock( return_value="resp_list") self.target._on_out_packet_added_post = Mock() self.value = {"id": "OutPacketAdded", "version": "0001"} self.result = Event("publisher_id", "OutPacketAdded", self.value) self.target._do_event_outpacketadded(self.result) self.assertEqual( logging_error.call_count, 0) self.assertEqual( logging_debug.call_count, 1) self.target._on_out_packet_added_pre.assert_called_once_with( "publisher_id", "Dummy") self.target._add_out_packet_conversion.assert_called_once_with( "publisher_id", "Dummy") self.target._on_out_packet_added_post.assert_called_once_with( "publisher_id", "Dummy", "resp_list") def test_do_event_outpacketadded_error(self): with nested(patch("logging.debug"), patch("logging.error")) as (logging_debug, logging_error): self.value = {"error_id": "OutPacketAdded", "version": "0001"} self.result = Event("publisher_id", "FlowChanged", self.value) self.target._do_event_outpacketadded(self.result) self.assertEqual( logging_error.call_count, 1) self.assertEqual( logging_debug.call_count, 0) def test_on_out_packet_added_pre(self): with patch("logging.debug") as logging_debug: self.target._on_out_packet_added_pre("network_id", "msg") self.assertEqual( logging_debug.call_count, 1) def test_on_out_packet_added_post(self): with patch("logging.debug") as logging_debug: self.target._on_out_packet_added_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_node_added(self): self.target._on_node_added_pre = Mock( return_value=True) self.target._add_node_conversion = Mock( return_value="resp_list") self.target._on_node_added_post = Mock() self.target._on_node_added("network_id", "node_msg") self.target._on_node_added_pre.assert_called_once_with( "network_id", "node_msg") self.target._add_node_conversion.assert_called_once_with( "network_id", "node_msg") self.target._on_node_added_post.assert_called_once_with( "network_id", "node_msg", "resp_list") def test_on_node_added_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_node_added_pre("network_id", "node_msg") self.assertEqual( logging_debug.call_count, 1) def test_on_node_added_post(self): with patch("logging.debug") as logging_debug: self.target._on_node_added_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_port_added(self): self.target._on_port_added_pre = Mock( return_value=True) self.target._add_port_conversion = Mock( return_value="resp_list") self.target._on_port_added_post = Mock() self.target._on_port_added("network_id", "port_msg") self.target._on_port_added_pre.assert_called_once_with( "network_id", "port_msg") self.target._add_port_conversion.assert_called_once_with( "network_id", "port_msg") self.target._on_port_added_post.assert_called_once_with( "network_id", "port_msg", "resp_list") def test_on_port_added_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_port_added_pre("network_id", "port_msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_port_added_post(self): with patch("logging.debug") as logging_debug: self.target._on_port_added_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_link_added(self): self.target._on_link_added_pre = Mock( return_value=True) self.target._add_link_conversion = Mock( return_value="resp_list") self.target._on_link_added_post = Mock() self.target._on_link_added("network_id", "link_msg") self.target._on_link_added_pre.assert_called_once_with( "network_id", "link_msg") self.target._add_link_conversion.assert_called_once_with( "network_id", "link_msg") self.target._on_link_added_post.assert_called_once_with( "network_id", "link_msg", "resp_list") def test_on_link_added_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_link_added_pre("network_id", "link_msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_link_added_post(self): with patch("logging.debug") as logging_debug: self.target._on_link_added_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_flow_added(self): self.target._on_flow_added_pre = Mock( return_value=True) self.target._add_flow_conversion = Mock( return_value="resp_list") self.target._on_flow_added_post = Mock() self.target._on_flow_added("network_id", "flow_msg") self.target._on_flow_added_pre.assert_called_once_with( "network_id", "flow_msg") self.target._add_flow_conversion.assert_called_once_with( "network_id", "flow_msg") self.target._on_flow_added_post.assert_called_once_with( "network_id", "flow_msg", "resp_list") def test_on_flow_added_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_flow_added_pre("network_id", "flow_msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_flow_added_post(self): with patch("logging.debug") as logging_debug: self.target._on_flow_added_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_node_update(self): self.target._on_node_update_pre = Mock( return_value=True) self.target._update_node_conversion = Mock( return_value="resp_list") self.target._on_node_update_post = Mock() self.target._on_node_update("network_id", "prev", "curr", "sttributes") self.target._on_node_update_pre.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._update_node_conversion.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._on_node_update_post.assert_called_once_with( "network_id", "prev", "curr", "sttributes", "resp_list") def test_on_node_update_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_node_update_pre("network_id", "prev", "curr", "sttributes") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_node_update_post(self): with patch("logging.debug") as logging_debug: self.target._on_node_update_post("network_id", "prev", "curr", "sttributes", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_port_update(self): self.target._on_port_update_pre = Mock( return_value=True) self.target._update_port_conversion = Mock( return_value="resp_list") self.target._on_port_update_post = Mock() self.target._on_port_update("network_id", "prev", "curr", "sttributes") self.target._on_port_update_pre.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._update_port_conversion.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._on_port_update_post.assert_called_once_with( "network_id", "prev", "curr", "sttributes", "resp_list") def test_on_port_update_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_port_update_pre("network_id", "prev", "curr", "sttributes") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_port_update_post(self): with patch("logging.debug") as logging_debug: self.target._on_port_update_post("network_id", "prev", "curr", "sttributes", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_link_update(self): self.target._on_link_update_pre = Mock( return_value=True) self.target._update_link_conversion = Mock( return_value="resp_list") self.target._on_link_update_post = Mock() self.target._on_link_update("network_id", "prev", "curr", "sttributes") self.target._on_link_update_pre.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._update_link_conversion.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._on_link_update_post.assert_called_once_with( "network_id", "prev", "curr", "sttributes", "resp_list") def test_on_link_update_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_link_update_pre("network_id", "prev", "curr", "sttributes") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_link_update_post(self): with patch("logging.debug") as logging_debug: self.target._on_link_update_post("network_id", "prev", "curr", "sttributes", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_flow_update(self): self.target._on_flow_update_pre = Mock( return_value=True) self.target._update_flow_conversion = Mock( return_value="resp_list") self.target._on_flow_update_post = Mock() self.target._on_flow_update("network_id", "prev", "curr", "sttributes") self.target._on_flow_update_pre.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._update_flow_conversion.assert_called_once_with( "network_id", "prev", "curr", "sttributes") self.target._on_flow_update_post.assert_called_once_with( "network_id", "prev", "curr", "sttributes", "resp_list") def test_on_flow_update_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_flow_update_pre("network_id", "prev", "curr", "sttributes") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_flow_update_post(self): with patch("logging.debug") as logging_debug: self.target._on_flow_update_post("network_id", "prev", "curr", "sttributes", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_node_delete(self): self.target._on_node_delete_pre = Mock( return_value=True) self.target._delete_node_conversion = Mock( return_value="resp_list") self.target._on_node_delete_post = Mock() self.target._on_node_delete("network_id", "msg") self.target._on_node_delete_pre.assert_called_once_with( "network_id", "msg") self.target._delete_node_conversion.assert_called_once_with( "network_id", "msg") self.target._on_node_delete_post.assert_called_once_with( "network_id", "msg", "resp_list") def test_on_node_delete_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_node_delete_pre("network_id", "msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_node_delete_post(self): with patch("logging.debug") as logging_debug: self.target._on_node_delete_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_port_delete(self): self.target._on_port_delete_pre = Mock( return_value=True) self.target._delete_port_conversion = Mock( return_value="resp_list") self.target._on_port_delete_post = Mock() self.target._on_port_delete("network_id", "msg") self.target._on_port_delete_pre.assert_called_once_with( "network_id", "msg") self.target._delete_port_conversion.assert_called_once_with( "network_id", "msg") self.target._on_port_delete_post.assert_called_once_with( "network_id", "msg", "resp_list") def test_on_port_delete_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_port_delete_pre("network_id", "msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_port_delete_post(self): with patch("logging.debug") as logging_debug: self.target._on_port_delete_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_link_delete(self): self.target._on_link_delete_pre = Mock( return_value=True) self.target._delete_link_conversion = Mock( return_value="resp_list") self.target._on_link_delete_post = Mock() self.target._on_link_delete("network_id", "msg") self.target._on_link_delete_pre.assert_called_once_with( "network_id", "msg") self.target._delete_link_conversion.assert_called_once_with( "network_id", "msg") self.target._on_link_delete_post.assert_called_once_with( "network_id", "msg", "resp_list") def test_on_link_delete_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_link_delete_pre("network_id", "msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_link_delete_post(self): with patch("logging.debug") as logging_debug: self.target._on_link_delete_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_on_flow_delete(self): self.target._on_flow_delete_pre = Mock( return_value=True) self.target._delete_flow_conversion = Mock( return_value="resp_list") self.target._on_flow_delete_post = Mock() self.target._on_flow_delete("network_id", "msg") self.target._on_flow_delete_pre.assert_called_once_with( "network_id", "msg") self.target._delete_flow_conversion.assert_called_once_with( "network_id", "msg") self.target._on_flow_delete_post.assert_called_once_with( "network_id", "msg", "resp_list") def test_on_flow_delete_pre(self): with patch("logging.debug") as logging_debug: self.result = self.target._on_flow_delete_pre("network_id", "msg") self.assertEqual(self.result, True) self.assertEqual( logging_debug.call_count, 1) def test_on_flow_delete_post(self): with patch("logging.debug") as logging_debug: self.target._on_flow_delete_post("network_id", "msg", "resp_list") self.assertEqual( logging_debug.call_count, 1) def test_add_node_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node mock_put_object.return_value = self.value self.result = self.target._add_node_conversion("network1", node) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2"].body, "node_item") self.assertEqual( conversion_table._ConversionTable__node_conversion_table, {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]}) def test_add_node_conversion_not_in__network_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "node_item") mock_node.return_value = node mock_put_object.return_value = self.value self.result = self.target._add_node_conversion("network1", node) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) self.assertEqual( conversion_table._ConversionTable__node_conversion_table, {}) def test_add_node_conversion_error(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node = Node("Node", "0001", "Node01", {"port_id": port}, {"attribute_key": "value"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"key": "error"}) mock_put_object.return_value = self.value self.result = self.target._add_node_conversion("network1", node) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result["network2"].body, {"key": "error"}) self.assertEqual( conversion_table._ConversionTable__node_conversion_table, {}) def test_add_port_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port mock_put_object.return_value = self.value self.result = self.target._add_port_conversion("network1", port) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2"].body, "port_item") self.assertEqual( conversion_table._ConversionTable__port_conversion_table, {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]}) def test_add_port_conversion_not_in_network_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "port_item") mock_port.return_value = port mock_put_object.return_value = self.value self.result = self.target._add_port_conversion("network1", port) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) self.assertEqual( conversion_table._ConversionTable__port_conversion_table, {}) def test_add_port_conversion_error(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} port = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"key": "error"}) mock_put_object.return_value = self.value self.result = self.target._add_port_conversion("network1", port) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result["network2"].body, {"key": "error"}) self.assertEqual( conversion_table._ConversionTable__port_conversion_table, {}) def test_add_link_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link mock_put_object.return_value = self.value self.result = self.target._add_link_conversion("network1", link) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2"].body, "link_item") self.assertEqual( conversion_table._ConversionTable__link_conversion_table, {"network1::LinkId": ["network2::LinkId"], "network2::LinkId": ["network1::LinkId"]}) def test_add_link_conversion_not_in_network_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "link_item") mock_link.return_value = link mock_put_object.return_value = self.value self.result = self.target._add_link_conversion("network1", link) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) self.assertEqual( conversion_table._ConversionTable__link_conversion_table, {}) def test_add_link_conversion_error(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} link = Link("Link", "1", "LinkId", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "PortVal"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"key": "error"}) mock_put_object.return_value = self.value self.result = self.target._add_link_conversion("network1", link) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result["network2"].body, {"key": "error"}) self.assertEqual( conversion_table._ConversionTable__link_conversion_table, {}) def test_add_flow_conversion_error(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"key": "error"}) mock_put_object.return_value = self.value self.result = self.target._add_flow_conversion("network1", flow) self.assertEqual(logging_error.call_count, 1) self.assertEqual(self.result["network2"].body, {"key": "error"}) self.assertEqual(conversion_table._ConversionTable__flow_conversion_table, {}) def test_add_flow_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_flow, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "flow_item") mock_flow.return_value = flow mock_put_object.return_value = self.value self.result = self.target._add_flow_conversion("network1", flow) self.assertEqual(logging_error.call_count, 0) self.assertEqual(self.result["network2"].body, "flow_item") def test_add_flow_conversion_not_in_network_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} flow = Flow("BasicFlow", "1", "FlowId", "Owner", True, 123456789, "establishing", {"PortKey": "PortVal"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "flow_item") mock_put_object.return_value = self.value self.result = self.target._add_flow_conversion("network1", flow) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network2::NodeId": ["network1::NodeId"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2"].body, "inpacket_item") def test_add_in_packet_conversionnot_in_network_interfaces(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_del_in_packet_None(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = None mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_del_in_packet_node_None(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", None, "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_convert_in_node_id_list_None(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_cdel_in_packet_port_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network2::NodeId": ["network1::NodeId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", None, basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_convert_in_port_id_list_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network2::NodeId": ["network1::NodeId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_header_in_port_id_list_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network2::NodeId": ["network1::NodeId"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "Node01", "Port01") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_in_packet_conversion_attr_list_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network2::NodeId": ["network1::NodeId"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") inpacket_add = InPacketAdded("inpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "inpacket_item") mock_del_object.return_value = self.value mock_in_packet.return_value = inpacket mock_post_object.return_value = self.value self.result = self.target._add_in_packet_conversion("network1", inpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_ports_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network2::NodeId": ["network1::NodeId"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", ["PortId"], None, basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2"].body, "outpacket_item") def test_add_out_packet_conversion_portsEx_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::PortExId": ["network2::PortExId"], "network1::NodeId": ["network2::NodeId"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortExId": ["network2::NodeId::PortExId"], "network1::NodeId::PortId": ["network2::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", None, ["PortExId"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2"].body, "outpacket_item") def test_add_out_packet_conversion_network_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", ["PortId"], ["Ports_ex"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_del_out_packet_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", ["PortId"], ["Ports_ex"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = None mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_convert_port_id_list_zero(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", ["PortId"], ["Ports_ex"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_del_out_packet_node_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", None, ["PortId"], ["Ports_ex"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_convert_node_id_list_zero(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", ["PortId"], ["Ports_ex"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_ports_list_zero(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::NodeId": ["network2::NodeId"], "network1::Node01": ["network2::Node01"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortId": ["network2::NodeId::PortId"], "network2::NodeId::PortId": ["network1::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "Node01", ["Port01"], None, basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_add_out_packet_conversion_portsEx_list_zero(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_post_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object, mock_post_object): conversion_table._ConversionTable__node_conversion_table =\ {"network1::PortExId": ["network2::PortExId"], "network1::NodeId": ["network2::NodeId"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::NodeId::PortEx": ["network2::NodeId::PortEx"], "network1::NodeId::PortId": ["network2::NodeId::PortId"]} basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", None, ["PortExId"], basic_flow_match, "Data") outpacket_add = OutPacketAdded("outpacket_id") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] =\ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "outpacket_item") mock_del_object.return_value = self.value mock_out_packet.return_value = outpacket mock_post_object.return_value = self.value self.result = self.target._add_out_packet_conversion("network1", outpacket_add) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Node01"].packed_object(), node_prev.packed_object()) def test_update_node_conversion_network_id_None(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion(None, node_prev, node_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_node_curr_None(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, None, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_attributes_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Node01"].packed_object(), node_prev.packed_object()) def test_update_node_conversion_node_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_success_get_node_false(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = None mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_attr_key_in_ignore_attributes(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::network1": ["physical_id", "vendor"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "1", "Node01", {"port_id": port_prev}, {"oper_status": "DOWN"}) node_curr = Node("Node", "2", "Node01", {"port_id": port_curr}, {"oper_status": "UP"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, ["physical_id", "vendor"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_attributes_exist(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute": "value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute": "value"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_node_conversion_KeyError(self): conversion_table = self.target._conversion_table port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) port_curr = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_curr = Node("Node", "0001", "Node01", {"port_id": port_curr}, {"attribute_curr": "prev_curr"}) with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." + "network_interface.NetworkInterface.get_node") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object, mock_get_node): self.target._Logic__subscription_table =\ {"NodeChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node01": ["network1::Node01"]} self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "node_item") mock_node.side_effect = KeyError() mock_get_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_node_conversion("network1", node_prev, node_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, {}) def test_update_port_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Node02::Port02"].packed_object(), port_prev.packed_object()) def test_update_port_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion(None, port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_port_conversion_port_curr_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, None, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_port_conversion_attributes_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Node02::Port02"].packed_object(), port_prev.packed_object()) def test_update_port_conversion_port_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_port_conversion_port_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = None mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_port_conversion_attr_key_ignore_attributes(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"max_bandwidth": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_port_conversion_attributes_exist(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "curr"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_port_conversion_KeyError(self): conversion_table = self.target._conversion_table self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node02::Port02": ["network2::Node02::Port02"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) port_curr = Port("Port", "1", "Port02", "Node02", "OutLink", "InLink", {"PortKey": "curr"}) with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." + "network_interface.NetworkInterface.get_port") ) as (logging_debug, logging_error, mock_port, mock_put_object, mock_get_port): self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_get_port.return_value = port_prev mock_port.side_effect = KeyError() mock_put_object.return_value = self.value self.result = self.target._update_port_conversion("network1", port_prev, port_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, {}) def test_update_link_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Link02"].packed_object(), link_prev.packed_object()) def test_update_link_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion(None, link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_link_conversion_link_curr_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, None, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_link_conversion_attributes(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Link02"].packed_object(), link_prev.packed_object()) def test_update_link_conversion_link_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_link_conversion_line_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = None mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_link_conversion_attr_key_in_ignore_attributes(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"unreserved_bandwidth": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_link_conversion_attributes_exist(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_link_conversion_KeyError(self): conversion_table = self.target._conversion_table conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link02": ["network2::Link02"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) link_curr = Link("Link", "1", "Link02", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "curr"}) with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." + "network_interface.NetworkInterface.get_link") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object, Mock_get_link): self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") Mock_get_link.return_value = link_prev mock_link.side_effect = KeyError() mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_link_conversion("network1", link_prev, link_curr, ["oper_status"]) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, {}) def test_update_flow_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 987654321, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Flow02"].packed_object(), flow_prev.packed_object()) def test_update_flow_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 987654321, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( None, flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_flow_conversion_flow_curr_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 987654321, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, None, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_flow_conversion_attributes_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 987654321, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Flow02"].packed_object(), flow_prev.packed_object()) def test_update_flow_conversion_flow_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 123456789, "establishing", {"PortKey": "curr"}) self.value = Response(200, {"type": "Flow"}) self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_flow_conversion_flow_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 123456789, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_get_flow.return_value = None mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_flow_conversion_differ_enabled(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", False, 123456789, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Flow02"].packed_object(), flow_prev.packed_object()) def test_update_flow_conversion_differ_status(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 123456789, "teardown", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Flow02"].packed_object(), flow_prev.packed_object()) def test_update_flow_conversion_attr_key_in_ignore_attributes(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 123456789, "establishing", {"bandwidth": "curr"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["enabled", "priority", "status", "bandwidth"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_flow_conversion_attributes_exist(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "curr"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 123456789, "establishing", {"PortKey": "curr"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["enabled", "priority", "status"]) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_update_flow_conversion_KeyError(self): conversion_table = self.target._conversion_table conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow02": ["network2::Flow02"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) flow_curr = Flow("BasicFlow", "1", "Flow02", "Owner", True, 987654321, "establishing", {"PortKey": "curr"}) with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util.network_interface." "NetworkInterface.get_flow") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow): self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_get_flow.return_value = flow_prev self.target._Logic__get_ignore_keys =\ Mock(return_value=["bandwidth", "latency", "req_latency"]) mock_flow.side_effect = KeyError() mock_get_object.return_value = self.value mock_put_object.return_value = self.value self.result = self.target._update_flow_conversion( "network1", flow_prev, flow_curr, ["priority"]) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, {}) def test_delete_node_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node02": ["network1::Node02"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, {"item": "node_item"}) mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_node_conversion("network2", node_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( conversion_table._ConversionTable__node_conversion_table, {"network1::Node01": ["network2::Node01"]}) self.assertEqual( self.result["network1::Node02"].packed_object(), node_prev.packed_object()) def test_delete_node_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node02": ["network1::Node02"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, {"item": "node_item"}) mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_node_conversion(None, node_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_node_conversion_node_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node02": ["network1::Node02"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, {"item": "node_item"}) mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_node_conversion("network2", None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_node_conversion_node_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node02": ["network1::Node02"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) self.value = Response(200, {"item": "node_item"}) mock_node.return_value = node_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_node_conversion("network2", node_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_node_conversion_KeyError(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "node.Node." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_node, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__node_conversion_table =\ {"network1::Node01": ["network2::Node01"], "network2::Node02": ["network1::Node02"]} port_prev = Port("Port", "1", "PortId", "NodeId", "OutLink", "InLink", {"PortKey": "PortVal"}) node_prev = Node("Node", "0001", "Node02", {"port_id": port_prev}, {"attribute_prev": "prev_value"}) self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, {"key": "error"}) mock_node.side_effect = KeyError() mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_node_conversion("network2", node_prev) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_delete_port_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object, mock_del_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node01::Port01": ["network2::Node01::Port01"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_port_conversion("network1", port_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Node01::Port01"].packed_object(), port_prev.packed_object()) self.assertEqual( conversion_table._ConversionTable__port_conversion_table, {"network2::Node02::Port02": ["network1::Node02::Port02"]}) def test_delete_port_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object, mock_del_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node01::Port01": ["network2::Node01::Port01"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_port_conversion(None, port_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_port_conversion_port_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object, mock_del_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node01::Port01": ["network2::Node01::Port01"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_port_conversion("network1", None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_port_conversion_port_id_not_in_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object, mock_del_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node01::Port01": ["network2::Node01::Port01"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) self.value = Response(200, "port_item") mock_port.return_value = port_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_port_conversion("network1", port_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_port_conversion_KeyError(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "port.Port." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_port, mock_get_object, mock_put_object, mock_del_object): self.target._Logic__subscription_table =\ {"PortChanged::UPDATE::publisher_id": ["oper_status"]} conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__port_conversion_table =\ {"network1::Node01::Port01": ["network2::Node01::Port01"], "network2::Node02::Port02": ["network1::Node02::Port02"]} port_prev = Port("Port", "1", "Port01", "Node01", "OutLink", "InLink", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "port_item") mock_port.side_effect = KeyError() mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_port_conversion("network1", port_prev) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_delete_link_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link01": ["network2::Link01"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_link_conversion("network1", link_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Link01"].packed_object(), link_prev.packed_object()) self.assertEqual( conversion_table._ConversionTable__link_conversion_table, {"network2::Link02": ["network1::Link02"]}) def test_delete_link_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link01": ["network2::Link01"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_link_conversion(None, link_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_link_conversion_link_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link01": ["network2::Link01"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_link_conversion("network1", None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_link_conversion_link_in_not_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link01": ["network2::Link01"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) self.value = Response(200, "link_item") mock_link.return_value = link_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_link_conversion("network1", link_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_link_conversion_KeyError(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.topology." "link.Link." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_link, mock_get_object, mock_put_object, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__link_conversion_table =\ {"network1::Link01": ["network2::Link01"], "network2::Link02": ["network1::Link02"]} link_prev = Link("Link", "1", "Link01", "SrcNode", "SrcPort", "DstNode", "DstPort", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, "link_item") mock_link.side_effect = KeyError() mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value self.result = self.target._delete_link_conversion("network1", link_prev) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_delete_flow_conversion_success(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "get_flow"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow01": ["network2::Flow01"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value mock_get_flow.return_value = flow_prev self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.result = self.target._delete_flow_conversion( "network1", flow_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result["network2::Flow01"].packed_object(), flow_prev.packed_object()) self.assertEqual( conversion_table._ConversionTable__flow_conversion_table, {"network2::Flow02": ["network1::Flow02"]}) def test_delete_flow_conversion_network_id_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "get_flow"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow01": ["network2::Flow01"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value mock_get_flow.return_value = self.value self.result = self.target._delete_flow_conversion( None, flow_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_flow_conversion_link_None(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "get_flow"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow01": ["network2::Flow01"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value mock_get_flow.return_value = self.value self.result = self.target._delete_flow_conversion( "network1", None) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_flow_conversion_flow_id_interfaces(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "get_flow"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow01": ["network2::Flow01"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) self.value = Response(200, {"type": "Flow"}) mock_flow.return_value = flow_prev mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value mock_get_flow.return_value = flow_prev self.target._network_interfaces["network1"] = \ NetworkInterface(self.target.dispatcher, "network1") self.result = self.target._delete_flow_conversion( "network1", flow_prev) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result, {}) def test_delete_flow_conversion_KeyError(self): conversion_table = self.target._conversion_table with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.flow." "flow.Flow." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_get_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_put_object_to_remote_object"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "get_flow"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_flow, mock_get_object, mock_put_object, mock_get_flow, mock_del_object): conversion_table._ConversionTable__network_conversion_table =\ {"network1": ["network2"]} conversion_table._ConversionTable__flow_conversion_table =\ {"network1::Flow01": ["network2::Flow01"], "network2::Flow02": ["network1::Flow02"]} flow_prev = Flow("BasicFlow", "1", "Flow01", "Owner", True, 123456789, "establishing", {"PortKey": "prev"}) self.target._network_interfaces["network2"] = \ NetworkInterface(self.target.dispatcher, "network2") self.value = Response(200, {"type": "Flow"}) mock_flow.side_effect = KeyError() mock_get_object.return_value = self.value mock_put_object.return_value = self.value mock_del_object.return_value = self.value mock_get_flow.return_value = self.value self.result = self.target._delete_flow_conversion( "network1", flow_prev) self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_del_in_packet_conversion_success(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "inpacket_item") mock_in_packet.return_value = inpacket mock_del_object.return_value = self.value self.result = self.target._del_in_packet( self.target._network_interfaces["network1"], "inpacket_id") self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result.packed_object(), inpacket.packed_object()) def test_del_in_packet_conversion_Response_error(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response("400", "inpacket_item") mock_in_packet.return_value = inpacket mock_del_object.return_value = self.value self.result = self.target._del_in_packet( self.target._network_interfaces["network1"], "inpacket_id") self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_del_in_packet_conversion_KeyError(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "in_packet.InPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_in_packet, mock_del_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") inpacket = InPacket("inpacket_id", "InPcket", "attributes", "NodeId", "PortId", basic_flow_match, "Data") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "inpacket_item") mock_in_packet.side_effect = KeyError() mock_del_object.return_value = self.value self.result = self.target._del_in_packet( self.target._network_interfaces["network1"], "inpacket_id") self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_del_out_packet_conversion_success(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", "Ports", "Ports_ex", basic_flow_match, "Data") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "outpacket_item") mock_out_packet.return_value = outpacket mock_del_object.return_value = self.value self.result = self.target._del_out_packet( self.target._network_interfaces["network1"], "outpacket_id") self.assertEqual( logging_debug.call_count, 3) self.assertEqual( logging_error.call_count, 0) self.assertEqual( self.result.packed_object(), outpacket.packed_object()) def test_del_out_packet_conversion_Response_error(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", "Ports", "Ports_ex", basic_flow_match, "Data") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response("400", "outpacket_item") mock_out_packet.return_value = outpacket mock_del_object.return_value = self.value self.result = self.target._del_out_packet( self.target._network_interfaces["network1"], "outpacket_id") self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_del_out_packet_conversion_KeyError(self): with nested(patch("logging.debug"), patch("logging.error"), patch("org.o3project.odenos.core.component.network.packet." "out_packet.OutPacket." "create_from_packed"), patch("org.o3project.odenos.core.util." "network_interface.NetworkInterface." "_del_object_to_remote_object") ) as (logging_debug, logging_error, mock_out_packet, mock_del_object): basic_flow_match = BasicFlowMatch("BasicFlowMatch", "NodeId", "PortId") outpacket = OutPacket("outpacket_id", "OutPcket", "attributes", "NodeId", "Ports", "Ports_ex", basic_flow_match, "Data") self.target._network_interfaces["network1"] =\ NetworkInterface(self.target.dispatcher, "network1") self.value = Response(200, "outpacket_item") mock_out_packet.side_effect = KeyError() mock_del_object.return_value = self.value self.result = self.target._del_out_packet( self.target._network_interfaces["network1"], "outpacket_id") self.assertEqual( logging_error.call_count, 1) self.assertEqual( self.result, None) def test_get_ignore_keys_match(self): attributes_port = ["oper_status", "physical_id", "vendor", "max_bandwidth", "unreserved_bandwidth", "is_boundary"] self.result = self.target._Logic__get_ignore_keys( attributes_port, ["attributes::unreserved_bandwidth"]) self.assertEqual( self.result, ["oper_status", "physical_id", "vendor", "max_bandwidth", "is_boundary"]) def test_get_ignore_keys_not_match(self): attributes_port = ["oper_status", "physical_id", "vendor", "max_bandwidth", "unreserved_bandwidth", "is_boundary"] self.result = self.target._Logic__get_ignore_keys( attributes_port, ["unreserved_bandwidth"]) self.assertEqual( self.result, ["oper_status", "physical_id", "vendor", "max_bandwidth", "is_boundary"]) if __name__ == "__main__": unittest.main()
python
#!/usr/bin/env python import argparse import astropy.io.fits as pyfits if __name__=="__main__": parser = argparse.ArgumentParser( prog='show_gti.py', usage='show_gti.py input.fits', description='Show GTI information', epilog='', add_help=True, ) parser.add_argument( 'input_fits',metavar='input_fits',type=str, help='Input fits file.') args = parser.parse_args() hdu = pyfits.open(args.input_fits) extname_list = [] for i in range(len(hdu)): try: extname_list.append(hdu[i].header['EXTNAME']) except: pass #print('skip the extension...') if 'GTI' in extname_list: gtiname = 'GTI' filetype = 'evt' elif 'STDGTI' in extname_list: gtiname = 'STDGTI' filetype = 'evt' elif 'PREFILTER' in extname_list: filetype = 'mkf' total_exp = 0.0 if filetype == 'evt': num_of_gti = len(hdu[gtiname].data) print("# GTI-num START STOP Exposure(s)") for i in range(num_of_gti): gti_start = hdu[gtiname].data[i]['START'] gti_stop = hdu[gtiname].data[i]['STOP'] gti_exp = gti_stop - gti_start print("%03d: %.3f %.3f %.3f" % (i+1,gti_start,gti_stop,gti_exp)) total_exp += gti_exp elif filetype == 'mkf': total_exp = len(hdu['PREFILTER'].data) print("# Total exposure: %.3f (s)" % total_exp)
python
#!/usr/bin/env python3 import os.path import json dir_path = os.path.normpath(os.path.join(__file__, '..' , '..' , 'data')) file_path = os.path.join(dir_path, 'config_file.json') ## get user input----------------------------------------- ssid = input("Enter wifi ssid: ") pswd = input("Enter wifi password: ") name = input("Enter device name: ") device_position = input("Enter device position: ") pub_topic = input("Enter publish topic: ") sub_topic = input("Enter subscribe topic: ") logger_level = input(""" LOG_LEVEL_OFF 0 no logging LOG_LEVEL_FATAL 1 Designates very severe error events that will presumably lead the application to abort LOG_LEVEL_ERROR 2 Designates error events that might still allow the application to continue running LOG_LEVEL_WARNING 3 Designates potentially harmful situations LOG_LEVEL_INFO 4 Designates informational messages that highlight the progress of the application at coarse-grained level. LOG_LEVEL_DEBUG 5 Designates fine-grained informational events that are most useful to debug an application. Enter logger level number: """) logger_output = input(""" LOG_OUTPUT_SERIAL_DIRECT 0 Logging events are directly printed over serial interface when they occure LOG_OUTPUT_SERIAL_BEGIN 1 Logging events are stored in the SPIFFS and printed over the serial interface at the start of the programm LOG_OUTPUT_SERIAL_DIRECT_BEGIN 2 Comibination of LOG_OUTPUT_SERIAL_DIRECT and LOG_OUTPUT_SERIAL_BEGIN LOG_OUTPUT_OFF 3 Not output at all Enter logger output number: """) ## create json-------------------------------------------- json_dict = { "ssid":ssid, "password":pswd, "aws_url":"aq60dkt3q20bd-ats.iot.eu-central-1.amazonaws.com", "aws_port":8883, "mqtt_pub_topic":pub_topic, "mqtt_sub_topic":sub_topic, "device_id":name, "device_position":device_position, "logger_level":int(logger_level), "logger_output":int(logger_output) } file_data = json.dumps(json_dict, indent=0) ## write to file------------------------------------------ if not os.path.exists(dir_path): os.makedirs(dir_path) f = open(file_path, "w") f.write(file_data) f.close()
python
from abc import ABCMeta from discord.ext.commands import CogMeta from bot.utils.redis_cache import RedisCache __all__ = ['RedisCache', 'CogABCMeta'] class CogABCMeta(CogMeta, ABCMeta): """Metaclass for ABCs meant to be implemented as Cogs.""" pass def pad_base64(data: str) -> str: """Return base64 `data` with padding characters to ensure its length is a multiple of 4.""" return data + "=" * (-len(data) % 4)
python
# First # Hello World import developer skill import resilience skill import persistence skill pythonapprentice = str('Johnny') print(f'welcome to the python world {pythonapprentice}') print('Learning...')
python
from tweets.models import Comment from django.db import router # from posts.views import my_view from rest_framework import routers from django.urls.conf import include from django.urls import path from tweets.views import TweetViewSet, LikeViewSet, RetweetviewSet, CommentviewSet, index router = routers.DefaultRouter() router.register(r'tweets', TweetViewSet) router.register(r'likes', LikeViewSet) router.register(r'retweet',RetweetviewSet) # router.register(r'trends',TrendsviewSet) router.register(r"comment",CommentviewSet) urlpatterns = [ path('index/', index), path("", include(router.urls)) ]
python
from Repository.eventTriggerOutputGroupingSetupValueRepo import eventTriggerOutputGroupingSetupValueRepo from sqlalchemy import Table from sqlalchemy.engine.base import Connection from sqlalchemy.sql.expression import BinaryExpression class eventTriggerOutputGroupingSetupValueServices(): __eventTriggerOutputGroupingSetupValueRepo: eventTriggerOutputGroupingSetupValueRepo def __init__(self, eventTriggerOutputGroupingSetupValueTable: Table, context: Connection): self.__eventTriggerOutputGroupingSetupValueRepo = eventTriggerOutputGroupingSetupValueRepo(eventTriggerOutputGroupingSetupValueTable, context=context) def AddManyEventTriggerOutputGroupSetupValueWithCustomData(self, l:list): self.__eventTriggerOutputGroupingSetupValueRepo.InsertManyWithCustomData(l)
python
''' Version and license information. ''' __all__ = ['__version__', '__versiondate__', '__license__'] __version__ = '1.3.3' __versiondate__ = '2022-01-16' __license__ = f'Sciris {__version__} ({__versiondate__}) – © 2014-2022 by the Sciris Development Team'
python
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. load("@bazel_tools//tools/build_defs/pkg:pkg.bzl", "pkg_tar") def _impl(ctx): """Core implementation of passwd_file.""" f = "%s:x:%s:%s:%s:%s:%s\n" % ( ctx.attr.username, ctx.attr.uid, ctx.attr.gid, ctx.attr.info, ctx.attr.home, ctx.attr.shell ) ctx.file_action( output = ctx.outputs.out, content = f, executable=False ) build_tar = ctx.executable.build_tar args = [ "--output=" + ctx.outputs.tar.path, "--file=%s=/etc/passwd" % ctx.outputs.out.path ] arg_file = ctx.new_file(ctx.attr.name + ".args") ctx.file_action(arg_file, "\n".join(args)) ctx.action( executable = build_tar, arguments = ["--flagfile=" + arg_file.path], inputs = [ctx.outputs.out, arg_file], outputs = [ctx.outputs.tar], use_default_shell_env = True ) passwd_file = rule( attrs = { "username": attr.string(mandatory = True), "uid": attr.int(default = 1000), "gid": attr.int(default = 1000), "info": attr.string(default = "user"), "home": attr.string(default = "/home"), "shell": attr.string(default = "/bin/bash"), "build_tar": attr.label( default = Label("@bazel_tools//tools/build_defs/pkg:build_tar"), cfg = "host", executable = True, allow_files = True, ), }, executable = False, outputs = { "out": "%{name}.passwd", "tar": "%{name}.passwd.tar", }, implementation = _impl, )
python
from __future__ import absolute_import import os import sys import traceback from webob.exc import HTTPNotFound, HTTPInternalServerError from .config import Config from .config import get_config from .request import Request from .response import Response from .exceptions import PageNotFound from .tools import import_module from .views import View class Router(object): """ Main project router that calls appropriate controller. TODO: - decorate each controller's call with middleware - (done) load all controllers and their actions to dict to speedup lookup of desired url address """ def __init__(self): """ Load all controllers. It allow us to speed-up get controller by given url. """ self._controllers = {} self._project_dir = os.path.dirname(os.path.realpath(sys.argv[0])) self._load_config() self._load_controllers() self._init_view() def __call__(self, environ, start_response): """ Find appropriate controller for requested address. Return Response object that support the WSGI interface. """ request = Request(environ) try: controller_name = request.get_controller_name() action_name = request.get_action_name() action_handler = self.get_action_handler(controller_name, action_name) if not callable(action_handler): # action handler should be a callable function raise PageNotFound( "Controller '{name}' doesn't have action '{action}'", name=controller_name, action=action_name ) resp = action_handler(request) if not isinstance(resp, Response): raise Exception("Controller should return Response object, but given '{}'".format(type(resp))) except PageNotFound as err: message = self._format_error_message(str(err), with_traceback=True) return HTTPNotFound(message)(environ, start_response) except Exception as err: message = self._format_error_message(str(err), with_traceback=True) return HTTPInternalServerError(message)(environ, start_response) return resp(environ, start_response) def _load_config(self): """ Load config for current project. """ self._config = Config() def _load_controllers(self): """ Load all controllers from folder 'controllers'. Ignore files with leading underscore (for example: controllers/_blogs.py) """ for file_name in os.listdir(os.path.join(self._project_dir, 'controllers')): # ignore disabled controllers if not file_name.startswith('_'): module_name = file_name.split('.', 1)[0] module_path = "controllers.{}".format(module_name) module = import_module(module_path) # transform 'blog_articles' file name to 'BlogArticles' class controller_class_name = module_name.title().replace('_', '') controller_class = getattr(module, controller_class_name) controller = controller_class() for action_name in dir(controller): action = getattr(controller, action_name) if action_name.startswith('_') or not callable(action): continue url_path = "/".join([module_name, action_name]) self._controllers[url_path] = action return self._controllers def _init_view(self): """ Initialize View with project settings. """ views_engine = get_config('rails.views.engine', 'jinja') templates_dir = os.path.join(self._project_dir, "views", "templates") self._view = View(views_engine, templates_dir) def _format_error_message(self, msg, with_traceback=False): if with_traceback: tb = traceback.format_exc() msg += "<h3>Traceback</h3>\n\n<pre>{}</pre>".format(tb) return msg def get_action_handler(self, controller_name, action_name): """ Return action of controller as callable. If requested controller isn't found - return 'not_found' action of requested controller or Index controller. """ try_actions = [ controller_name + '/' + action_name, controller_name + '/not_found', # call Index controller to catch all unhandled pages 'index/not_found' ] # search first appropriate action handler for path in try_actions: if path in self._controllers: return self._controllers[path] return None
python
""" Clean up & organize outputs from processing workflow batch. """ import logging import os import re import zipfile import shutil logger = logging.getLogger(__name__) class OutputCleaner(object): """ Moves, renames, and deletes individual output files from a workflow processing batch for a selected project. """ def __init__(self, path): logger.debug("creating `OutputCleaner` instance for '{}'".format(path)) self.path = path self.output_types = self._get_output_types() def _get_output_types(self): """ Identify the types of outputs included for the project. """ out_types = ['qc', 'metrics', 'counts', 'alignments', 'logs'] logging.debug("subfolders in project folder: {}" .format(os.listdir(self.path))) return [f for f in os.listdir(self.path) if f.lower() in out_types] def _get_output_paths(self, output_type): """ Return full path for individual output files. """ logging.debug("locating output files of type '{}'".format(output_type)) output_root = os.path.join(self.path, output_type) return [os.path.join(self.path, root, f) for root, dirs, files in os.walk(output_root) for f in files if not re.search('(DS_Store|_old)', f)] def _unzip_output(self, path): """ Unzip the contents of a compressed output file. """ logging.debug("extracting contents of '{}' to '{}'" .format(path, os.path.dirname(path))) paths = [] with zipfile.ZipFile(path) as zf: logger.debug("zip folder contents: {}".format(zf.namelist())) for f in zf.namelist(): if f != './': paths.append(zf.extract(f, os.path.dirname(path))) logging.debug("unzipped the following files: {}".format(paths)) return paths def _unnest_output(self, path): """ Unnest files in a subfolder by concatenating filenames and moving up one level. """ logging.debug("unnesting output '{}' from subfolder '{}'" .format(path, os.path.dirname(path))) prefix = os.path.dirname(path) if re.search('.zip$', path): logging.debug("unzipping contents of '{}' before unnesting" .format(path)) for p in self._unzip_output(path): shutil.move(p, '{}_{}'.format(prefix, os.path.basename(p))) try: shutil.rmtree(os.path.splitext(path)[0]) except OSError: pass else: shutil.move(path, '{}_{}'.format(prefix, os.path.basename(path))) def _recode_output(self, path, output_type): """ Rename file according to template. """ filename_map = {'QC': ('fastqc_data.txt', 'fastqc_qc.txt')} swap = filename_map[output_type] newpath = re.sub(swap[0], swap[1], path) logging.debug("renaming '{}' to '{}'".format(path, newpath)) shutil.move(path, newpath) return newpath def clean_outputs(self): """ Walk through output types to unzip, unnest, and rename files. """ for output_type in self.output_types: if output_type == 'QC': outputs = self._get_output_paths(output_type) for o in outputs: outregex = re.compile(output_type + '$') if not outregex.search(os.path.dirname(o)): self._unnest_output(o) for o in os.listdir(os.path.join(self.path, output_type)): self._recode_output( os.path.join(self.path, output_type, o), output_type )
python
# Copyright 2018 Comcast Cable Communications Management, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add module docstring.""" import json from datetime import datetime import responses from sampledata import acl_rule, forward_zone, ip4_zone, ip6_zone, sample_zone_change from vinyldns.serdes import to_json_string, from_json_string from vinyldns.zone import Zone, ZoneChange, ListZonesResponse, ListZoneChangesResponse def check_zone_connections_are_same(a, b): if a is None: assert b is None else: assert a.primary_server == b.primary_server assert a.key == b.key assert a.name == b.name assert a.key_name == b.key_name def check_zones_are_same(a, b): assert a.id == b.id assert a.name == b.name assert a.email == b.email assert a.admin_group_id == b.admin_group_id assert a.status == b.status assert a.updated == b.updated assert a.created == b.created check_zone_connections_are_same(a.connection, b.connection) check_zone_connections_are_same(a.transfer_connection, b.transfer_connection) assert all([l.__dict__ == r.__dict__ for l, r in zip(a.acl.rules, b.acl.rules)]) def test_zone_serdes(): s = to_json_string(forward_zone) print(json.dumps(s, indent=4)) z = from_json_string(s, Zone.from_dict) assert z.name == forward_zone.name assert z.connection.primary_server == forward_zone.connection.primary_server assert all([a.__dict__ == b.__dict__ for a, b in zip(z.acl.rules, forward_zone.acl.rules)]) def test_connect_zone(mocked_responses, vinyldns_client): mocked_responses.add( responses.POST, 'http://test.com/zones', body=to_json_string(sample_zone_change), status=200) r = vinyldns_client.connect_zone(forward_zone) check_zones_are_same(forward_zone, r.zone) def test_update_zone(mocked_responses, vinyldns_client): mocked_responses.add( responses.PUT, 'http://test.com/zones/{0}'.format(forward_zone.id), body=to_json_string(sample_zone_change), status=200) r = vinyldns_client.update_zone(forward_zone) check_zones_are_same(forward_zone, r.zone) def test_abandon_zone(mocked_responses, vinyldns_client): mocked_responses.add( responses.DELETE, 'http://test.com/zones/{0}'.format(forward_zone.id), body=to_json_string(sample_zone_change), status=200) r = vinyldns_client.abandon_zone(forward_zone.id) check_zones_are_same(forward_zone, r.zone) def test_sync_zone(mocked_responses, vinyldns_client): mocked_responses.add( responses.POST, 'http://test.com/zones/{0}/sync'.format(forward_zone.id), body=to_json_string(sample_zone_change), status=200) r = vinyldns_client.sync_zone(forward_zone.id) assert sample_zone_change.id == r.id assert sample_zone_change.change_type == r.change_type assert sample_zone_change.status == r.status assert sample_zone_change.system_message == r.system_message assert sample_zone_change.user_id == r.user_id check_zones_are_same(forward_zone, r.zone) def test_list_zones(mocked_responses, vinyldns_client): lzr = ListZonesResponse(zones=[forward_zone, ip4_zone, ip6_zone], name_filter='*', start_from='start-from', next_id='next', max_items=100) mocked_responses.add( responses.GET, 'http://test.com/zones?nameFilter=*&startFrom=start-from&maxItems=100', body=to_json_string(lzr), status=200 ) r = vinyldns_client.list_zones('*', 'start-from', 100) assert r.name_filter == lzr.name_filter assert r.start_from == lzr.start_from assert r.next_id == lzr.next_id assert r.max_items == lzr.max_items for l, r in zip(lzr.zones, r.zones): check_zones_are_same(l, r) def test_get_zone(mocked_responses, vinyldns_client): mocked_responses.add( responses.GET, 'http://test.com/zones/{0}'.format(forward_zone.id), body=to_json_string({'zone': forward_zone}), status=200) r = vinyldns_client.get_zone(forward_zone.id) check_zones_are_same(forward_zone, r) def test_list_zone_changes(mocked_responses, vinyldns_client): change1 = ZoneChange(zone=forward_zone, user_id='some-user', change_type='Create', status='Pending', created=datetime.utcnow(), system_message=None, id='zone-change-id1') change2 = ZoneChange(zone=ip4_zone, user_id='some-user', change_type='Create', status='Pending', created=datetime.utcnow(), system_message='msg', id='zone-change-id2') lzcr = ListZoneChangesResponse(forward_zone.id, [change1, change2], 'next', 'start', 100) mocked_responses.add( responses.GET, 'http://test.com/zones/{0}/changes?startFrom=start&maxItems=100'.format(forward_zone.id), body=to_json_string(lzcr), status=200 ) r = vinyldns_client.list_zone_changes(forward_zone.id, 'start', 100) assert r.start_from == lzcr.start_from assert r.next_id == lzcr.next_id assert r.max_items == lzcr.max_items for l, r in zip(lzcr.zone_changes, r.zone_changes): assert l.id == r.id assert l.user_id == r.user_id assert l.change_type == r.change_type assert l.status == r.status assert l.created == r.created assert l.system_message == r.system_message check_zones_are_same(l.zone, r.zone) def test_add_acl_rule(mocked_responses, vinyldns_client): mocked_responses.add( responses.PUT, 'http://test.com/zones/{0}/acl/rules'.format(forward_zone.id), body=to_json_string(sample_zone_change) ) r = vinyldns_client.add_zone_acl_rule(forward_zone.id, acl_rule) check_zones_are_same(r.zone, sample_zone_change.zone) def test_delete_acl_rule(mocked_responses, vinyldns_client): mocked_responses.add( responses.DELETE, 'http://test.com/zones/{0}/acl/rules'.format(forward_zone.id), body=to_json_string(sample_zone_change) ) r = vinyldns_client.delete_zone_acl_rule(forward_zone.id, acl_rule) check_zones_are_same(r.zone, sample_zone_change.zone)
python
import sftoolbox class Variable(object): """variable """ def __init__(self, project): """construct""" project.add(self) self.project = project self.idname = None def _apply_json(self, data): """apply the json data """ self.label = data.get('label') self.idname = data.get('idname') @classmethod def from_json(cls, project, value): instance = cls(project) instance._apply_json(value) return instance @sftoolbox.engine.register_variable_class class TextVariable(Variable): """text """ json_type = 'text' def __init__(self, project): super(TextVariable, self).__init__(project) self._value = None @property def value(self): return self._value @value.setter def value(self, value): self._value = value def set_value(self, value): self.value = value def get_value(self): return self.value def _apply_json(self, data): super(TextVariable, self)._apply_json(data) def from_json(project, value): """return a action from the given json """ json_type = value.get('type') for class_ in sftoolbox.engine.variable_classes_register: if json_type == class_.json_type: return class_.from_json(project, value) return Variable.from_json(project, value)
python
# Generated by Django 3.2.7 on 2021-12-07 12:54 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('insta', '0002_auto_20211206_1623'), ] operations = [ migrations.RenameField( model_name='image', old_name='comments', new_name='comment', ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.CharField(max_length=250)), ('image', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='insta.image')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to=settings.AUTH_USER_MODEL)), ], ), ]
python
# Copyright 2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnabla as nn import nnabla.functions as F from nnabla.utils.image_utils import imsave import numpy as np import random def save_generations(rgb_output, filepath, drange=[-1, 1], return_images=False): """ Save generated images """ if return_images: images = [] for i in range(rgb_output.shape[0]): scale = 255 / (drange[1] - drange[0]) if isinstance(rgb_output, nn.Variable): image = rgb_output.d[i] * scale + (0.5 - drange[0] * scale) else: image = rgb_output.data[i] * scale + (0.5 - drange[0] * scale) if return_images: images.append(np.uint8(np.clip(image, 0, 255))) else: imsave(f'{filepath}_{i}.png', np.uint8( np.clip(image, 0, 255)), channel_first=True) print(f'Output saved. Saved {filepath}_{i}.png') if return_images: return images def collect_data(data): data = [np.expand_dims(d, 1) for d in data] data = np.concatenate(data, 1) return data def mixing_noise(batch_size, latent_dim, mixing_prob, seed): rnd = np.random.RandomState(seed=seed[0]) z = rnd.randn(batch_size, latent_dim).astype(np.float32) if mixing_prob > 0 and random.random() < mixing_prob: rnd_2 = np.random.RandomState(seed=seed[1]) z_1 = z z_2 = rnd_2.randn(batch_size, latent_dim).astype(np.float32) else: z_1 = z_2 = z return z_1, z_2 def slerp(noise_1, noise_2, ratio): interpolated_noises = [] for a, b in zip(noise_1, noise_2): a_norm = F.pow_scalar( F.sum(F.pow_scalar(a, 2), axis=1, keepdims=True), 0.5) b_norm = F.pow_scalar( F.sum(F.pow_scalar(b, 2), axis=1, keepdims=True), 0.5) a /= a_norm b /= b_norm d = F.sum(a*b, axis=1, keepdims=True) p = ratio*F.acos(d) c = b-d*a c_norm = F.pow_scalar( F.sum(F.pow_scalar(c, 2), axis=1, keepdims=True), 0.5) c /= c_norm d = a*F.cos(p) + c*F.sin(p) d = d/F.pow_scalar(F.sum(F.pow_scalar(d, 2), axis=1, keepdims=True), 0.5) interpolated_noises.append(d) return interpolated_noises def lerp(a, b, t): return a + (b - a) * t
python
#! /usr/bin/env python ''' This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Quick description: ''' # standard library from math import * from copy import deepcopy # local library import inkex import pathmodifier import cubicsuperpath import bezmisc import simplepath import simpletransform def getColorAndOpacity(longColor): ''' Convert the long into a #rrggbb color value Conversion back is A + B*256^1 + G*256^2 + R*256^3 ''' longColor = long(longColor) if longColor < 0: longColor = longColor & 0xFFFFFFFF hexColor = hex(longColor) hexOpacity = hexColor[-3:-1] hexColor = '#' + hexColor[2:-3].rjust(6, '0') return (hexColor, hexOpacity) def setColorAndOpacity(style, color, opacity): declarations = style.split(';') strokeOpacityInStyle = False newOpacity = round((int(opacity, 16) / 255.0), 8) for i,decl in enumerate(declarations): parts = decl.split(':', 2) if len(parts) == 2: (prop, val) = parts prop = prop.strip().lower() if (prop == 'stroke' and val != color): declarations[i] = prop + ':' + color if prop == 'stroke-opacity': if val != newOpacity: declarations[i] = prop + ':' + str(newOpacity) strokeOpacityInStyle = True if not strokeOpacityInStyle: declarations.append('stroke-opacity' + ':' + str(newOpacity)) return ";".join(declarations) def getSkeletonPath(d, offs): ''' Recieves a current skeleton path and offset specified by the user if it's line. Calculates new skeleton path to use for creating contour with given offset. ''' if offs != 0: comps = d.split() if ((comps[2] == 'h' or comps[2] == 'H') and len(comps) == 4): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalX = float(comps[3]) if comps[2] == 'H' else startX + float(comps[3]) if startX < finalX: startY -= offs else: startY += offs comps[1] = startPt[0] + ',' + str(startY) elif ((comps[2] == 'v' or comps[2] == 'V') and len(comps) == 4): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalY = float(comps[3]) if comps[2] == 'V' else startY + float(comps[3]) if startY < finalY: startX += offs else: startX -= offs comps[1] = str(startX) + ',' + startPt[1] elif (comps[0] == 'M' and len(comps) == 3): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalPt = comps[2].split(',') finalX = float(finalPt[0]) finalY = float(finalPt[1]) if startX < finalX: if (startY > finalY): startX -= offs finalX -= offs else: startX += offs finalX += offs startY -= offs finalY -= offs else: if startY > finalY: startX -= offs finalX -= offs else: startX += offs finalX += offs startY += offs finalY += offs comps[1] = str(startX) + ',' + str(startY) comps[2] = str(finalX) + ',' + str(finalY) elif (comps[0] == 'm' and len(comps) == 3): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalPt = comps[2].split(',') dx = float(finalPt[0]) dy = float(finalPt[1]) finalX = startX + dx finalY = startY + dy if startX < finalX: if startY > finalY: startX -= offs else: startX += offs startY -= offs else: if startY > finalY: startX -= offs else: startX += offs startY += offs comps[1] = str(startX) + ',' + str(startY) comps[2] = str(dx) + ',' + str(dy) return cubicsuperpath.parsePath(' '.join(comps)) return cubicsuperpath.parsePath(d) def modifySkeletonPath(skelPath): resPath = [] l = len(skelPath) resPath += skelPath[0] if l > 1: for i in range(1, l): if skelPath[i][0][1] == resPath[-1][1]: skelPath[i][0][0] = resPath[-1][0] del resPath[-1] resPath += skelPath[i] return resPath def linearize(p, tolerance=0.001): ''' This function receives a component of a 'cubicsuperpath' and returns two things: The path subdivided in many straight segments, and an array containing the length of each segment. ''' zero = 0.000001 i = 0 d = 0 lengths=[] while i < len(p) - 1: box = bezmisc.pointdistance(p[i][1], p[i][2]) box += bezmisc.pointdistance(p[i][2], p[i+1][0]) box += bezmisc.pointdistance(p[i+1][0], p[i+1][1]) chord = bezmisc.pointdistance(p[i][1], p[i+1][1]) if (box - chord) > tolerance: b1, b2 = bezmisc.beziersplitatt([p[i][1], p[i][2], p[i + 1][0], p[i + 1][1]], 0.5) p[i][2][0], p[i][2][1] = b1[1] p[i + 1][0][0], p[i + 1][0][1] = b2[2] p.insert(i + 1, [[b1[2][0], b1[2][1]], [b1[3][0], b1[3][1]], [b2[1][0], b2[1][1]]]) else: d = (box + chord) / 2 lengths.append(d) i += 1 new = [p[i][1] for i in range(0, len(p) - 1) if lengths[i] > zero] new.append(p[-1][1]) lengths = [l for l in lengths if l > zero] return (new, lengths) def isSkeletonClosed(sklCmp): cntOfDgts = 2 if (round(sklCmp[0][0], cntOfDgts) != round(sklCmp[-1][0], cntOfDgts) or round(sklCmp[0][1], cntOfDgts) != round(sklCmp[-1][1], cntOfDgts)): return False return True def getPolygonCentroid(polygon): x = 0 y = 0 n = len(polygon) for vert in polygon: x += vert[0] y += vert[1] x = x / n y = y / n return [x, y] def getPoint(p1, p2, x, y): x1 = p1[0] y1 = p1[1] x2 = p2[0] y2 = p2[1] a = (y1 - y2) / (x1 - x2) b = y1 - a * x1 if x == None: x = (y - b) / a else: y = a * x + b return [x, y] def getPtOnSeg(p1, p2, segLen, l): if p1[0] == p2[0]: return [p2[0], p2[1] - l] if p2[1] < p1[1] else [p2[0], p2[1] + l] if p1[1] == p2[1]: return [p2[0] - l, p2[1]] if p2[0] < p1[0] else [p2[0] + l, p2[1]] dy = abs(p1[1] - p2[1]) angle = asin(dy / segLen) dx = l * cos(angle) x = p1[0] - dx if p1[0] > p2[0] else p1[0] + dx return getPoint(p1, p2, x, None) def drawfunction(nodes, width, fx): # x-bounds of the plane xstart = 0.0 xend = 2 * pi # y-bounds of the plane ybottom = -1.0 ytop = 1.0 # size and location of the plane on the canvas height = 2 left = 15 bottom = 15 + height # function specified by the user try: if fx != "": f = eval('lambda x: ' + fx.strip('"')) except SyntaxError: return [] scalex = width / (xend - xstart) xoff = left # conver x-value to coordinate coordx = lambda x: (x - xstart) * scalex + xoff scaley = height / (ytop - ybottom) yoff = bottom # conver y-value to coordinate coordy = lambda y: (ybottom - y) * scaley + yoff # step is the distance between nodes on x step = (xend - xstart) / (nodes - 1) third = step / 3.0 # step used in calculating derivatives ds = step * 0.001 # initialize function and derivative for 0; # they are carried over from one iteration to the next, to avoid extra function calculations. x0 = xstart y0 = f(xstart) # numerical derivative, using 0.001*step as the small differential x1 = xstart + ds # Second point AFTER first point (Good for first point) y1 = f(x1) dx0 = (x1 - x0) / ds dy0 = (y1 - y0) / ds # path array a = [] # Start curve a.append(['M ', [coordx(x0), coordy(y0)]]) for i in range(int(nodes - 1)): x1 = (i + 1) * step + xstart x2 = x1 - ds # Second point BEFORE first point (Good for last point) y1 = f(x1) y2 = f(x2) # numerical derivative dx1 = (x1 - x2) / ds dy1 = (y1 - y2) / ds # create curve a.append([' C ', [coordx(x0 + (dx0 * third)), coordy(y0 + (dy0 * third)), coordx(x1 - (dx1 * third)), coordy(y1 - (dy1 * third)), coordx(x1), coordy(y1)]]) # Next segment's start is this segment's end x0 = x1 y0 = y1 # Assume the function is smooth everywhere, so carry over the derivative too dx0 = dx1 dy0 = dy1 return a def offset(pathComp, dx, dy): for ctl in pathComp: for pt in ctl: pt[0] += dx pt[1] += dy def stretch(pathComp, xscale, yscale, org): for ctl in pathComp: for pt in ctl: pt[0] = org[0] + (pt[0] - org[0]) * xscale pt[1] = org[1] + (pt[1] - org[1]) * yscale class GuillocheContour(pathmodifier.PathModifier): def __init__(self): pathmodifier.PathModifier.__init__(self) self.OptionParser.add_option("--tab", action="store", type="string", dest="tab", default="contour", help="Active tab") self.OptionParser.add_option("--contourFunction", action="store", type="string", dest="contourFunction", default="sin", help="Function of the contour") self.OptionParser.add_option("--frequency", action="store", type="int", dest="frequency", default=10, help="Frequency of the function") self.OptionParser.add_option("--amplitude", action="store", type="int", dest="amplitude", default=1, help="Amplitude of the function") self.OptionParser.add_option("--phaseOffset", action="store", type="int", dest="phaseOffset", default=0, help="Phase offset of the function") self.OptionParser.add_option("--offset", action="store", type="int", dest="offset", default=0, help="Offset of the function") self.OptionParser.add_option("--nodes", action="store", type="int", dest="nodes", default=20, help="Count of nodes") self.OptionParser.add_option("--remove", action="store", type="inkbool", dest="remove", default=False, help="If True, control object will be removed") self.OptionParser.add_option("--strokeColor", action="store", type="string", dest="strokeColor", default=255, help="The line's color") self.OptionParser.add_option("--amplitude1", action="store", type="float", dest="amplitude1", default=0.0, help="Amplitude of first harmonic") self.OptionParser.add_option("--phase1", action="store", type="int", dest="phase1", default=0, help="Phase offset of first harmonic") self.OptionParser.add_option("--amplitude2", action="store", type="float", dest="amplitude2", default=0.0, help="Amplitude of second harmonic") self.OptionParser.add_option("--phase2", action="store", type="int", dest="phase2", default=0, help="Phase offset of second harmonic") self.OptionParser.add_option("--amplitude3", action="store", type="float", dest="amplitude3", default=0.0, help="Amplitude of third harmonic") self.OptionParser.add_option("--phase3", action="store", type="int", dest="phase3", default=0, help="Phase offset of third harmonic") self.OptionParser.add_option("--amplitude4", action="store", type="float", dest="amplitude4", default=0.0, help="Amplitude of fourth harmonic") self.OptionParser.add_option("--phase4", action="store", type="int", dest="phase4", default=0, help="Phase offset of fourth harmonic") self.OptionParser.add_option("--amplitude5", action="store", type="float", dest="amplitude5", default=0.0, help="Amplitude of fifth harmonic") self.OptionParser.add_option("--phase5", action="store", type="int", dest="phase5", default=0, help="Phase offset of fifth harmonic") def prepareSelectionList(self): self.skeletons = self.selected self.expandGroupsUnlinkClones(self.skeletons, True, False) self.objectsToPaths(self.skeletons) def linearizePath(self, skelPath, offs): comps, lengths = linearize(skelPath) self.skelCompIsClosed = isSkeletonClosed(comps) if (self.skelCompIsClosed and offs != 0): centroid = getPolygonCentroid(comps) for i in range(len(comps)): pt1 = comps[i] dist = bezmisc.pointdistance(centroid, pt1) comps[i] = getPtOnSeg(centroid, pt1, dist, dist + offs) if i > 0: lengths[i - 1] = bezmisc.pointdistance(comps[i - 1], comps[i]) return (comps, lengths) def getFunction(self, func): res = '' presetAmp1 = presetAmp2 = presetAmp3 = presetAmp4 = presetAmp5 = 0.0 presetPhOf1 = presetPhOf2 = presetPhOf3 = presetPhOf4 = presetPhOf5 = presetOffs = 0 if (func == 'sin' or func == 'cos'): return '(' + str(self.options.amplitude) + ') * ' + func + '(x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + '))' if func == 'env1': presetAmp1 = presetAmp3 = 0.495 elif func == 'env2': presetAmp1 = presetAmp3 = 0.65 presetPhOf1 = presetPhOf3 = 25 elif func == 'env3': presetAmp1 = 0.75 presetPhOf1 = 25 presetAmp3 = 0.24 presetPhOf3 = -25 elif func == 'env4': presetAmp1 = 1.105 presetAmp3 = 0.27625 presetPhOf3 = 50 elif func == 'env5': presetAmp1 = 0.37464375 presetPhOf1 = 25 presetAmp2 = 0.5655 presetAmp3 = 0.37464375 presetPhOf3 = -25 elif func == 'env6': presetAmp1 = 0.413725 presetPhOf1 = 25 presetAmp2 = 0.45695 presetPhOf2 = 50 presetAmp3 = 0.494 presetPhOf3 = -25 elif func == 'env7': presetAmp1 = 0.624 presetPhOf1 = 25 presetAmp2 = 0.312 presetAmp3 = 0.624 presetPhOf3 = 25 elif func == 'env8': presetAmp1 = 0.65 presetPhOf1 = 50 presetAmp2 = 0.585 presetAmp3 = 0.13 elif func == 'env9': presetAmp1 = 0.07605 presetPhOf1 = 25 presetAmp2 = 0.33345 presetPhOf2 = 50 presetAmp3 = 0.468 presetPhOf3 = -25 presetAmp4 = 0.32175 elif func == 'env10': presetAmp1 = 0.3575 presetPhOf1 = -25 presetAmp2 = 0.3575 presetAmp3 = 0.3575 presetPhOf3 = 25 presetAmp4 = 0.3575 presetPhOf4 = 50 elif func == 'env11': presetAmp1 = 0.65 presetPhOf1 = 25 presetAmp2 = 0.13 presetPhOf2 = 50 presetAmp3 = 0.26 presetPhOf3 = 25 presetAmp4 = 0.39 elif func == 'env12': presetAmp1 = 0.5525 presetPhOf1 = -25 presetAmp2 = 0.0414375 presetPhOf2 = 50 presetAmp3 = 0.15884375 presetPhOf3 = 25 presetAmp4 = 0.0966875 presetAmp5 = 0.28315625 presetPhOf5 = -25 harm1 = '(' + str(self.options.amplitude * (presetAmp1 + self.options.amplitude1)) + ') * cos(1 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf1 + self.options.phase1) / 100.0 * 2 * pi) + '))' harm2 = '(' + str(self.options.amplitude * (presetAmp2 + self.options.amplitude2)) + ') * cos(2 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf2 + self.options.phase2) / 100.0 * 2 * pi) + '))' harm3 = '(' + str(self.options.amplitude * (presetAmp3 + self.options.amplitude3)) + ') * cos(3 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf3 + self.options.phase3) / 100.0 * 2 * pi) + '))' harm4 = '(' + str(self.options.amplitude * (presetAmp4 + self.options.amplitude4)) + ') * cos(4 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf4 + self.options.phase4) / 100.0 * 2 * pi) + '))' harm5 = '(' + str(self.options.amplitude * (presetAmp5 + self.options.amplitude5)) + ') * cos(5 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf5 + self.options.phase5) / 100.0 * 2 * pi) + '))' res = harm1 + ' + ' + harm2 + ' + ' + harm3 + ' + ' + harm4 + ' + ' + harm5 return res def lengthToTime(self, l): ''' Recieves an arc length l, and returns the index of the segment in self.skelComp containing the corresponding point, together with the position of the point on this segment. If the deformer is closed, do computations modulo the total length. ''' if self.skelCompIsClosed: l = l % sum(self.lengths) if l <= 0: return 0, l / self.lengths[0] i = 0 while (i < len(self.lengths)) and (self.lengths[i] <= l): l -= self.lengths[i] i += 1 t = l / self.lengths[min(i, len(self.lengths) - 1)] return (i, t) def applyDiffeo(self, bpt, vects=()): ''' The kernel of this stuff: bpt is a base point and for v in vectors, v'=v-p is a tangent vector at bpt. ''' s = bpt[0] - self.skelComp[0][0] i, t = self.lengthToTime(s) if i == len(self.skelComp) - 1: x, y = bezmisc.tpoint(self.skelComp[i - 1], self.skelComp[i], t + 1) dx = (self.skelComp[i][0] - self.skelComp[i - 1][0]) / self.lengths[-1] dy = (self.skelComp[i][1] - self.skelComp[i - 1][1]) / self.lengths[-1] else: x, y = bezmisc.tpoint(self.skelComp[i], self.skelComp[i + 1], t) dx = (self.skelComp[i + 1][0] - self.skelComp[i][0]) / self.lengths[i] dy = (self.skelComp[i + 1][1] - self.skelComp[i][1]) / self.lengths[i] vx = 0 vy = bpt[1] - self.skelComp[0][1] bpt[0] = x + vx * dx - vy * dy bpt[1] = y + vx * dy + vy * dx for v in vects: vx = v[0] - self.skelComp[0][0] - s vy = v[1] - self.skelComp[0][1] v[0] = x + vx * dx - vy * dy v[1] = y + vx * dy + vy * dx def effect(self): if len(self.options.ids) < 1: inkex.errormsg(_("This extension requires one selected path.")) return self.prepareSelectionList() for skeleton in self.skeletons.itervalues(): resPath = [] pattern = inkex.etree.Element(inkex.addNS('path','svg')) self.options.strokeHexColor, self.strokeOpacity = getColorAndOpacity(self.options.strokeColor) # Copy style of skeleton with setting color and opacity s = skeleton.get('style') if s: pattern.set('style', setColorAndOpacity(s, self.options.strokeHexColor, self.strokeOpacity)) skeletonPath = modifySkeletonPath(getSkeletonPath(skeleton.get('d'), self.options.offset)) self.skelComp, self.lengths = self.linearizePath(skeletonPath, self.options.offset) length = sum(self.lengths) patternWidth = length / self.options.frequency selectedFunction = self.getFunction(self.options.contourFunction) pattern.set('d', simplepath.formatPath(drawfunction(self.options.nodes, patternWidth, selectedFunction))) # Add path into SVG structure skeleton.getparent().append(pattern) if self.options.remove: skeleton.getparent().remove(skeleton) # Compute bounding box bbox = simpletransform.computeBBox([pattern]) width = bbox[1] - bbox[0] dx = width if dx < 0.01: exit(_("The total length of the pattern is too small.")) patternPath = cubicsuperpath.parsePath(pattern.get('d')) curPath = deepcopy(patternPath) xoffset = self.skelComp[0][0] - bbox[0] yoffset = self.skelComp[0][1] - (bbox[2] + bbox[3]) / 2 patternCopies = max(1, int(round(length / dx))) width = dx * patternCopies newPath = [] # Repeat pattern to cover whole skeleton for subPath in curPath: for i in range(0, patternCopies, 1): newPath.append(deepcopy(subPath)) offset(subPath, dx, 0) curPath = newPath # Offset pattern to the first node of the skeleton for subPath in curPath: offset(subPath, xoffset, yoffset) # Stretch pattern to whole skeleton for subPath in curPath: stretch(subPath, length / width, 1, self.skelComp[0]) for subPath in curPath: for ctlpt in subPath: self.applyDiffeo(ctlpt[1], (ctlpt[0], ctlpt[2])) # Check if there is a need to close path manually if self.skelCompIsClosed: firstPtX = round(curPath[0][0][1][0], 8) firstPtY = round(curPath[0][0][1][1], 8) finalPtX = round(curPath[-1][-1][1][0], 8) finalPtY = round(curPath[-1][-1][1][1], 8) if (firstPtX != finalPtX or firstPtY != finalPtY): curPath[-1].append(curPath[0][0]) resPath += curPath pattern.set('d', cubicsuperpath.formatPath(resPath)) if __name__ == '__main__': e = GuillocheContour() e.affect() # vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99
python
import cv2 from collections import defaultdict from utils.timer import Timer _GRAY = [218, 227, 218] _RED = [0, 0, 255] _GREEN = [18, 127, 15] _BULE = [255, 144, 30] _WHITE = [255, 255, 255] _BLACK = [0, 0, 0] colors = [_RED, _GREEN, _BULE, _WHITE] def get_class_string(class_index, score, dataset): class_text = dataset.classes[class_index] if dataset is not None else 'id{:d}'.format(class_index) return class_text + ' {:0.2f}'.format(score).lstrip('0') def vis_quad(img, cfg_vis, quad, color=None): border_thick = cfg_vis.SHOW_QUAD_BOX.BORDER_THICK for j in range(4): str_point = (quad[j * 2], quad[j * 2 + 1]) end_point = (quad[((j + 1) * 2) % len(quad)], quad[(((j + 1) * 2 + 1) % len(quad))]) if color is not None: cv2.line(img, str_point, end_point, color, thickness=border_thick) else: cv2.line(img, str_point, end_point, _BULE, thickness=border_thick) cv2.circle(img, (quad[0], quad[1]), cfg_vis.SHOW_QUAD_BOX.CENTER_RADIUS, (0, 0, 255), -1) return img def vis_point(img, cfg_vis, point, color): cv2.circle(img, (point[0], point[1]), cfg_vis.SHOW_QUAD_BOX.CENTER_RADIUS, color, -1) return img def vis_class(img, cfg_vis, pos, class_str, bg_color): """Visualizes the class.""" font_color = cfg_vis.SHOW_CLASS.COLOR font_scale = cfg_vis.SHOW_CLASS.FONT_SCALE x0, y0 = int(pos[0]), int(pos[1]) # Compute text size. txt = class_str font = cv2.FONT_HERSHEY_SIMPLEX ((txt_w, txt_h), _) = cv2.getTextSize(txt, font, font_scale, 1) # Place text background. back_tl = x0, y0 - int(1.3 * txt_h) back_br = x0 + txt_w, y0 cv2.rectangle(img, back_tl, back_br, bg_color, -1) # Show text. txt_tl = x0, y0 - int(0.3 * txt_h) cv2.putText(img, txt, txt_tl, font, font_scale, font_color, lineType=cv2.LINE_AA) return img def vis_one_image_opencv(im, cfg_vis, boxes=None, classes=None, dataset=None): """Constructs a numpy array with the detections visualized.""" timers = defaultdict(Timer) timers['bbox_prproc'].tic() if boxes is None or boxes.shape[0] == 0 or max(boxes[:, -1]) < cfg_vis.VIS_TH: return im timers['bbox_prproc'].toc() for i in range(boxes.shape[0]): quad = boxes[i, :-1] score = boxes[i, -1] if score < cfg_vis.VIS_TH: continue if cfg_vis.SHOW_QUAD_BOX.ENABLED: timers['show_quad_box'].tic() if len(quad) == 8: im = vis_quad(im, cfg_vis, quad) elif len(quad) == 10: im = vis_quad(im, cfg_vis, quad[:8]) center = quad[8:10] im = vis_point(im, cfg_vis, center, _GRAY) timers['show_quad_box'].toc() # show class (on by default) if cfg_vis.SHOW_CLASS.ENABLED: timers['show_class'].tic() class_str = get_class_string(classes[i], score, dataset) im = vis_class(im, cfg_vis, (quad[0], quad[1] - 2), class_str, _BLACK) timers['show_class'].toc() return im
python
# The parsing logic is heavily borrowed from the python-nubia project, available at: # https://github.com/facebookincubator/python-nubia # # In compliance with python-nubia's BSD-style license, its copyright and license terms # are included below: # # BSD License # # For python-nubia software # # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name Facebook nor the names of its contributors may be used to # endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import re import pyparsing as pp from enum import auto, Enum from functools import lru_cache from typing import NamedTuple from prompt_toolkit.document import Document from ..errors import PartialParseError, TotalParseError class Patterns: ALLOWED_SYMBOLS_IN_STRING = r'-_/#@£$€%*+~|<>?.' IDENTIFIER = r'([a-zA-Z_][a-zA-Z0-9_\-]*)' WHITESPACE = r'\s+' UNQUOTED_STRING = r'([a-zA-Z0-9' + ALLOWED_SYMBOLS_IN_STRING + r']+)' STRING_SINGLE_QUOTE = r"\'([^\\\']|\\.)*\'" STRING_DOUBLE_QUOTE = r'\"([^\\\"]|\\.)*\"' BOOLEAN = r'(True|true|False|false)' FLOAT = r'\-?\d+\.\d*([eE]\d+)?' INTEGER = r'\-?\d+' KWARG = IDENTIFIER + r'(\s*=\s*)' COMMAND = r'^' + IDENTIFIER + r'(\s+|$)' @staticmethod def is_valid_identifier( s: str ) -> bool: """Whether the specified string is a valid command name or kwarg identifier.""" return bool(re.fullmatch(Patterns.IDENTIFIER, s)) def _no_transform(x): return x def _bool_transform(x): return x in ('True', 'true',) def _str_transform(x): return x.strip('"\'') _TRANSFORMS = { 'bool': _bool_transform, 'str': _str_transform, 'int': int, 'float': float, 'dict': dict, } def _parse_type(data_type): transform = _TRANSFORMS.get(data_type, _no_transform) def _parse(s, loc, toks): return [transform(x) for x in toks] return _parse # Valid identifiers cannot start with a number, but may contain them in their body. identifier = pp.Word(pp.alphas + '_-', pp.alphanums + '_-') # XXX: allow for hex? int_value = pp.Regex(Patterns.INTEGER).setParseAction(_parse_type('int')) float_value = pp.Regex(Patterns.FLOAT).setParseAction(_parse_type('float')) bool_value = ( pp.Literal('True') ^ pp.Literal('true') ^ pp.Literal('False') ^ pp.Literal('false') ).setParseAction(_parse_type('bool')) quoted_string = pp.quotedString.setParseAction(_parse_type('str')) unquoted_string = pp.Word( pp.alphanums + Patterns.ALLOWED_SYMBOLS_IN_STRING ).setParseAction(_parse_type('str')) string_value = quoted_string | unquoted_string single_value = bool_value | float_value | int_value | string_value list_value = pp.Group( pp.Suppress('[') + pp.Optional(pp.delimitedList(single_value)) + pp.Suppress(']') ).setParseAction(_parse_type('list')) dict_value = pp.Forward() value = list_value ^ single_value ^ dict_value dict_key_value = pp.dictOf(string_value + pp.Suppress(':'), value) dict_value << pp.Group( pp.Suppress('{') + pp.delimitedList(dict_key_value) + pp.Suppress('}') ).setParseAction(_parse_type('dict')) # Positionals must be end of line or has a space (or more) afterwards. # This is to ensure that the parser treats text like "something=" as invalid # instead of parsing this as positional "something" and leaving the "=" as # invalid on its own. positionals = pp.ZeroOrMore( value + (pp.StringEnd() ^ pp.Suppress(pp.OneOrMore(pp.White()))) ).setResultsName('positionals') key_value = pp.Dict(pp.ZeroOrMore(pp.Group( identifier + pp.Suppress('=') + value ))).setResultsName('kv') command = identifier.setResultsName('command') command_line = command + positionals + key_value class ParseState(Enum): FULL = auto() PARTIAL = auto() NONE = auto() class ParseStatus(NamedTuple): results: pp.ParseResults unparsed_text: str unparsed_start_pos: int state: ParseState @lru_cache() def parse_cmd_line( text: str ) -> ParseStatus: """Attempt to parse a command line, returning a :class:`ParseStatus` object.""" try: parse_results = _raw_parse_cmd_line(text) unparsed_text = '' unparsed_start_pos = len(text) parse_state = ParseState.FULL except PartialParseError as e: parse_results = e.partial_result unparsed_text = e.remaining unparsed_start_pos = e.error_pos parse_state = ParseState.PARTIAL except TotalParseError: parse_results = None unparsed_text = text unparsed_start_pos = 0 parse_state = ParseState.NONE return ParseStatus(parse_results, unparsed_text, unparsed_start_pos, parse_state) def _raw_parse_cmd_line( text: str ) -> pp.ParseResults: """Attempt to parse the command line as per the grammar defined in this module. If the specified text can be fully parsed, then a `pypaysing.ParseResults` will be returned with the following attributes: * command: The name or alias of the command. * kv: A dictionary of key-value pairs representing the keyword arguments. * positionals: Any positional argument values. Otherwise, a descendant of :class:`CommandParseError` is raised. Raises: :class:`CommandPartialParseError`: If the specified text can be partially parsed, but errors still exist. :class:`CommandPartialParseError`: If the text cannot even be partially parsed. """ try: result = command_line.parseString(text, parseAll=True) return result except pp.ParseException as e: remaining = e.markInputline() remaining = remaining[(remaining.find('>!<') + 3):] try: partial_result = command_line.parseString(text, parseAll=False) except pp.ParseException as ee: raise TotalParseError(str(ee)) from None new_exc = PartialParseError(str(e), remaining, partial_result, e.col) raise new_exc from None class IncompleteToken: """Encapsulation of a token that could only be partially parsed.""" def __init__( self, token: str ) -> None: self._token = token self._key = '' self._value = '' self._is_kw_arg = False self._is_pos_arg = False self._parse() def _parse( self ) -> None: key, delim, value = self._token.partition('=') if any(x in key for x in '[]{}"\''): # Treat the whole token as a positional value. self._is_pos_arg = True self._value = self._token return if delim == '=': # This is a key=value. self._is_kw_arg = True self._key = key self._value = value else: # This could either be the beginning of something like key=value or the # positional literal keywest. self._key = self._value = key @property def is_kw_arg( self ) -> bool: return self._is_kw_arg @property def is_pos_arg( self ) -> bool: return self._is_pos_arg @property def is_ambiguous_arg( self ) -> bool: return not self._is_kw_arg and not self._is_pos_arg @property def key( self ) -> str: return self._key @property def value( self ) -> str: return self._value def __str__( self ) -> str: if self.is_kw_arg: return f'kwarg {self._key}={self._value}' elif self.is_pos_arg: return f'positional {self._value}' elif self.is_ambiguous_arg: return f'ambiguous {self._key}' else: return 'Parse error' def __repr__( self ) -> str: return f'<{self.__class__.__qualname__} [{str(self)}]>' def last_incomplete_token( document: Document, unparsed_text: str ) -> IncompleteToken: if document.char_before_cursor in ' ]}': last_token = '' else: last_space = document.find_backwards(' ', in_current_line=True) if last_space is None: last_space = -1 last_token = document.text[last_space+1:] # The longer of the last_token and unparsed_text is taken in the event that the # unparsed_text is an open literal, which could itself contain spaces. if len(unparsed_text) > len(last_token): last_token = unparsed_text return IncompleteToken(last_token) def last_incomplete_token_from_document( document: Document ) -> IncompleteToken: """Shortcut for getting the last incomplete token only from a ``Document``.""" parse_status = parse_cmd_line(document.text) return last_incomplete_token(document, parse_status.unparsed_text)
python
import re f = open('Dockerfile') data = f.read() f.close() resp = re.sub('RUN','sudo',data) resp = re.sub('WORKDIR','cd',resp) resp = re.sub('FROM.*','',resp) cmd = re.findall('ENTRYPOINT\s+\[(.*?)].*?CMD\s+\[(.*?)\]',resp,re.DOTALL) if cmd: cmd = cmd[0] cmd = cmd[0].strip() + ' ' + cmd[1].strip() cmd = cmd.replace('"','') resp = re.findall('(.*?)# An ENTRYPOINT',resp,re.DOTALL) f = open('debian.sh','w') f.write(resp[0]+cmd) f.close()
python
# flush import time import yaqc from .._pump import * def run(): # Flush # (all volumes in mL unless specified differently) if True: print("flush") for i in range(65): print(i) return # pall_flow_rates is the flow rate of one DSP # FILL IN PUMP FLOW RATE BELOW pall_flow_rates = 10 # [10,20, 30, 40, 50] (mL/min) pall_flow_rates_mL_s = pall_flow_rates / 60 # (mL/s) # Reactor Parameters Vsl = 1.94 Veq = 0.715 Vrxnzone = 9.975 Vexit = 0.393 Veq_quench = 1.2 valve_open_time = 1 # Median exit time calc w/ pumps flow rates if pall_flow_rates == 10: median_exit_time = 48.2 elif pall_flow_rates == 20: median_exit_time = 24.6 elif pall_flow_rates == 30: median_exit_time = 16.8 elif pall_flow_rates == 40: median_exit_time = 12.8 elif pall_flow_rates == 50: median_exit_time = 10.6 # Valve assignments (A= run reactions, B= refill SL and DSPs) valve0 = yaqc.Client(36000) # sample collection valve (A= sample, B=waste) valve1 = yaqc.Client(36001) # Monomer valve2 = yaqc.Client(36002) # Catalyst valve3 = yaqc.Client(36003) # Quench # Pump assignments p1 = Pump(1) # Monomer line p2 = Pump(2) # Catalyst line p3 = Pump(4) # Quench line # Pump injection volume for rxn pall_rxn_inj = 2.5 * Vsl + Veq + 0.5 * Vrxnzone + 0.333 * Vexit # Pump parameters for flush (extra step for DSPs multi-step mode) pall_flush_inj = 0.1 pall_flush_rates = 10 pump_run_time = pall_rxn_inj / pall_flow_rates_mL_s print("run time " + str(round((pump_run_time / 60), 1)) + " min") # Open Mon, Cat, & Quench valves valve1.set_identifier("A") while valve1.busy(): continue assert valve1.get_identifier() == "A" valve2.set_identifier("A") while valve2.busy(): continue assert valve2.get_identifier() == "A" valve3.set_identifier("A") while valve3.busy(): continue assert valve3.get_identifier() == "A" # Collection valve to waste first valve0.set_identifier("B") while valve0.busy(): continue assert valve0.get_identifier() == "B" # Prompt the User (y/n) def yes_or_no(question): answer = input(question + "(y/n): ").lower().strip() print("") while not (answer == "y" or answer == "yes" or answer == "n" or answer == "no"): print("Input yes or no") answer = input(question + "(y/n):").lower().strip() print("") if answer[0] == "y": return True else: return False if yes_or_no("Are you sure you want to FLUSH the reactor?"): print("Starting Flush") else: print("Flush Stopped") exit() print("Error") # checking exit() # Pump instructions for reaction, flush, and refill (Cat & Mon the same) p1.add_step(volume=pall_rxn_inj, rate=pall_flow_rates, delay=0) p1.add_step(volume=pall_flush_inj, rate=pall_flush_rates, delay=0) p2.add_step(volume=pall_rxn_inj, rate=pall_flow_rates, delay=0) p2.add_step(volume=pall_flush_inj, rate=pall_flush_rates, delay=0) # Quench needs additioal quench delay p3.add_step(volume=pall_rxn_inj, rate=pall_flow_rates, delay=0) p3.add_step(volume=pall_flush_inj, rate=pall_flush_rates, delay=0) start_pumps(1, 2, 4) # Collection valve timing and instructions time.sleep(pump_run_time / 2) valve0.set_identifier("A") while valve0.busy(): continue assert valve0.get_identifier() == "A" time.sleep(valve_open_time) valve0.set_identifier("B") while valve0.busy(): continue assert valve0.get_identifier() == "B" # Set valves back to B for refill time.sleep(pump_run_time) valve1.set_identifier("B") while valve1.busy(): continue assert valve1.get_identifier() == "B" valve2.set_identifier("B") while valve2.busy(): continue assert valve2.get_identifier() == "B" valve3.set_identifier("B") while valve3.busy(): continue assert valve3.get_identifier() == "B" valve0.set_identifier("B") while valve0.busy(): continue assert valve0.get_identifier() == "B" print("Flush Complete")
python
from bs4 import BeautifulSoup as bs from splinter import Browser import time import pandas as pd import lxml # full "scrape" function, comprised of the four subfunctions # defined below def scrape(): # create the overall dictionary to hold all the results # which will be returned by this function to the flask app results = {} # first, scrape and then add the article info article_info = scrape_article_info() results.update(article_info) print("Article Info Scraped!") # scrape and then add the featured mars image featured_image = scrape_featured_mars_image() results.update(featured_image) print("Featured Image Scraped!") # scrape and then add the Mars data table Martian_data_table = scrape_data_table() results.update(Martian_data_table) print("Martian Data Table Scraped!") # scrape and then add the hemisphere images hemisphere_images = scrape_hemisphere_enhanced_images() results.update({"Hemispheres":hemisphere_images}) print("Hemisphere Images Scraped!") print(results) return results # first scraped info for the Mars app, article headline and summary # from the NASA website, returned as a dictionary def scrape_article_info(): url = "https://mars.nasa.gov/news/" executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=True) browser.visit(url) #add a delay so page fully loads time.sleep(1) mars_news = browser.html news_soup = bs(mars_news, "html.parser") latest_news = news_soup.find_all("li", class_="slide")[0] latest_headline = latest_news.find("div", class_="content_title").a.text latest_description = latest_news.find("div", class_="article_teaser_body").text browser.quit() return {"headline":latest_headline, "description":latest_description} # scrape the latest Mars image from the JPL website, returned as a dictionary def scrape_featured_mars_image(): executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=True) base_url = "https://www.jpl.nasa.gov" image_url = "https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars" browser.visit(image_url) browser.find_by_css('img.thumb').first.click() time.sleep(2) browser.execute_script( "document.getElementById('fancybox-lock').scrollTo(0, document.body.scrollHeight);") browser.links.find_by_partial_text("more info").click() time.sleep(1) #get image src img_soup = bs(browser.html, "html.parser") img_src = img_soup.find("img", class_="main_image")["src"] img_src = base_url + img_src browser.quit() return {"featured_image": img_src} # scrape Mars data table info directly from space-facts.com/mars def scrape_data_table(): data_table_url = "https://space-facts.com/mars/" tables = pd.read_html(data_table_url) mars_info_df = tables[0] mars_info_df = mars_info_df.set_index(0) mars_info_df.index.name = "Mars" mars_info_df.columns = ["Data Table"] mars_info_df #html_mars_table = mars_info_df.to_html() #return output_dict = mars_info_df.to_dict() return output_dict # scrape high-quality pictures for each Martian hemisphere # returns a dictionary of hemisphere name to file location def scrape_hemisphere_enhanced_images(): executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=True) base_url = "https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars" all_hemispheres = [] browser.visit(base_url) num_hemispheres = len(browser.find_by_css(".thumb")) for hemisphere_num in range(num_hemispheres): curr_title = browser.find_by_tag( "h3")[hemisphere_num].html.replace(" Enhanced", "") browser.find_by_css(".thumb")[hemisphere_num].click() curr_img_url = browser.find_by_text("Sample").first["href"] # print(curr_img_url) browser.back() all_hemispheres.append({"title": curr_title, "img_url": curr_img_url}) browser.windows[0].close_others() # print(all_hemispheres) browser.quit() return all_hemispheres
python
# -*- coding: utf-8 -*- from shuup_workbench.settings.utils import get_disabled_migrations from shuup_workbench.settings import * DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'myapp.sqlite3' } }
python
#!/usr/bin/env python import ConfigParser import log import obslog import os from pyraf import iraf import shutil import utils # ---------------------------------------------------------------------------------------------------------------------- def start(configfile): """ Parameters are loaded from gnirs-pype.cfg configuration file. This script will automatically detect if it is being run on telluric data or science data. There are 5 steps. INPUT FILES: - Configuration file - Science or Telluric frames - mdfshiftrefimage - masterflat - /database files from the appropriate calibrations directory OUTPUT FILES: - If telluric: cleaned (optional), prepared, radiation-event corrected, reduced, spatial distortion corrected, and transformed images - If science: cleaned (optional), prepared, radiation-event corrected, reduced, spatial distortion corrected, and transformed images Args: - kind (string): Either 'Science' or 'Telluric' - configfile: gnirs-pype.cfg configuration file. - Paths to the Science (str), reduction truth value (boolean) E.g. 'target/date/config/{Sci,Tel}_ObsID/{Calibrations,Intermediate}', True - Paths to the Tellurics (str), reduction truth value (boolean) E.g. 'target/date/config/{Sci,Tel}_ObsID/{Calibrations,Intermediate}', True - manualMode (boolean): Enable optional manualModeging pauses? Default: False - overwrite (boolean): Overwrite old files? Default: False # And gnirsReduce specific settings """ logger = log.getLogger('extract_spectra') path = os.getcwd() # Store current working directory for later use. # Set up/prepare IRAF. iraf.gemini() iraf.gemtools() iraf.gnirs() iraf.unlearn(iraf.gemini, iraf.gemtools, iraf.gnirs, iraf.imcopy) # reset parameters to default values # Prepare the IRAF package for GNIRS. # NSHEADERS lists the header parameters used by the various tasks in the GNIRS package (excluding headers values # which have values fixed by IRAF or FITS conventions). iraf.nsheaders("gnirs", logfile=logger.root.handlers[0].baseFilename) # Set clobber to 'yes' for the script. This still does not make the gemini tasks overwrite files, so: YOU WILL # LIKELY HAVE TO REMOVE FILES IF YOU RE_RUN THE SCRIPT. us_clobber = iraf.envget("clobber") iraf.reset(clobber='yes') config = ConfigParser.RawConfigParser() config.optionxform = str # make options case-sensitive config.read(configfile) manualMode = config.getboolean('defaults', 'manualMode') overwrite = config.getboolean('defaults', 'overwrite') # Order of sections is important to later check for plausible peaks located for science targets by nsextract nsextractInter = config.getboolean('interactive', 'nsextractInter') combinedsrc = config.get('runtimeFilenames', 'combinedsrc') combinedsky = config.get('runtimeFilenames', 'combinedsky') extractRegularPrefix = config.get('runtimeFilenames', 'extractRegularPrefix') extractFullSlitPrefix = config.get('runtimeFilenames', 'extractFullSlitPrefix') extractStepwiseTracePrefix = config.get('runtimeFilenames', 'extractStepwiseTracePrefix') extractStepwisePrefix = config.get('runtimeFilenames', 'extractStepwisePrefix') useApall = config.getboolean('extractSpectra1D', 'useApall') subtractBkg = config.get('extractSpectra1D', 'subtractBkg') extractApertureRadius = config.getfloat('extractSpectra1D', 'extractApertureRadius') checkPeaksMatch = config.getboolean('extractSpectra1D', 'checkPeaksMatch') toleranceOffset = config.getfloat('extractSpectra1D', 'toleranceOffset') extractFullSlit = config.getboolean('extractSpectra1D', 'extractFullSlit') extractStepwise = config.getboolean('extractSpectra1D', 'extractStepwise') extractionStepSize = config.getfloat('extractSpectra1D', 'extractStepSize') extractApertureWindow = config.getfloat('extractSpectra1D', 'extractApertureWindow') # gnirsExtractSpectra1D will first check if the reduction truth value of the science and telluric directories is # True -- if it is, it will then check if the required spectra to be extracted are available in the directories # (and proceed only if it finds them there); else, it will warn the user and request to provide the spectra for # extracting. If the reduction truth value of the science and telluric directories is False, the script will skip # extracting 1D spectra in those directories. # Loop through all the observation (telluric and science) directories to extract 1D spectra in each one. # (the Telluric standards must be done first if they are to be used as a reference) for section in ['TelluricDirectories', 'ScienceDirectories']: for obspath in config.options(section): if not config.getboolean(section, obspath): # Only process directories marked True logger.debug('Skipping extraction of 1D spectra in %s', obspath) continue logger.info(' ----------------------- ') logger.info('| Extracting 1D spectra |') logger.info(' ----------------------- ') obspath += '/Intermediate' logger.info("%s\n", obspath) iraf.chdir(obspath) utils.pause(manualMode) utils.requires([combinedsrc]) calculateSNR = config.getboolean('gnirsPipeline', 'CalculateSNR') if calculateSNR: if not utils.exists([combinedsky], overwrite=False): logger.warning('Could not find combined sky spectra. Setting calculateSNR = False') calculateSNR = False orders = utils.get_orders(obspath) extractApertureWindow = get_window(obspath) if nsextractInter: subtractBkg = 'fit' logger.info('Setting background subtraction method to "fit"') if useApall: nsum = 20 else: nsum = 10 extractSpectra(combinedsrc, extractRegularPrefix, nsextractInter, useApall, nsum, subtractBkg, extractApertureRadius, overwrite) if calculateSNR: logger.info("Extracting the combined sky spectrum reduced without sky subtraction.") subtractBkg = 'none' extractSpectra(combinedsky, extractRegularPrefix, nsextractInter, useApall, nsum, subtractBkg, extractApertureRadius, overwrite) if 'Science' in section: # If the extraction was not done interactively check if checkPeaksMatch is set: if yes, check if the # required telluric extraction reference files available in the telluric /database directory; else, # warn the user that both nsextractInter and checkPeaksMatch are not set, request the user to # manually check if the science target peak identified by task nsextract might identify a wrong peak # if the science target is not bright enough. # Get symbolic path to the tel database directory in the sci directory # Relative path/link expected to be at the top level of every sci directory scidatabasepath = 'database' logger.info("Science database path: %s", scidatabasepath) telpath = '../Telluric/Intermediate' logger.info("Telluric path: %s", telpath) teldatabasepath = telpath + '/database' logger.info("Telluric database path: %s", teldatabasepath) sci_combinedsrc = obspath + '/' + combinedsrc tel_combinedsrc = telpath + '/' + combinedsrc if not nsextractInter: # if nsextract was not run interactively if not checkPeaksMatch: logger.warning("Parameters 'nsextractInter' and 'checkPeaksMatch' are both set to False.") logger.warning("Please manually verify that nsextract identified the science peaks correctly.") else: logger.info("Finding extraction locations for Telluric standard...") telpeaks = get_peaks(teldatabasepath) logger.info("Finding extration locations for Science target...") scipeaks = get_peaks(scidatabasepath) logger.info("Comparing the science and Telluric extraction locations...") reextract, predicted = compare_peaks(obspath, telpath, scipeaks, telpeaks, toleranceOffset) if any(reextract): logger.warning("Re-extracting...") useApall = 'yes' nsum = 20 reExtractSpectra(reextract, scipeaks, telpeaks, predicted, obspath, telpath, nsum, extractApertureRadius, useApall, subtractBkg, nsextractInter) # ------------------------------------------------------------------------------------------------------ if extractFullSlit: logger.warning('Full-slit extraction is untested') utils.pause(manualMode) # Approx. full-slit extraction (science target only) # Uses +/- 23 pix aperture (6.9", almost whole length of slit), appropriate for objects centred # along length of slit (q=0). Not sure what the effect is if nsextract finds a spectrum that's # not centred along the slit. iraf.nsextract( inimages='src_comb', outspectra='', outprefix='a', dispaxis=1, database='', line=700, nsum=20, ylevel='INDEF', upper=23, lower=-23, background='none', fl_vardq='yes', fl_addvar='no', fl_skylines='yes', fl_inter=nsextractInter, fl_apall=useApall, fl_trace='no', aptable='gnirs$data/apertures.fits', fl_usetabap='no', fl_flipped='yes', fl_project='yes', fl_findneg='no', bgsample='*', trace='', tr_nsum=10, tr_step=10, tr_nlost=3, tr_function='legendre', tr_order=5, tr_sample='*', tr_naver=1, tr_niter=0, tr_lowrej=3.0, tr_highrej=3.0, tr_grow=0.0, weights='variance', logfile=logger.root.handlers[0].baseFilename, verbose='yes', mode='al') # ------------------------------------------------------------------------------------------------------ if extractStepwise: # Extract in steps on either side of the peak logger.warning('Step-wise extraction is untestd') utils.pause(manualMode) # Calling apall and tracing the peak first to make sure the same part of the object is extracted in # each step along the slit for all orders (needed when there is complex, spectrally-varying # structure in a galaxy, for example; otherwise the spectra can have offsets between orders) # This first nsextract step, outside the loop, gets the trace into the database to be used when we # do the "real" extraction iraf.nsextract( inimages='src_comb', outspectra='trace_ref', outprefix='x', dispaxis=1, database='', line=700, nsum=20, ylevel='INDEF', upper=3, lower=-3, background='none', fl_vardq='yes', fl_addvar='no', fl_skylines='yes', fl_inter=nsextractInter, fl_apall='yes', fl_trace='yes', aptable='gnirs$data/apertures.fits', fl_usetabap='no', fl_flipped='yes' ,fl_project='no', fl_findneg='no', bgsample='*', trace='', tr_nsum=10, tr_step=10, tr_nlost=3, tr_function='legendre', tr_order=5, tr_sample='300:1000', tr_naver=1, tr_niter=0, tr_lowrej=3.0, tr_highrej=3.0, tr_grow=0.0, weights='variance', logfile=logger.root.handlers[0].baseFilename, verbose='yes', mode='al') # This is non-interactive because it uses info from the previous call (and it would be very tedious) # TODO: Make sure that the stepping range and step size results in an integer number of steps step = 3 n = 0 for i in range(-21, 21, step): iraf.nsextract( inimages='src_comb', outspectra='', outprefix='s'+str(n), dispaxis=1, database='', line=700, nsum=20, ylevel='INDEF', lower=i, upper=i+step, background='none', fl_vardq='yes', fl_addvar='no', fl_skylines='yes', fl_inter='no', fl_apall='no', fl_trace='no', aptable='gnirs$data/apertures.fits', fl_usetabap='no', fl_flipped='yes', fl_project='yes', fl_findneg='no', bgsample='*', trace='', tr_nsum=10, tr_step=10, tr_nlost=3, tr_function='legendre', tr_order=5, tr_sample='*', tr_naver=1, tr_niter=0, tr_lowrej=3.0, tr_highrej=3.0, tr_grow=0.0, weights='variance', logfile=logger.root.handlers[0].baseFilename, verbose='yes', mode='al') n += 1 logger.info("Extraction complete for") logger.info("%s", obspath) iraf.chdir(path) # Return to directory script was begun from return # ---------------------------------------------------------------------------------------------------------------------- def get_window(path): logger = log.getLogger('get_window') # Determine the full-slit extraction window if 'LB_SXD' in path: # extractApertureRadius = 23 (+/-23 pixels or 6.9" covers almost the entire slit length, # but this is only appropriate for objects centred along length of slit (with absolute Q offset of 0). # [-46/2,46/2+6) [-23.0 -17 -11 -5 1 7 13 19 23 29) warn the user if last step in extract >0.1" away # from the end of the slit or if extraction proceeding out of the slit window = 46 elif 'LB_LXD' in path: window = 33 # [-33/2,33/2+6] [-16.5 -10.5 -4.5 2.5 8.5 14.5 20.5] elif 'SB_SXD' in path: window = 46 else: logger.error("Unknown GNIRS XD configuration.") raise SystemExit logger.debug('Window: %s pix', window) return window # ---------------------------------------------------------------------------------------------------------------------- def extractSpectra(inimage, outprefix, interactive, apall, nsum, background, radius, overwrite): """ Extracting 1D spectra from the combined 2D spectra using nsextract. background = Type of background to subtract (none|average|median|minimum|fit) """ # This is really just a wrapper around nsextract. # I'm tempted to name this 'nsextract' and call this whenever I need nsextract. # I guess it might not have all the parameters, but they could be included as optional. logger = log.getLogger('extractSpectra') logger.debug('inimage: %s', inimage) logger.debug('background: %s', background) logger.debug('radius: %s pix', radius) logger.debug('nsum: %s pix', nsum) utils.requires([inimage]) orders = utils.get_orders(os.getcwd()) outfiles = [outprefix + inimage] + \ ['database/apsrc_comb_DQ_%d_' % i for i in range(1, len(orders)+1)] + \ ['database/apsrc_comb_SCI_%d_' % i for i in range(1, len(orders)+1)] if utils.exists(outfiles, overwrite): logger.info('Spectra already extracted.') return iraf.nsextract( inimages=inimage, outspectra='', outprefix=outprefix, dispaxis=1, database='', line=700, nsum=nsum, ylevel='INDEF', upper=radius, lower=-radius, background=background, fl_vardq='yes', fl_addvar='no', fl_skylines='yes', fl_inter=interactive, fl_apall=apall, fl_trace='no', aptable='gnirs$data/apertures.fits', fl_usetabap='no', fl_flipped='yes', fl_project='yes', fl_findneg='no', bgsample='*', trace='', tr_nsum=10, tr_step=10, tr_nlost=3, tr_function='legendre', tr_order=5, tr_sample='*', tr_naver=1, tr_niter=0, tr_lowrej=3.0, tr_highrej=3.0, tr_grow=0.0, weights='variance', logfile=logger.root.handlers[0].baseFilename, verbose='yes', mode='al') return # ---------------------------------------------------------------------------------------------------------------------- def get_peaks(databasepath): """ Check the extraction reference files in the telluric directory databases to find the location of the peaks. """ logger = log.getLogger('get_peaks') logger.debug('databasepath: %s', databasepath) orders = utils.get_orders(os.getcwd()) infiles = ['%s/apsrc_comb_SCI_%d_' % (databasepath, i) for i in range(1, len(orders)+1)] utils.requires(infiles) peaks = [] for i in range(1, len(orders)+1): apfile = '%s/apsrc_comb_SCI_%d_' % (databasepath, i) with open(apfile, 'r') as f: p = None for line in f: # The peak location is the number in the second column of the line beginning with 'center' if 'center' in line: p = float(line.split()[1]) break peaks.append(p) if p is None: logger.warning('Peak not found') logger.debug('peaks: %s', peaks) return peaks # ---------------------------------------------------------------------------------------------------------------------- def compare_peaks(scipath, telpath, scipeaks, telpeaks, tolerance): """ Compare locations of the extraction locations of the science and Telluric standard. For faint targets, NSEXTRACT may find a noise peak instead of the science peak. In such cases, it is advisable to check the aperture center of extraction of the science with respect to the telluric and re-extract at the expected location. Look the science and telluric absolute Q offsets and determine if the relative location of the target peak was correct. If not, we should re-extract at the expected location. """ logger = log.getLogger('gnirsReduce.peaksMatch') # Get the absolute P,Q offsets from the obslog: sciinfo = obslog.readcsv(scipath + '/obslog.csv') telinfo = obslog.readcsv(telpath + '/obslog.csv') sciA = utils.files_in([scipath + '/nodA.list']) telA = utils.files_in([telpath + '/nodA.list']) # Assuming that both the science and Telluric were acquired in the center of the slit, the extraction locations # should be the same minus any difference in the Q-offset. # Here I assume that I only need to compare the "A" offset (B might be a sky): logger.debug('Science "A" offset: %s arcsec', sciinfo[sciA[0]]['Q']) logger.debug('Telluric "A" offset: %s arcsec', telinfo[telA[0]]['Q']) # TODO: The PIXSCALE should be in the obslog, but it's not, so for now: pixscale = 0.15 offset = (float(sciinfo[sciA[0]]['Q']) - float(telinfo[telA[0]]['Q'])) / pixscale logger.debug('offset: %s pix', offset) logger.debug('Extraction locations (pixels):') shifts = [] predicted = [] reextract = [] for s,t in zip(scipeaks, telpeaks): predicted.append(t + offset) shifts.append(t + offset - s) reextract.append(abs(shifts[-1]) > tolerance) logger.debug('Telluric: %6.2f Predicted sci: %6.2f Actual sci: %6.2f', t, t + offset, s) logger.debug('predicted: %s', predicted) logger.debug('shifts: %s', shifts) logger.debug('reextract: %s', reextract) if any(reextract): logger.warning('Some orders are not where they were expected to be.') # I'm not sure if I should do the tolerance checking here, or pass back the list of shifts, # or a list of booleans, or do the comparison in the main program... # nsextract should find the spectrum within a 'tolerance' pixels of expected location. This depends on how well the # observer centred the target along the slit. Here, we use 5 pixels as a reasonable tolerance level. A more robust # way would be to use some measure of whether the peak found by nsextract was real, e.g. counts + FWHM. However, # this information is not recorded in database. return reextract, predicted # ---------------------------------------------------------------------------------------------------------------------- def reExtractSpectra(reextract, scipeaks, telpeaks, predicted, scipath, telpath, nsum, aperture, apall, background, interactive): # rextract - boolean list of extensions that should be re-extracted # predicted - float list of new extraction locations logger = log.getLogger('reExtractSpectra') logger.debug('scipath: %s', scipath) logger.debug('rextract: %s', reextract) logger.debug('predicted: %s', predicted) # Rename the old extracted spectum for posterity # Rename the old aperture files for posterity # Copy in the Telluric aperture files # Edit the Telluric aperture files to have the predicted science spectra locations # Run nsextract with fl_trace=no and set the tracing reference image (trace) to the edited Telluric file # Test by setting the tolerance to be ~1 pix which will force some orders to be reextracted. logger.debug('Renaming old extracted spectra...') os.rename('vsrc_comb.fits', 'vsrc_comb_TRACED.fits') logger.debug('Generating reference files...') for i in range(len(reextract)): ext = i+1 oldsciapfile = '%s/database/apsrc_comb_SCI_%d_' % (scipath, ext) os.rename(oldsciapfile, oldsciapfile + 'TRACED') telapfile = '%s/database/apsrc_comb_SCI_%d_' % (telpath, ext) refapfile = '%s/database/apref_comb_SCI_%d_' % (scipath, ext) shutil.copy(telapfile, refapfile) with open(refapfile, 'r') as f: data = f.read() # Following XDGNIRS replace the Telluric location with either the shifted Telluric or the Science location: with open(refapfile, 'w') as f: if reextract[i]: logger.debug('Substituting predicted position: %s', predicted[i]) f.write(data.replace(str(telpeaks[i]), str(predicted[i])).replace('src_comb', 'ref_comb')) else: logger.debug('Substituting science position: %s', scipeaks[i]) f.write(data.replace(str(telpeaks[i]), str(scipeaks[i])).replace('src_comb', 'ref_comb')) shutil.copy(telpath + '/src_comb.fits', 'ref_comb.fits') logger.debug('Running nsextract with the modified reference file and trace=no...') iraf.nsextract( inimages='src_comb.fits', outspectra='', outprefix='v', dispaxis=1, database='', line=700, nsum=nsum, ylevel='INDEF', upper=aperture, lower=-aperture, background=background, fl_vardq='yes', fl_addvar='no', fl_skylines='yes', fl_inter=interactive, fl_apall=apall, fl_trace='no', aptable='gnirs$data/apertures.fits', fl_usetabap='no', fl_flipped='yes', fl_project='yes', fl_findneg='no', bgsample='*', trace='ref_comb', tr_nsum=10, tr_step=10, tr_nlost=3, tr_function='legendre', tr_order=5, tr_sample='*', tr_naver=1, tr_niter=0, tr_lowrej=3.0, tr_highrej=3.0, tr_grow=0.0, weights='variance', logfile=logger.root.handlers[0].baseFilename, verbose='yes') # Sometimes nsextract locates the aperture too close to the end of the slit. # When this happens it fails with "Aperture too large" and spectra are not extracted for that order. # Check if all file extensions are present in the extracted target file: extracted_sci_extensions = iraf.gemextn( inimages='src_comb', check='exists,mef', process='expand', index='', extname='SCI', extversion='', ikparams='', omit='', replace='', outfile='STDOUT', logfile=logger.root.handlers[0].baseFilename, glogpars='', verbose='yes', fail_count='0', count='20', status='0', Stdout=1) logger.debug('extracted_sci_extensions: %s', extracted_sci_extensions) if len(extracted_sci_extensions) != len(reextract): logger.error("The combined science image file contains only %d extensions.", len(extracted_sci_extensions)) raise SystemExit return # ---------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': log.configure('gnirs-pype.log', filelevel='INFO', screenlevel='DEBUG') start('gnirs-pype.cfg')
python
def jackpot(): if 10*"@" in first_half and 10*"@" in second_half: return ["True", "@", 10] elif 10*"#" in first_half and 10*"#" in second_half: return ["True", "#", 10] elif 10*"$" in first_half and 10*"$" in second_half: return ["True", "$", 10] elif 10*"^" in first_half and 10*"^" in second_half: return ["True", "^", 10] else: return ["False"] def winning_symbols(): if 9*"@" in first_half and 9*"@" in second_half: return ["@", 9] elif 8*"@" in first_half and 8*"@" in second_half: return ["@", 8] elif 7*"@" in first_half and 7*"@" in second_half: return ["@", 7] elif 6*"@" in first_half and 6*"@" in second_half: return ["@", 6] elif 9*"#" in first_half and 9*"#" in second_half: return ["#", 9] elif 8*"#" in first_half and 8*"#" in second_half: return ["#", 8] elif 7*"#" in first_half and 7*"#" in second_half: return ["#", 7] elif 6*"#" in first_half and 6*"#" in second_half: return ["#", 6] elif 9*"$" in first_half and 9*"$" in second_half: return ["$", 9] elif 8*"$" in first_half and 8*"$" in second_half: return ["$", 8] elif 7*"$" in first_half and 7*"$" in second_half: return ["$", 7] elif 6*"$" in first_half and 6*"$" in second_half: return ["$", 6] elif 9*"^" in first_half and 9*"^" in second_half: return ["^", 9] elif 8*"^" in first_half and 8*"^" in second_half: return ["^", 8] elif 7*"^" in first_half and 7*"^" in second_half: return ["^", 7] elif 6*"^" in first_half and 6*"^" in second_half: return ["^", 6] else: return "False" tickets = [i.strip() for i in input().split(", ")] for ticket in tickets: first_half = ticket[:((len(ticket))//2)] second_half = ticket[((len(ticket))//2):] if len(ticket) != 20: print("invalid ticket") continue list_jackpot = jackpot() if list_jackpot[0] == 'True': print(f'ticket "{ticket}" - {list_jackpot[2]}{list_jackpot[1]} Jackpot!') continue if winning_symbols() == "False": print(f'ticket "{ticket}" - no match') continue if winning_symbols != "None": list_ws = winning_symbols() print(f'ticket "{ticket}" - {list_ws[1]}{list_ws[0]}')
python
from ...language.base import parse from ...utils.ast_to_code import ast_to_code from ..compiled import GraphQLCompiledDocument from .schema import schema def test_compileddocument_from_module_dict(): # type: () -> None document_string = "{ hello }" document_ast = parse(document_string) document = GraphQLCompiledDocument.from_module_dict( schema, { "document_string": document_string, "document_ast": document_ast, "execute": lambda *_: True, }, ) assert document.operations_map == {None: "query"} assert document.document_string == document_string assert document.document_ast == document_ast assert document.schema == schema assert document.execute() def test_compileddocument_from_code(): # type: () -> None document_string = "{ hello }" document_ast = parse(document_string) code = ''' # -*- coding: utf-8 -*- from __future__ import unicode_literals from graphql.language import ast from graphql.language.parser import Loc from graphql.language.source import Source schema = None document_string = """{document_string}""" source = Source(document_string) def loc(start, end): return Loc(start, end, source) document_ast = {document_ast} def execute(*_): return True '''.format( document_string=document_string, document_ast=ast_to_code(document_ast) ) document = GraphQLCompiledDocument.from_code(schema, code) assert document.operations_map == {None: "query"} assert document.document_string == document_string assert document.document_ast == document_ast assert document.schema == schema assert document.execute()
python
import argparse from random import seed from yaml import dump from utils.experiment import test from utils.utils import * if __name__ == "__main__": seed(0) parser = argparse.ArgumentParser( description='Test error for a combination of ensembler and weak learner.') parser.add_argument('dataset', help='dataset filename') parser.add_argument('ensembler', help='chosen ensembler') parser.add_argument('weak_learner', help='chosen weak learner') parser.add_argument('M', metavar='# weak_learners', help='number of weak learners', type=int) parser.add_argument( 'trials', help='number of trials (each with different shuffling of the data); defaults to 1', type=int, default=1, nargs='?') parser.add_argument('--record', action='store_const', const=True, default=False, help='export the results in YAML format') args = parser.parse_args() ensembler = get_ensembler(args.ensembler) weak_learner = get_weak_learner(args.weak_learner) data = load_data("data/" + args.dataset) accuracy, baseline = test( ensembler, weak_learner, data, args.M, trials=args.trials) print "Accuracy:" print accuracy print "Baseline:" print baseline[-1] if args.record: results = { 'm': args.M, 'accuracy': accuracy, 'baseline': baseline[-1], 'booster': args.ensembler, 'weak_learner': args.weak_learner, 'trials': args.trials, 'seed': 0 } filename = args.ensembler + "_" + \ args.weak_learner + "_" + str(args.M) + ".yml" f = open(filename, 'w+') f.write(dump(results))
python
# Copyright (c) 2009-2013, Monoidics ltd. # Copyright (c) 2013-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import subprocess from . import config class InferJavacCapture(): def __init__(self, javac_args): self.javac_args = javac_args def start(self): infer = os.path.join(config.BIN_DIRECTORY, 'infer') # pass --continue to prevent removing the results-dir cmd = [ infer, 'capture', '--continue', '--', 'javac' ] + self.javac_args try: return subprocess.check_call(cmd) except Exception as e: print('Failed to execute:', ' '.join(cmd)) raise e def _get_javac_args(javac_args): # replace any -g:.* flag with -g to preserve debugging symbols args = map(lambda arg: '-g' if '-g:' in arg else arg, javac_args) # skip -Werror args = filter(lambda arg: arg != '-Werror', args) return args def create_infer_command(javac_args): return InferJavacCapture(_get_javac_args(javac_args))
python
import unittest from rating.processing import rates from rating.processing.utils import ConfigurationException class TestConversion(unittest.TestCase): def test_conversion_byte_second_to_hour_harder(self): rating_unit = 'GiB-hours' metric_unit = 'byte-seconds' qty = 7e12 converted = rates.convert_metrics_unit(metric_unit, rating_unit, qty) self.assertAlmostEqual(converted, 1.8109050061, delta=1e-6) def test_conversion_core_second_to_hour_basic(self): rating_unit = 'core-hours' metric_unit = 'core-seconds' qty = 10 converted = rates.convert_metrics_unit(metric_unit, rating_unit, qty) self.assertAlmostEqual(converted, 0.002777, delta=1e-6) def test_conversion_core_second_to_hour_harder(self): rating_unit = 'core-hours' metric_unit = 'core-seconds' qty = 24 converted = rates.convert_metrics_unit(metric_unit, rating_unit, qty) self.assertAlmostEqual(converted, 0.006666, delta=1e-6) def test_wrong_conversion(self): rating_unit = 'some-random-rating_unit' metric_unit = 'core-seconds' qty = 1 with self.assertRaisesRegex(ConfigurationException, 'Unsupported key'): rates.convert_metrics_unit(metric_unit, rating_unit, qty)
python
from django.contrib import admin from users.models import Profile, ConfirmedMail # Represents Profile and ConfirmedMail models at admin site. admin.site.register(Profile) admin.site.register(ConfirmedMail)
python
n1 = int(input('Digite um número: ')) n2 = int(input('Digite outro número ')) r = n1 + n2 print('O resultado da soma é {}'.format(r)) r = n1 - n2 print('O resultado da subtração é {}'.format(r)) r = n1 * n2 print('O resultado da multiplicação é {}'.format(r)) r = n1 / n2 print('O resultado da divisão é {}'.format(r)) # Se quiser colocar quantas casas decimais serão mostradas deve escrever da seguinte maneira: # print('O resultado da divisão é {:.3f}'.format(r)), Assim terão 3 casas decimais. r = n1 ** n2 print('O resultado da potência é {}'.format(r)) r = n1 // n2 print('O resultado da divisão inteira é {}'.format(r)) r = n1 % n2 print('O resultado do resto da divisão é {}'.format(r)) # Operadores aritiméticos: +, -, *, /, **, //, % # São respectivamente: adição, subtração, multiplicação, divisão, potência, divisão inteira, resto da divisão # Ex: # 5 + 2 = 7 # 5 - 2 = 3 # 5 * 2 = 10 # 5 / 2 = 2.5 # 5 ** 2 = 25 # 5 // 2 = 2 Aqui temos uma divisão onde o resultado será sempre um número inteiro. # 5 % 2 = 1 Aqui o é o resto da divisão da operação acima. # Ordem de precedência. Ordem de importância para obter resultado em uma conta onde possui mais de 1 operador. # 1: () # 2: ** # 3: *, /, //, % # 4: +, - # Obs. Quando quisermos expressar igual dentro de uma operação demvemos usar o operador == # Ex: # 5 + 2 == 7 # Outro método para utilizar potência é: # pow(4,3) Onde quero saber o resultado de 4 elevado a 3 # Calcular raiz quadrada. Raiz quadrada é elevar o número pela metade. # Ex: # 81**(1/2)==9.0 Ficará dessa maneira. # Se quiser saber a raiz cúbica de ser feito assim: 127**(1/3)==5.0 # É possível realizar operações com strings. # Ex: # 'Oi' + 'Olá' == OiOlá p1 = input('Digite uma palavra: ') p2 = input('Digite outra palavra: ') print('Resultado da Concatenação é:', p1 + p2) # Quebra de linha: \n # Ex: # print('Resultado da Concatenação é:\n', p1 + p2) # É possível multiplicar também: # p1*5 == p1p1p1p1p1p1 print('Palavra 1 repetida 5 vezes: ', p1 * 5) # Continuar print na mesma linha end=' ' # Ex: # print('Palavra 1 repetida 5 vezes: ', p1 *5, end=' ') # Isso pode ajudar ao repetir símbolos também: print('Símbolo de = repetido 20 vezes: ', '=' * 20) # Outro exemplo de como podemos usar operadores: nome = input('Digite seu nome: ') print('Seja bem vindo {:20}!'.format(nome)) print('Seja bem vindo {:=>20}!'.format(nome)) print('Seja bem vindo {:=<20}!'.format(nome)) print('Seja bem vindo {:=^20}!'.format(nome))
python
import pdb, traceback, sys try: 1/0 except: extype, value, tb = sys.exc_info() traceback.print_exc() pdb.post_mortem(tb)
python
# Open3D: www.open3d.org # The MIT License (MIT) # See license file or visit www.open3d.org for details import importlib import platform if platform.architecture()[0] == '32bit': globals().update(importlib.import_module('open3d.win32.32b.open3d').__dict__) elif platform.architecture()[0] == '64bit': globals().update(importlib.import_module('open3d.win32.64b.open3d').__dict__)
python
from copy import copy from contextlib import contextmanager from logging import getLogger import tensorflow as tf from rl.utils.tf_utils import (purge_orphaned_summaries as _purge_orphaned_summaries) USE_DEFAULT = object() logger = getLogger("rl") class SummaryManager(object): def __init__(self, logdir=None, summary_writer=None, summary_period=None, last_summary_step=None): if (logdir is None) == (summary_writer is None): raise ValueError("exactly one of logdir or summary_writer must be set") if summary_writer is None: summary_writer = tf.summary.FileWriterCache.get(logdir) self._summary_writer = summary_writer self._summary_period = summary_period self._last_summary_step = last_summary_step @property def summary_writer(self): return self._summary_writer def copy(self): return copy(self) def _get_step(self, step, session=None): if isinstance(step, (tf.Variable, tf.Tensor)): if session is None: raise ValueError("session is None when step is instance %s" % type(step)) step = session.run(step) return step def summary_time(self, step, session=None): step = self._get_step(step, session) if self._summary_period is None: return False elif self._last_summary_step is None: return True else: return step - self._last_summary_step >= self._summary_period def add_summary(self, summary, step, session=None, update_last_summary_step=True): step = self._get_step(step, session) if step is None: step = session.run(self._step) self._summary_writer.add_summary(summary, global_step=step) if update_last_summary_step: self._last_summary_step = step def add_summary_dict(self, summary_dict, step, session=None, update_last_summary_step=True): summary = tf.Summary() for key, val in summary_dict.items(): summary.value.add(tag=key, simple_value=val) self.add_summary(summary, step=step, session=session, update_last_summary_step=update_last_summary_step) def update_last_summary_step(self, step, session=None): self._last_summary_step = self._get_step(step, session) class DistributedTrainer(object): def __init__(self, target, is_chief, summary_manager=None, checkpoint_dir=None, checkpoint_period=None, checkpoint=None, config=USE_DEFAULT): self._target = target self._is_chief = is_chief self._summary_manager = summary_manager if (summary_manager is None and checkpoint_dir is None and checkpoint_period is not None): raise ValueError("Either summary_manager or checkpoint_dir must be" " specified when checkpoint_period is not None") if checkpoint_dir is not None and checkpoint_period is None: raise ValueError("checkpoint_period must be specified" " when checkpoint_dir is not None") if checkpoint_period is not None and checkpoint_dir is None: checkpoint_dir = summary_manager.summary_writer.get_logdir() self._checkpoint_dir = checkpoint_dir self._checkpoint_period = checkpoint_period self._checkpoint = checkpoint if config == USE_DEFAULT: config = self._get_default_config() self._config = config self._session = None def _get_default_config(self): config = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=2) # Dynamic memory allocation on gpu. # https://github.com/tensorflow/tensorflow/issues/1578 config.gpu_options.allow_growth = True return config @contextmanager def managed_session(self, init_vars=None, restore_vars=None, save_vars=None, hooks=USE_DEFAULT, purge_orphaned_summaries=True): if init_vars is None: init_vars = list(filter( lambda v: v.device.startswith("/job:ps/"), tf.global_variables() )) if restore_vars is None: restore_vars = init_vars if save_vars is None: save_vars = init_vars ready_op = tf.report_uninitialized_variables(init_vars) restorer = tf.train.Saver(restore_vars) scaffold = tf.train.Scaffold(ready_for_local_init_op=ready_op, ready_op=ready_op, saver=restorer) if hooks == USE_DEFAULT: if self._is_chief and self._checkpoint_dir is not None: saver = tf.train.Saver(save_vars) hooks = [ tf.train.CheckpointSaverHook( checkpoint_dir=self._checkpoint_dir, saver=saver, save_steps=self._checkpoint_period) ] else: hooks = None if self._is_chief: session_creator = tf.train.ChiefSessionCreator( scaffold=scaffold, master=self._target, config=self._config, checkpoint_filename_with_path=self._checkpoint) else: session_creator = tf.train.WorkerSessionCreator( scaffold=scaffold, master=self._target, config=self._config) with tf.train.MonitoredSession(session_creator, hooks=hooks) as sess: if purge_orphaned_summaries and self._summary_manager is not None: _purge_orphaned_summaries(self._summary_manager.summary_writer, sess.run(tf.train.get_global_step())) self._session = sess yield sess def step(self, algorithm=None, fetches=None, feed_dict=None, summary_time=None, sess=None): if summary_time and algorithm is None: raise ValueError("algorithm cannot be None when summary_time is True") if algorithm is None and fetches is None: raise ValueError("algorithm and fetches cannot both be None") if sess is None: sess = self._session or tf.get_default_session() global_step = tf.train.get_global_step() step = sess.run(global_step) if (summary_time is None and algorithm is not None and self._summary_manager is not None and self._summary_manager.summary_time(step=step)): summary_time = True run_fetches = {} if fetches is not None: run_fetches["fetches"] = fetches if algorithm is not None: run_fetches["train_op"] = algorithm.train_op if summary_time: run_fetches["logging"] = algorithm.logging_fetches run_fetches["summaries"] = algorithm.summaries if feed_dict is None: feed_dict = {} if algorithm is not None: algorithm_feed_dict = algorithm.get_feed_dict( sess, summary_time=summary_time) else: algorithm_feed_dict = {} if len(algorithm_feed_dict.keys() & feed_dict.keys()) > 0: intersection = algorithm_feed_dict.keys() & feed_dict.keys() raise ValueError( "Algorithm feed dict intersects with the given feed dict: {}" .format(intersection) ) feed_dict.update(algorithm_feed_dict) values = sess.run(run_fetches, feed_dict) if summary_time: logger.info("Step #{}, {}".format(step, values["logging"])) self._summary_manager.add_summary(values["summaries"], step=step) if "fetches" in values: return step, values["fetches"] else: return step def train(self, algorithm, num_steps): global_step = tf.train.get_global_step() def _train(sess): step = sess.run(global_step) while not sess.should_stop() and step < num_steps: step = self.step(algorithm) if self._session is not None: _train(self._session) else: with self.managed_session() as sess: _train(sess) class SingularTrainer(DistributedTrainer): def __init__(self, summary_manager=None, checkpoint_dir=None, checkpoint_period=None, checkpoint=None, config=USE_DEFAULT): super(SingularTrainer, self).__init__( target='', is_chief=True, summary_manager=summary_manager, checkpoint_dir=checkpoint_dir, checkpoint_period=checkpoint_period, checkpoint=checkpoint, config=config) @contextmanager def managed_session(self, save_vars=None, restore_vars=None, hooks=USE_DEFAULT, purge_orphaned_summaries=True): if self._checkpoint is not None: restorer = tf.train.Saver(restore_vars) if hooks == USE_DEFAULT: if self._checkpoint_dir is not None: saver = tf.train.Saver(save_vars) hooks = [ tf.train.CheckpointSaverHook( self._checkpoint_dir, saver=saver, save_steps=self._checkpoint_period ), ] else: hooks = None with tf.train.SingularMonitoredSession(hooks=hooks, config=self._config) as sess: if self._checkpoint is not None: restorer.restore(sess, self._checkpoint) if purge_orphaned_summaries and self._summary_manager is not None: _purge_orphaned_summaries(self._summary_manager.summary_writer, sess.run(tf.train.get_global_step())) self._session = sess yield sess
python
num1 = 11 num2 =222 num3 =3333
python
"""" Copyright © Krypton 2021 - https://github.com/kkrypt0nn (https://krypt0n.co.uk) Description: This is a template to create your own discord bot in python. Version: 4.1 """ class UserBlacklisted(Exception): """ Thrown when a user is attempting something, but is blacklisted. """ def __init__(self, message="User is blacklisted!"): self.message = message super().__init__(self.message) class UserNotOwner(Exception): """ Thrown when a user is attempting something, but is not an owner of the bot. """ def __init__(self, message="User is not an owner of the bot!"): self.message = message super().__init__(self.message)
python
a = [0, 0, 0, 1, 1, 1, 3, 3, 6, 6, 9, 9] print(len(a)) def root(x): while x != a[x]: a[x] = a[a[x]] print(x, a[x]) x = a[x] return x def root2(x): if x != a[x]: a[x] = root2(a[x]) return a[x] root2(9) print(a)
python
""" @Note: Implementation of Knowledge Distillation Algorithms @Author: LucasX """ import copy import os import sys import time import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.metrics import confusion_matrix from torch.optim import lr_scheduler from torchvision import models sys.path.append('../') from research.kd import data_loader from research.kd.cfg import cfg from research.kd.losses import KDLoss, RegularizedTfKDLoss, SelfTfKDLoss def train_model_with_kd(use_lsr, teacher_model_w_weights, student_model_wo_weights, dataloaders, criterion, optimizer, scheduler, num_epochs, inference=False): """ train model with Knowledge Distillation :param use_lsr: whether to use LabelSmoothingRegularization :param teacher_model_w_weights: :param student_model_wo_weights: :param dataloaders: :param criterion: :param optimizer: :param scheduler: :param num_epochs: :param inference: :return: """ print(student_model_wo_weights) model_name = student_model_wo_weights.__class__.__name__ student_model_wo_weights = student_model_wo_weights.float() device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') student_model_wo_weights = student_model_wo_weights.to(device) teacher_model_w_weights = teacher_model_w_weights.to(device) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") student_model_wo_weights = nn.DataParallel(student_model_wo_weights) dataset_sizes = {x: len(dataloaders[x].dataset) for x in ['train', 'val', 'test']} for _ in dataset_sizes.keys(): print('Dataset size of {0} is {1}...'.format(_, dataset_sizes[_])) if not inference: print('Start training %s...' % model_name) since = time.time() best_model_wts = copy.deepcopy(student_model_wo_weights.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('-' * 100) print('Epoch {}/{}'.format(epoch, num_epochs - 1)) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': if torch.__version__ <= '1.1.0': scheduler.step() student_model_wo_weights.train() # Set model to training mode else: student_model_wo_weights.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for i, data in enumerate(dataloaders[phase], 0): inputs, types = data['image'], data['type'] inputs = inputs.to(device) types = types.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): student_outputs = student_model_wo_weights(inputs) _, preds = torch.max(student_outputs, 1) if not use_lsr: teacher_outputs = teacher_model_w_weights(inputs) if use_lsr: loss = criterion(student_outputs, types) else: loss = criterion(teacher_outputs, student_outputs, types) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == types.data) if phase == 'train': if torch.__version__ >= '1.1.0': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: tmp_correct = 0 tmp_total = 0 tmp_y_pred = [] tmp_y_true = [] tmp_filenames = [] for data in dataloaders['val']: images, types, filename = data['image'], data['type'], data['filename'] images = images.to(device) types = types.to(device) outputs = student_model_wo_weights(images) _, predicted = torch.max(outputs.data, 1) tmp_total += types.size(0) tmp_correct += (predicted == types).sum().item() tmp_y_pred += predicted.to("cpu").detach().numpy().tolist() tmp_y_true += types.to("cpu").detach().numpy().tolist() tmp_filenames += filename tmp_acc = tmp_correct / tmp_total print('Confusion Matrix of {0} on val set: '.format(model_name)) cm = confusion_matrix(tmp_y_true, tmp_y_pred) print(cm) cm = np.array(cm) print('Accuracy = {0}'.format(tmp_acc)) precisions = [] recalls = [] for i in range(len(cm)): precisions.append(cm[i][i] / sum(cm[:, i].tolist())) recalls.append(cm[i][i] / sum(cm[i, :].tolist())) print("Precision of {0} on val set = {1}".format(model_name, sum(precisions) / len(precisions))) print( "Recall of {0} on val set = {1}".format(model_name, sum(recalls) / len(recalls))) best_acc = epoch_acc best_model_wts = copy.deepcopy(student_model_wo_weights.state_dict()) student_model_wo_weights.load_state_dict(best_model_wts) model_path_dir = './model' os.makedirs(model_path_dir, exist_ok=True) if torch.cuda.device_count() > 1: torch.save(student_model_wo_weights.module.state_dict(), './model/{0}_best_epoch-{1}.pth'.format(model_name, epoch)) else: torch.save(student_model_wo_weights.state_dict(), './model/{0}_best_epoch-{1}.pth'.format(model_name, epoch)) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights student_model_wo_weights.load_state_dict(best_model_wts) model_path_dir = './model' os.makedirs(model_path_dir, exist_ok=True) if torch.cuda.device_count() > 1: torch.save(student_model_wo_weights.module.state_dict(), './model/%s.pth' % model_name) else: torch.save(student_model_wo_weights.state_dict(), './model/%s.pth' % model_name) else: print('Start testing %s...' % model_name) student_model_wo_weights.load_state_dict(torch.load(os.path.join('./model/%s.pth' % model_name))) student_model_wo_weights.eval() correct = 0 total = 0 y_pred = [] y_true = [] filenames = [] probs = [] with torch.no_grad(): for data in dataloaders['test']: images, types, filename = data['image'], data['type'], data['filename'] images = images.to(device) types = types.to(device) outputs = student_model_wo_weights(images) outputs = F.softmax(outputs) # get TOP-K output labels and corresponding probabilities topK_prob, topK_label = torch.topk(outputs, 2) probs += topK_prob.to("cpu").detach().numpy().tolist() _, predicted = torch.max(outputs.data, 1) total += types.size(0) correct += (predicted == types).sum().item() y_pred += predicted.to("cpu").detach().numpy().tolist() y_true += types.to("cpu").detach().numpy().tolist() filenames += filename print('Accuracy of {0} on test set: {1}% '.format(model_name, 100 * correct / total)) print( 'Confusion Matrix of {0} on test set: '.format(model_name)) cm = confusion_matrix(y_true, y_pred) print(cm) cm = np.array(cm) precisions = [] recalls = [] for i in range(len(cm)): precisions.append(cm[i][i] / sum(cm[:, i].tolist())) recalls.append(cm[i][i] / sum(cm[i, :].tolist())) print('Precision List: ') print(precisions) print('Recall List: ') print(recalls) print("Precision of {0} on val set = {1}".format(model_name, sum(precisions) / len(precisions))) print( "Recall of {0} on val set = {1}".format(model_name, sum(recalls) / len(recalls))) print('Output CSV...') col = ['filename', 'gt', 'pred', 'prob'] df = pd.DataFrame([[filenames[i], y_true[i], y_pred[i], probs[i][0]] for i in range(len(filenames))], columns=col) df.to_csv("./%s.csv" % model_name, index=False) print('CSV has been generated...') def run_img_classification(teacher_w_weights, student_wo_weights, epoch): """ run image classification :param teacher_w_weights: :param student_wo_weights: :param epoch: :return: """ if cfg['use_lsr']: criterion = RegularizedTfKDLoss(alpha=0.5, temperature=10) else: criterion = KDLoss(alpha=0.5, temperature=10) # vanilla KD Loss teacher_w_weights.eval() optimizer_ft = optim.SGD(student_wo_weights.parameters(), lr=cfg['init_lr'], momentum=0.9, weight_decay=cfg['weight_decay']) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=cfg['lr_decay_step'], gamma=0.1) # cosine_anneal_warmup_lr_scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer_ft, T_0=10, T_mult=10, # eta_min=1e-5, last_epoch=-1) trainloader, valloader, testloader = data_loader.load_mengzhucrop_data() dataloaders = { 'train': trainloader, 'val': valloader, 'test': testloader, } train_model_with_kd(use_lsr=cfg['use_lsr'], teacher_model_w_weights=teacher_w_weights, student_model_wo_weights=student_wo_weights, dataloaders=dataloaders, criterion=criterion, optimizer=optimizer_ft, scheduler=exp_lr_scheduler, num_epochs=epoch, inference=False) if __name__ == '__main__': densenet169 = models.densenet169(pretrained=False) num_ftrs = densenet169.classifier.in_features densenet169.classifier = nn.Linear(num_ftrs, cfg['out_num']) densenet169.load_state_dict(torch.load("/home/lucasxu/ModelZoo/DenseNet169.pth")) # shufflenet_v2 = models.shufflenet_v2_x1_0(pretrained=True) # num_ftrs = shufflenet_v2.fc.in_features # shufflenet_v2.fc = nn.Linear(num_ftrs, cfg['out_num']) mobilenet_v2 = models.mobilenet_v2(pretrained=True) num_ftrs = mobilenet_v2.classifier[1].in_features mobilenet_v2.classifier[1] = nn.Linear(num_ftrs, cfg['out_num']) # resnet18 = models.resnet18(pretrained=True) # num_ftrs = resnet18.fc.in_features # resnet18.fc = nn.Linear(num_ftrs, 6) # mixnet_m = ptcv_get_model("mixnet_m", pretrained=True) # num_ftrs = mixnet_m.output.in_features # mixnet_m.output = nn.Linear(num_ftrs, 6) # condensenet74 = ptcv_get_model("condensenet74_c4_g4", pretrained=True) # condensenet74.output.linear = nn.Linear(1032, 6, bias=True) run_img_classification(teacher_w_weights=densenet169, student_wo_weights=mobilenet_v2, epoch=cfg['epoch'])
python
import tensorflow as tf import numpy as np import os # from sklearn.manifold._utils import _binary_search_perplexity os.environ["CUDA_VISIBLE_DEVICES"] = "0" config = tf.ConfigProto() config.gpu_options.allow_growth=True class TSNE: def __init__(self,n_components=2, perplexity=30, early_exaggeration=12, learning_rate=500, n_iter=1000, momentum=0.8, verbose=0): self.learning_rate=learning_rate self.perplexity=perplexity self.n_components=n_components self.early_exaggeration=early_exaggeration self.n_iter=n_iter self.verbose=verbose self.momentum=momentum def fit_transform(self, P_coor): with tf.Graph().as_default(): p2, p, sigma_mean, dists=TSNE.p_joint(P_coor, self.perplexity) sigma_mean=tf.Variable(sigma_mean, trainable=False) P_=tf.Variable(p2*self.early_exaggeration, trainable=False) P=tf.stop_gradient(P_) Q_coor=tf.Variable(tf.random_normal([tf.shape(P_coor)[0], self.n_components])) momentum=tf.Variable(0.8, trainable=False) Q_coor_loss, grad=TSNE.tsne(P, Q_coor) opt=TSNE.gradient_descent(Q_coor_loss, grad, Q_coor, self.learning_rate, momentum) grad_norm=tf.linalg.norm(grad) # opt=tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=momentum) # grad=opt.compute_gradients(Q_coor_loss, var_list=[Q_coor]) # grad_norm=tf.linalg.norm(tf.concat([x[0] for x in grad], axis=0)) # update_Q_coor=opt.apply_gradients(grad) with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) if self.verbose>=2: print("sigma mean:", sess.run(sigma_mean)) for i in range(self.n_iter): # if i is 20: # sess.run(momentum.assign(0.8)) if i is 100: sess.run(P_.assign(P/self.early_exaggeration)) if self.verbose>=2 : print("early exaggeration end.") # refering to sklearn q, _, loss, gn= sess.run([Q_coor, opt, Q_coor_loss,grad_norm]) if self.verbose>=2 and i % 50 == 0: print("Iteration {} loss: {}, grad norm: {:.6f}".format(i, loss, gn)) return q @staticmethod def remove_diag(x): diag_not_mask=~tf.cast(tf.diag(tf.ones(x.shape[:1])), dtype=tf.bool) with_out_diag=tf.reshape(tf.boolean_mask(x, diag_not_mask), x.shape-np.array([0,1])) return with_out_diag @staticmethod def add_diag(x): xshape=tf.shape(x) tmp=tf.reshape(x, [xshape[1],xshape[0]]) a=tf.zeros([xshape[1], 1], dtype=tf.float32) tmp=tf.concat([tmp,a], axis=1) tmp=tf.concat([[0.0], tf.reshape(tmp, [-1])], axis=0) tmp=tf.reshape(tmp, [xshape[0], xshape[0]]) return tmp @staticmethod def squared_dists(x, diag=False): # |x_i - x_j|^2 sum_square=tf.reduce_sum(tf.square(x), axis=1, keepdims=True) dists=tf.maximum(sum_square -2*[email protected](x) +tf.transpose(sum_square),1e-6) # relu against negtive caused by overflow if diag: return dists else: return TSNE.remove_diag(dists) @staticmethod def set_diag_zero(x): return tf.linalg.set_diag(x ,tf.zeros(tf.shape(x)[:1])) @staticmethod def cross_entropy(x, y, axis=-1): safe_y = tf.where(tf.equal(x, 0.), tf.ones_like(y), y) return -tf.reduce_sum(x * tf.log(safe_y), axis) @staticmethod def softmax_entropy_with_logits(logits, axis=-1): # H=-sum(p*log(p)) where p=softmax(logits) P=tf.nn.softmax(logits, axis=axis) H=tf.reduce_logsumexp(logits, axis=axis)- tf.reduce_sum(P*logits, axis=axis) # LSE(logits)-E(logits) ''' -sum(p*log(p)) =-sum(p*log_softmax(logits)) =-sum(p*(logits-lse(logits))) =sum(p*lse(logits)-p*logits) =sum(p)*lse(logits)-sum(p*logits) =lse(logits)-E(logits) ''' return H,P @staticmethod def calc_perplexity_and_probs(neg_dists, betas): # betas=1/2*sigmas^2 logits=neg_dists*tf.reshape(betas,[-1,1]) return TSNE.softmax_entropy_with_logits(logits) @staticmethod def binary_search_sigma(neg_dists, target, tol=1e-5, max_iter=50, lower=1e-20, upper=1000000.): #loop initial value target_entropy=np.log(target) def body(lows, ups, ans, finding_mask, x): finding_indices=tf.cast(tf.where(finding_mask), tf.int32) guess=(lows+ups)/2 val2, _=TSNE.calc_perplexity_and_probs(tf.boolean_mask(neg_dists, finding_mask), tf.boolean_mask(guess, finding_mask)) # !TODO: compare the speed val=tf.scatter_nd(finding_indices, val2, tf.shape(finding_mask)) diff=val-target_entropy new_ans_mask= ((tf.abs(diff)<= tol) | tf.equal(x+1, max_iter)) & finding_mask new_finding_mask= ~new_ans_mask & finding_mask greater_mask= (diff<- tol) & finding_mask leq_mask= (diff>tol) & finding_mask # dependencies=[ # tf.Print(val, [val], "val ",summarize=10), # tf.Print(val2, [val2], "val2",summarize=10), # tf.Print(guess, [guess], "guess:",summarize=10), # tf.Print(greater_mask, [greater_mask], "gm ",summarize=10), # tf.Print(ups, [ups], "ups ",summarize=10), # tf.Print(leq_mask, [leq_mask], "lem ",summarize=10), # tf.Print(lows, [lows], "lows",summarize=10), # tf.Print(finding_mask, [finding_mask], "\nfm ",summarize=10), # tf.Print(ans, [ans], "ans",summarize=10), # tf.Print(new_finding_mask, [new_finding_mask], "nfm ",summarize=10), # tf.Print(new_ans_mask,[new_ans_mask], 'nam ',summarize=10), # tf.Print(finding_indices,[finding_indices],'fid ',summarize=10), # tf.print("x ", x) # ] # with tf.control_dependencies(dependencies): return [tf.where(leq_mask, guess, lows), tf.where(greater_mask, guess, ups), tf.where(new_ans_mask, guess, ans), new_finding_mask, tf.add(x,1) ] cond= lambda a,b,ans,finding_mask,x: tf.reduce_any(finding_mask) & (x<max_iter) nums=tf.shape(neg_dists)[:1] lows=tf.fill(nums, lower) ups=tf.fill(nums, upper) finding_mask=tf.fill(nums, True) res=tf.while_loop(cond, body ,(lows, ups, lows, finding_mask,0), back_prop=False) ans=res[2] pra_iter=res[4] # with tf.control_dependencies([tf.Assert(pra_iter<max_iter, ['exceeded_max_iter'])]): # print("[Warning] exceeded mat iter, maybe sigma's precision is not enough.") return tf.identity(ans, name='betas') # @staticmethod # def transpose_without_diag(x): # xshape=tf.shape(x) # tmp=tf.reshape(x, xshape[::-1]) # a=tf.zeros([xshape[1], 1], dtype=tf.float32) # tmp=tf.concat([tmp,a], axis=1) # tmp=tf.concat([[0.0], tf.reshape(tmp, [-1])], axis=0) # tmp=tf.reshape(tmp, [xshape[0], xshape[0]]) # # origin got # tmp=tf.reshape(tf.transpose(tmp),[-1])[1:] # tmp=tf.reshape(tmp,[-1, xshape[0]+1])[:,:-1] # tmp=tf.reshape(tmp, xshape) # return tmp @staticmethod def p_joint(x, target_perplexity): neg_dists_no_diag=-TSNE.squared_dists(x, diag=False) betas= TSNE.binary_search_sigma(neg_dists_no_diag, target_perplexity) p=tf.nn.softmax(neg_dists_no_diag*tf.reshape(betas, [-1,1])) p=TSNE.add_diag(p) p=p/tf.reduce_sum(p, axis=-1, keepdims=True) return (p+tf.transpose(p))/(2*tf.cast(tf.shape(x)[0], dtype=tf.float32)), p, tf.reduce_mean(tf.sqrt(1/betas)), neg_dists_no_diag # sum_square=np.sum(np.square(x), axis=1, keepdims=True) # dists=np.maximum(sum_square -2*[email protected] + sum_square.T, 1e-6) # p= _binary_search_perplexity(dists, None, target_perplexity, 6) # p=(p+p.T)/(2*p.shape[0]) # return p.astype(np.float32), p, tf.constant([1]), dists @staticmethod # @tf.custom_gradient def tsne(p,y): dists=TSNE.squared_dists(y, diag=True) q_num=TSNE.set_diag_zero(1/(1+dists)) q=tf.nn.relu(q_num/tf.reduce_sum(q_num)) y=tf.expand_dims(y, axis=-2) y_cross_diff= y-tf.transpose(y, [1,0,2]) # L2=tf.reduce_sum(dists) grddddd>>>?? loss= -tf.reduce_sum(TSNE.cross_entropy(p,p)-TSNE.cross_entropy(p,q)) grad= tf.reduce_sum((tf.expand_dims((p-q)*q_num, axis=-1))*y_cross_diff, axis=1) return loss, grad def gradient_descent(loss, grad, x, lr, momentum, min_gain=0.01): gains=tf.Variable(tf.ones_like(x, dtype=tf.float32)) update=tf.Variable(tf.zeros_like(x, dtype=tf.float32)) direct= update*grad < 0.0 gains=gains.assign(tf.maximum(tf.where(direct, gains+0.2, gains*0.8), min_gain)) update=update.assign(update*momentum - lr*grad*gains) return x.assign(x+update)
python
n = int(input()) print(pow(2, n+1)-2)
python
import unittest from typing import Generator, List from common import open_fixture BASE_PATTERN = (0, 1, 0, -1) def decode(s: str) -> List[int]: return [int(c) for c in s.strip()] def pattern(position: int) -> Generator[int, None, None]: skip = True while True: for i in range(len(BASE_PATTERN)): for _ in range(position): if skip: skip = False continue yield BASE_PATTERN[i] def fft(signal: List[int]) -> None: output = [0] * len(signal) for i in range(len(signal)): n = 0 gen = pattern(i + 1) for j in range(len(signal)): n += signal[j] * next(gen) output[i] = abs(n) % 10 for i in range(len(signal)): signal[i] = output[i] class TestDay16(unittest.TestCase): def test_part1_example1(self): A = decode("12345678") tests = [ decode("48226158"), decode("34040438"), decode("03415518"), decode("01029498"), ] for test in tests: fft(A) self.assertListEqual(A, test) def test_part1_example2(self): tests = [ (decode("80871224585914546619083218645595"), decode("24176176")), (decode("19617804207202209144916044189917"), decode("73745418")), (decode("69317163492948606335995924319873"), decode("52432133")), ] for A, expect in tests: for _ in range(100): fft(A) self.assertListEqual(A[:8], expect) def test_part1(self): with open_fixture("day16") as fp: A = decode(fp.readline()) for _ in range(100): fft(A) self.assertListEqual(A[:8], decode("96136976")) def test_part2(self): # TODO: exploit tge predictable pattern in the last half of the algorithm # Answer: 85,600,369 # https://www.reddit.com/r/adventofcode/comments/ebf5cy/2019_day_16_part_2_understanding_how_to_come_up/fb4bvw4/ pass
python
class newNode: # Construct to create a newNode def __init__(self, key): self.data = key self.left = None self.right = None self.hd = 0 # function should print the topView # of the binary tree def topview(root) : if(root == None) : return q = [] mp = dict() head = 0 root.head = head # push node and horizontal # distance to queue q.append(root) while(len(q)) : root = q[0] head = root.head # count function returns 1 if the # container contains an element # whose key is equivalent to hd, # or returns zero otherwise. if head not in mp: mp[head] = root.data if(root.left) : root.left.head = head – 1 q.append(root.left) if(root.right): root.right.head = head + 1 q.append(root.right) q.pop(0) for i in sorted (mp): print(mp[i], end = “”) # Driver Code if __name__ == ‘__main__’: root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.right = newNode(4) root.left.right.right = newNode(5) root.left.right.right.right = newNode(6) print(“Following are nodes in top”,“view of Binary Tree”) topview(root)
python
import tensorflow as tf import dnnlib.tflib as tflib from training import dataset from training import misc from metrics import metric_base class ACC(metric_base.MetricBase): def __init__(self, num_images, minibatch_per_gpu, test_data_dir, test_dataset, **kwargs): super().__init__(**kwargs) self.num_images = num_images self.minibatch_per_gpu = minibatch_per_gpu self.test_data_dir = test_data_dir self.test_dataset = test_dataset def _evaluate(self, classifier, Gs_kwargs, num_gpus): self._set_dataset_obj(dataset.load_dataset(tfrecord_dir=self.test_dataset, data_dir=self.test_data_dir, shuffle_mb=2048)) dataset_object = self._get_dataset_obj() dataset_object.configure(minibatch_size=self.minibatch_per_gpu) num_correct = 0 num_total = 0 images_placeholder = tf.placeholder(shape=classifier.input_shapes[0], dtype=tf.float32) label_placeholder = tf.placeholder(shape=[None, dataset_object.label_size], dtype=tf.float32) images_adjust = misc.adjust_dynamic_range(images_placeholder, [0, 255], [-1, 1]) prediction = classifier.get_output_for(images_adjust) one_hot_prediction = tf.one_hot(indices=tf.argmax(prediction, axis=-1), depth=dataset_object.label_size) num_correct_pred = tf.reduce_sum(one_hot_prediction * label_placeholder) while num_total < self.num_images: images, labels = dataset_object.get_minibatch_np(minibatch_size=self.minibatch_per_gpu) num_correct_pred_out = tflib.run( num_correct_pred , feed_dict={ images_placeholder: images, label_placeholder: labels }) num_correct += num_correct_pred_out num_total += self.minibatch_per_gpu self._report_result(num_correct / num_total)
python
#! /usr/bin/env python """ GaussLaguerre_doughnut.py Calculates the intensity- and phase distributions of Laguerre-Gauss doughnut laser modes. cc Fred van Goor, May 2020. """ from LightPipes import * import matplotlib.pyplot as plt if LPversion < "2.0.0": print(r'You need to upgrade LightPipes to run this script.' + '\n'+r'Type at a terminal prompt: $ pip install --upgrade LightPipes') exit(1) wavelength = 500*nm size = 15*mm N = 200 w0=3*mm i=0 m_max=6 fig, axs = plt.subplots(nrows=2, ncols=m_max,figsize=(11.0,5.0)) s=r'Doughnut laser modes' fig.suptitle(s) F=Begin(size,wavelength,N) n=0 for m in range(1,m_max+1): F=GaussBeam(w0,F,doughnut=True,n=n,m=m) I=Intensity(0,F) Phi=Phase(F) s=f'$LG_{n}$' + f'$_{m}$' + '$_*$' axs[0][m-1].imshow(I,cmap='jet'); axs[0][m-1].axis('off'); axs[0][m-1].set_title(s) axs[1][m-1].imshow(Phi,cmap='rainbow'); axs[1][m-1].axis('off'); plt.show()
python
from layers import * class CNN(object): """ Implements Convolutional Neural Network Input shape: [8, 3, 32, 32]---------->[batch size, channels, height, width] Model Architecture: ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [8, 8, 32, 32] 224 ReLU-2 [8, 8, 32, 32] 0 MaxPool2d-3 [8, 8, 16, 16] 0 Conv2d-4 [8, 16, 16, 16] 1,168 ReLU-5 [8, 16, 16, 16] 0 MaxPool2d-6 [8, 16, 8, 8] 0 Linear-7 [8, 100] 102,500 ReLU-8 [8, 100] 0 Linear-9 [8, 3] 303 ================================================================ Total params: 104,195 Trainable params: 104,195 Non-trainable params: 0 """ def __init__(self, in_channels, out_dims): self.in_channels = in_channels self.out_dims = out_dims # C1 self.conv1 = Conv2d(in_channels=self.in_channels, out_channels=8, kernel_size=3, strides=1) self.relu1 = ReLU() self.max_pool1 = MaxPooling2d(kernel_size=2, strides=2) # C2 self.conv2 = Conv2d(in_channels=8, out_channels=16, kernel_size=3, strides=1) self.relu2 = ReLU() self.max_pool2 = MaxPooling2d(kernel_size=2, strides=2) self.flatten = Flatten() self.fc1 = Dense(in_dims=16 * 8 * 8, out_dims=100) self.relu3 = ReLU() self.fc2 = Dense(in_dims=100, out_dims=self.out_dims) self.softmax = function.softmax self.layers = [self.conv1, self.conv2, self.fc1, self.fc2] def forward(self, x): # C1 x = self.conv1.forward(x) x = self.relu1.forward(x) x = self.max_pool1.forward(x) # print(x.shape) # C2 x = self.conv2.forward(x) x = self.relu2.forward(x) x = self.max_pool2.forward(x) # print(x.shape) # Flatten x = self.flatten.forward(x) # print(x.shape) # Fully connected layer x = self.fc1.forward(x) x = self.relu3.forward(x) # print(x.shape) x = self.fc2.forward(x) # print(x.shape) output = self.softmax(x) # print(x.shape) return output def backward(self, y, p_y): deltaL = p_y - y deltaL = self.fc2.backward(deltaL) deltaL = self.relu3.backward(deltaL) deltaL = self.fc1.backward(deltaL) deltaL = self.flatten.backward(deltaL) # C2 deltaL = self.max_pool2.backward(deltaL) deltaL = self.relu2.backward(deltaL) deltaL = self.conv2.backward(deltaL) # C1 deltaL = self.max_pool1.backward(deltaL) deltaL = self.relu1.backward(deltaL) self.conv1.backward(deltaL) def params(self): params = {} for i, layer in enumerate(self.layers): params['w' + str(i+1)] = layer.params['w'] params['b' + str(i+1)] = layer.params['b'] return params def set_params(self, params): for i, layer in enumerate(self.layers): layer.params['w'] = params['w' + str(i+1)] layer.params['b'] = params['b' + str(i+1)]
python
from collections import Counter occurrence_list = [item.lower() for item in input().split()] odd_occurrence = [key for key, value in Counter(occurrence_list).items() if value % 2 != 0] print(', '.join(list(odd_occurrence)))
python
import requests import wget import time r = requests.post("http://10.42.0.255:8000/start") time.sleep(4) r = requests.post("http://10.42.0.255:8000/stop") file_url = 'http://10.42.0.100/get/10' file_name = wget.download(file_url) file_name.save(/'pictures/10_picture.png')
python
# # Get the language breakdown for a repo # Usage: ghb langs USER/REPO # import operator import sys import requests from .helpers import credentials URL = "https://api.github.com/repos/%s/languages" def average(total, number): return round((number / float(total)) * 100, 2) def main(args): username, password = credentials.credentials() headers = {"Accept": "application/vnd.github.v3+json"} r = requests.get( URL % args.repo, auth=(username, password), headers=headers ) response_json = r.json() if r.status_code != 200: sys.exit("Failed with error: %s" % (response_json["message"])) total = sum(response_json.values()) averages = {k: average(total, v) for k, v in response_json.items()} averages = sorted( averages.items(), key=operator.itemgetter(1), reverse=True ) for t in averages: print("{:>15}: {:8.2f}%".format(t[0], t[1]))
python
# import all necessarily modules import os.path import subprocess import sys from configparser import ConfigParser # working dir and extension types will be passed through CLI try: workDir = sys.argv[1] extType = sys.argv[2] newExtType = sys.argv[3] except IndexError: raise Exception("Usage: python3 autompeg.py <path to workfolder> <old fileformat> <new fileformat>" "e.g. (Windows) python3 autompeg.py C:\\Users\\Test\\Work .ts .mp4" "e.g. (Mac) python3 autompeg.py /Volumes/Volume1/Work .ts .mp4") # Config Parser config = ConfigParser(allow_no_value=True) try: with open('config.ini', 'r') as cfg: config.read_file(cfg) path = config.get('Path of ffmpeg', 'path') except IOError: print("Couldn't find or open configuration file for ffmpeg. Process is exiting now..") sys.exit() # exception-clause to prevent a faulty WorkDir and therefore the following ffmpeg process if sys.platform.startswith('win32'): workDir = workDir.replace('/', '\\') else: pass for root, directories, filenames in os.walk(workDir): for filename in filenames: filename = os.path.join(root, filename) newfilename = os.path.splitext(filename)[0] + newExtType if filename.endswith(extType): # scan for files with the extension given in 'extType' filepath = filename newfilepath = newfilename # no need to include an exception-clause here yet, since ffmpeg automatically detects a faulty filepath subprocess.run( [ path, # path of ffmpeg "-i", # input argument for file f'{filepath}', # file path of the old media file "-c:v", # select video stream "copy", # copy video stream and don't convert it (to prevent quality loss) "-bsf:a", # select bitstream filter for the audio stream "aac_adtstoasc", # remove the ADTS header from the audio stream f'{newfilepath}', # file path of the 'new' media file ] )
python
import logging from riffdog.data_structures import FoundItem from riffdog.resource import register, ResourceDirectory from ...aws_resource import AWSRegionalResource logger = logging.getLogger(__name__) @register("aws_lambda_function") class AWSLambdaFunction(AWSRegionalResource): """ This is aws Lambda functions """ def fetch_real_regional_resources(self, region): logging.info("Looking for %s resources..." % self.resource_type) client = self._get_client("lambda", region) rd = ResourceDirectory() response = client.list_functions() for instance in response["Functions"]: try: item = rd.get_item(predicted_id=instance["FunctionName"]) item.real_id = instance["FunctionName"] item.real_data = instance except KeyError: # that item isnt predicted! FoundItem("aws_lambda_function", real_id=instance["FunctionName"], real_data=instance) def process_state_resource(self, state_resource, state_filename): logger.info("Found a resource of type %s!" % self.resource_type) for instance in state_resource["instances"]: FoundItem("aws_lambda_function", terraform_id=state_resource["name"], predicted_id=instance["attributes"]["id"], state_data=instance) def compare(self, item, depth): pass
python
# using: encoding-utf8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim import numpy as np import time import os from six.moves import cPickle import utils.opts as opts import models from utils.dataloader import * import torch.utils.tensorboard as td import utils.eval_utils as eval_utils import utils.utils as utils from utils.rewards import init_cider_scorer, get_self_critical_reward, get_self_critical_cider_bleu_reward, init_bleu_scorer opt = opts.parse_opt() os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length td_summary_writer = td.writer.SummaryWriter(opt.ckpt_path) infos = { 'iter': 0, 'epoch': 0, 'loader_state_dict': None, 'vocab': loader.get_vocab(), } histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos.pkl'), 'rb') as f: infos = cPickle.load(f, encoding='latin-1') saved_model_opt = infos['opt'] need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers", "embed_weight_file"] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile(os.path.join(opt.start_from, 'histories.pkl')): with open(os.path.join(opt.start_from, 'histories.pkl'), 'rb') as f: histories = cPickle.load(f, encoding='latin-1') iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) iteration = infos['iter'] epoch = infos['epoch'] # For back compatibility if 'iterators' in infos: infos['loader_state_dict'] = {split: {'index_list': infos['split_ix'][split], 'iter_counter': infos['iterators'][split]} for split in ['train', 'val', 'test']} loader.load_state_dict(infos['loader_state_dict']) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt) model.cuda() update_lr_flag = True # Assure in training mode model.train() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = utils.NewNoamOpt(optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0, betas=(0.9, 0.98), eps=1e-9), max_lr=opt.learning_rate, warmup=opt.newnoamopt_warmup, batchsize=opt.batch_size, decay_start=opt.newnoamopt_decay, datasize=len(loader.dataset.split_ix['train'])) if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.learning_rate, betas=(opt.optim_alpha, opt.optim_beta), eps=opt.optim_epsilon, weight_decay=opt.weight_decay) params = list(model.named_parameters()) grad_norm = np.zeros(len(params)) loss_sum = 0 while True: if opt.self_critical_after != -1 and epoch >= opt.self_critical_after and update_lr_flag and opt.caption_model in ['svbase' ,'umv']: print('start self critical') if epoch >= 15 and epoch <20 and opt.learning_rate_decay_start >= 0: opt.current_lr = opt.learning_rate elif epoch >= 20 and opt.learning_rate_decay_start >= 0: opt.current_lr = opt.learning_rate / 2.0 utils.set_lr(optimizer, opt.current_lr) update_lr_flag = False # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True opt.embed_weight_requires_grad = True init_cider_scorer(opt.cached_tokens) init_bleu_scorer() else: sc_flag = False opt.embed_weight_requires_grad = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() num_bbox, att_feats = data['num_bbox'].cuda(), data['att_feats'].cuda() labels = data['labels'].cuda() masks = data['masks'].cuda() optimizer.zero_grad() if not sc_flag: loss = crit(model(att_feats, num_bbox, labels), labels[:, 1:], masks[:,1:]) else: gen_result, sample_logprobs = model.sample(att_feats, num_bbox, opt={'sample_max':0}) reward = get_self_critical_reward(model, att_feats, num_bbox, data, gen_result) loss = rl_crit(sample_logprobs, gen_result, torch.from_numpy(reward).float().cuda()) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) for grad_wt in range(len(params)): norm_v = torch.norm(params[grad_wt][1].grad).cpu().data.numpy() if params[grad_wt][ 1].grad is not None else 0 grad_norm[grad_wt] += norm_v if not sc_flag: optimizer.step(epoch) else: optimizer.step() train_loss = loss.item() loss_sum += train_loss torch.cuda.synchronize() end = time.time() if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) else: print("lr {} iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(opt.current_lr, iteration, epoch, np.mean(reward[:,0]), end - start)) # Update the iteration and epoch iteration += 1 if sc_flag: del gen_result del sample_logprobs if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if opt.noamopt: opt.current_lr = optimizer.rate() elif not sc_flag: opt.current_lr = optimizer.rate(epoch) if td is not None: td_summary_writer.add_scalar('train_loss', train_loss, iteration) td_summary_writer.add_scalar('learning_rate', opt.current_lr, iteration) td_summary_writer.add_scalar('scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: td_summary_writer.add_scalar('avg_reward', np.mean(reward[:,0]), iteration) # tf_summary_writer.flush() loss_history[iteration] = train_loss if not sc_flag else np.mean(reward[:,0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split(model, loader, eval_kwargs) # Write validation result into summary if td is not None: td_summary_writer.add_scalar('validation loss', val_loss, iteration) if lang_stats is not None: for k,v in lang_stats.items(): td_summary_writer.add_scalar(k, v, iteration) # tf_summary_writer.flush() val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = - val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.ckpt_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.ckpt_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['loader_state_dict'] = loader.state_dict() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open(os.path.join(opt.ckpt_path, 'infos.pkl'), 'wb') as f: cPickle.dump(infos, f) with open(os.path.join(opt.ckpt_path, 'histories_.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.ckpt_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open(os.path.join(opt.ckpt_path, 'infos-best.pkl'), 'wb') as f: cPickle.dump(infos, f) loss_sum = 0 grad_norm = np.zeros(len(params)) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split(model, loader, eval_kwargs) # Write validation result into summary if td is not None: td_summary_writer.add_scalar('validation loss', val_loss, iteration) if lang_stats is not None: for k,v in lang_stats.items(): td_summary_writer.add_scalar(k, v, iteration) val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = - val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.ckpt_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.ckpt_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['loader_state_dict'] = loader.state_dict() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open(os.path.join(opt.ckpt_path, 'infos.pkl'), 'wb') as f: cPickle.dump(infos, f) with open(os.path.join(opt.ckpt_path, 'histories.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.ckpt_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open(os.path.join(opt.ckpt_path, 'infos-best.pkl'), 'wb') as f: cPickle.dump(infos, f) break if sc_flag: del loss del reward del att_feats del num_bbox del labels del masks del data opt = opts.parse_opt() train(opt)
python
# pylint: disable=C0103 import json class CampaignObject(): def __init__(self, json_def): if type(json_def) is str: json_def = json.loads(json_def) s = json_def self.campaignTp = None if 'campaignTp' not in s else s['campaignTp'] self.customerId = None if 'customerId' not in s else s['customerId'] self.dailyBudget = None if 'dailyBudget' not in s else s['dailyBudget'] self.delFlag = None if 'delFlag' not in s else s['delFlag'] self.deliveryMethod = None if 'deliveryMethod' not in s else s['deliveryMethod'] self.editTm = None if 'editTm' not in s else s['editTm'] self.expectCost = None if 'expectCost' not in s else s['expectCost'] self.migType = None if 'migType' not in s else s['migType'] self.name = None if 'name' not in s else s['name'] self.nccCampaignId = None if 'nccCampaignId' not in s else s['nccCampaignId'] self.periodEndDt = None if 'periodEndDt' not in s else s['periodEndDt'] self.periodStartDt = None if 'periodStartDt' not in s else s['periodStartDt'] self.regTm = None if 'regTm' not in s else s['regTm'] self.status = None if 'status' not in s else s['status'] self.statusReason = None if 'statusReason' not in s else s['statusReason'] self.trackingMode = None if 'trackingMode' not in s else s['trackingMode'] self.trackingUrl = None if 'trackingUrl' not in s else s['trackingUrl'] self.useDailyBudget = None if 'useDailyBudget' not in s else s['useDailyBudget'] self.usePeriod = None if 'usePeriod' not in s else s['usePeriod'] self.userLock = None if 'userLock' not in s else s['userLock']
python
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2017 bily Huazhong University of Science and Technology # # Distributed under terms of the MIT license. """Save the paths of crops from the ImageNet VID 2015 dataset in pickle format""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import os.path as osp import pickle import sys import numpy as np import tensorflow as tf CURRENT_DIR = osp.dirname(__file__) sys.path.append(osp.join(CURRENT_DIR, '..')) from utils.misc_utils import sort_nicely class Config: ### Dataset # directory where curated dataset is stored #dataset_dir = 'data/ILSVRC2015-VID-Curation' dataset_dir = '/data/ILSVRC2015_crops' save_dir = 'data/' # percentage of all videos for validation validation_ratio = 0.1 class DataIter: """Container for dataset of one iteration""" pass class Dataset: def __init__(self, config): self.config = config def _get_unique_trackids(self, video_dir): """Get unique trackids within video_dir""" x_image_paths = glob.glob(video_dir + '/*.crop.x.jpg') trackids = [os.path.basename(path).split('.')[1] for path in x_image_paths] unique_trackids = set(trackids) return unique_trackids def dataset_iterator(self, video_dirs): video_num = len(video_dirs) iter_size = 150 iter_num = int(np.ceil(video_num / float(iter_size))) for iter_ in range(iter_num): iter_start = iter_ * iter_size iter_videos = video_dirs[iter_start: iter_start + iter_size] data_iter = DataIter() num_videos = len(iter_videos) instance_videos = [] for index in range(num_videos): print('Processing {}/{}...'.format(iter_start + index, video_num)) video_dir = iter_videos[index] trackids = self._get_unique_trackids(video_dir) for trackid in trackids: instance_image_paths = glob.glob(video_dir + '/*' + trackid + '.crop.x.jpg') # sort image paths by frame number instance_image_paths = sort_nicely(instance_image_paths) # get image absolute path instance_image_paths = [os.path.abspath(p) for p in instance_image_paths] instance_videos.append(instance_image_paths) data_iter.num_videos = len(instance_videos) data_iter.instance_videos = instance_videos yield data_iter def get_all_video_dirs(self): ann_dir = os.path.join(self.config.dataset_dir, 'Data', 'VID') all_video_dirs = [] # We have already combined all training and validation videos in ILSVRC2015 and put them in the `train` directory. # The file structure is like: # train # |- a # |- b # |_ c # |- ILSVRC2015_train_00024001 # |- ILSVRC2015_train_00024002 # |_ ILSVRC2015_train_00024003 # |- 000045.00.crop.x.jpg # |- 000046.00.crop.x.jpg # |- ... train_dirs = os.listdir(os.path.join(ann_dir, 'train')) for dir_ in train_dirs: train_sub_dir = os.path.join(ann_dir, 'train', dir_) video_names = os.listdir(train_sub_dir) train_video_dirs = [os.path.join(train_sub_dir, name) for name in video_names] all_video_dirs = all_video_dirs + train_video_dirs return all_video_dirs def main(): # Get the data. config = Config() dataset = Dataset(config) all_video_dirs = dataset.get_all_video_dirs() num_validation = int(len(all_video_dirs) * config.validation_ratio) ### validation validation_dirs = all_video_dirs[:num_validation] validation_imdb = dict() validation_imdb['videos'] = [] for i, data_iter in enumerate(dataset.dataset_iterator(validation_dirs)): validation_imdb['videos'] += data_iter.instance_videos validation_imdb['n_videos'] = len(validation_imdb['videos']) validation_imdb['image_shape'] = (255, 255, 3) ### train train_dirs = all_video_dirs[num_validation:] train_imdb = dict() train_imdb['videos'] = [] for i, data_iter in enumerate(dataset.dataset_iterator(train_dirs)): train_imdb['videos'] += data_iter.instance_videos train_imdb['n_videos'] = len(train_imdb['videos']) train_imdb['image_shape'] = (255, 255, 3) if not tf.gfile.IsDirectory(config.save_dir): tf.logging.info('Creating training directory: %s', config.save_dir) tf.gfile.MakeDirs(config.save_dir) with open(os.path.join(config.save_dir, 'validation_imdb.pickle'), 'wb') as f: pickle.dump(validation_imdb, f) with open(os.path.join(config.save_dir, 'train_imdb.pickle'), 'wb') as f: pickle.dump(train_imdb, f) if __name__ == '__main__': main()
python
import argparse import datetime as dt import os from gpsynth.synthesizer import big_sweep, all_kernels parser = argparse.ArgumentParser(description='Generate wavetables with Gaussian Processes') parser.add_argument('path', metavar='path', type=str, nargs='?', default=None, help='the parent directory, where the result is stored') parser.add_argument('--lsdiv', metavar='N', type=int, required=False, default=16, help='the number of lengthscale subdivisions') parser.add_argument('--wavetables', metavar='N', type=int, required=False, default=7, help='the number of (randomized) wavetables per setting of kernel and lengthscale') args = parser.parse_args() path = args.path if path is None: dir_name = dt.datetime.now().strftime('%Y%m%d-%H%M') + '_multiexport' path = os.path.join(os.getcwd(), dir_name) os.makedirs(path, exist_ok=True) big_sweep(all_kernels, path, args.lsdiv, args.wavetables)
python
# coding=utf-8 import math import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils from torch.autograd import Variable from torch.nn import Parameter, init from torch.nn._functions.rnn import variable_recurrent_factory, StackedRNN from torch.nn.modules.rnn import RNNCellBase from torch.nn.utils.rnn import PackedSequence from torch.nn._functions.thnn import rnnFusedPointwise as fusedBackend class RecurrentDropoutLSTMCell(RNNCellBase): def __init__(self, input_size, hidden_size, dropout=0.): super(RecurrentDropoutLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.dropout = dropout self.W_i = Parameter(torch.Tensor(hidden_size, input_size)) self.U_i = Parameter(torch.Tensor(hidden_size, hidden_size)) # self.b_i = Parameter(torch.Tensor(hidden_size)) self.W_f = Parameter(torch.Tensor(hidden_size, input_size)) self.U_f = Parameter(torch.Tensor(hidden_size, hidden_size)) # self.b_f = Parameter(torch.Tensor(hidden_size)) self.W_c = Parameter(torch.Tensor(hidden_size, input_size)) self.U_c = Parameter(torch.Tensor(hidden_size, hidden_size)) # self.b_c = Parameter(torch.Tensor(hidden_size)) self.W_o = Parameter(torch.Tensor(hidden_size, input_size)) self.U_o = Parameter(torch.Tensor(hidden_size, hidden_size)) # self.b_o = Parameter(torch.Tensor(hidden_size)) self.bias_ih = Parameter(torch.Tensor(4 * hidden_size)) self.bias_hh = Parameter(torch.Tensor(4 * hidden_size)) self._input_dropout_mask = self._h_dropout_mask = None self.reset_parameters() def reset_parameters(self): init.orthogonal(self.W_i) init.orthogonal(self.U_i) init.orthogonal(self.W_f) init.orthogonal(self.U_f) init.orthogonal(self.W_c) init.orthogonal(self.U_c) init.orthogonal(self.W_o) init.orthogonal(self.U_o) self.bias_ih.data.fill_(0.) # forget gate set to 1. self.bias_ih.data[self.hidden_size:2 * self.hidden_size].fill_(1.) self.bias_hh.data.fill_(0.) def set_dropout_masks(self, batch_size): if self.dropout: if self.training: new_tensor = self.W_i.data.new self._input_dropout_mask = Variable(torch.bernoulli( new_tensor(4, batch_size, self.input_size).fill_(1 - self.dropout)), requires_grad=False) self._h_dropout_mask = Variable(torch.bernoulli( new_tensor(4, batch_size, self.hidden_size).fill_(1 - self.dropout)), requires_grad=False) else: self._input_dropout_mask = self._h_dropout_mask = [1. - self.dropout] * 4 else: self._input_dropout_mask = self._h_dropout_mask = [1.] * 4 def forward(self, input, hidden_state): def get_mask_slice(mask, idx): if isinstance(mask, list): return mask[idx] else: return mask[idx][:input.size(0)] h_tm1, c_tm1 = hidden_state # if self._input_dropout_mask is None: # self.set_dropout_masks(input.size(0)) xi_t = F.linear(input * get_mask_slice(self._input_dropout_mask, 0), self.W_i) xf_t = F.linear(input * get_mask_slice(self._input_dropout_mask, 1), self.W_f) xc_t = F.linear(input * get_mask_slice(self._input_dropout_mask, 2), self.W_c) xo_t = F.linear(input * get_mask_slice(self._input_dropout_mask, 3), self.W_o) hi_t = F.linear(h_tm1 * get_mask_slice(self._h_dropout_mask, 0), self.U_i) hf_t = F.linear(h_tm1 * get_mask_slice(self._h_dropout_mask, 1), self.U_f) hc_t = F.linear(h_tm1 * get_mask_slice(self._h_dropout_mask, 2), self.U_c) ho_t = F.linear(h_tm1 * get_mask_slice(self._h_dropout_mask, 3), self.U_o) if input.is_cuda: igates = torch.cat([xi_t, xf_t, xc_t, xo_t], dim=-1) hgates = torch.cat([hi_t, hf_t, hc_t, ho_t], dim=-1) state = fusedBackend.LSTMFused.apply return state(igates, hgates, c_tm1, self.bias_ih, self.bias_hh) else: i_t = F.sigmoid(xi_t + self.bias_ih[:self.hidden_size] + hi_t + self.bias_hh[:self.hidden_size]) f_t = F.sigmoid(xf_t + self.bias_ih[self.hidden_size:2 * self.hidden_size] + hf_t + self.bias_hh[self.hidden_size:2 * self.hidden_size]) c_t = f_t * c_tm1 + i_t * F.tanh(xc_t + self.bias_ih[2 * self.hidden_size:3 * self.hidden_size] + hc_t + self.bias_hh[2 * self.hidden_size:3 * self.hidden_size]) o_t = F.sigmoid(xo_t + self.bias_ih[3 * self.hidden_size:4 * self.hidden_size] + ho_t + self.bias_hh[3 * self.hidden_size:4 * self.hidden_size]) h_t = o_t * F.tanh(c_t) return h_t, c_t class ParentFeedingLSTMCell(RNNCellBase): def __init__(self, input_size, hidden_size): super(ParentFeedingLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.W_i = Parameter(torch.Tensor(hidden_size, input_size)) self.U_i = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_i_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_i = Parameter(torch.Tensor(hidden_size)) self.W_f = Parameter(torch.Tensor(hidden_size, input_size)) self.U_f = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_f_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_f = Parameter(torch.Tensor(hidden_size)) self.b_f_p = Parameter(torch.Tensor(hidden_size)) self.W_c = Parameter(torch.Tensor(hidden_size, input_size)) self.U_c = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_c_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_c = Parameter(torch.Tensor(hidden_size)) self.W_o = Parameter(torch.Tensor(hidden_size, input_size)) self.U_o = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_o_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_o = Parameter(torch.Tensor(hidden_size)) self.reset_parameters() def reset_parameters(self): init.orthogonal(self.W_i) init.orthogonal(self.U_i) init.orthogonal(self.U_i_p) init.orthogonal(self.W_f) init.orthogonal(self.U_f) init.orthogonal(self.U_f_p) init.orthogonal(self.W_c) init.orthogonal(self.U_c) init.orthogonal(self.U_c_p) init.orthogonal(self.W_o) init.orthogonal(self.U_o) init.orthogonal(self.U_o_p) self.b_i.data.fill_(0.) self.b_c.data.fill_(0.) self.b_o.data.fill_(0.) # forget bias set to 1. self.b_f.data.fill_(1.) self.b_f_p.data.fill_(1.) def forward(self, input, hidden_states): h_tm1, c_tm1, h_tm1_p, c_tm1_p = hidden_states i_t = F.sigmoid(F.linear(input, self.W_i) + F.linear(h_tm1, self.U_i) + F.linear(h_tm1_p, self.U_i_p) + self.b_i) xf_t = F.linear(input, self.W_f) f_t = F.sigmoid(xf_t + F.linear(h_tm1, self.U_f) + self.b_f) f_t_p = F.sigmoid(xf_t + F.linear(h_tm1_p, self.U_f_p) + self.b_f_p) xc_t = F.linear(input, self.W_c) + F.linear(h_tm1, self.U_c) + F.linear(h_tm1_p, self.U_c_p) + self.b_c c_t = f_t * c_tm1 + f_t_p * c_tm1_p + i_t * F.tanh(xc_t) o_t = F.sigmoid(F.linear(input, self.W_o) + F.linear(h_tm1, self.U_o) + F.linear(h_tm1_p, self.U_o_p) + self.b_o) h_t = o_t * F.tanh(c_t) return h_t, c_t class LSTM(nn.Module): def __init__(self, input_size, hidden_size, bidirectional=False, dropout=0., cell_factory=RecurrentDropoutLSTMCell): super(LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bidirectional = bidirectional self.dropout = dropout self.cell_factory = cell_factory num_directions = 2 if bidirectional else 1 self.lstm_cells = [] for direction in range(num_directions): cell = cell_factory(input_size, hidden_size, dropout=dropout) self.lstm_cells.append(cell) suffix = '_reverse' if direction == 1 else '' cell_name = 'cell{}'.format(suffix) self.add_module(cell_name, cell) def forward(self, input, hidden_state=None): is_packed = isinstance(input, PackedSequence) if is_packed: input, batch_sizes = input max_batch_size = batch_sizes[0] else: raise NotImplementedError() for cell in self.lstm_cells: cell.set_dropout_masks(max_batch_size) if hidden_state is None: num_directions = 2 if self.bidirectional else 1 hx = torch.autograd.Variable(input.data.new(num_directions, max_batch_size, self.hidden_size).zero_()) hidden_state = (hx, hx) rec_factory = variable_recurrent_factory(batch_sizes) if self.bidirectional: layer = (rec_factory(lambda x, h: self.cell(x, h)), rec_factory(lambda x, h: self.cell_reverse(x, h), reverse=True)) else: layer = (rec_factory(lambda x, h: self.cell(x, h)),) func = StackedRNN(layer, num_layers=1, lstm=True, dropout=0., train=self.training) next_hidden, output = func(input, hidden_state, weight=[[], []]) if is_packed: output = PackedSequence(output, batch_sizes) return output, next_hidden
python
from flask import Flask, send_from_directory, request from flask_restful import Api, Resource, reqparse import json import numpy as np import datetime import csv import click from dlw import DLWSubject STATICS_LOCATION = 'dist' app = Flask(__name__, static_url_path='', static_folder=STATICS_LOCATION) api = Api(app) CALCULATED_RESULTS = None # type: DLWSubject @app.route('/calculate', methods=['POST']) def calculate_from_inputs(): input_data = json.loads(request.get_data().decode('utf-8')) datetimes = [datetime.datetime(l[0], l[1], l[2], l[3], l[4]) for l in input_data['datetimes']] d_meas = [d if d != "" else np.nan for d in input_data['d_meas']] o_meas = [d if d != "" else np.nan for d in input_data['o18_meas']] global CALCULATED_RESULTS CALCULATED_RESULTS = DLWSubject(d_meas=np.asarray(d_meas, dtype=float), o18_meas=np.asarray(o_meas, dtype=float), sample_datetimes=np.asarray(datetimes), dose_weights=np.asarray(input_data['dose_weights'], dtype=float), mixed_dose=input_data['mixed_dose'], dose_enrichments=np.asarray(input_data['dose_enrichments'], dtype=float), rq=float(input_data['rq']) if input_data['rq'] else None, subject_weights=np.asarray(input_data['subject_weights'], dtype=float), subject_id=input_data['subject_id'], in_permil=input_data['in_permil'], expo_calc=input_data['exponential'], pop_avg_rdil=float(input_data['pop_avg_rdil']) if input_data[ 'pop_avg_rdil'] else None) def sort_calculated_results(results): return { "rco2_ee_int": { "rco2_mol_day": ["rCO2 (mol/day)", round(results['co2_int_mol_day'], 2)], "rco2_l_hr": ["rCO2 (L/day)", round(results['co2_int_L_day'], 1)], "ee_kcal_day": ["EE (kcal/day)", round(results['tee_int_kcal_day'], 1)], "ee_mj_day": ["EE (MJ/day)", round(results['tee_int_mj_day'], 2)] }, "rco2_ee_plat": { "rco2_mol_day": ["rCO2 (mol/day)", round(results['co2_plat_mol_day'], 2)], "rco2_l_hr": ["rCO2 (L/day)", round(results['co2_plat_L_day'], 1)], "ee_kcal_day": ["EE (kcal/day)", round(results['tee_plat_kcal_day'], 1)], "ee_mj_day": ["EE (MJ/day)", round(results['tee_plat_mj_day'], 2)] } } if np.isnan(CALCULATED_RESULTS.d_ratio_percent): plateau_2h = ["2H plateau (<5%)", "N/A (missing data)"] else: plateau_2h = ["2H plateau (<5%)", str(round(CALCULATED_RESULTS.d_ratio_percent, 2)) + "%"] if np.isnan(CALCULATED_RESULTS.o18_ratio_percent): plateau_o18 = ["18O Plateau (<5%)", "N/A (missing data)"] else: plateau_o18 = ["18O Plateau (<5%)", str(round(CALCULATED_RESULTS.o18_ratio_percent, 2)) + "%"] if np.isnan(CALCULATED_RESULTS.ee_check): ee = ["EE (PD4-ED4 vs. PD5-ED5, <10%)", "N/A (missing data)"] else: ee = ["EE (PD4-ED4 vs. PD5-ED5, <10%)", str(round(CALCULATED_RESULTS.ee_check, 4)) + "%"] return json.dumps({ "results": { "calculations": { "ndp_kg": ["NdP (kg)", round(CALCULATED_RESULTS.nd['adj_plat_avg_kg'], 1)], "kd_hr": ["kd/hour", round(CALCULATED_RESULTS.kd_per_hr, 6)], "nop_kg": ["NoP (kg)", round(CALCULATED_RESULTS.no['adj_plat_avg_kg'], 1)], "ko_hr": ["ko/hour", round(CALCULATED_RESULTS.ko_per_hr, 6)], "body_water_avg_kg": ["Total Body Water Average (kg)", round(CALCULATED_RESULTS.total_body_water_ave_kg, 1)], "fat_free_mass_kg": ["Fat Free Mass (kg)", round(CALCULATED_RESULTS.fat_free_mass_kg, 1)], "fat_mass_kg": ["Fat Mass (kg)", round(CALCULATED_RESULTS.fat_mass_kg, 1)], "body_fat_percentage": ["Body Fat Percentage", round(CALCULATED_RESULTS.body_fat_percent, 1)] }, "error_flags": { "plateau_2h": plateau_2h, "plateau_18O": plateau_o18, "ds_ratio": ["DS ratio (1.000 - 1.070)", round(CALCULATED_RESULTS.dil_space_ratio, 4)], "ee": ee, "ko_kd": ["Ko/kd (1.1 - 1.7)", round(CALCULATED_RESULTS.ko_kd_ratio, 4)] }, "schoeller": sort_calculated_results(CALCULATED_RESULTS.schoeller), "racette": sort_calculated_results(CALCULATED_RESULTS.racette), "speakman1997": sort_calculated_results(CALCULATED_RESULTS.speakman1997), "speakman2020": sort_calculated_results(CALCULATED_RESULTS.speakman2020) } }) @app.route('/export', methods=['POST']) def export_to_csv(): return CALCULATED_RESULTS.save_results_csv() @app.route('/load', methods=['POST']) def load_csv(): file = request.get_data().decode('utf-8') rows = file.split('\n') reader = csv.DictReader(rows) results = [] for row in reader: results.append(row) return json.dumps({'results': results, 'error': False}) @app.route('/') def root(): return send_from_directory(STATICS_LOCATION, 'index.html') @click.command() @click.option('--host', default=None) @click.option('--port', default=None) def run_app(host, port): app.run(debug=False, host=host, port=port) if __name__ == '__main__': app.run(debug=True)
python
#!/usr/bin/env python from strip import Strip import random import time import signal import logging logger = logging.getLogger(__name__) def init_logging(log_level): logging.basicConfig(level=log_level) # catch signals for tidy exit _exiting = False def signal_handler(signal, frame): global _exiting _exiting = True NUM_LEDS = 60 SPI_BUS = 0 SPI_DEVICE = 0 def main(): init_logging(logging.INFO) signal.signal(signal.SIGINT, signal_handler) strip = Strip(NUM_LEDS, SPI_BUS, SPI_DEVICE) updates = 0 start_time = time.time() last_report_time = start_time while not _exiting: strip.set_all(random.randint(0, 255), random.randint(0, 255), random.randint(0,255), 1) strip.update() time.sleep(0.15) updates += 1 now = time.time() if now - last_report_time > 1.0: elapsed = now - start_time updates_per_second = updates / elapsed logger.info("Updates per second: {0}".format(updates_per_second)) last_report_time = now strip.set_all_off() strip.update() if __name__ == "__main__": main()
python
from flask_appbuilder import Model from flask_appbuilder.models.mixins import AuditMixin, FileColumn, ImageColumn from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.orm import relationship """ You can use the extra Flask-AppBuilder fields and Mixin's AuditMixin will add automatic timestamp of created and modified by who """ # This model stores SSH key details - their names and full paths. class Key(Model): key_id = Column(Integer, primary_key=True) key_name = Column(String(100), nullable=False) key_path = Column(String(50), nullable=False) def __repr__(self): return self.key_name # This model stores details about a particular kind of server - in this case, a production server running various apps. class ProductionServer(Model): production_server_id = Column(Integer, primary_key=True) production_server_name = Column(String(50), nullable=False) production_server_ip = Column(String(30), nullable=False) key_id = Column(Integer, ForeignKey('key.key_id')) key = relationship('Key') production_server_user = Column(String(30)) def __repr__(self): return self.production_server_name # This model stores details about MySQL servers. class MySQLServer(Model): mysql_server_id = Column(Integer, primary_key=True) mysql_server_name = Column(String(50), nullable=False) mysql_server_ip = Column(String(30), nullable=False) key_id = Column(Integer, ForeignKey('key.key_id')) key = relationship('Key') mysql_server_user = Column(String(30)) def __repr__(self): return self.mysql_server_name # This model will store details about RethinkDB servers. class RethinkDBServer(Model): rethinkdb_server_id = Column(Integer, primary_key=True) rethinkdb_server_name = Column(String(50), nullable=False) rethinkdb_server_ip = Column(String(30), nullable=False) key_id = Column(Integer, ForeignKey('key.key_id')) key = relationship('Key') rethinkdb_server_user = Column(String(30)) def __repr__(self): return self.rethinkdb_server_name
python
import pytest from ergaleia import Mini @pytest.fixture def mini(): return Mini('foo value=bar') def test_default(mini): assert mini.foo == 'bar' with pytest.raises(TypeError): mini['foo'] def test_set_attribute(mini): mini.foo = 'whatever' assert mini.foo == 'whatever' with pytest.raises(KeyError): mini.bar = 'whatever' def test_set(mini): mini.set(foo=1) assert mini.foo == 1 with pytest.raises(KeyError): mini.set(bar=2) m = Mini('a', 'b', 'c') m.set(a=1, b=2, c=3) assert m.a + m.b + m.c == 6 def test_load(mini): mini.load(['foo=10']) assert mini.foo == '10' m = Mini('a validator=int') m.load(['a=10']) assert m.a == 10 def test_as_tuple(mini): t = mini.as_tuple() assert t.foo == 'bar'
python
import itertools import pickle import time import tarfile import sys import uuid import warnings from collections import OrderedDict from pathlib import Path import hawkeslib as hl import numpy as np from joblib import Parallel, delayed from sklearn.decomposition import NMF from sklearn.cluster import KMeans, SpectralClustering from sklearn.metrics import normalized_mutual_info_score as nmi from tick.hawkes import HawkesExpKern, HawkesEM from tick.hawkes.inference.hawkes_cumulant_matching import HawkesCumulantMatching sys.path.append("../") from lrhp.neumann import TruncatedNeumannEstimator from lrhp.util import hawkeslib_data_to_tick class Experiment: def __init__(self, name, fit_args, model, n_clusters=10): self.name = name self.fit_args = fit_args self.model = model self.n_clusters = n_clusters def get_spectral_clustering(self, P, is_W=False): if is_W: P = P.T.dot(P) P = np.clip(P, a_min=0, a_max=None) return SpectralClustering( n_clusters=self.n_clusters, affinity="precomputed" ).fit_predict(P) def get_kmeans_clustering(self, P, is_W=False): if not is_W: P = np.clip(P, a_min=0, a_max=None) P = NMF(n_components=self.n_clusters).fit_transform(P) else: P = P.T return KMeans(n_clusters=self.n_clusters).fit_predict(P) @staticmethod def _get_tick_phi(model): phi_getter = { HawkesEM: lambda m: m.kernel.sum(-1), HawkesCumulantMatching: lambda m: m.solution, HawkesExpKern: lambda m: m.adjacency, } for k, v in phi_getter.items(): if isinstance(model, k): return v(model) raise ValueError("Given model not recognized.") def run(self): start_time = time.time() if "tick" in str(type(self.model)): self.model.fit(*self.fit_args) phi = self._get_tick_phi(self.model) fitting_time = time.time() - start_time sc = self.get_spectral_clustering(phi) km = self.get_kmeans_clustering(phi) else: assert isinstance(self.model, TruncatedNeumannEstimator) W, _ = self.model.fit(**self.fit_args) phi = np.clip(W.T.dot(W), a_min=0, a_max=None).astype(np.float64) fitting_time = time.time() - start_time sc = self.get_spectral_clustering(W, is_W=True) km = self.get_kmeans_clustering(W, is_W=True) return fitting_time, phi, sc, km def main(n_clusters=10): with tarfile.open("../data/synthetic_hawkes_data.tar.gz", "r:gz") as tar: fp = tar.extractfile("synthetic_hawkes_data") mu, Phi, beta, t, c = pickle.load(fp) fp.close() test_ix = len(t) // 2 t1, c1 = (x[:test_ix] for x in (t, c)) t2, c2 = (x[test_ix:] for x in (t, c)) t2 -= t1[-1] tickd = hawkeslib_data_to_tick(t1, c1) SHORT_DATA_LENGTH = 2_000_000 tickd_short = hawkeslib_data_to_tick(t1[:SHORT_DATA_LENGTH], c1[:SHORT_DATA_LENGTH]) baseline_experiments = [ Experiment( name="NPHC", fit_args=[tickd], model=HawkesCumulantMatching( integration_support=1.0, verbose=True, C=1., max_iter=1000, ), n_clusters=n_clusters, ), Experiment( name="Hawkes-LS", fit_args=[tickd_short], model=HawkesExpKern( decays=1., gofit="least-squares", C=1, solver="gd" ), n_clusters=n_clusters, ), Experiment( name="Hawkes-EM", fit_args=[tickd_short], model=HawkesEM( kernel_support=10., kernel_size=2, verbose=True, print_every=10, ), n_clusters=n_clusters, ) ] neumann_experiments = [ Experiment( name="LRHP-GD", fit_args=dict( t=t1, c=c1, num_epochs=int(1e3), learning_rate=1e-2 ), model=TruncatedNeumannEstimator(rank=n_clusters, is_nmf=False), n_clusters=n_clusters, ), Experiment( name="LRHP-GD (NMF)", fit_args=dict( t=t1, c=c1, num_epochs=int(5e4), learning_rate=2e-1 ), model=TruncatedNeumannEstimator(rank=10, is_nmf=True), n_clusters=n_clusters, ), ] # get original clusters via NMF nmf = NMF(n_components=n_clusters) Wo = nmf.fit_transform(Phi) orig_clus = KMeans(n_clusters=n_clusters).fit_predict(Wo) # run experiments warnings.simplefilter("ignore") all_results = [] for exp in baseline_experiments + neumann_experiments: time_taken, phi, sc, km = exp.run() results = OrderedDict( name=exp.name, n_clusters=n_clusters, time_taken=time_taken, pred_ll=hl.MultivariateExpHawkesProcess.log_likelihood_with_params( t2, c2, mu, np.clip(phi, a_min=0, a_max=None), beta ) / len(t2), sc_nmi=nmi(sc, orig_clus), km_nmi=nmi(km, orig_clus), ) reslist = list(results.values()) all_results.append(reslist) print(reslist) # write out results out_path = Path("./outputs/") out_path.mkdir(exist_ok=True) with open(out_path / f"{str(uuid.uuid4())[:7]}", "w") as fp: for r in all_results: print(",".join(map(str, r)), file=fp) if __name__ == "__main__": # Parallel(n_jobs=36)(delayed(main)() for _ in range(20)) main()
python
# Copyright (c) Ye Liu. All rights reserved. from .dynamic_bce import DynamicBCELoss from .focal import (FocalLoss, FocalLossStar, GaussianFocalLoss, focal_loss, focal_loss_star, gaussian_focal_loss) from .ghm import GHMCLoss from .lasso import (BalancedL1Loss, L1Loss, SmoothL1Loss, balanced_l1_loss, l1_loss, smooth_l1_loss) from .utils import weighted_loss __all__ = [ 'DynamicBCELoss', 'FocalLoss', 'FocalLossStar', 'GaussianFocalLoss', 'focal_loss', 'focal_loss_star', 'gaussian_focal_loss', 'GHMCLoss', 'BalancedL1Loss', 'L1Loss', 'SmoothL1Loss', 'balanced_l1_loss', 'l1_loss', 'smooth_l1_loss', 'weighted_loss' ]
python
import pandas as pd t1 = pd.read_csv("lgb_pyst.csv") t2 = pd.read_csv("lgb_pyst_Keras_4_0.967189916545.csv") t2['click'] = t2['click']*0.8 +t1['click']*0.2 t2.to_csv('avg_lgb_pyst_Keras_4_2_8.csv', index=False)
python
# Sum of Polygon Angles print("Given an n-sided regular polygon n, return the total sum of internal angles (in degrees).") n_sided = int(input("Enter your n-sided polygon : ")) angles = 2(n_sided)−4×90(n_sided) print(angles)
python
#Copyright ReportLab Europe Ltd. 2000-2008 #this test and associates functionality kinds donated by Ian Sparks. #see license.txt for license details """ Tests for internal links and destinations """ __version__='''$Id: test_pdfgen_links.py 3288 2008-09-15 11:03:17Z rgbecker $''' from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, outputfile, printLocation setOutDir(__name__) # # Fit tests # # Modification History # ==================== # # 11-Mar-2003 Ian Sparks # * Initial version. # # from reportlab.pdfgen import canvas from reportlab.lib.units import inch from reportlab.lib.pagesizes import letter from reportlab.lib import colors import unittest def markPage(c,height=letter[1],width=letter[0]): height = height / inch width = width / inch for y in range(int(height)): for x in range(int(width)): c.drawString(x*inch,y*inch,"x=%d y=%d" % (x,y) ) c.line(x*inch,0,x*inch,height*inch) c.line(0,y*inch,width*inch,y*inch) fn = outputfile("test_pdfgen_links.pdf") class LinkTestCase(unittest.TestCase): "Test classes." def test1(self): c = canvas.Canvas(fn,pagesize=letter) #Page 1 c.setFont("Courier", 10) markPage(c) c.bookmarkPage("P1") c.addOutlineEntry("Page 1","P1") #Note : XYZ Left is ignored because at this zoom the whole page fits the screen c.bookmarkPage("P1_XYZ",fit="XYZ",top=7*inch,left=3*inch,zoom=0.5) c.addOutlineEntry("Page 1 XYZ #1 (top=7,left=3,zoom=0.5)","P1_XYZ",level=1) c.bookmarkPage("P1_XYZ2",fit="XYZ",top=7*inch,left=3*inch,zoom=5) c.addOutlineEntry("Page 1 XYZ #2 (top=7,left=3,zoom=5)","P1_XYZ2",level=1) c.bookmarkPage("P1_FIT",fit="Fit") c.addOutlineEntry("Page 1 Fit","P1_FIT",level=1) c.bookmarkPage("P1_FITH",fit="FitH",top=2*inch) c.addOutlineEntry("Page 1 FitH (top = 2 inch)","P1_FITH",level=1) c.bookmarkPage("P1_FITV",fit="FitV",left=3*inch) c.addOutlineEntry("Page 1 FitV (left = 3 inch)","P1_FITV",level=1) c.bookmarkPage("P1_FITR",fit="FitR",left=1*inch,bottom=2*inch,right=5*inch,top=6*inch) c.addOutlineEntry("Page 1 FitR (left=1,bottom=2,right=5,top=6)","P1_FITR",level=1) c.bookmarkPage("P1_FORWARD") c.addOutlineEntry("Forward References","P1_FORWARD",level=2) c.addOutlineEntry("Page 3 XYZ (top=7,left=3,zoom=0)","P3_XYZ",level=3) #Create link to FitR on page 3 c.saveState() c.setFont("Courier", 14) c.setFillColor(colors.blue) c.drawString(inch+20,inch+20,"Click to jump to the meaning of life") c.linkAbsolute("","MOL",(inch+10,inch+10,6*inch,2*inch)) c.restoreState() #Create linkAbsolute to page 2 c.saveState() c.setFont("Courier", 14) c.setFillColor(colors.green) c.drawString(4*inch,4*inch,"Jump to 2.5 inch position on page 2") c.linkAbsolute("","HYPER_1",(3.75*inch,3.75*inch,8.25*inch,4.25*inch)) c.restoreState() c.showPage() #Page 2 c.setFont("Helvetica", 10) markPage(c) c.bookmarkPage("P2") c.addOutlineEntry("Page 2","P2") #Note : This time left will be at 3*inch because the zoom makes the page to big to fit c.bookmarkPage("P2_XYZ",fit="XYZ",top=7*inch,left=3*inch,zoom=2) c.addOutlineEntry("Page 2 XYZ (top=7,left=3,zoom=2.0)","P2_XYZ",level=1) c.bookmarkPage("P2_FIT",fit="Fit") c.addOutlineEntry("Page 2 Fit","P2_FIT",level=1) c.bookmarkPage("P2_FITH",fit="FitH",top=2*inch) c.addOutlineEntry("Page 2 FitH (top = 2 inch)","P2_FITH",level=1) c.bookmarkPage("P2_FITV",fit="FitV",left=10*inch) c.addOutlineEntry("Page 2 FitV (left = 10 inch)","P2_FITV",level=1) c.bookmarkPage("P2_FITR",fit="FitR",left=1*inch,bottom=2*inch,right=5*inch,top=6*inch) c.addOutlineEntry("Page 2 FitR (left=1,bottom=2,right=5,top=6)","P2_FITR",level=1) c.bookmarkPage("P2_FORWARD") c.addOutlineEntry("Forward References","P2_FORWARD",level=2) c.addOutlineEntry("Page 3 XYZ (top=7,left=3,zoom=0)","P3_XYZ",level=3) c.bookmarkPage("P2_BACKWARD") c.addOutlineEntry("Backward References","P2_BACKWARD",level=2) c.addOutlineEntry("Page 1 Fit","P1_FIT",level=3) c.addOutlineEntry("Page 1 FitR (left=1,bottom=2,right=5,top=6)","P1_FITR",level=3) #Horizontal absolute test from page 1. Note that because of the page size used on page 3 all this will do #is put the view centered on the bookmark. If you want to see it "up close and personal" change page3 to be #the same page size as the other pages. c.saveState() c.setFont("Courier", 14) c.setFillColor(colors.green) c.drawString(2.5*inch,2.5*inch,"This line is hyperlinked from page 1") # c.bookmarkHorizontalAbsolute("HYPER_1",3*inch) #slightly higher than the text otherwise text is of screen above. c.bookmarkPage("HYPER_1",fit="XYZ",top=2.5*inch,bottom=2*inch) c.restoreState() # c.showPage() #Page 3 c.setFont("Times-Roman", 10) #Turn the page on its size and make it 2* the normal "width" in order to have something to test FitV against. c.setPageSize((2*letter[1],letter[0])) markPage(c,height=letter[0],width=2*letter[1]) c.bookmarkPage("P3") c.addOutlineEntry("Page 3 (Double-wide landscape page)","P3") #Note : XYZ with no zoom (set it to something first c.bookmarkPage("P3_XYZ",fit="XYZ",top=7*inch,left=3*inch,zoom=0) c.addOutlineEntry("Page 3 XYZ (top=7,left=3,zoom=0)","P3_XYZ",level=1) #FitV works here because the page is so wide it can"t all fit on the page c.bookmarkPage("P3_FITV",fit="FitV",left=10*inch) c.addOutlineEntry("Page 3 FitV (left = 10 inch)","P3_FITV",level=1) c.bookmarkPage("P3_BACKWARD") c.addOutlineEntry("Backward References","P3_BACKWARD",level=2) c.addOutlineEntry("Page 1 XYZ #1 (top=7,left=3,zoom=0.5)","P1_XYZ",level=3) c.addOutlineEntry("Page 1 XYZ #2 (top=7,left=3,zoom=5)","P1_XYZ2",level=3) c.addOutlineEntry("Page 2 FitV (left = 10 inch)","P2_FITV",level=3) #Add link from page 1 c.saveState() c.setFont("Courier", 40) c.setFillColor(colors.green) c.drawString(5*inch,6*inch,"42") c.bookmarkPage("MOL",fit="FitR",left=4*inch,top=7*inch,bottom=4*inch,right=6*inch) c.showOutline() c.save() def makeSuite(): return makeSuiteForClasses(LinkTestCase) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) print "wrote", fn printLocation()
python
import os from setuptools import setup def pkg_dir(path): return os.path.join(os.path.dirname(__file__), path) with open(pkg_dir('VERSION'), 'r') as f: version = f.read().strip() with open(pkg_dir('README.md'), 'r') as f: readme = f.read() setup( name='elasticsearch-collectd-plugin', version=version, install_requires=[], py_modules=['elasticsearch-collectd'], author='', author_email='[email protected]', maintainer='MOJDS', url='https://github.com/ministryofjustice/elasticsearch-collectd-plugin', description='Collectd plugin to query stats from elasticsearch', long_description=readme, license='LICENSE', keywords=['python', 'ministryofjustice', 'collectd', 'elasticsearch'], test_suite='tests', classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Development Status :: 1 - Alpha', 'Environment :: Plugins', 'Intended Audience :: Developers', 'Natural Language :: English', 'Topic :: Internet', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Monitoring', 'Topic :: System :: Networking :: Monitoring', 'Topic :: System :: Networking :: Time Synchronization'] )
python