content
stringlengths
0
894k
type
stringclasses
2 values
# coding: utf-8 # # Copyright 2019 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for scripts/initial_release_prep.py.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import subprocess import constants from core.tests import test_utils import python_utils from scripts import common from scripts.release_scripts import initial_release_prep class InitialReleasePrepTests(test_utils.GenericTestBase): """Test the methods for intial release preparation.""" def test_get_mail_message_template(self): expected_mail_message_template = ( 'Hi Sean,\n\n' 'You will need to run these jobs on the backup server:\n\n' '[List of jobs formatted as: {{Job Name}} (instructions: ' '{{Instruction doc url}}) (Author: {{Author Name}})]\n' 'The specific instructions for jobs are linked with them. ' 'The general instructions are as follows:\n\n' '1. Login as admin\n' '2. Navigate to the admin panel and then the jobs tab\n' '3. Run the above jobs\n' '4. In case of failure/success, please send the output logs for ' 'the job to me and the job authors: {{Author names}}\n\n' 'Thanks!\n') self.assertEqual( initial_release_prep.get_mail_message_template(), expected_mail_message_template) def test_exception_is_raised_if_release_journal_is_not_created(self): def mock_open_tab(unused_url): pass def mock_ask_user_to_confirm(unused_msg): pass def mock_input(): return 'n' def mock_verify_current_branch_name(unused_branch_name): pass open_tab_swap = self.swap( common, 'open_new_tab_in_browser_if_possible', mock_open_tab) ask_user_swap = self.swap( common, 'ask_user_to_confirm', mock_ask_user_to_confirm) input_swap = self.swap(python_utils, 'INPUT', mock_input) branch_check_swap = self.swap( common, 'verify_current_branch_name', mock_verify_current_branch_name) with open_tab_swap, ask_user_swap, input_swap, branch_check_swap: with self.assertRaisesRegexp( Exception, 'Please ensure a new doc is created for the ' 'release before starting with the release process.'): initial_release_prep.main() def test_get_extra_jobs_due_to_schema_changes(self): def mock_run_cmd(unused_cmd_tokens): return ( '"diff --git a/feconf.py b/feconf.py\n' '--- a/feconf.py\n+++ b/feconf.py\n' '@@ -36,6 +36,10 @@ POST_COMMIT_STATUS_PRIVATE = \'private\'\n' ' # Whether to unconditionally log info messages.\n' ' DEBUG = False\n \n' '+# The path for generating release_summary.md ' 'file for the current release.\n' '-CURRENT_MISCONCEPTIONS_SCHEMA_VERSION = 2\n' '+CURRENT_MISCONCEPTIONS_SCHEMA_VERSION = 1\n') run_cmd_swap = self.swap(common, 'run_cmd', mock_run_cmd) with run_cmd_swap: self.assertEqual( initial_release_prep.get_extra_jobs_due_to_schema_changes( 'upstream', '1.2.3'), ['SkillMigrationOneOffJob']) def test_did_supported_audio_languages_change_with_change_in_languages( self): all_cmd_tokens = [] mock_constants = { 'SUPPORTED_AUDIO_LANGUAGES': [{ 'id': 'en', 'description': 'English', 'relatedLanguages': ['en']}]} def mock_run_cmd(cmd_tokens): mock_constants['SUPPORTED_AUDIO_LANGUAGES'].append({ 'id': 'ak', 'description': 'Akan', 'relatedLanguages': ['ak'] }) all_cmd_tokens.append(cmd_tokens) run_cmd_swap = self.swap(common, 'run_cmd', mock_run_cmd) constants_swap = self.swap(constants, 'constants', mock_constants) with run_cmd_swap, constants_swap: self.assertTrue( initial_release_prep.did_supported_audio_languages_change( 'upstream', '1.2.3')) self.assertEqual( all_cmd_tokens, [ [ 'git', 'checkout', 'upstream/release-1.2.3', '--', 'assets/constants.ts'], ['git', 'reset', 'assets/constants.ts'], ['git', 'checkout', '--', 'assets/constants.ts']]) def test_did_supported_audio_languages_change_without_change_in_languages( self): all_cmd_tokens = [] mock_constants = { 'SUPPORTED_AUDIO_LANGUAGES': [{ 'id': 'en', 'description': 'English', 'relatedLanguages': ['en']}]} def mock_run_cmd(cmd_tokens): all_cmd_tokens.append(cmd_tokens) run_cmd_swap = self.swap(common, 'run_cmd', mock_run_cmd) constants_swap = self.swap(constants, 'constants', mock_constants) with run_cmd_swap, constants_swap: self.assertFalse( initial_release_prep.did_supported_audio_languages_change( 'upstream', '1.2.3')) self.assertEqual( all_cmd_tokens, [ [ 'git', 'checkout', 'upstream/release-1.2.3', '--', 'assets/constants.ts'], ['git', 'reset', 'assets/constants.ts'], ['git', 'checkout', '--', 'assets/constants.ts']]) def test_cut_release_branch_with_correct_version(self): check_function_calls = { 'open_new_tab_in_browser_if_possible_is_called': False, 'check_call_is_called': False } expected_check_function_calls = { 'open_new_tab_in_browser_if_possible_is_called': True, 'check_call_is_called': True } def mock_open_tab(unused_url): check_function_calls[ 'open_new_tab_in_browser_if_possible_is_called'] = True def mock_check_call(unused_cmd_tokens): check_function_calls['check_call_is_called'] = True def mock_input(): return '1.2.3' open_tab_swap = self.swap( common, 'open_new_tab_in_browser_if_possible', mock_open_tab) check_call_swap = self.swap( subprocess, 'check_call', mock_check_call) input_swap = self.swap( python_utils, 'INPUT', mock_input) with open_tab_swap, check_call_swap, input_swap: initial_release_prep.cut_release_branch() self.assertEqual(check_function_calls, expected_check_function_calls) def test_cut_release_branch_with_incorrect_version(self): check_function_calls = { 'open_new_tab_in_browser_if_possible_is_called': False, 'check_call_is_called': False } expected_check_function_calls = { 'open_new_tab_in_browser_if_possible_is_called': True, 'check_call_is_called': False } def mock_open_tab(unused_url): check_function_calls[ 'open_new_tab_in_browser_if_possible_is_called'] = True def mock_check_call(unused_cmd_tokens): check_function_calls['check_call_is_called'] = True def mock_input(): return 'invalid' open_tab_swap = self.swap( common, 'open_new_tab_in_browser_if_possible', mock_open_tab) check_call_swap = self.swap( subprocess, 'check_call', mock_check_call) input_swap = self.swap( python_utils, 'INPUT', mock_input) with open_tab_swap, check_call_swap, input_swap: with self.assertRaises(AssertionError): initial_release_prep.cut_release_branch() self.assertEqual(check_function_calls, expected_check_function_calls) def test_function_calls(self): check_function_calls = { 'open_new_tab_in_browser_if_possible_is_called': False, 'ask_user_to_confirm_is_called': False, 'get_mail_message_template_is_called': False, 'get_extra_jobs_due_to_schema_changes_is_called': False, 'did_supported_audio_languages_change_is_called': False, 'get_remote_alias_is_called': False, 'verify_current_branch_name_is_called': False, 'cut_release_branch_is_called': False } expected_check_function_calls = { 'open_new_tab_in_browser_if_possible_is_called': True, 'ask_user_to_confirm_is_called': True, 'get_mail_message_template_is_called': True, 'get_extra_jobs_due_to_schema_changes_is_called': True, 'did_supported_audio_languages_change_is_called': True, 'get_remote_alias_is_called': True, 'verify_current_branch_name_is_called': True, 'cut_release_branch_is_called': True } def mock_open_tab(unused_url): check_function_calls[ 'open_new_tab_in_browser_if_possible_is_called'] = True def mock_ask_user_to_confirm(unused_msg): check_function_calls['ask_user_to_confirm_is_called'] = True print_arr = [] def mock_input(): if print_arr[-1] == 'Enter version of previous release.': return '1.2.3' return 'y' def mock_print(msg): print_arr.append(msg) def mock_get_mail_message_template(): check_function_calls['get_mail_message_template_is_called'] = True return 'Mail message for testing.' def mock_get_extra_jobs_due_to_schema_changes( unused_remote_alias, unused_previous_release_version): check_function_calls[ 'get_extra_jobs_due_to_schema_changes_is_called'] = True return [] def mock_did_supported_audio_languages_change( unused_remote_alias, unused_previous_release_version): check_function_calls[ 'did_supported_audio_languages_change_is_called'] = True return True def mock_get_remote_alias(unused_remote_url): check_function_calls['get_remote_alias_is_called'] = True def mock_verify_current_branch_name(unused_branch_name): check_function_calls['verify_current_branch_name_is_called'] = True def mock_cut_release_branch(): check_function_calls['cut_release_branch_is_called'] = True open_tab_swap = self.swap( common, 'open_new_tab_in_browser_if_possible', mock_open_tab) ask_user_swap = self.swap( common, 'ask_user_to_confirm', mock_ask_user_to_confirm) input_swap = self.swap(python_utils, 'INPUT', mock_input) print_swap = self.swap(python_utils, 'PRINT', mock_print) mail_msg_swap = self.swap( initial_release_prep, 'get_mail_message_template', mock_get_mail_message_template) get_extra_jobs_swap = self.swap( initial_release_prep, 'get_extra_jobs_due_to_schema_changes', mock_get_extra_jobs_due_to_schema_changes) check_changes_swap = self.swap( initial_release_prep, 'did_supported_audio_languages_change', mock_did_supported_audio_languages_change) get_alias_swap = self.swap( common, 'get_remote_alias', mock_get_remote_alias) branch_check_swap = self.swap( common, 'verify_current_branch_name', mock_verify_current_branch_name) cut_branch_swap = self.swap( initial_release_prep, 'cut_release_branch', mock_cut_release_branch) with open_tab_swap, ask_user_swap, input_swap, print_swap: with mail_msg_swap, get_alias_swap, check_changes_swap: with get_extra_jobs_swap, branch_check_swap, cut_branch_swap: initial_release_prep.main() self.assertEqual(check_function_calls, expected_check_function_calls)
python
from random import SystemRandom import pytest from cacheout import LFUCache parametrize = pytest.mark.parametrize random = SystemRandom() @pytest.fixture def cache(): _cache = LFUCache(maxsize=5) return _cache def assert_keys_evicted_in_order(cache, keys): """Assert that cache keys are evicted in the same order as `keys`.""" keys = keys.copy() for n in range(cache.maxsize, cache.maxsize * 2): cache.set(n, n) assert cache.full() assert keys.pop(0) not in cache for key in keys: assert key in cache def test_lfu_eviction(cache): """Test that LFUCache evicts least frequently used set entries first.""" key_counts = [("a", 4), ("b", 3), ("c", 5), ("d", 1), ("e", 2)] for key, count in key_counts: cache.set(key, key) for _ in range(count): cache.get(key) sorted_key_counts = sorted(key_counts, key=lambda kc: kc[1]) eviction_order = [kc[0] for kc in sorted_key_counts] max_access_count = max([kc[1] for kc in sorted_key_counts]) for n in range(len(key_counts)): cache.set(n, n) for _ in range(max_access_count + 1): cache.get(n) assert cache.full() assert eviction_order[n] not in cache for key in eviction_order[(n + 1) :]: assert key in cache def test_lfu_get(cache): """Test that LFUCache.get() returns cached value.""" for key, value in cache.items(): assert cache.get(key) == value def test_lfu_clear(cache): """Test that LFUCache.clear() resets access counts.""" cache.maxsize = 2 cache.set(1, 1) cache.set(2, 2) for _ in range(5): cache.get(1) cache.set(3, 3) assert 2 not in cache cache.clear() assert len(cache) == 0 cache.set(1, 1) cache.set(2, 2) cache.get(2) cache.set(3, 3) assert 1 not in cache
python
pessoaslist = [] dicionario = {} pessoastotal = 0 soma = media = 0 mulheres = [] acimamedia = [] while True: dicionario['Nome'] = str(input("Nome: ")) dicionario['Sexo'] = str(input("Sexo: [M/F] ")) dicionario['Idade'] = int(input("Idade: ")) resp = str(input("Continuar?: [S/N]")) pessoaslist.append(dicionario.copy()) pessoastotal += 1 dicionario.clear() if resp == "N": break for i, v in enumerate(pessoaslist): soma += pessoaslist[i]['Idade'] media = soma / pessoastotal if v['Sexo'] == "F": mulheres.append(v['Nome']) print(f'- O grupo tem {pessoastotal} pessoas. \n- A média de idade é de {media:.2f} anos. \n- As mulheres cadastradas foram {mulheres}') for v in pessoaslist: if v['Idade'] > media: acimamedia.append(v) print(f"- Lista das pessoas que estão acima da média: \n{acimamedia}")
python
from ..utils import Object class MessageSchedulingStateSendAtDate(Object): """ The message will be sent at the specified date Attributes: ID (:obj:`str`): ``MessageSchedulingStateSendAtDate`` Args: send_date (:obj:`int`): Date the message will be sentThe date must be within 367 days in the future Returns: MessageSchedulingState Raises: :class:`telegram.Error` """ ID = "messageSchedulingStateSendAtDate" def __init__(self, send_date, **kwargs): self.send_date = send_date # int @staticmethod def read(q: dict, *args) -> "MessageSchedulingStateSendAtDate": send_date = q.get('send_date') return MessageSchedulingStateSendAtDate(send_date)
python
'''Desarrollar un programa que cargue los datos de un triángulo. Implementar una clase con los métodos para inicializar los atributos, imprimir el valor del lado con un tamaño mayor y el tipo de triángulo que es (equilátero, isósceles o escaleno).''' import os class Triangulo(): def __init__(self, lado1, lado2, lado3): self.lado1 = int(lado1) self.lado2 = int(lado2) self.lado3 = int(lado3) def es_triangulo(self): if (self.lado1 + self.lado2) > self.lado3 and (self.lado1 + self.lado3) > \ self.lado2 and (self.lado2 + self.lado3) > self.lado1: return True else: return False def que_soy(self): if self.lado1 == self.lado2 == self.lado3: return "Equilatero" elif self.lado1 != self.lado2 != self.lado3 and self.lado1 != self.lado3: return "Escaleno" else: return "Isosceles" def mayor_lado(self): if self.que_soy() != "Equilatero": return str(max([self.lado1, self.lado2, self.lado3])) else: return "\tTodos los lados son iguales" if __name__ == "__main__": os.system("cls") mensaje = "" lados = dict() print("\t*****************************************") print("\tVamos a cargar 3 lados de un Triangulo\n") print("\t*****************************************") while True: print(mensaje) lista_lados = input("\n\tIngrese los tres lados separados por comas:").split(",") if len(lista_lados) == 3: lado1, lado2, lado3 = lista_lados else: mensaje = '''\tERROR! Se ingresaron valores incorrectos! ingrese nuevamente!''' continue if lado1 and lado2 and lado3: lado1, lado2, lado3 = [lado.strip() for lado in [lado1,lado2,lado3]] if (lado1 + lado2 + lado3).isdigit(): lados[lado1] = "lado1" lados[lado2] = "lado2" lados[lado3] = "lado3" un_triangulo = Triangulo(lado1, lado2, lado3) if un_triangulo.es_triangulo(): if un_triangulo.que_soy() != "Equilatero": print(f"\tEl lado mas grande es: {lados[un_triangulo.mayor_lado()]}\n") else: print(un_triangulo.mayor_lado()) print(f"\tSoy {type(un_triangulo).__name__} {un_triangulo.que_soy()}") else: mensaje = '''\tERROR! los valores ingresados no corresponden a un triangulo La suma de dos lados debe ser mayor al tercer lado!, Vuelva a cargar!''' continue else: mensaje = '''\tERROR Debe ingresar solo numeros! Vuelva a cargar!''' continue else: mensaje ='''\tERROR! Debe ingresar los tres valores separados por comas! Vuelva a cargar! Ej: valor1, valor2, valor3''' continue opcion = input("\tContinua Cargando? (Enter = s o N = Sale)") if opcion.lower() == "n": break print("\n\t*********************") print("\tGracias! Hasta Pronto") print("\t*********************")
python
import ldap import pandas import datetime.datetime from ldap_paged_search import LdapPagedSearch host = 'ldaps://example.com:636' username = 'domain\\username' password = 'password' baseDN = 'DC=example,DC=com' filter = "(&(objectCategory=computer))" #attributes = ['dn'] attributes = ['*'] #ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER) l = LdapPagedSearch(host, username, password, maxPages=0, pageSize=1000) results = l.search(baseDN, filter, attributes = attributes) computers = [] for computer in results: dn = computer[0] try:operatingSystem = computer[1]['operatingSystem'][0] except: operatingSystem = False try: operatingSystemServicePack = computer[1]['operatingSystemServicePack'][0] except: operatingSystemServicePack = False hostname = computer[1]['cn'][0] try: fqdn = computer[1]['dNSHostName'][0] except: fqdn = False whenCreated = computer[1]['whenCreated'][0] try: lastLogonTimestamp = datetime.datetime.utcfromtimestamp((int(computer[1]['lastLogonTimestamp'][0]) - 116444736000000000) / 10000000) except: lastLogonTimestamp = False try: description = computer[1]['description'][0] except: description = False GUID = computer[1]['objectGUID'][0] computers.append((dn,hostname,fqdn,operatingSystem,operatingSystemServicePack,whenCreated,lastLogonTimestamp,description,GUID)) comp = pandas.DataFrame(computers) comp.columns = ['dn','hostname','fqdn','operatingSystem','operatingSystemServicePack','whenCreated','lastLogonTimestamp','description','GUID'] windows = comp[comp['operatingSystem'] != "Mac OS X"]
python
"""Custom pandas accessors.""" import numpy as np import plotly.graph_objects as go from vectorbt import defaults from vectorbt.root_accessors import register_dataframe_accessor from vectorbt.utils import checks from vectorbt.utils.widgets import CustomFigureWidget from vectorbt.generic.accessors import Generic_DFAccessor @register_dataframe_accessor('ohlcv') class OHLCV_DFAccessor(Generic_DFAccessor): # pragma: no cover """Accessor on top of OHLCV data. For DataFrames only. Accessible through `pd.DataFrame.vbt.ohlcv`.""" def __init__(self, obj, column_names=None, freq=None): if not checks.is_pandas(obj): # parent accessor obj = obj._obj self._column_names = column_names Generic_DFAccessor.__init__(self, obj, freq=freq) def plot(self, display_volume=True, candlestick_kwargs={}, bar_kwargs={}, fig=None, **layout_kwargs): """Plot OHLCV data. Args: display_volume (bool): If `True`, displays volume as bar chart. candlestick_kwargs (dict): Keyword arguments passed to `plotly.graph_objects.Candlestick`. bar_kwargs (dict): Keyword arguments passed to `plotly.graph_objects.Bar`. fig (plotly.graph_objects.Figure): Figure to add traces to. **layout_kwargs: Keyword arguments for layout. Example: ```py import vectorbt as vbt import yfinance as yf yf.Ticker("BTC-USD").history(period="max").vbt.ohlcv.plot() ``` ![](/vectorbt/docs/img/ohlcv.png)""" column_names = defaults.ohlcv['column_names'] if self._column_names is None else self._column_names open = self._obj[column_names['open']] high = self._obj[column_names['high']] low = self._obj[column_names['low']] close = self._obj[column_names['close']] # Set up figure if fig is None: fig = CustomFigureWidget() candlestick = go.Candlestick( x=self.index, open=open, high=high, low=low, close=close, name='OHLC', yaxis="y2", xaxis="x" ) candlestick.update(**candlestick_kwargs) fig.add_trace(candlestick) if display_volume: volume = self._obj[column_names['volume']] marker_colors = np.empty(volume.shape, dtype=np.object) marker_colors[(close.values - open.values) > 0] = 'green' marker_colors[(close.values - open.values) == 0] = 'lightgrey' marker_colors[(close.values - open.values) < 0] = 'red' bar = go.Bar( x=self.index, y=volume, marker_color=marker_colors, marker_line_width=0, name='Volume', yaxis="y", xaxis="x" ) bar.update(**bar_kwargs) fig.add_trace(bar) fig.update_layout( yaxis2=dict( domain=[0.33, 1] ), yaxis=dict( domain=[0, 0.33] ) ) fig.update_layout( showlegend=True, xaxis_rangeslider_visible=False, xaxis_showgrid=True, yaxis_showgrid=True ) fig.update_layout(**layout_kwargs) return fig
python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: npu_utilization.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import telemetry_top_pb2 as telemetry__top__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='npu_utilization.proto', package='', syntax='proto2', serialized_options=None, serialized_pb=_b('\n\x15npu_utilization.proto\x1a\x13telemetry_top.proto\"C\n\x1bNetworkProcessorUtilization\x12$\n\x0enpu_util_stats\x18\x01 \x03(\x0b\x32\x0c.Utilization\"q\n\x0bUtilization\x12\x12\n\nidentifier\x18\x01 \x02(\t\x12\x13\n\x0butilization\x18\x02 \x01(\r\x12\x1c\n\x07packets\x18\x03 \x03(\x0b\x32\x0b.PacketLoad\x12\x1b\n\x06memory\x18\x04 \x03(\x0b\x32\x0b.MemoryLoad\"\xba\x01\n\nMemoryLoad\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x14\n\x0c\x61verage_util\x18\x02 \x01(\r\x12\x14\n\x0chighest_util\x18\x03 \x01(\r\x12\x13\n\x0blowest_util\x18\x04 \x01(\r\x12\x1e\n\x16\x61verage_cache_hit_rate\x18\x05 \x01(\r\x12\x1e\n\x16highest_cache_hit_rate\x18\x06 \x01(\r\x12\x1d\n\x15lowest_cache_hit_rate\x18\x07 \x01(\r\"\xa2\x01\n\nPacketLoad\x12\x12\n\nidentifier\x18\x01 \x02(\t\x12\x0c\n\x04rate\x18\x02 \x01(\x04\x12\'\n\x1f\x61verage_instructions_per_packet\x18\x03 \x01(\r\x12&\n\x1e\x61verage_wait_cycles_per_packet\x18\x04 \x01(\r\x12!\n\x19\x61verage_cycles_per_packet\x18\x05 \x01(\r:W\n\x18jnpr_npu_utilization_ext\x12\x17.JuniperNetworksSensors\x18\x0c \x01(\x0b\x32\x1c.NetworkProcessorUtilization') , dependencies=[telemetry__top__pb2.DESCRIPTOR,]) JNPR_NPU_UTILIZATION_EXT_FIELD_NUMBER = 12 jnpr_npu_utilization_ext = _descriptor.FieldDescriptor( name='jnpr_npu_utilization_ext', full_name='jnpr_npu_utilization_ext', index=0, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR) _NETWORKPROCESSORUTILIZATION = _descriptor.Descriptor( name='NetworkProcessorUtilization', full_name='NetworkProcessorUtilization', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='npu_util_stats', full_name='NetworkProcessorUtilization.npu_util_stats', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=46, serialized_end=113, ) _UTILIZATION = _descriptor.Descriptor( name='Utilization', full_name='Utilization', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='identifier', full_name='Utilization.identifier', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='utilization', full_name='Utilization.utilization', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packets', full_name='Utilization.packets', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='memory', full_name='Utilization.memory', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=115, serialized_end=228, ) _MEMORYLOAD = _descriptor.Descriptor( name='MemoryLoad', full_name='MemoryLoad', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='MemoryLoad.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_util', full_name='MemoryLoad.average_util', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='highest_util', full_name='MemoryLoad.highest_util', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lowest_util', full_name='MemoryLoad.lowest_util', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_cache_hit_rate', full_name='MemoryLoad.average_cache_hit_rate', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='highest_cache_hit_rate', full_name='MemoryLoad.highest_cache_hit_rate', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lowest_cache_hit_rate', full_name='MemoryLoad.lowest_cache_hit_rate', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=231, serialized_end=417, ) _PACKETLOAD = _descriptor.Descriptor( name='PacketLoad', full_name='PacketLoad', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='identifier', full_name='PacketLoad.identifier', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rate', full_name='PacketLoad.rate', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_instructions_per_packet', full_name='PacketLoad.average_instructions_per_packet', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_wait_cycles_per_packet', full_name='PacketLoad.average_wait_cycles_per_packet', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_cycles_per_packet', full_name='PacketLoad.average_cycles_per_packet', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=420, serialized_end=582, ) _NETWORKPROCESSORUTILIZATION.fields_by_name['npu_util_stats'].message_type = _UTILIZATION _UTILIZATION.fields_by_name['packets'].message_type = _PACKETLOAD _UTILIZATION.fields_by_name['memory'].message_type = _MEMORYLOAD DESCRIPTOR.message_types_by_name['NetworkProcessorUtilization'] = _NETWORKPROCESSORUTILIZATION DESCRIPTOR.message_types_by_name['Utilization'] = _UTILIZATION DESCRIPTOR.message_types_by_name['MemoryLoad'] = _MEMORYLOAD DESCRIPTOR.message_types_by_name['PacketLoad'] = _PACKETLOAD DESCRIPTOR.extensions_by_name['jnpr_npu_utilization_ext'] = jnpr_npu_utilization_ext _sym_db.RegisterFileDescriptor(DESCRIPTOR) NetworkProcessorUtilization = _reflection.GeneratedProtocolMessageType('NetworkProcessorUtilization', (_message.Message,), { 'DESCRIPTOR' : _NETWORKPROCESSORUTILIZATION, '__module__' : 'npu_utilization_pb2' # @@protoc_insertion_point(class_scope:NetworkProcessorUtilization) }) _sym_db.RegisterMessage(NetworkProcessorUtilization) Utilization = _reflection.GeneratedProtocolMessageType('Utilization', (_message.Message,), { 'DESCRIPTOR' : _UTILIZATION, '__module__' : 'npu_utilization_pb2' # @@protoc_insertion_point(class_scope:Utilization) }) _sym_db.RegisterMessage(Utilization) MemoryLoad = _reflection.GeneratedProtocolMessageType('MemoryLoad', (_message.Message,), { 'DESCRIPTOR' : _MEMORYLOAD, '__module__' : 'npu_utilization_pb2' # @@protoc_insertion_point(class_scope:MemoryLoad) }) _sym_db.RegisterMessage(MemoryLoad) PacketLoad = _reflection.GeneratedProtocolMessageType('PacketLoad', (_message.Message,), { 'DESCRIPTOR' : _PACKETLOAD, '__module__' : 'npu_utilization_pb2' # @@protoc_insertion_point(class_scope:PacketLoad) }) _sym_db.RegisterMessage(PacketLoad) jnpr_npu_utilization_ext.message_type = _NETWORKPROCESSORUTILIZATION telemetry__top__pb2.JuniperNetworksSensors.RegisterExtension(jnpr_npu_utilization_ext) # @@protoc_insertion_point(module_scope)
python
#!/usr/bin/env python import fire from lib.dsv.commands.dsv_command import DSVCommand if __name__ == '__main__': fire.Fire(DSVCommand)
python
import predpy from predpy.predpy import * #from predpy.predpy import predpy from predpy.predpy import cleandata from predpy.predpy import galgraphs
python
# # Copyright 2020 Logical Clocks AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import humps import json from hsfs import util class FeatureGroupCommit: def __init__( self, commitid=None, commit_date_string=None, rows_inserted=None, rows_updated=None, rows_deleted=None, committime=None, type=None, items=None, count=None, href=None, ): self._commitid = commitid self._commit_date_string = commit_date_string self._rows_inserted = rows_inserted self._rows_updated = rows_updated self._rows_deleted = rows_deleted @classmethod def from_response_json(cls, json_dict): json_decamelized = humps.decamelize(json_dict) if json_decamelized["count"] >= 1: return [cls(**commit_dto) for commit_dto in json_decamelized["items"]] return cls(**json_decamelized) def update_from_response_json(self, json_dict): json_decamelized = humps.decamelize(json_dict) _ = json_decamelized.pop("type") _ = json_decamelized.pop("href") _ = json_decamelized.pop("committime") self.__init__(**json_decamelized) return self def json(self): return json.dumps(self, cls=util.FeatureStoreEncoder) def to_dict(self): return { "commitID": self._commitid, "commitDateString": self._commit_date_string, "rowsInserted": self._rows_inserted, "rowsUpdated": self._rows_updated, "rowsDeleted": self._rows_deleted, } @property def commitid(self): return self._commitid @property def commit_date_string(self): return self._commit_date_string @property def rows_inserted(self): return self._rows_inserted @property def rows_updated(self): return self._rows_updated @property def rows_deleted(self): return self._rows_deleted @commitid.setter def commitid(self, commitid): self._commitid = commitid @commit_date_string.setter def commit_date_string(self, commit_date_string): self._commit_date_string = commit_date_string @rows_inserted.setter def rows_inserted(self, rows_inserted): self._rows_inserted = rows_inserted @rows_updated.setter def rows_updated(self, rows_updated): self._rows_updated = rows_updated @rows_deleted.setter def rows_deleted(self, rows_deleted): self._rows_deleted = rows_deleted
python
from rest_framework import serializers from rest_framework.reverse import reverse from onadata.apps.fsforms.models import FieldSightXF from onadata.apps.logger.models import XForm from onadata.libs.utils.decorators import check_obj class XFormListSerializer(serializers.ModelSerializer): class Meta: model = XForm fields = ('id', 'title')
python
import numpy as np from torch import nn, tensor import torch from torch.autograd import Variable class time_loss(nn.Module): def __init__(self, margin=0.1, dist_type = 'l2'): super(time_loss, self).__init__() self.margin = margin self.dist_type = dist_type if dist_type == 'l2': self.dist = nn.MSELoss(reduction='sum') if dist_type == 'cos': self.dist = nn.CosineSimilarity(dim=0) if dist_type == 'l1': self.dist = nn.L1Loss() def forward(self, feat, label1): feat_size = feat.size()[1] feat_num = feat.size()[0] label_num = len(label1.unique()) feat = feat.chunk(label_num, 0) #loss = Variable(.cuda()) for i in range(label_num): center1 = torch.mean(feat[i], dim=0) if self.dist_type == 'l2' or self.dist_type == 'l1': if i == 0: dist = max(0, abs(self.dist(center1, center1))) else: dist += max(0, abs(self.dist(center1, center1))) elif self.dist_type == 'cos': if i == 0: dist = max(0, 1-self.dist(center1, center1)) else: dist += max(0, 1-self.dist(center1, center1)) return dist
python
from types import FunctionType import pygame from pygame.locals import * from pygame.font import Font from pygameMenuPro.event import Event COLOR_BLACK = Color(0, 0, 0) COLOR_WHITE = Color(255, 255, 255) class InputManager: def __init__(self): self.last_checked_input = [] self.last_mouse_position:list[tuple[int,int]] = [] self.mouse_clicked = (False,False,False) self.mouse_wheel = (0,0) def check_input(self) -> int: for event in pygame.event.get(): if(event.type == pygame.QUIT): pygame.quit() exit(0) elif(event.type == KEYDOWN): self.last_checked_input.append(event.key) return event.key elif(event.type == MOUSEWHEEL): self.mouse_wheel = (event.x, event.y) self.last_mouse_position.append(pygame.mouse.get_pos()) self.mouse_clicked = pygame.mouse.get_pressed() return 0 def reset(self): self.reset_last_checked() self.reset_last_mouse_position() self.reset_mouse_wheel() def reset_last_checked(self): self.last_checked_input.clear() def reset_last_mouse_position(self): self.last_mouse_position.clear() def reset_mouse_wheel(self): self.mouse_wheel = (0,0) class FontManager: def __init__(self, fonts: dict[str, Font] = {}): pygame.font.init() self._fonts = fonts def add_font(self, font_str: str, font: Font): self._fonts[font_str] = font def get_font(self, font_str: str): return self._fonts.get(font_str, None) def set_default_option(self, font: Font): """ set the default option font """ self.add_font('default_option_font', font) def set_default_highlight(self, font: Font): self.add_font('default_highlight_font', font) def set_default_title(self, font: Font): self.add_font('default_title_font', font) def draw_text(self, text: str, font_str: str, color: Color = Color(255, 255, 255)): font = self._fonts[font_str] lines = text.splitlines() maxline = max(lines, key=len) surface = pygame.Surface((font.size(maxline)[0], font.get_height() * 1.25 * len(lines)), pygame.SRCALPHA, 32) for i, line in enumerate(lines): line_surf = font.render(line, True, color) text_rect = line_surf.get_rect() text_rect.centerx = surface.get_rect().centerx text_rect.top = i * font.get_height() * 1.25 surface.blit(line_surf, text_rect.topleft) surface.convert_alpha() return surface class Option: # static attribute to check the input input = InputManager() # static attribute manage the user fonts font = FontManager() clock = pygame.time.Clock() def __init__(self, text: str, font_str: str = 'default_option_font', color: Color = COLOR_WHITE, event=None): self.add = AddExtention(self) self._event = event if(self._event == None): self._event = Event() self.text = text self._pos = None self._font_str = font_str self._activation_keys: list[int] = [K_RETURN] self.color = color self.rect = None def is_selected(self): """ returns true iff on of the activation keys is in Option.input.last_checked_input """ return len(list(set(Option.input.last_checked_input) & set(self._activation_keys))) > 0 def on_select(self): """ will be called when is_selected is true """ self._event.post_event('on_select', self) def on_active(self): """ will be called when this option is the current active option in the menu """ self._event.post_event('on_active', self) if(self.is_selected()): self.on_select() def on_deactive(self): """ will be called before the next option is being activated """ self._event.post_event('on_deactive', self) def draw(self, surface:pygame.Surface, pos): surf = self.render() self.rect = surface.blit(surf, (self._pos[0] - surf.get_width()//2, self._pos[1])) def render(self): return Option.font.draw_text(self.text, self._font_str, color=self.color) class AddExtention(): def __init__(self, option: Option): self._option = option def option(self): return self._option def highlight(self, font_str='default_highlight_font'): """ Add a Highlight decorator """ self._regular_font_str = self._option._font_str def highlight_me(option: Option): option._font_str = font_str def dont_highlight_me(option: Option): option._font_str = self._regular_font_str self._option.add.active_listener(highlight_me)\ .add.deactive_listener(dont_highlight_me) return self._option def input(self, input): """ add input decorator """ head = self._option.text setattr(self._option, 'input_output', input) self._option.left = K_LEFT self._option.right = K_RIGHT self._option.input_output = input self._option.text = head + ' ' + str(self._option.input_output) def update_text_with_input(option: Option): option.text = head + ' ' + str(self._option.input_output) self._option.add.active_listener(update_text_with_input) return self._option def menu(self, surface: pygame.Surface, title_pos: tuple[int, int], title_font_str: str = 'default_title_font', options: list[Option] = [], background_color=COLOR_BLACK, cursor: pygame.Surface = None): """ convert this option to a menu. The menu title will be same as the option text """ self._option = Menu(self.option(), surface, title_pos, title_font_str, options, background_color, cursor) return self._option def mouse_menu(self, surface: pygame.Surface, title_pos: tuple[int, int], title_font_str: str = 'default_title_font', options: list[Option] = [], background_color=COLOR_BLACK, cursor: pygame.Surface = None): """ convert this option to a mouse menu The menu title will be same as the option text The options of this menu will be activated by mouse hover, and selected by mouse click. """ self._option = MouseMenu(self.option(), surface, title_pos, title_font_str, options, background_color, cursor) return self._option def select_listener(self, func: FunctionType): """ will be called inside on_select() """ self.option()._event.subscribe('on_select', func) return self.option() def active_listener(self, func: FunctionType): """ will be called inside on_active() """ self.option()._event.subscribe('on_active', func) return self.option() def deactive_listener(self, func: FunctionType): """ will be called inside on_deactive() """ self.option()._event.subscribe('on_deactive', func) return self.option() def activation_key(self, key: int): """ add another activation key to this option """ self.option()._activation_keys.append(key) return self.option() class Menu(Option): def __init__(self, option: Option, surface: pygame.Surface, title_pos: tuple[int, int], title_font_str: str = 'default_title_font', options: list[Option] = [], background_color=COLOR_BLACK, cursor: pygame.Surface = None): super().__init__(option.text, option._font_str, option.color, option._event) # private: self._option = option self._surface = surface self._title_pos = title_pos self._options = options self._background_color = background_color # public: self.title_font_str = title_font_str self.run_display = False self.state = 0 self.up = K_UP self.down = K_DOWN self.quit = K_ESCAPE self.cursor = cursor self.cursor_offset = 0 def activate_display_menu(_): Option.input.reset_last_checked() self.display_menu() self.add.select_listener(activate_display_menu) def display_menu(self): """ Run this display. It can be called from another menu and "hide" this menu. Practicaly, this will stop the current menu loop and start this menu loop. """ self.run_display = True while(self.run_display): self._surface.fill(self._background_color) # draw title: title_surf = Option.font.draw_text(self.text, self.title_font_str) self._surface.blit(title_surf, (self._title_pos[0] - title_surf.get_width()//2, self._title_pos[1])) # checking input: k = self.input.check_input() self.update_state(k) if(len(self._options) > 0): # activate selected option: if(self.state >= 0): self._options[self.state].on_active() # draw options: last_height = Option.font.get_font( self.title_font_str).get_height() + self._title_pos[1] for option in self.get_options(): option._pos = (self._title_pos[0], last_height) option.draw(self._surface, option._pos) text_height = option.rect.height last_height = option._pos[1] + text_height # draw cursor: if(self.cursor != None): selected_option = self._options[self.state] option_font_size = Option.font.get_font( selected_option._font_str).size(selected_option.text) self._surface.blit(self.cursor, (selected_option.rect.left + self.cursor_offset, selected_option.rect.top)) # reset input list: Option.input.reset() # refresh: pygame.display.update() Option.clock.tick(60) def update_state(self, k: int): """ This method is being called once in every menu's main loop iteration. You shouldn't modify this unless you know what you do """ if(k > 0): if(k == self.quit): self.run_display = False if(len(self._options) > 0): if(k == self.up): self._options[self.state].on_deactive() self.state -= 1 elif(k == self.down): self._options[self.state].on_deactive() self.state += 1 self.state %= len(self._options) def add_option(self, option: Option, index: int = -1): """ Add an option to this menu. it can be Menu as well... """ if(index == -1): self._options.append(option) else: self._options.insert(index, option) def set_options(self, options: list[Option]): """ Set the options list to this menu. The list can contain other menus. The state of this menu will be reset to 0 """ self.state = 0 self._options = options return self def get_options(self): """ Returns the option list of this menu """ return self._options def __getattr__(self, name:str): return self._option.__getattribute__(name) class MouseMenu(Menu): def __init__(self, option: Option, surface: pygame.Surface, title_pos: tuple[int, int], title_font_str: str = 'default_title_font', options: list[Option] = [], background_color=COLOR_BLACK, cursor: pygame.Surface = None): super().__init__(option, surface, title_pos, title_font_str, options=options, background_color=background_color, cursor=cursor) self.state = -1 def update_state(self, k: int): some_option_active = False for i, option in enumerate(self._options): rect = option.rect if(rect != None): if(len(Option.input.last_mouse_position)>0 and rect.collidepoint(Option.input.last_mouse_position[-1])): if(self.state != i and self.state >= 0): self._options[self.state].on_deactive() some_option_active = True self.state = i if(not some_option_active): if(self.state >= 0): self._options[self.state].on_deactive() self.state = -1 def set_options(self, options: list[Option]): super().set_options(options) def select_with_mouse(option:Option): if(Option.input.mouse_clicked[0]): option.on_select() for option in self._options: option.add.active_listener(select_with_mouse) return self
python
# Define player object class Player: def __init__(self, name, house): self.name = name self.house = house self.hasNumber = False # Method for setting users phonenumbers def setPhonenumber(self, phoneNumber): self.phoneNumber = phoneNumber self.hasNumber = True # 12B LF12B = [ "Phill", "Dave", "Jake", "Pat", "Gabe", "Evan" ] # 1308 WARD1308 = [ "Jason", "Zack", "Jack", "JC" ] # 13C LF13C = [ "Lynnanne", "Tori", "Alyssa", "Ollie" ] # 12A LF12A = [ "Ashley", "Carly", "Lauren", "Alexa", "Gabby", "Lexi", "Steph" ] # Array of all houses which contain people in each house houses = [LF12B, LF13C, LF12A, WARD1308] houseNames = ['Lower Fulton 12B','Lower Fulton 13C', 'Lower Fulton 12A', 'Ward 1308'] # Empty people array to be appended to people = [] index = -1; # Adds each person for each house to the list of people for i in houses: index += 1 for j in range(len(i)): people.append(Player(i[j], houseNames[index])) # people.append(i[j]) for i in people: print(i.name + ' Representing ' + i.house)
python
# =============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import argparse import bench from cuml import LogisticRegression parser = argparse.ArgumentParser(description='cuML logistic ' 'regression benchmark') parser.add_argument('--no-fit-intercept', dest='fit_intercept', action='store_false', default=True, help="Don't fit intercept") parser.add_argument('--solver', default='qn', choices=('qn', 'owl'), help='Solver to use.') parser.add_argument('--linesearch-max-iter', type=int, default=50, help='Maximum iterations per solver outer iteration') parser.add_argument('--maxiter', type=int, default=100, help='Maximum iterations for the iterative solver') parser.add_argument('-C', dest='C', type=float, default=1.0, help='Regularization parameter') parser.add_argument('--tol', type=float, default=1e-10, help='Tolerance for solver. Default is 1e-10.') params = bench.parse_args(parser) # Load generated data X_train, X_test, y_train, y_test = bench.load_data(params) params.n_classes = y_train[y_train.columns[0]].nunique() # Create our classifier object clf = LogisticRegression(penalty='l2', C=params.C, linesearch_max_iter=params.linesearch_max_iter, fit_intercept=params.fit_intercept, verbose=params.verbose, tol=params.tol, max_iter=params.maxiter, solver=params.solver) # Time fit and predict fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params) y_pred = clf.predict(X_train) train_acc = 100 * bench.accuracy_score(y_pred, y_train) predict_time, y_pred = bench.measure_function_time( clf.predict, X_test, params=params) test_acc = 100 * bench.accuracy_score(y_pred, y_test) bench.print_output(library='cuml', algorithm='log_reg', stages=['training', 'prediction'], params=params, functions=['LogReg.fit', 'LogReg.predict'], times=[fit_time, predict_time], metric_type='accuracy[%]', metrics=[train_acc, test_acc], data=[X_train, X_test], alg_instance=clf)
python
from data.station_number_data import StationNumberData from states_machine.state_context import State from states_machine.states.on_which_sum import OnWhichSum class StationNumber(State): def __init__(self): pass def income_handle(self) -> None: # TODO: # print(f"income_handle: StationNumber") def outcome_handle(self) -> None: result = None print(f"outcome_handle: StationNumber") try: self.text_machine.start_transaction() word = self.text_machine.move() if word in (StationNumberData.number_words + StationNumberData.number_nums): if self.text_machine.move() in StationNumberData.main_words: # TODO: Add to state machine info!!! print("*"*10 + " StationNumber " + "*"*10) print(self.text_machine.get_current()) if word.isnumeric(): result = word else: for i in range(0, len(StationNumberData.number_words)): if word == StationNumberData.number_words[i]: result = i + 1 break print("*" * 10 + " StationNumber " + "*" * 10) self.text_machine.commit() else: self.text_machine.rollback() else: self.text_machine.rollback() except: print(f" StationNumber: exception ") self.text_machine.rollback() else: pass finally: if not self.text_machine.has_finished(): self.text_machine.rollback() print(f" StationNumber wants to change the state of the context OnWhichSum.") if result is not None: self.context.add_result(result, 0) self.context.transition_to(OnWhichSum())
python
class Transformer: def transform(self, message): yield from map(self.map, (message,)) def map(self, message): raise NotImplementedError('Transformer is an abstract class.')
python
import socket import struct from struct import * import sys def ethernet_head(raw_data): dest, src, prototype = struct.unpack('! 6s 6s H', raw_data[:14]) dest_mac = get_mac_addr(dest) src_mac = get_mac_addr(src) proto = socket.htons(prototype) data = raw_data[14:] return dest_mac, src_mac, proto, data def get_ip(addr): return '.'.join(map(str, addr)) def main(): s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(3)) while True: raw_data, addr = s.recvfrom(65535) eth = ethernet_head(raw_data) print('\nEthernet Frame:') print('Destination: {}, Source: {}, Protocol: {}'.format(eth[0], eth[1], eth[2])) if eth[2] == 8: ipv4 = ipv4(eth[4]) print('\t - ' + 'IPv4 Packet:') print('\t\t - ' + 'Version: {}, Header Length: {}, TTL:{},'.format(ipv4[1], ipv4[2], ipv4[3])) print('\t\t - ' + 'Protocol: {}, Source: {}, Target:{}'.format(ipv4[4], ipv4[5], ipv4[6])) def tcp_head(raw_data): (src_port, dest_port, sequence, acknowledgment, offset_reserved_flags) = struct.unpack('! H H L L H', raw_data[:14]) offset = (offset_reserved_flags >> 12) * 4 flag_urg = (offset_reserved_flags & 32) >> 5 flag_ack = (offset_reserved_flags & 16) >> 4 flag_psh = (offset_reserved_flags & 8) >> 3 flag_rst = (offset_reserved_flags & 4) >> 2 flag_syn = (offset_reserved_flags & 2) >> 1 flag_fin = offset_reserved_flags & 1 data = raw_data[offset:] return src_port, dest_port, sequence, acknowledgment, flag_urg, flag_ack, flag_psh, flag_rst, flag_syn, flag_fin, data def ipv4_head(raw_data): version_header_length = raw_data[0] version = version_header_length >> 4 header_length = (version_header_length & 15) * 4 ttl, proto, src, target = struct.unpack('! 8x B B 2x 4s 4s', raw_data[:20]) data = raw_data[header_length:] src = get_ip(src) target = get_ip(target) return version, header_length, ttl, proto, src, target, data HOST = socket.gethostbyname(socket.gethostname()) s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP) s.bind((HOST, 0)) s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) while True: print(s.recvfrom(65565)) # # s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
python
import unittest import random import numpy as np import pyquil from cirq import GridQubit, LineQubit, X, Y, Z, PauliSum, PauliString from openfermion import ( QubitOperator, IsingOperator, FermionOperator, get_interaction_operator, get_fermion_operator, jordan_wigner, qubit_operator_sparse, ) from zquantum.core.measurement import ExpectationValues from zquantum.core.utils import RNDSEED, create_object from zquantum.core.interfaces.mock_objects import MockAnsatz from zquantum.core.testing import create_random_qubitop, create_random_isingop from zquantum.core.circuit import build_uniform_param_grid from ._utils import ( generate_random_qubitop, get_qubitop_from_coeffs_and_labels, evaluate_qubit_operator, get_qubitop_from_matrix, reverse_qubit_order, expectation, change_operator_type, evaluate_operator_for_parameter_grid, get_fermion_number_operator, get_diagonal_component, get_polynomial_tensor, qubitop_to_paulisum, ) class TestQubitOperator(unittest.TestCase): def test_build_qubitoperator_from_coeffs_and_labels(self): # Given test_op = QubitOperator(((0, "Y"), (1, "X"), (2, "Z"), (4, "X")), 3.0j) coeffs = [3.0j] labels = [[2, 1, 3, 0, 1]] # When build_op = get_qubitop_from_coeffs_and_labels(coeffs, labels) # Then self.assertEqual(test_op, build_op) def test_qubitop_matrix_converion(self): # Given m = 4 n = 2 ** m TOL = 10 ** -15 random.seed(RNDSEED) A = np.array([[random.uniform(-1, 1) for x in range(n)] for y in range(n)]) # When A_qubitop = get_qubitop_from_matrix(A) A_qubitop_matrix = np.array(qubit_operator_sparse(A_qubitop).todense()) test_matrix = A_qubitop_matrix - A # Then for row in test_matrix: for elem in row: self.assertEqual(abs(elem) < TOL, True) def test_generate_random_qubitop(self): # Given nqubits = 4 nterms = 5 nlocality = 2 max_coeff = 1.5 fixed_coeff = False # When qubit_op = generate_random_qubitop( nqubits, nterms, nlocality, max_coeff, fixed_coeff ) # Then self.assertEqual(len(qubit_op.terms), nterms) for term, coefficient in qubit_op.terms.items(): for i in range(nlocality): self.assertLess(term[i][0], nqubits) self.assertEqual(len(term), nlocality) self.assertLessEqual(np.abs(coefficient), max_coeff) # Given fixed_coeff = True # When qubit_op = generate_random_qubitop( nqubits, nterms, nlocality, max_coeff, fixed_coeff ) # Then self.assertEqual(len(qubit_op.terms), nterms) for term, coefficient in qubit_op.terms.items(): self.assertEqual(np.abs(coefficient), max_coeff) def test_evaluate_qubit_operator(self): # Given qubit_op = QubitOperator("0.5 [] + 0.5 [Z1]") expectation_values = ExpectationValues([0.5, 0.5]) # When value_estimate = evaluate_qubit_operator(qubit_op, expectation_values) # Then self.assertAlmostEqual(value_estimate.value, 0.5) def test_evaluate_operator_for_parameter_grid(self): # Given ansatz = MockAnsatz(4, 2) grid = build_uniform_param_grid(1, 2, 0, np.pi, np.pi / 10) backend = create_object( { "module_name": "zquantum.core.interfaces.mock_objects", "function_name": "MockQuantumSimulator", } ) op = QubitOperator("0.5 [] + 0.5 [Z1]") previous_layer_parameters = [1, 1] # When ( parameter_grid_evaluation, optimal_parameters, ) = evaluate_operator_for_parameter_grid( ansatz, grid, backend, op, previous_layer_params=previous_layer_parameters ) # Then (for brevity, only check first and last evaluations) self.assertIsInstance(parameter_grid_evaluation[0]["value"].value, float) self.assertEqual(parameter_grid_evaluation[0]["parameter1"], 0) self.assertEqual(parameter_grid_evaluation[0]["parameter2"], 0) self.assertIsInstance(parameter_grid_evaluation[99]["value"].value, float) self.assertEqual( parameter_grid_evaluation[99]["parameter1"], np.pi - np.pi / 10 ) self.assertEqual( parameter_grid_evaluation[99]["parameter2"], np.pi - np.pi / 10 ) self.assertEqual(len(optimal_parameters), 4) self.assertEqual(optimal_parameters[0], 1) self.assertEqual(optimal_parameters[1], 1) def test_reverse_qubit_order(self): # Given op1 = QubitOperator("[Z0 Z1]") op2 = QubitOperator("[Z1 Z0]") # When/Then self.assertEqual(op1, reverse_qubit_order(op2)) # Given op1 = QubitOperator("Z0") op2 = QubitOperator("Z1") # When/Then self.assertEqual(op1, reverse_qubit_order(op2, n_qubits=2)) self.assertEqual(op2, reverse_qubit_order(op1, n_qubits=2)) def test_expectation(self): """Check <Z0> and <Z1> for the state |100>""" # Given wf = pyquil.wavefunction.Wavefunction([0, 1, 0, 0, 0, 0, 0, 0]) op1 = QubitOperator("Z0") op2 = QubitOperator("Z1") # When exp_op1 = expectation(op1, wf) exp_op2 = expectation(op2, wf) # Then self.assertAlmostEqual(-1, exp_op1) self.assertAlmostEqual(1, exp_op2) def test_change_operator_type(self): # Given operator1 = QubitOperator("Z0 Z1", 4.5) operator2 = IsingOperator("Z0 Z1", 4.5) operator3 = IsingOperator() operator4 = IsingOperator("Z0", 0.5) + IsingOperator("Z1", 2.5) # When new_operator1 = change_operator_type(operator1, IsingOperator) new_operator2 = change_operator_type(operator2, QubitOperator) new_operator3 = change_operator_type(operator3, QubitOperator) new_operator4 = change_operator_type(operator4, QubitOperator) # Then self.assertEqual(IsingOperator("Z0 Z1", 4.5), new_operator1) self.assertEqual(QubitOperator("Z0 Z1", 4.5), new_operator2) self.assertEqual(QubitOperator(), new_operator3) self.assertEqual( QubitOperator("Z0", 0.5) + QubitOperator("Z1", 2.5), new_operator4 ) def test_get_fermion_number_operator(self): # Given n_qubits = 4 n_particles = None correct_operator = get_interaction_operator( FermionOperator( """ 0.0 [] + 1.0 [0^ 0] + 1.0 [1^ 1] + 1.0 [2^ 2] + 1.0 [3^ 3] """ ) ) # When number_operator = get_fermion_number_operator(n_qubits) # Then self.assertEqual(number_operator, correct_operator) # Given n_qubits = 4 n_particles = 2 correct_operator = get_interaction_operator( FermionOperator( """ -2.0 [] + 1.0 [0^ 0] + 1.0 [1^ 1] + 1.0 [2^ 2] + 1.0 [3^ 3] """ ) ) # When number_operator = get_fermion_number_operator(n_qubits, n_particles) # Then self.assertEqual(number_operator, correct_operator) class TestOtherUtils(unittest.TestCase): def test_get_diagonal_component_polynomial_tensor(self): fermion_op = FermionOperator("0^ 1^ 2^ 0 1 2", 1.0) fermion_op += FermionOperator("0^ 1^ 2^ 0 1 3", 2.0) fermion_op += FermionOperator((), 3.0) polynomial_tensor = get_polynomial_tensor(fermion_op) diagonal_op, remainder_op = get_diagonal_component(polynomial_tensor) self.assertTrue((diagonal_op + remainder_op) == polynomial_tensor) diagonal_qubit_op = jordan_wigner(get_fermion_operator(diagonal_op)) remainder_qubit_op = jordan_wigner(get_fermion_operator(remainder_op)) for term in diagonal_qubit_op.terms: for pauli in term: self.assertTrue(pauli[1] == "Z") for term in remainder_qubit_op.terms: is_diagonal = True for pauli in term: if pauli[1] != "Z": is_diagonal = False break self.assertFalse(is_diagonal) def test_get_diagonal_component_interaction_op(self): fermion_op = FermionOperator("1^ 1", 0.5) fermion_op += FermionOperator("2^ 2", 0.5) fermion_op += FermionOperator("1^ 2^ 0 3", 0.5) diagonal_op, remainder_op = get_diagonal_component( get_interaction_operator(fermion_op) ) self.assertTrue( (diagonal_op + remainder_op) == get_interaction_operator(fermion_op) ) diagonal_qubit_op = jordan_wigner(diagonal_op) remainder_qubit_op = jordan_wigner(remainder_op) for term in diagonal_qubit_op.terms: for pauli in term: self.assertTrue(pauli[1] == "Z") is_diagonal = True for term in remainder_qubit_op.terms: for pauli in term: if pauli[1] != "Z": is_diagonal = False break self.assertFalse(is_diagonal) def test_qubitop_to_paulisum_identity_operator(self): # Given qubit_operator = QubitOperator("", 4) # When paulisum = qubitop_to_paulisum(qubit_operator) # Then self.assertEqual(paulisum.qubits, ()) self.assertEqual(paulisum, PauliSum() + 4) def test_qubitop_to_paulisum_z0z1_operator(self): # Given qubit_operator = QubitOperator("Z0 Z1", -1.5) expected_qubits = (GridQubit(0, 0), GridQubit(1, 0)) expected_paulisum = ( PauliSum() + PauliString(Z.on(expected_qubits[0])) * PauliString(Z.on(expected_qubits[1])) * -1.5 ) # When paulisum = qubitop_to_paulisum(qubit_operator) # Then self.assertEqual(paulisum.qubits, expected_qubits) self.assertEqual(paulisum, expected_paulisum) def test_qubitop_to_paulisum_setting_qubits(self): # Given qubit_operator = QubitOperator("Z0 Z1", -1.5) expected_qubits = (LineQubit(0), LineQubit(5)) expected_paulisum = ( PauliSum() + PauliString(Z.on(expected_qubits[0])) * PauliString(Z.on(expected_qubits[1])) * -1.5 ) # When paulisum = qubitop_to_paulisum(qubit_operator, qubits=expected_qubits) # Then self.assertEqual(paulisum.qubits, expected_qubits) self.assertEqual(paulisum, expected_paulisum) def test_qubitop_to_paulisum_more_terms(self): # Given qubit_operator = ( QubitOperator("Z0 Z1 Z2", -1.5) + QubitOperator("X0", 2.5) + QubitOperator("Y1", 3.5) ) expected_qubits = (LineQubit(0), LineQubit(5), LineQubit(8)) expected_paulisum = ( PauliSum() + ( PauliString(Z.on(expected_qubits[0])) * PauliString(Z.on(expected_qubits[1])) * PauliString(Z.on(expected_qubits[2])) * -1.5 ) + (PauliString(X.on(expected_qubits[0]) * 2.5)) + (PauliString(Y.on(expected_qubits[1]) * 3.5)) ) # When paulisum = qubitop_to_paulisum(qubit_operator, qubits=expected_qubits) # Then self.assertEqual(paulisum.qubits, expected_qubits) self.assertEqual(paulisum, expected_paulisum)
python
"""UseCase for updating a metric entry's properties.""" import logging from argparse import Namespace, ArgumentParser from typing import Final, Optional import jupiter.command.command as command from jupiter.domain.adate import ADate from jupiter.use_cases.metrics.entry.update import MetricEntryUpdateUseCase from jupiter.framework.update_action import UpdateAction from jupiter.framework.base.entity_id import EntityId LOGGER = logging.getLogger(__name__) class MetricEntryUpdate(command.Command): """UseCase for updating a metric entry's properties.""" _command: Final[MetricEntryUpdateUseCase] def __init__(self, the_command: MetricEntryUpdateUseCase) -> None: """Constructor.""" self._command = the_command @staticmethod def name() -> str: """The name of the command.""" return "metric-entry-update" @staticmethod def description() -> str: """The description of the command.""" return "Update a metric entry" def build_parser(self, parser: ArgumentParser) -> None: """Construct a argparse parser for the command.""" parser.add_argument("--id", dest="ref_id", required=True, help="The id of the metric") parser.add_argument("--collection-time", dest="collection_time", required=False, help="The time at which a metric should be recorded") parser.add_argument("--value", dest="value", required=False, type=float, help="The value for the metric") parser.add_argument("--notes", dest="notes", required=False, type=str, help="A note for the metric") parser.add_argument("--clear-notes", dest="clear_notes", default=False, action="store_const", const=True, help="Clear the notes") def run(self, args: Namespace) -> None: """Callback to execute when the command is invoked.""" ref_id = EntityId.from_raw(args.ref_id) collection_time = UpdateAction.change_to(ADate.from_str(args.collection_time)) \ if args.collection_time is not None else UpdateAction.do_nothing() value = UpdateAction.change_to(args.value) if args.value is not None else UpdateAction.do_nothing() notes: UpdateAction[Optional[str]] if args.clear_notes: notes = UpdateAction.change_to(None) elif args.notes is not None: notes = UpdateAction.change_to(args.notes) else: notes = UpdateAction.do_nothing() self._command.execute(MetricEntryUpdateUseCase.Args( ref_id=ref_id, collection_time=collection_time, value=value, notes=notes))
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ USD Opinion Editor widget implementations """ from __future__ import print_function, division, absolute_import __author__ = "Tomas Poveda" __license__ = "MIT" __maintainer__ = "Tomas Poveda" __email__ = "[email protected]" from Qt.QtCore import * from Qt.QtWidgets import * from pxr import Usd from pxr.UsdQt._bindings import _DisplayGroupProxy, _PrimProxy, _AttributeProxy, _MetadataProxy from pxr.UsdQt.opinionStackModel import _AttributeHandler, _PrimMetadataHandler from pxr.UsdQt import valueDelegate, opinionStackModel from artellapipe.libs.usd.core import usdqtutils class OpinionEditor(QWidget, object): def __init__(self, deleagate=None, parent=None): super(OpinionEditor, self).__init__(parent=parent) self._menu_bar = QMenuBar() self._layout = QVBoxLayout() self.setLayout(self._layout) self._filter_line_edit = QLineEdit() self._view = usdqtutils.SelectionEditTreeView() item_delegate = deleagate if deleagate else valueDelegate.ValueDelegate() self._view.setItemDelegate(item_delegate) self._view.setEditTriggers( QAbstractItemView.CurrentChanged | QAbstractItemView.SelectedClicked | QAbstractItemView.EditKeyPressed) self._view.setSelectionMode(QAbstractItemView.ExtendedSelection) self._splitter = QSplitter(Qt.Vertical, self) self._layout.addWidget(self._menu_bar) self._layout.addWidget(self._filter_line_edit) self._layout.addWidget(self._splitter) self._splitter.addWidget(self._view) self._setup_actions() self._setup_options_menu() self._setup_edit_menu() self._setup_option_view_widget() @property def view(self): return self._view def launch_opinions_viewer(self, prim, handler): self._opinion_viewer.launch(opinionStackModel.OpinionStackModel(prim, handler)) def set_source_model(self, model): self._view.setModel(model) self.reset_column_spanned() def reset_column_spanned(self): for index in self._traverse_all_descendents(QModelIndex()): if type(index.internalPointer()) in (_DisplayGroupProxy, _PrimProxy): self._view.setFirstColumnSpanned(index.row(), index.parent(), True) def _traverse_all_descendents(self, index): for i in range(self._view.model().rowCount(index)): child_index = self._view.model().index(i, 0, index) yield child_index for descendent in self._traverse_all_descendents(child_index): yield descendent def _setup_actions(self): pass def _setup_options_menu(self): self._options_menu = QMenu('Options') self._menu_bar.addMenu(self._options_menu) def _setup_edit_menu(self): self._edit_menu = QMenu('Edit') self._menu_bar.addMenu(self._edit_menu) def _setup_option_view_widget(self): self._opinion_viewer = OpinionStackWidget() self._options_menu.hide() self._splitter.addWidget(self._opinion_viewer) class OpinionStackWidget(QWidget, object): def __init__(self, parent=None): super(OpinionStackWidget, self).__init__(parent=parent) self._toolbar = QToolBar() self._toolbar.addWidget(QLabel('Opinion Stack')) self._toolbar.addSeparator() self._show_all_action = self._toolbar.addAction('Show All') self._show_all_action.setCheckable(True) self._close_action = self._toolbar.addAction('Close') self._show_all_action.toggled.connect(self._on_show_all_toggled) self._close_action.triggered.connect(self._on_close) self._opinion_filter = opinionStackModel.OpinionStackFilter() self._view = QTreeView() self._view.setModel(self._opinion_filter) self._layout = QVBoxLayout() self.setLayout(self._layout) self._layout.addWidget(self._toolbar) self._layout.addWidget(self._view) self.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.MinimumExpanding) def launch(self, model): self._opinion_filter.setSourceModel(model) self.show() def close_(self): self.hide() self._opinion_filter.setSourceModel(None) def _on_show_all_toggled(self, checked): self._opinion_filter.SetShowFullStack(checked) def _on_close(self): self.close_() class OpinionController(QObject, object): def __init__(self, model, editor, parent=None): super(OpinionController, self).__init__(parent) self._model = model self._editor = editor self._editor.view.doubleClicked.connect(self._on_double_clicked) def reset_prims(self, prims): self._model.ResetPrims(prims) self._editor.reset_columns_spanned() def _on_double_clicked(self, index): proxy = self._model.GetProxyForIndex(index) if type(proxy) == _AttributeProxy: if proxy.GetSize() == 1: attributes = proxy.GetAttributes() attribute = attributes[0] self._editor.launch_opinions_viewer( attribute.GetPrim(), _AttributeHandler(attribute.GetName(), Usd.TimeCode.Default())) elif type(proxy) == _MetadataProxy: if proxy.GetSize() == 1: objects = proxy.GetObjects() obj = objects[0] if type(obj) == Usd.Prim: self._editor.launch_opinions_viewer(obj, _PrimMetadataHandler(proxy.GetName()))
python
# 000 # 999 # a=['one','two','three','four'] b=range(5) c=(9,-1,2) #one 0 9 #... #four 4 2 S = [4,5,3] def next_value(current, S): "[0,0,0] -> next one [1,0,0]" N = current[:] i = 0 N[i] += 1 while N[i]==S[i]: N[i] = 0 i += 1 if i==len(N): break N[i] += 1 return N c =[0,0,0] for i in range(60): print(c) c = next_value(c,S) def product(S): N = [0]*len(S) i = 0 N[i] += 1 while N[i]==S[i]: N[i] = 0 i += 1 if i==len(N): break N[i] += 1
python
# -*- coding: utf-8 -*- # # This file is part of the pyfixp project hosted at https://github.com/chipmuenk/pyfixp # # Copyright © Christian Muenker # Licensed under the terms of the MIT License # (see file LICENSE.txt in root directory for details) """ Store the version number here for setup.py and pyfixp.py """ __version__ = '0.9.0'
python
class Card(): def __init__(self, id: int, img: str, owner, position: int): """ Card defines a card. Args: id (int): card id (incremental int) img (str): path of the card img owner (int): card owner player, or None if in the deck/used position (int): when it is played, the position to vote removed (bool): if the card is used in this turn, so removed before next """ self.id = id self.img = img self.owner = owner self.position = position self.removed = False def __str__(self): text = str(self.id) + " " text += self.img + " " #text += str(self.owner) + " " text += str(self.position) + " " return text
python
from django.urls import path from .views import ( RideListView, RideDetailView, RideCreateView, RideUpdateView, RideDeleteView, OwnerRideListView, ShareCreateView, SharePickRideListView, ShareRideListView, DriverListView, ShareUpdateView ) from . import views from .models import Ride, Share from django.contrib.auth import views as auth_views app_name = 'ride' urlpatterns = [ path('', auth_views.LoginView.as_view(template_name='users/login.html')), path('home/', views.home, name='ride-home'), # path('about/', views.about, name='ride-about'), path('owner/', views.owner, name='owner-home'), path('sharer/', views.sharer, name='sharer-home'), path('driver/', views.driver, name='driver-home'), path('owner/request/', RideCreateView.as_view(), name='owner-request'), path('driver/request/', DriverListView.as_view(), name='driver-request'), path('owner/view/', OwnerRideListView.as_view(), name='owner-view'), path('ride/<int:pk>/', RideDetailView.as_view(), name='ride-detail'), path('owner/view/<int:pk>/update/', RideUpdateView.as_view(), name='owner-update'), path('owner/view/<int:pk>/delete/', RideDeleteView.as_view(), name='owner-delete'), path('driver/<int:ride_id>/confirm/', views.driver_confirm, name='driver-confirm'), path('driver/<int:ride_id>/complete/', views.driver_complete, name='driver-complete'), path('sharer/request/', ShareCreateView.as_view(), name='share-request'), path('sharer/list/', SharePickRideListView.as_view(), name='share-list'), path('sharer/<int:ride_id>/join/', views.share_join, name='share-join'), path('sharer/<int:ride_id>/cancel/', views.share_cancel, name='share-cancel'), # path('sharer/view/', ShareRideListView.as_view(), name='share-view'), path('sharer/view/', views.share_view, name='share-view'), path('sharer/<int:pk>/update/', ShareUpdateView.as_view(), name='share-update'), path('driver/view/', views.driver_view, name='driver-view'), ]
python
############################################################## # Fixing missmatches in parsing of doccano output # The script also does not claim to be a reusable solution, # instead it merely adapts the doccano output files to correspond # to the entity split style of LitBank. # Input: pandas dataframe, filename # Output: pandas dataframe ############################################################## import pandas as pd def fix_ner_label(df): ''' The exported files contain a label represented by a number (id). We replace those ids with the respective text of the label. ''' for label in ['B-3','B-4','B-5','B-6','B-7','B-8','B-9','B-10','B-11','B-12','B-13','B-14']: df = df.replace([label], 'B-PERSON') for label in ['I-3','I-4','I-5','I-6','I-7','I-8','I-9','I-10','I-11','I-12','I-13','I-14']: df = df.replace([label], 'I-PERSON') for label in ['B-18','B-19','B-20','B-21','B-22','B-23','B-24','B-25','B-26','B-27','B-28','B-29']: df = df.replace([label], 'B-PERX') for label in ['I-18','I-19','I-20','I-21','I-22','I-23','I-24','I-25','I-26','I-27','I-28','I-29']: df = df.replace([label], 'I-PERX') return df def fix_titles(df): ''' titles such as "Mr." are separated into "Mr" and "." . We correct this by merging them together. #St. ''' list_titles_Mr = df[df['original_word']=='Mr'].index.tolist() list_titles_Mrs = df[df['original_word']=='Mrs'].index.tolist() list_titles_St = df[df['original_word']=='St'].index.tolist() list_titles_Dr = df[df['original_word']=='Dr'].index.tolist() list_titles = list_titles_Mr + list_titles_Mrs + list_titles_St + list_titles_Dr #todo list_to_drop = [] for i in list_titles: if df['original_word'].iloc[i+1] == '.': current_title = df.loc[i,'original_word'] df.loc[i,'original_word'] = current_title + "." list_to_drop.append(i+1) else: continue df = df.drop(df.index[[list_to_drop]]) return df def add_layer(df): ''' For the cases where a token is both a (part of) PERSON and PERX entity, we need a separate column, in which we can add the second entity type. By default the second layer is O. ''' df['m_ner'] = 'O' return df def fix_parsing(df, filename): ''' The parsing sometimes has lead to different tokens, which we fix in this step. ''' list_to_drop = [] if filename == "AliceInWonderland.jsonl": for i in df[df['original_word']=="’"].index.tolist(): if df['original_word'].iloc[i+1] == 'll': df.loc[i,'original_word'] = "’ll" list_to_drop.append(i+1) elif df['original_word'].iloc[i+1] == 've': df.loc[i,'original_word'] = "’ve" list_to_drop.append(i+1) elif df['original_word'].iloc[i+1] == 's': df.loc[i,'original_word'] = "’s" list_to_drop.append(i+1) elif df['original_word'].iloc[i-1] == 'Ma' and df['original_word'].iloc[i+1] == 'am': df.loc[i,'original_word'] = "Ma’am" list_to_drop.append(i-1) list_to_drop.append(i+1) elif df['original_word'].iloc[i+1] == 're': df.loc[i,'original_word'] = "’re" list_to_drop.append(i+1) elif df['original_word'].iloc[i+1] == 'm': df.loc[i,'original_word'] = "’m" list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="wouldn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["would","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="couldn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["could","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="didn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["did","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="thing."].index.tolist(): df.loc[i,'original_word'] = "thing" df.loc[i+1,'original_word'] = "." elif filename == "Emma.jsonl": for i in df[df['original_word']=="_them_"].index.tolist(): fixed_words = ["_","them","_"] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="consciousness."].index.tolist(): fixed_words = ["consciousness","."] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="large."].index.tolist(): fixed_words = ["large","."] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="_We_"].index.tolist(): fixed_words = ["_","We","_"] df.loc[i,'original_word'] = fixed_words elif filename == "Frankenstein.jsonl": list_issues = df[df['original_word']=="R"].index.tolist() for i in list_issues: if df['original_word'].iloc[i+1] == '.': df.loc[i,'original_word'] = "R." list_to_drop.append(i+1) else: continue elif filename == "DavidCopperfield.jsonl": for i in df[df['original_word']=="o"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 'clock': df.loc[i,'original_word'] = "o’clock" list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="don"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["do","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="Don"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["Do","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="’"].index.tolist(): if df['original_word'].iloc[i+1] == 's': df.loc[i,'original_word'] = "’s" list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="couldn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["could","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue elif filename == "PrideAndPrejudice.jsonl": for i in df[df['original_word'].str.match('_[a-zA-Z]+_')==True].index.tolist(): fixed_words = ["_",df.loc[i,'original_word'][1:-1],"_"] df.loc[i,'original_word'] = fixed_words elif filename == "Ulysses.jsonl": for i in df[df['original_word'].str.match('—[a-zA-Z]+')==True].index.tolist(): fixed_words = ["—",df.loc[i,'original_word'][1:]] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="’"].index.tolist(): if df['original_word'].iloc[i+1] == 's': df.loc[i,'original_word'] = "’s" list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="hasn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["has","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="isn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["is","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="can"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["ca","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="don"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["do","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="Isn"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["Is","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="’"].index.tolist(): if df['original_word'].iloc[i+1] == 're': df.loc[i,'original_word'] = "’re" list_to_drop.append(i+1) elif df['original_word'].iloc[i+1] == 'm': df.loc[i,'original_word'] = "’m" list_to_drop.append(i+1) elif df['original_word'].iloc[i+1] == 'll': df.loc[i,'original_word'] = "’ll" list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="won"].index.tolist(): if df['original_word'].iloc[i+1] == '’' and df['original_word'].iloc[i+2] == 't': fixed_words = ["wo","n’t"] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) list_to_drop.append(i+2) else: continue for i in df[df['original_word']=="...."].index.tolist(): if df['original_word'].iloc[i+1] == 'He': df.loc[i,'original_word'] = "..." else: continue for i in df[df['original_word']=="g"].index.tolist(): if df['original_word'].iloc[i+1] == '.': df.loc[i,'original_word'] = "g." list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="p"].index.tolist(): if df['original_word'].iloc[i+1] == '.': df.loc[i,'original_word'] = "p." list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="i"].index.tolist(): if df['original_word'].iloc[i+1] == '.': df.loc[i,'original_word'] = "i." list_to_drop.append(i+1) else: continue elif filename == "HuckleberryFinn.jsonl": for i in df[df['original_word']=="sumf'n"].index.tolist(): if df['original_word'].iloc[i+1] == '.': fixed_words = ["sumf","'","n."] df.loc[i,'original_word'] = fixed_words list_to_drop.append(i+1) else: continue elif filename == "Dracula.jsonl": for i in df[df['original_word']=="_3"].index.tolist(): fixed_words = ["_","3"] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="Bistritz._"].index.tolist(): fixed_words = ["Bistritz",".","_"] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="P"].index.tolist(): if df['original_word'].iloc[i+1] == '.': df.loc[i,'original_word'] = "P." list_to_drop.append(i+1) else: continue for i in df[df['original_word']=="_Mem._"].index.tolist(): fixed_words = ["_","Mem",".","_"] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="``"].index.tolist(): df.loc[i,'original_word'] = '"' for i in df[df['original_word']=="''"].index.tolist(): df.loc[i,'original_word'] = '"' for i in df[df['original_word']=="Friend."].index.tolist(): fixed_words = ["Friend","."] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="_4"].index.tolist(): fixed_words = ["_","4"] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word']=="May._"].index.tolist(): fixed_words = ["May",".","_"] df.loc[i,'original_word'] = fixed_words elif filename == "VanityFair.jsonl": for i in df[df['original_word']=="``"].index.tolist(): df.loc[i,'original_word'] = '"' for i in df[df['original_word']=="''"].index.tolist(): df.loc[i,'original_word'] = '"' elif filename == "OliverTwist.jsonl": for i in df[df['original_word'].str.match("'[a-zA-Z]+")==True].index.tolist(): if df['original_word'].iloc[i] in ["'s","'em","'ll","'S"]: continue else: fixed_words = ["'",df.loc[i,'original_word'][1:]] df.loc[i,'original_word'] = fixed_words for i in df[df['original_word'].str.match('_[a-zA-Z]+_')==True].index.tolist(): fixed_words = ["_",df.loc[i,'original_word'][1:-1],"_"] df.loc[i,'original_word'] = fixed_words elif filename == "TheCallOfTheWild.jsonl": for i in df[df['original_word']=="'m"].index.tolist(): if df['original_word'].iloc[i-1] == "'": list_to_drop.append(i-1) for i in df[df['original_word']=="'Frisco"].index.tolist(): fixed_words = ["'","Frisco"] df.loc[i,'original_word'] = fixed_words df = df.drop(df.index[[list_to_drop]]) df = df.assign(original_word=df['original_word']).explode('original_word') df = df.reset_index(drop=True) return df def fix_inconsistencies(df, filename): ''' Fixes the inconsistencies between LitBank and Dekker et al., which originate from the use of the raw texts from LitBank. (E.g. occurrence of the tokens "glasses" "!", which does not exist in Dekker et al.) ''' if filename == "MobyDick.jsonl": df = df.drop(df.index[[381,382,539]]) df = df.reset_index(drop=True) elif filename == "Frankenstein.jsonl": df.loc[2302,'original_word'] = '"' df.loc[2308,'original_word'] = '"' return df def fix_all_in_one(df, filename): ''' Run all steps by calling one function ''' df = fix_ner_label(df) df = fix_parsing(df, filename) df = fix_titles(df) df = add_layer(df) df = df.reset_index(drop=True) df = fix_inconsistencies(df, filename) return df
python
# -*- coding: utf-8 -*- # @Date : 2017-07-18 13:26:17 # @Author : lileilei ''' 导入测试接口等封装 ''' import xlrd def pasre_inter(filename):#导入接口 file=xlrd.open_workbook(filename) me=file.sheets()[0] nrows=me.nrows ncol=me.ncols project_name=[] model_name=[] interface_name=[] interface_url=[] interface_meth=[] interface_par=[] interface_header=[] interface_bas=[] jiekou_bianhao=[] interface_type=[] for i in range(2,nrows): jiekou_bianhao.append(me.cell(i,0).value) project_name.append(me.cell(i,2).value) model_name.append(me.cell(i,3).value) interface_name.append(me.cell(i,1).value) interface_url.append(me.cell(i,4).value) interface_type.append(me.cell(i,5).value) interface_header.append(me.cell(i,6).value) interface_meth.append(me.cell(i,7).value) interface_par.append(me.cell(i,8).value) interface_bas.append(me.cell(i,9).value) i+=1 return jiekou_bianhao,interface_name,project_name,model_name,interface_url,\ interface_header,interface_meth,interface_par,interface_bas,interface_type #导入测试用例 def paser_interface_case(filename): file=xlrd.open_workbook(filename) me=file.sheets()[0] nrows=me.nrows ncol=me.ncols project_name=[] model_name=[] interface_name=[] interface_url=[] interface_meth=[] interface_par=[] interface_header=[] interface_bas=[] jiekou_bianhao=[] interface_type=[] is_save_result=[] yilai_is=[] yilai=[] yilai_ziduan=[] is_cha_data=[] data_sql=[] paser_base=[] for i in range(2,nrows): jiekou_bianhao.append(me.cell(i,0).value) project_name.append(me.cell(i,2).value) model_name.append(me.cell(i,3).value) interface_name.append(me.cell(i,1).value) interface_url.append(me.cell(i,4).value) interface_type.append(me.cell(i,5).value) interface_header.append(me.cell(i,6).value) interface_meth.append(me.cell(i,7).value) interface_par.append(me.cell(i,8).value) interface_bas.append(me.cell(i,9).value) is_save_result.append(me.cell(i,10).value) yilai_is.append(me.cell(i,11).value) yilai.append(me.cell(i,12).value) yilai_ziduan.append(me.cell(i,13).value) is_cha_data.append(me.cell(i,14).value) data_sql.append(me.cell(i,15).value) paser_base.append(me.cell(i,16).value) i+=1 return jiekou_bianhao,interface_name,project_name,model_name,interface_url,\ interface_header,interface_meth,interface_par,interface_bas,interface_type,\ is_save_result,yilai_is,yilai,yilai_ziduan,is_cha_data,data_sql,paser_base
python
# Create a function named same_name() that has two parameters named your_name and my_name. # If our names are identical, return True. Otherwise, return False. def same_name(your_name, my_name): if your_name == my_name: return True else: return False
python
import numpy as np import json def _reject_outliers(data, m=5.): d = np.abs(data - np.median(data)) mdev = np.median(d) s = d / mdev if mdev else 0. return data[s < m] def reject(input_): for line in input_: d = json.loads(line) print(_reject_outliers(np.array(d)).tolist())
python
# -*- coding: utf-8 -*- from django.template import loader from django.utils import formats from django.utils.text import Truncator import django_tables2 as tables from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from ..html import AttributeDict, Icon def merge_attrs(base_attrs, attrs): """ Merge attrs based in attribute dict. """ td = AttributeDict(base_attrs.get('td', {})) th = AttributeDict(base_attrs.get('th', {})) # merge td for key, value in attrs.get('td', {}).items(): td.attr(key, value) # merge th for key, value in attrs.get('th', {}).items(): th.attr(key, value) return {'td': td, 'th': th} class CheckBoxColumn(tables.CheckBoxColumn): BASE_ATTRS = { 'th': {"width": "40px"}, 'td': {"class": "center"} } def __init__(self, attrs=None, orderable=False, **extra): attrs = merge_attrs(CheckBoxColumn.BASE_ATTRS, attrs or {}) super(CheckBoxColumn, self).__init__(attrs=attrs, orderable=orderable, **extra) @property def header(self): default = {'type': 'checkbox'} general = self.attrs.get('input') specific = self.attrs.get('th__input') attrs = AttributeDict(default, **(specific or general or {})) attrs.update({"class": "ace"}) return mark_safe('<label><input %s/><span class="lbl"></span></label>' % attrs.as_html()) def render(self, value, bound_column): default = { 'type': 'checkbox', 'name': bound_column.name, 'value': value } general = self.attrs.get('input') specific = self.attrs.get('td__input') attrs = AttributeDict(default, **(specific or general or {})) attrs.update({"class": "ace", "data-toggle": "checkbox"}) return mark_safe('<label><input %s/><span class="lbl"></span></label>' % attrs.as_html()) class BooleanColumn(tables.BooleanColumn): BASE_ATTRS = {'th': {'width': '100px'}, 'td': {'class': 'center'}} DEFAULT_ICONS = ['check-circle', 'times-circle'] def __init__(self, null=False, attrs=None, orderable=False, **kwargs): attrs = merge_attrs(BooleanColumn.BASE_ATTRS, attrs or {}) super(BooleanColumn, self).__init__(null=null, attrs=attrs, orderable=orderable, **kwargs) def get_icon(self, value): index = int(not value) text = self.yesno[index] text = BooleanColumn.DEFAULT_ICONS[index] if text in (u'✔', u'✘', None, '') else text attrs = AttributeDict({'class': 'bigger-130 ace-icon'}) attrs.add_class('green' if value else 'red') return Icon(text, attrs=attrs) def render(self, value, record, bound_column): icon = self.get_icon(value) return icon.as_html() class IntegerColumn(tables.Column): def __init__(self, format="%d", *args, **kwargs): self.format = format super(IntegerColumn, self).__init__(*args, **kwargs) def render(self, value): return self.format % int(value) class IdColumn(IntegerColumn): BASE_ATTRS = {"th": {"width": "100px"}, "td": {"class": "center"}} def __init__(self, verbose_name=_("Code"), format="%05d", attrs=None, *args, **kwargs): attrs = merge_attrs(IdColumn.BASE_ATTRS, attrs or {}) super(IdColumn, self).__init__(verbose_name=verbose_name, format=format, attrs=attrs, *args, **kwargs) class ChoiceColumn(tables.Column): def __init__(self, conf, *args, **kwargs): super(ChoiceColumn, self).__init__(*args, **kwargs) self._conf = conf def _get_conf(self): conf = {} for key, value in self._conf.items(): attrs = AttributeDict() conf[key] = {} for k, v in value.items(): if k == 'icon': icon = Icon(v) if isinstance(v, basestring) else v conf[key][k] = icon.as_html() elif k == 'color': attrs.add_class(v) else: attrs.attr(k, v) conf[key]['attrs'] = attrs return conf conf = property(_get_conf) def render(self, value, record, bound_column): v = getattr(record, bound_column.accessor) conf = self.conf.get(v, None) # add a tip text attrs = conf.get('attrs', AttributeDict()) attrs.add_class('tip') attrs.attr('title', value) template = loader.get_template_from_string("<span {{ attrs }}>{{ value }}</span>") return template.render(loader.Context({ 'value': conf.get('icon', None) or value, 'attrs': attrs.as_html() })) class CheckBoxColumn(tables.CheckBoxColumn): def __init__(self, attrs=None, accessor=tables.A("pk"), orderable=False, **extra): attrs = attrs or {} attrs.update({ "th": {"width": "40px", "class": "center"}, "td": {"class": "center"} }) super(CheckBoxColumn, self).__init__(attrs=attrs, accessor=accessor, orderable=False, **extra) @property def header(self): default = {'type': 'checkbox'} general = self.attrs.get('input') specific = self.attrs.get('th__input') attrs = AttributeDict(default, **(specific or general or {})) attrs.update({"class": "ace"}) return mark_safe('<label><input %s/><span class="lbl"></span></label>' % attrs.as_html()) def render(self, value, bound_column): # pylint: disable=W0221 default = { 'type': 'checkbox', 'name': bound_column.name, 'value': value } general = self.attrs.get('input') specific = self.attrs.get('td__input') attrs = AttributeDict(default, **(specific or general or {})) attrs.update({"class": "ace", "data-toggle": "checkbox"}) return mark_safe('<label><input %s/><span class="lbl"></span></label>' % attrs.as_html()) class LinkColunmWithPerm(tables.LinkColumn): def __init__(self, perm_name, *args, **kwargs): self.perm_name = perm_name kwargs["args"] = kwargs.get("args", None) or [tables.A("pk")] # url args return super(LinkColunmWithPerm, self).__init__(*args, **kwargs) def render(self, value, record, bound_column): if self.perm_name == "": return value else: return super(LinkColunmWithPerm, self).render(value, record, bound_column) class CurrencyColumn(tables.Column): def render(self, value): return formats.number_format(value, decimal_pos=2) class TruncateCharsColumn(tables.Column): def __init__(self, length=30, *args, **kwargs): self.length = length super(TruncateCharsColumn, self).__init__(*args, **kwargs) def render(self, value): return Truncator(value).chars(self.length) class TruncateWordsColumn(tables.Column): def __init__(self, words=5, *args, **kwargs): self.words = words super(TruncateWordsColumn, self).__init__(*args, **kwargs) def render(self, value): return Truncator(value).words(self.words, truncate=' ...')
python
""" Implement a Caesar cipher, both encoding and decoding. The key is an integer from 1 to 25. This cipher rotates the letters of the alphabet (A to Z). The encoding replaces each letter with the 1st to 25th next letter in the alphabet (wrapping Z to A). So key 2 encrypts "HI" to "JK", but key 20 encrypts "HI" to "BC". This simple "mono-alphabetic substitution cipher" provides almost no security, because an attacker who has the encoded message can either use frequency analysis to guess the key, or just try all 25 keys. ***Problem found at: https://github.com/karan/Projects/blob/master/README.md#security*** """ from exceptions import InvalidKeyException, InvalidModeException LETTERS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] def caesar_cipher(key, string, mode): """ A Caesarean cipher is used on a string given the provided key. :param key: int in range [1, 25] :param string: string to encode/decode :param mode: selection of encryption (1) or decryption (2) """ # validate input if type(key) != int: raise TypeError("Input param 'key' was not type of int") if type(mode) != int: raise TypeError("Input param 'mode' was not type of int") if type(string) != str: raise TypeError("Input param 'string' was not type of str") if key < 1 or key > 25: raise InvalidKeyException if string == "": return "" if mode < 1 or mode > 2: raise InvalidModeException # perform cipher result = "" string = string.upper() if mode == 1: for character in string: if str.isalpha(character): encrypted_char = encrypt(key, character) result += LETTERS[encrypted_char] else: result += character else: for character in string: if str.isalpha(character): decrypted_char = decrypt(key, character) result += LETTERS[decrypted_char] else: result += character return result def encrypt(key, letter): return (LETTERS.index(letter) + key) % 26 def decrypt(key, letter): return (LETTERS.index(letter) - key) % 26
python
import re import pprint from collections import Counter ihaveadream = open('ihaveadream.txt', 'r') read_dream = ihaveadream.read() split = read_dream.split() just_words = [re.sub('[^a-zA-Z]+','',i) for i in split] just_long_words = [] for word in just_words: word = word.lower() if len(word) > 3: just_long_words.append(word) freqs = [just_words.count(i) for i in just_long_words] word_freq = zip(just_long_words, freqs) repeat = [] for word in word_freq: if word not in repeat: repeat.append(word) sorted_wfreq = sorted(repeat, key = lambda x: x[1], reverse = True) for word in sorted_wfreq: print word[0] + ':' + str(word[1]+1)
python
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options import time import os import sys from glob import glob import re import json import random import shutil import re import codecs dones = [x for x in open("done.txt",'r').read().split("\n") if len(x)] correct = json.loads(open("bad-corrected.json",'r').read()) # print(correct) box = sys.argv[1] print("DOING BOX: ",box) chrome_options = Options() # chrome_options.add_argument("--headless") chrome_options.add_argument("safebrowsing-disable-extension-blacklist") chrome_options.add_argument("--safebrowsing-disable-download-protection") chrome_options.add_experimental_option("prefs", {'safebrowsing.enabled': 'false'}) filenames = [x.split(".")[0].split("/") for x in str(open("canonical_filename_order.txt",'r').read()).split("\n") if len(x)] filenames = [x[1] for x in filenames if x[1] not in dones and x[1] in correct and correct[x[1]] != "NO"] # filenames = [x for x in correct if correct[x] != "NO"] print(filenames) print("NUM STUFF IN BOX: ",len(filenames)) #filenames = [x.split("/")[1].split(".")[0] for x in str(open("canonical_filename_order.txt",'r').read()).split("\n") if len(x)] def init_driver(path=os.path.join(os.getcwd(),"chromedriver")): driver = webdriver.Chrome(chrome_options=chrome_options, executable_path=path) return driver def parse_info_html(html): url = html.split('href="')[1].split('">')[0] creator = html.split('creator-link\">')[1].split('</a>')[0] date = html.split('Date:</dt><dd class="search-result__value">')[1].split("</dd>")[0] desc = html.split('">')[2].split('</a>')[0] return url,desc,creator,date def parse_accession_number(html): return html.split('Accession number:')[1].split('object__attributes-value">')[1].split('</dd>')[0] driver = init_driver(); time.sleep(3); for idx,fname in enumerate(filenames): print("now processing ",fname) entry = ("no description","no date","no accession number","no object id") iurl = correct[fname] print(iurl) try: driver.get(iurl); time.sleep(2) desc = driver.find_elements_by_class_name("object__title")[0].get_attribute('innerHTML') date = driver.find_elements_by_class_name("object__date")[0].find_elements_by_class_name("level-3")[0].get_attribute('innerHTML') obj = driver.find_elements_by_class_name("object")[1].get_attribute('innerHTML') acc = parse_accession_number(obj) print(desc,date,acc,iurl) entry = (desc,date,acc,iurl.split("/")[-1]) except: print("SHIT!!!! DONT KNOW WHAT WENT WRONG",fname) print(sys.exc_info()) codecs.open("out/"+box+".txt",'a+',encoding='utf8').write(fname+"\t"+entry[0]+"\t"+entry[1]+"\t"+entry[2]+"\t"+entry[3]+"\n")
python
from future.utils import with_metaclass from openpyxl_templates.exceptions import OpenpyxlTemplateException from openpyxl_templates.utils import OrderedType, Typed class TemplatedWorkbookNotSet(OpenpyxlTemplateException): def __init__(self, templated_sheet): super(TemplatedWorkbookNotSet, self).__init__( "The sheet '%s' has no assosiated workbook. This should be done automatically by the TemplatedWorkbook." % templated_sheet.sheetname ) class WorksheetDoesNotExist(OpenpyxlTemplateException): def __init__(self, templated_sheet): super(WorksheetDoesNotExist, self).__init__( "The workbook has no sheet '%s'." % templated_sheet.sheetname ) class SheetnameNotSet(OpenpyxlTemplateException): def __init__(self): super(SheetnameNotSet, self).__init__( "Sheetname not specified. This should be done automatically by the TemplatedWorkbook.") class TemplatedWorksheet(with_metaclass(OrderedType)): _sheetname = Typed("_sheetname", expected_type=str, allow_none=True) active = Typed("active", expected_type=bool, value=False) _workbook = None template_styles = None # order = ... # TODO: Add ordering to sheets either through declaration on workbook or here def __init__(self, sheetname=None, active=None): self._sheetname = sheetname or self._sheetname self.active = active if active is not None else self.active @property def exists(self): return self.sheetname in self.workbook @property def empty(self): if not self.exists: return True return not bool(len(self.worksheet._cells)) @property def worksheet(self): if not self.exists: self.workbook.create_sheet(self.sheetname) return self.workbook[self.sheetname] @property def workbook(self): if not self._workbook: raise TemplatedWorkbookNotSet(self) return self._workbook @workbook.setter def workbook(self, workbook): self._workbook = workbook @property def sheet_index(self): try: return self.workbook.sheetnames.index(self.sheetname) except ValueError: raise WorksheetDoesNotExist(self) def write(self, data): raise NotImplemented() # 'self.sheet_template.write(self.worksheet, self.templated_workbook.styles, data) def read(self): raise NotImplemented() def remove(self): if self.exists: del self.workbook[self.sheetname] # def activate(self): # self.workbook.active = self.sheet_index @property def sheetname(self): if not self._sheetname: raise SheetnameNotSet() return self._sheetname @sheetname.setter def sheetname(self, value): self._sheetname = value def __str__(self): return self._sheetname or self.__class__.__name__ def __repr__(self): return str(self)
python
import hashlib, hmac, time def compute_signature(message, secret): message = message.encode('utf-8') timestamp = str(int(time.time()*100)).encode('ascii') hashdata = message + timestamp signature = hmac.new(secret.encode('ascii'), hashdata, hashlib.sha256).hexdigest() return { 'message': message, 'signature': signature, 'timestamp': timestamp } def verify_signature(signed_message, secret): timestamp = signed_message['timestamp'] expected_signature = signed_message['signature'] message = signed_message['message'] hashdata = message + timestamp signature = hmac.new(secret.encode('ascii'), hashdata, hashlib.sha256).hexdigest() return signature == expected_signature signed_msg = compute_signature('Hello World', 'very_secret') print( verify_signature(signed_msg, 'very_secret') ) signed_msg['message'] = b'Hello Boat' print( verify_signature(signed_msg, 'very_secret') )
python
from django.conf import settings from django.utils.translation import ugettext_lazy as _ TEASERSWRAP_ALLOW_CHILDREN = getattr( settings, 'TEASERS_TEASERSWRAP_ALLOW_CHILDREN', True ) TEASERSWRAP_PLUGINS = getattr( settings, 'TEASERS_TEASERSWRAP_PLUGINS', [ 'TeaserPlugin', ] ) TEASERSWRAP_FIELDSETS = getattr( settings, 'TEASERS_TEASERSWRAP_FIELDSETS', [ (_('content'), { 'classes': ['section'], 'fields': [ 'name', ], }), (_('settings'), { 'classes': [ 'section', 'collapse', ], 'fields': [ 'css_class', 'width', ], }), ] ) TEASERSWRAP_CSS_CLASSES = getattr( settings, 'TEASERS_TEASERSWRAP_CSS_CLASSES', [ ('', _('None')), ] ) TEASERSWRAP_HEIGHTS = getattr( settings, 'TEASERS_TEASERSWRAP_HEIGHTS', [ ('', _('auto')), ] ) TEASERSWRAP_WIDTHS = getattr( settings, 'TEASERS_TEASERSWRAP_WIDTHS', [ ('', _('auto')), ] ) TEASER_FIELDSETS = getattr( settings, 'TEASERS_TEASER_FIELDSETS', [ (_('Page (auto content)'), { 'classes': ['section'], 'fields': [ 'link_cms', ], }), (_('Content'), { 'classes': ['section'], 'fields': [ 'name', 'body', 'filer_image', 'filer_icon', ], }), ] ) TEASER_ALLOW_CHILDREN = getattr( settings, 'TEASERS_TEASER_ALLOW_CHILDREN', False ) TEASER_PLUGINS = getattr( settings, 'TEASERS_TEASER_PLUGINS', [] ) TEASER_LINK_MODEL = getattr( settings, 'TEASERS_TEASER_LINK_MODEL', None ) TEASER_LINK_FIELDS = getattr( settings, 'TEASERS_TEASER_LINK_FIELDS', None ) TEASER_PAGE_INFO_MODELS = getattr( settings, 'TEASERS_TEASER_PAGE_INFO_MODELS', None )
python
from .models_1d import * from .models_2d import * from .models_3d import * def M1D(config): if config.model_module == 'V2SD': model = V2StochasticDepth(n=config.channels, proba_final_layer=config.proba_final_layer, sdrop=config.sdrop, use_raw_wave=config.use_raw_wave, avr_w0_path=config.avr_w0_path) elif config.model_module == "V2S": model = ModelIafossV2S(n=config.channels, sdrop=config.sdrop, use_raw_wave=config.use_raw_wave, avr_w0_path=config.avr_w0_path) elif config.model_module == "Model1DCNNGEM": model = Model1DCNNGEM(initial_channnels=config.channels) elif config.model_module == 'V2SDCBAM': model = V2SDCBAM(n=config.channels, proba_final_layer=config.proba_final_layer, reduction=config.reduction, CBAM_SG_kernel_size=config.CBAM_SG_kernel_size ) return model def M2D(config): if config.model_module == 'resnet34': model = Model_2D(encoder=config.encoder, use_raw_wave=config.use_raw_wave, avrSpecDir=config.inputDataFolder) return model def M3D(config): if config.model_module == "M3D": fold = config.fold config.model_module = config.model_1D model_1d = M1D(config) if config.model_1D_pretrain_dir is not None and fold is not None: path = f"{config.model_1D_pretrain_dir}/Fold_{fold}_best_model.pth" print("Loading model from path: ", path) checkpoint = torch.load(path, map_location='cuda:0') model_1d.load_state_dict(checkpoint['model_state_dict']) model_1d.use_raw_wave = False config.model_module = config.model_2D model_2d = M2D(config) if config.model_2D_pretrain_dir is not None and fold is not None: path = f"{config.model_2D_pretrain_dir}/Fold_{fold}_best_model.pth" print("Loading model from path: ", path) checkpoint = torch.load(path, map_location='cuda:0') model_2d.load_state_dict(checkpoint['model_state_dict']) model_2d.use_raw_wave = False model = Combined1D2D(model_1d, model_2d, emb_1d=config.model_1D_emb, emb_2d=config.model_2D_emb, first=config.first, ps=config.ps, avrSpecDir=config.inputDataFolder) model.freeze_conv(req_grad=False) config.model_module = "M3D" return model def getModel(config): if config.model_module in ['resnet34']: return M2D(config) elif config.model_module in ['M3D']: return M3D(config) else: return M1D(config)
python
"""Tests for the :mod:`campy.datastructures.sparsegrid` module."""
python
# -*- coding: utf-8 -*- # # GOM-Script-Version: 6.2.0-6 # Anja Cramer / RGZM # Timo Homburg / i3mainz # Laura Raddatz / i3mainz # Informationen von atos-Projektdateien (Messdaten: *.amp / *.session) # 2020/2021 import gom import xml, time, os, random import math import datetime ## Indicates if only properties for which a URI has been defined in the JSON dict should be considered for the TTL export . #includeonlypropswithuri=False includeonlypropswithuri=True # python script version script_name = "atos-v62_3dcap_metadata.py" script_label = "ATOS v6.2 3DCAP Metadata Script" github_release = "0.1.2" ####################### TTL Export ############################# ## Mapping of datatypes present in the JSON dictionary to datatypes present in the TTL file . datatypes={"float":"xsd:float","double":"xsd:double","str":"xsd:string","date":"xsd:date","int":"xsd:integer","bool":"xsd:boolean","NoneType":"xsd:string", "dateTime":"xsd:dateTime", "list":"xsd:list"} ## Namespace for classes defined in the resulting ontology model . ontologynamespace="http://objects.mainzed.org/ont#" ## Prefix name for the data namespace . dataprefix="ex" # variable python script script_uri=str(dataprefix)+":"+script_name ## Prefix name for the class namespace . ontologyprefix="giga" toolnamespace="http://objects.mainzed.org/tool/" toolpropnamespace="http://objects.mainzed.org/tool/atos/62/" ## Namespace for instances defined in the TTL export . datanamespace="http://objects.mainzed.org/data/" ## Prefix name for the exif namespace . exifnamespace="http://www.w3.org/2003/12/exif/" ## Prefix name for the exif namespace . om="http://www.ontology-of-units-of-measure.org/resource/om-2/" ## Prefix name for the rdfs namespace . rdfs='http://www.w3.org/2000/01/rdf-schema#' ##Prefix name for the gigamesh namespace giganamespace="http://www.gigamesh.eu/ont#" # Prefix name for prov-o namespace . provnamespace = "http://www.w3.org/ns/prov#" #atos 2016 referencepointid="reference_point_id" globalreferencepointid="point_id" ## Provenance dictionary: Might be used to change the provenance vocabulary . provenancedict_prov_o={ "entity":"prov:Entity", "activity":"prov:Activity", "agent":"prov:Agent", "used":"prov:used", "person":"foaf:Person" } ## Provenance dictionary cidoc crm: Might be used to change the provenance vocabulary . provenancedict_crmdig={ "entity":"http://www.cidoc-crm.org/cidoc-crm/D1", "activity":"http://www.cidoc-crm.org/cidoc-crm/D11", "agent":"prov:Agent", "used":"prov:used", "person":"http://www.cidoc-crm.org/cidoc-crm/D21" } sensorTypeToClass={ "ATOS III Rev.01": str(ontologyprefix)+":StructuredLightScanner", "ATOS Core": str(ontologyprefix)+":StructuredLightScanner", "ATOS II (first generation)": str(ontologyprefix)+":StructuredLightScanner", "ATOS III Rev.02": str(ontologyprefix)+":StructuredLightScanner", } provenancedict=provenancedict_prov_o ## Key for the german label as present in the JSON dictionary . germanlabel="key_deu" ## Key for the english label as present in the JSON dictionary . englishlabel="key_eng" artifactURI=None ## Header for the TTL export which includes all necessary namespaces. ttlstringhead="@prefix "+str(ontologyprefix)+": <"+str(ontologynamespace)+"> .\n@prefix geo: <http://www.opengis.net/ont/geosparql#> .\n@prefix "+str(dataprefix)+": <"+str(datanamespace)+"> .\n@prefix foaf: <http://xmlns.com/foaf/0.1/> .\n@prefix prov: <http://www.w3.org/ns/prov-o/> .\n@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> . \n@prefix om:<http://www.ontology-of-units-of-measure.org/resource/om-2/> .\n@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> . \n@prefix owl:<http://www.w3.org/2002/07/owl#> . \n@prefix i3atos:<http://www.i3mainz.de/metadata/atos#> . \n@prefix dc:<http://purl.org/dc/terms/> .\n@prefix i3data:<http://www.i3mainz.de/data/grabbauten/> . \n@prefix i3:<http://www.i3mainz.de/ont#> . \n@prefix xsd:<http://www.w3.org/2001/XMLSchema#> . \n" ## Generates a UUID. def generate_uuid(): random_string = '' random_str_seq = "0123456789abcdef" uuid_format = [8, 4, 4, 4, 12] for n in uuid_format: for i in range(0,n): random_string += str(random_str_seq[random.randint(0, len(random_str_seq) - 1)]) if i != n: random_string += '-' return random_string[:-1] ## Turns the first character of a String to lowercase . # @param s The string to modify . # @return a String with the first character to lowercase def first_upper(s): if len(s) == 0: return s else: return s[0].upper() + s[1:] ## Turns the first character of a String to lowercase . # @param s The string to modify . # @return a String with the first character to lowercase def first_lower(s): if len(s) == 0: return s else: return s[0].lower() + s[1:] ## Reads a TTL file, splits its header and body and merges it to the internal TTL set . # @param filepath The filepath of the TTL file to read . # @param ttlstring The set of triples to append to . def readInputTTL(filepath,ttlstring): file1 = open(filepath, 'r') Lines = file1.readlines() count = 0 for line in Lines: if line.startswith("@"): ttlstringhead+=line+"\n" else: ttlstring.add(line) file1.close() ## Extracts the ID of a previously created object to extend its provenance hierarchy . # @param ttlstring The set of triples to append to . # @param filterclass The class to use for filtering . # @return a set of filtered triples def filterLastId(ttlstring,filterclass): concernedtriples=set() for triple in ttlstring: for filt in filterclass: if filt in triple: concernedtriples.add(triple) if len(concernedtriples)==0: return None if len(concernedtriples)==1 and concernedtriples[0].contains("rdf:type"): return concernedtriples.split(" ")[0]; ## Reads an artifact description given in a text file and converts its information to TLL . # @param filepath the path of the text file to process # @param ttlstring the set of triples to store the result in def readInputTXTForArtifactDescription(filepath,ttlstring): file1 = open(filepath, 'r') firstline = file1.readline() if ";" in firstline: entities=firstline.split(";") if len(entities)>2: if entities[0].startswith("http") and entities[2].startswith("http"): ttlstring.add("<"+entities[0]+"> rdf:type <"+entities[2]+"> .\n") ttlstring.add("<"+entities[0]+"> rdfs:label \""+entities[1]+" Artifact\"@en .\n") ttlstring.add("<"+entities[2]+"> rdf:type owl:Class .\n") ttlstring.add("<"+entities[2]+"> rdfs:subClassOf prov:Entity .\n") elif entities[0].startswith("http") and not entities[2].startswith("http"): ttlstring.add("<"+entities[0]+"> rdf:type "+entities[2]+" .\n") ttlstring.add("<"+entities[0]+"> rdfs:label \""+entities[1]+" Artifact\"@en .\n") ttlstring.add(entities[2]+" rdf:type owl:Class .\n") ttlstring.add(entities[2]+" rdfs:subClassOf prov:Entity .\n") elif not entities[0].startswith("http") and not entities[2].startswith("http"): ttlstring.add("<"+datanamespace+entities[0]+"> rdf:type "+entities[2]+" .\n") ttlstring.add("<"+datanamespace+entities[0]+"> rdfs:label \""+entities[1]+" Artifact\"@en .\n") ttlstring.add(entities[2]+" rdf:type owl:Class .\n") ttlstring.add(entities[2]+" rdfs:subClassOf prov:Entity .\n") else: ttlstring.add("<"+datanamespace+entities[0]+"> rdf:type <"+entities[2]+"> .\n") ttlstring.add("<"+datanamespace+entities[0]+"> rdfs:label \""+entities[1]+" Artifact\"@en .\n") ttlstring.add("<"+entities[2]+"> rdf:type owl:Class .\n") ttlstring.add("<"+entities[2]+"> rdfs:subClassOf prov:Entity .\n") else: if entities[0].startswith("http"): ttlstring.add("<"+entities[0]+"> rdf:type giga:Artifact .\n") else: ttlstring.add("<"+datanamespace+entities[0]+"> rdf:type giga:Artifact .\n") if entities[0].startswith("http"): artifactURI=entities[0] else: artifactURI=datanamespace+entities[0] file1.close() ## Reads an instance present in a JSON representation and appends its TTL representation to the triple set . # @param jsonobj The JSON object to process # @param id The id of the current instance # @param classs The class of the current instance # @param labelprefix A string prefix to be prepended to a rdfs:label expression # @param ttlstring The set of triples to append to def exportInformationFromIndAsTTL(jsonobj,id,classs,labelprefix,ttlstring): for info in jsonobj: #print(classs) #print(jsonobj[info]) if not info in jsonobj or not "value" in jsonobj[info] or jsonobj[info]["value"]==None or jsonobj[info]["value"]=="": continue propuri=str(ontologyprefix)+":"+first_lower(str(info)).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","").replace("[","_").replace("]","") if "uri" in jsonobj[info]: #print(jsonobj[info]["uri"]) if jsonobj[info]["uri"].startswith("http"): propuri="<"+str(jsonobj[info]["uri"][0:jsonobj[info]["uri"].rfind("#")]+"#"+first_lower(jsonobj[info]["uri"][jsonobj[info]["uri"].rfind("#")+1:]))+">" elif ":" in jsonobj[info]["uri"]: propuri=str(jsonobj[info]["uri"][0:jsonobj[info]["uri"].rfind(":")]+":"+first_lower(jsonobj[info]["uri"][jsonobj[info]["uri"].rfind(":")+1:])) else: propuri=str(ontologyprefix)+":"+first_lower(str(info)).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","").replace("[","_").replace("]","") ttlstring.add(str(propuri)+" rdfs:isDefinedBy <"+str(toolpropnamespace)+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","").replace("[","_").replace("]","")+"> .\n") #print("Propuri: "+propuri) #print(jsonobj[info]["value"]) #print(isinstance(jsonobj[info]["value"],list)) if isinstance(jsonobj[info]["value"],list): for val in jsonobj[info]["value"]: ttlstring=handleProperty(jsonobj,info,id,labelprefix,propuri,classs,ttlstring,val,str(ontologyprefix)+":"+first_upper(str(info)).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","").replace("[","_").replace("]","")) else: ttlstring=handleProperty(jsonobj,info,id,labelprefix,propuri,classs,ttlstring,jsonobj[info]["value"],str(ontologyprefix)+":"+first_upper(str(info)).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","").replace("[","_").replace("]","")) #print ("ttlstring") return ttlstring ## Processes a given property depending on its type . def handleProperty(jsonobj,info,id,labelprefix,propuri,classs,ttlstring,inputvalue,propclass): if "unit" in jsonobj[info] and jsonobj[info]["unit"]!=None and jsonobj[info]["unit"]!="": ttlstring.add(str(propuri)+" rdf:type owl:ObjectProperty .\n") ttlstring.add(str(propuri)+" rdfs:domain "+str(classs)+" .\n") ttlstring.add(str(propuri)+" rdfs:range om:Measure .\n") if englishlabel in jsonobj[info] and jsonobj[info][englishlabel]!=None and str(jsonobj[info][englishlabel])!="" and str(jsonobj[info][englishlabel]).strip()!="...": ttlstring.add(str(propuri)+" rdfs:label \""+str(jsonobj[info][englishlabel]).replace("\"","'")+"\"@en .\n") if labelprefix=="": ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" rdfs:label \""+str(jsonobj[info][englishlabel]).replace("\"","'")+" \"@en .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value rdfs:label \""+str(jsonobj[info][englishlabel]).replace("\"","'")+" Measurement Value \"@en .\n") else: ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" rdfs:label \""+str(jsonobj[info][englishlabel]).replace("\"","'")+" ("+str(labelprefix)+")\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value rdfs:label \""+str(jsonobj[info][englishlabel]).replace("\"","'")+" Measurement Value ("+str(labelprefix)+")\"@en .\n") if germanlabel in jsonobj[info] and jsonobj[info][germanlabel]!=None and str(jsonobj[info][germanlabel])!="" and str(jsonobj[info][germanlabel])!="...": ttlstring.add(str(propuri)+" rdfs:label \""+str(jsonobj[info][germanlabel]).replace("\"","'")+"\"@de .\n") if labelprefix=="": ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" rdfs:label \""+str(jsonobj[info][germanlabel]).replace("\"","'")+" \"@de .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value rdfs:label \""+str(jsonobj[info][germanlabel]).replace("\"","'")+" Messwert \"@de .\n") else: ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" rdfs:label \""+str(jsonobj[info][germanlabel]).replace("\"","'")+" ("+str(labelprefix)+")\"@de .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value rdfs:label \""+str(jsonobj[info][germanlabel]).replace("\"","'")+" Messwert ("+str(labelprefix)+")\"@de .\n") if "measurementclass" in jsonobj[info] and jsonobj[info]["measurementclass"]!=None and str(jsonobj[info]["measurementclass"])!="": if ":" in jsonobj[info]["measurementclass"]: if jsonobj[info]["measurementclass"].startswith("http"): ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdf:type owl:Class .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdfs:label \""+jsonobj[info]["measurementclass"].replace("\"","'")+"\"@en .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdfs:subClassOf om:Quantity .\n") else: ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" rdfs:label \""+jsonobj[info]["measurementclass"].replace("\"","'")+"\"@en .\n") ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" rdfs:subClassOf om:Quantity .\n") else: ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdf:type owl:Class .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdfs:label \""+jsonobj[info]["measurementclass"].replace("\"","'")+"\"@en .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdfs:subClassOf om:Quantity .\n") else: ttlstring.add(propclass+" rdf:type owl:Class .\n") ttlstring.add(propclass+" rdfs:label \""+propclass.replace("_"," ").replace(ontologyprefix+":","")+"\"@en .\n") ttlstring.add(propclass+" rdfs:subClassOf om:Quantity .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" rdf:type "+propclass+" .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value rdf:type om:Measure .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" om:hasValue "+str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value .\n") #print(jsonobj[info]["unit"]) if jsonobj[info]["unit"].startswith("http"): ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value om:hasUnit <"+str(jsonobj[info]["unit"])+"> .\n") ttlstring.add("<"+str(jsonobj[info]["unit"])+"> rdf:type om:UnitOfMeasure .\n") ttlstring.add("<"+str(jsonobj[info]["unit"])+"> rdfs:label \""+jsonobj[info]["unit"].replace("\"","'")+"\"@en .\n") elif ":" in jsonobj[info]["unit"]: ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value om:hasUnit "+str(jsonobj[info]["unit"].replace(" ",""))+" .\n") ttlstring.add(str(jsonobj[info]["unit"].replace(" ",""))+" rdf:type om:UnitOfMeasure .\n") ttlstring.add(str(jsonobj[info]["unit"].replace(" ",""))+" rdfs:label \""+jsonobj[info]["unit"].replace("\"","'")+"\" .\n") else: ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value om:hasUnit \""+str(jsonobj[info]["unit"])+"\" .\n") ttlstring.add(str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+"_value om:hasNumericalValue \""+str(inputvalue).replace("\\","\\\\")+"\"^^"+str(datatypes[jsonobj[info]["value_type"]])+" .\n") ttlstring.add(str(dataprefix)+":"+str(id)+" "+str(propuri)+" "+str(dataprefix)+":"+str(id)+"_"+str(info).replace(" ","").replace("[","_").replace("]","").replace("(","").replace(")","")+" .\n") elif "value_type" in jsonobj[info] and jsonobj[info]["value_type"]=="enumeration": ttlstring.add(str(propuri)+" rdf:type owl:ObjectProperty .\n") ttlstring.add(str(propuri)+" rdfs:domain "+str(classs)+" .\n") if "measurementclass" in jsonobj[info] and jsonobj[info]["measurementclass"]!=None and str(jsonobj[info]["measurementclass"])!="": if ":" in jsonobj[info]["measurementclass"]: ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" rdfs:label \""+jsonobj[info]["measurementclass"].replace("\"","'")+"\"@en .\n") ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" rdfs:subClassOf "+str(ontologyprefix)+":Enumeration .\n") ttlstring.add(str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+"_"+inputvalue+" rdf:type "+str(ontologyprefix)+":"+jsonobj[info]["measurementclass"].replace(" ","")+" .\n") ttlstring.add(str(dataprefix)+":"+str(id)+" "+str(propuri)+" "+str(ontologyprefix)+":"+jsonobj[info]["measurementclass"]+"_"+str(inputvalue)+" .\n") else: ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdf:type owl:Class .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdfs:label \""+jsonobj[info]["measurementclass"].replace("\"","'")++"\"@en .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"> rdfs:subClassOf "+str(ontologyprefix)+":Enumeration .\n") ttlstring.add("<"+jsonobj[info]["measurementclass"].replace(" ","")+"_"+inputvalue+"> rdf:type <"+jsonobj[info]["measurementclass"].replace(" ","")+"> .\n") ttlstring.add(str(dataprefix)+":"+str(id)+" "+str(propuri)+" <"+jsonobj[info]["measurementclass"].replace(" ","")+"_"+str(inputvalue).replace(" ","")+"> .\n") else: classuri=str(ontologyprefix)+":"+str(propuri).replace(str(ontologyprefix),"").capitalize() ttlstring.add(classuri+" rdf:type owl:Class .\n") ttlstring.add(classuri+" rdfs:subClassOf "+str(ontologyprefix)+":Enumeration .\n") ttlstring.add(classuri+"_"+str(inputvalue)+" rdf:type "+classuri+" .\n") ttlstring.add(str(dataprefix)+":"+str(id)+" "+str(propuri)+" "+classuri+"_"+str(inputvalue)+" .\n") else: if propuri=="http://www.w3.org/2000/01/rdf-schema#label" or propuri=="rdfs:label" or propuri=="http://www.w3.org/2000/01/rdf-schema#comment" or propuri=="rdfs:comment": ttlstring.add(str(propuri)+" rdf:type owl:AnnotationProperty .\n") ttlstring.add(str(dataprefix)+":"+str(id)+" "+str(propuri)+" \""+str(inputvalue)+"\" .\n") else: ttlstring.add(str(propuri)+" rdf:type owl:DatatypeProperty .\n") ttlstring.add(str(propuri)+" rdfs:domain "+str(classs)+" .\n") if englishlabel in jsonobj[info] and jsonobj[info][englishlabel]!=None and str(jsonobj[info][englishlabel])!="" and str(jsonobj[info][englishlabel])!="...": ttlstring.add(str(propuri)+" rdfs:label \""+str(jsonobj[info][englishlabel]).replace("\"","'")+"\"@en .\n") if germanlabel in jsonobj[info] and jsonobj[info][germanlabel]!=None and str(jsonobj[info][germanlabel])!="" and str(jsonobj[info][germanlabel])!="...": ttlstring.add(str(propuri)+" rdfs:label \""+str(jsonobj[info][germanlabel]).replace("\"","'")+"\"@de .\n") ttlstring.add(str(propuri)+" rdfs:range "+str(datatypes[jsonobj[info]["value_type"]])+" .\n") ttlstring.add(str(dataprefix)+":"+str(id)+" "+str(propuri)+" \""+str(inputvalue).replace("\\","\\\\")+"\"^^"+str(datatypes[jsonobj[info]["value_type"]])+" .\n") #print("handled Property") return ttlstring ## Converts a preformatted dictionary to a set of triples . # @param dict the dictionary to export from # @param measurementToExport indicates whether to export measurements def exportToTTL(dict,measurementToExport,ttlstring): ###print ("drin in exportToTTL") projectid=str(generate_uuid()) userid=str(generate_uuid()) projlabelkey="prj_n" projects="projects" projkey="measurement_series" userkey="user_keywords" mesheskey="meshes" meshprocessingkey="processing" calibkey="calibration" sensorskey="sensors" sensorinformationkey="calibration" meshinfokey="mesh_information" globalrefpointkey="global_referencepoints" refpointkey="referencepoints" globalrefpointinfo="global_referencepoints_information" projinfokey="project_information" measurmentserieskey = "measurement_series_information" measurementskey="measurements" measurementinformation="measurement_properties" messungkey="messung" applicationkey="applications" capturingdevice="capturing_device" mssetup="measurement_setup" calsetup="cal_setup" calobject="cal_object" calproperties="cal_properties" mscheck="measurement_check" softwareid="ATOS2016" labelprefix="" projectname="" if ttlstring==None: ttlstring=set() ttlstring.add(str(ontologyprefix)+":Mesh rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Mesh rdfs:subClassOf geo:Geometry .\n") ttlstring.add(str(ontologyprefix)+":Mesh rdfs:label \"Mesh\"@en .\n") ttlstring.add(str(ontologyprefix)+":IntermediateMeshResult rdfs:subClassOf "+str(ontologyprefix)+":Mesh .\n") ttlstring.add(str(ontologyprefix)+":IntermediateMeshResult rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":IntermediateMeshResult rdfs:label \"Intermediate Mesh Result\"@en .\n") ttlstring.add("rdfs:label rdf:type owl:AnnotationProperty .\n") ttlstring.add(str(ontologyprefix)+":Tool rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Tool rdfs:label \"Tool\"@en .\n") ttlstring.add(str(ontologyprefix)+":Tool rdfs:subClassOf "+provenancedict.get("entity")+" .\n") ttlstring.add(str(ontologyprefix)+":CapturingDevice rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":CapturingDevice rdfs:label \"capturing device\"@en .\n") ttlstring.add(str(ontologyprefix)+":CapturingDevice rdfs:subClassOf "+str(ontologyprefix)+":Tool .\n") ttlstring.add(str(ontologyprefix)+":Scanner rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Scanner rdfs:label \"scanner\"@en .\n") ttlstring.add(str(ontologyprefix)+":Scanner rdfs:subClassOf "+str(ontologyprefix)+":CapturingDevice .\n") ttlstring.add(str(ontologyprefix)+":Sensor rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Sensor rdfs:label \"Sensor\"@en .\n") ttlstring.add(str(ontologyprefix)+":Software rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Software rdfs:label \"software\"@en .\n") ttlstring.add(str(ontologyprefix)+":Software rdfs:subClassOf "+provenancedict.get("entity")+" .\n") ttlstring.add(str(ontologyprefix)+":Verification rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Verification rdfs:label \"verification\"@en .\n") ttlstring.add(str(ontologyprefix)+":Verification rdfs:subClassOf "+provenancedict.get("entity")+" .\n") ttlstring.add(str(ontologyprefix)+":Setup rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Setup rdfs:label \"setup\"@en .\n") ttlstring.add(str(ontologyprefix)+":Setup rdfs:subClassOf "+provenancedict.get("entity")+" .\n") ttlstring.add(str(ontologyprefix)+":StructuredLightScanner rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":StructuredLightScanner rdfs:label \"structured light scanner\"@en .\n") ttlstring.add(str(ontologyprefix)+":StructuredLightScanner rdfs:subClassOf "+str(ontologyprefix)+":Scanner .\n") ttlstring.add(str(ontologyprefix)+":CalibrationObject rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":CalibrationObject rdfs:label \"calibration object\"@en .\n") ttlstring.add(str(ontologyprefix)+":CalibrationObject rdfs:subClassOf "+str(ontologyprefix)+":Tool .\n") ttlstring.add(str(ontologyprefix)+":MeasurementSetup rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":MeasurementSetup rdfs:label \"measurement setup\"@en .\n") ttlstring.add(str(ontologyprefix)+":MeasurementSetup rdfs:subClassOf "+str(ontologyprefix)+":Setup .\n") ttlstring.add(str(ontologyprefix)+":CalibrationSetup rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":CalibrationSetup rdfs:label \"calibration setup\"@en .\n") ttlstring.add(str(ontologyprefix)+":CalibrationSetup rdfs:subClassOf "+str(ontologyprefix)+":Setup .\n") ttlstring.add(str(ontologyprefix)+":MeasurementCheck rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":MeasurementCheck rdfs:label \"measurement check\"@en .\n") ttlstring.add(str(ontologyprefix)+":MeasurementCheck rdfs:subClassOf "+str(ontologyprefix)+":Verification .\n") ttlstring.add(str(ontologyprefix)+":Algorithm rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Algorithm rdfs:label \"Algorithm\"@en .\n") ttlstring.add(str(ontologyprefix)+":Algorithm rdfs:subClassOf "+provenancedict.get("agent")+" .\n") ttlstring.add(provenancedict.get("entity")+" rdf:type owl:Class .\n") ttlstring.add(provenancedict.get("person")+" rdf:type owl:Class .\n") ttlstring.add(provenancedict.get("person")+" rdfs:label \"Person\".\n") ttlstring.add(provenancedict.get("person")+" rdfs:subClassOf "+provenancedict.get("agent")+" .\n") ttlstring.add(provenancedict.get("entity")+" rdfs:subClassOf owl:Thing .\n") ttlstring.add("owl:Thing rdf:type owl:Class .\n") ttlstring.add("owl:Thing rdfs:label \"Thing\" .\n") ttlstring.add(provenancedict.get("entity")+" rdfs:label \"Entity\".\n") ttlstring.add(provenancedict.get("agent")+" rdf:type owl:Class .\n") ttlstring.add(provenancedict.get("agent")+" rdfs:label \"Agent\".\n") ttlstring.add(provenancedict.get("agent")+" rdfs:subClassOf owl:Thing .\n") ttlstring.add(provenancedict.get("activity")+" rdf:type owl:Class .\n") ttlstring.add(provenancedict.get("activity")+" rdfs:label \"Activity\".\n") ttlstring.add(provenancedict.get("activity")+" rdfs:subClassOf owl:Thing .\n") ttlstring.add("dc:creator rdf:type owl:ObjectProperty .\n") ttlstring.add("dc:creator rdfs:domain "+str(ontologyprefix)+":Mesh .\n") ttlstring.add("dc:creator rdfs:range foaf:Person .\n") ttlstring.add("prov:wasDerivedFrom rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:wasDerivedFrom rdfs:range "+provenancedict.get("entity")+" .\n") ttlstring.add("prov:wasDerivedFrom rdfs:domain "+provenancedict.get("entity")+" .\n") ttlstring.add("prov:wasInformedBy rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:wasInformedBy rdfs:range "+provenancedict.get("activity")+" .\n") ttlstring.add("prov:wasInformedBy rdfs:domain "+provenancedict.get("activity")+" .\n") ttlstring.add("prov:wasInvalidatedBy rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:wasInvalidatedBy rdfs:range "+provenancedict.get("activity")+" .\n") ttlstring.add("prov:wasInvalidatedBy rdfs:domain "+provenancedict.get("activity")+" .\n") ttlstring.add("prov:wasGeneratedBy rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:wasGeneratedBy rdfs:range "+provenancedict.get("activity")+" .\n") ttlstring.add("prov:wasGeneratedBy rdfs:domain "+provenancedict.get("entity")+" .\n") ttlstring.add("prov:actedOnBehalfOf rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:actedOnBehalfOf rdfs:range "+provenancedict.get("agent")+" .\n") ttlstring.add("prov:actedOnBehalfOf rdfs:domain "+provenancedict.get("agent")+" .\n") ttlstring.add("prov:wasAttributedTo rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:wasAttributedTo rdfs:range "+provenancedict.get("agent")+" .\n") ttlstring.add("prov:wasAttributedTo rdfs:domain "+provenancedict.get("entity")+" .\n") ttlstring.add("prov:used rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:used rdfs:range "+provenancedict.get("entity")+" .\n") ttlstring.add("prov:used rdfs:domain "+provenancedict.get("activity")+" .\n") ttlstring.add("prov:wasAssociatedWith rdf:type owl:ObjectProperty .\n") ttlstring.add("prov:wasAssociatedWith rdfs:range "+provenancedict.get("agent")+" .\n") ttlstring.add("prov:wasAssociatedWith rdfs:domain "+provenancedict.get("entity")+" .\n") ttlstring.add("om:hasNumericalValue rdf:type owl:DatatypeProperty .\n") ttlstring.add("om:hasNumericalValue rdfs:range xsd:integer .\n") ttlstring.add("om:hasNumericalValue rdfs:domain om:Measure .\n") ttlstring.add("om:hasNumericalValue rdfs:label \"has numerical value\"@en .\n") ttlstring.add("om:hasValue rdf:type owl:ObjectProperty .\n") ttlstring.add("om:hasValue rdfs:label \"has value\"@en .\n") ttlstring.add("om:hasUnit rdf:type owl:ObjectProperty .\n") ttlstring.add("om:hasUnit rdfs:label \"has unit\"@en .\n") ttlstring.add("om:hasUnit rdfs:domain om:Measure .\n") ttlstring.add("om:hasUnit rdfs:range om:UnitOfMeasure .\n") ttlstring.add("geo:asWKT rdf:type owl:DatatypeProperty .\n") ttlstring.add("geo:asWKT rdfs:label \"asWKT\"@en .\n") ttlstring.add("om:Quantity rdf:type owl:Class .\n") ttlstring.add("om:Quantity rdfs:label \"Quantity\".\n") ttlstring.add("om:Quantity rdfs:subClassOf owl:Thing .\n") ttlstring.add("om:Measure rdf:type owl:Class .\n") ttlstring.add("om:Measure rdfs:label \"Measure\".\n") ttlstring.add("om:Measure rdfs:subClassOf owl:Thing .\n") ttlstring.add("om:UnitOfMeasure rdf:type owl:Class .\n") ttlstring.add("om:UnitOfMeasure rdfs:label \"Unit Of Measure\".\n") ttlstring.add("om:UnitOfMeasure rdfs:subClassOf owl:Thing .\n") ttlstring.add(str(ontologyprefix)+":calibration rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":calibration rdfs:range "+str(ontologyprefix)+":Calibration .\n") ttlstring.add(str(ontologyprefix)+":calibration rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":sensor rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":sensor rdfs:range "+str(ontologyprefix)+":Sensor .\n") ttlstring.add(str(ontologyprefix)+":sensor rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":calibrationsetup rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":calibrationsetup rdfs:range "+str(ontologyprefix)+":Setup .\n") ttlstring.add(str(ontologyprefix)+":calibrationsetup rdfs:domain "+str(ontologyprefix)+":Calibration .\n") ttlstring.add(str(ontologyprefix)+":calibrationobject rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":calibrationobject rdfs:range "+str(ontologyprefix)+":CalibrationObject .\n") ttlstring.add(str(ontologyprefix)+":calibrationobject rdfs:domain "+str(ontologyprefix)+":Calibration .\n") ttlstring.add(str(ontologyprefix)+":capturingdevice rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":capturingdevice rdfs:range "+str(ontologyprefix)+":Tool .\n") ttlstring.add(str(ontologyprefix)+":capturingdevice rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":globalReferencePoint rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":globalReferencePoint rdfs:range "+str(ontologyprefix)+":GRP .\n") ttlstring.add(str(ontologyprefix)+":globalReferencePoint rdfs:domain "+str(ontologyprefix)+":MeasurementSeries .\n") ttlstring.add(str(ontologyprefix)+":referencePoint rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":referencePoint rdfs:range "+str(ontologyprefix)+":ReferencePoint .\n") ttlstring.add(str(ontologyprefix)+":referencePoint rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":partOf rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":partOf rdfs:range "+str(ontologyprefix)+":MeasurementCheck.\n") ttlstring.add(str(ontologyprefix)+":partOf rdfs:range "+str(ontologyprefix)+":MeasurementSetup.\n") ttlstring.add(str(ontologyprefix)+":partOf rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":usedBy rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":usedBy rdfs:range "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":usedBy rdfs:domain "+str(ontologyprefix)+":CapturingDevice .\n") ttlstring.add(str(ontologyprefix)+":setup rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":setup rdfs:range "+str(ontologyprefix)+":MeasurementSetup .\n") ttlstring.add(str(ontologyprefix)+":setup rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":verification rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":verification rdfs:range "+str(ontologyprefix)+":MeasurementCheck .\n") ttlstring.add(str(ontologyprefix)+":verification rdfs:domain "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":measurementSeries rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":measurementSeries rdfs:range "+str(ontologyprefix)+":MeasurementSeries .\n") ttlstring.add(str(ontologyprefix)+":measurementSeries rdfs:domain "+str(ontologyprefix)+":MeasurementProject .\n") ttlstring.add(str(ontologyprefix)+":measurement rdf:type owl:ObjectProperty .\n") ttlstring.add(str(ontologyprefix)+":measurement rdfs:range "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(ontologyprefix)+":measurement rdfs:domain "+str(ontologyprefix)+":MeasurementSeries .\n") ttlstring.add(str(ontologyprefix)+":Calibration rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":CalibrationObject rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Measurement rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":Measurement rdfs:label \"Measurement\".\n") ttlstring.add(str(ontologyprefix)+":Measurement rdfs:subClassOf prov:Entity .\n") ttlstring.add(str(ontologyprefix)+":MeasurementSeries rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":MeasurementSeries rdfs:label \"Measurement Series\".\n") ttlstring.add(str(ontologyprefix)+":MeasurementSeries rdfs:subClassOf prov:Entity .\n") ttlstring.add(str(ontologyprefix)+":MeasurementProjectMetadata rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":MeasurementProjectMetadata rdfs:label \"Measurement Project Metadata\".\n") ttlstring.add(str(ontologyprefix)+":MeasurementProjectMetadata rdfs:subClassOf prov:Entity .\n") ttlstring.add(str(ontologyprefix)+":MeasurementProject rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":MeasurementProject rdfs:label \"Measurement Project\".\n") ttlstring.add(str(ontologyprefix)+":MeasurementProject rdfs:subClassOf prov:Entity .\n") ttlstring.add(str(ontologyprefix)+":ReferencePoint rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":ReferencePoint rdfs:label \"reference point\".\n") ttlstring.add(str(ontologyprefix)+":ReferencePoint rdfs:subClassOf geo:Point . geo:Point rdfs:subClassOf geo:Geometry . geo:Geometry rdfs:subClassOf prov:Entity .\n") ttlstring.add(str(ontologyprefix)+":GRP rdf:type owl:Class .\n") ttlstring.add(str(ontologyprefix)+":GRP rdfs:label \"global reference point\".\n") ttlstring.add(str(ontologyprefix)+":GRP rdfs:subClassOf "+str(ontologyprefix)+":ReferencePoint .\n") ttlstring.add(str(ontologyprefix)+":Calibration rdfs:subClassOf prov:Entity .\n") ttlstring.add(str(ontologyprefix)+":Calibration rdfs:label \"Calibration\".\n") ttlstring.add(str(dataprefix)+":metadata_calculation_activity rdf:type "+provenancedict.get("activity")+" . \n") ttlstring.add(str(ontologyprefix)+":GRP_calculation_algorithm rdf:type "+str(ontologyprefix)+":Algorithm . \n") for pro in dict[projects]: #print(projkey) #print (pro[projinfokey]) if projinfokey in pro: if "prj_n" in pro[projinfokey]: labelprefix=pro[projinfokey]["prj_n"]["value"] projectname=pro[projinfokey]["prj_n"]["value"] ttlstring.add(str(dataprefix)+":"+str(projectid)+" rdf:type "+str(ontologyprefix)+":MeasurementProject .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_metadata rdf:type "+str(ontologyprefix)+":MeasurementProjectMetadata .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_metadata prov:wasGeneratedBy "+str(dataprefix)+":metadata_calculation_activity .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_metadata prov:wasAttributedTo "+str(dataprefix)+":"+script_name+".\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+" "+str(dataprefix)+":metadata "+str(dataprefix)+":"+str(projectid)+"_metadata .\n") #print(pro[projinfokey]) ttlstring=exportInformationFromIndAsTTL(pro[projinfokey],projectid,str(ontologyprefix)+":MeasurementProject",labelprefix,ttlstring) ttlstring.add(str(dataprefix)+":"+str(userid)+" rdf:type foaf:Person, "+provenancedict.get("agent")+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+" dc:creator "+str(dataprefix)+":"+str(userid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(userid)+" rdfs:label \"Creator of "+str(labelprefix)+"\" .\n") #print(pro[applicationkey]) if applicationkey in pro: for appl in pro[applicationkey]: if "script_name" in appl and "value" in appl["script_name"] and appl["script_name"]["value"]==script_name: ttlstring.add(str(dataprefix)+":"+script_name+" rdf:type "+str(ontologyprefix)+":Software .\n") ttlstring.add(str(dataprefix)+":"+script_name+" rdfs:label \""+str(script_label)+"\"@en .\n") ttlstring=exportInformationFromIndAsTTL(appl,script_name,str(ontologyprefix)+":Software",labelprefix,ttlstring) else: if "PROJECT.TYPE" in appl and "PROJECT.VERSION" in appl: softwareid=str(appl["PROJECT.TYPE"]["value"]).strip().replace(" ","_")+"_"+str(appl["PROJECT.VERSION"]["value"]).strip().replace(" ","_").replace(".","_").replace("-","_") elif "application_name" in appl and "application_build_information.version" in appl: softwareid=str(appl["application_name"]["value"]).strip().replace(" ","_")+"_"+str(appl["application_build_information.version"]["value"]).strip().replace(" ","_").replace(".","_").replace("-","_") else: softwareid="ATOS2016" ttlstring.add(str(dataprefix)+":"+softwareid+" rdf:type "+str(ontologyprefix)+":Software .\n") ttlstring.add(str(dataprefix)+":"+softwareid+" rdfs:label \""+str(softwareid).replace("_"," ")+"\"@en .\n") ttlstring=exportInformationFromIndAsTTL(appl,softwareid,str(ontologyprefix)+":Software",labelprefix,ttlstring) if projkey in pro: for msindex, project in enumerate(pro[projkey]): #print(project) ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" rdf:type "+str(ontologyprefix)+":MeasurementSeries .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+" "+str(ontologyprefix)+":measurementSeries "+str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" rdfs:label \"Measurement Series "+str(msindex)+" for "+str(labelprefix)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" prov:wasAttributedTo "+str(dataprefix)+":"+str(userid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_activity prov:wasAssociatedWith "+str(dataprefix)+":"+str(userid)+" .\n") if artifactURI!=None: ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_activity prov:used "+artifactURI+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_activity rdf:type prov:Activity .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_activity rdfs:label \"MS "+str(msindex)+" Activity ("+str(labelprefix)+")\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_activity rdfs:label \" Messreihe "+str(msindex)+" ("+str(labelprefix)+")\"@de .\n") if measurmentserieskey in project: #print(project[measurmentserieskey]) ttlstring=exportInformationFromIndAsTTL(project[measurmentserieskey],str(projectid)+"_ms_"+str(msindex),str(ontologyprefix)+":MeasurementSeries",labelprefix,ttlstring) if measurementToExport==None: #print ("measurementToExport==None:") if projkey in project: #print (project[projinfokey]) if projinfokey in project: if "prj_n" in project[projinfokey]: labelprefix=project[projinfokey]["prj_n"]["value"]+"Measurement Series "+str(msindex) ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" rdf:type "+str(ontologyprefix)+":MeasurementSeries, prov:Entity .\n") #print(project[projinfokey]) ttlstring=exportInformationFromIndAsTTL(project[measurmentserieskey],projectid+"_ms_"+str(msindex),str(ontologyprefix)+":MeasurementSeries",labelprefix,ttlstring) ttlstring.add(str(dataprefix)+":"+str(userid)+" rdf:type foaf:Person, "+provenancedict.get("agent")+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+" dc:creator "+str(dataprefix)+":"+str(userid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(userid)+" rdfs:label \"Creator of "+str(labelprefix)+"\" .\n") #print(ttlstring) if userkey in project: ttlstring=exportInformationFromIndAsTTL(project[userkey],userid,"foaf:Person",labelprefix,ttlstring) #print(ttlstring) #print(project[globalrefpointkey]) if globalrefpointkey in project and refpointkey in project[globalrefpointkey]: for index, grp in enumerate(project[globalrefpointkey][refpointkey]): if "point_id" in grp: index = grp["point_id"]["value"] #print (index) elif "r_id" in grp: index = grp["r_id"]["value"] #print (index) grpid=str(projectid)+"_ms_"+str(msindex)+"_grp"+str(index) #print (grpid) ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" "+str(ontologyprefix)+":globalReferencePoint "+str(dataprefix)+":"+str(grpid)+" . \n") ttlstring.add(str(dataprefix)+":"+str(grpid)+" rdf:type "+str(ontologyprefix)+":GRP .\n") ttlstring.add(str(dataprefix)+":"+str(grpid)+" rdfs:label \"GRP"+str(index)+" ( Measurement Series "+str(msindex)+")\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(grpid)+" rdfs:label \"GRP"+str(index)+" ( Messreihe "+str(msindex)+")\"@de .\n") ttlstring.add(str(dataprefix)+":"+str(grpid)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity prov:wasAssociatedWith "+str(ontologyprefix)+":GRP_calculation_algorithm. \n") ttlstring.add(str(ontologyprefix)+":GRP_calculation_algorithm prov:actedOnBehalfOf "+str(dataprefix)+":"+str(userid)+" . \n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity rdf:type "+provenancedict.get("activity")+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity rdfs:label \"GRP Calculation Activity\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity rdfs:label \"GRP Berechnung\"@de .\n") #print("265:"+str(project[globalrefpointkey])) #print("266: "+str(grp)) ttlstring=exportInformationFromIndAsTTL(grp,grpid,str(ontologyprefix)+":GRP",labelprefix+" MS "+str(msindex)+" GRP"+str(index),ttlstring) if "r_x" in grp and "r_y" in grp and "r_z" in grp: ttlstring.add(str(dataprefix)+":"+str(grpid)+" geo:asWKT \"POINT("+str(grp["r_x"]["value"])+" "+str(grp["r_y"]["value"])+" "+str(grp["r_z"]["value"])+")\"^^geo:wktLiteral .\n") elif "coordinate.x" in grp and "coordinate.y" in grp and "coordinate.z" in grp: ttlstring.add(str(dataprefix)+":"+str(grpid)+" geo:asWKT \"POINT("+str(grp["coordinate.x"]["value"])+" "+str(grp["coordinate.y"]["value"])+" "+str(grp["coordinate.z"]["value"])+")\"^^geo:wktLiteral .\n") if sensorskey in project: for seindex, sensor in enumerate(project[sensorskey]): sensorid=str(projectid)+"_sensor_"+str(seindex) calibid=str(sensorid)+"_calibration" mscheckid=str(sensorid)+"_mscheck" capturedevid=str(sensorid)+"_capturingdevice" ttlstring.add(str(dataprefix)+":"+str(sensorid)+" rdf:type "+str(ontologyprefix)+":Sensor, "+provenancedict.get("entity")+" .\n") ttlstring.add(str(dataprefix)+":"+str(sensorid)+" rdfs:label \"Sensor "+str(seindex)+" from "+str(projectname)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(sensorid)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(projectid)+" .\n") if capturingdevice in sensor: if "sensor_type" in sensor[capturingdevice] and sensor[capturingdevice]["sensor_type"]["value"] in sensorTypeToClass: ttlstring.add(str(dataprefix)+":"+str(capturedevid)+" rdf:type "+str(sensorTypeToClass[sensor[capturingdevice]["sensor_type"]["value"]])+" .\n") else: ttlstring.add(str(dataprefix)+":"+str(capturedevid)+" rdf:type "+str(ontologyprefix)+":CapturingDevice .\n") ttlstring.add(str(dataprefix)+":"+str(sensorid)+" "+str(ontologyprefix)+":capturingdevice "+str(dataprefix)+":"+str(capturedevid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(mscheckid)+" "+str(ontologyprefix)+":partOf "+str(dataprefix)+":"+str(sensorid)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(capturedevid)+" rdfs:label \""+labelprefix+"Sensor "+str(seindex)+" Capturing Device\"@en .\n") ttlstring=exportInformationFromIndAsTTL(sensor[capturingdevice],capturedevid,str(ontologyprefix)+":CapturingDevice",labelprefix+" Sensor "+str(seindex)+" Caturing Device",ttlstring) if calibkey in sensor: ttlstring.add(str(dataprefix)+":"+str(sensorid)+" "+str(ontologyprefix)+":calibration "+str(dataprefix)+":"+str(calibid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+" rdfs:label \"Sensor "+str(seindex)+" Calibration\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+" rdf:type "+str(ontologyprefix)+":Calibration .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity rdf:type prov:Activity .\n") if labelprefix=="": ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity rdfs:label \"MS "+str(seindex)+" Measurement "+str(msindex)+" Calibration Activity \"@en .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity rdfs:label \"Sensor "+str(seindex)+" Messvorgang "+str(msindex)+" Kalibrierung \"@de .\n") else: ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity rdfs:label \"MS "+str(seindex)+" Measurement "+str(msindex)+" Calibration Activity ("+str(labelprefix)+")\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity rdfs:label \"Sensor "+str(seindex)+" Messvorgang "+str(msindex)+" Kalibrierung ("+str(labelprefix)+")\"@de .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity prov:wasAssociatedWith "+str(dataprefix)+":"+str(userid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+" rdf:type "+str(ontologyprefix)+":Calibration .\n") if calobject in sensor[calibkey]: calobjid="" calobjname="" if "calibration_object_name" in sensor[calibkey][calobject]: #print(messung[calibkey][calobject]) calobjid=str(sensor[calibkey][calobject]["calibration_object_name"]["value"]).replace(" ","")+"_calibration_object" calobjname=str(sensor[calibkey][calobject]["calibration_object_name"]["value"]) else: calobjid=str(sensorid)+"_calibration_object" ttlstring.add(str(dataprefix)+":"+str(calibid)+" "+str(ontologyprefix)+":calibrationobject "+str(dataprefix)+":"+str(calobjid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(calobjid)+" rdfs:label \""+labelprefix+" Sensor "+str(seindex)+" Calibration Object"+"\" .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+"_activity prov:used "+str(dataprefix)+":"+str(calobjid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(calobjid)+" rdf:type "+str(ontologyprefix)+":CalibrationObject .\n") ttlstring=exportInformationFromIndAsTTL(sensor[calibkey][calobject],calobjid,str(ontologyprefix)+":CalibrationObject",calobjname+" Calibration Object",ttlstring) if calsetup in sensor[calibkey]: calsetupid=str(sensorid)+"_calibration_setup" ttlstring.add(str(dataprefix)+":"+str(calsetupid)+" rdf:type "+str(ontologyprefix)+":CalibrationSetup .\n") ttlstring.add(str(dataprefix)+":"+str(calsetupid)+" rdfs:label \""+labelprefix+" Sensor "+str(seindex)+" Calibration Setup"+"\" .\n") ttlstring.add(str(dataprefix)+":"+str(calibid)+" "+str(ontologyprefix)+":calibrationsetup "+str(dataprefix)+":"+str(calsetupid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(calsetupid)+" "+str(ontologyprefix)+":partOf "+str(dataprefix)+":"+str(calibid)+"_activity .\n") ttlstring=exportInformationFromIndAsTTL(sensor[calibkey][calsetup],calsetupid,str(ontologyprefix)+":CalibrationSetup",labelprefix+" Sensor "+str(seindex)+" Calibration Setup",ttlstring) if calproperties in sensor[calibkey]: ttlstring=exportInformationFromIndAsTTL(sensor[calibkey][calproperties],calibid,str(ontologyprefix)+":Calibration",labelprefix+" Sensor "+str(seindex)+" Calibration",ttlstring) ttlstring=exportInformationFromIndAsTTL(sensor[calibkey],calibid,str(ontologyprefix)+":Calibration",labelprefix+" Sensor "+str(seindex)+" Calibration",ttlstring) #print(ttlstring) if measurementskey in project: for index, messung in enumerate(project[measurementskey]): #print(index) if measurementToExport==None or measurementToExport==index: messungid=str(projectid)+"_ms_"+str(msindex)+"_measurement"+str(index) calibid=str(messungid)+"_calibration" capturedevid=str(messungid)+"_capturingdevice" mssetupid=str(messungid)+"_mssetup" mscheckid=str(messungid)+"_mscheck" ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" "+str(ontologyprefix)+":measurement "+str(dataprefix)+":"+str(messungid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(messungid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+" rdf:type "+str(ontologyprefix)+":Measurement .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+" rdfs:label \"MS "+str(msindex)+" Measurement "+str(index)+" for "+str(labelprefix)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+" prov:wasAttributedTo "+str(dataprefix)+":"+str(userid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(messungid)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity prov:wasAssociatedWith "+str(dataprefix)+":"+str(userid)+" .\n") if artifactURI!=None: ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity prov:used "+artifactURI+" .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity rdf:type prov:Activity .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity prov:used "+str(dataprefix)+":"+softwareid+" .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity rdfs:label \"MS "+str(msindex)+" Measurement "+str(index)+" Activity ("+str(labelprefix)+")\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity rdfs:label \"Messreihe "+str(msindex)+" Messvorgang "+str(index)+" ("+str(labelprefix)+")\"@de .\n") if measurementinformation in messung and "sensor_id" in messung[measurementinformation] and "value" in messung[measurementinformation]["sensor_id"]: ttlstring.add(str(dataprefix)+":"+str(messungid)+" "+str(ontologyprefix)+":sensor "+str(dataprefix)+":"+str(projectid)+"_sensor_"+str(messung[measurementinformation]["sensor_id"]["value"])+" .\n") if mssetup in messung: ttlstring.add(str(dataprefix)+":"+str(mssetupid)+" rdf:type "+str(ontologyprefix)+":MeasurementSetup .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+" "+str(ontologyprefix)+":setup "+str(dataprefix)+":"+str(mssetupid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(mssetupid)+" "+str(ontologyprefix)+":partOf "+str(dataprefix)+":"+str(messungid)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(mssetupid)+" rdfs:label \""+labelprefix+" MS "+str(msindex)+" Measurement "+str(index)+" Setup\"@en .\n") ttlstring=exportInformationFromIndAsTTL(messung[mssetup],mssetupid,str(ontologyprefix)+":MeasurementSetup",labelprefix+" MS "+str(msindex)+" Measurement "+str(index)+" Setup",ttlstring) if mscheck in messung: ttlstring.add(str(dataprefix)+":"+str(mscheckid)+" rdf:type "+str(ontologyprefix)+":MeasurementCheck .\n") ttlstring.add(str(dataprefix)+":"+str(messungid)+" "+str(ontologyprefix)+":verification "+str(dataprefix)+":"+str(mscheckid)+" .\n") ttlstring.add(str(dataprefix)+":"+str(mscheckid)+" prov:used "+str(dataprefix)+":"+str(messungid)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(mscheckid)+" rdfs:label \""+labelprefix+" MS "+str(msindex)+" Measurement "+str(index)+" Measurement Check\"@en .\n") ttlstring=exportInformationFromIndAsTTL(messung[mscheck],mscheckid,str(ontologyprefix)+":MeasurementCheck",labelprefix+" MS "+str(msindex)+" Measurement "+str(index)+" Measurement Check",ttlstring) ttlstring=exportInformationFromIndAsTTL(messung[measurementinformation],messungid,str(ontologyprefix)+":Measurement",labelprefix+" MS "+str(msindex)+" Measurement "+str(index),ttlstring) #print(messung) index2=0 index2oid = 0 messungindex=index if refpointkey in messung: for index,rp in enumerate(messung[refpointkey]): if "r_id" in rp: index2 = rp["r_id"]["value"] elif "reference_point_id" in rp: index2 = rp["reference_point_id"]["value"] else: index2 = "_noid_" + str(index2oid) index2oid+=1 #print("aaa:"+str(rp)) rpuri=str(messungid)+"_rp"+str(index2) ttlstring.add(str(dataprefix)+":"+str(messungid)+" "+str(ontologyprefix)+":referencePoint "+str(dataprefix)+":"+str(rpuri)+" . \n") ttlstring.add(str(dataprefix)+":"+str(rpuri)+" rdf:type "+str(ontologyprefix)+":ReferencePoint .\n") ttlstring.add(str(dataprefix)+":"+str(rpuri)+" rdfs:label \"RP"+str(index2)+" ("+str(labelprefix)+" MS "+str(msindex)+" Measurement "+str(messungindex)+")\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(rpuri)+" rdfs:label \"RP"+str(index2)+" ("+str(labelprefix)+" Messreihe "+str(msindex)+" Messung "+str(messungindex)+")\"@de .\n") ttlstring=exportInformationFromIndAsTTL(rp,rpuri,str(ontologyprefix)+":ReferencePoint",labelprefix+" MS "+str(msindex)+" Measurement "+str(index)+" RP"+str(index2),ttlstring) if "r_x" in rp and "r_y" in rp and "r_z" in rp: ### atos v6.2 ttlstring.add(str(dataprefix)+":"+str(rpuri)+" geo:asWKT \"POINT("+str(rp["r_x"]["value"])+" "+str(rp["r_y"]["value"])+" "+str(rp["r_z"]["value"])+")\"^^geo:wktLiteral .\n") ###atos 2016 elif "reference_point_coordinate.x" in rp and "reference_point_coordinate.y" in rp and "reference_point_coordinate.z" in rp: ttlstring.add(str(dataprefix)+":"+str(rpuri)+" geo:asWKT \"POINT("+str(rp["reference_point_coordinate.x"]["value"])+" "+str(rp["reference_point_coordinate.y"]["value"])+" "+str(rp["reference_point_coordinate.z"]["value"])+")\"^^geo:wktLiteral .\n") #print(rp) ttlstring.add(str(dataprefix)+":"+str(rpuri)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(messungid)+"_activity . \n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_activity rdfs:label \"MS "+str(msindex)+" Measurement "+str(index)+" Activity\"@en. \n") ttlstring.add(str(dataprefix)+":"+str(rpuri)+" prov:wasAttributedTo "+str(dataprefix)+":"+str(messungid)+"_algorithm . \n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_algorithm rdfs:label \"MS "+str(msindex)+" Measurement "+str(index)+" Algorithm\"@en. \n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_algorithm rdf:type "+str(ontologyprefix)+":Algorithm . \n") ttlstring.add(str(dataprefix)+":"+str(messungid)+"_algorithm prov:actedOnBehalfOf "+str(dataprefix)+":"+str(userid)+" . \n") #print(rpuri) if measurementToExport==None and index2!=None: #print("grp loop") if globalrefpointkey in project: if refpointkey in project[globalrefpointkey]: for index, point in enumerate(project[globalrefpointkey][refpointkey]): if referencepointid in rp and globalreferencepointid in point and rp[referencepointid]["value"]==point[globalreferencepointid]["value"]: if "point_id" in point: index = point["point_id"]["value"] #print (index) elif "r_id" in point: index = point["r_id"]["value"] #print (index) #print(str(rp[referencepointid]["value"])+" - "+str(point[globalreferencepointid]["value"])) #print(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp"+str(index)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(rpuri)+" . \n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp"+str(index)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(rpuri)+" . \n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity rdf:type prov:Activity . \n") ttlstring.add(str(dataprefix)+":"+str(projectid)+"_ms_"+str(msindex)+"_grp_calculation_activity prov:used "+str(dataprefix)+":"+str(rpuri)+" . \n") #print("next") if mesheskey in pro: for index, mesh in enumerate(pro[mesheskey]): meshid=str(projectid)+"_mesh_"+str(index) ttlstring.add(str(dataprefix)+":"+str(meshid)+" rdf:type "+str(ontologyprefix)+":Mesh, "+provenancedict.get("entity")+" .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+" rdfs:label \"Mesh "+str(meshid)+" from "+str(projectname)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(projectid)+" .\n") lastprocid="" if meshprocessingkey in mesh: #print(mesh[meshprocessingkey]) for indexprocstep, procstep in enumerate(mesh[meshprocessingkey]): ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(0)+"_activity rdf:type prov:Activity .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(0)+"_activity rdfs:label \"Mesh Creation Activity "+str(0)+": "+str(procstep["processname"]["value"])+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(0)+"_activity rdfs:label \"Mesherstellungsschritt "+str(0)+": ("+str(procstep["processname"]["value"])+")\"@de .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(0)+"_activity prov:used "+str(dataprefix)+":"+str(projectid)+" .\n") if "setup" in procstep: ttlstring=exportInformationFromIndAsTTL(procstep["setup"],str(meshid)+"_creation_"+str(0)+"_activity","prov:Activity","Mesh Creation Activity "+procstep["processname"]["value"],ttlstring) if "postprocessing" in procstep: for indexpostproc, postproc in enumerate(procstep["postprocessing"]): ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity rdf:type prov:Activity .\n") if "processname" in postproc and "value" in postproc["processname"]: ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity rdfs:label \"Mesh Creation Activity "+str(indexpostproc+1)+": "+str(postproc["processname"]["value"])+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity rdfs:label \"Mesherstellungsschritt "+str(indexpostproc+1)+": "+str(postproc["processname"]["value"])+"\"@de .\n") else: ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity rdfs:label \"Mesh Creation Activity "+str(indexpostproc+1)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity rdfs:label \"Mesherstellungsschritt "+str(indexpostproc+1)+"\"@de .\n") if indexpostproc==0: ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity prov:wasInformedBy "+str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc)+"_activity .\n") if indexpostproc!=0: ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc)+" .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity .\n") else: ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity prov:wasInformedBy "+str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc)+"_activity .\n") if indexpostproc!=0: ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" prov:wasDerivedFrom "+str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc)+" .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc)+" prov:wasInvalidatedBy "+str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity prov:used "+str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc)+" .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" rdfs:label \"Mesh "+str(meshid)+" Intermediate Result "+str(indexpostproc)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" rdfs:label \"Mesh "+str(meshid)+" Zwischenergebnis "+str(indexpostproc)+"\"@en .\n") ttlstring.add(str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1)+" rdf:type "+str(ontologyprefix)+":IntermediateMeshResult .\n") lastprocid=str(dataprefix)+":"+str(meshid)+"_intermediate_"+str(indexpostproc+1) if "processname" in postproc and "value" in postproc["processname"]: ttlstring=exportInformationFromIndAsTTL(postproc,str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity","prov:Activity","Mesh Creation Activity "+str(indexpostproc)+": "+str(postproc["processname"]["value"])+" ",ttlstring) else: ttlstring=exportInformationFromIndAsTTL(postproc,str(meshid)+"_creation_"+str(indexpostproc+1)+"_activity","prov:Activity","Mesh Creation Activity "+str(indexpostproc)+" ",ttlstring) else: ttlstring.add(str(dataprefix)+":"+str(meshid)+" prov:wasGeneratedBy "+str(dataprefix)+":"+str(meshid)+"_creation_"+str(0)+"_activity .\n") if lastprocid!="": ttlstring.add(str(dataprefix)+":"+str(meshid)+" owl:sameAs "+str(lastprocid)+" .\n") ttlstring=exportInformationFromIndAsTTL(mesh[meshinfokey],meshid,str(ontologyprefix)+":Mesh",labelprefix+" Mesh Attribute ",ttlstring) return ttlstring #################################################################################################### # ######### Methode zum Speichern der Skript Informationen # metadaten python-script def script_version(): # Zeitpunkt now = datetime.datetime.now() now_string = str(now.year)+"-"+str(now.month).zfill(2)+"-"+str(now.day).zfill(2)+'T'+str(now.hour).zfill(2)+':'+str(now.minute).zfill(2)+':'+str(now.second).zfill(2) # def dictionary dic_script = {} dic_script["github"]={} dic_script["github"]["key_deu"]="GitHub Repository" dic_script["github"]["key_eng"]="GitHub Repository" dic_script["github"]["value"]="http://github.com/i3mainz/3dcap-md-gen" dic_script["github"]["value_type"]="str" dic_script["github"]["uri"]="http://www.wikidata.org/entity/Q364" dic_script["github"]["from_application"]="false" dic_script["github_release"]={} dic_script["github_release"]["key_deu"]="GitHub Release" dic_script["github_release"]["key_eng"]="GitHub Release" dic_script["github_release"]["value"]=github_release dic_script["github_release"]["value_type"]="str" dic_script["github_release"]["uri"]="http://www.wikidata.org/entity/Q20631656" dic_script["github_release"]["from_application"]="false" dic_script["script_name"]={} dic_script["script_name"]["key_deu"]="Python Skript Name" dic_script["script_name"]["key_eng"]="Python Script name" dic_script["script_name"]["value"]=script_name dic_script["script_name"]["value_type"]="str" dic_script["script_name"]["uri"]="http://www.wikidata.org/entity/Q15955723" dic_script["script_name"]["from_application"]="false" dic_script["start_time_script"]={} dic_script["start_time_script"]["key_deu"]="Skriptausführungszeit" dic_script["start_time_script"]["key_eng"]="Script execution time" dic_script["start_time_script"]["value"]=now_string dic_script["start_time_script"]["value_type"]="dateTime" dic_script["start_time_script"]["uri"]=provnamespace+"startedAtTime" dic_script["start_time_script"]["from_application"]="false" return dic_script ######################## GET METADATA ############################### ######################## PROJECTS ############################### ######## project / measurement series ############### input_folder = r"F:\3d-data\atos-v62_project" for root, dirs, files in os.walk(input_folder): for atos_file in files: if os.path.splitext(atos_file)[-1]==".session": gom.script.sys.load_session ( files=[root + "/" + atos_file], mode=gom.List ('delete', ['append', 'delete']), remember_file_name=True) dic_prj ={} list_prj=[] prj = 0 while prj < 1: dic_dig = {} list_projects = [] #### application #### dic_dig_app = {} list_app = [] #### project #### dic_dig_project = {} ## Creates a dictionary / JSON object about information given from the respective software. # @param beschreibung the description of the parameter of the software in German # @param description the description of the parameter of the software in English # @param keyword # @param einheit The unit to be associated with the software parameter # @param uri The URI to be associated with the software parameter # @param measurementclass # @param application indicates if the parameter is a software parameter or an external parameter def infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = gom.app.get(keyword) dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass dir["value_type"] = type(gom.app.get(keyword)).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application # if keyword = 'PROJECT.DATE' - change datetype if keyword == 'PROJECT.DATE': value_new = dir["value"] capturetime = time.strptime(value_new, "%m/%d/%y") dir["value"] = (time.strftime("%Y-%m-%d",capturetime)) dir["value_type"] = "date" # store in dictionary if dir["value"] != None: if len(str(dir["value"])) != 0: dic_dig_app[keyword]= {} dic_dig_app[keyword]= dir def infos_project (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == 'acquisition_technology': dir["value"] = 'fringe projection' dir["value_type"] = type(dir["value"]).__name__ elif keyword == 'project_name': try: value = gom.app.get('ACTUAL_SESSION_FILE') dir["value"] = (value.split("\\")[-1].replace(".session","")) dir["value_type"] = type(dir["value"]).__name__ except: dir["value"] = None dir["value_type"] = type(dir["value"]).__name__ else: dir["value"] = gom.app.get(keyword) dir["value_type"] = type(gom.app.get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if keyword == 'PROJECT.DATE': value_new = dir["value"] capturetime = time.strptime(value_new, "%m/%d/%y") dir["value"] = (time.strftime("%Y-%m-%d",capturetime)) dir["value_type"] = "date" # store in dictionary if dir["value"] != None: if len(str(dir["value"])) != 0: dic_dig_project[keyword]= {} dic_dig_project[keyword]= dir ############ get values ############# # Aktuelles Datum beschreibung = "Aktuelles Datum" description = None keyword = 'PROJECT.DATE' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Applikationsname beschreibung = "Applikationsname" description = "Application name" keyword = 'PROJECT.TYPE' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Applikationsversion beschreibung = "Applikationsversion" description = "Application version" keyword = 'PROJECT.VERSION' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Heimatverzeichnis beschreibung = "Heimatverzeichnis" description = "Home directory" keyword = 'HOME' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Projektverzeichnis beschreibung = "Projektverzeichnis" description = "Project directory" keyword = 'PROJECTDIR' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Sitzungsname (komplett) beschreibung = "Sitzungsname (komplett)" description = "Session name (complete)" keyword = 'ACTUAL_SESSION_FILE' einheit = None uri= None measurementclass = None application = "true" infos_project (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Projektname (komplett) beschreibung = "Projektname" description = "Project name" keyword = 'project_name' einheit = None uri= 'rdfs:label' measurementclass = None application = "false" infos_project (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Softwarsprache beschreibung = "Softwaresprache" description = "Software language" keyword = 'LANGUAGE' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Softwareverzeichnis beschreibung = "Softwareverzeichnis" description = "Software directory" keyword = 'SOFTWAREDIR' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Verzeichnis für temporäre Daten beschreibung = "Verzeichnis für temporäre Daten" description = "Temporary directory" keyword = 'TEMPDIR' einheit = None uri= None measurementclass = None application = "true" infos_app (beschreibung, description, keyword, einheit, uri, measurementclass, application) ### MEASUREMENT SERIES (in atos v6.2 project information) ############################################################################################# p = 0 while p < len( gom.app.projects): #### measurment series #### dic_project = {} #### measurment_series_information #### dic_prj_info = {} ##### calibration / sensor ID sensor_id = 0 ## Creates a dictionary / JSON object about information given from the respective software. # @param beschreibung the description of the parameter of the software in German # @param description the description of the parameter of the software in English # @param keyword # @param einheit The unit to be associated with the software parameter # @param uri The URI to be associated with the software parameter # @param measurementclass # @param application indicates if the parameter is a software parameter or an external parameter def infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = gom.app.projects[p].get(keyword) dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass dir["value_type"] = type(gom.app.projects[p].get(keyword)).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_prj_info[keyword] = {} dic_prj_info[keyword] = dir if not includeonlypropswithuri: dic_prj_info[keyword] = {} dic_prj_info[keyword] = dir ############ get values ############# # Eckmasksierung beschreibung = "Eckmaskierung" description = "Corner mask size" keyword = 'prj_corner_mask' einheit = om+"percent" uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Ellipsenqualität beschreibung = "Ellipsenqualität" description = "Ellipse quality" keyword = 'prj_ellipse_quality' einheit = om+"pixel" uri=ontologynamespace+"EllipseQuality" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Expansionskoeffizient beschreibung = "Expansionskoeffizient" description = "Expansion coefficient" keyword = 'prj_ref_frame_exp_coeff' einheit = None uri= ontologynamespace+"ExpansionCoefficient" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kalibrierungstemperatur Rahmen beschreibung = "Kalibrierungstemperatur Rahmen" description = "Frame calibration temperature" keyword = 'prj_ref_frame_cal_temperature' einheit = om+"degreeCelsius" uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Feinausrichtung beschreibung = "Feinausrichtung" description = "Alignment" keyword = 'prj_alignment' einheit = None uri=ontologynamespace+"Alignment" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Lichtfaktorkalibrierungs-Umgebung beschreibung = "Lichtfaktorkalibrierungs-Umgebung" description = "Light factor calibration enviroment" keyword = 'prj_light_factor_calibration_environment' einheit = None uri=ontologynamespace+"LightFactorCalibrationEnvironment" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. Lichtänderung beschreibung = "Max. Lichtänderung" description = None keyword = 'prj_max_lighting' einheit = "Grauwerte" #gehen von 0 bis 100 uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. Sekunden zwischen Lichtfaktorkalibrierung beschreibung = "Max. Sekunden zwischen Lichtfaktorkalibrierung" description = None keyword = 'prj_max_sec_between_light_factor_calibration' einheit = om+"seconds-Time" uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. Sensorbewegung beschreibung = "Max. Sensorbewegung" description = "Max. sensor movement" keyword = 'prj_max_movement' einheit = om+"pixel" uri= ontologynamespace+ "MaximumSensorMovement" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Messtemperatur beschreibung = "Messtemperatur" description = "Measurement temperature" keyword = 'prj_measurement_temperature' einheit = om+"degreeCelsius" uri=ontologynamespace+"MeasurementTemperature" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Min. Modulationsschwelle beschreibung = "Min. Modulationsschwelle" description = None keyword = 'prj_mod_threshold' einheit = "Grauwerte" #gehen von 0 bis 255 uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Nah zum Sensor beschreibung = "Nah zum Sensor" description = "Close to sensor" keyword = 'prj_depth_min' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Phasensteps beschreibung = "Phasensteps" description = "Phase steps" keyword = 'prj_phase_steps' einheit = None uri=ontologynamespace+"numberOfPhaseSteps" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Projekt Basisverzeichnis beschreibung = "Projekt Basisverzeichnis" description = None keyword = 'prj_directory' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Projektname beschreibung = "Projektname" description = "Project name" keyword = 'prj_n' uri= 'rdfs:label' einheit = None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Referenzpunktfarbe beschreibung = "Referenzpunktfarbe" description = None keyword = 'prj_ref_color' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Referenzpunktgröße beschreibung = "Referenzpunktgröße" description = None keyword = 'prj_ref_type' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Referenzpunktvorlage-Name beschreibung = "Referenzpunktvorlage-Name" description = None keyword = 'prj_ref_frame_template_name' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Bewegungskontrolle an? beschreibung = "Status: Bewegungskontrolle an?" description = "State: enable movement check?" keyword = 'prj_check_movement' einheit = None uri=ontologynamespace+"movementControlActivated" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Daten von einer Kamera? beschreibung = "Status: Daten von einer Kamera?" description = None keyword = 'prj_one_cam' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Feinausrichtung berechnen? beschreibung = "Status: Feinausrichtung berechnen?" description = "State: alignment computed?" keyword = 'prj_aligned' einheit = None uri=ontologynamespace+"areMeasurementsAligned" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Lichtkontrolle an? beschreibung = "Status: Lichtkontrolle an?" description = "State: enable lighting check?" keyword = 'prj_check_lighting' einheit = None uri=ontologynamespace+"lightControlActivated" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkte an Glanzstellen berechnen? beschreibung = "Status: Punkte an Glanzstellen berechnen?" description = "State: use shiny points?" keyword = 'prj_shiny_points' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkte bei starken Grauwertübergängen verwendet? beschreibung = "Status: Punkte bei starken Grauwertübergängen verwendet?" description = None keyword = 'prj_col_trans' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Ref.-Punktgröße verwendet? beschreibung = "Status: Ref.-Punktgröße verwendet?" description = None keyword = 'prj_use_ref_type' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Referenzpunkte einsammeln? beschreibung = "Status: Referenzpunkte einsammeln?" description = None keyword = 'prj_add_ref' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Transformationskontrolle an? beschreibung = "Status: Transformationskontrolle an?" description = "State: enable transformation check?" keyword = 'prj_check_trafo' einheit = None uri=ontologynamespace+"transformationCheck" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: alle Entfaltungschecks verwendet? (ATOS II / III)? beschreibung = "Status: alle Entfaltungschecks verwendet? (ATOS II / III)?" description = None keyword = 'prj_use_all_unwrap_checks' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: kleinste Modulationsmakse verwendet (nur ATOS III)? beschreibung = "Status: kleinste Modulationsmakse verwendet (nur ATOS III)?" description = None keyword = 'prj_smallest_mod_mask' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: lange Dreiecke verwendet? beschreibung = "Status: lange Dreiecke verwendet?" description = "State: use long triangles?" keyword = 'prj_long_triangles' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: starkes Umgebungslicht? beschreibung = "Status: starkes Umgebungslicht?" description = "State: strong ambient light?" keyword = 'prj_ambient_light' einheit = None uri=ontologynamespace+"strongAmbientLight" measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Tiefenbeschränkung beschreibung = "Tiefenbeschränkung" description = None keyword = 'prj_depth' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Vorschau-Raster beschreibung = "Vorschau-Raster" description = None keyword = 'prj_raster' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Weiter entfernt vom Sensor beschreibung = "Weiter entfernt vom Sensor" description = None keyword = 'prj_depth_max' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Abteilung beschreibung = gom.app.projects[p].get ('d_department') description = "Abteilung" keyword = 'c_department' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Ausrichtung beschreibung = gom.app.projects[p].get ('d_alignment') description = "Ausrichtung" keyword = 'c_alignment' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Bauteil beschreibung = gom.app.projects[p].get ('d_part') description = "Part" keyword = 'c_part' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Chargen-Nr. beschreibung = gom.app.projects[p].get ('d_charge_nr') description = "Charge number" keyword = 'c_charge_nr' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Datenstand beschreibung = gom.app.projects[p].get ('d_version') description = "Version" keyword = 'c_version' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Datum beschreibung = gom.app.projects[p].get ('d_date') description = "Date" keyword = 'c_date' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Firma beschreibung = gom.app.projects[p].get ('d_company') description = "Company" keyword = 'c_company' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kommentar 1 beschreibung = gom.app.projects[p].get ('d_comment1') description = "Comment 1" keyword = 'c_comment1' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kommentar 2 beschreibung = gom.app.projects[p].get ('d_comment2') description = "Comment 2" keyword = 'c_comment2' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kommentar 3 beschreibung = gom.app.projects[p].get ('d_comment3') description = "Comment 3" keyword = 'c_comment3' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Ort beschreibung = gom.app.projects[p].get ('d_location') description = "Location" keyword = 'c_location' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Projekt beschreibung = gom.app.projects[p].get ('d_project') description = "Project" keyword = 'c_project' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Prüfer beschreibung = gom.app.projects[p].get ('d_inspector') description = "Inspector" uri= None keyword = 'c_inspector' einheit = None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # System beschreibung = gom.app.projects[p].get ('d_system') description = "System" keyword = 'c_system' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Teile-Nr. beschreibung = gom.app.projects[p].get ('d_part_nr') description = "Part number" keyword = 'c_part_nr' einheit = None uri=None measurementclass = None application = "true" infos_projects (beschreibung, description, keyword, einheit, uri, measurementclass, application) ### GLOBALE REFERENZPUNKTE ############################################################################################# list_grp = [] grp = 0 while grp < len(gom.app.projects[p].gref_points): dic_grp = {} ## Creates a dictionary / JSON object about information given from the respective software. # @param beschreibung the description of the parameter of the software in German # @param description the description of the parameter of the software in English # @param keyword # @param einheit The unit to be associated with the software parameter # @param uri The URI to be associated with the software parameter # @param measurementclass # @param application indicates if the parameter is a software parameter or an external parameter def infos_grp(beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = gom.app.projects[p].gref_points[grp].get(keyword) dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass dir["value_type"] = type(gom.app.projects[p].gref_points[grp].get(keyword)).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_grp[keyword]= {} dic_grp[keyword]= dir if not includeonlypropswithuri: dic_grp[keyword]= {} dic_grp[keyword]= dir ############ get values ############# # Punkt ID beschreibung = "Punkt ID" description = "Point ID" keyword = 'r_id' einheit = None uri= ontologynamespace+'PointID' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktekennzeichnung (Messung) beschreibung = "Punktekennzeichnung (Messung)" description = "Point flags (measurement)" keyword = 'r_state' einheit = None uri= ontologynamespace+'PointMeasurementState' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktekennzeichnung (Project) beschreibung = "Punktekennzeichnung (Project)" description = "Point flags (project)" keyword = 'r_pstate' einheit = None uri=ontologynamespace+'PointProjectState' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkt ist gemeinsamer Referenzpunkt? beschreibung = "Status: Punkt ist gemeinsamer Referenzpunkt?" description = "State: point is common ref.point?" keyword = 'r_common' einheit = None uri=ontologynamespace+'commonReferencepoint' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: selektiert? beschreibung = "Status: selektiert?" description = "State: selected?" keyword = 'selected' einheit = None uri=None measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # x-coordinate beschreibung = "x-Koordinate" description = "x-coordinate" keyword = 'r_x' einheit = om+"millimetre" uri=ontologynamespace+'xCoordinate' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # y-coordinate beschreibung = "y-Koordinate" description = "y-coordinate" keyword = 'r_y' einheit = om+"millimetre" uri=ontologynamespace+'yCoordinate' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # z-coorinate beschreibung = "z-Koordinate" description = "z-coordinate" keyword = 'r_z' einheit = om+"millimetre" uri=ontologynamespace+'zCoordinate' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Point deviation beschreibung = "Punktabweichung" description = "Point deviation" keyword = 'r_dev' einheit = om+"millimetre" uri=ontologynamespace+'PointMeasurementDeviation' measurementclass = None application = "true" infos_grp (beschreibung, description, keyword, einheit, uri, measurementclass, application) if len(dic_grp) > 0: list_grp.append(dic_grp) grp = grp + 1 ### MEASUREMENTS ############################################################################################# list_sensors = [] temp_list_cal_time = [] # hier kommt nur der Zeitpunkt der Kalibrierung rein, für spätere Abfrage list_measurements = [] m = 0 while m < len(gom.app.projects[p].measurements): dic_sensor = {} dic_measurement = {} dic_measurement_sensor = {} dic_measurement_cal = {} dic_measurement_setup ={} dic_measurement_check ={} dic_measurement_info = {} dic_measurement_cal_calobject = {} dic_measurement_cal_calsetup = {} dic_measurement_cal_calresults = {} ### Information added manually ### # recording technology # nur wenn es auch Messungen gibt beschreibung = "Aufnahmeverfahren" description = "acquisition technology" keyword = 'acquisition_technology' einheit = None uri= ontologynamespace+"AcquisitionTechnology" measurementclass = ontologynamespace+"FringeProjection" application = "false" infos_project (beschreibung, description, keyword, einheit, uri, measurementclass, application) ## Creates a dictionary / JSON object about information given from the respective software. # @param beschreibung the description of the parameter of the software in German # @param description the description of the parameter of the software in English # @param keyword # @param einheit The unit to be associated with the software parameter # @param uri The URI to be associated with the software parameter # @param measurementclass # @param application indicates if the parameter is a software parameter or an external parameter def measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application, value=None): dir = {} dir.clear() # zeitangaben if keyword == 'm_cal_time': value = gom.app.projects[p].measurements[m].get(keyword) if value != None: capturetime = time.strptime(value, "%a %b %d %H:%M:%S %Y") dir["value"] = (time.strftime("%Y-%m-%dT%H:%M:%S",capturetime)) elif keyword =='theoretical_measuring_point_distance': dir["value"] = value else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) if keyword == 'm_cal_time': dir["value_type"] = "dateTime" elif keyword =='theoretical_measuring_point_distance': dir["value_type"] = type(value).__name__ else: dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_sensor[keyword]= {} dic_measurement_sensor[keyword]= dir if not includeonlypropswithuri: dic_measurement_sensor[keyword] = {} dic_measurement_sensor[keyword] = dir def measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == "invert m_one_cam": dir["value"] = gom.app.projects[p].measurements[m].get('m_one_cam') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_one_cam')).__name__ elif keyword == "invert m_shiny_points": dir["value"] = gom.app.projects[p].measurements[m].get('m_shiny_points') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_shiny_points')).__name__ else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_setup[keyword] = {} dic_measurement_setup[keyword] = dir if not includeonlypropswithuri: dic_measurement_setup[keyword] = {} dic_measurement_setup[keyword] = dir def measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == "invert m_one_cam": dir["value"] = gom.app.projects[p].measurements[m].get('m_one_cam') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_one_cam')).__name__ elif keyword == "invert m_shiny_points": dir["value"] = gom.app.projects[p].measurements[m].get('m_shiny_points') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_shiny_points')).__name__ else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_check[keyword] = {} dic_measurement_check[keyword] = dir if not includeonlypropswithuri: dic_measurement_check[keyword] = {} dic_measurement_check[keyword] = dir def infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == "invert_m_one_cam": dir["value"] = gom.app.projects[p].measurements[m].get('m_one_cam') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_one_cam')).__name__ elif keyword == "invert_m_shiny_points": dir["value"] = gom.app.projects[p].measurements[m].get('m_shiny_points') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_shiny_points')).__name__ elif keyword == "invert_m_col_trans": dir["value"] = gom.app.projects[p].measurements[m].get('m_col_trans') if dir["value"] == True: dir["value"] = False if dir["value"] == False: dir["value"] = True dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_col_trans')).__name__ elif keyword == "adapted_m_trafo_mode": dir["value"] = gom.app.projects[p].measurements[m].get('m_trafo_mode') if dir["value"] == "automatic": dir["value"] = "reference_points" dir["value_type"] = type(gom.app.projects[p].measurements[m].get('m_trafo_mode')).__name__ else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_info[keyword] = {} dic_measurement_info[keyword] = dir if not includeonlypropswithuri: dic_measurement_info[keyword] = {} dic_measurement_info[keyword] = dir def cal_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == 'm_cal_time': value = gom.app.projects[p].measurements[m].get(keyword) if value != None: capturetime = time.strptime(value, "%a %b %d %H:%M:%S %Y") dir["value"] = (time.strftime("%Y-%m-%dT%H:%M:%S",capturetime)) else: dir["value"] = None else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) if keyword == 'm_cal_time': dir["value_type"] = "dateTime" else: dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_cal[keyword]= {} dic_measurement_cal[keyword]= dir if not includeonlypropswithuri: dic_measurement_cal[keyword]= {} dic_measurement_cal[keyword]= dir def cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == 'm_cal_time': value = gom.app.projects[p].measurements[m].get(keyword) if value != None: capturetime = time.strptime(value, "%a %b %d %H:%M:%S %Y") dir["value"] = (time.strftime("%Y-%m-%dT%H:%M:%S",capturetime)) else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) if keyword == 'm_cal_time': dir["value_type"] = "dateTime" else: dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_cal_calobject[keyword]= {} dic_measurement_cal_calobject[keyword]= dir if not includeonlypropswithuri: dic_measurement_cal_calobject[keyword]= {} dic_measurement_cal_calobject[keyword]= dir def cal_measurements_calsetup (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() if keyword == 'm_cal_time': value = gom.app.projects[p].measurements[m].get(keyword) if value != None: capturetime = time.strptime(value, "%a %b %d %H:%M:%S %Y") dir["value"] = (time.strftime("%Y-%m-%dT%H:%M:%S",capturetime)) else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) if keyword == 'm_cal_time': dir["value_type"] = "dateTime" else: dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_cal_calsetup[keyword]= {} dic_measurement_cal_calsetup[keyword]= dir if not includeonlypropswithuri: dic_measurement_cal_calsetup[keyword]= {} dic_measurement_cal_calsetup[keyword]= dir def cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() #print ("-----") #print (keyword) if keyword == 'm_cal_time': value = gom.app.projects[p].measurements[m].get(keyword) #print (value) if value != None: capturetime = time.strptime(value, "%a %b %d %H:%M:%S %Y") dir["value"] = (time.strftime("%Y-%m-%dT%H:%M:%S",capturetime)) dir["value_type"] = "dateTime" else: dir["value"] = value dir["value_type"] = type(value).__name__ else: dir["value"] = gom.app.projects[p].measurements[m].get(keyword) dir["value_type"] = type(gom.app.projects[p].measurements[m].get(keyword)).__name__ dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_cal_calresults[keyword]= {} dic_measurement_cal_calresults[keyword]= dir if not includeonlypropswithuri: dic_measurement_cal_calresults[keyword]= {} dic_measurement_cal_calresults[keyword]= dir ############ get values ############# # Aktuelle Kameratemperatur beschreibung = "Aktuelle Kameratemperatur" description = None keyword = 'm_x2006_cam_temp_act' einheit = om+"degreeCelsius" uri = None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Belichtungen beschreibung = "Anzahl der Belichtungen" description = "Number of shutter times" keyword = 'm_shutter_times' einheit = None uri= ontologynamespace+"numberOfShutterTimes" measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Punkte beschreibung = "Anzahl der Punkte" description = None keyword = 'm_points' einheit = None uri= ontologynamespace+"numberOfPoints" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Referenzpunkte beschreibung = "Anzahl der Referenzpunkte" description = None keyword = 'm_num_rp' einheit = None uri= ontologynamespace+"numberOfReferencePoints" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Transformationspunkte beschreibung = "Anzahl der Transformationspunkte" description = "Number of reference points" keyword = 'm_num_trafo_points' einheit = None uri= ontologynamespace+"numberOfTransformationPoints" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit 0 beschreibung = "Belichtungszeit 0" description = "Shutter time" keyword = 'm_shutter_time0' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit 1 beschreibung = "Belichtungszeit 1" description = "Shutter time" keyword = 'm_shutter_time1' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit 2 beschreibung = "Belichtungszeit 2" description = "Shutter time" keyword = 'm_shutter_time2' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit 3 beschreibung = "Belichtungszeit 3" description = "Shutter time" keyword = 'm_shutter_time3' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit 4 beschreibung = "Belichtungszeit 4" description = "Shutter time" keyword = 'm_shutter_time4' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtugnszeit 5 beschreibung = "Belichtungszeit 5" description = "Shutter time" keyword = 'm_shutter_time5' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit 6 beschreibung = "Belichtungszeit 6" description = "Shutter time" keyword = 'm_shutter_time6' einheit = om+"seconds-Time" uri= exifnamespace+'exposureTime' measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit Referenzpunkte beschreibung = "Belichtungszeit Referenzpunkte" description = "Reference points shutter time" keyword = 'm_ref_shutter' einheit = om+"seconds-Time" uri= ontologynamespace+"ExposureTimeForReferencePoints" measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeit Tapelinienbeleuchtung beschreibung = "Belichtungszeit Tapelinienbeleuchtung" description = None keyword = 'm_gray_shutter' einheit = om+"seconds-Time" uri= None measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # aus width wird length bei ATOS II if gom.app.projects[p].measurements[m].get('m_sensor') == "atos 2": # Breite des Messvolumens beschreibung = "Länge Messvolumen" description = None keyword = 'm_vol_width' einheit = om+"millimetre" uri=ontologynamespace+"MeasuringVolumeLength" measurementclass = None application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) else: # Breite des Messvolumens beschreibung = "Breite des Messvolumens" description = None keyword = 'm_vol_width' einheit = om+"millimetre" uri=ontologynamespace+"MeasuringVolumeDepth" measurementclass = None application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Eckmaskierung beschreibung = "Eckmaskierung" description = "Corner mask size" keyword = 'm_corner_mask' einheit = om+"percent" uri= ontologynamespace+"CornerMask" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Fehler während der Automatisierungsprotokoll-Ausführung beschreibung = "Fehler während der Automatisierungsprotokoll-Ausführung" description = None keyword = 'm_automation_error' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Gültige Kameratemperatur beschreibung = "Gültige Kameratemperatur" description = None keyword = 'm_x2006_cam_temp_valid' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Gültige Lampenaufwärmung beschreibung = "Gültige Lampenaufwärmung" description = None keyword = 'm_x2006_lamp_warmup_valid' einheit = None uri= None measurementclass = None application = "true" measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Höhe des Messvolumens beschreibung = "Höhe des Messvolumens" description = None keyword = 'm_vol_height' einheit = om+"millimetre" uri=ontologynamespace+"MeasuringVolumeWidth" measurementclass = None application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kamera Betriebstemperatur beschreibung = "Kamera Betriebstemperatur" description = None keyword = 'm_x2006_cam_temp_nom' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kamerakennung (links) beschreibung = "Kamerakennung (links)" description = None keyword = 'm_camera_identifier_left' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kamerakennung (rechts) beschreibung = "Kamerakennung (rechts)" description = None keyword = 'm_camera_identifier_right' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kameratemperatur in Ordnung beschreibung = "Kameratemperatur in Ordnung" description = None keyword = 'm_x2006_cam_temp_ok' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kameratyp beschreibung = "Kameratyp" description = None keyword = 'm_sensor_camera_type' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kamerawinkel beschreibung = "Kamerawinkel" description = None keyword = 'm_camera_angle' einheit = om+"radian" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Lichtfaktor beschreibung = "Lichtfaktor" description = None keyword = 'm_x2006_light_factor' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Lichtintensität beschreibung = "Lichtintensität" description = None keyword = 'm_x2006_brightness' einheit = om+"percent" uri= ontologynamespace+"LightIntensity" measurementclass = None application = "true" measurements_setup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Lichtänderung (linkes Bild) beschreibung = "Lichtänderung (linkes Bild)" description = None keyword = 'm_lighting_left' einheit = None uri= None measurementclass = None application = "true" measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Lichtänderung (rechtes Bild) beschreibung = "Lichtänderung (rechtes Bild)" description = None keyword = 'm_lighting_right' einheit = None uri= None measurementclass = None application = "true" measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Länge Messvolumen ## für ATOS II anpassen if gom.app.projects[p].measurements[m].get('m_sensor') == "atos 2": beschreibung = "Tiefe Messvolumen" description = None keyword = 'm_vol_length' einheit = om+"millimetre" uri=ontologynamespace+"MeasuringVolumeDepth" measurementclass = None application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) else: beschreibung = "Länge Messvolumen" description = None keyword = 'm_vol_length' einheit = om+"millimetre" uri=ontologynamespace+"MeasuringVolumeLength" measurementclass = None application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Messbeleuchtung beschreibung = "Messbeleuchtung" description = None keyword = 'm_measure_light' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Messung-Abweichung beschreibung = "Messung-Abweichung" description = None keyword = 'm_dev' einheit = om+"millimetre" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Min. Modulationsschwelle (linkes Bild) beschreibung = "Min. Modulationsschwelle (linkes Bild)" description = "Min. Mask threshold (left image)" keyword = 'm_mod_left' einheit = "Grauwerte" uri= ontologynamespace+"MinimumFringeContrastLeftImage" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) ## Min. Modulationsschwelle (rechtes Bild) #### ACHTUNG HIER IST FALSCHER WERT !!!!!!!! IST GLEICH "NAH ZUM SENSOR" #gom.app.projects['V14_022a.amp'].measurements['M1'].get ('m_mod_right') # Nah zum Sensor beschreibung = "Nah zum Sensor" description = None keyword = 'm_depth_min' einheit = om+"millimetre" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Name der Messung beschreibung = "Name der Messung" description = "Measurement name" keyword = 'm_name' einheit = None uri= rdfs+"label" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punkt ID - do not work !!! # beschreibung = "Punkt ID" # keyword = 'r_id' , 0 # infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktekennzeichung (Messung) - do not work !!! # beschreibung = "Punktekennzeichung (Messung)" # keyword = 'r_state',0 # infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktekennzeichnung (Projekt) - do not work !!! # beschreibung = "Punktekennzeichnung (Projekt)" # keyword = 'r_pstate',0 # infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Referenzpunkt-Lichtquelle beschreibung = "Referenzpunkt-Lichtquelle" description = None keyword = 'm_ref_point_source' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Referenzpunktbeleuchtung beschreibung = "Referenzpunktbeleuchtung" description = None keyword = 'm_reference_light' einheit = om+"seconds-Time" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Sekunden seit der letzten Lichtfaktorkalibrierung beschreibung = "Sekunden seit der letzten Lichtfaktorkalibrierung" description = None keyword = 'm_x2006_seconds_since_light_factor_calibration' einheit = om+"seconds-Time" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Sensorbewegung (linkes Bild) beschreibung = "Sensorbewegung (linkes Bild)" description = None keyword = 'm_movement_left' einheit = None uri= None measurementclass = None application = "true" measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Sensorbewegung (rechtes Bild) beschreibung = "Sensorbewegung (rechtes Bild)" description = None keyword = 'm_movement_right' einheit = None uri= None measurementclass = None application = "true" measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Sensorkennung beschreibung = "Sensorkennung" description = "Sensor identifier" keyword = 'm_sensor_identifier' einheit = None uri= ontologynamespace+"serialNumber" measurementclass="http://www.wikidata.org/entity/Q1198578" application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Sensormodell beschreibung = "Sensormodell" description = None keyword = 'm_sensor' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Daten von einzelner Kamera? beschreibung = "Status: Daten von einzelner Kamera?" description = "State: data from one camera only?" keyword = 'm_one_cam' einheit = None uri= ontologynamespace+"useTripleScanPoints" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Daten von einzelner Kamera? # ** INVERTIERT ** beschreibung = "Status: Triple-Scan-Punkte vermeiden?" description = "State: Avoid Triple Scan points?" keyword = "invert_m_one_cam" einheit = None uri= ontologynamespace+"avoidTripleScanPoints" measurementclass = None application = "true, inverted value from keyword= m_one_cam" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Kamera- und Sensorkennung gültig? beschreibung = "Status: Kamera- und Sensorkennung gültig?" description = None keyword = 'm_camera_sensor_identifier_valid' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Lichtfaktorkalibrierung? beschreibung = "Status: Lichtfaktorkalibrierung?" description = None keyword = 'm_x2006_light_factor_calibrated' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Messung transformiert? beschreibung = "Status: Messung transformiert?" description = None keyword = 'm_transformed' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Projektorkalibrierung verwenden? beschreibung = "Status: Projektorkalibrierung verwenden?" description = None keyword = 'm_proj_calib' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkt ist gemeinsamer Referenzpunk? - do not work !!! # beschreibung = "Status: Punkt ist gemeinsamer Referenzpunk?" # keyword = 'r_common', 0 # infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkte an Glanzstellen berechnen? beschreibung = "Status: Punkte an Glanzstellen berechnen?" description = "State: use shiny points?" keyword = 'm_shiny_points' einheit = None uri=ontologynamespace+"usePointsOnShinyAreas" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkte an Glanzstellen berechnen? # ** INVERTIERT ** beschreibung = "Status: Punkte auf Glanzstellen vermeiden?" description = "State: Avoid points on shiny surfaces?" keyword = 'invert_m_shiny_points' einheit = None uri=ontologynamespace+"avoidPointsOnShinyAreas" measurementclass = None application = "true, inverted value from keyword= m_shiny_points" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkte bei starkten Grauwertunterschieden berechnen? beschreibung = "Status: Punkte bei starkten Grauwertunterschieden berechnen?" description = "Status: use points at strong color transitions?" keyword = 'm_col_trans' einheit = None uri=ontologynamespace+"useStrongColorTransitionsPoints" measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkte bei starkten Grauwertunterschieden berechnen? # ** INVERTIERT ** beschreibung = "Status: Punkte bei starken Helligkeitsunterschieden vermeiden?" description = "State: Avoid points at strong brightness differences?" keyword = 'invert_m_col_trans' einheit = None uri= ontologynamespace+"avoidStrongBrightnessDifferencePoints" measurementclass = None application = "true, inverted value from keyword= m_col_trans" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Tapelinienbeleuchtung verwendet? beschreibung = "Status: Tapelinienbeleuchtung verwendet?" description = None keyword = 'm_use_gray_shutter' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: kleinste Modulationsmaske verwenden (nur ATOS III) verwendet? beschreibung = "Status: kleinste Modulationsmaske verwenden (nur ATOS III) verwendet?" description = None keyword = 'm_smallest_mod_mask' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Statur: lange Dreiecke verwendet? beschreibung = "Statur: lange Dreiecke verwendet?" description = None keyword = 'm_long_tri' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: selektiert? - do not work !!! # beschreibung = "Status: selektiert?" # keyword = 'selected',0 # infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Tiefenbeschänkung beschreibung = "Tiefenbeschänkung" description = None keyword = 'm_depth' einheit = om+"millimetre" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Transformationsmatrix der Messung beschreibung = "Transformationsmatrix der Messung" description = None keyword = 'm_trafo_matrix' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Transformationsmodus der Messung beschreibung = "Transformationsmodus der Messung" description = "Measurement transformation mode" keyword = 'm_trafo_mode' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Transformationsmodus der Messung # ** INVERTIERT ** beschreibung = "Transformationsmethode" description = "Transformation method" keyword = 'adapted_m_trafo_mode' einheit = None uri= ontologynamespace+"measurementTransformationMethod" measurementclass = None application = "true, adapted value from keyword= m_trafo_mode" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Verbleibende Lampenaufwärmzeit beschreibung = "Verbleibende Lampenaufwärmzeit" description = None keyword = 'm_x2006_lamp_warmup_rem_sec' einheit = om+"seconds-Time" uri= None measurementclass = None application = "true" measurements_check (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Vorschau-Raster beschreibung = "Vorschau-Raster" description = None keyword = 'm_raster' einheit = None uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Weiter entfernt vom Sensor beschreibung = "Weiter entfernt vom Sensor" description = None keyword = 'm_depth_max' einheit = om+"millimetre" uri= None measurementclass = None application = "true" infos_measurements (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Kameras beschreibung = "Anzahl der Kameras" description = "Number of cameras" keyword = 'm_cal_num_cameras' einheit = None uri = ontologynamespace+"numberOfCameras" measurementclass = None application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Maßstäbe beschreibung = "Anzahl der Maßstäbe" description = "Number of scales" keyword = 'm_cal_num_scales' einheit = None uri=ontologynamespace+"numberOfScales" measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Aufnahmemodus beschreibung = "Aufnahmemodus" description = None keyword = 'm_cal_snap_mode' einheit = None uri= None measurementclass = None application = "true" cal_measurements_calsetup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Ausdehnungskoeffizient beschreibung = "Ausdehnungskoeffizient" description = None keyword = 'm_cal_exp_coeff' einheit = None uri= None measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Breite des Messvolumens # für ATOS II anpassen ### HIER if (gom.app.projects[p].measurements[m].get('m_sensor') == "atos 2") and (gom.app.projects[p].measurements[m].get('m_cal_sensor_width') == None): beschreibung = "Länge des Messvolumens" description = "Measurement volume length" keyword = 'm_vol_width' einheit = om+"millimetre" uri=ontologynamespace+"CalibrationVolumeLength" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) else: beschreibung = "Länge des Messvolumens" description = "Measurement volume length" keyword = 'm_cal_sensor_width' einheit = om+"millimetre" uri=ontologynamespace+"CalibrationVolumeDepth" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Datum der Kalibrierung beschreibung = "Datum der Kalibrierung" description = "Calibration date" keyword = 'm_cal_time' einheit = None uri = ontologynamespace+"CalibrationDate" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Höhe des Messvolumens if (gom.app.projects[p].measurements[m].get('m_sensor') == "atos 2") and (gom.app.projects[p].measurements[m].get('m_cal_sensor_width') == None): beschreibung = "Höhe des Messvolumens" description = "Measurement volume height" keyword = 'm_vol_height' einheit = om+"millimetre" uri=ontologynamespace+"CalibrationVolumeWidth" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) else: beschreibung = "Höhe des Messvolumens" description = "Measurement volume height" keyword = 'm_cal_sensor_height' einheit = om+"millimetre" uri=ontologynamespace+"CalibrationVolumeWidth" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Höhenänderung beschreibung = "Höhenänderung" description = "Height variance" keyword = 'm_cal_var_height' einheit = om+"millimetre" uri= ontologynamespace+"HeightVariance" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Identifizierungspunkt-ID beschreibung = "Identifizierungspunkt-ID" description = None keyword = 'm_cal_obj_id' einheit = None uri= None measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kalibrierabweichung beschreibung = "Kalibrierabweichung" description = "Calibration deviation" keyword = 'm_cal_residual' einheit = om+"millimetre" uri= ontologynamespace+"CalibrationDeviation" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kalibrierobjekt beschreibung = "Kalibrierobjekt" description = None keyword = 'm_cal_obj_type' einheit = None uri= None measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Lichtintensität beschreibung = "Lichtintensität" description = None keyword = 'm_cal_light_intensity' einheit = None uri= None measurementclass = None application = "true" cal_measurements_calsetup (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. Winkel beschreibung = "Max. Winkel" description = None keyword = 'm_cal_max_angle' einheit = om+"radian" uri= None measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Maßstabsabweichung beschreibung = "Maßstabsabweichung" description = "scale deviation" keyword = 'm_cal_scale_dev' einheit = om+"millimetre" uri=ontologynamespace+"ScaleDeviation" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Messtemperatur beschreibung = "Messtemperatur" description = "Measurement temperature" keyword = 'm_cal_temp' einheit = om+"degreeCelsius" uri= ontologynamespace+"CalibrationTemperature" measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Min. Winkel beschreibung = "Min. Winkel" description = None keyword = 'm_cal_min_angle' einheit = om+"radian" uri= None measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Name beschreibung = "Name" description = "Name" keyword = 'm_cal_obj_name' einheit = None uri= ontologynamespace+"calibrationObjectName" measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Objektiv beschreibung = "Objektiv" description = "Camera lenses" keyword = 'm_cal_lense' einheit = om+"millimetre" measurementclass="http://www.wikidata.org/entity/Q193540" uri= ontologynamespace+"FocalLengthCamera" application = "true" measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Retro-Kalibrierung beschreibung = "Retro-Kalibrierung" description = None keyword = 'm_cal_retro' einheit = None uri= None measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Schnellkalibrierung beschreibung = "Schnellkalibrierung" description = None keyword = 'm_cal_quick' einheit = None uri= ontologynamespace+"isQuickCalibrated" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Tiefe des Messvolumens ### Anpassen für ATOS II if (gom.app.projects[p].measurements[m].get('m_sensor') == "atos 2") and (gom.app.projects[p].measurements[m].get('m_cal_sensor_width') == None): beschreibung = "Tiefe des Messvolumens" description = "Measurement volume depth" keyword = 'm_vol_length' einheit = om+"millimetre" uri=ontologynamespace+"CalibrationVolumeDepth" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) else: beschreibung = "Tiefe des Messvolumens" description = "Measurement volume depth" keyword = 'm_cal_sensor_depth' einheit = om+"millimetre" uri=ontologynamespace+"CalibrationVolumeLength" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Triangulationswinkel beschreibung = "Triangulationswinkel" description = "Camera angle" keyword = 'm_cal_cam_angle' einheit = om+"radian" uri=ontologynamespace+"CameraAngle" measurementclass = None application = "true" cal_measurements_calresults (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Zertifizierungstemperatur beschreibung = "Zertifizierungstemperatur" description = "Certification temperature" keyword = 'm_cal_ref_temp' einheit = om+"degreeCelsius" uri=ontologynamespace+"ReferenceTemperature" measurementclass = None application = "true" cal_measurements_calobject (beschreibung, description, keyword, einheit, uri, measurementclass, application) #### additional_infos #### #### INFOS die nicht mit dem Skript abgegriffen werden können #### # image_width def additional_infos_sensor (beschreibung, description, value, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = value dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass dir["value_type"] = type(dir["value"]).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_sensor[keyword]= {} dic_measurement_sensor[keyword]= dir if not includeonlypropswithuri: dic_measurement_sensor[keyword]= {} dic_measurement_sensor[keyword]= dir def additional_infos (beschreibung, description, value, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = value dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if keyword == "acquisition_time": dir["value_type"] = "dateTime" else: dir["value_type"] = type(dir["value"]).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_info[keyword]= {} dic_measurement_info[keyword]= dir if not includeonlypropswithuri: dic_measurement_info[keyword]= {} dic_measurement_info[keyword]= dir def additional_info_setup (beschreibung, description, value, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = value dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if keyword == "acquisition_time": dir["value_type"] = "dateTime" else: dir["value_type"] = type(dir["value"]).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_measurement_setup[keyword]= {} dic_measurement_setup[keyword]= dir if not includeonlypropswithuri: dic_measurement_setup[keyword]= {} dic_measurement_setup[keyword]= dir # Für die Bildbreite und den Sensortyp muss klar sein welcher Scanner verwendet wurde # wenn sensortyp = atos II dann wird folgendes übertragen if (gom.app.projects[p].measurements[m].get('m_sensor') == "atos 2") and (gom.app.projects[p].measurements[m].get('m_sensor_identifier') == None): # sensor_type beschreibung = "Sensortyp" description = "Sensor type" value = "ATOS II (first generation)" keyword = "sensor_type" einheit = None uri = ontologynamespace+"sensorType" measurementclass = None application = "false" additional_infos_sensor (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # Bildbreite beschreibung = "Bildbreite" description = "Image width" value = int("1280") keyword = "image_width" einheit = om+"pixel" uri = exifnamespace+"imageWidth" measurementclass = None dic = dic_measurement_info application = "false" additional_info_setup (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # Bildhöhe beschreibung = "Bildhöhe" description = "Image height" value = int("1024") keyword = "image_height" einheit = om+"pixel" uri = exifnamespace+"imageHeight" measurementclass = None dic = dic_measurement_info application = "false" additional_info_setup (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # kalibriertes Messvolumen ist bei ATOS II leer, kann aber von dem vordefinierten übernommen werden # wobei das vordefinierte erstmal neue uri bekommen muss.... beschreibung = "Bildhöhe" description = "Image height" value = int("1024") keyword = "image_height" einheit = om+"pixel" uri = exifnamespace+"imageHeight" measurementclass = None dic = dic_measurement_info application = "false" additional_info_setup (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # wenn seriennummer = "D08061" dann ist es ATOS III Rev. 01 und folgendes wird übertragen: if gom.app.projects[p].measurements[m].get ('m_sensor_identifier') == "D08061": # sensor_type beschreibung = "Sensortyp" description = "Sensor type" value = "ATOS III Rev.01" keyword = "sensor_type" einheit = None uri = ontologynamespace+"sensorType" measurementclass = None application = "false" additional_infos_sensor (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # Bildbreite beschreibung = "Bildbreite" description = "Image width" value = int("2048") keyword = "image_width" einheit = om+"pixel" uri = exifnamespace+"imageWidth" measurementclass = None dic = dic_measurement_info application = "false" additional_info_setup (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # Bildhöhe beschreibung = "Bildhöhe" description = "Image height" value = int("2048") keyword = "image_height" einheit = om+"pixel" uri = exifnamespace+"imageHeight" measurementclass = None dic = dic_measurement_info application = "false" additional_info_setup (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) # Aufnahmezeitpunkt m_file = gom.app.projects[p].get ('prj_directory') + "\\measurements\\" + gom.app.projects[p].measurements[m].get ('m_name') + ".atos" capturetime = time.ctime(os.path.getmtime(m_file)) capturetime = time.strptime(capturetime, "%a %b %d %H:%M:%S %Y") capturetime = (time.strftime("%Y-%m-%dT%H:%M:%S",capturetime)) beschreibung = "Aufnahmezeit" description = "Acquisition time" value = capturetime keyword = "acquisition_time" einheit = None uri = ontologynamespace+'acquisitionTime' measurementclass = None dic = dic_measurement_info application = "false" additional_infos (beschreibung, description, value, keyword, einheit, uri, measurementclass, application) ######################## REFERENZPUNKTE ############################################################################################# # einzelne einzelne Referenzpunkte list_refpoints = [] rp = 0 while rp < len(gom.app.projects[p].measurements[m].ref_points): dic_refpoint = {} def infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application): dir = {} dir.clear() dir["value"] = gom.app.projects[p].measurements[m].ref_points[rp].get(keyword) dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass dir["value_type"] = type(gom.app.projects[p].measurements[m].ref_points[rp].get(keyword)).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_refpoint[keyword]= {} dic_refpoint[keyword]= dir if not includeonlypropswithuri: dic_refpoint[keyword]= {} dic_refpoint[keyword]= dir ############ get values ############# # Punkt ID beschreibung = "Punkt ID" description = "Point ID" keyword = 'r_id' einheit = None uri = ontologynamespace+'PointID' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktekennzeichnung (Messung) beschreibung = "Punktekennzeichnung (Messung)" description = "Point flags (measurement)" keyword = 'r_state' einheit = None uri= ontologynamespace+'PointMeasurementState' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktekennzeichnung (Project) beschreibung = "Punktekennzeichnung (Project)" description = "Point flags (project)" keyword = 'r_pstate' einheit = None uri= ontologynamespace+'PointProjectState' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Punkt ist gemeinsamer Referenzpunkt? beschreibung = "Status: Punkt ist gemeinsamer Referenzpunkt?" description = "State: point is common ref.point?" keyword = 'r_common' einheit = None uri= ontologynamespace+'commonReferencepoint' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: selektiert? beschreibung = "Status: selektiert?" description = "State: selected?" keyword = 'selected' einheit = None uri= None measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # x-coordinate beschreibung = "x-Koordinate" description = "x-coordinate" keyword = 'r_x' einheit = om+"millimetre" uri= ontologynamespace+'xCoordinate' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # y-coordinate beschreibung = "y-Koordinate" description = "y-coordinate" keyword = 'r_y' einheit = om+"millimetre" uri= ontologynamespace+'yCoordinate' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # z-coorinate beschreibung = "z-Koordinate" description = "z-coordinate" keyword = 'r_z' einheit = om+"millimetre" uri= ontologynamespace+'zCoordinate' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Point deviation beschreibung = "Punktabweichung" description = "Point deviation" keyword = 'r_dev' einheit = om+"millimetre" uri= ontologynamespace+'PointMeasurementDeviation' measurementclass = None application = "true" infos_refpoints (beschreibung, description, keyword, einheit, uri, measurementclass, application) if len(dic_refpoint) > 0: list_refpoints.append(dic_refpoint) rp = rp + 1 if len(dic_measurement_cal_calobject) > 0: dic_measurement_cal["cal_object"] = dic_measurement_cal_calobject if len(dic_measurement_cal_calsetup) > 0: dic_measurement_cal["cal_setup"] = dic_measurement_cal_calsetup if len(dic_measurement_cal_calresults) > 0: dic_measurement_cal["cal_properties"] = dic_measurement_cal_calresults ### theroretischer Messpunktabstand if 'sensor_type' in dic_measurement_sensor: st = (dic_measurement_sensor['sensor_type']['value']) ## "ATOS III Rev.01" if st == "ATOS III Rev.01": value = None mv_length = gom.app.projects[p].measurements[m].get('m_vol_length') # MV 30 if 27 < mv_length < 33: value = 0.02 # MV 65 elif 58 < mv_length < 72 : value = 0.03 # MV 100 elif 90 < mv_length < 110: value = 0.05 # MV 150 elif 135 < mv_length < 165: value = 0.07 # MV 300 elif 270 < mv_length < 330: value = 0.15 # MV 500 elif 450 < mv_length < 550: value = 0.25 # MV 1000 elif 900 < mv_length < 1100: value = 0.50 # MV 1500 elif 1350 < mv_length < 1650: value = 0.75 # MV 2000 elif 1800 < mv_length < 2200: value = 1.00 # Länge Messvolumen value = value beschreibung = 'Theoretischer Messpunktabstand' description = 'theoretical measuring point distance' keyword = 'theoretical_measuring_point_distance' einheit = om+"millimetre" uri=ontologynamespace+'TheoreticalMeasuringPointDistance' measurementclass = None application = 'derived from the used measuring volume' measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application, value) elif st == "ATOS II (first generation)": value = None # hier muss nach width gefragt werden, ansonsten gleich mv_length = gom.app.projects[p].measurements[m].get('m_vol_width') # MV 100 if 90 < mv_length < 110: value = 0.07 # MV 35 elif 31 < mv_length < 39: value = 0.03 # Länge Messvolumen value = value beschreibung = 'Theoretischer Messpunktabstand' description = 'theoretical measuring point distance' keyword = 'theoretical_measuring_point_distance' einheit = om+"millimetre" uri=ontologynamespace+'TheoreticalMeasuringPointDistance' measurementclass = None application = 'derived from the used measuring volume' measurements_sensor (beschreibung, description, keyword, einheit, uri, measurementclass, application, value) dic_sensor["calibration"] = dic_measurement_cal dic_sensor["capturing_device"] = dic_measurement_sensor ########### calibratino NEW ############## # temporäre Vergleichsliste mit allen Kalibrierzeiten anlegen und wenn noch nicht in Liste "temp_list_cal_time", dann rein einen "sensor" anlegen if "m_cal_time" in dic_measurement_cal_calresults: cal_time_new = dic_measurement_cal_calresults["m_cal_time"]["value"] else: cal_time_new = None # schauen ob aktuelle Kalibrierungszeit schon in der Liste ist # wenn ja, dann die sensor_id abgreifen und der aktuellen Messung hinzufügen if cal_time_new in temp_list_cal_time: for s in list_sensors: if "calibration" in s: if "cal_properties" in s["calibration"]: if "m_cal_time" in s["calibration"]["cal_properties"]: if "value" in s["calibration"]["cal_properties"]["m_cal_time"]: cal_time_store = s["calibration"]["cal_properties"]["m_cal_time"]["value"] # Zeiten die schon in temp. liste gespeichert sind if cal_time_store == cal_time_new: # wenn gleich, dann ... dic_measurement_info["sensor_id"] = s["capturing_device"]["sensor_id"] #sensor_id abgreifen und der aktuellen Messung hinzufügen # wenn Kalibrierungszeit noch in in Liste, dann # neue sensor_id erzeugen und zu den sensor-informationen / kalibrierungen hinzufügen if not cal_time_new in temp_list_cal_time: #print ("noch nicht drin") temp_list_cal_time.append(cal_time_new) # sensor_id zu dic_sensor hinzufügen dic_s = {} dic_s["value"] = sensor_id dic_s["key_deu"] = "Sensor ID" dic_s["from_application"] = "false" dic_s["key_eng"] = "sensor ID" dic_s["uri"]= ontologynamespace+'sensor_id' dic_s["value_type"] = type(dic_s["value"]).__name__ dic_sensor["capturing_device"]["sensor_id"] = dic_s # sensor_id zu Messung hinzufügen dic_measurement_info["sensor_id"] = dic_s # sensor_id hochzählen sensor_id =+1 # alles zu "sensor_lise" hinzufügen list_sensors.append(dic_sensor) #### Merge Dictonaries ##### if len(dic_measurement_setup) > 0: dic_measurement["measurement_setup"] = dic_measurement_setup if len(dic_measurement_check) > 0: dic_measurement["measurement_check"] = dic_measurement_check if len(dic_measurement_info) > 0: dic_measurement["measurement_properties"] = dic_measurement_info if len(list_refpoints) > 0: dic_measurement["referencepoints"] = list_refpoints if len(dic_measurement) > 0: list_measurements.append(dic_measurement) m = m + 1 if len(dic_prj_info) > 0: dic_project["measurement_series_information"] = dic_prj_info if len(list_measurements) > 0: dic_project["measurements"] = list_measurements dic_project["sensors"] = list_sensors dic_gp2 = {} if len(list_grp) > 0: dic_gp2["referencepoints"] = list_grp if len(dic_gp2) > 0: dic_project["global_referencepoints"] = dic_gp2 if len(dic_project) > 0: list_projects.append(dic_project) p = p + 1 ###################### MESHES ###################### list_meshes = [] me = 0 while me < len( gom.app.meshes): dic_mesh = {} dic_mesh_info = {} list_mesh_processing = [] dic_mesh_processing = {} str_mesh_processing_poly = None dic_mesh_processing_poly = {} dic_mesh_processing_poly_setup = {} list_mesh_processing_poly_post = [] dic_mesh_processing_poly_post = {} def infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application, value=None): dir = {} dir.clear() if keyword == "comment": c = gom.app.meshes[me].get(keyword) dir["value"] = c.replace("\n",", ") elif value == None: dir["value"] = gom.app.meshes[me].get(keyword) else: dir["value"] = value dir["key_deu"] = beschreibung if description!=None: dir["key_eng"] = description if uri!=None: dir["uri"] = uri if measurementclass!=None: dir["measurementclass"] = measurementclass if value == None: dir["value_type"] = type(gom.app.meshes[me].get(keyword)).__name__ else: dir["value_type"] = type(value).__name__ if einheit!=None: dir["unit"] = einheit if application!=None: dir["from_application"] = application if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_mesh_info[keyword]= {} dic_mesh_info[keyword]= dir if not includeonlypropswithuri: dic_mesh_info[keyword]= {} dic_mesh_info[keyword]= dir ############################################### # Anzahl der Dreiecke beschreibung = "Anzahl der Dreiecke" description = "Number of triangles" keyword = "num_triangles" einheit = None uri= giganamespace+"TotalNumberOfFaces" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Anzahl der Punkte beschreibung = "Anzahl der Punkte" description = "Number of points" keyword = "num_points" einheit = None uri=giganamespace+"TotalNumberOfVertices" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Belichtungszeiteinheit beschreibung = "Belichtungszeiteinheit" description = None keyword = "u_shutter" einheit = om+"seconds-Time" uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Fläche beschreibung = "Fläche" description = "Area" keyword = "area" einheit = om+"squareMillimetre" uri=giganamespace+"TotalArea" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Fläche (selektiert) beschreibung = "Fläche (selektiert)" description = None keyword = "selected_area" einheit = om+"squareMillimetre" uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Flächeneinheit beschreibung = "Flächeneinheit" description = None keyword = "u_area" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Inaktiv-Grund beschreibung = "Inaktiv-Grund" description = None keyword = "inact_reason" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Kommentar beschreibung = "Kommentar" description = "comment" keyword = "comment" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Längeneinheit beschreibung = "Längeneinheit" description = None keyword = "u" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Materialstärke beschreibung = "Materialstärke" description = None keyword = "off" einheit = om+"millimetre" uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. X-Grenze beschreibung = "Max. X-Grenze" description = "Max. X limit" keyword = "boundb_maxx" einheit = om+"millimetre" uri= giganamespace+"MaximumXCoordinate" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. Y-Grenze beschreibung = "Max. Y-Grenze" description = "Max. Y limit" keyword = "boundb_maxy" einheit = om+"millimetre" uri= giganamespace+"MaximumYCoordinate" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Max. Z-Grenze beschreibung = "Max. Z-Grenze" description = "Max. Z limit" keyword = "boundb_maxz" einheit = om+"millimetre" uri= giganamespace+"MaximumZCoordinate" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Min. X-Grenze beschreibung = "Min. X-Grenze" description = "Min. X limit" keyword = "boundb_minx" einheit = om+"millimetre" uri= giganamespace+"MinimumXCoordinate" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Min. Y-Grenze beschreibung = "Min. Y-Grenze" description = "Min. Y limit" keyword = "boundb_miny" einheit = om+"millimetre" uri= giganamespace+"MinimumYCoordinate" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Min. Z-Grenze beschreibung = "Min. Z-Grenze" description = "Min. Z limit" keyword = "boundb_minz" einheit = om+"millimetre" uri= giganamespace+"MinimumZCoordinate" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Name beschreibung = "Name" description = "Name" keyword = "n" einheit = None uri= rdfs+"label" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Punktindex # gom.app.meshes["V14_022a_1_1"].get ("id", 0) # Reporteinheit beschreibung = "Reporteinheit" description = None keyword = "u_figure" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Gegenseite messen? beschreibung = "Status: Gegenseite messen?" description = None keyword = "uoff" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: Referenz? beschreibung = "Status: Referenz?" description = None keyword = "is_ref" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: aktiv? beschreibung = "Status: aktiv?" description = None keyword = "is_active" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: inaktiv? beschreibung = "Status: inaktiv?" description = None keyword = "is_inact" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Status: selektiert? beschreibung = "Status: selektiert?" description = None keyword = "selected" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Temperatureinheit beschreibung = "Temperatureinheit" description = None keyword = "u_temp" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Typ beschreibung = "Typ" description = None keyword = "type" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Verzeichnispfad beschreibung = "Verzeichnispfad" description = None keyword = "n_path" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Volumen beschreibung = "Volumen" description = "volume" keyword = "volume" einheit = om+"cubicMillimetre" uri=ontologynamespace+"volume" measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Volumeneinheit beschreibung = "Volumeneinheit" description = None keyword = "u_volume" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Winkeleinheit beschreibung = "Winkeleinheit" description = None keyword = "u_angle" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) # Zeiteinheit beschreibung = "Zeiteinheit" description = None keyword = "u_time" einheit = None uri= None measurementclass = None application = "true" infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application) ##### BERECHNUNGEN ##### # berechneter Wert # durchschnittliche 3D-Punkt-Auflösung pro mm² beschreibung= "durchschnittliche Auflösung" description= "average resolution" keyword= "average_resolution" einheit = "1/mm²" uri=None measurementclass=None application= "script-based calculation" anz_punkte_netz_ar = gom.app.meshes[me].get ("num_points") flaeche_netz_ar = gom.app.meshes[me].get ("area") value = anz_punkte_netz_ar / flaeche_netz_ar infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application, value) # berechneter Wert # durchschnittlicher Punktabstand beschreibung= "durchschnittlicher Punktabstand" description= "average point distance" keyword= "average_point_distance_mist" einheit= om+"millimetre" uri=ontologynamespace +"AveragePointDistance" measurementclass=None application= "script-based calculation" anz_punkte_netz= gom.app.meshes[me].get ("num_points") flaeche_netz= gom.app.meshes[me].get ("area") value= 1/math.sqrt(anz_punkte_netz / flaeche_netz) infos_meshes (beschreibung, description, keyword, einheit, uri, measurementclass, application, value) #### POLYGONISATION #### #### Metadaten aus dem Kommentar #### c = gom.app.meshes[me].get ("comment") for poly in c.split("\n"): #print ("-") #print (poly) liste = poly.split("=") #print (liste) if len(liste) == 2: if (liste[0].replace(" ","")) == "poly_raster": dir = {} dir.clear() dir["value"] = "polygonisation" dir["value_type"] = type(dir["value"]).__name__ dic_mesh_processing["processname"] = dir # poly_raster keyword = liste[0].replace(" ","") dir = {} dir.clear() dir["value"] = liste[1].replace(" ","") dir["key_deu"] = "Polygonisierungsraster" dir["key_eng"] = "polygonisation raster" dir["value_type"] = type(dir["value"]).__name__ dir["uri"] = ontologynamespace+"polyRaster" dir["from_application"] = "True, part value from keyword=’comment’" if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_mesh_processing_poly_setup[keyword]= {} dic_mesh_processing_poly_setup[keyword]= dir if not includeonlypropswithuri: dic_mesh_processing_poly_setup[keyword]= {} dic_mesh_processing_poly_setup[keyword]= dir if dir["value"] != "1:1": #smooth dic_mesh_processing_poly_post_s = {} # prozess dir = {} dir.clear() dir["value"] = "smooth" dir["value_type"] = type(dir["value"]).__name__ dic_mesh_processing_poly_post_s["processname"] = {} dic_mesh_processing_poly_post_s["processname"] = dir # automatic dir = {} dir.clear() dir["value"] = True dir["value_type"] = type(dir["value"]).__name__ dir["from_application"] = "False" if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_mesh_processing_poly_post_s["automatic"]= {} dic_mesh_processing_poly_post_s["automatic"]= dir if not includeonlypropswithuri: dic_mesh_processing_poly_post_s["automatic"]= {} dic_mesh_processing_poly_post_s["automatic"]= dir if len(dic_mesh_processing_poly_post_s) > 0: list_mesh_processing_poly_post.append(dic_mesh_processing_poly_post_s) #thin dic_mesh_processing_poly_post_t = {} # prozess dir = {} dir.clear() dir["value"] = "thin" dir["value_type"] = type(dir["value"]).__name__ dic_mesh_processing_poly_post_t["processname"] = {} dic_mesh_processing_poly_post_t["processname"] = dir # automatic dir = {} dir.clear() dir["value"] = True dir["value_type"] = type(dir["value"]).__name__ dir["from_application"] = "False" if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_mesh_processing_poly_post_t["automatic"]= {} dic_mesh_processing_poly_post_t["automatic"]= dir if not includeonlypropswithuri: dic_mesh_processing_poly_post_t["automatic"]= {} dic_mesh_processing_poly_post_t["automatic"]= dir if len(dic_mesh_processing_poly_post_t) > 0: list_mesh_processing_poly_post.append(dic_mesh_processing_poly_post_t) if len(list_mesh_processing_poly_post) > 0: dic_mesh_processing["postprocessing"] = list_mesh_processing_poly_post elif (liste[0].replace(" ","")) == "ref_points": dic_mesh_processing_poly_post_r = {} # prozess dir = {} dir.clear() dir["value"] = "reference points" dir["value_type"] = type(dir["value"]).__name__ dic_mesh_processing_poly_post_r["processname"] = {} dic_mesh_processing_poly_post_r["processname"] = dir # automatic dir = {} dir.clear() dir["value"] = True dir["value_type"] = type(dir["value"]).__name__ dir["from_application"] = "False" dic_mesh_processing_poly_post_r["automatic"] = {} dic_mesh_processing_poly_post_r["automatic"] = dir # ref_points keyword = liste[0].replace(" ","") dir = {} dir.clear() dir["value"] = liste[1].replace(" ","") dir["key_deu"] = "automatische Bearbeitung von Referenzpunkten" dir["key_eng"] = "automatic postprocessing of referenzpoints" dir["value_type"] = type(liste[1].replace(" ","")).__name__ dir["from_application"] = "True, part value from keyword=’comment’" dir["uri"] = ontologynamespace+"refpoints" if dir["value"] != None: if len(str(dir["value"])) != 0: if includeonlypropswithuri and "uri" in dir: dic_mesh_processing_poly_post_r[keyword]= {} dic_mesh_processing_poly_post_r[keyword]= dir if not includeonlypropswithuri: dic_mesh_processing_poly_post_r[keyword]= {} dic_mesh_processing_poly_post_r[keyword]= dir if len(dic_mesh_processing_poly_post_r) > 0: list_mesh_processing_poly_post.append(dic_mesh_processing_poly_post_r) if len(dic_mesh_processing_poly_setup) > 0: dic_mesh_processing["setup"] = dic_mesh_processing_poly_setup if len(dic_mesh_processing) > 0: list_mesh_processing.append(dic_mesh_processing) if len(dic_mesh_info) > 0: dic_mesh["mesh_information"] = dic_mesh_info if len(dic_mesh_processing) > 0: dic_mesh["processing"] = list_mesh_processing if len(dic_mesh) > 0: list_meshes.append(dic_mesh) me = me + 1 if len(list_meshes) > 0: dic_dig["meshes"] = list_meshes if len(dic_dig_app) > 0: list_app.append(dic_dig_app) if len(script_version()) > 0: list_app.append(script_version()) if len(list_app) > 0: dic_dig["applications"] = list_app if len(dic_dig_project) > 0: dic_dig["project_information"] = dic_dig_project if len(list_projects) > 0: dic_dig["measurement_series"] = list_projects if len(dic_dig) > 0: list_prj.append(dic_dig) prj = prj + 1 if len(list_prj) > 0: dic_prj["projects"]=list_prj ######################## PROJECTS END ############################### ############### EXPORTS ################# ## output files newfiles = (gom.app.get ("ACTUAL_SESSION_FILE")).split(".")[0] if len(newfiles) == 0: newfiles = gom.app.projects[0].get ("prj_directory") + "/" + (gom.app.projects[0].get ("prj_n")).split(".")[0] out_file_txt = newfiles + ".txt" out_file_json = newfiles + ".json" out_file_ttl = newfiles + ".ttl" #### json #### out_json = open(out_file_json , "w") #out_json.write(str(dic_prj).replace(""","").replace(""",""").replace(""\\"",""\\\\"").decode("string_escape")) out_json.close() #### dictionary in textfile #### out_txt = open(out_file_txt , "w") out_txt.write(str(dic_prj).replace("True","true").replace("False","false").decode("string_escape")) out_txt.close() ######## ttl ######## ttlstring=set() fertiges_ttl = exportToTTL(dic_prj, None, ttlstring) text_file = open(out_file_ttl, "w") text_file.write(ttlstringhead) for item in fertiges_ttl: text_file.write("%s" % item) text_file.close() ####################### ###### print (atos_file) print ("fertsch :-) :-)")
python
# Generated by Django 2.2.2 on 2019-09-19 12:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('dcodex', '0001_initial'), ('dcodex_bible', '0001_initial'), ] operations = [ migrations.CreateModel( name='DayOfYear', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('day_of_week', models.IntegerField(choices=[(0, 'Sunday'), (1, 'Monday'), (2, 'Tuesday'), (3, 'Wednesday'), (4, 'Thursday'), (5, 'Friday'), (6, 'Saturday')])), ('period', models.CharField(choices=[('E', 'Easter'), ('P', 'Pentecost'), ('F', 'Feast of the Cross'), ('L', 'Lent'), ('G', 'Great Week')], max_length=1)), ('week', models.CharField(max_length=15)), ('weekday_number', models.CharField(max_length=32)), ('earliest_date', models.CharField(max_length=15)), ('latest_date', models.CharField(max_length=15)), ], options={ 'verbose_name_plural': 'Days of year', }, ), migrations.CreateModel( name='Lection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='LectionarySystem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ], ), migrations.CreateModel( name='LectionInSystem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order_on_day', models.IntegerField(default=0)), ('day_of_year', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dcodex_lectionary.DayOfYear')), ('lection', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dcodex_lectionary.Lection')), ('system', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dcodex_lectionary.LectionarySystem')), ], options={ 'ordering': ['day_of_year', 'order_on_day'], }, ), migrations.CreateModel( name='LectionaryVerse', fields=[ ('verse_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='dcodex.Verse')), ('unique_string', models.CharField(default='', max_length=20)), ('bible_verse', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dcodex_bible.BibleVerse')), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, bases=('dcodex.verse',), ), migrations.AddField( model_name='lectionarysystem', name='lections', field=models.ManyToManyField(through='dcodex_lectionary.LectionInSystem', to='dcodex_lectionary.Lection'), ), migrations.CreateModel( name='Lectionary', fields=[ ('manuscript_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='dcodex.Manuscript')), ('system', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dcodex_lectionary.LectionarySystem')), ], options={ 'verbose_name_plural': 'Lectionaries', }, bases=('dcodex.manuscript',), ), migrations.AddField( model_name='lection', name='verses', field=models.ManyToManyField(to='dcodex_lectionary.LectionaryVerse'), ), ]
python
for i in range(0, 10, 2): print(f"i is now {i}")
python
# -- coding: utf-8 -- # Copyright 2019 FairwindsOps Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback import logging import semver import sys import os from typing import List from .hooks import Hook from .config import Config from .repository import Repository from .chart import Chart, ChartResult from .secrets import Secret from .helm.client import get_helm_client from .yaml.handler import Handler as yaml_handler from .meta import __version__ as reckoner_version from .exception import MinimumVersionException, ReckonerCommandException, NoChartsToInstall, ReckonerException from io import BufferedReader class Course(object): """ Description: - Top level class for the attributes of the course.yml file - Parses yaml file into various Reckoner classes Arguments: - file (File) Attributes: - config: Instance of Config() - helm: Instance of HelmClient() - charts: List of Chart() instances - repositories: List of Repository() instances """ def __init__(self, course_file: BufferedReader): """ Parse course.yml contents into instances. """ self.config = Config() try: self._dict = yaml_handler.load(course_file) except Exception as err: raise ReckonerException("Error loading the course file: {}".format(err)) try: self.helm = get_helm_client(helm_arguments=self.config.helm_args) except Exception as e: raise ReckonerException("Helm Client Failed to initialize: {}".format(e)) self._repositories = [] self._charts = [] for name, repository in self._dict.get('repositories', {}).items(): repository['name'] = name self._repositories.append(Repository(repository, self.helm)) # Send entire dictionary of the secret as kwargs self._secrets = [] for secret in self._dict.get('secrets', []): self._secrets.append(Secret(**secret)) for name, chart in self._dict.get('charts', {}).items(): self._set_chart_repository(chart) self._charts.append(Chart({name: chart}, self.helm)) # Parsing and prepping hooks from course.yml self._hooks = self._dict.get('hooks', {}) self._pre_install_hook = Hook( self.hooks.get( 'pre_install', [] ), 'Course pre install', self.config.course_base_directory ) self._post_install_hook = Hook( self.hooks.get( 'post_install', [] ), 'Course post install', self.config.course_base_directory ) self._init_hook = Hook( self.hooks.get( 'init', [] ), 'Course Init', self.config.course_base_directory ) # Run Init hook before we do anything other than parse the course self.init_hook.run() if self.config.update_repos: for repo in self._repositories: # Skip install of repo if it is git based since it will be installed from the chart class if repo.git is None: logging.debug("Installing repository: {}".format(repo)) repo.install(chart_name=repo._repository['name'], version=repo._repository.get('version')) else: logging.debug("Skipping git install of repository to later be installed at the chart level: {}".format(repo)) self.helm.repo_update() try: self._compare_required_versions() except MinimumVersionException as e: logging.error(e) sys.exit(1) # HACK: This logic is here to try to replace a named reference to a helm repo defined in the main # course repositories. This is because we want to pass the git repo and some # other data to the chart (since the chart also tries to install the repo) # # NOTE: The real fix here would be to unify the way repositories are installed and managed instead # running the install() function twice from the course.yml and from the charts.yml. # # IF: chart has a repository definition that is a string reference, then find that # reference (if exists) from the main repositories for the course and replace the # string definition with the repositories setting. def _set_chart_repository(self, chart: dict): """_set_chart_repository will convert the string reference of a repository into the dictionary configuration of that repository or, if None, or if the string isn't in the repositories section, it will leave it alone.""" if isinstance(chart.get('repository', None), str) and chart['repository'] in [x.name for x in self.repositories]: logging.debug('Found a reference to a repository installed via repositories section of course, replacing reference.') chart['repository'] = self._dict['repositories'][chart['repository']] def __str__(self): return str(self._dict) @property def repositories(self): """ Course repositories """ return self._repositories @property def secrets(self): """ Secrets Defined in the Chart """ return self._secrets @property def namespace_management(self): """ The default namespace manager block from the course if it exists Otherwise, returns {} """ _namespace_management = self._dict.get('namespace_management') if _namespace_management is None: return {} else: return _namespace_management.get('default', {}) def __getattr__(self, key): return self._dict.get(key) @property def hooks(self): return self._hooks @property def charts(self): """ List of Chart() instances """ return self._charts @property def pre_install_hook(self): return self._pre_install_hook @property def post_install_hook(self): return self._post_install_hook @property def init_hook(self): return self._init_hook def merge_secrets_into_environment(self) -> None: """ Accepts no Argument Returns None Loops over list of secrets and merges the name:values into the environment Throws ReckonerException if there is an existing Environment of the same name """ for secret in self.secrets: if secret.name in os.environ.keys(): raise ReckonerException( f"Found Secret {secret.name} with the same name as existing environment variable. " "Secrets may not have the same name as and existing environment variable" ) try: os.environ[secret.name] = secret.value except Exception as e: logging.error(f"Error retrieving value of secret {secret.name}") logging.debug(traceback.format_exc()) raise e def __run_command_for_charts_list(self, command: str, charts: list) -> List[ChartResult]: results = [] self.merge_secrets_into_environment() for chart in charts: namespace = chart.namespace or self.namespace logging.info(f"Running '{command}' on {chart.release_name} in {namespace}") try: getattr(chart, command)( default_namespace=self.namespace, default_namespace_management=self.namespace_management, context=self.context ) except (Exception, ReckonerCommandException) as e: logging.debug(traceback.format_exc()) if type(e) == ReckonerCommandException: logging.error(e.stderr) if type(e) == Exception: logging.error(e) logging.error(f'ERROR: {command} Failed on {chart.release_name}') if not self.config.continue_on_error: logging.error(str(e)) raise ReckonerCommandException( f"Stopping '{command}' for chart due to an error!" " Some of your requested actions may not have been" " completed!") from None finally: # Always grab any results in the chart results results.append(chart.result) return results def install_charts(self, charts_to_install: list) -> List[ChartResult]: """ For a list of charts_to_install, run the `install` method on each chart instance. Accepts list of `Chart()` Returns list of `ChartResult()` """ return self.__run_command_for_charts_list('install', charts_to_install) def update_charts(self, charts_to_update: list) -> List[ChartResult]: """ For a list of charts_to_update, run the `update` method on each chart instance. Accepts list of `Chart()` Returns list of `ChartResult()` """ return self.__run_command_for_charts_list('update', charts_to_update) def template_charts(self, charts_to_template: list) -> List[ChartResult]: """ For a list of charts_to_install, run the `template` method on each chart instance Accepts list of `Chart()` Returns list of `ChartResult()` """ return self.__run_command_for_charts_list('template', charts_to_template) def get_chart_manifests(self, charts_to_manifest: list) -> List[ChartResult]: """ For a list of charts_to_install, run the `get_manifest` method on each chart instance Accepts list of `Chart()` Returns list of `ChartResult()` """ return self.__run_command_for_charts_list('get_manifest', charts_to_manifest) def diff_charts(self, charts_to_diff: list) -> List[ChartResult]: """ For a list of charts_to_install, run the `get_manifest` method on each chart instance Accepts list of `Chart()` Returns list of `ChartResult()` """ return self.__run_command_for_charts_list('diff', charts_to_diff) def only_charts(self, charts_requested: list) -> List[str]: """ Accepts the list of requested charts, compares that to the course return the intersection. Will log if chart is requested but not present in the chart """ self._only_charts = [] # NOTE: Unexpected feature here: Since we're iterating on all charts # in the course to find the ones the user has requested, a # byproduct is that the --only's will always be run in the order # defined in the course.yml. No matter the order added to via # command line arguments. for chart in self.charts: if chart.release_name in charts_requested: self._only_charts.append(chart) charts_requested.remove(chart.release_name) else: logging.debug( 'Skipping {} in course.yml, not found ' 'in your requested charts list'.format(chart.release_name) ) # If any items remain in charts requested - warn that we didn't find them self._warn_about_missing_requested_charts(charts_requested) if len(self._only_charts) == 0: raise NoChartsToInstall( 'None of the charts you requested ({}) could be ' 'found in the course list. Verify you are using the ' 'release-name and not the chart name.'.format(', '.join(charts_requested)) ) return self._only_charts def template(self, charts_requested_to_template: list) -> List[str]: """ Accepts charts_requested_to_template, an iterable of the names of the charts to template. This method compares the charts in the argument to the charts in the course and calls Chart.template() """ # return the text of the charts templating results = self.template_charts(self.only_charts(charts_requested_to_template)) return results def get_manifests(self, charts_manifests_requested: list) -> List[str]: """ Accepts charts_manifests_requested, an iterable of the names of the charts to get manifests for. This method compares the charts in the argument to the charts in the course and calls Chart.get_manifest() """ # return the text of the charts templating results = self.get_chart_manifests(self.only_charts(charts_manifests_requested)) return results def diff(self, chart_diffs_requested: list) -> List[str]: """ Accepts chart_diffs_requested, an iterable of the names of the charts to get manifests for. This method compares the charts in the argument to the charts in the course and calls Chart.diff() """ # return the text of the charts templating results = self.diff_charts(self.only_charts(chart_diffs_requested)) return results def plot(self, charts_requested_to_install: list) -> List[ChartResult]: """ Accepts charts_to_install, an iterable of the names of the charts to install. This method compares the charts in the argument to the charts in the course and calls Chart.install() """ # return the results of the charts installation, exit on error to prevent post install hook run self.pre_install_hook.run() results = self.install_charts(self.only_charts(charts_requested_to_install)) for chart in results: if chart.failed == True and not self.config.continue_on_error: logging.error("Not running Course post_install hook due to a chart install error!") return results self.post_install_hook.run() return results def update(self, charts_requested_to_update: list) -> List[ChartResult]: """ Accepts charts_to_update, an iterable of the names of the charts to update. This method compares the charts in the argument to the charts in the course and calls Chart.update() """ # return the results of the charts update, exit on error to prevent post install hook run self.pre_install_hook.run() results = self.update_charts(self.only_charts(charts_requested_to_update)) for chart in results: if chart.failed == True and not self.config.continue_on_error: logging.error("Not running Course post_install hook due to a chart install error!") return results self.post_install_hook.run() return results def _warn_about_missing_requested_charts(self, charts_which_were_not_found): if charts_which_were_not_found: for missing_chart in charts_which_were_not_found: logging.warning( 'Could not find {} in course.yml'.format(missing_chart) ) logging.warning('Some of the requested charts were not found in ' 'your course.yml') def _compare_required_versions(self): """ Compare installed versions of helm and reckoner to the minimum versions required by the course.yml Accepts no arguments """ if self.minimum_versions is None: return True helm_minimum_version = self.minimum_versions.get('helm', '0.0.0') reckoner_minimum_version = self.minimum_versions.get('reckoner', '0.0.0') logging.debug("Helm Minimum Version is: {}".format(helm_minimum_version)) logging.debug("Helm Installed Version is {}".format(self.helm.version)) logging.debug("Reckoner Minimum Version is {}".format(reckoner_minimum_version)) logging.debug("Reckoner Installed Version is {}".format(reckoner_version)) r1 = semver.compare(reckoner_version, reckoner_minimum_version) if r1 < 0: raise MinimumVersionException("reckoner Minimum Version {} not met.".format(reckoner_minimum_version)) r2 = semver.compare(self.helm.version, helm_minimum_version) if r2 < 0: raise MinimumVersionException("helm Minimum Version {} not met.".format(helm_minimum_version)) return True
python
import re import ast import discord from redbot.core import Config from redbot.core import commands from redbot.core import checks defaults = {"Prefixes": {}} class PrefixManager(commands.Cog): """Used to set franchise and role prefixes and give to members in those franchises or with those roles""" def __init__(self): self.config = Config.get_conf(self, identifier=1234567891, force_registration=True) self.config.register_guild(**defaults) @commands.command() @commands.guild_only() @checks.admin_or_permissions(manage_guild=True) async def addPrefixes(self, ctx, *prefixes_to_add): """Add the prefixes and corresponding GM name. Arguments: prefixes_to_add -- One or more prefixes in the following format: \t"['<gm_name>','<prefix>']" Each prefix should be separated by a space. Examples: \t[p]addPrefixes "['Adammast','OCE']" \t[p]addPrefixes "['Adammast','OCE']" "['Shamu','STM']" """ addedCount = 0 try: for prefixStr in prefixes_to_add: prefix = ast.literal_eval(prefixStr) await ctx.send("Adding prefix: {0}".format(repr(prefix))) prefixAdded = await self.add_prefix(ctx, *prefix) if prefixAdded: addedCount += 1 finally: await ctx.send("Added {0} prefixes(s).".format(addedCount)) await ctx.send("Done.") @commands.command() @commands.guild_only() @checks.admin_or_permissions(manage_guild=True) async def addPrefix(self, ctx, gm_name: str, prefix: str): """Add a single prefix and corresponding GM name.""" prefixAdded = await self.add_prefix(ctx, gm_name, prefix) if(prefixAdded): await ctx.send("Done.") else: await ctx.send("Error adding prefix: {0}".format(prefix)) @commands.command(aliases=["listPrefixes", "prefixes"]) @commands.guild_only() async def getPrefixes(self, ctx): """Get all prefixes in the prefix dictionary""" prefixes = await self._prefixes(ctx) if(len(prefixes.items()) > 0): message = "```Prefixes:" for key, value in prefixes.items(): message += "\n\t{0} = {1}".format(key, value) message += "```" await ctx.send(message) else: await ctx.send(":x: No prefixes are set in the dictionary") @commands.command() @commands.guild_only() @checks.admin_or_permissions(manage_guild=True) async def removePrefix(self, ctx, gm_name: str): """Remove a single prefix. The GM will no longer have a prefix in the dictionary""" prefixRemoved = await self.remove_prefix(ctx, gm_name) if(prefixRemoved): await ctx.send("Done.") else: await ctx.send("Error removing prefix for {0}".format(gm_name)) @commands.command() @commands.guild_only() @checks.admin_or_permissions(manage_guild=True) async def clearPrefixes(self, ctx): """Clear the prefix dictionary""" prefixes = await self._prefixes(ctx) try: prefixes.clear() await self._save_prefixes(ctx, prefixes) await ctx.send(":white_check_mark: All prefixes have been removed from dictionary") except: await ctx.send(":x: Something went wrong when trying to clear the prefix dictionary") @commands.command() @commands.guild_only() async def lookupPrefix(self, ctx, gm_name: str): """Gets the prefix corresponding to the GM's franchise""" prefix = await self._get_gm_prefix(ctx, gm_name) if(prefix): await ctx.send("Prefix for {0} = {1}".format(gm_name, prefix)) return await ctx.send(":x: Prefix not found for {0}".format(gm_name)) def _find_role(self, ctx, role_id): guild = ctx.message.guild roles = guild.roles for role in roles: if role.id == role_id: return role raise LookupError('No role with id: {0} found in server roles'.format(role_id)) @commands.command() @commands.guild_only() @checks.admin_or_permissions(manage_nicknames=True) async def removeNicknames(self, ctx, *userList): """Removes any nickname from every member that can be found from the userList""" empty = True removed = 0 notFound = 0 message = "" for user in userList: try: member = await commands.MemberConverter().convert(ctx, user) if member in ctx.guild.members: await member.edit(nick=None) removed += 1 empty = False except: if notFound == 0: message += "Couldn't find:\n" message += "{0}\n".format(user) notFound += 1 if empty: message += ":x: Nobody found from list" else: message += ":white_check_mark: Removed nicknames from everyone that was found from list" if notFound > 0: message += ". {0} user(s) were not found".format(notFound) if removed > 0: message += ". {0} user(s) had their nickname removed".format(removed) await ctx.send(message) async def add_prefix(self, ctx, gm_name: str, prefix: str): prefixes = await self._prefixes(ctx) proper_gm_name = self._get_proper_gm_name(ctx, gm_name) # Validation of input # There are other validations we could do, but don't # - that there aren't extra args errors = [] if not proper_gm_name: errors.append("GM not found with name {0}.".format(gm_name)) if not prefix: errors.append("Prefix not found from input for GM {0}.".format(gm_name)) if errors: await ctx.send(":x: Errors with input:\n\n " "* {0}\n".format("\n * ".join(errors))) return try: prefixes[proper_gm_name] = prefix except: return False await self._save_prefixes(ctx, prefixes) return True async def remove_prefix(self, ctx, gm_name: str): prefixes = await self._prefixes(ctx) try: del prefixes[gm_name] except ValueError: await ctx.send("{0} does not have a prefix.".format(gm_name)) return False await self._save_prefixes(ctx, prefixes) return True def _get_proper_gm_name(self, ctx, gm_name): guild = ctx.message.guild roles = guild.roles for role in roles: try: gmNameFromRole = re.findall(r'(?<=\().*(?=\))', role.name)[0] if gmNameFromRole.lower() == gm_name.lower(): return gmNameFromRole except: continue async def _get_gm_prefix(self, ctx, gm_name): prefixes = await self._prefixes(ctx) try: return prefixes[self._get_proper_gm_name(ctx, gm_name)] except: return None async def _get_franchise_prefix(self, ctx, franchise_role): prefixes = await self._prefixes(ctx) try: gm_name = re.findall(r'(?<=\().*(?=\))', franchise_role.name)[0] return prefixes[gm_name] except: raise LookupError('GM name not found from role {0}'.format(franchise_role.name)) async def _prefixes(self, ctx): return await self.config.guild(ctx.guild).Prefixes() async def _save_prefixes(self, ctx, prefixes): await self.config.guild(ctx.guild).Prefixes.set(prefixes)
python
#!/usr/bin/env python """ .. py:currentmodule:: FileFormat.Results.test_PhirhozElement .. moduleauthor:: Hendrix Demers <[email protected]> Tests for the module `PhirhozElement`. """ # Script information for the file. __author__ = "Hendrix Demers ([email protected])" __version__ = "" __date__ = "" __copyright__ = "Copyright (c) 2012 Hendrix Demers" __license__ = "" # Subversion informations for the file. __svnRevision__ = "$Revision$" __svnDate__ = "$Date$" __svnId__ = "$Id$" # Standard library modules. import unittest import logging # Third party modules. # Local modules. # Project modules import pymcxray.FileFormat.Results.PhirhozElement as PhirhozElement # Globals and constants variables. class TestPhirhozElement(unittest.TestCase): """ TestCase class for the module `PhirhozElement`. """ def setUp(self): """ Setup method. """ unittest.TestCase.setUp(self) def tearDown(self): """ Teardown method. """ unittest.TestCase.tearDown(self) def testSkeleton(self): """ First test to check if the testcase is working with the testing framework. """ #self.fail("Test if the testcase is working.") self.assert_(True) def test_readFromLine(self): """ Tests for method `readFromLines`. """ line, phirhozElementRef = getLineAndReference() phirhozElement = PhirhozElement.PhirhozElement() phirhozElement.readFromLine(line) self.assertEquals(phirhozElementRef.symbol, phirhozElement.symbol) self.assertEquals(phirhozElementRef.weightFraction, phirhozElement.weightFraction) self.assertEquals(phirhozElementRef.isIonizationShell_K, phirhozElement.isIonizationShell_K) self.assertEquals(phirhozElementRef.isIonizationShell_L, phirhozElement.isIonizationShell_L) self.assertEquals(phirhozElementRef.isIonizationShell_M, phirhozElement.isIonizationShell_M) #self.fail("Test if the testcase is working.") def getLineAndReference(): line = "Au, 100.0000000 % Ionization shells 0 1 1" phirhozElementRef = PhirhozElement.PhirhozElement() phirhozElementRef.symbol = 'Au' phirhozElementRef.weightFraction = 1.0 phirhozElementRef.isIonizationShell_K = False phirhozElementRef.isIonizationShell_L = True phirhozElementRef.isIonizationShell_M = True return line, phirhozElementRef if __name__ == '__main__': #pragma: no cover logging.getLogger().setLevel(logging.DEBUG) from pymcxray.Testings import runTestModuleWithCoverage runTestModuleWithCoverage(__file__, withCoverage=False)
python
from json import loads from random import choice from .base_menti_question import BaseMentiQuestion QUOTES_PATH = 'quotes.json' def get_quotes(filename=QUOTES_PATH): with open(filename) as f: return f.read() return '' class MentiText(BaseMentiQuestion): max_text_len = 140 needed_attr = [] def __init__(self, params=None): super().__init__(params) self.dictionary = loads(get_quotes()) def flood(self): quote = choice(self.dictionary) response = "{}: \"{}\"".format(quote.get("name", ''), quote.get("quote", '')) return response[:self.max_text_len]
python
# -*- coding: utf-8 -*- from .wiserapi import WiserBaseAPI, _convert_case class SetPoint: def __init__(self): self.time = None self.temperature = None class Schedule(WiserBaseAPI): """Represnts the /Schedule object in the Restful API""" def __init__(self, *args, **kwargs): # Defining default values self.id = None self.type = None # "Heating" self.monday = None self.tuesday = None self.wednesday = None self.thursday = None self.friday = None self.saturday = None # "Sunday": { # "SetPoints": [ # { # "Time": 700, # "DegreesC": 200 # }, # { # "Time": 900, # "DegreesC": 180 # }, # { # "Time": 1600, # "DegreesC": 210 # }, # { # "Time": 2300, # "DegreesC": -200 # } # ] # }, super(Schedule, self).__init__(*args, **kwargs) # def _load_attributes(self, *args, **kwargs): # pass # # Set attributes of object from CamelCase # #print("LOAD custom schedule data!!") # #for attr in kwargs.keys(): # #setattr(self, _convert_case(attr), kwargs[attr]) #
python
def lagrange(vec_x, vec_f, x=0): tam,res = len(vec_x),0 L = [0]*tam for i in range(tam): L[i] = 1 for j in range(tam): if j != i: L[i] = L[i] * (x - vec_x[j])/(vec_x[i] - vec_x[j]) for k in range (tam): res = res + vec_f[k]*L[k] print(res) x = [0.81,0.83,0.86] # x y = [16,9,0.24,2.94] # f(x) x_bar = 0.84 # O que quer ser encontrado lagrange(x, y, x_bar)
python
import os import pandas as pd import numpy as np import shutil cwd = os.getcwd() sysname = os.path.basename(cwd) print(sysname) if os.path.isdir(cwd+'/lmbl/'): shutil.rmtree(cwd+'/lmbl/') os.mkdir('lmbl') coor = os.path.join(cwd+ '/coordinates/') lmbl = os.path.join(cwd+ '/lmbl/') os.chdir(lmbl) for filename in os.listdir(coor): other_name=[] other_X = [] other_Y = [] other_Z = [] C_X = [] C_Y = [] C_Z = [] count_C = 0 pos_C = [] print(filename) with open(os.path.join(coor+filename)) as f: lines=f.readlines() f.close() #obtian the number of C atoms and the coordinates of other atoms for i in range(1,len(lines)): lines_ele = lines[i].strip().split(',') ele = lines_ele[0] if ele == sysname: count_C+=1 pos_C.append(i) continue else: other_name.append(lines_ele[0]) other_X.append(lines_ele[1]) other_Y.append(lines_ele[2]) other_Z.append(lines_ele[3]) len_others=len(lines)-1-count_C #obtain coordinates of for j in range(0,count_C): lines_C = lines[pos_C[j]].strip().split(',') C_X.append(lines_C[1]) C_Y.append(lines_C[2]) C_Z.append(lines_C[3]) #calculate dist between C and other atoms #dist between first C and other atoms print(C_X) CX = C_X[0] CY = C_Y[0] CZ = C_Z[0] pair=[] dist=[] for k in range(0,len_others): Xdiff = float(other_X[k]) - float(CX) Ydiff = float(other_Y[k]) - float(CY) Zdiff = float(other_Z[k]) - float(CZ) d = np.sqrt(np.square(Xdiff)+np.square(Ydiff)+np.square(Zdiff)) pair.append(sysname + '-' + other_name[k]) dist.append(d) if count_C > 1: for l in range(1,count_C): Xdiff = float(C_X[l]) - float(CX) Ydiff = float(C_Y[l]) - float(CY) Zdiff = float(C_Z[l]) - float(CZ) d = np.sqrt(np.square(Xdiff) + np.square(Ydiff) + np.square(Zdiff)) pair.append(sysname + '-' + sysname) dist.append(d) weight=[] for dis in dist: w = 1 / dis weight.append(w) weight_sum=sum(weight) frac = [ w / weight_sum for w in weight] df = pd.DataFrame({'pair':pair,'dist':dist,'weight':weight,'weight_sum':weight_sum,'frac':frac}) df.to_csv(filename,index=False)
python
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Servlet for Content Security Policy violation reporting. See http://www.html5rocks.com/en/tutorials/security/content-security-policy/ for more information on how this mechanism works. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import webapp2 import logging class CSPReportPage(webapp2.RequestHandler): """CSPReportPage serves CSP violation reports.""" def post(self): logging.error('CSP Violation: %s' % self.request.body)
python
import datetime from pathlib import Path from typing import Iterator, Any import pytest import google_takeout_parser.parse_json as prj @pytest.fixture(scope="function") def tmp_path_f( request: Any, tmp_path_factory: pytest.TempPathFactory ) -> Iterator[Path]: """ Create a new tempdir every time this runs """ # request is a _pytest.fixture.SubRequest, function that called this assert isinstance(request.function.__name__, str), str(request) assert request.function.__name__.strip(), str(request) tmp_dir = tmp_path_factory.mktemp(request.function.__name__, numbered=True) yield tmp_dir def test_parse_activity_json(tmp_path_f: Path) -> None: contents = '[{"header": "Discover", "title": "7 cards in your feed", "time": "2021-12-13T03:04:05.007Z", "products": ["Discover"], "locationInfos": [{"name": "At this general area", "url": "https://www.google.com/maps/@?api=1&map_action=map&center=lat,lon&zoom=12", "source": "From your Location History", "sourceUrl": "https://www.google.com/maps/timeline"}], "subtitles": [{"name": "Computer programming"}, {"name": "Computer Science"}, {"name": "PostgreSQL"}, {"name": "Technology"}]}]' fp = tmp_path_f / "file" fp.write_text(contents) res = list(prj._parse_json_activity(fp)) assert res[0] == prj.Activity( header="Discover", title="7 cards in your feed", time=datetime.datetime( 2021, 12, 13, 3, 4, 5, 7000, tzinfo=datetime.timezone.utc ), description=None, titleUrl=None, subtitles=[ ("Computer programming", None), ("Computer Science", None), ("PostgreSQL", None), ("Technology", None), ], locationInfos=[ ( "At this general area", "https://www.google.com/maps/@?api=1&map_action=map&center=lat,lon&zoom=12", "From your Location History", "https://www.google.com/maps/timeline", ), ], details=[], products=["Discover"], ) def test_parse_likes_json(tmp_path_f: Path) -> None: contents = """[{"contentDetails": {"videoId": "J1tF-DKKt7k", "videoPublishedAt": "2015-10-05T17:23:15.000Z"}, "etag": "GbLczUV2gsP6j0YQgTcYropUbdY", "id": "TExBNkR0bmJaMktKY2t5VFlmWE93UU5BLkoxdEYtREtLdDdr", "kind": "youtube#playlistItem", "snippet": {"channelId": "UCA6DtnbZ2KJckyTYfXOwQNA", "channelTitle": "Sean B", "description": "\\u30b7\\u30e5\\u30ac\\u30fc\\u30bd\\u30f3\\u30b0\\u3068\\u30d3\\u30bf\\u30fc\\u30b9\\u30c6\\u30c3\\u30d7 \\nSugar Song and Bitter Step\\n\\u7cd6\\u6b4c\\u548c\\u82e6\\u5473\\u6b65\\u9a5f\\nUNISON SQUARE GARDEN\\n\\u7530\\u6df5\\u667a\\u4e5f\\n\\u8840\\u754c\\u6226\\u7dda\\n\\u5e7b\\u754c\\u6230\\u7dda\\nBlood Blockade Battlefront ED\\nArranged by Maybe\\nScore:https://drive.google.com/open?id=0B9Jb1ks6rtrWSk1hX1U0MXlDSUE\\nThx~~", "playlistId": "LLA6DtnbZ2KJckyTYfXOwQNA", "position": 4, "publishedAt": "2020-07-05T18:27:32.000Z", "resourceId": {"kind": "youtube#video", "videoId": "J1tF-DKKt7k"}, "thumbnails": {"default": {"height": 90, "url": "https://i.ytimg.com/vi/J1tF-DKKt7k/default.jpg", "width": 120}, "high": {"height": 360, "url": "https://i.ytimg.com/vi/J1tF-DKKt7k/hqdefault.jpg", "width": 480}, "medium": {"height": 180, "url": "https://i.ytimg.com/vi/J1tF-DKKt7k/mqdefault.jpg", "width": 320}, "standard": {"height": 480, "url": "https://i.ytimg.com/vi/J1tF-DKKt7k/sddefault.jpg", "width": 640}}, "title": "[Maybe]Blood Blockade Battlefront ED \\u30b7\\u30e5\\u30ac\\u30fc\\u30bd\\u30f3\\u30b0\\u3068\\u30d3\\u30bf\\u30fc\\u30b9\\u30c6\\u30c3\\u30d7 Sugar Song and Bitter Step"}, "status": {"privacyStatus": "public"}}]""" fp = tmp_path_f / "file" fp.write_text(contents) res = list(prj._parse_likes(fp)) assert res == [ prj.LikedYoutubeVideo( title="[Maybe]Blood Blockade Battlefront ED シュガーソングとビターステップ " "Sugar Song and Bitter Step", desc="シュガーソングとビターステップ \n" "Sugar Song and Bitter Step\n" "糖歌和苦味步驟\n" "UNISON SQUARE GARDEN\n" "田淵智也\n" "血界戦線\n" "幻界戰線\n" "Blood Blockade Battlefront ED\n" "Arranged by Maybe\n" "Score:https://drive.google.com/open?id=0B9Jb1ks6rtrWSk1hX1U0MXlDSUE\n" "Thx~~", link="https://youtube.com/watch?v=J1tF-DKKt7k", dt=datetime.datetime(2020, 7, 5, 18, 27, 32, tzinfo=datetime.timezone.utc), ) ] def test_parse_app_installs(tmp_path_f: Path) -> None: contents = """[{"install": {"doc": {"documentType": "Android Apps", "title": "Discord - Talk, Video Chat & Hang Out with Friends"}, "firstInstallationTime": "2020-05-25T03:11:53.055Z", "deviceAttribute": {"manufacturer": "motorola", "deviceDisplayName": "motorola moto g(7) play"}, "lastUpdateTime": "2020-08-27T02:55:33.259Z"}}]""" fp = tmp_path_f / "file" fp.write_text(contents) res = list(prj._parse_app_installs(fp)) assert res == [ prj.PlayStoreAppInstall( title="Discord - Talk, Video Chat & Hang Out with Friends", dt=datetime.datetime( 2020, 5, 25, 3, 11, 53, 55000, tzinfo=datetime.timezone.utc ), device_name="motorola moto g(7) play", ) ] def test_location_old(tmp_path_f) -> None: contents = '{"locations": [{"timestampMs": "1512947698030", "latitudeE7": 351324213, "longitudeE7": -1122434441, "accuracy": 10}]}' fp = tmp_path_f / "file" fp.write_text(contents) res = list(prj._parse_location_history(fp)) assert res == [ prj.Location( lng=-112.2434441, lat=35.1324213, dt=datetime.datetime( 2017, 12, 10, 23, 14, 58, tzinfo=datetime.timezone.utc ), accuracy=10, ), ] def test_location_new(tmp_path_f: Path) -> None: contents = '{"locations": [{"latitudeE7": 351324213, "longitudeE7": -1122434441, "accuracy": 10, "deviceTag": -80241446968629135069, "deviceDesignation": "PRIMARY", "timestamp": "2017-12-10T23:14:58.030Z"}]}' fp = tmp_path_f / "file" fp.write_text(contents) res = list(prj._parse_location_history(fp)) assert res == [ prj.Location( lng=-112.2434441, lat=35.1324213, dt=datetime.datetime( 2017, 12, 10, 23, 14, 58, 30000, tzinfo=datetime.timezone.utc ), accuracy=10, ), ] def test_chrome_history(tmp_path_f: Path) -> None: contents = '{"Browser History": [{"page_transition": "LINK", "title": "sean", "url": "https://sean.fish", "client_id": "W1vSb98l403jhPeK==", "time_usec": 1617404690134513}]}' fp = tmp_path_f / "file" fp.write_text(contents) res = list(prj._parse_chrome_history(fp)) assert res == [ prj.ChromeHistory( title="sean", url="https://sean.fish", dt=datetime.datetime( 2021, 4, 2, 23, 4, 50, 134513, tzinfo=datetime.timezone.utc ), ), ]
python
from __future__ import annotations from typing import TYPE_CHECKING import discord from discord.ext import typed_commands from .exceptions import NotGuildOwner, OnlyDirectMessage if TYPE_CHECKING: from discord.ext.commands import core def dm_only() -> core._CheckDecorator: def predicate(ctx: core._CT, /) -> bool: if not isinstance(ctx.channel, discord.DMChannel): raise OnlyDirectMessage('This command can only be used in private messags.') return True return typed_commands.check(predicate) def is_guild_owner() -> core._CheckDecorator: def predicate(ctx: core._CT, /) -> bool: if ctx.guild is None: raise typed_commands.NoPrivateMessage( 'This command cannot be used in private messages.' ) if ctx.guild.owner != ctx.author: raise NotGuildOwner('You do not own this guild') return True return typed_commands.check(predicate)
python
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Recipe for updating the go_deps asset.""" DEPS = [ 'checkout', 'infra', 'recipe_engine/context', 'recipe_engine/properties', 'recipe_engine/python', 'run', 'vars', ] def RunSteps(api): api.vars.setup() checkout_root = api.checkout.default_checkout_root api.checkout.bot_update(checkout_root=checkout_root) skia_dir = checkout_root.join('skia') with api.context(cwd=skia_dir, env=api.infra.go_env): script = skia_dir.join('infra', 'bots', 'update_go_deps.py') api.run(api.python, 'Update Asset', script=script) def GenTests(api): builder = 'Housekeeper-Nightly-UpdateGoDEPS' yield ( api.test(builder) + api.properties(buildername=builder, repository='https://skia.googlesource.com/skia.git', revision='abc123', path_config='kitchen', swarm_out_dir='[SWARM_OUT_DIR]') )
python
import spacy import numpy as np import os, shutil, json, sys import json, argparse, logging from tqdm import tqdm import tensorflow as tf from collections import defaultdict from MultiHeadAttention import * class GAN: def __init__(self, input_shapes, embedding_size, question_padding): #input shapes is in the order context, answers, noise self.input_shapes = input_shapes self.embedding_size = embedding_size self.question_padding = question_padding self.generator = self.generator_model() self.discriminator = self.discriminator_model() self.adversarial = self.adversarial_model() def generator_model(self): c_in = tf.keras.layers.Input(self.input_shapes[0], name = 'c_in') a_in = tf.keras.layers.Input(self.input_shapes[1], name = 'a_in') r_in = tf.keras.layers.Input(self.input_shapes[2], name = 'r_in') c_h = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(200))(c_in) a_h = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(100))(a_in) h1 = tf.keras.layers.Concatenate()([c_h, a_h, r_in]) h2 = tf.keras.layers.RepeatVector(self.question_padding)(h1) h3 = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(200, return_sequences = True))(h2) q_out = tf.keras.layers.GRU(self.embedding_size, return_sequences = True)(h3) #q_out is shape (1, batch, question_padding, embedding_size) return tf.keras.models.Model([c_in, a_in, r_in], q_out) def discriminator_model(self): q_in = tf.keras.layers.Input((self.question_padding, self.embedding_size)) h1 = tf.keras.layers.Conv1D(128, 3, activation='relu')(q_in) h2 = tf.keras.layers.Conv1D(128, 3, activation='relu')(h1) h3 = MultiHeadAttention(128, 16, output_dense=False)(h2) h4 = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(64, return_sequences = True))(h3) h5 = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(64))(h4) k_out = tf.keras.layers.Dense(1, activation = 'sigmoid')(h5) return tf.keras.models.Model(q_in, k_out) def adversarial_model(self): c_in = tf.keras.layers.Input(self.input_shapes[0], name = 'c_in') a_in = tf.keras.layers.Input(self.input_shapes[1], name = 'a_in') r_in = tf.keras.layers.Input(self.input_shapes[2], name = 'r_in') q_out = self.generator([c_in, a_in, r_in]) k_out = self.discriminator(q_out) return tf.keras.models.Model([c_in, a_in, r_in], k_out) def compile(self, optimizer=tf.keras.optimizers.Adam(), adversarial_loss='binary_crossentropy', question_loss='cosine_similarity'): self.optimizer = optimizer self.adversarial_loss = adversarial_loss self.question_loss = question_loss self.discriminator.compile(optimizer=self.optimizer, loss=self.adversarial_loss, metrics=[tf.keras.metrics.CategoricalAccuracy()]) self.generator.compile(optimizer=self.optimizer, loss=self.question_loss) self.adversarial.compile(optimizer=self.optimizer, loss=self.adversarial_loss, metrics=[tf.keras.metrics.CategoricalAccuracy()]) self.compiled = True def fit(self, loader, epochs, generator_epochs = 1, discriminator_epochs = 1, question_epochs = 1, pretrain_epochs = 1): if not self.compiled: raise AssertionError("Model must be compiled first.") for i in range(pretrain_epochs): logging.info(f'Pretrain Epoch {i + 1}:') dl = 0 self.generator.trainable = False self.discriminator.trainable = True for b, j in enumerate(np.random.permutation(len(loader))): c, a, q = loader[j] r = np.random.normal(0, 1, size = [len(a), self.input_shapes[2][0]]) oq = self.generator.predict_on_batch([c, a, r]) fake_labels = np.zeros([len(a)]) true_labels = np.ones_like(fake_labels) qs, labels = np.concatenate([q, oq]), np.concatenate([true_labels, fake_labels]) for _ in range(discriminator_epochs): dl = self.discriminator.train_on_batch(qs, labels) loader.on_epoch_end() logging.info(f"Discriminator loss - {dl}") for i in range(epochs): logging.info(f'Epoch {i + 1}:') ql = gl = dl = 0 for b, j in enumerate(np.random.permutation(len(loader))): c, a, q = loader[j] r = np.random.normal(0, 1, size = [len(a), self.input_shapes[2][0]]) self.generator.trainable = True self.discriminator.trainable = False for _ in range(question_epochs): ql = self.generator.train_on_batch([c, a, r], q) for _ in range(generator_epochs): gl = self.adversarial.train_on_batch([c, a, r], np.ones(len(a))) if discriminator_epochs: self.generator.trainable = False self.discriminator.trainable = True oq = self.generator.predict_on_batch([c, a, r]) fake_labels = np.zeros([len(a)]) true_labels = np.ones_like(fake_labels) qs, labels = np.concatenate([q, oq]), np.concatenate([true_labels, fake_labels]) for _ in range(discriminator_epochs): dl = self.discriminator.train_on_batch(qs, labels) if b % 500 == 0: logging.info(f"Batch {b}/{len(loader)}") logging.info(f"Question loss - {ql}") logging.info(f"Generator loss - {gl}") logging.info(f"Discriminator loss - {dl}") loader.on_epoch_end() self.generator.save('models/generator.h5', save_format = 'h5') self.discriminator.save('models/discriminator.h5', save_format = 'h5') self.adversarial.save('models/adversarial.h5', save_format = 'h5') def load(self, load_directory): load_dir = load_directory.rstrip('/') custom_objects = {'MultiHeadAttention': MultiHeadAttention} self.generator = tf.keras.models.load_model(f'{load_dir}/generator.h5', custom_objects=custom_objects) self.discriminator = tf.keras.models.load_model(f'{load_dir}/discriminator.h5', custom_objects=custom_objects) self.adversarial = self.adversarial_model()
python
"""A Yelp-powered Restaurant Recommendation Program""" from abstractions import * from data import ALL_RESTAURANTS, CATEGORIES, USER_FILES, load_user_file from ucb import main, trace, interact from utils import distance, mean, zip, enumerate, sample from visualize import draw_map ################################## # Phase 2: Unsupervised Learning # ################################## def find_closest(location, centroids): """Return the centroid in centroids that is closest to location. If multiple centroids are equally close, return the first one. >>> find_closest([3.0, 4.0], [[0.0, 0.0], [2.0, 3.0], [4.0, 3.0], [5.0, 5.0]]) [2.0, 3.0] """ # BEGIN Question 3 # so this beautiful list comprehension takes the distances between the given location and the centroids, enumerates them, # finds the lowest distance, accesses the index of the said distance, and uses that for accessing the closest centroid # yes, it's complicated, but it's too beautiful to delete it return centroids[min(enumerate([distance(location, centroid) for centroid in centroids]), key = lambda x: x[1])[0]] # END Question 3 def group_by_first(pairs): """Return a list of pairs that relates each unique key in the [key, value] pairs to a list of all values that appear paired with that key. Arguments: pairs -- a sequence of pairs >>> example = [ [1, 2], [3, 2], [2, 4], [1, 3], [3, 1], [1, 2] ] >>> group_by_first(example) [[2, 3, 2], [2, 1], [4]] """ keys = [] for key, _ in pairs: if key not in keys: keys.append(key) return [[y for x, y in pairs if x == key] for key in keys] def group_by_centroid(restaurants, centroids): """Return a list of clusters, where each cluster contains all restaurants nearest to a corresponding centroid in centroids. Each item in restaurants should appear once in the result, along with the other restaurants closest to the same centroid. """ # BEGIN Question 4 stack = [] for rest in restaurants: closest_centroid = find_closest(restaurant_location(rest), centroids) stack.append([closest_centroid, rest]) return group_by_first(stack) # END Question 4 def find_centroid(cluster): """Return the centroid of the locations of the restaurants in cluster.""" # BEGIN Question 5 centx, centy = 0, 0 for rest in cluster: [restx, resty] = restaurant_location(rest) centx, centy = restx + centx, resty + centy return [centx / len(cluster), centy / len(cluster)] # END Question 5 def k_means(restaurants, k, max_updates=100): """Use k-means to group restaurants by location into k clusters.""" assert len(restaurants) >= k, 'Not enough restaurants to cluster' old_centroids, n = [], 0 # Select initial centroids randomly by choosing k different restaurants centroids = [restaurant_location(r) for r in sample(restaurants, k)] while old_centroids != centroids and n < max_updates: old_centroids = centroids # BEGIN Question 6 clusters = group_by_centroid(restaurants, old_centroids) centroids = [find_centroid(cluster) for cluster in clusters] # END Question 6 n += 1 return centroids ################################ # Phase 3: Supervised Learning # ################################ def find_predictor(user, restaurants, feature_fn): """Return a rating predictor (a function from restaurants to ratings), for a user by performing least-squares linear regression using feature_fn on the items in restaurants. Also, return the R^2 value of this model. Arguments: user -- A user restaurants -- A sequence of restaurants feature_fn -- A function that takes a restaurant and returns a number """ reviews_by_user = {review_restaurant_name(review): review_rating(review) for review in user_reviews(user).values()} xs = [feature_fn(r) for r in restaurants] ys = [reviews_by_user[restaurant_name(r)] for r in restaurants] # BEGIN Question 7 b, a, r_squared = 0, 0, 0 mxs, mys = mean(xs), mean(ys) S_xx, S_yy, S_xy = 0, 0, 0 S_xx = sum([(x - mxs) ** 2 for x in xs]) S_yy = sum([(y - mys) ** 2 for y in ys]) S_xy = sum([(x - mxs) * (y - mys) for x, y in zip(xs, ys)]) b = S_xy / S_xx a = mean(ys) - b * mean(xs) r_squared = S_xy ** 2 / (S_xx * S_yy) # END Question 7 def predictor(restaurant): return b * feature_fn(restaurant) + a return predictor, r_squared def best_predictor(user, restaurants, feature_fns): """Find the feature within feature_fns that gives the highest R^2 value for predicting ratings by the user; return a predictor using that feature. Arguments: user -- A user restaurants -- A list of restaurants feature_fns -- A sequence of functions that each takes a restaurant """ reviewed = user_reviewed_restaurants(user, restaurants) # BEGIN Question 8 stack = [] for feat_fn in feature_fns: stack.append([*find_predictor(user, reviewed, feat_fn)]) return max(stack, key = lambda x: x[1])[0] # END Question 8 def rate_all(user, restaurants, feature_fns): """Return the predicted ratings of restaurants by user using the best predictor based on a function from feature_fns. Arguments: user -- A user restaurants -- A list of restaurants feature_fns -- A sequence of feature functions """ predictor = best_predictor(user, ALL_RESTAURANTS, feature_fns) reviewed = user_reviewed_restaurants(user, restaurants) # BEGIN Question 9 ratings = {} for rest in restaurants: rest_name = restaurant_name(rest) ratings[rest_name] = user_rating(user, rest_name) if rest in reviewed else predictor(rest) return ratings # END Question 9 def search(query, restaurants): """Return each restaurant in restaurants that has query as a category. Arguments: query -- A string restaurants -- A sequence of restaurants """ # BEGIN Question 10 return [rest for rest in restaurants if query in restaurant_categories(rest)] # END Question 10 def feature_set(): """Return a sequence of feature functions.""" return [lambda r: mean(restaurant_ratings(r)), restaurant_price, lambda r: len(restaurant_ratings(r)), lambda r: restaurant_location(r)[0], lambda r: restaurant_location(r)[1]] @main def main(*args): import argparse parser = argparse.ArgumentParser( description='Run Recommendations', formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument('-u', '--user', type=str, choices=USER_FILES, default='test_user', metavar='USER', help='user file, e.g.\n' + '{{{}}}'.format(','.join(sample(USER_FILES, 3)))) parser.add_argument('-k', '--k', type=int, help='for k-means') parser.add_argument('-q', '--query', choices=CATEGORIES, metavar='QUERY', help='search for restaurants by category e.g.\n' '{{{}}}'.format(','.join(sample(CATEGORIES, 3)))) parser.add_argument('-p', '--predict', action='store_true', help='predict ratings for all restaurants') parser.add_argument('-r', '--restaurants', action='store_true', help='outputs a list of restaurant names') args = parser.parse_args() # Output a list of restaurant names if args.restaurants: print('Restaurant names:') for restaurant in sorted(ALL_RESTAURANTS, key=restaurant_name): print(repr(restaurant_name(restaurant))) exit(0) # Select restaurants using a category query if args.query: restaurants = search(args.query, ALL_RESTAURANTS) else: restaurants = ALL_RESTAURANTS # Load a user assert args.user, 'A --user is required to draw a map' user = load_user_file('{}.dat'.format(args.user)) # Collect ratings if args.predict: ratings = rate_all(user, restaurants, feature_set()) else: restaurants = user_reviewed_restaurants(user, restaurants) names = [restaurant_name(r) for r in restaurants] ratings = {name: user_rating(user, name) for name in names} # Draw the visualization if args.k: centroids = k_means(restaurants, min(args.k, len(restaurants))) else: centroids = [restaurant_location(r) for r in restaurants] draw_map(centroids, restaurants, ratings)
python
import subprocess import ansiconv import sys from django.conf import settings from django.http import StreamingHttpResponse from django.shortcuts import get_object_or_404 from django.views.generic import View from fabric_bolt.projects.models import Deployment from fabric_bolt.projects.signals import deployment_finished from fabric_bolt.projects.views import StageSubPageMixin from .. import backend class DeploymentOutputStream(StageSubPageMixin, View): """ Deployment view does the heavy lifting of calling Fabric Task for a Project Stage """ def output_stream_generator(self): if backend.get_task_details(self.project, self.object.task.name) is None: return try: process = subprocess.Popen( backend.build_command(self.project, self.object, self.request.session), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, executable=getattr(settings, 'SHELL', '/bin/bash'), ) all_output = '' yield '<link rel="stylesheet" type="text/css" href="/static/css/console-style.css">' while True: nextline = process.stdout.readline() if nextline == '' and process.poll() is not None: break all_output += nextline nextline = '<span class="output-line">{}</span>'.format(ansiconv.to_html(nextline)) yield nextline + ' '*1024 sys.stdout.flush() self.object.status = self.object.SUCCESS if process.returncode == 0 else self.object.FAILED yield '<span id="finished" style="display:none;">{}</span> {}'.format(self.object.status, ' '*1024) self.object.output = all_output self.object.save() deployment_finished.send(self.object, deployment_id=self.object.pk) except Exception as e: message = "An error occurred: " + e.message yield '<span class="output-line">{}</span>'.format(message) + ' '*1024 yield '<span id="finished" style="display:none;">failed</span> {}'.format('*1024') def get(self, request, *args, **kwargs): self.object = get_object_or_404( Deployment, stage=self.stage, pk=int(kwargs['pk']), status=Deployment.PENDING ) resp = StreamingHttpResponse(self.output_stream_generator()) return resp
python
import json import asyncio import sys from joplin_api import JoplinApi from httpx import Response import pprint import difflib import logging with open('.token','r') as f: token = f.readline() joplin = JoplinApi(token) async def search(query): res = await joplin.search(query,field_restrictions='title') logging.info(res) # await joplin.client.aclose() titles = [item['title'] for item in res.json()['items']] return titles async def new_folder(name): """Returns folder's id to be used as 'parent_id' for notes""" res = await joplin.create_folder(folder=name) return res.json()['id'] async def new_note(title, body, folder_id, tags=[]): assert title is str assert body is str assert folder_id is str assert tags is list kwargs = {} if tags: kwargs['tags'] = ', '.join(tags) await joplin.create_note(title="MY NOTE", body=body, parent_id=parent_id, **kwargs) async def tag_id(title): "Fetches tags's Id given its title. " res = (await joplin.search(title, item_type='tag')) j = json.load(res) data = j['items'][0] return data['id'] async def notes_by_tag(title): "Lists all note (as dics) for a given tags" return (await joplin.get_tags_notes(await tag_id(title))).json()['items'] async def update_note(note,tags=None): """ Uploads note to serve. Required item or they will be erased: 'author', 'source_url', 'is_todo' if 'is_todo' in addition: 'todo_due', 'todo_completed' All other items are ignored. :param note: note data as dict :param tags: list of tag titles to replace current tags. If None current tags are kept """ assert isinstance(note, dict), note id = note.pop('id') title = note.pop('title') body = note.pop('body') pid = note.pop('parent_id') # fetch tags from server. There are note returned b which are not returned by `get_note` if tags: note['tags'] = ', '.join(tags) else: tags = (await joplin.get_notes_tags(id)).json() note['tags'] = ', '.join([t['title'] for t in tags]) # see https://github.com/foxmask/joplin-api/blob/master/joplin_api/core.py res = await joplin.update_note(id,title, body, pid, **note) assert res.status_code == 200, res async def edit_notes(editor,tag_title, logger): """ Applies function to every note with given tag and uploads changes. :param editor: function accepting a note data dict and returning those items that changed :param tag: notes with a tag of this title will be processed """ notes = await notes_by_tag(tag_title) edits = [(await editor(n)) for n in notes] differ = difflib.Differ() for edit, note in zip(edits, notes): if edit: # log diff for k,v in edit.items(): logger.info(f"Updating '{k}' for note {note['id']}.") diff = differ.compare(note[k].splitlines(), edit[k].splitlines()) for d in diff: if not d.startswith(' '): logger.info(d) # update server note.update(edit) await update_note(note)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 30/11/2021 22:19 # @Author : Mr. Y # @Site : # @File : similarity_indicators.py # @Software: PyCharm import numpy as np np.seterr(divide='ignore',invalid='ignore') import time import os from utils import Initialize os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' def Calculation_AUC(MatrixAdjacency_Train, MatrixAdjacency_Test, Matrix_similarity, MaxNodeNum): AUC_TimeStart = time.perf_counter() print(' Calculation AUC......') AUCnum = 672400 Matrix_similarity = np.triu(Matrix_similarity - Matrix_similarity * MatrixAdjacency_Train) Matrix_NoExist = np.ones(MaxNodeNum) - MatrixAdjacency_Train - MatrixAdjacency_Test - np.eye(MaxNodeNum) Test = np.triu(MatrixAdjacency_Test) NoExist = np.triu(Matrix_NoExist) Test_num = len(np.argwhere(Test == 1)) NoExist_num = len(np.argwhere(NoExist == 1)) Test_rd = [int(x) for index, x in enumerate((Test_num * np.random.rand(1, AUCnum))[0])] NoExist_rd = [int(x) for index, x in enumerate((NoExist_num * np.random.rand(1, AUCnum))[0])] TestPre = Matrix_similarity * Test NoExistPre = Matrix_similarity * NoExist TestIndex = np.argwhere(Test == 1) Test_Data = np.array([TestPre[x[0], x[1]] for index, x in enumerate(TestIndex)]).T NoExistIndex = np.argwhere(NoExist == 1) NoExist_Data = np.array([NoExistPre[x[0], x[1]] for index, x in enumerate(NoExistIndex)]).T Test_rd = np.array([Test_Data[x] for index, x in enumerate(Test_rd)]) NoExist_rd = np.array([NoExist_Data[x] for index, x in enumerate(NoExist_rd)]) n1, n2 = 0, 0 for num in range(AUCnum): if Test_rd[num] > NoExist_rd[num]: n1 += 1 elif Test_rd[num] == NoExist_rd[num]: n2 += 0.5 else: n1 += 0 auc = float(n1 + n2) / AUCnum print(' AUC指标为:%f' % auc) AUC_TimeEnd = time.perf_counter() print(' AUCTime:%f s' % (AUC_TimeEnd - AUC_TimeStart)) return auc def AA(MatrixAdjacency_Train): similarity_StartTime = time.perf_counter() logTrain = np.log(sum(MatrixAdjacency_Train)) logTrain = np.nan_to_num(logTrain) logTrain.shape = (logTrain.shape[0], 1) MatrixAdjacency_Train_Log = MatrixAdjacency_Train / logTrain MatrixAdjacency_Train_Log = np.nan_to_num(MatrixAdjacency_Train_Log) Matrix_similarity = np.dot(MatrixAdjacency_Train, MatrixAdjacency_Train_Log) similarity_EndTime = time.perf_counter() print(" SimilarityTime: %f s" % (similarity_EndTime - similarity_StartTime)) return Matrix_similarity def Jaccavrd(MatrixAdjacency_Train): similarity_StartTime = time.perf_counter() Matrix_similarity = np.dot(MatrixAdjacency_Train, MatrixAdjacency_Train) deg_row = sum(MatrixAdjacency_Train) deg_row.shape = (deg_row.shape[0], 1) deg_row_T = deg_row.T tempdeg = deg_row + deg_row_T temp = tempdeg - Matrix_similarity Matrix_similarity = Matrix_similarity / temp similarity_EndTime = time.perf_counter() print(" SimilarityTime: %f s" % (similarity_EndTime - similarity_StartTime)) return Matrix_similarity def RWR(MatrixAdjacency_Train): similarity_StartTime = time.perf_counter() Parameter = 0.85 Matrix_TransitionProbobility = MatrixAdjacency_Train / sum(MatrixAdjacency_Train) Matrix_EYE = np.eye(MatrixAdjacency_Train.shape[0]) Temp = Matrix_EYE - Parameter * Matrix_TransitionProbobility.T INV_Temp = np.linalg.inv(Temp) Matrix_RWR = (1 - Parameter) * np.dot(INV_Temp, Matrix_EYE) Matrix_similarity = Matrix_RWR + Matrix_RWR.T similarity_EndTime = time.perf_counter() print(" SimilarityTime: %f s" % (similarity_EndTime - similarity_StartTime)) return Matrix_similarity def Cn(MatrixAdjacency_Train): similarity_StartTime = time.perf_counter() Matrix_similarity = np.dot(MatrixAdjacency_Train, MatrixAdjacency_Train) similarity_EndTime = time.perf_counter() print(" SimilarityTime: %f s" % (similarity_EndTime - similarity_StartTime)) return Matrix_similarity def Salton(MatrixAdjacency_Train): similarity_StartTime = time.clock() similarity = np.dot(MatrixAdjacency_Train, MatrixAdjacency_Train) deg_row = sum(MatrixAdjacency_Train) deg_row.shape = (deg_row.shape[0], 1) deg_row_T = deg_row.T tempdeg = np.dot(deg_row, deg_row_T) temp = np.sqrt(tempdeg) Matrix_similarity = np.nan_to_num(similarity / temp) similarity_EndTime = time.clock() print(" SimilarityTime: %f s" % (similarity_EndTime - similarity_StartTime)) return Matrix_similarity
python
""" """ try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputAssetState except ImportError: import OutputAssetState def create_instance(): return OutputAssetStateText() class OutputAssetStateText(OutputAssetState.Base, Output.Text): """ """ def __init__(self): super().__init__() def amend_interim_result(self, entry, status=None): try: message = Output.populate_format(entry, entry["test_format"]) except KeyError: message = "NO FORMAT PROVIDED..." if status != Output.Status.OK: self.message_list.append(message) self.message_list.append(f" text: {entry['text']}") return True def amend_test_result( self, entry_tests, stats) : return self.test_result_to_text(entry_tests, stats)
python
import re from django.urls import re_path from . import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ re_path(r'^$',views.account,name='account'), re_path(r'^account/',views.account,name='account'), re_path(r'^home/',views.home,name='home'), re_path(r'^search/', views.search_results, name='search_results') ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
python
# coding: utf-8 # flake8: noqa E266 # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from flask_env import MetaFlaskEnv from celery.schedules import crontab class base_config(object, metaclass=MetaFlaskEnv): """Default configuration options.""" ENV_PREFIX = 'APP_' SITE_NAME = 'TES API Server for Azure Compute' SECRET_KEY = 'secrets' SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://username:password@host:5432/dbname' CELERY_RESULT_BACKEND = 'redis://key@host:6379' CELERY_BROKER_URL = 'redis://key@host:6379' SUPPORTED_LOCALES = ['en'] # ## Common # COMPUTE_BACKEND = "mock" # among ['mock', 'aks', 'batch'] STORAGE_ACCOUNT_NAME = '' STORAGE_ACCOUNT_KEY = '' PRIVATE_DOCKER_REGISTRY_URL = None # "myregistry.azurecr.io" PRIVATE_DOCKER_REGISTRY_USERNAME = "username" PRIVATE_DOCKER_REGISTRY_PASSWORD = "password" FILETRANSFER_CONTAINER_IMAGE = 'azuretes.azurecr.io/tesazure/container-filetransfer:latest' # FIXME: change this to the public version when available # ## Logging - App Insights / OpenCensus. # APPINSIGHTS_DISABLE_REQUEST_LOGGING = True APPINSIGHTS_DISABLE_TRACE_LOGGING = False APPINSIGHTS_DISABLE_EXCEPTION_LOGGING = False APPINSIGHTS_INSTRUMENTATIONKEY = None # ## AAD User verification and task restrictions # AAD_VERIFY = False AAD_AUDIENCE = 'aad-client-id' AAD_TENANT_ID = 'aad-tenant-id' AAD_JWKS_URI = 'https://login.microsoftonline.com/common/discovery/v2.0/keys' # Choices among [None, 'per-user', 'per-tenant'] # Anything other than None requires AAD_VERIFY to be True TASK_ACCESS_RESTRICTIONS = None # ## Backend - Batch # BATCH_ACCOUNT_NAME = '' BATCH_ACCOUNT_KEY = '' BATCH_ACCOUNT_URL = '' BATCH_STORAGE_TMP_CONTAINER_NAME = 'batchtmp' BATCH_STORAGE_FILESHARE_NAME = 'batchfiles' BATCH_POOL_DEDICATED_NODE_COUNT = 0 BATCH_POOL_LOW_PRIORITY_NODE_COUNT = 1 BATCH_NODE_ADMIN_USERNAME = None BATCH_NODE_ADMIN_PASSWORD = None BATCH_AUTOPOOL_KEEPALIVE = False # ## Key Vault # KEYVAULT_URL = None KEYVAULT_SECRETS_PREFIX = "TESAZURE-" AZURE_CLIENT_ID = None AZURE_SECRET = None AZURE_TENANT = None # ## Background tasks # # Used by celery beat scheduler container CELERY_BEAT_SCHEDULE = { "cleanup_tasks": { "task": "tesazure.jobs.cleanup_tasks", "schedule": crontab(minute='*/5') } } TASK_BACKEND_CLEANUP_HOURS = 24 TASK_DATABASE_CLEANUP_HOURS = 48 TASK_EXECUTION_TIMEOUT_HOURS = 12 # ## Workflow engine-specific # CROMWELL_STORAGE_CONTAINER_NAME = "cromwell" class dev_config(base_config, metaclass=MetaFlaskEnv): """Development configuration options.""" ENV_PREFIX = 'APP_' ASSETS_DEBUG = True WTF_CSRF_ENABLED = False SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://tesadmin:testpassword@postgres:5432/tesapi' CELERY_RESULT_BACKEND = 'redis://redis:6379' CELERY_BROKER_URL = 'redis://redis:6379' ADMIN_USER_NAME = "sshdebug" ADMIN_USER_PASSWORD = "testUser!!12345" POOL_LOW_PRIORITY_NODE_COUNT = 1 BATCH_OVERRIDE_POOL_ID = None SQLALCHEMY_ECHO = False class test_config(base_config, metaclass=MetaFlaskEnv): """Testing configuration options.""" ENV_PREFIX = 'APP_' ENV = 'test' WTF_CSRF_ENABLED = False SQLALCHEMY_DATABASE_URI = 'sqlite:///memory' COMPUTE_BACKEND = 'mock'
python
You are given an array nums of n positive integers. You can perform two types of operations on any element of the array any number of times: If the element is even, divide it by 2. For example, if the array is [1,2,3,4], then you can do this operation on the last element, and the array will be [1,2,3,2]. If the element is odd, multiply it by 2. For example, if the array is [1,2,3,4], then you can do this operation on the first element, and the array will be [2,2,3,4]. The deviation of the array is the maximum difference between any two elements in the array. Return the minimum deviation the array can have after performing some number of operations. Example 1: Input: nums = [1,2,3,4] Output: 1 Explanation: You can transform the array to [1,2,3,2], then to [2,2,3,2], then the deviation will be 3 - 2 = 1. Example 2: Input: nums = [4,1,5,20,3] Output: 3 Explanation: You can transform the array after two operations to [4,2,5,5,3], then the deviation will be 5 - 2 = 3. Example 3: Input: nums = [2,10,8] Output: 3 Constraints: n == nums.length 2 <= n <= 105 1 <= nums[i] <= 109 Solution:- class Solution: def minimumDeviation(self, nums: List[int]) -> int: from sortedcontainers import SortedList for i in range(len(nums)): if nums[i]%2!=0: nums[i]=nums[i]*2 nums = SortedList(nums) result = 100000000000 while True: min_value = nums[0] max_value = nums[-1] if max_value % 2 == 0: nums.pop() nums.add(max_value // 2) max_value = nums[-1] min_value = nums[0] result = min(result , max_value - min_value) else: result = min(result , max_value - min_value) break return result
python
import pandas as pd import numpy as np from unittest import TestCase, mock from unittest.mock import MagicMock, PropertyMock from gtfs_kit.feed import Feed from representation.gtfs_metadata import GtfsMetadata from representation.gtfs_representation import GtfsRepresentation from usecase.process_stops_count_by_type_for_gtfs_metadata import ( process_stops_count_by_type_for_gtfs_metadata, LOCATION_TYPE, ) class TestProcessStopsCountByTypeForGtfsMetadata(TestCase): def test_process_stops_count_with_none_gtfs_representation_should_raise_exception( self, ): self.assertRaises( TypeError, process_stops_count_by_type_for_gtfs_metadata, None ) def test_process_stops_count_with_invalid_gtfs_representation_should_raise_exception( self, ): mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = str self.assertRaises( TypeError, process_stops_count_by_type_for_gtfs_metadata, mock_gtfs_representation, ) def test_process_stops_count_with_missing_files(self): mock_dataset = MagicMock() mock_dataset.__class__ = Feed mock_metadata = MagicMock() mock_metadata.__class__ = GtfsMetadata mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation type(mock_gtfs_representation).dataset = mock_dataset type(mock_gtfs_representation).metadata = mock_metadata under_test = process_stops_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) mock_metadata.stops_count_by_type.assert_not_called() def test_process_stops_count_with_missing_fields(self): mock_stops = PropertyMock(return_value=pd.DataFrame({})) mock_dataset = MagicMock() mock_dataset.__class__ = Feed type(mock_dataset).stops = mock_stops mock_metadata = MagicMock() mock_metadata.__class__ = GtfsMetadata mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation type(mock_gtfs_representation).dataset = mock_dataset type(mock_gtfs_representation).metadata = mock_metadata under_test = process_stops_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) mock_metadata.stops_count_by_type.assert_not_called() def test_process_stops_count_execution_with_every_stop_type( self, ): mock_stops = PropertyMock( return_value=pd.DataFrame({LOCATION_TYPE: [0, 2, 1, 0, 0, 1, 0, 0, np.nan]}) ) mock_dataset = MagicMock() mock_dataset.__class__ = Feed type(mock_dataset).stops = mock_stops mock_metadata = MagicMock() mock_metadata.__class__ = GtfsMetadata mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation type(mock_gtfs_representation).dataset = mock_dataset type(mock_gtfs_representation).metadata = mock_metadata under_test = process_stops_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) mock_stops.assert_called() self.assertEqual( mock_metadata.stops_count_by_type, {"stop": 6, "station": 2, "entrance": 1} ) def test_process_stops_count_execution_with_some_stop_types( self, ): mock_stops = PropertyMock( return_value=pd.DataFrame({LOCATION_TYPE: [0, 1, 0, 0, 1, 0, 0, np.nan]}) ) mock_dataset = MagicMock() mock_dataset.__class__ = Feed type(mock_dataset).stops = mock_stops mock_metadata = MagicMock() mock_metadata.__class__ = GtfsMetadata mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation type(mock_gtfs_representation).dataset = mock_dataset type(mock_gtfs_representation).metadata = mock_metadata under_test = process_stops_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) mock_stops.assert_called() self.assertEqual(mock_metadata.stops_count_by_type, {"stop": 6, "station": 2}) def test_process_stops_count_execution_with_empty_stop_types( self, ): mock_stops = PropertyMock(return_value=pd.DataFrame({LOCATION_TYPE: []})) mock_dataset = MagicMock() mock_dataset.__class__ = Feed type(mock_dataset).stops = mock_stops mock_metadata = MagicMock() mock_metadata.__class__ = GtfsMetadata mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation type(mock_gtfs_representation).dataset = mock_dataset type(mock_gtfs_representation).metadata = mock_metadata under_test = process_stops_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) mock_stops.assert_called() mock_metadata.stops_count_by_type.assert_not_called()
python
from cryptography.utils import CryptographyDeprecationWarning import warnings warnings.filterwarnings("ignore", category=CryptographyDeprecationWarning) from qc_qubosolv.solver import Solver
python
from sqlalchemy import create_engine engine = create_engine('sqlite:///todo.db?check_same_thread=False') from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Date from datetime import datetime Base = declarative_base() class task(Base): __tablename__ = 'task' id = Column(Integer, primary_key=True) task = Column(String, default='') deadline = Column(Date, default=datetime.today()) def __repr__(self): return self.task Base.metadata.create_all(engine) from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind=engine) session = Session() from datetime import datetime,timedelta today=datetime.today().date() rows=session.query(task).filter(task.deadline==today).all() while (True): print("1) Today's tasks") print("2) Week's tasks") print("3) All tasks") print("4) Missed tasks") print("5) Add task") print("6) Delete task") print("0) Exit") n = int(input()) if n == 0: print("Bye!") break; if n == 1: count = 1 tasks = session.query(task).filter(task.deadline == datetime.today().date()).all() print("Today {0} {1}:".format(datetime.today().day, datetime.today().strftime('%b'))) for task_today in tasks: print("{0}. {1}".format(count, task_today)) count += 1 if count == 1: print("Nothing to do!") if n == 2: for i in range(7): count = 1 tasks = session.query(task).filter(task.deadline == datetime.today().date() + timedelta(days=i)).all() print("{2} {0} {1}:".format((datetime.today() + timedelta(days=i)).day, (datetime.today() + timedelta(days=i)).strftime('%b'), (datetime.today() + timedelta(days=i)).strftime('%A'))) for task_week in tasks: print("{0}. {1}".format(count, task_week)) count += 1 if count == 1: print("Nothing to do!") print() if n == 3: count = 1 tasks = session.query(task).all() print("All tasks:") for task_x in tasks: print("{0}. {1}".format(count, task_x)) count += 1 if count == 1: print("Nothing to do!") if n == 4: missed_tasks = session.query(task).filter(task.deadline < datetime.today().date()).all() print("Missed activities:") count = 1 for missed_task in missed_tasks: print("{0}. {1}".format(count, missed_task)) count += 1 if count == 1: print("Nothing is missed!") print() if n == 5: print("Enter activity") activity = input() print("Enter deadline") activity_deadline_str = input() activity_deadline = datetime.strptime(activity_deadline_str, '%Y-%m-%d').date() new_task = task(task=activity, deadline=activity_deadline) session.add(new_task) session.commit() print("The task has been added!") if n == 6: print("Chose the number of the task you want to delete:") tasks = session.query(task).all() count = 1 for task_x in tasks: print("{0}. {1}".format(count, task_x)) count += 1 n = int(input()) session.delete(tasks[n - 1]) session.commit() print("The task has been deleted!") if count == 1: print("Nothing to delete!")
python
n=int(input()) res="" for i in range(1,n+1): a,b=map(int, input().split()) if a>=0: res+="Scenario #"+str(i)+":\n"+str((a+b)*(b-a+1)//2) elif a<0 and b>=0: res+="Scenario #"+str(i)+":\n"+str(b*(b+1)//2 + a*(abs(a)+1)//2) else: res+="Scenario #"+str(i)+":\n"+str((a+b)*(b-a+1)//2) if i!=n: res+="\n\n" print(res,end="")
python
import torch import torch.nn as nn def FocalLoss(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) probs = torch.sigmoid(logits) pt = (1 - labels) * (1 - probs) + labels * probs log_pt = torch.log(pt) floss = - (1 - pt)**2 * log_pt floss_weighted = floss * inverse_normed_freqs return torch.mean(floss_weighted) def FocalLoss2(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) probs = torch.sigmoid(logits) pt = (1 - labels) * (1 - probs) + labels * probs log_pt = torch.log(pt) floss = - (1 - pt)**2 * log_pt alpha = inverse_normed_freqs.repeat(labels.shape[0]).view((labels.shape[0],-1)) weights = (1 - labels) * (1 - alpha) + labels * alpha floss_weighted = floss * weights return torch.mean(floss_weighted) def FocalLoss3(logits, labels, weights_0): batch_size = labels.shape[0] num_labels = labels.shape[1] # should be 9 weights_1 = 1/num_labels - weights_0 labels = labels.type(torch.float32) probs = torch.sigmoid(logits) pt = (1 - labels) * (1 - probs) + labels * probs log_pt = torch.log(pt) floss = - (1 - pt)**2 * log_pt alpha_0 = weights_0.repeat(batch_size).view((batch_size,-1)) alpha_1 = weights_1.repeat(batch_size).view((batch_size,-1)) weights = (1 - labels) * alpha_0 + labels * alpha_1 floss_weighted = floss * weights return torch.mean(floss_weighted) def BCELoss(logits, labels, inverse_normed_freqs=None): loss_fct = nn.BCEWithLogitsLoss() num_labels = labels.shape[1] # loss = loss_fct(logits.view(-1, num_labels).double(), labels.view(-1, self.num_labels).double()) loss = loss_fct(logits.double(), labels.double()) return loss def SoftmaxFocalLoss(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) m = nn.Softmax(dim=1) probs = m(logits) logprobs = torch.log(probs) logprobs = (1 - probs)**2 * logprobs logyhat_for_gold = labels * logprobs * inverse_normed_freqs logyhat_for_gold_summed = torch.sum(logyhat_for_gold, dim=1) return torch.mean(-logyhat_for_gold_summed) def SoftmaxLoss(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) m = nn.Softmax(dim=1) probs = m(logits) logyhat_for_gold = labels * torch.log(probs) logyhat_for_gold_summed = torch.sum(logyhat_for_gold, dim=1) return torch.mean(-logyhat_for_gold_summed) def SoftmaxWeightedLoss(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) m = nn.Softmax(dim=1) probs = m(logits) logyhat_for_gold = labels * torch.log(probs) * inverse_normed_freqs logyhat_for_gold_summed = torch.sum(logyhat_for_gold, dim=1) return torch.mean(-logyhat_for_gold_summed) def NormalizedLogSoftmaxLoss(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) m = nn.Softmax(dim=1) probs = m(logits) logyhat_for_gold = labels * torch.log(probs) logyhat_for_gold_normalized_summed = torch.sum(logyhat_for_gold / labels.sum(dim=1).reshape((-1,1)), dim=1) return torch.mean(-logyhat_for_gold_normalized_summed) def LogNormalizedSoftmaxLoss(logits, labels, inverse_normed_freqs): labels = labels.type(torch.float32) m = nn.Softmax(dim=1) probs = m(logits) yhat_for_gold = labels * probs yhat_for_gold_normalized = torch.sum(yhat_for_gold / labels.sum(dim=1).reshape((-1,1)),dim=1) logyhat_for_gold_normalized = torch.log(yhat_for_gold_normalized) return torch.mean(-logyhat_for_gold_normalized)
python
import sys import inspect import torch #from torch_geometric.utils import scatter_ from torch_scatter import scatter special_args = [ 'edge_index', 'edge_index_i', 'edge_index_j', 'size', 'size_i', 'size_j' ] __size_error_msg__ = ('All tensors which should get mapped to the same source ' 'or target nodes must be of same size in dimension 0.') is_python2 = sys.version_info[0] < 3 getargspec = inspect.getargspec if is_python2 else inspect.getfullargspec class MessagePassing(torch.nn.Module): def __init__(self, aggr='sum', flow='source_to_target'): super(MessagePassing, self).__init__() self.aggr = aggr assert self.aggr in ['sum', 'mean', 'max'] self.flow = flow assert self.flow in ['source_to_target', 'target_to_source'] self.__message_args__ = getargspec(self.message)[0][1:] self.__special_args__ = [(i, arg) for i, arg in enumerate(self.__message_args__) if arg in special_args] self.__message_args__ = [ arg for arg in self.__message_args__ if arg not in special_args ] self.__update_args__ = getargspec(self.update)[0][2:] def propagate(self, edge_index, size=None, dim=0, **kwargs): dim = 1 # aggregate messages wrt nodes for batched_data: [batch_size, nodes, features] size = [None, None] if size is None else list(size) assert len(size) == 2 i, j = (0, 1) if self.flow == 'target_to_source' else (1, 0) ij = {"_i": i, "_j": j} message_args = [] for arg in self.__message_args__: if arg[-2:] in ij.keys(): tmp = kwargs.get(arg[:-2], None) if tmp is None: # pragma: no cover message_args.append(tmp) else: idx = ij[arg[-2:]] if isinstance(tmp, tuple) or isinstance(tmp, list): assert len(tmp) == 2 if tmp[1 - idx] is not None: if size[1 - idx] is None: size[1 - idx] = tmp[1 - idx].size(dim) if size[1 - idx] != tmp[1 - idx].size(dim): raise ValueError(__size_error_msg__) tmp = tmp[idx] if tmp is None: message_args.append(tmp) else: if size[idx] is None: size[idx] = tmp.size(dim) if size[idx] != tmp.size(dim): raise ValueError(__size_error_msg__) tmp = torch.index_select(tmp, dim, edge_index[idx]) message_args.append(tmp) else: message_args.append(kwargs.get(arg, None)) size[0] = size[1] if size[0] is None else size[0] size[1] = size[0] if size[1] is None else size[1] kwargs['edge_index'] = edge_index kwargs['size'] = size for (idx, arg) in self.__special_args__: if arg[-2:] in ij.keys(): message_args.insert(idx, kwargs[arg[:-2]][ij[arg[-2:]]]) else: message_args.insert(idx, kwargs[arg]) update_args = [kwargs[arg] for arg in self.__update_args__] out = self.message(*message_args) #out = scatter(self.aggr, out, edge_index[i], dim, dim_size=size[i]) out = scatter(out, edge_index[i], dim=dim, dim_size=size[i], reduce=self.aggr) out = self.update(out, *update_args) return out def message(self, x_j): # pragma: no cover return x_j def update(self, aggr_out): # pragma: no cover return aggr_out
python
from requests import post,get from requests_oauthlib import OAuth1 from flask import request from os import path from json import dumps, loads from time import sleep dir_path = path.dirname(path.realpath(__file__)) def read_env(file=".env"): read_file = open(dir_path + "/" + file, "r") split_file = [r.strip().split("=",maxsplit=1) for r in read_file.readlines()] key,value = zip(*split_file) return dict(zip(key,value)) def read_params(text): textList = [item.split("=",maxsplit=1) for item in text.split("&")] key,value = zip(*textList) return dict(zip(key,value)) config = read_env() def send_Webhook(url,data): return post(url,headers={"content-type":"application/json"},data=data) def writeFile(fileName,data): file = open(fileName, "w") file.write(data) file.close() def keepToken(): r = post(url="https://api.twitter.com/oauth/access_token?oauth_token={}&oauth_verifier={}".format(request.args.get("oauth_token"),request.args.get("oauth_verifier"))) params = read_params(r.text) resource_owner_key = params["oauth_token"] resource_owner_secret = params["oauth_token_secret"] screen_name = params["screen_name"] writeFile(dir_path + "/token.json",dumps({"oauth_token": resource_owner_key, "oauth_secret": resource_owner_secret, "screen_name": screen_name})) def reqToken(): client_key = config['client_key'] client_secret = config['client_secret'] oauth = OAuth1(client_key, client_secret=client_secret) r = post(url="https://api.twitter.com/oauth/request_token", auth=oauth) return read_params(r.text)["oauth_token"] def getNewImage(): token = open(dir_path + "/token.json", "r") token_ = loads(token.read()) token.close() oauth = OAuth1(client_key=config['client_key'], client_secret=config['client_secret'], resource_owner_key=token_["oauth_token"], resource_owner_secret=token_["oauth_secret"]) r = get("https://api.twitter.com/1.1/favorites/list.json?screen_name=" + token_["screen_name"] + "&include_entities=true&tweet_mode=extended",auth=oauth) response = r.json() if ("latest" not in token_): token_["latest"] = response[1]["id"] for post in response: if ("media" in post["entities"] and post["id"] > token_["latest"]): for media in post["entities"]["media"]: send_Webhook(config["discord_webhook"],dumps({"content":media["media_url_https"]})) token_["latest"] = response[0]["id"] writeFile(dir_path + "/token.json",dumps(token_)) sleep(float(config['timeout']))
python
import gmaps2geojson writer = gmaps2geojson.Writer() writer.query("2131 7th Ave, Seattle, WA 98121", "900 Poplar Pl S, Seattle, WA 98144") writer.query("900 Poplar Pl S, Seattle, WA 98144", "219 Broadway E, Seattle, WA 98102") writer.save("example.geojson")
python
"""Этот модуль запускает работу. Работа должна быть асинхронной, модуль запускает и управляет потоками внутри(?)""" import asyncio import time import random from ss_server_handler import new_order_handler from PBM_main import TodaysOrders from controllers_handler import qr_code_alarm, oven_alarm from settings import QT_DISH_PER_ORDER def start_testing(equipment_status): """Тут вызываем методы контролеров по тестированию оборудования""" status = equipment_status equipment_data = {} return status, equipment_data async def ss_server(today_orders): """Это курутина запускает сервер, мониторит и обрабатывает сообщения от SS ВОПРОС: запуск сервера должен быть отдельно или тут? - уведомление о новом заказе - запрос оставшегося времени работы """ # эмуляция поступления заказа while True: print("Работает ss_server", time.time()) n = random.randint(1, 50) print("SS Ждет", n) await asyncio.sleep(n) new_order = {"refid": (23 + n), "dishes": [(2, 4, 6, 7), (1, 2, 4, 5)]} await new_order_handler(new_order, today_orders, QT_DISH_PER_ORDER) async def controllers_alert_handler(today_orders): """Эта курутина обрабатывает уведомления от контроллеров: отказ оборудования и qr код Можно тут запустить методы мониторинга Арсения.""" while True: print("Переключились в контролеры", time.time()) qr_code = asyncio.create_task(qr_code_alarm(today_orders)) oven_alarm_id = asyncio.create_task(oven_alarm(today_orders)) await asyncio.gather(qr_code, oven_alarm_id) # при приостановке нужно заблокировать qr код async def cooking(today_orders): """Эта курутина обеспеивает вызов методов по приготовлению блюд и другой важной работе""" while True: print("Работает cooking", time.time()) print("В списке на выдачу", today_orders.orders_requested_for_delivery) if today_orders.is_cooking_paused: await today_orders.cooking_pause_handler() # print("Приостанавливаем работу") # await asyncio.sleep(10) elif today_orders.orders_requested_for_delivery: await today_orders.dish_delivery() elif today_orders.current_dishes_proceed.keys(): print("Начинаем готовить") _, current_dish = today_orders.current_dishes_proceed.popitem() await current_dish.start_dish_cooking(today_orders) else: print("Dancing 3 secs") await asyncio.sleep(3) print() async def create_cooking_tasks(today_orders): """В этой функции курутины формируются в таски""" ss_task = asyncio.create_task(ss_server(today_orders)) controllers_task = asyncio.create_task(controllers_alert_handler(today_orders)) cooking_task = asyncio.create_task(cooking(today_orders)) await asyncio.gather(ss_task, controllers_task, cooking_task) def start_cooking(equipment_data): """Эта функция инициирует все необходимое для работы. Пока создание экземпляра класса TodaysOrders""" today_orders = TodaysOrders() if today_orders: asyncio.run(create_cooking_tasks(today_orders)) def pause_cooking(): today_orders.pause_cooking = True def start_cooking_after_pause(): today_orders.pause_cooking = False if __name__ == "__main__": equipment_data = {} today_orders = start_cooking(equipment_data) if today_orders: asyncio.run(create_cooking_tasks())
python
import uuid from datetime import datetime from pydantic import BaseModel, EmailStr, Field class UserBase(BaseModel): id: uuid.UUID = Field(default_factory=uuid.uuid4) username: str email: EmailStr class Config: arbitrary_types_allowed = True class UserCreate(UserBase): register_date: datetime = Field(default_factory=datetime.now) password: str class UserUpdate(BaseModel): password: str class UserInDBBase(UserBase): register_date: datetime = Field(default_factory=datetime.now) class User(UserInDBBase): pass class UserInDB(UserInDBBase): hashed_password: str
python
valores = [] for contador in range(0, 5): valor = int(input('Digite um valor: ')) if contador == 0 or valor > valores[-1]: valores.append(valor) print('Adicionado ao final da lista...') else: posicao = 0 while posicao < len(valores): if valor <= valores[posicao]: valores.insert(posicao, valor) print(f'Adicionado na posição {posicao} da lista...') break posicao += 1 print('-=' * 30) print(f'Os valores digitados em ordem foram {valores}')
python
import os,cStringIO class Image_Fonts(): def Fonts_Defaults(self): fontlist = [ '/usr/share/fonts/truetype/freefont/FreeSerif.ttf', '/usr/share/fonts/truetype/freefont/FreeSans.ttf', '/usr/share/fonts/truetype/freefont/FreeMono.ttf' ] fontpath = '.' for f in fontlist: if os.path.exists(f): fontpath = fontpath + ':' + os.path.dirname(f) self.Font = os.path.abspath(f) break os.environ["GDFONTPATH"] = "fontpath" try: self.Font except NameError: print "no fonts found" sys.exit(1)
python
import itertools from django.http import HttpRequest, HttpResponse from django.core.exceptions import PermissionDenied from django.utils import timezone from django.utils.text import slugify from .jalali import Gregorian, datetime_to_str, mounth_number_to_name, en_to_fa_numbers # create unique slug. def unique_slug(title, max_length, model_name): slug_candidate = slug_original = slugify(title, allow_unicode=True)[:max_length - 2] for i in itertools.count(1): if not model_name.objects.filter(slug=slug_candidate).exists(): break slug_candidate = f'{slug_original}-{i}' return slug_candidate def to_jalali(time): time = timezone.localtime(time) calender_to_str = datetime_to_str(time) jalali_format = Gregorian(calender_to_str).persian_tuple() month_name = mounth_number_to_name(jalali_format[1]) combined_str = "{} {} {}, ساعت {}:{}".format( jalali_format[2], month_name, jalali_format[0], time.hour, time.minute, ) final_str = en_to_fa_numbers(combined_str) return final_str # being author/staff/superuser def check_author_staff_superuser(request: HttpRequest) -> HttpResponse: if request.user.is_authenticated: if ( request.user.is_superuser or request.user.is_staff or request.user.is_author ): return True return False # being owner of that article/staff/superuser def check_owner_staff_superuser(request: HttpRequest, article) -> HttpResponse: if request.user.is_authenticated: if (request.user.is_superuser or request.user.is_staff or request.user.is_author and article.author == request.user ): request.is_ok = True return request raise PermissionDenied def check_staff_superuser(request: HttpRequest) -> HttpResponse: if request.user.is_authenticated: if ( request.user.is_staff or request.user.is_superuser ): return True return False
python
from hask.lang import build_instance from hask.lang import sig from hask.lang import H from hask.lang import t from hask.Control.Applicative import Applicative from hask.Control.Monad import Monad from .Foldable import Foldable from .Functor import Functor class Traversable(Foldable, Functor): """ Functors representing data structures that can be traversed from left to right. Dependencies: Foldable, Functor Attributes: traverse, sequenceA, mapM, sequence Minimal complete definition: traverse """ @classmethod def make_instance(typeclass, cls, traverse, sequenceA=None, mapM=None, sequence=None): attrs = {"traverse":traverse, "sequenceA":sequenceA, "mapM":mapM, "sequence":sequence} build_instance(Traversable, cls, attrs) return @sig(H[(Applicative, "f"), (Traversable, "t")]/ (H/ "a" >> t("f", "b")) >> t("t", "a") >> t("f", t("t", "b"))) def traverse(f, t): """ ``traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)`` Map each element of a structure to an action, evaluate these these actions from left to right, and collect the results. actions from left to right, and collect the results. For a version that ignores the results see traverse_. """ return Traversable[t].traverse(f, t) @sig(H[(Applicative, "f"), (Traversable, "t")]/ t("t", t("f", "a")) >> t("f", t("t", "a"))) def sequenceA(t): """ ``sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)`` Evaluate each action in the structure from left to right, and and collect the results. For a version that ignores the results see sequenceA_. """ return Traversable[t].sequenceA(t) @sig(H[(Monad, "m"), (Traversable, "t")]/ (H/ "a" >> t("m", "b")) >> t("t", "a") >> t("m", t("t", "b"))) def mapM(f, m): """ ``mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)`` Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_. """ return Traversable[t].mapM(f, t) @sig(H[(Monad, "m"), (Traversable, "t")]/ t("t", t("m", "a")) >> t("m", t("t", "a"))) def sequence(t): """ ``sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)`` Evaluate each monadic action in the structure from left to right, and collect the results. For a version that ignores the results see sequence_. """ return Traversable[t].sequence(t) #=============================================================================# # Utility functions @sig(H[(Applicative, "f"), (Traversable, "t")]/ t("t", "a") >> (H/ "a" >> t("f", "b")) >> t("f", t("t", "b"))) def for1(t, f): """ ``for1 :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)`` for1 is traverse with its arguments flipped. For a version that ignores the results see for1_. """ return traverse(f, t) @sig(H[(Monad, "m"), (Traversable, "t")]/ t("t", "a") >> (H/ "a" >> t("m", "b")) >> t("m", t("t", "b"))) def forM(t, f): """ ``forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)`` forM is mapM with its arguments flipped. For a version that ignores the results see forM_. """ return mapM(f, t) @sig(H[(Traversable, "t")]/ (H/ "a" >> "b" >> ("a", "c")) >> "a" >> t("t", "b") >> ("a", t("t", "c"))) def mapAccumL(f, a, tb): """ ``mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)`` The mapAccumL function behaves like a combination of fmap and foldl; it applies a function to each element of a structure, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new structure. """ raise NotImplementedError() @sig(H[(Traversable, "t")]/ (H/ "a" >> "b" >> ("a", "c")) >> "a" >> t("t", "b") >> ("a", t("t", "c"))) def mapAccumR(f, a, tb): """ ``mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)`` The mapAccumR function behaves like a combination of fmap and foldr; it applies a function to each element of a structure, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new structure. """ raise NotImplementedError()
python
from random import choice from xkcdpass import xkcd_password class XKCD: delimiters_numbers = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] delimiters_full = ["!", "$", "%", "^", "&", "*", "-", "_", "+", "=", ":", "|", "~", "?", "/", ".", ";"] + delimiters_numbers def __init__(self, filename: str): self.wordlist = xkcd_password.generate_wordlist( wordfile=filename, valid_chars="[a-z]", min_length=4, max_length=10, ) def weak(self): # 2 words, no separators between words return xkcd_password.generate_xkcdpassword(self.wordlist, numwords=2, delimiter="", ) def normal(self): # 3 words, random CAPITALIZATION, random number as separator between words return xkcd_password.generate_xkcdpassword( self.wordlist, numwords=3, case="random", random_delimiters=True, valid_delimiters=self.delimiters_numbers ) def strong(self): # Same as normal_pwd, but 4 words return xkcd_password.generate_xkcdpassword( self.wordlist, numwords=4, case="random", random_delimiters=True, valid_delimiters=self.delimiters_full ) def custom(self, count: int, separators: bool, prefixes: bool): """ Custom password generation :param count: number of words in password :param separators: bool, whether words must be separated with delimiters :param prefixes: bool, whether there must be chars from delimiters list in front and in back :return: generated custom password """ pwd = xkcd_password.generate_xkcdpassword( self.wordlist, numwords=count, case="random", delimiter="", random_delimiters=separators, valid_delimiters=self.delimiters_full ) if prefixes == separators: return pwd elif separators and not prefixes: return pwd[1:-1] elif prefixes and not separators: return f"{choice(self.delimiters_full)}{pwd}{choice(self.delimiters_full)}"
python
# -*- coding: utf-8 -*- ''' Created on : Thursday 18 Jun, 2020 : 00:47:36 Last Modified : Sunday 22 Aug, 2021 : 23:52:53 @author : Adapted by Rishabh Joshi from Original ASAP Pooling Code Institute : Carnegie Mellon University ''' import torch import numpy as np import torch.nn.functional as F from torch.nn import Linear from torch_geometric.nn import GCNConv, global_mean_pool, GATConv from torch_scatter import scatter_mean, scatter_max import pdb import math, pdb import torch import torch.nn.functional as F from torch.nn import Linear from torch_scatter import scatter_add, scatter_max from torch_geometric.nn import GCNConv from torch_geometric.utils import add_remaining_self_loops, remove_self_loops, softmax from torch_geometric.nn.pool.topk_pool import topk from torch_sparse import coalesce from torch_sparse import transpose from torch_sparse import spspmm # torch.set_num_threads(1) def StAS(index_A, value_A, index_S, value_S, device, N, kN): r"""StAS: a function which returns new edge weights for the pooled graph using the formula S^{T}AS""" index_A, value_A = coalesce(index_A, value_A, m=N, n=N) index_S, value_S = coalesce(index_S, value_S, m=N, n=kN) index_B, value_B = spspmm(index_A, value_A, index_S, value_S, N, N, kN) index_St, value_St = transpose(index_S, value_S, N, kN) index_B, value_B = coalesce(index_B, value_B, m=N, n=kN) index_E, value_E = spspmm(index_St.cpu(), value_St.cpu(), index_B.cpu(), value_B.cpu(), kN, N, kN) return index_E.to(device), value_E.to(device) def graph_connectivity(device, perm, edge_index, edge_weight, score, ratio, batch, N): r"""graph_connectivity: is a function which internally calls StAS func to maintain graph connectivity""" kN = perm.size(0) perm2 = perm.view(-1, 1) # mask contains uint8 mask of edges which originate from perm (selected) nodes mask = (edge_index[0]==perm2).sum(0, dtype=torch.uint8) # create the S S0 = edge_index[1][mask].view(1, -1) S1 = edge_index[0][mask].view(1, -1) index_S = torch.cat([S0, S1], dim=0) value_S = score[mask].detach().squeeze() save_index_S = index_S.clone() save_value_S = value_S.clone() # relabel for pooling ie: make S [N x kN] n_idx = torch.zeros(N, dtype=torch.long) n_idx[perm] = torch.arange(perm.size(0)) index_S[1] = n_idx[index_S[1]] # create A index_A = edge_index.clone() if edge_weight is None: value_A = value_S.new_ones(edge_index[0].size(0)) else: value_A = edge_weight.clone() fill_value=1 index_E, value_E = StAS(index_A, value_A, index_S, value_S, device, N, kN) index_E, value_E = remove_self_loops(edge_index=index_E, edge_attr=value_E) index_E, value_E = add_remaining_self_loops(edge_index=index_E, edge_weight=value_E, fill_value=fill_value, num_nodes=kN) return index_E, value_E, save_index_S, save_value_S class ASAP_Pooling(torch.nn.Module): def __init__(self, in_channels, ratio, dropout_att=0, negative_slope=0.2): super(ASAP_Pooling, self).__init__() self.in_channels = in_channels self.ratio = ratio self.negative_slope = negative_slope self.dropout_att = dropout_att self.lin_q = Linear(in_channels, in_channels) self.gat_att = Linear(2*in_channels, 1) self.gnn_score = LEConv(self.in_channels, 1) # gnn_score: uses LEConv to find cluster fitness scores self.gnn_intra_cluster = GCNConv(self.in_channels, self.in_channels) # gnn_intra_cluster: uses GCN to account for intra cluster properties, e.g., edge-weights self.reset_parameters() def reset_parameters(self): self.lin_q.reset_parameters() self.gat_att.reset_parameters() self.gnn_score.reset_parameters() self.gnn_intra_cluster.reset_parameters() def forward(self, x, edge_index, edge_weight=None, batch=None): x2 = x.clone(); edge_index2 = edge_index.clone(); batch2 = batch.clone() if batch is None: batch = edge_index.new_zeros(x.size(0)) # NxF x = x.unsqueeze(-1) if x.dim() == 1 else x # Add Self Loops fill_value = 1 num_nodes = scatter_add(batch.new_ones(x.size(0)), batch, dim=0) edge_index, edge_weight = add_remaining_self_loops(edge_index=edge_index, edge_weight=edge_weight, fill_value=fill_value, num_nodes=num_nodes.sum()) N = x.size(0) # total num of nodes in batch # ExF x_pool = self.gnn_intra_cluster(x=x, edge_index=edge_index, edge_weight=edge_weight) x_pool_j = x_pool[edge_index[1]] x_j = x[edge_index[1]] #---Master query formation--- # NxF X_q, _ = scatter_max(x_pool_j, edge_index[0], dim=0) # NxF M_q = self.lin_q(X_q) # ExF M_q = M_q[edge_index[0].tolist()] score = self.gat_att(torch.cat((M_q, x_pool_j), dim=-1)) score = F.leaky_relu(score, self.negative_slope) score = softmax(score, edge_index[0], num_nodes=num_nodes.sum()) att_wts = score.clone() # Sample attention coefficients stochastically. score = F.dropout(score, p=self.dropout_att, training=self.training) # ExF v_j = x_j * score.view(-1, 1) #---Aggregation--- # NxF out = scatter_add(v_j, edge_index[0], dim=0) #---Cluster Selection # Nx1 fitness = torch.sigmoid(self.gnn_score(x=out, edge_index=edge_index)).view(-1) perm = topk(x=fitness, ratio=self.ratio, batch=batch) x = out[perm] * fitness[perm].view(-1, 1) #---Maintaining Graph Connectivity batch = batch[perm] edge_index, edge_weight, S_index, S_weight = graph_connectivity( device = x.device, perm=perm, edge_index=edge_index, edge_weight=edge_weight, score=score, ratio=self.ratio, batch=batch, N=N) return x, edge_index, edge_weight, batch, perm, S_index, S_weight, att_wts def __repr__(self): return '{}({}, ratio={})'.format(self.__class__.__name__, self.in_channels, self.ratio) def readout(x, batch): x_mean = scatter_mean(x, batch, dim=0) x_max, _ = scatter_max(x, batch, dim=0) return torch.cat((x_mean, x_max), dim=-1) class ASAP_Pool(torch.nn.Module): ''' Code Modified by Rishabh Joshi Original code from http://github.com/malllabiisc/ASAP ''' def __init__(self, config, strat_or_da): #def __init__(self, dataset, num_layers, hidden, ratio=0.8, **kwargs): super(ASAP_Pool, self).__init__() ratio = config.ratio # 0.8 if strat_or_da == 'da': node_features = len(config.da_lbl2id) else: node_features = len(config.negotiation_lbl2id) num_features = node_features #node_features = config.node_feats # num_strat hidden = config.graph_hidden # 64 dropout_att = config.graph_drop # 0.0 num_layers = config.graph_layers # 3 self.graph_model= config.graph_model # 'gcn' if type(ratio)!=list: ratio = [ratio for i in range(num_layers)] if not config.node_embed: self.embeddings = torch.nn.Embedding(num_features, num_features, padding_idx=-1) # Embeddings for the strategies (num_features is num_strategies) self.embeddings.weight = torch.nn.Parameter(torch.FloatTensor(np.diag(np.diag(np.ones((num_features, num_features)))))) # diag matrix of 1 hot node_features = num_features self.embeddings.weight.requires_grad = True # TODO NO TRAIN else: self.embeddings = torch.nn.Embedding(num_features, node_features, padding_idx=-1) # Embeddings for the strategies (num_features is num_strategies) if self.graph_model == 'gcn': self.conv1 = GCNConv(node_features, hidden) elif self.graph_model == 'gat': self.conv1 = GATConv(node_features, hidden, heads = config.num_heads) else: raise NotImplementedError self.pool1 = ASAP_Pooling(in_channels=hidden*config.num_heads, ratio=ratio[0], dropout_att=dropout_att) self.convs = torch.nn.ModuleList() self.pools = torch.nn.ModuleList() for i in range(num_layers - 1): if self.graph_model == 'gcn': self.convs.append(GCNConv(hidden, hidden)) elif self.graph_model == 'gat': self.convs.append(GATConv(hidden, hidden, heads = config.num_heads)) else: raise NotImplementedError self.pools.append(ASAP_Pooling(in_channels=hidden * config.num_heads, ratio=ratio[i], dropout_att=dropout_att)) self.lin1 = Linear(2*hidden * config.num_heads, hidden) # 2*hidden due to readout layer self.lin2 = Linear(hidden, num_features - 1) # projection layer -> -1 for <start> self.reset_parameters() self.strat_or_da = strat_or_da self.undirected = config.undirected self.self_loops = config.self_loops self.num_heads = config.num_heads try: if 'only_hidden' in config: self.only_hidden = config.only_hidden else: self.only_hidden = False except: self.only_hidden = False @property def device(self) -> torch.device: return next(self.parameters()).device def set_embeddings(self, np_embedding): #self.embeddings.weight.data.copy_(torch.from_numpy(np_embedding)) assert np_embedding.shape == self.embeddings.weight.shape self.embeddings.weight = torch.nn.Parameter(torch.FloatTensor(np_embedding)) def reset_parameters(self): self.conv1.reset_parameters() self.pool1.reset_parameters() for conv, pool in zip(self.convs, self.pools): conv.reset_parameters() pool.reset_parameters() self.lin1.reset_parameters() self.lin2.reset_parameters() #def forward(self, data, return_extra = False): # data = data['input_graph'] # x, edge_index, batch = data.x, data.edge_index, data.batch # x is num_graph x 1 # x = self.embeddings(x.squeeze(1)) # added # x is num_graph x node_feats / 22 # x = F.relu(self.conv1(x, edge_index)); #import pdb; pdb.set_trace() # x: num_graph x 64, 2 x 21252 -> more dense, whwereas x graphs goes down # x, edge_index, edge_weight, batch, perm, S_index, S_weight, att_wts = self.pool1(x=x, edge_index=edge_index, edge_weight=None, batch=batch) # save_perm = perm.clone() # xs = readout(x, batch) # for conv, pool in zip(self.convs, self.pools): # if self.graph_model == 'gcn': # x = F.relu(conv(x=x, edge_index=edge_index, edge_weight=edge_weight)) # elif self.graph_model == 'gat': # x = F.relu(conv(x=x, edge_index=edge_index)) # else: # raise NotImplementedError # x, edge_index, edge_weight, batch, perm, _, _, _ = pool(x=x, edge_index=edge_index, edge_weight=edge_weight, batch=batch) # IGNORING S OF FUTURE LAYERS # xs += readout(x, batch) # x = F.relu(self.lin1(xs)) # if self.only_hidden: # return x # x = F.dropout(x, p=0.0, training=self.training) # x = self.lin2(x) # #out = F.log_softmax(x, dim=-1) # # x is logits # # dont need mask here to calculate loss # logitloss = self.logitcriterion(x, data.y) # return logitloss, 0.0, x, 0.0, (S_index, S_weight, att_wts, save_perm) def forward(self, feats, utt_mask, return_extra = True): # CREATE GRAPH DATA HERE #pdb.set_trace() from torch_geometric.data import Batch num_conv=feats.shape[0] data_list = [] for i in range(num_conv): data_list += self.convert_strategyvec_to_graph(feats[i], utt_mask[i]) #data_list = self.convert_strategyvec_to_graph(feats) batch_graph = Batch.from_data_list(data_list).to(feats.device) num_utt = feats.shape[1] num_strategies = feats.shape[2] x, edge_index, batch = batch_graph.x, batch_graph.edge_index, batch_graph.batch #x, edge_index, batch = data.x, data.edge_index, data.batch # x is num_graph x 1 #pdb.set_trace() # if torch.max(x) > self.num_strat: # pdb.set_trace()#print (x.squeeze(1)) x = self.embeddings(x.squeeze(1)) # added # x is num_graph x node_feats / 22 if self.graph_model == 'gcn': x = F.relu(self.conv1(x, edge_index)); # import pdb; pdb.set_trace() # x: num_graph x 64, 2 x 21252 -> more dense, whwereas x graphs goes down else: # THIS PART################# #pdb.set_trace() #x, gat_attn_wts = self.conv1(x, edge_index, return_attention_weights=True) x = self.conv1(x, edge_index) gat_attn_wts = self.conv1.attention_score x = F.relu(x) x, edge_index, edge_weight, batch, perm, S_index, S_weight, att_wts = self.pool1(x=x, edge_index=edge_index, edge_weight=None, batch=batch) save_perm = perm.clone() xs = readout(x, batch) for conv, pool in zip(self.convs, self.pools): if self.graph_model == 'gcn': x = F.relu(conv(x=x, edge_index=edge_index, edge_weight=edge_weight)) elif self.graph_model == 'gat': x = F.relu(conv(x=x, edge_index=edge_index)) else: raise NotImplementedError x, edge_index, edge_weight, batch, perm, _, _, _ = pool(x=x, edge_index=edge_index, edge_weight=edge_weight, batch=batch) # IGNORING S OF FUTURE LAYERS xs += readout(x, batch) x = F.relu(self.lin1(xs)) if self.only_hidden: return x x = F.dropout(x, p=0.0, training=self.training) logits = self.lin2(x)#.view(1, num_utt, -1) #outputs, _ = self.gru(feats, None) #logits = self.projection_layer(self.relu(outputs)) #logits = logits[:, -1, :].view(1, -1) if return_extra: if self.graph_model == 'gat': return logits, batch_graph.y, (S_index, S_weight, att_wts, save_perm, batch_graph, gat_attn_wts) else: return logits, batch_graph.y, (S_index, S_weight, att_wts, save_perm, batch_graph, gat_attn_wts) return logits, batch_graph.y, None def convert_strategyvec_to_graph(self, strategies_vec, utt_maski): ''' Takes a strategies vector and converts it to a list of torch_geometric.data Data items ''' from torch_geometric.data import Data #pdb.set_trace() device = strategies_vec.device graph_data = [] adj_x, adj_y = [], [] # skip for time step 0 # lower triangle useful total_rows = 0 for i in range(len(strategies_vec)): #adj_y.append(np.array(strategies_vec[i + 1])) num_strategies_in_turn = int(torch.sum(strategies_vec[i])) new_matrix = np.zeros((total_rows + num_strategies_in_turn, total_rows + num_strategies_in_turn))#.to(device) new_strategies = np.zeros((total_rows + num_strategies_in_turn, 1))#, dtype=torch.long).to(device) if i != 0: new_matrix[: total_rows, : total_rows] = adj_x[i - 1]['matrix'] # copy prev matrix new_strategies[: total_rows] = adj_x[i - 1]['strategies'] curr_row = total_rows ##stdinturn=0 for stidx, sval in enumerate(strategies_vec[i]): if sval == 0: continue new_strategies[curr_row, 0] = stidx # new_strategies.append(stidx) new_matrix[curr_row, : total_rows] = 1 # connecting to all in lower half except self ##new_matrix[curr_row, total_rows + stdinturn] = 1 ##stdinturn+=1 curr_row += 1 total_rows = curr_row #new_matrix = torch.LongTensor(new_matrix).to(device) #new_strategies = torch.LongTensor(new_strategies).to(device) adj_x.append({ 'matrix': new_matrix, 'strategies': new_strategies }) x = torch.LongTensor(new_strategies).to(device) # (num_strategies, 1) for now. Later will do embedding lookup edge_index = self.get_edge_index_from_adj_matrix(torch.LongTensor(new_matrix).to(device)) #y = torch.FloatTensor(np.array(strategies_vec[i + 1]).reshape(1, -1)) #y = torch.FloatTensor(np.array(strategies_vec[i]).reshape(1, -1)) try: y = strategies_vec[i+1, :-1].reshape(1, -1) # -1 for start except: y = strategies_vec[0, :-1].reshape(1, -1)#None #y= None graph_data.append(Data(x=x, edge_index=edge_index, y=y)) #if i+2 == len(strategies_vec) or utt_maski[i+2] == 0: break if i+1 == len(strategies_vec) or utt_maski[i+1] == 0: break return graph_data def get_edge_index_from_adj_matrix(self, adj_matrix): from torch_geometric.utils.sparse import dense_to_sparse from torch_geometric.utils.undirected import to_undirected from torch_geometric.utils.loop import add_self_loops edge_index, edge_value = dense_to_sparse(adj_matrix) undirected = self.undirected self_loops = self.self_loops if edge_index.shape[1] != 0 and undirected: edge_index = to_undirected(edge_index) if edge_index.shape[1] != 0 and self_loops: edge_index, _ = add_self_loops(edge_index) return edge_index def __repr__(self): return self.__class__.__name__ import torch from torch.nn import Parameter from torch_geometric.utils import remove_self_loops, add_self_loops from torch_scatter import scatter_add from torch_geometric.nn.inits import uniform class LEConv(torch.nn.Module): r"""Args: in_channels (int): Size of each input sample. out_channels (int): Size of each output sample. bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) """ def __init__(self, in_channels, out_channels, bias=True): super(LEConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lin1 = torch.nn.Linear(in_channels, out_channels, bias=bias) self.lin2 = torch.nn.Linear(in_channels, out_channels, bias=bias) self.weight = Parameter(torch.Tensor(in_channels, out_channels)) self.reset_parameters() def reset_parameters(self): uniform(self.in_channels, self.weight) self.lin1.reset_parameters() self.lin2.reset_parameters() def forward(self, x, edge_index, edge_weight=None, size=None): """""" num_nodes = x.shape[0] h = torch.matmul(x, self.weight) if edge_weight is None: edge_weight = torch.ones((edge_index.size(1),), dtype=x.dtype, device=edge_index.device) edge_index, edge_weight = remove_self_loops(edge_index=edge_index, edge_attr=edge_weight) deg = scatter_add(edge_weight, edge_index[0], dim=0, dim_size=num_nodes) # + 1e-10 h_j = edge_weight.view(-1, 1) * h[edge_index[1]] aggr_out = scatter_add(h_j, edge_index[0], dim=0, dim_size=num_nodes) out = (deg.view(-1, 1) * self.lin1(x) + aggr_out) + self.lin2(x) edge_index, edge_weight = add_self_loops(edge_index=edge_index, edge_weight=edge_weight, num_nodes=num_nodes) return out def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self.in_channels, self.out_channels)
python
# License: MIT # Author: Karl Stelzner import os import sys import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader import numpy as np from numpy.random import random_integers from PIL import Image from torch.utils.data._utils.collate import default_collate import json def progress_bar(count, total, status=''): bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '=' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write('[%s] %s%s ...%s\r' % (bar, percents, '%', status)) sys.stdout.flush() def make_sprites(n=50000, height=64, width=64): images = np.zeros((n, height, width, 3)) counts = np.zeros((n,)) print('Generating sprite dataset...') for i in range(n): num_sprites = random_integers(0, 2) counts[i] = num_sprites for j in range(num_sprites): pos_y = random_integers(0, height - 12) pos_x = random_integers(0, width - 12) scale = random_integers(12, min(16, height-pos_y, width-pos_x)) cat = random_integers(0, 2) sprite = np.zeros((height, width, 3)) if cat == 0: # draw circle center_x = pos_x + scale // 2.0 center_y = pos_y + scale // 2.0 for x in range(height): for y in range(width): dist_center_sq = (x - center_x)**2 + (y - center_y)**2 if dist_center_sq < (scale // 2.0)**2: sprite[x][y][cat] = 1.0 elif cat == 1: # draw square sprite[pos_x:pos_x + scale, pos_y:pos_y + scale, cat] = 1.0 else: # draw square turned by 45 degrees center_x = pos_x + scale // 2.0 center_y = pos_y + scale // 2.0 for x in range(height): for y in range(width): if abs(x - center_x) + abs(y - center_y) < (scale // 2.0): sprite[x][y][cat] = 1.0 images[i] += sprite if i % 100 == 0: progress_bar(i, n) images = np.clip(images, 0.0, 1.0) return {'x_train': images[:4 * n // 5], 'count_train': counts[:4 * n // 5], 'x_test': images[4 * n // 5:], 'count_test': counts[4 * n // 5:]} class Sprites(Dataset): def __init__(self, directory, n=50000, canvas_size=64, train=True, transform=None): np_file = 'sprites_{}_{}.npz'.format(n, canvas_size) full_path = os.path.join(directory, np_file) if not os.path.isfile(full_path): try: os.mkdir('./data') except: print("data folder found !") gen_data = make_sprites(n, canvas_size, canvas_size) np.savez(full_path, **gen_data) data = np.load(full_path) self.transform = transform self.images = data['x_train'] if train else data['x_test'] self.counts = data['count_train'] if train else data['count_test'] def __len__(self): return self.images.shape[0] def __getitem__(self, idx): img = self.images[idx] if self.transform is not None: img = self.transform(img).float() return img, self.counts[idx] class Clevr(Dataset): def __init__(self, directory, train=True, transform=None): self.images_path = directory + 'images/train/' self.filenames = os.listdir(self.images_path) json_path = directory + 'scenes/CLEVR_train_scenes.json' with open(json_path) as json_file: data = json.load(json_file) self.labels = data['scenes'] self.n = len(self.filenames) self.transform = transform def __len__(self): return self.n def _name2idx(self, key, value): if key == 'shape': if value == 'cube': return 0 elif value == 'cylinder': return 1 elif value == 'sphere': return 2 elif key == 'size': if value == 'small': return 0 elif value == 'large': return 1 elif key == 'material': if value == 'metal': return 0 elif value == 'rubber': return 1 elif key == 'color': if value == 'red': return 0 elif value == 'blue': return 1 elif value == 'purple': return 2 elif value == 'gray': return 3 elif value == 'cyan': return 4 elif value == 'brown': return 5 elif value == 'yellow': return 6 elif value == 'green': return 7 elif key == '3d_coords': return (np.array(value) + 3)/6 else: return value def __getitem__(self, idx): #Image imgpath = os.path.join(self.images_path, self.filenames[idx]) img = Image.open(imgpath) if self.transform is not None: img = self.transform(img).float() #Label image_idx = self.labels[idx]['image_index'] assert image_idx == idx objects = self.labels[idx]['objects'] num_objects = len(objects) assert num_objects != 0 keys = objects[0].keys() label = {k:[] for k in keys} for i in range(num_objects): for k in keys: label[k].append(self._name2idx(k, objects[i][k])) for k in keys: t = label[k] label[k] = torch.as_tensor(t) return img, label class ClevrRela(Dataset): def __init__(self, directory, train=True, transform=None): self.images_path = directory + 'images/' self.filenames = os.listdir(self.images_path) json_path = directory + 'CLEVR_scenes.json' with open(json_path) as json_file: data = json.load(json_file) self.labels = data['scenes'] self.n = len(self.filenames) self.transform = transform def __len__(self): return self.n def _name2idx(self, key, value): if key == 'shape': if value == 'cube': return 0 elif value == 'cylinder': return 1 elif value == 'sphere': return 2 elif key == 'size': if value == 'small': return 0 elif value == 'large': return 1 elif key == 'material': if value == 'metal': return 0 elif value == 'rubber': return 1 elif key == 'color': if value == 'red': return 0 elif value == 'blue': return 1 elif value == 'purple': return 2 elif value == 'gray': return 3 elif value == 'cyan': return 4 elif value == 'brown': return 5 elif value == 'yellow': return 6 elif value == 'green': return 7 elif key == '3d_coords': return (np.array(value) + 3)/6 else: return value def __getitem__(self, idx): #Image imgpath = os.path.join(self.images_path, self.filenames[idx]) img = Image.open(imgpath) if self.transform is not None: img = self.transform(img).float() #Label image_idx = self.labels[idx]['image_index'] assert image_idx == idx objects = self.labels[idx]['objects'] num_objects = len(objects) assert num_objects != 0 keys = objects[0].keys() label = {k:[] for k in keys} for i in range(num_objects): for k in keys: label[k].append(self._name2idx(k, objects[i][k])) for k in keys: t = label[k] label[k] = torch.as_tensor(t) label['relation'] = torch.as_tensor(self.labels[idx]['relationships']) return img, label ######################################################################## # # ADDED # ######################################################################### class MultiObjectDataset(Dataset): def __init__(self, data_path, train, split=0.9, transform = None): super().__init__() # Load data data = np.load(data_path, allow_pickle=True) # Rescale images and permute dimensions x = np.asarray(data['x'], dtype=np.float32) / 255 x = np.transpose(x, [0, 3, 1, 2]) # batch, channels, h, w # Get labels try: labels = data['labels'].item() except: labels = data['labels'] print(type(labels)) # Split train and test split = int(split * len(x)) if train: indices = range(split) else: indices = range(split, len(x)) # From numpy/ndarray to torch tensors (labels are lists of tensors as # they might have different sizes) self.x = torch.from_numpy(x[indices]) try: labels.pop('text', None) labels.pop('vertices', None) except: print("No text to pop !") self.labels = self._labels_to_tensorlist(labels, indices) @staticmethod def _labels_to_tensorlist(labels, indices): out = {k: [] for k in labels.keys()} for i in indices: for k in labels.keys(): t = labels[k][i] t = torch.as_tensor(t) out[k].append(t) return out def __getitem__(self, index): x = self.x[index] try: labels = {k: self.labels[k][index] for k in self.labels.keys()} except: labels = self.labels return x, labels def __len__(self): return self.x.size(0) class MultiObjectDataLoader(DataLoader): def __init__(self, *args, **kwargs): assert 'collate_fn' not in kwargs kwargs['collate_fn'] = self.collate_fn super().__init__(*args, **kwargs) @staticmethod def collate_fn(batch): # The input is a batch of (image, label_dict) _, item_labels = batch[0] keys = item_labels.keys() # Max label length in this batch # max_len[k] is the maximum length (in batch) of the label with name k # If at the end max_len[k] is -1, labels k are (probably all) scalars max_len = {k: -1 for k in keys} # If a label has more than 1 dimension, the padded tensor cannot simply # have size (batch, max_len). Whenever the length is >0 (i.e. the sequence # is not empty, store trailing dimensions. At the end if 1) all sequences # (in the batch, and for this label) are empty, or 2) this label is not # a sequence (scalar), then the trailing dims are None. trailing_dims = {k: None for k in keys} # Make first pass to get shape info for padding for _, labels in batch: for k in keys: try: max_len[k] = max(max_len[k], len(labels[k])) if len(labels[k]) > 0: trailing_dims[k] = labels[k].size()[1:] except TypeError: # scalar pass # For each item in the batch, take each key and pad the corresponding # value (label) so we can call the default collate function pad = MultiObjectDataLoader._pad_tensor for i in range(len(batch)): for k in keys: if trailing_dims[k] is None: continue if k == 'relation': size = [max_len[k], max_len[k]] + list(trailing_dims[k])[1:] batch[i][1][k] = MultiObjectDataLoader._pad_tensor_relation(batch[i][1][k], size, value = 0.) else: size = [max_len[k]] + list(trailing_dims[k]) batch[i][1][k] = pad(batch[i][1][k], size) return default_collate(batch) @staticmethod def _pad_tensor(x, size, value=None): assert isinstance(x, torch.Tensor) input_size = len(x) if value is None: value = float('nan') # Copy input tensor into a tensor filled with specified value # Convert everything to float, not ideal but it's robust out = torch.zeros(*size, dtype=torch.float) out.fill_(value) if input_size > 0: # only if at least one element in the sequence out[:input_size] = x.float() return out @staticmethod def _pad_tensor_relation(x, size, value=None): assert isinstance(x, torch.Tensor) input_size = x.shape[:2] if value is None: value = float('nan') # Copy input tensor into a tensor filled with specified value # Convert everything to float, not ideal but it's robust out = torch.zeros(*size, dtype=torch.float) out.fill_(value) #if input_size > 0: # only if at least one element in the sequence out[:input_size[0], :input_size[1],:] = x.float() return out
python
import random import numpy as np class Particle(): def __init__(self): self.position = np.array([(-1) ** (bool(random.getrandbits(1))) * random.random()*50, (-1)**(bool(random.getrandbits(1))) * random.random()*50]) self.pbest_position = self.position self.pbest_value = float('inf') self.velocity = np.array([0, 0]) def __str__(self): print("I am at ", self.position, " meu pbest is ", self.pbest_position) def move(self): self.position = self.position + self.velocity
python
import sys import os import logging import shutil import inspect from . import config logger = logging.getLogger('carson') _init = None _debug = False def initLogging(debug=False): global _init, _debug if _init is not None: return _init = True _debug = debug formatter = logging.Formatter('{asctime} {levelname[0]} {name} {message}', style='{') handlers = [logging.StreamHandler(sys.stdout)] ldir, lfile = config.get('log_dir'), config.get('log_file') if ldir and lfile: handlers.append(logging.FileHandler(os.path.join(ldir, lfile))) for handler in handlers: logger.addHandler(handler) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger.setLevel(logging.DEBUG if debug else logging.INFO) if not debug: basic = logging.Formatter('{message}', style='{', datefmt='%m-%d %H:%M:%S') handlers[0].setFormatter(basic) def is_debug_enabled(): return logger.isEnabledFor(logging.DEBUG) def log(lvl, *args, **kwargs): msg = '' if args and isinstance(args[0], str): msg += f'{args[0]}' args = tuple(args[1:]) logger.log(lvl, msg, *args, **kwargs) def error(*args, **kwargs): log(logging.ERROR, *args, **kwargs) def warning(*args, **kwargs): log(logging.WARNING, *args, **kwargs) def info(*args, **kwargs): log(logging.INFO, *args, **kwargs) def debug(*args, **kwargs): log(logging.DEBUG, *args, **kwargs) COLS, ROWS = shutil.get_terminal_size((120, 80)) COLS -= 35 NoneType = type(None) def logobject(obj, name=None, logger=print, multi_line_doc=False): debug = logger if hasattr(debug, 'debug'): debug = debug.debug debug(f'{"=" * 5} {name or "logobj"} {"=" * COLS * 2}'[:COLS]) otype = type(obj) otname = f'{otype.__module__}.{otype.__name__}' debug(f'obj {otname}') try: debug(f'file: {inspect.getfile(otype)}') except TypeError: pass doc = ( inspect.getdoc(otype) or inspect.getcomments(otype) or inspect.getcomments(obj) or 'No doc or coment' ) if '\n' in doc: doc = '\n'.join(f' {ln}' for ln in doc.split('\n')) debug(doc) gentle_items = { 'aiohttp.client_reqrep.ClientResponse': ['ok'] } members = [ (attr, getattr(obj, attr)) for attr in dir(obj) if not attr.startswith('__') and attr not in gentle_items.get(otname, []) ] gutter = max(20, max(len(attr) for attr, val in members) if members else 20) is_a_funcs = [ (name[2:], func) for name in dir(inspect) if name.startswith('is') and (func := getattr(inspect, name)) # noqa and inspect.isfunction(func) # noqa ] for attr, val in members: val = 'gentle' if attr in gentle_items else val line = f'{attr: <{gutter}}' val_type = type(val) mname = val_type.__module__ tname = val_type.__name__ if val_type.__name__ not in ('builtin_function_or_method',) else '' type_desc = f'{mname}.' if mname != 'builtins' else '' type_desc += tname if val_type in (NoneType, bool, int): line += repr(val) debug(line[:COLS]) continue if val_type in (str,) or type_desc in ('yarl.URL'): line += f'{str(val)!r}' debug(line[:COLS]) continue isables = ', '.join(name for name, func in is_a_funcs if func(val)) if isables: line += f'({isables}) ' if type_desc not in isables: line += type_desc + ' ' if isinstance(val, dict): line += '{' entries = [] for dkey, dval in val.items(): parts = [] for part in (dkey, dval): if isinstance(part, (NoneType, str, int)): parts.append(repr(part)) else: parts.append(type(part).__name__) entries.append(':'.join(parts)) line += ', '.join(entries) line += '}' elif isinstance(val, (list, set, tuple)): line += '(' line += ', '.join( repr(part) if isinstance(part, (NoneType, str, int)) else type(part).__name__ for part in val ) line += ')' else: doc = ( inspect.getdoc(val) or inspect.getcomments(val) or '' ).strip() if doc: doc = doc.split('\n') line += ': ' + doc[0] doc = doc[1:] if multi_line_doc else [] while doc: if line[:COLS].strip(): debug(line[:COLS]) line = f'{" ": <{gutter}}' + doc[0] doc = doc[1:] debug(line[:COLS]) debug(f'{"=" * 50}')
python
import sys from distutils.core import setup from setuptools import find_packages version = '0.1.1' install_requires = [ 'acme>=0.29.0', 'certbot>=1.1.0', 'azure-mgmt-resource', 'azure-mgmt-network', 'azure-mgmt-dns>=3.0.0', 'PyOpenSSL>=19.1.0', 'setuptools', # pkg_resources 'zope.interface' ] if sys.version_info < (2, 7): install_requires.append('mock<1.1.0') else: install_requires.append('mock') docs_extras = [ 'Sphinx>=1.0', # autodoc_member_order = 'bysource', autodoc_default_flags 'sphinx_rtd_theme', ] setup( name='certbot-azure', version=version, description="Azure plugin for Certbot client", url='https://github.com/dlapiduz/certbot-azure', author="Diego Lapiduz", author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Plugins', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Security', 'Topic :: System :: Installation/Setup', 'Topic :: System :: Networking', 'Topic :: System :: Systems Administration', 'Topic :: Utilities', ], packages=find_packages(), include_package_data=True, install_requires=install_requires, keywords = ['certbot', 'azure', 'app_gateway', 'azure_dns'], entry_points={ 'certbot.plugins': [ 'azure-agw = certbot_azure.azure_agw:Installer', 'dns-azure = certbot_azure.dns_azure:Authenticator', ], }, )
python
import json import jwt from fastapi import Depends, HTTPException, Path, Query from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer from fastapi.security.utils import get_authorization_scheme_param from pydantic import BaseModel from starlette.requests import Request from starlette.status import HTTP_401_UNAUTHORIZED, HTTP_403_FORBIDDEN, HTTP_404_NOT_FOUND from . import enums from .factory import app auth_schema = HTTPBearer() async def jwt_required( request: Request, token: HTTPAuthorizationCredentials = Depends(auth_schema) ): credentials_exception = HTTPException(HTTP_401_UNAUTHORIZED) try: payload = jwt.decode(token.credentials, app.admin_secret) user_id = payload.get("user_id") if user_id is None: raise credentials_exception except jwt.PyJWTError: raise credentials_exception request.scope["user_id"] = user_id return user_id async def jwt_optional(request: Request): authorization: str = request.headers.get("Authorization") scheme, credentials = get_authorization_scheme_param(authorization) if credentials: try: payload = jwt.decode(credentials, app.admin_secret) user_id = payload.get("user_id") request.scope["user_id"] = user_id return user_id except jwt.PyJWTError: pass return class QueryItem(BaseModel): page: int = 1 sort: dict where: dict = {} with_: dict = {} size: int = 10 sort: dict = {} class Config: fields = {"with_": "with"} def get_query(query=Query(...)): query = json.loads(query) return QueryItem.parse_obj(query) def get_model(resource: str = Path(...)): model = app.models.get(resource) return model async def parse_body(request: Request, resource: str = Path(...)): body = await request.json() resource = await app.get_resource(resource, exclude_pk=True, exclude_m2m_field=False) resource_fields = resource.resource_fields.keys() ret = {} for key in resource_fields: v = body.get(key) if v is not None: ret[key] = v return ret, resource_fields async def get_current_user(user_id=Depends(jwt_required)): user = await app.user_model.get_or_none(pk=user_id) if not user: raise HTTPException(HTTP_404_NOT_FOUND) return user class PermissionsChecker: def __init__(self, action: enums.PermissionAction): self.action = action async def __call__(self, resource: str = Path(...), user=Depends(get_current_user)): if not app.permission or user.is_superuser: return if not user.is_active: raise HTTPException(status_code=HTTP_403_FORBIDDEN) has_permission = False await user.fetch_related("roles") for role in user.roles: if await role.permissions.filter(model=resource, action=self.action): has_permission = True break if not has_permission: raise HTTPException(status_code=HTTP_403_FORBIDDEN) read_checker = PermissionsChecker(action=enums.PermissionAction.read) create_checker = PermissionsChecker(action=enums.PermissionAction.create) update_checker = PermissionsChecker(action=enums.PermissionAction.update) delete_checker = PermissionsChecker(action=enums.PermissionAction.delete)
python
import time from itertools import chain from opentrons import instruments, labware, robot from opentrons.instruments import pipette_config def _sleep(seconds): if not robot.is_simulating(): time.sleep(seconds) def load_pipettes(protocol_data): pipettes = protocol_data.get('pipettes', {}) pipettes_by_id = {} for pipette_id, props in pipettes.items(): model = props.get('model') mount = props.get('mount') config = pipette_config.load(model) pipettes_by_id[pipette_id] = instruments._create_pipette_from_config( config=config, mount=mount) return pipettes_by_id def load_labware(protocol_data): data = protocol_data.get('labware', {}) loaded_labware = {} for labware_id, props in data.items(): slot = props.get('slot') model = props.get('model') display_name = props.get('display-name') if slot == '12': if model == 'fixed-trash': # pass in the pre-existing fixed-trash loaded_labware[labware_id] = robot.fixed_trash else: # share the slot with the fixed-trash loaded_labware[labware_id] = labware.load( model, slot, display_name, share=True ) else: loaded_labware[labware_id] = labware.load( model, slot, display_name ) return loaded_labware def _get_location(loaded_labware, command_type, params, default_values): labwareId = params.get('labware') if not labwareId: # not all commands use labware param return None well = params.get('well') labware = loaded_labware.get(labwareId) if not labware: raise ValueError( 'Command tried to use labware "{}", but that ID does not exist ' + 'in protocol\'s "labware" section'.format(labwareId)) # default offset from bottom for aspirate/dispense commands offset_default = default_values.get( '{}-mm-from-bottom'.format(command_type)) # optional command-specific value, fallback to default offset_from_bottom = params.get( 'offsetFromBottomMm', offset_default) if offset_from_bottom is None: # not all commands use offsets return labware.wells(well) return labware.wells(well).bottom(offset_from_bottom) def _get_pipette(command_params, loaded_pipettes): pipetteId = command_params.get('pipette') return loaded_pipettes.get(pipetteId) # TODO (Ian 2018-08-22) once Pipette has more sensible way of managing # flow rate value (eg as an argument in aspirate/dispense fns), remove this def _set_flow_rate( pipette_model, pipette, command_type, params, default_values): """ Set flow rate in uL/mm, to value obtained from command's params, or if unspecified in command params, then from protocol's "default-values". """ default_aspirate = default_values.get( 'aspirate-flow-rate', {}).get(pipette_model) default_dispense = default_values.get( 'dispense-flow-rate', {}).get(pipette_model) flow_rate_param = params.get('flow-rate') if flow_rate_param is not None: if command_type == 'aspirate': pipette.set_flow_rate( aspirate=flow_rate_param, dispense=default_dispense) return if command_type == 'dispense': pipette.set_flow_rate( aspirate=default_aspirate, dispense=flow_rate_param) return pipette.set_flow_rate( aspirate=default_aspirate, dispense=default_dispense ) # C901 code complexity is due to long elif block, ok in this case (Ian+Ben) def dispatch_commands(protocol_data, loaded_pipettes, loaded_labware): # noqa: C901 E501 subprocedures = [ p.get('subprocedure', []) for p in protocol_data.get('procedure', [])] default_values = protocol_data.get('default-values', {}) flat_subs = chain.from_iterable(subprocedures) for command_item in flat_subs: command_type = command_item.get('command') params = command_item.get('params', {}) pipette = _get_pipette(params, loaded_pipettes) pipette_model = protocol_data\ .get('pipettes', {})\ .get(params.get('pipette'), {})\ .get('model') location = _get_location( loaded_labware, command_type, params, default_values) volume = params.get('volume') if pipette: # Aspirate/Dispense flow rate must be set each time for commands # which use pipettes right now. # Flow rate is persisted inside the Pipette object # and is settable but not easily gettable _set_flow_rate( pipette_model, pipette, command_type, params, default_values) if command_type == 'delay': wait = params.get('wait', 0) if wait is True: # TODO Ian 2018-05-14 pass message robot.pause() else: _sleep(wait) elif command_type == 'blowout': pipette.blow_out(location) elif command_type == 'pick-up-tip': pipette.pick_up_tip(location) elif command_type == 'drop-tip': pipette.drop_tip(location) elif command_type == 'aspirate': pipette.aspirate(volume, location) elif command_type == 'dispense': pipette.dispense(volume, location) elif command_type == 'touch-tip': pipette.touch_tip(location) def execute_protocol(protocol): loaded_pipettes = load_pipettes(protocol) loaded_labware = load_labware(protocol) dispatch_commands(protocol, loaded_pipettes, loaded_labware) return { 'pipettes': loaded_pipettes, 'labware': loaded_labware }
python
#!/usr/bin/python import sys def int2bin(num, width): spec = '{fill}{align}{width}{type}'.format( fill='0', align='>', width=width, type='b') return format(num, spec) def hex2bin(hex, width): integer = int(hex, 16) return int2bin(integer, width) def sendBinary(send): binary = '# ' + '\t branch target: ' + \ str(send[0]) + '\t branch taken: ' + str(send[1]) + '\n' binary += '0001_' + hex2bin(send[0], 64) + '_' + \ hex2bin(send[1], 1) + '_' + hex2bin('0', 31) return binary def recvBinary(recv): binary = '# ' + '\tpc: ' + str(recv[0]) + '\t instr: ' + str(recv[1]) + '\n' binary += '0010_' + hex2bin(recv[0], 64) + '_' + hex2bin(recv[1], 32) return binary def tr_done(): binary = '# Done' + '\n' binary += '0011_' + hex2bin(str(0), 64) + '_' + hex2bin(str(0), 32) return binary name = str(sys.argv[1]) infile = open(name + ".spike", "r") outfile = open(name + ".tr", "w") outfile.write("# Trace format: recv (4bit)_pc (64 bit)_instruction(32 bits)\n") outfile.write("# send (4bit)_branchtarget(64 bit)_branchtaken(1 bit)_padding(31 bits)\n") msg = [] lines = infile.readlines() pc_list = [line.split()[2] for line in lines if "core" in line] + ["0x0000000000000000"] pc_idx = 0 jal_op = "1101111" jalr_op = "1100111" branch_op = "1100011" # TODO: More elegant solution skip_unbooted = True boot_pc = "0x0000000080000124" msg.append(("send", ["0x0000000080000124", "0"])) for i in xrange(len(lines)-2): line = lines[i].rstrip("\n\r").split() reg_line = lines[i+1].rstrip("\n\r").split() if(len(line) != 0): if("ecall" in line): break if(line[0] == "core" and line[2][:2] == "0x"): pc = line[2] pc_idx = pc_idx + 1 if skip_unbooted and boot_pc != pc: continue skip_unbooted = False next_pc = pc_list[pc_idx] instr_hex = line[3][1:-1] opcode = hex2bin(instr_hex[-2:], 8)[1:] if opcode == jal_op or opcode == jalr_op or opcode == branch_op: branch_target = next_pc if int(branch_target, 16) == int(pc, 16) + 4: branch_taken = '0' else: branch_taken = '1' msg.append(("recv", [pc, instr_hex])) msg.append(("send", [branch_target, branch_taken])) else: msg.append(("recv", [pc, instr_hex])) for i in msg: if i[0] == "send": outfile.write(sendBinary(i[1]) + '\n') else: outfile.write(recvBinary(i[1]) + '\n') outfile.write(tr_done() + '\n') outfile.close()
python
"""tests rio_tiler.sentinel2""" import os from unittest.mock import patch import pytest import rasterio from rio_tiler.errors import InvalidBandName from rio_tiler_pds.errors import InvalidMODISProduct from rio_tiler_pds.modis.aws import MODISASTRAEAReader MODIS_AST_BUCKET = os.path.join( os.path.dirname(__file__), "fixtures", "astraea-opendata" ) MCD43A4_SCENE = "MCD43A4.A2017200.h21v11.006.2017209030811" MOD11A1_SCENE = "MOD11A1.A2020250.h20v11.006.2020251085003" MYD11A1_SCENE = "MYD11A1.A2008110.h16v12.006.2015345131628" MOD13A1_SCENE = "MOD13A1.A2020049.h14v04.006.2020066002045" MYD13A1_SCENE = "MYD13A1.A2020153.h30v10.006.2020170024036" @pytest.fixture(autouse=True) def testing_env_var(monkeypatch): """Set fake env to make sure we don't hit AWS services.""" monkeypatch.setenv("AWS_ACCESS_KEY_ID", "jqt") monkeypatch.setenv("AWS_SECRET_ACCESS_KEY", "rde") monkeypatch.delenv("AWS_PROFILE", raising=False) monkeypatch.setenv("AWS_CONFIG_FILE", "/tmp/noconfigheere") monkeypatch.setenv("AWS_SHARED_CREDENTIALS_FILE", "/tmp/noconfighereeither") monkeypatch.setenv("GDAL_DISABLE_READDIR_ON_OPEN", "EMPTY_DIR") def mock_rasterio_open(band): """Mock rasterio Open.""" assert band.startswith("s3://astraea-opendata") band = band.replace("s3://astraea-opendata", MODIS_AST_BUCKET) return rasterio.open(band) @patch("rio_tiler.io.cogeo.rasterio") def test_AWS_MODISASTRAEAReader(rio): """Test MODIS (ASTRAEA) Reader product.""" rio.open = mock_rasterio_open with pytest.raises(InvalidMODISProduct): with MODISASTRAEAReader("MOD00A4.A2017006.h21v11.006.2017018074804"): pass with MODISASTRAEAReader(MCD43A4_SCENE) as modis: assert modis.minzoom == 4 assert modis.maxzoom == 9 assert modis.bands == ( "B01", "B01qa", "B02", "B02qa", "B03", "B03qa", "B04", "B04qa", "B05", "B05qa", "B06", "B06qa", "B07", "B07qa", ) assert modis._get_band_url("B1") == modis._get_band_url("B01") assert modis._get_band_url("B01") == ( "s3://astraea-opendata/MCD43A4.006/21/11/2017200/MCD43A4.A2017200.h21v11.006.2017209030811_B01.TIF" ) with MODISASTRAEAReader(MOD11A1_SCENE) as modis: assert modis.minzoom == 4 assert modis.maxzoom == 9 assert modis.bands == ( "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", ) assert modis._get_band_url("B01") == ( "s3://astraea-opendata/MOD11A1.006/20/11/2020250/MOD11A1.A2020250.h20v11.006.2020251085003_LSTD_B01.TIF" ) with MODISASTRAEAReader(MYD11A1_SCENE) as modis: assert modis.minzoom == 4 assert modis.maxzoom == 9 assert modis.bands == ( "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", ) assert modis._get_band_url("B01") == ( "s3://astraea-opendata/MYD11A1.006/16/12/2008110/MYD11A1.A2008110.h16v12.006.2015345131628_LSTD_B01.TIF" ) with MODISASTRAEAReader(MOD13A1_SCENE) as modis: assert modis.minzoom == 4 assert modis.maxzoom == 9 assert modis.bands == ( "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", ) assert modis._get_band_url("B01") == ( "s3://astraea-opendata/MOD13A1.006/14/04/2020049/MOD13A1.A2020049.h14v04.006.2020066002045_NDVI_B01.TIF" ) with MODISASTRAEAReader(MYD13A1_SCENE) as modis: assert modis.scene_params.get("scene") == MYD13A1_SCENE assert len(modis.bounds) == 4 assert modis.minzoom == 4 assert modis.maxzoom == 9 assert modis.bands == ( "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B09", "B10", "B11", "B12", ) with pytest.raises(InvalidBandName): modis._get_band_url("granule") assert modis._get_band_url("B01") == ( "s3://astraea-opendata/MYD13A1.006/30/10/2020153/MYD13A1.A2020153.h30v10.006.2020170024036_NDVI_B01.TIF" ) metadata = modis.info(bands="B01") assert metadata["band_descriptions"] == [(1, "B01")] metadata = modis.metadata(bands=("B01", "B02")) assert metadata["band_descriptions"] == [(1, "B01"), (2, "B02")] stats = modis.stats(bands="B05") assert len(stats.items()) == 1 assert stats["B05"]["pc"] tile_z = 8 tile_x = 219 tile_y = 141 data, mask = modis.tile(tile_x, tile_y, tile_z, bands="B01") assert data.shape == (1, 256, 256) assert mask.shape == (256, 256)
python
import FWCore.ParameterSet.Config as cms from RecoTracker.DebugTools.TrackAlgoCompareUtil_cfi import *
python
# -*- coding: utf-8 -*- # @Time : 2020/1/23 10:10 # @Author : jwh5566 # @Email : [email protected] # @File : test1.py # import sys # print('参数个数: ', len(sys.argv)) # print('参数列表: ', str(sys.argv)) # a = 10 # if a > 0: # print(a, "是一个正数") # print("总是打印这句话") # # a = -10 # if a > 0: # print(a, "是一个正数") # a = 10 # if a > 50: # print("a is greater than 50") # elif a == 10: # print("a is equal to 10") # else: # print("a is negative") # numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11] # sum = 0 # for i in numbers: # sum += i # print("The sum is: ", sum) # for i in range(5): # print("The number is", i) # a = 10 # sum = 0 # i = 1 # while i <= a: # sum += i # i += 1 # print("The sum is", sum) # numbers = [10, 25, 54, 86, 89, 11, 33, 22] # new_numbers = filter(lambda x: (x%2 == 0), numbers) # print(type(new_numbers)) # print(list(new_numbers)) # my_List = [1, 5, 4, 6, 8, 11, 3, 12] # new_list = list(map(lambda x: x*2, my_List)) # print(new_list) a = 35 b = 57 try: c = a + b print("the value of c is: ", c) d = b / 0 print("the value d is ", d) except: print("division by zero is not possible") print("out if try ... except block")
python
from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.linkextractors import LinkExtractor from scrapy.selector import HtmlXPathSelector from ..items import NewsItem from datetime import datetime import pandas as pd import re class SabahSpider(CrawlSpider): name = "sabah" allowed_domains = ["sabah.com.tr"] def __init__(self, yearmonth='', *args, **kwargs): super(SabahSpider, self).__init__(*args, **kwargs) # http://www.sabah.com.tr/timeline/2017/05/20 begin = pd.Timestamp(yearmonth + "-01") end = pd.Timestamp(begin) + pd.DateOffset(months=1) - pd.DateOffset(days=1) end = pd.Timestamp(begin) + pd.DateOffset(days=1) date_inds = [re.findall("[0-9]{4}/[0-9]{2}/[0-9]{2}", d.date().isoformat().replace("-","/"))[0] for d in pd.date_range(begin,end)] self.start_urls = ["http://www.sabah.com.tr/timeline/%s" % d for d in date_inds] rules = ( Rule(LinkExtractor(allow=(), restrict_xpaths=('//div[@class="masonryFrame"]/div[@class="box"]//a',)), callback="parse_items", follow= True), ) def parse_items(self, response): hxs = HtmlXPathSelector(response) item = NewsItem() item["link"] = response.request.url item["lang"] = "tr" item["source"] = "sabah" category = hxs.xpath("//div[contains(@class,'haber-header')]/header/span[contains(@class,'category')]//text()").extract() date_time = hxs.xpath("//div[contains(@class,'haber-header')]/div[contains(@class,'info')]/time/text()").extract() item["author"] = "" title = hxs.xpath("//div[contains(@class,'haber-header')]/header/h1/text()").extract() intro = hxs.xpath("//div[contains(@class,'haber-header')]/header/h2/text()").extract() new_content = hxs.xpath("//div[contains(@class,'content')]/div/p/text()").extract() # # Processing outputs item["intro"] = ' '.join(intro) item["title"] = ' '.join(title) new_content = ' '.join(new_content) new_content = re.sub('\n',' ',new_content) item["content"] = re.sub('\s{2,}',' ',new_content) item["category"] = '|'.join(category) item["date_time"] = " ".join(date_time) return(item)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayOpenAppXwbsssQueryResponse(AlipayResponse): def __init__(self): super(AlipayOpenAppXwbsssQueryResponse, self).__init__() self._a = None @property def a(self): return self._a @a.setter def a(self, value): self._a = value def parse_response_content(self, response_content): response = super(AlipayOpenAppXwbsssQueryResponse, self).parse_response_content(response_content) if 'a' in response: self.a = response['a']
python
''' -------------------- standard_parsers.py -------------------- This module contains a set of commands initializing standard :py:class:`argparse.ArgumentParser` objects with standard sets of pre-defined options. The idea here is that I have a standard basic parser with set syntax but can also have a 'cluster parser' with a set of pre-defined cluster oriented options that can be added to the standard basic parser for scripts that need cluster support, etc etc .. moduleauthor:: Nick Schurch <[email protected]> :module_version: 1.3 :created_on: 2013-04-08 ---------------- ''' __version__ = "1.3" import argparse, tempfile import script_options.custom_callables as cc def standard_parser(ver, prog, usage, description=None, epilog=None, tmpdir=True, infile=True, infiletype="txt", outfile=True): '''Set up a command line parser with standard options. Depending on the options supplied to the function the standard options include an input file, an output file, a log file, a temporary directory a verbosity switch and standard :py:class:`argparse.ArgumentParser` version and help switches. Returns a :py:class:`argparse.ArgumentParser` instance and two lists; the first is a list of the positional arguments and their defaults (which should be None), the second is a list of keyword arguments and their defaults. These lists are used by :ref:`standard_logging.py <standard_logging_autodocs>` to give clarity to the logged script options. Note, the destination in the resulting namespace (and in the first value of tuples in the keyword arguments lists) is the same as the long option for all optional arguments; lets try to keep it that way! ''' # use these to store some metadata on the options added to the parser. # These will be lists of tuples with the argument name, and default value. pos_args = [] kw_args = [] # setup the argparse parser formatter = argparse.ArgumentDefaultsHelpFormatter parser = argparse.ArgumentParser(prog=prog, usage=usage % prog, description=description, epilog=epilog, formatter_class=formatter, add_help=False) reqarggroup = parser.add_argument_group('Standard Options (required)') ########## input file ######### if infile: infilehelp = "Specify an input %s file (inc. path if different from " \ "the current working directory) to be consumed by this " \ "script." % infiletype reqarggroup.add_argument('infile', action = 'store', type = cc.input_file, help = infilehelp ) pos_args.append(('infile',None)) ########## output file ######### if outfile: outfilehelp = "Specify an output file (inc. path if different from " \ "the current working directory) to be generated by " \ "this script." reqarggroup.add_argument('outfile', action = 'store', type = cc.output_file, help = outfilehelp ) pos_args.append(('outfile',None)) ########## log file ######### loghelp = "Specify a log file (inc. path if different from the current " \ "working directory) of the log file generated by this script." reqarggroup.add_argument('-l', '--log', action = 'store', dest='log', required=True, type = cc.output_file, help = loghelp ) optarggroup = parser.add_argument_group('Standard Options (optional)') kw_args.append(('log','log',None)) ########## tmpdir ######### if tmpdir: tmpdirhelp = "Specify a directory to use as a temp dir for this " \ "script. If --tmpdir is listed without a directory, or " \ "is omitted entirely, then a system-generated tmpdir " \ "will be used." tmp_dir = tempfile.mkdtemp() optarggroup.add_argument('--tmpdir', nargs = '?', action = 'store', dest='tmpdir', const = tmp_dir, default = tmp_dir, type = cc.output_path, help = tmpdirhelp ) kw_args.append(('tmpdir','tmpdir',tmp_dir)) ########## version, verbose, help ######### optarggroup.add_argument('--version', action = 'version', dest = 'version', version = '%(prog)s'+' %s' % str(ver) ) optarggroup.add_argument('-v', '--verbose', action = 'store_true', dest = 'verbose', help = 'Verbosity switch for logging and warnings' ) kw_args.append(('verbose','verbose',False)) optarggroup.add_argument('-h', '--help', action = 'help', help = "Show this help message and exit" ) return(parser, pos_args, kw_args) def get_std_req_group(parser): """ Returns the 'Standard Options (required)' argument group from the standard parser. """ for group in parser._action_groups: if group.title=="Standard Options (required)": return(group) return(None) def get_std_opt_group(parser): """ Returns the 'Standard Options (optional)' argument group from the standard parser. """ for group in parser._action_groups: if group.title=="Standard Options (optional)": return(group) return(None)
python
import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np def conv(x, out_channel, kernel_size, stride=1, dilation=1): x = slim.conv2d(x, out_channel, kernel_size, stride, rate=dilation,activation_fn=None) return x def global_avg_pool2D(x): with tf.variable_scope(None, 'global_pool2D'): n,h,w,c=x.get_shape().as_list x = slim.avg_pool2d(x, (h,w), stride=1) return x def global_context_module(x,squeeze_depth,fuse_method='add',attention_method='att',scope=None): assert fuse_method in ['add','mul'] assert attention_method in ['att','avg'] with tf.variable_scope(scope,"GCModule"): if attention_method == 'avg': context = global_avg_pool2D(x)#[N,1,1,C] else: n,h,w,c=x.get_shape().as_list() context_mask = conv(x,1,1)# [N, H, W,1] context_mask = tf.reshape(context_mask,shape=tf.convert_to_tensor([tf.shape(x)[0], -1, 1]))# [N, H*W, 1] context_mask=tf.transpose(context_mask,perm=[0,2,1])# [N, 1, H*W] context_mask = tf.nn.softmax(context_mask,axis=2)# [N, 1, H*W] input_x = tf.reshape(x, shape=tf.convert_to_tensor([tf.shape(x)[0], -1,c]))# [N,H*W,C] context=tf.matmul(context_mask,input_x)# [N, 1, H*W] x [N,H*W,C] =[N,1,C] context=tf.expand_dims(context,axis=1)#[N,1,1,C] context=conv(context,squeeze_depth,1) context=slim.layer_norm(context) context=tf.nn.relu(context) context=conv(context,c,1)#[N,1,1,C] if fuse_method=='mul': context=tf.nn.sigmoid(context) out=context*x else: out=context+x return out if __name__=='__main__': inputs=tf.placeholder(tf.float32,shape=[None,64,64,128]) input_array=np.ones((1,64,64,128),dtype=np.float32) out=global_context_module(inputs,squeeze_depth=16) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) output=sess.run([out],feed_dict={inputs:input_array}) print(output[0].shape)
python
from functools import reduce from typing import Optional import numpy as np def find_common_elements(*indices: np.array) -> np.array: """ Returns array with unique elements common to *all* indices or the first index if it's the only one. """ common_elements = reduce(np.intersect1d, indices[1:], indices[0]) return common_elements def flatten_extra_dim(data: Optional[np.array]) -> Optional[np.array]: """ Removes extra dimension if it is equal to one. It's different from np.squeeze in that it operates only on the last axis. :return: reshaped view of the original array or None if input is None. """ if data is not None and data.shape[-1] == 1: return data.reshape(data.shape[:-1]) return data def atleast_n_dimensions(data: np.array, ndim: int) -> np.array: """ Return a view with extra dimensions to the array if necessary, such that the result has the required number of dimensions.""" while data.ndim < ndim: data = np.expand_dims(data, axis=-1) return data def atleast_2d(data: np.array) -> np.array: return atleast_n_dimensions(data, ndim=2) def atleast_4d(data: np.array) -> np.array: return atleast_n_dimensions(data, ndim=4)
python
from rest_framework import viewsets, mixins from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from core.models import Skill from core.models import Location from core.models import Job # from core.models import Job from job import serializers from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters # from job import serializers # class TagViewSet(viewsets.GenericViewSet, # mixins.ListModelMixin, # mixins.CreateModelMixin): # """Manage tags in the database""" # authentication_classes = (TokenAuthentication,) # permission_classes = (IsAuthenticated,) # queryset = Tag.objects.all() # serializer_class = serializers.TagSerializer # # def get_queryset(self): # """Return objects for current authenticated user only""" # return self.queryset.filter(user=self.request.user).order_by('-name') # # def perform_create(self, serializer): # """Create a new tag""" # serializer.save(user = self.request.user) class SkillViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, mixins.CreateModelMixin): """Manage tags in the database""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) queryset = Skill.objects.all() serializer_class = serializers.SkillSerializer def get_queryset(self): """Return objects for current authenticated user only""" return self.queryset.filter(user=self.request.user).order_by('-name') def perform_create(self, serializer): """Create a new tag""" serializer.save(user = self.request.user) class LocationViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, mixins.CreateModelMixin): """Manage tags in the database""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) queryset = Location.objects.all() serializer_class = serializers.LocationSerializer def get_queryset(self): """Return objects for current authenticated user only""" return self.queryset.filter(user=self.request.user).order_by('-name') def perform_create(self, serializer): """Create a new tag""" serializer.save(user = self.request.user) class JobViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, mixins.CreateModelMixin): """Manage tags in the database""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) queryset = Job.objects.all() serializer_class = serializers.JobSerializer def get_queryset(self): """Return objects for current authenticated user only""" filter_backends = [filters.SearchFilter, DjangoFilterBackend] search_fields = ['job_title'] filterset_fields = ['experience', 'sponsorship'] return self.queryset.filter(user=self.request.user) #.order_by('-name') def perform_create(self, serializer): """Create a new job info post""" serializer.save(user = self.request.user) def get_serializer_class(self): """Return appropriate serializer class""" if self.action == 'retrieve': return serializers.JobDetailSerializer return self.serializer_class
python
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='clus']/h2[@class='nomargin title_sp']", 'price' : "//h2[@class='nomargin']/font", 'category' : "//div[@class='head_title_center']/div[@class='sp_detai']/a", 'description' : "//div[@class='clus']/div[@id='user_post_view']/p", 'images' : "//div[@class='box_nullstyle']/a[@class='lightbox']/img/@src", 'canonical' : "", 'base_url' : "", 'brand' : "" } name = 'vanphongphamanhkhoa.com' allowed_domains = ['vanphongphamanhkhoa.com'] start_urls = ['http://vanphongphamanhkhoa.com/'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow=['/view_product+-\d+/']), 'parse_item'), Rule(LinkExtractor(allow=['/products-\d+/[a-zA-Z0-9-]+/($|\d\d?$)']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
python
from extractors import archive_extractor, ertflix_extractor, star_extractor, megatv_extractor from downloaders import m3u8_downloader, alpha_downloader import sys if __name__ == "__main__": url = sys.argv[1] if "ertflix.gr" in url: extractor = ertflix_extractor.ErtflixExtractor(url) stream_data = extractor.obtain_data() m3u8_downloader.Downloader(stream_data).download() elif "archive.ert.gr" in url: extractor = archive_extractor.ArchiveExtractor(url) stream_data = extractor.obtain_data() m3u8_downloader.Downloader(stream_data).download() elif "alphatv.gr" in url: alpha_downloader.AlphaDownloader(url).download() elif "star.gr" in url: extractor = star_extractor.StarExtractor(url) stream_data = extractor.obtain_data() m3u8_downloader.Downloader(stream_data).download() elif "megatv.com" in url: extractor = megatv_extractor.MegatvExtractor(url) stream_data = extractor.obtain_data() m3u8_downloader.Downloader(stream_data).download()
python
#!/usr/bin/env python2 # PYTHON_ARGCOMPLETE_OK import sys import agoat._config import agoat.run_disasms import agoat.indexer import agoat.diagnostic import agoat.keywordsearcher # set up command-line completion, if argcomplete module is installed try: import argcomplete import argparse parser = argparse.ArgumentParser(prog=sys.argv[0], description='agoat search') _subpsrs = parser.add_subparsers(dest='command', help='commands') agoat.run_disasms.build_argument_parser(_subpsrs.add_parser('disasm')) agoat.indexer.build_argument_parser(_subpsrs.add_parser('index')) agoat.diagnostic.build_argument_parser(_subpsrs.add_parser('list')) agoat.keywordsearcher.build_argument_parser(_subpsrs.add_parser('query')) argcomplete.autocomplete(parser) except: pass USAGE = "usage: %s {disasm,index,list,query} [-h|--version]\n" def main(argv): if len(argv) == 1 or argv[1] in ("-h", "--help"): sys.stdout.write(USAGE % argv[0]) return elif argv[1] == "--version": sys.stdout.write("%s version %s\n" % (argv[0], agoat._config.VERSION)) return cmd = argv[1] argv = argv[:] del argv[1] argv[0] = argv[0] + " " + cmd if cmd == 'disasm': agoat.run_disasms.main(argv) elif cmd == 'index': agoat.indexer.main(argv) elif cmd == 'list': agoat.diagnostic.main(argv) elif cmd == 'query': agoat.keywordsearcher.main(argv) else: sys.exit("unknown command: %s" % cmd) if __name__ == '__main__': main(sys.argv)
python
import os import math import pygame class Lava(pygame.sprite.Sprite): def __init__(self, x, y, width, height): """ Create a platform sprite. Note that these platforms are designed to be very wide and not very tall. It is required that the width is greater than or equal to the height. It is recommended to make height 50 or less. Best visual effects are when the width is a multiple of the height. Args: x: The x coordinate of the platform y: The y coordinate of the platform width: The width of the platform. Must be greater than or equal to the height height: The height of the platform. Recommended to be 50 or less. """ super().__init__() self.image = self.create_image(os.path.join("assets", "lava.png"), width, height) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y self.width = 440 def create_image(self, image_location, width, height): """ Create the image for this sprite by using one base image and tiling it horizontally. Note that vertical tiling has not been implemented. Args: image_location: A string representing the file location for the image width: The width of the output image in pixels height: The height of the output image in pixels Returns: A surface representing the output image. """ tile_image = pygame.image.load(image_location).convert_alpha() # The tile is a square and the height is expected to be smaller than the width tile_width = height tile_height = height tile_image = pygame.transform.scale(tile_image, (tile_width, tile_height)) # The self.image attribute expects a Surface, so we can manually create one and "blit" the tile image onto the surface (i.e. paint an image onto a surface). # We use list comprehension to quickly make the blits_data list of tuples (each tuple has the tile image, and the X and Y coordinates) # Don't know what list comprehension is? Go look it up on the Internet. That's what all professional software engineers do ;) image = pygame.Surface((width, height)) blits_data = [(tile_image, (tile_width * i, 0)) for i in range(math.ceil(width / tile_width))] image.blits(blits_data) return image
python
def pal(a): s=list(str(a)) i=1 w=[] while i<=len(s): w.append(s[-i]) i=i+1 if w==s: print("it is palimdrom") else: print("it is not palimdrom") string=input("enter the string :") pal(string)
python
from aoc import data from collections import Counter, defaultdict parser = int def part1(inputData, days=80): fish = Counter(inputData) for _ in range(days): newFish = fish.pop(0, 0) fish = Counter({k-1: v for k, v in fish.items()}) + Counter({6: newFish, 8:newFish}) return sum(fish.values()) def part2(inputData): return part1(inputData, days=256) parser=int if __name__ == "__main__": inputData = data(parser=parser,delimiter=',') print(part1(inputData)) print(part2(inputData))
python