text
stringlengths 1
2.05k
|
---|
bx, tx = s[C].split(C.op.axis[0], factor=64)
s[C].bind(bx, te.thread_axis("blockIdx.x"))
s[C].bind(tx, te.thread_axis("threadIdx.x"))
mod = tvm.lower(s, [A, B, C, D])
for dev_type in gpu_devices:
if tvm.testing.device_enabled(dev_type):
binded_mod = tvm.tir.transform.Apply(
lambda f: f.with_attr("target", tvm.target.Target(dev_type))
)(mod)
with pytest.raises(RuntimeError):
tvm.tir.transform.VerifyMemory()(binded_mod)
for dev_type in other_devices:
if tvm.testing.device_enabled(dev_type):
binded_mod = tvm.tir.transform.Apply(
lambda f: f.with_attr("target", tvm.target.Target(dev_type))
)(mod)
tvm.tir.transform.VerifyMemory()(binded_mod)
if __name__ == "__main__":
test_verify_memory_all_bind()
test_verify_memory_not_bind()
test_verify_memory_partially_bind() |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
def test_verify_ssa():
x = te.var("x")
y = te.var()
z = tvm.tir.Evaluate(x + y)
assert tvm.tir.analysis.verify_ssa(tvm.tir.PrimFunc([x, y], z))
assert not tvm.tir.analysis.verify_ssa(tvm.tir.PrimFunc([x, y], tvm.tir.LetStmt(x, 1, z)))
def test_verify_weak_let_ssa():
x = te.var("x")
z1 = tvm.tir.Let(x, 1, x + 1)
z2 = tvm.tir.Let(x, 2, x + 2)
assert tvm.tir.analysis.verify_ssa(tvm.tir.PrimFunc([], tvm.tir.Evaluate(z1 + z1)))
assert not tvm.tir.analysis.verify_ssa(tvm.tir.PrimFunc([], tvm.tir.Evaluate(z1 * z2)))
if __name__ == "__main__":
test_verify_ssa()
test_verify_weak_let_ssa()
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import tvm.testing
from tvm.script import tir as T
def test_pass_simple():
@T.prim_func
def element_wise(
A: T.Buffer[(128, 128), "float32"],
C: T.Buffer[(128, 128), "float32"],
):
B = T.alloc_buffer((128, 128), "float32")
for i, j in T.grid(128, 128):
with T.block("B"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj] * 2.0
for i, j in T.grid(128, 128):
with T.block("C"):
# It's a opaque block , so it can use outside variables
C[i, j] = B[i, j] * 2.0
assert tvm.tir.analysis.verify_well_formed(element_wise)
def test_fail_use_out_loop_var():
@T.prim_func
def element_wise(
A: T.Buffer[(128, 128), "float32"],
B: T.Buffer[(128, 128), "float32"],
):
for i, j in T.grid(128, 128):
with T.block("B"):
vi, vj = T.axis.remap("SS", [i, j])
# we cannot use `i` since it's defined outside the block
B[vi, vj] = A[i, vj] * 2.0
assert not tvm.tir.analysis.verify_well_formed(element_wise, assert_mode=False)
if __name__ == "__main__":
tvm.testing.main()
|
import tvm |
import pytest
from tvm |
import tir
from tvm._ffi.base |
import TVMError
from tvm.ir.transform |
import PassContext |
import itertools |
import pytest
def build_tir_func(func):
func = func.with_attr("global_symbol", "main")
pass_ctx = PassContext.current()
if pass_ctx.config.get("tir.noalias", True):
func = func.with_attr("tir.noalias", True)
mod = tvm.IRModule({"main": func})
func = tvm.build(mod)
return func
def test_scalar_add():
lhs_types = ["float32", "float16", "int32", "int64"]
rhs_types = ["float32", "float16"]
for lhs_type, rhs_type in itertools.product(lhs_types, rhs_types):
lhs_input = tir.Var("lhs", "float32")
rhs_input = tir.Var("rhs", "float32")
lhs = tir.Cast(lhs_type, lhs_input)
rhs = tir.Cast(rhs_type, rhs_input)
output = lhs + rhs
output = tir.ret(output)
output = tir.Evaluate(output)
func = tir.PrimFunc([lhs_input, rhs_input], output)
func = build_tir_func(func)
out = func(1.0, 2.0)
assert out == 3.0
def assignment_helper(store_dtype, value_dtype):
store = tir.Var("store", dtype=store_dtype)
value = tir.Var("value", dtype=value_dtype)
tir.Let(store, value, body=store)
def test_fail_implicit_downcasts_same_type():
bits = [8, 16, 32, 64]
for type in ["float", "int", "uint"]:
for i in range(len(bits) - 1):
with pytest.raises(TVMError):
assignment_helper(
store_dtype=f"{type}{bits[i]}", value_dtype=f"{type}{bits[i + 1]}"
)
def test_cast_between_types():
bits = [16, 32]
types = ["float", "int", "uint"]
for store_type, store_bits, value_type, value_bits in itertools.product(
types, bits, types, bits
):
store_dtype = f"{store_type}{store_bits}"
value_dtype = f"{value_type}{value_bits}"
if store_dtype == value_dtype:
assignment_helper(store_dtype, value_dtype)
else:
with pytest.raises(TVMError):
assignment_helper(store_dtype, value_dtype)
def test_ret_const(): |
a = tir.const(0)
b = tir.ret(a)
b = tir.Evaluate(b)
func = tir.PrimFunc([], b)
func = build_tir_func(func)
out = func()
assert out == 0
def test_control_flow_jump():
ib = tvm.tir.ir_builder.create()
a = tir.Var("a", "float32")
b = tir.Var("b", "float32")
with ib.if_scope(True):
ib.emit(tir.Evaluate(tir.ret(a)))
ib.emit(tir.Evaluate(tir.ret(b)))
stmt = ib.get()
func = tir.PrimFunc([a, b], stmt)
func = build_tir_func(func)
out = func(1.0, 2.0)
assert out == 1.0
def test_exception():
with pytest.raises(tvm.TVMError):
x = tir.Var(name=1, dtype="int")
def test_eq_ops():
a = tir.IntImm("int8", 1)
with pytest.raises(ValueError):
assert a != None
with pytest.raises(ValueError):
assert not a == None
b = tir.StringImm("abc")
assert b != None
assert not b == None
if __name__ == "__main__":
test_scalar_add()
test_ret_const()
test_control_flow_jump()
test_exception()
test_eq_ops() |
import pytest |
import tvm |
import tvm.testing
from tvm |
import te
from tvm.tir |
import Buffer |
import numpy as np
def test_buffer():
m = te.size_var("m")
n = te.size_var("n")
l = te.size_var("l")
Ab = tvm.tir.decl_buffer((m, n), "float32")
Bb = tvm.tir.decl_buffer((n, l), "float32")
assert isinstance(Ab, tvm.tir.Buffer)
assert Ab.dtype == "float32"
assert tuple(Ab.shape) == (m, n)
def test_buffer_access_ptr():
m = te.size_var("m")
n = te.size_var("n")
Ab = tvm.tir.decl_buffer((m, n), "float32", strides=[n + 1, 1])
aptr = Ab.access_ptr("rw")
assert tvm.ir.structural_equal(aptr.args[3], Ab.strides[0] * m)
assert aptr.args[0].dtype == Ab.dtype
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
aptr = Ab.access_ptr("w")
assert aptr.args[4].value == Buffer.WRITE
def test_buffer_access_ptr_offset():
m = te.size_var("m")
n = te.size_var("n")
Ab = tvm.tir.decl_buffer((m, n), "float32")
aptr = Ab.access_ptr("rw", offset=100)
tvm.testing.assert_prim_expr_equal(aptr.args[2], 100)
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
v = te.size_var("int32")
aptr = Ab.access_ptr("rw", offset=100 + 100 + v)
tvm.testing.assert_prim_expr_equal(aptr.args[2], 200 + v)
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
aptr = Ab.access_ptr("rw", offset=tvm.tir.call_extern("int32", "test_call", 100 + 100 + v))
tvm.testing.assert_prim_expr_equal(
aptr.args[2], tvm.tir.call_extern("int32", "test_call", 200 + v)
)
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
def test_buffer_access_ptr_extent():
m = te.size_var("m")
n = te.size_var("n")
Ab = tvm.tir.decl_buffer((m, n), "float32")
aptr = Ab.access_ptr("rw")
assert tvm.ir.structural_equal(aptr.args[3], m * n)
aptr = Ab.access_ptr("rw", offset=100)
assert tvm.ir.structural_equal(aptr.args[3], m * n - 100)
Ab = tvm.tir.decl_buffer((m, n), "float32", strides=[n + 1, 1])
aptr = Ab.access_ptr("rw", offset=100)
assert tvm.ir.structural_equal(aptr.args[3], Ab.strides[0] * m - 100) |
aptr = Ab.access_ptr("rw", extent=200)
assert tvm.ir.structural_equal(aptr.args[3], 200)
aptr = Ab.access_ptr("rw", offset=100, extent=100)
assert tvm.ir.structural_equal(aptr.args[3], 100)
def test_buffer_vload():
m = te.size_var("m")
n = te.size_var("n")
Ab = tvm.tir.decl_buffer((m, n), "float32", elem_offset=100)
load = Ab.vload([2, 3])
tvm.ir.assert_structural_equal(load.indices, [2, 3])
def test_buffer_offset_of():
m = te.size_var("m")
n = te.size_var("n")
Ab = tvm.tir.decl_buffer((m, n), "float32", elem_offset=100)
offset = Ab.offset_of([2, 3])
tvm.ir.assert_structural_equal(offset, [n * 2 + 103])
def test_buffer_vload_nullptr():
var = tvm.tir.Var("v", dtype="int32")
buf = tvm.tir.decl_buffer((1,), name="buf")
buf_load = tvm.tir.expr.BufferLoad(buffer=buf, indices=tvm.runtime.convert([0]))
buf_load_stmt = tvm.tir.stmt.Evaluate(buf_load)
for_loop = tvm.tir.stmt.For(
loop_var=var, kind=0, min_val=0, extent=tvm.tir.Cast("int32", buf_load), body=buf_load_stmt
)
buf_func = tvm.tir.PrimFunc(params={}, body=for_loop)
mod = tvm.IRModule({"main": buf_func})
with pytest.raises(tvm.error.TVMError) as cm:
mod = tvm.transform.Sequential(
[
tvm.tir.transform.PlanAndUpdateBufferAllocationLocation(),
tvm.tir.transform.CompactBufferAllocation(),
tvm.tir.transform.LowerOpaqueBlock(),
tvm.tir.transform.FlattenBuffer(),
]
)(mod)
assert "(n != nullptr) is false" in str(cm.execption)
def test_buffer_index_merge_mult_mod():
m = te.size_var("m")
n = te.size_var("n")
s = te.size_var("s")
k0 = te.size_var("k0")
k1 = te.size_var("k1")
A = tvm.tir.decl_buffer((m, n), "float32")
A_stride = tvm.tir.decl_buffer((m, n), "float32", strides=(s, 1))
def assert_simplified_equal(index_simplified, index_direct):
assert tvm.ir.structural_equal(
index_simplified, index_dire |
ct
), "index_simplified=%s, index_direct=%s" % (index_simplified, index_direct)
idxd = tvm.tir.indexdiv
idxm = tvm.tir.indexmod
index_simplified = A_stride.offset_of(
(idxd(idxm(k0, k1), s), idxm(idxm(k0, k1), s) + idxd(k0, k1) * k1)
)
index_direct = A_stride.offset_of((0, k0))
assert_simplified_equal(index_simplified, index_direct)
index_simplified = A.offset_of(
(idxd(idxm(k0, idxd(k1, s)), n), idxm(idxm(k0, idxd(k1, s)), n) + idxm(k0, k1))
)
index_direct = A.offset_of((0, idxm(k0, k1) + idxm(k0, idxd(k1, s))))
assert_simplified_equal(index_simplified, index_direct)
index_simplified = A.offset_of(
(
idxd((idxd(k0, idxd(k1, s)) * idxd(k1, s)), n) + idxd(idxm(k0, idxd(k1, s)), n),
idxm((idxd(k0, idxd(k1, s)) * idxd(k1, s)), n) + idxm(idxm(k0, idxd(k1, s)), n),
)
)
index_direct = A.offset_of((0, k0))
assert_simplified_equal(index_simplified, index_direct)
index_simplified = A.offset_of(
(idxd(idxm(k0, idxd(k1, s)), n), idxm(idxm(k0, idxd(k1, n)), n) + idxm(k0, k1))
)
index_direct = A.offset_of(
(0, idxd(idxm(k0, idxd(k1, s)), n) * n + (idxm(idxm(k0, idxd(k1, n)), n) + idxm(k0, k1)))
)
assert_simplified_equal(index_simplified, index_direct)
B = tvm.tir.decl_buffer((1, 14, 14, 1024))
i = te.size_var("i")
j = te.size_var("j")
k = te.size_var("k")
index_simplified1 = B.offset_of(
(
idxd(idxd(idxd((i * 50176 + j * 28672 + k), 1024), 14), 14),
idxm(idxd(idxd((i * 50176 + j * 28672 + k), 1024), 14), 14),
idxm(idxd((i * 50176 + j * 28672 + k), 1024), 14),
idxm((i * 50176 + j * 28672 + k), 1024),
)
)
index_simplified2 = B.offset_of(
(
idxd(idxd(i * 49 + j * 28 + idxd(k, 1024), 14), 14),
idxm(idxd(i * 49 + j * 28 + idxd(k, 1024), 14), 14),
idxm(i * 7 + idxd(k, 1024), 14),
idxm(k, 1024),
) |
)
index_direct = B.offset_of((0, 0, 0, (i * 50176 + j * 28672 + k)))
assert_simplified_equal(index_simplified1, index_direct)
assert_simplified_equal(index_simplified2, index_direct)
@tvm.testing.requires_llvm
def test_buffer_broadcast():
m0, m1, m2 = te.size_var("m0"), te.size_var("m1"), te.size_var("m2")
n0, n1, n2 = te.size_var("n0"), te.size_var("n1"), te.size_var("n2")
o0, o1, o2 = te.size_var("o0"), te.size_var("o1"), te.size_var("o2")
A = te.placeholder((m0, m1, m2), name="A")
B = te.placeholder((n0, n1, n2), name="B")
C = te.compute((o0, o1, o2), lambda i, j, k: A[i, j, k] + B[i, j, k], name="C")
Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name="Ab", buffer_type="auto_broadcast")
Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name="Bb", buffer_type="auto_broadcast")
s = te.create_schedule(C.op)
def check():
fadd = tvm.build(s, [A, B, C], target="llvm", name="bcast_add", binds={A: Ab, B: Bb})
dev = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=(2, 4, 3)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(2, 1, 1)).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros((2, 4, 3), dtype=C.dtype), dev)
fadd(a, b, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
check()
@tvm.testing.requires_llvm
def test_buffer_broadcast_expr():
n0, m0, x = te.size_var("n0"), te.size_var("m0"), te.size_var("x")
n1, m1 = te.size_var("n1"), te.size_var("m1")
o0, o1 = te.size_var("o0"), te.size_var("o1")
A = te.placeholder((m0, n0), name="A")
B = te.placeholder((m1, n1), name="B")
C = te.compute((o0, o1
Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name="Ab", buffer_type="auto_broadcast")
Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name="Bb", buffer_type="auto_broadcast")
Cc = tvm.tir.decl_buffer(C.shape, C.dtype, name="Cc", buffer_type="auto_broadcast")
s = te.create_schedule(C.op)
def check_stride():
fadd = tvm.build(
s |
, [A, B, C, o1, x], target="llvm", name="bcast_add", binds={A: Ab, B: Bb, C: Cc}
)
dev = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=(2, 4)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(2, 4)).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros((2, 4), dtype=C.dtype), dev)
fadd(a, b, c, 4, 1)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
def check_no_stride():
fadd = tvm.build(
s, [A, B, C, o1, x], target="llvm", name="bcast_add", binds={A: Ab, B: Bb, C: Cc}
)
dev = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=(1, 4)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(2, 4)).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros((2, 4), dtype=C.dtype), dev)
fadd(a, b, c, 4, 1)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
def check_auto_bind():
fadd = tvm.build(s, [A, B, C, o1, x], target="llvm", name="bcast_add")
dev = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=(1, 4)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(2, 4)).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros((2, 4), dtype=C.dtype), dev)
fadd(a, b, c, 4, 1)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
check_stride()
check_no_stride()
check_auto_bind()
if __name__ == "__main__":
pytest.main([__file__]) |
import pytest |
import tvm
from tvm |
import te
def test_expr_constructor():
x = tvm.tir.Var("xx", "float32")
assert isinstance(x, tvm.tir.Var)
assert x.name == "xx"
x = tvm.tir.Reduce(None, [1], [tvm.tir.IterVar((0, 1), "x", 2)], None, 0)
assert isinstance(x, tvm.tir.Reduce)
assert x.combiner == None
assert x.value_index == 0
x = tvm.tir.FloatImm("float32", 1.0)
assert isinstance(x, tvm.tir.FloatImm)
assert x.value == 1.0
assert x.dtype == "float32"
x = tvm.tir.IntImm("int64", 2)
assert isinstance(x, tvm.tir.IntImm)
assert x.value == 2
assert x.dtype == "int64"
x = tvm.tir.StringImm("xyza")
assert isinstance(x, tvm.tir.StringImm)
assert x.value == "xyza"
x = tvm.tir.Cast("float32", tvm.tir.IntImm("uint32", 1))
assert isinstance(x, tvm.tir.Cast)
assert x.dtype == "float32"
assert x.value.value == 1
a = tvm.tir.const(1.0, dtype="float32")
b = te.var("x", dtype="float32")
for cls in [
tvm.tir.Add,
tvm.tir.Sub,
tvm.tir.Mul,
tvm.tir.Div,
tvm.tir.Mod,
tvm.tir.Min,
tvm.tir.Max,
tvm.tir.LT,
tvm.tir.LE,
tvm.tir.GT,
tvm.tir.GE,
]:
x = cls(a, b)
assert isinstance(x, cls)
assert x.a == a
assert x.b.same_as(b)
a = tvm.runtime.convert(te.var("x") > 1)
b = tvm.runtime.convert(te.var("x") == 1)
for cls in [tvm.tir.And, tvm.tir.Or]:
x = cls(a, b)
assert isinstance(x, cls)
assert x.a == a
assert x.b.same_as(b)
x = tvm.tir.Not(a)
assert isinstance(x, tvm.tir.Not)
assert x.a == a
x = tvm.tir.Select(a, a, b)
assert isinstance(x, tvm.tir.Select)
assert x.true_value == a
assert x.false_value == b
assert x.condition == a
buffer_var = tvm.tir.Var("buf", tvm.ir.PointerType(tvm.ir.PrimType("float32")))
buffer = tvm.tir.decl_buffer([16], "float32", data=buffer_var)
x = tvm.tir.BufferLoad(buffer, [1])
assert isinstance(x, tvm.tir.BufferLoad)
assert x |
.dtype == "float32"
assert x.buffer == buffer
assert x.buffer.data == buffer_var
assert list(x.indices) == [1]
x = tvm.tir.Ramp(1, 2, 10)
assert isinstance(x, tvm.tir.Ramp)
assert x.base.value == 1
assert x.stride.value == 2
assert x.lanes == 10
x = tvm.tir.Broadcast(a, 10)
assert isinstance(x, tvm.tir.Broadcast)
assert x.value == a
assert x.lanes == 10
x = tvm.tir.Shuffle([a], [0])
assert isinstance(x, tvm.tir.Shuffle)
assert x.vectors[0] == a
assert x.indices[0].value == 0
x = tvm.tir.Call("float32", "tir.call_extern", [tvm.tir.StringImm("xyz"), a])
assert isinstance(x, tvm.tir.Call)
assert x.dtype == "float32"
assert x.op.name == "tir.call_extern"
assert x.args[1] == a
v = te.var("aa")
x = tvm.tir.Let(v, 1, v)
assert x.var == v
assert x.value.value == 1
assert x.body == v
def test_stmt_constructor():
v = te.var("aa")
nop = tvm.tir.Evaluate(1)
x = tvm.tir.LetStmt(v, 1, tvm.tir.Evaluate(1))
assert isinstance(x, tvm.tir.LetStmt)
assert x.var == v
assert x.value.value == 1
assert isinstance(x.body, tvm.tir.Evaluate)
x = tvm.tir.AttrStmt(v == 1, "xx", 1, tvm.tir.Evaluate(1))
assert isinstance(x, tvm.tir.AttrStmt)
assert x.value.value == 1
x = tvm.tir.AssertStmt(tvm.tir.const(1, "uint1"), tvm.runtime.convert("hellow"), nop)
assert isinstance(x, tvm.tir.AssertStmt)
assert x.body == nop
x = tvm.tir.For(te.var("x"), 0, 10, tvm.tir.ForKind.SERIAL, nop)
assert isinstance(x, tvm.tir.For)
assert x.min.value == 0
assert x.extent.value == 10
assert x.body == nop
buffer_var = tvm.tir.Var("buf", tvm.ir.PointerType(tvm.ir.PrimType("uint1")))
buffer = tvm.tir.decl_buffer([16], "uint1", data=buffer_var)
x = tvm.tir.BufferStore(buffer, 1, [10])
assert isinstance(x, tvm.tir.BufferStore)
assert x.buffer == buffer
assert x.buffer.data == buffer_var
assert list(x.indices) == [10]
assert x.value.value == 1
buffer_va |
r = tvm.tir.Var("buf", tvm.ir.PointerType(tvm.ir.PrimType("float32")))
x = tvm.tir.Allocate(buffer_var, "float32", [10], tvm.tir.const(1, "uint1"), nop)
assert isinstance(x, tvm.tir.Allocate)
assert x.dtype == "float32"
assert x.buffer_var == buffer_var
assert x.body == nop
storage_scope = "global.texture"
buffer_var = tvm.tir.Var("buf", tvm.ir.PointerType(tvm.ir.PrimType("float32"), storage_scope))
x = tvm.tir.Allocate(buffer_var, "float32", [10], tvm.tir.const(1, "uint1"), nop)
assert isinstance(x, tvm.tir.Allocate)
assert x.dtype == "float32"
assert x.buffer_var == buffer_var
assert x.buffer_var.type_annotation.storage_scope == storage_scope
assert x.body == nop
x = tvm.tir.AttrStmt(buffer_var, "xyz", 1, nop)
assert isinstance(x, tvm.tir.AttrStmt)
assert x.node == buffer_var
assert x.attr_key == "xyz"
assert x.body == nop
x = tvm.tir.IfThenElse(tvm.tir.const(1, "uint1"), tvm.tir.Evaluate(11), nop)
assert isinstance(x, tvm.tir.IfThenElse)
assert x.then_case.value.value == 11
assert x.else_case == nop
b = tvm.tir.decl_buffer((1, 2))
x = tvm.tir.Prefetch(b, [])
assert isinstance(x, tvm.tir.Prefetch)
def test_float_constructor_requires_float_dtype():
with pytest.raises(tvm.TVMError):
tvm.tir.FloatImm("int32", 1.0)
if __name__ == "__main__":
tvm.testing.main() |
"""Test layout and bijective-layout node""" |
import tvm
from tvm |
import te
from tvm.topi.utils |
import get_const_tuple
def test_layout():
layout = tvm.tir.layout("NCHW16c")
assert layout is not None
assert isinstance(layout, tvm.tir.Layout)
assert layout.factor_of("c") == 16
assert layout.factor_of("C") == 16
assert layout.factor_of("N") == -1
assert layout.index_of("N") == 0
assert layout.index_of("C") == 1
assert layout.index_of("H") == 2
assert layout.index_of("W") == 3
assert layout.index_of("c") == 4
assert layout.index_of("O") == -1
assert "N" in layout
assert "C" in layout
assert "H" in layout
assert "W" in layout
assert "c" in layout
assert "O" not in layout
assert layout[0] == "N"
assert layout[1] == "C"
assert layout[2] == "H"
assert layout[3] == "W"
assert layout[4] == "c"
assert layout[-1] == "c"
def test_bilayout_convertible():
assert tvm.tir.bijective_layout("NCHW", "ABCD") is None
assert tvm.tir.bijective_layout("__undef__", "NCHW") is None
assert tvm.tir.bijective_layout("NCHW", "__undef__") is None
assert tvm.tir.bijective_layout("__undef__", "__undef__") is None
assert tvm.tir.bijective_layout("", "NCHW") is None
assert tvm.tir.bijective_layout("NCHW", "") is None
assert tvm.tir.bijective_layout("", "") is None
assert tvm.tir.bijective_layout("NCHW", "NCHW16c") is not None
def test_bilayout_shape():
bilayout = tvm.tir.bijective_layout("NCHW", "NCHW16c")
assert isinstance(bilayout, tvm.tir.BijectiveLayout)
dst_shape = bilayout.forward_shape((1, 32, 7, 7))
assert get_const_tuple(dst_shape) == (1, 2, 7, 7, 16)
src_shape = bilayout.backward_shape(dst_shape)
assert get_const_tuple(src_shape) == (1, 32, 7, 7)
def test_bilayout_index():
bilayout = tvm.tir.bijective_layout("NCHW", "NCHW16c")
dst_index = bilayout.forward_index([0, 18, 6, 6])
assert get_const_tuple(dst_index) == (0, 1, 6, 6, 2)
src_index = bilayout.backward_index([0, 1, 6, 6, 2])
assert get_const_tuple(src_index) == (0, 18, 6, 6)
if __n |
ame__ == "__main__":
test_layout()
test_bilayout_convertible()
test_bilayout_shape()
test_bilayout_index() |
import math |
import random |
import numpy as np |
import tvm |
import tvm.testing |
import pytest
from tvm |
import tir
from tvm.script |
import tir as T |
import pytest
@pytest.mark.parametrize(
"dtype, literals",
[
["int8", [-128, 0, 127]],
["uint8", [0, 255]],
["int32", [-2147483648, 2147483647]],
["uint32", [0, 4294967295]],
["int64", [-9223372036854775808, 9223372036854775807]],
["uint64", [0, 9223372036854775807]],
],
)
def test_tir_make_intimm(dtype, literals):
for l in literals:
imm = tir.const(l, dtype)
assert imm.value == l, imm
@pytest.mark.parametrize(
"dtype, literals",
[
["int8", [-129, 128]],
["uint8", [-1, 256]],
["int32", [-2147483650, 2147483648]],
["uint32", [-1, 4294967296]],
["uint64", [-1, 18446744073709551616]],
],
)
def test_tir_invalid_intimm(dtype, literals):
for l in literals:
with pytest.raises(tvm.TVMError):
tir.const(l, dtype)
@pytest.mark.parametrize(
"dtype, literals",
[
[
"uint64",
{
9223372036854775807: 9223372036854775807,
18446744073709551615: 18446744073709551615,
},
],
],
)
def test_tir_large_py_int_literals(dtype, literals):
"""
For large uint value, use LargeUIntImm intrin,
"""
for l in literals:
x = tir.const(l, dtype)
if isinstance(x, (tir.IntImm, tir.FloatImm)):
assert x.value == literals[l]
else:
assert (int(x.args[1]) << 32) + int(x.args[0]) == literals[l]
def test_tir_intimm_overflow():
assert int(tir.const(255, "uint8") + tir.const(1, "uint8")) == 0
assert int(tir.const(2**31 - 1, "int32") + tir.const(1, "int32")) == -(2**31)
assert int(tir.const(2**32 - 1, "uint32") + tir.const(1, "uint32")) == 0
assert int(tir.const(2**63 - 1, "int64") + tir.const(1, "int64")) == -(2**63)
assert int(tir.const(2**32, "uint64") * tir.const(2**32, "uint64")) == 0
assert int(tir.const(7, "int4") + tir.const(1, "int4")) == -8
assert int(tir.const(2**39 - 1, "int40") + tir.cons |
t(1, "int40")) == -(2**39)
def compare_float_value(value, expect, msg):
if math.isfinite(value):
assert np.abs(value - expect) < 1e-5, f"{value} vs {expect}, {msg}"
elif math.isnan(value):
assert math.isnan(expect), f"{value} vs {expect}, {msg}"
elif math.isinf(value):
assert math.isinf(expect), f"{value} vs {expect}, {msg}"
@pytest.mark.parametrize(
"dtype, literals",
[
["float16", [-65504.0, 3.14, 65504.0, np.inf, np.nan]],
["bfloat16", [-3.38953139e38, 3.38953139e38, 3.14]],
["float32", [np.finfo("float32").min, 3.14, np.finfo("float32").max, np.inf, np.nan]],
["float64", [np.finfo("float64").min, 3.14, np.finfo("float64").max, np.inf, np.nan]],
],
)
def test_tir_make_floatimm(dtype, literals):
for l in literals:
imm = tir.const(l, dtype)
compare_float_value(imm.value, l, "imm value should match feed value")
@pytest.mark.parametrize(
"dtype, literals",
[
["float16", [-65505.0, 65505.0]],
["float32", [-3.402e39, 3.402e39]],
],
)
def test_tir_invalid_floatimm(dtype, literals):
"""Currently only fp16 and fp32 have range check."""
for l in literals:
with pytest.raises(tvm.TVMError):
tir.const(l, dtype)
@pytest.mark.parametrize("dtype", ["float16", "float32", "float64"])
@pytest.mark.parametrize("literal", [3.14, np.nan, np.inf])
def test_tir_special_floatimms(dtype, literal):
x = tir.const(literal, dtype)
compare_float_value(x.value, literal, "imm value should match feed value")
@tvm.testing.requires_llvm()
def test_tir_too_large_literal_f64():
@T.prim_func
def imm_overflow_fp64() -> T.float64:
T.evaluate(T.ret(T.float64(1.7976e309), dtype="float64"))
f = tvm.build(imm_overflow_fp64, target="llvm")
assert math.isinf(f())
@pytest.mark.parametrize(
"literal, expect_dtype",
[
(256, "int32"),
(2147483647, "int32"),
(-2147483648, "int32"),
(2147483648, "int64"),
(- |
2147483649, "int64"),
(3.14159, "float32"),
(np.finfo("float32").min, "float32"),
(np.finfo("float32").max, "float32"),
(-3.402e39, "float64"),
(3.402e39, "float64"),
],
)
def test_tir_const_auto_dtype(literal, expect_dtype):
x = tir.const(literal, dtype=None)
assert x.dtype == expect_dtype
assert x.value == literal
def check_tir_const_fold(
dtype, foldf, calcf, x_range=None, y_range=None, expect=None, skip_overflow=False
):
"""Helper to check constant folding behavior
Parameters
----------
dtype: str
Datatype of constants
foldf: (x, y) -> z
Folding function to call
calcf: (x, y) -> z
Compiled calculation function to call
x_range: Union[int, float, tuple]
Single value or value range [min, max]
y_range: Union[int, float, tuple]
Single value or value range [min, max]
expect: Union[int, float]
Expected calculation result
skip_overflow: bool
Skip assertion if the overflow happens
"""
seed = random.randint(0, 2147483648)
np.random.seed(seed)
ninfo = np.finfo(dtype) if dtype.startswith("float") else np.iinfo(dtype)
if x_range is None:
x_range = (ninfo.min, ninfo.max)
if isinstance(x_range, (int, float)):
x = x_range
elif dtype.startswith("int") or dtype.startswith("uint"):
x = np.random.randint(x_range[0], x_range[1] + 1, dtype=dtype)
else:
x = np.random.uniform(x_range[0], x_range[1])
if y_range is None:
y_range = (ninfo.min, ninfo.max)
if isinstance(y_range, (int, float)):
y = y_range
elif dtype.startswith("int") or dtype.startswith("uint"):
y = np.random.randint(y_range[0], y_range[1] + 1, dtype=dtype)
else:
y = np.random.uniform(y_range[0], y_range[1])
if skip_overflow:
py_res = foldf(x, y)
if isinstance(py_res, (tir.IntImm, tir.FloatImm)):
py_res = py_res.value
if not (ninfo.min <= py_res <= ninfo.ma |
x):
return
fold_res = foldf(tir.const(x, dtype), tir.const(y, dtype))
calc_res = calcf(x, y)
flaky_msg = (
f"{dtype} ({x}, {y}, {expect}) const folding check failed.\n"
+ "This test is intentionally non-deterministic, "
+ f"if it fails please report it in github issue together with this seed {seed}\n"
)
if dtype.startswith("float"):
compare_float_value(calc_res, fold_res.value, flaky_msg)
if expect:
compare_float_value(expect, calc_res, flaky_msg)
else:
assert calc_res == fold_res.value, flaky_msg
if expect:
assert expect == calc_res, flaky_msg
@tvm.testing.requires_llvm()
def test_tir_floatimm_const_fold():
"""Behavior check: folding fp32 match platform f32 arithmetic"""
@T.prim_func
def float_imm_multiply(x: T.float32, y: T.float32, z: T.Buffer[(), "float32"]):
z[()] = x * y
@T.prim_func
def float_imm_add(x: T.float32, y: T.float32, z: T.Buffer[(), "float32"]):
z[()] = x + y
@T.prim_func
def float_imm_sub(x: T.float32, y: T.float32, z: T.Buffer[(), "float32"]):
z[()] = x - y
@T.prim_func
def float_imm_div(x: T.float32, y: T.float32, z: T.Buffer[(), "float32"]):
z[()] = x / y
def __wrap_build(f):
lib = tvm.build(f, target="llvm")
z = tvm.nd.array(np.zeros([]).astype("float32"))
def _func(x, y):
lib(x, y, z)
return z.numpy()
return _func
fmul = __wrap_build(float_imm_multiply)
fadd = __wrap_build(float_imm_add)
fsub = __wrap_build(float_imm_sub)
fdiv = __wrap_build(float_imm_div)
check_tir_const_fold("float32", lambda x, y: x * y, fmul, 3.0e30, 3.0e30, np.inf)
check_tir_const_fold("float32", lambda x, y: x * y, fmul, 3.0e30, -3.0e30, -np.inf)
check_tir_const_fold("float32", lambda x, y: x / y, fdiv, 3.0e30, 3.0e-30, np.inf)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("float3 |
2", lambda x, y: x / y, fdiv, 1.0, 0.0)
check_tir_const_fold("float32", lambda x, y: x + y, fadd, 1.0, np.nan, np.nan)
check_tir_const_fold("float32", lambda x, y: x + y, fadd, 1.0, np.inf, np.inf)
check_tir_const_fold("float32", lambda x, y: x + y, fadd, 1.0, -np.inf, -np.inf)
check_tir_const_fold("float32", lambda x, y: x * y, fmul)
check_tir_const_fold("float32", lambda x, y: x + y, fadd)
check_tir_const_fold("float32", lambda x, y: x - y, fsub)
check_tir_const_fold(
"float32", lambda x, y: x / y, fdiv, y_range=(0.01, np.finfo("float32").max)
)
@tvm.testing.requires_llvm()
def test_tir_int8_const_fold():
"""Behavior check: folding i8 operation match platform i8 arithmetic"""
@T.prim_func
def imm_multiply(x: T.int8, y: T.int8) -> T.int8:
T.evaluate(T.ret(x * y, dtype="int8"))
@T.prim_func
def imm_add(x: T.int8, y: T.int8) -> T.int8:
T.evaluate(T.ret(x + y, dtype="int8"))
@T.prim_func
def imm_sub(x: T.int8, y: T.int8) -> T.int8:
T.evaluate(T.ret(x - y, dtype="int8"))
@T.prim_func
def imm_truncdiv(x: T.int8, y: T.int8) -> T.int8:
T.evaluate(T.ret(T.truncdiv(x, y), dtype="int8"))
@T.prim_func
def imm_floordiv(x: T.int8, y: T.int8) -> T.int8:
T.evaluate(T.ret(T.floordiv(x, y), dtype="int8"))
fmul = tvm.build(imm_multiply, target="llvm")
fadd = tvm.build(imm_add, target="llvm")
fsub = tvm.build(imm_sub, target="llvm")
ffloordiv = tvm.build(imm_floordiv, target="llvm")
ftruncdiv = tvm.build(imm_truncdiv, target="llvm")
check_tir_const_fold("int8", lambda x, y: x + y, fadd, 127, 1, -128)
check_tir_const_fold("int8", lambda x, y: x * y, fmul, 127, 127, 1)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("int8", lambda x, y: tir.floordiv(x, y), ffloordiv, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("int8", lambda x, y: tir.truncdiv(x, y), ftruncdiv, 1, 0)
assert not isinstance(tir.fl |
oormod(tir.const(7, "int8"), tir.const(3, "int8")), tir.IntImm)
assert not isinstance(tir.truncmod(tir.const(7, "int8"), tir.const(3, "int8")), tir.IntImm)
check_tir_const_fold("int8", lambda x, y: x * y, fmul)
check_tir_const_fold("int8", lambda x, y: x + y, fadd)
check_tir_const_fold("int8", lambda x, y: x - y, fsub)
check_tir_const_fold(
"int8", lambda x, y: tir.floordiv(x, y), ffloordiv, y_range=(1, np.iinfo("int8").max)
)
check_tir_const_fold(
"int8", lambda x, y: tir.truncdiv(x, y), ftruncdiv, y_range=(1, np.iinfo("int8").max)
)
@tvm.testing.requires_llvm()
def test_tir_uint8_const_fold():
"""Behavior check: folding u8 operation match platform u8 arithmetic"""
@T.prim_func
def imm_multiply(x: T.uint8, y: T.uint8) -> T.uint8:
T.evaluate(T.ret(x * y, dtype="uint8"))
@T.prim_func
def imm_add(x: T.uint8, y: T.uint8) -> T.uint8:
T.evaluate(T.ret(x + y, dtype="uint8"))
@T.prim_func
def imm_sub(x: T.uint8, y: T.uint8) -> T.uint8:
T.evaluate(T.ret(x - y, dtype="uint8"))
@T.prim_func
def imm_truncdiv(x: T.uint8, y: T.uint8) -> T.uint8:
T.evaluate(T.ret(T.truncdiv(x, y), dtype="uint8"))
@T.prim_func
def imm_floordiv(x: T.uint8, y: T.uint8) -> T.uint8:
T.evaluate(T.ret(T.floordiv(x, y), dtype="uint8"))
fmul = tvm.build(imm_multiply, target="llvm")
fadd = tvm.build(imm_add, target="llvm")
fsub = tvm.build(imm_sub, target="llvm")
ffloordiv = tvm.build(imm_floordiv, target="llvm")
ftruncdiv = tvm.build(imm_truncdiv, target="llvm")
check_tir_const_fold("uint8", lambda x, y: x + y, fadd, 255, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("uint8", lambda x, y: x - y, fsub, 0, 10)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("uint8", lambda x, y: tir.floordiv(x, y), ffloordiv, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("uint8", lambda x, y: tir.truncdiv(x, y), ft |
runcdiv, 1, 0)
assert not isinstance(tir.floormod(tir.const(7, "uint8"), tir.const(3, "uint8")), tir.IntImm)
assert not isinstance(tir.truncmod(tir.const(7, "uint8"), tir.const(3, "uint8")), tir.IntImm)
check_tir_const_fold("uint8", lambda x, y: x * y, fmul)
check_tir_const_fold("uint8", lambda x, y: x + y, fadd)
check_tir_const_fold("uint8", lambda x, y: x - y, fsub)
check_tir_const_fold(
"uint8", lambda x, y: tir.floordiv(x, y), ffloordiv, y_range=(1, np.iinfo("uint8").max)
)
check_tir_const_fold(
"uint8", lambda x, y: tir.truncdiv(x, y), ftruncdiv, y_range=(1, np.iinfo("uint8").max)
)
@tvm.testing.requires_llvm()
def test_tir_int32_const_fold():
"""Behavior check: folding i32 operation match platform i32 arithmetic"""
@T.prim_func
def imm_multiply(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(x * y, dtype="int32"))
@T.prim_func
def imm_add(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(x + y, dtype="int32"))
@T.prim_func
def imm_sub(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(x - y, dtype="int32"))
@T.prim_func
def imm_truncdiv(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(T.truncdiv(x, y), dtype="int32"))
@T.prim_func
def imm_truncmod(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(T.truncmod(x, y), dtype="int32"))
@T.prim_func
def imm_floordiv(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(T.floordiv(x, y), dtype="int32"))
@T.prim_func
def imm_floormod(x: T.int32, y: T.int32) -> T.int32:
T.evaluate(T.ret(T.floormod(x, y), dtype="int32"))
fmul = tvm.build(imm_multiply, target="llvm")
fadd = tvm.build(imm_add, target="llvm")
fsub = tvm.build(imm_sub, target="llvm")
ffloordiv = tvm.build(imm_floordiv, target="llvm")
ffloormod = tvm.build(imm_floormod, target="llvm")
ftruncdiv = tvm.build(imm_truncdiv, target="llvm")
ftruncmod = tvm.build(imm_truncmod, target |
="llvm")
assert -(2**31) <= int(tir.const(2**31 - 1, "int32") + tir.const(1, "int32")) < 2**31
assert -(2**31) <= int(tir.const(-(2**31), "int32") - tir.const(1, "int32")) < 2**31
with pytest.raises(tvm.TVMError):
check_tir_const_fold("int32", lambda x, y: tir.floordiv(x, y), ffloordiv, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("int32", lambda x, y: tir.floormod(x, y), ffloormod, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("int32", lambda x, y: tir.truncdiv(x, y), ftruncdiv, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("int32", lambda x, y: tir.truncmod(x, y), ftruncmod, 1, 0)
check_tir_const_fold("int32", lambda x, y: x * y, fmul, skip_overflow=True)
check_tir_const_fold("int32", lambda x, y: x + y, fadd, skip_overflow=True)
check_tir_const_fold("int32", lambda x, y: x - y, fsub, skip_overflow=True)
check_tir_const_fold(
"int32",
lambda x, y: tir.floordiv(x, y),
ffloordiv,
y_range=(1, np.iinfo("int32").max),
skip_overflow=True,
)
check_tir_const_fold(
"int32",
lambda x, y: tir.truncdiv(x, y),
ftruncdiv,
y_range=(1, np.iinfo("int32").max),
skip_overflow=True,
)
check_tir_const_fold(
"int32",
lambda x, y: tir.floormod(x, y),
ffloormod,
y_range=(1, np.iinfo("int32").max),
skip_overflow=False,
)
check_tir_const_fold(
"int32",
lambda x, y: tir.truncmod(x, y),
ftruncmod,
y_range=(1, np.iinfo("int32").max),
skip_overflow=False,
)
@tvm.testing.requires_llvm()
def test_tir_uint32_const_fold():
"""Behavior check: folding u32 operation match platform u32 arithmetic"""
@T.prim_func
def imm_multiply(x: T.uint32, y: T.uint32) -> T.uint32:
T.evaluate(T.ret(x * y, dtype="uint32"))
@T.prim_func
def imm_add(x: T.uint32, y: T.uint32) -> T.uint32:
T.evaluate(T.ret(x + |
y, dtype="uint32"))
@T.prim_func
def imm_sub(x: T.uint32, y: T.uint32) -> T.uint32:
T.evaluate(T.ret(x - y, dtype="uint32"))
@T.prim_func
def imm_truncdiv(x: T.uint32, y: T.uint32) -> T.uint32:
T.evaluate(T.ret(T.truncdiv(x, y), dtype="uint32"))
@T.prim_func
def imm_floordiv(x: T.uint32, y: T.uint32) -> T.uint32:
T.evaluate(T.ret(T.floordiv(x, y), dtype="uint32"))
fmul = tvm.build(imm_multiply, target="llvm")
fadd = tvm.build(imm_add, target="llvm")
fsub = tvm.build(imm_sub, target="llvm")
ffloordiv = tvm.build(imm_floordiv, target="llvm")
ftruncdiv = tvm.build(imm_truncdiv, target="llvm")
assert 0 <= int(tir.const(2**32 - 1, "uint32") + tir.const(1, "uint32")) < 2**32
with pytest.raises(tvm.TVMError):
check_tir_const_fold("uint32", lambda x, y: tir.floordiv(x, y), ffloordiv, 1, 0)
with pytest.raises(tvm.TVMError):
check_tir_const_fold("uint32", lambda x, y: tir.truncdiv(x, y), ftruncdiv, 1, 0)
assert not isinstance(tir.floormod(tir.const(7, "uint32"), tir.const(3, "uint32")), tir.IntImm)
assert not isinstance(tir.truncmod(tir.const(7, "uint32"), tir.const(3, "uint32")), tir.IntImm)
check_tir_const_fold("uint32", lambda x, y: x * y, fmul, skip_overflow=True)
check_tir_const_fold("uint32", lambda x, y: x + y, fadd, skip_overflow=True)
check_tir_const_fold("uint32", lambda x, y: x - y, fsub, skip_overflow=True)
check_tir_const_fold(
"uint32",
lambda x, y: tir.floordiv(x, y),
ffloordiv,
y_range=(1, np.iinfo("uint32").max),
skip_overflow=False,
)
check_tir_const_fold(
"uint32",
lambda x, y: tir.truncdiv(x, y),
ftruncdiv,
y_range=(1, np.iinfo("uint32").max),
skip_overflow=False,
)
if __name__ == "__main__":
tvm.testing.main() |
import tvm |
import tvm.testing
from tvm |
import te, tir
from tvm |
import topi
from tvm.contrib |
import utils, clang
from tvm.script |
import tir as T |
import numpy as np |
import ctypes |
import math
def test_nearbyint():
m = te.var(
"m",
)
A = te.placeholder((m,), name="A")
A_rounded = te.compute((m,), lambda *i: tvm.tir.nearbyint(A(*i)), name="A")
s = te.create_schedule(A_rounded.op)
f = tvm.build(s, [A, A_rounded], "llvm")
dev = tvm.cpu(0)
n = 10
a = tvm.nd.array(np.random.uniform(high=100, size=n).astype(A.dtype), dev)
a_rounded = tvm.nd.array(np.random.uniform(size=n).astype(A_rounded.dtype), dev)
f(a, a_rounded)
tvm.testing.assert_allclose(a_rounded.numpy(), np.rint(a.numpy()))
def test_round_intrinsics_on_int():
i = tvm.te.var("i", "int32")
for op in [tvm.tir.round, tvm.tir.trunc, tvm.tir.ceil, tvm.tir.floor, tvm.tir.nearbyint]:
assert op(tvm.tir.const(10, "int32")).value == 10
assert op(tvm.tir.const(True, "bool")).value == True
assert op(i).same_as(i)
assert tvm.tir.isnan(tvm.tir.const(10, "int32")).value == False
def test_unary_intrin():
test_funcs = [
(tvm.tir.exp10, lambda x: np.power(10, x)),
(tvm.tir.log2, lambda x: np.log2(x)),
(tvm.tir.log10, lambda x: np.log10(x)),
(tvm.tir.sinh, lambda x: np.sinh(x)),
(tvm.tir.cosh, lambda x: np.cosh(x)),
(tvm.tir.log1p, lambda x: np.log1p(x)),
(tvm.tir.asin, lambda x: np.arcsin(x)),
(tvm.tir.acos, lambda x: np.arccos(x)),
(tvm.tir.atan, lambda x: np.arctan(x)),
(tvm.tir.asinh, lambda x: np.arcsinh(x)),
(tvm.tir.acosh, lambda x: np.arccosh(x)),
(tvm.tir.atanh, lambda x: np.arctanh(x)),
]
def run_test(tvm_intrin, np_func):
m = te.var(
"m",
)
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda *i: tvm_intrin(A(*i)), name="B")
s = te.create_schedule(B.op)
f = tvm.build(s, [A, B], "llvm")
dev = tvm.cpu(0)
n = 10
a = tvm.nd.array(np.random.uniform(0.1, 0.5, size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uni |
form(size=n).astype(A.dtype), dev)
f(a, b)
tvm.testing.assert_allclose(b.numpy(), np_func(a.numpy()), atol=1e-5, rtol=1e-5)
for func in test_funcs:
run_test(*func)
def test_binary_intrin():
test_funcs = [
(tvm.tir.atan2, lambda x1, x2: np.arctan2(x1, x2)),
(tvm.tir.nextafter, lambda x1, x2: np.nextafter(x1, x2)),
(tvm.tir.copysign, lambda x1, x2: np.copysign(x1, x2)),
(tvm.tir.hypot, lambda x1, x2: np.hypot(x1, x2)),
]
def run_test(tvm_intrin, np_func):
m = te.var(
"m",
)
A = te.placeholder((m,), name="A")
B = te.placeholder((m,), name="B")
C = te.compute((m,), lambda *i: tvm_intrin(A(*i), B(*i)), name="C")
s = te.create_schedule(C.op)
f = tvm.build(s, [A, B, C], "llvm")
dev = tvm.cpu(0)
n = 10
a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(B.dtype), dev)
c = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
f(a, b, c)
tvm.testing.assert_allclose(c.numpy(), np_func(a.numpy(), b.numpy()), atol=1e-5, rtol=1e-5)
for func in test_funcs:
run_test(*func)
def test_ldexp():
m = te.var(
"m",
)
A = te.placeholder((m,), name="A")
B = te.placeholder((m,), name="B", dtype="int32")
C = te.compute((m,), lambda *i: tvm.tir.ldexp(A(*i), B(*i)), name="C")
s = te.create_schedule(C.op)
f = tvm.build(s, [A, B, C], "llvm")
dev = tvm.cpu(0)
n = 10
a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.randint(0, 5, size=n).astype(B.dtype), dev)
c = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
f(a, b, c)
tvm.testing.assert_allclose(c.numpy(), np.ldexp(a.numpy(), b.numpy()), atol=1e-5, rtol=1e-5)
dtype = tvm.testing.parameter("int32", "int64")
@tvm.testing.parametrize_targets("llvm", "vulkan -from_device=0")
def |
test_clz(target, dev, dtype):
target = tvm.target.Target(target)
if (
target.kind.name == "vulkan"
and dtype == "int64"
and not target.attrs.get("supports_int64", False)
):
pytest.xfail("Vulkan target does not support Int64 types")
def clz_np(x, dtype):
ceil_log2 = np.ceil(np.log2(x)).astype(dtype)
bits = int(dtype[-2:])
clz = bits - ceil_log2
clz[np.bitwise_and(x, x - 1) == 0] -= 1
return clz
m = te.var("m")
A = te.placeholder((m,), name="A", dtype=dtype)
B = te.compute((m,), lambda *i: tvm.tir.clz(A(*i)), name="B")
s = te.create_schedule(B.op)
if target.kind.name == "vulkan":
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, te.thread_axis("blockIdx.x"))
s[B].bind(tx, te.thread_axis("threadIdx.x"))
f = tvm.build(s, [A, B], target)
n = 10
highs = [10, 100, 1000, 10000, 100000, 1000000]
if dtype == "int64":
highs.append((1 << 63) - 1)
for high in highs:
a_np = np.random.randint(1, high=high, size=(n,), dtype=dtype)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(np.zeros((n,)).astype("int32"), dev)
f(a, b)
ref = clz_np(a_np, dtype)
np.testing.assert_equal(b.numpy(), ref)
@tvm.script.ir_module
class Module:
@T.prim_func
def test_tir_fma(A: T.handle, B: T.handle, C: T.handle, d: T.handle) -> None:
T.func_attr({"global_symbol": "test_fma", "tir.noalias": True})
n = T.var("int32")
stride = T.var("int32")
stride_1 = T.var("int32")
stride_2 = T.var("int32")
stride_3 = T.var("int32")
A_1 = T.match_buffer(
A,
[n],
strides=[stride],
elem_offset=0,
align=64,
offset_factor=1,
buffer_type="auto",
)
B_1 = T.match_buffer(
B,
[n],
strides=[stride_1],
elem_offset=0,
align=64, |
offset_factor=1,
buffer_type="auto",
)
C_1 = T.match_buffer(
C,
[n],
strides=[stride_2],
elem_offset=0,
align=64,
offset_factor=1,
buffer_type="auto",
)
d_1 = T.match_buffer(
d,
[n],
strides=[stride_3],
elem_offset=0,
align=64,
offset_factor=1,
buffer_type="auto",
)
for i in T.serial(0, n):
d_1[(i * stride_3)] = (A_1[(i * stride)] * B_1[(i * stride_1)]) + C_1[(i * stride_2)]
def test_fma():
opt = tvm.transform.Sequential(
[
tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm"))),
tvm.tir.transform.LowerIntrin(),
]
)
mod = opt(Module)
assert mod["test_tir_fma"].body.body.value.op.name == "tir.call_llvm_pure_intrin"
if __name__ == "__main__":
test_nearbyint()
test_unary_intrin()
test_round_intrinsics_on_int()
test_binary_intrin()
test_ldexp()
test_clz()
test_fma() |
import tvm
from tvm |
import te |
import numpy as np |
import tvm.testing
from tvm.topi.math |
import cast
def test_for():
ib = tvm.tir.ir_builder.create()
n = te.size_var("n")
A = ib.allocate("float32", n, name="A", scope="global")
with ib.for_range(0, n, name="i") as i:
A[i] = A[i] + 1
with ib.for_range(0, 10, name="j") as j:
A[j] = A[j] + 2
body = ib.get()
assert isinstance(body, tvm.tir.Allocate)
body = body.body
assert isinstance(body, tvm.tir.For)
body = body.body
assert isinstance(body, tvm.tir.SeqStmt)
assert isinstance(body[1], tvm.tir.For)
def test_if():
ib = tvm.tir.ir_builder.create()
n = te.size_var("n")
A = ib.pointer("float32", name="A")
tmod = tvm.tir.truncmod
with ib.for_range(0, n, name="i") as i:
with ib.if_scope(tmod(i, 2) == 0):
A[i] = A[i] + 1
with ib.else_scope():
A[0] = A[i] + 2
body = ib.get()
assert A == A
assert isinstance(body, tvm.tir.For)
body = body.body
assert isinstance(body, tvm.tir.IfThenElse)
assert isinstance(body.condition, tvm.tir.EQ)
assert isinstance(body.then_case.indices[0], tvm.tir.Var)
assert list(body.else_case.indices) == [0]
def test_prefetch():
A = tvm.tir.decl_buffer((10, 20), name="A")
ib = tvm.tir.ir_builder.create()
n = te.size_var("n")
with ib.for_range(0, n, name="i") as i:
ib.emit(
tvm.tir.Prefetch(
A, [tvm.ir.Range.from_min_extent(i + 1, 2), tvm.ir.Range.from_min_extent(0, 20)]
)
)
body = ib.get()
assert body.body.bounds[0].extent.value == 2
def test_cpu():
n = 1024
dtype = "float32"
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
def test_device_ir(A, B, C):
n = A.shape[0]
max_threads = 8
ib = tvm.tir.ir_builder.create()
Aptr = ib.buffer_ptr(A)
Bptr = ib.buffer_ptr(B)
Cptr = ib.buffer_ptr(C)
with ib.for_range(0, n, name="i") as i:
Cptr[i] = Aptr[i] + Bptr[i]
body = ib.get() |
return body
C = te.extern(
A.shape,
[A, B],
lambda ins, outs: test_device_ir(ins[0], ins[1], outs[0]),
name="vector_add",
dtype=dtype,
)
s = te.create_schedule(C.op)
def check_target(target):
if not tvm.testing.device_enabled(target):
return
fadd = tvm.build(s, [A, B, C], target)
dev = tvm.device(target, 0)
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
fadd(a, b, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
check_target("llvm")
@tvm.testing.requires_gpu
def test_gpu():
n = te.size_var("n")
dtype = "float32"
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
idxd = tvm.tir.indexdiv
def test_device_ir(A, B, C):
n = A.shape[0]
max_threads = 32
ib = tvm.tir.ir_builder.create()
bx = te.thread_axis("blockIdx.x")
tx = te.thread_axis("threadIdx.x")
ib.scope_attr(bx, "thread_extent", idxd(n + max_threads - 1, max_threads))
ib.scope_attr(tx, "thread_extent", max_threads)
idx = bx.var * max_threads + tx.var
Aptr = ib.buffer_ptr(A)
Bptr = ib.buffer_ptr(B)
Cptr = ib.buffer_ptr(C)
with ib.if_scope(ib.likely(idx < n)):
Cptr[idx] = Aptr[idx] + Bptr[idx]
body = ib.get()
return body
C = te.extern(
A.shape,
[A, B],
lambda ins, outs: test_device_ir(ins[0], ins[1], outs[0]),
name="vector_add",
dtype=dtype,
)
s = te.create_schedule(C.op)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
def check_target(target):
n = 1024
if not tvm.testing.device_enabled(target):
return
fadd = tvm.build(s, [A, B, C], target)
dev |
= tvm.device(target, 0)
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
fadd(a, b, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
check_target("opencl")
check_target("cuda")
def test_while_vectorize():
"""Test while loop + vectorized inner loop"""
n = 64
num_iter = 10
def test_ir(A, B, C):
ib = tvm.tir.ir_builder.create()
n = C.shape[0]
A = ib.buffer_ptr(A)
B = ib.buffer_ptr(B)
C = ib.buffer_ptr(C)
i = ib.allocate("int32", (1,), name="i", scope="local")
i[0] = 0
with ib.for_range(0, n) as j:
C[j] = 0.0
with ib.while_loop(i[0] < num_iter):
with ib.for_range(0, n, kind="vectorize") as j:
C[j] += A[j] + B[j]
i[0] += 1
return ib.get()
def check_target(target, ir):
dtype = "float32"
A = te.placeholder((n,), name="A", dtype=dtype)
B = te.placeholder((n,), name="B", dtype=dtype)
C = te.extern(
(n,),
[A, B],
lambda ins, outs: ir(ins[0], ins[1], outs[0]),
name="while_vectorize",
dtype=dtype,
)
s = te.create_schedule(C.op)
with tvm.transform.PassContext(opt_level=3):
func = tvm.build(s, [A, B, C], target)
dev = tvm.device(target, 0)
a_np = np.random.uniform(size=n).astype(A.dtype)
b_np = np.random.uniform(size=n).astype(B.dtype)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
func(a, b, c)
ref = num_iter * (a_np + b_np)
tvm.testing.assert_allclose(c.numpy(), ref, rtol=1e-5, atol=1e-5)
check_target("llvm", test_ir)
def test_while_collatz():
"""Test while loop + if"""
def collatz_ref(n): |
a = n
i = 0
while a > 1:
if a % 2 == 1:
a = 3 * a + 1
else:
a = a >> 1
i += 1
return i
def collatz(ib, n, C):
i = ib.allocate("int32", (1,), name="i", scope="local")
a = ib.allocate("int32", (1,), name="a", scope="local")
i[0] = 0
a[0] = n
with ib.while_loop(a[0] > 1):
with ib.if_scope(tvm.tir.floormod(a[0], 2) == 1):
a[0] = 3 * a[0] + 1
with ib.else_scope():
a[0] = a[0] >> 1
i[0] += 1
C[n] = i[0]
def collatz_ir_cpu(C):
ib = tvm.tir.ir_builder.create()
n = C.shape[0]
C = ib.buffer_ptr(C)
with ib.for_range(0, n, name="i", kind="parallel") as i:
collatz(ib, i, C)
body = ib.get()
return body
n = 30
def check_target(target, ir):
C = te.extern(
(n,),
[],
lambda ins, outs: ir(outs[0]),
name="collatz",
dtype="int32",
)
s = te.create_schedule(C.op)
with tvm.transform.PassContext(opt_level=3):
func = tvm.build(s, [C], target)
dev = tvm.device(target, 0)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
func(c)
ref = np.array([collatz_ref(i) for i in range(n)])
tvm.testing.assert_allclose(c.numpy(), ref)
check_target("llvm", collatz_ir_cpu)
def test_while_mandel():
n = 160
shape = (n * 2, n)
t = 300
def mandel_ref():
def complex_sqr(z):
return np.array([z[0] ** 2 - z[1] ** 2, z[1] * z[0] * 2])
pixels = np.zeros(shape)
for i in range(pixels.shape[0]):
for j in range(pixels.shape[1]):
c = np.array([-0.8, np.cos(t) * 0.2])
z = np.array([i / n - 1, j / n - 0.5]) * 2
iterations = 0
while np.linalg.norm(z) < 20 and iterations < 50:
z = co |
mplex_sqr(z) + c
iterations += 1
pixels[i, j] = 1 - iterations * 0.02
return pixels
def mandel(ib, i, j, pixels):
z = ib.allocate("float32", (2,), name="z", scope="local")
tmp = ib.allocate("float32", (1,), name="tmp", scope="local")
iterations = ib.allocate("int32", (1,), name="iterations", scope="local")
z[0] = (i / float(n) - 1) * 2
z[1] = (j / float(n) - 0.5) * 2
iterations[0] = 0
c = [-0.8, float(np.cos(t)) * 0.2]
def norm(z):
return tvm.tir.sqrt(z[0] * z[0] + z[1] * z[1])
with ib.while_loop(tvm.tir.all(norm(z) < 20, iterations[0] < 50)):
tmp[0] = z[0]
z[0] = z[0] * z[0] - z[1] * z[1] + c[0]
z[1] = z[1] * tmp[0] * 2 + c[1]
iterations[0] += 1
pixels[i, j] = 1 - iterations[0] * 0.02
def mandel_ir_cpu(C):
ib = tvm.tir.ir_builder.create()
ny = C.shape[0]
nx = C.shape[1]
C = ib.buffer_ptr(C)
with ib.for_range(0, ny, name="i", kind="parallel") as i:
with ib.for_range(0, nx, name="j") as j:
mandel(ib, i, j, C)
body = ib.get()
return body
def mandel_ir_gpu(C):
ib = tvm.tir.ir_builder.create()
ny = C.shape[0]
nx = C.shape[1]
C = ib.buffer_ptr(C)
bx = te.thread_axis("blockIdx.x")
tx = te.thread_axis("threadIdx.x")
by = te.thread_axis("blockIdx.y")
ty = te.thread_axis("threadIdx.y")
max_threads = 16
ib.scope_attr(bx, "thread_extent", tvm.tir.indexdiv(nx + max_threads - 1, max_threads))
ib.scope_attr(tx, "thread_extent", max_threads)
ib.scope_attr(by, "thread_extent", tvm.tir.indexdiv(ny + max_threads - 1, max_threads))
ib.scope_attr(ty, "thread_extent", max_threads)
tidx = bx * max_threads + tx
tidy = by * max_threads + ty
with ib.if_scope(tvm.tir.all(tidx < nx, tidy < ny)):
mandel(ib, tidy, |
tidx, C)
body = ib.get()
return body
ref = mandel_ref()
def check_target(target, ir):
if not tvm.testing.device_enabled(target):
return
C = te.extern(
shape,
[],
lambda ins, outs: ir(outs[0]),
name="mandel_ir",
dtype="float32",
)
s = te.create_schedule(C.op)
with tvm.transform.PassContext(opt_level=3):
func = tvm.build(s, [C], target)
dev = tvm.device(target, 0)
c = tvm.nd.array(np.zeros(shape, dtype=C.dtype), dev)
func(c)
tvm.testing.assert_allclose(c.numpy(), ref, rtol=1e-5, atol=1e-5)
check_target("llvm", mandel_ir_cpu)
check_target("npvtx", mandel_ir_gpu)
check_target("cuda", mandel_ir_gpu)
check_target("vulkan", mandel_ir_gpu)
def test_while_binary_search():
def binary_search(ib, n, i, Aptr, Bptr, Cptr):
lo = ib.allocate("int32", (1,), name="lo", scope="local")
hi = ib.allocate("int32", (1,), name="hi", scope="local")
lo[0] = 0
hi[0] = n
v = Bptr[i]
with ib.while_loop(lo[0] < hi[0]):
mid = lo[0] + (hi[0] - lo[0] >> 1)
with ib.if_scope(Aptr[mid] < v):
lo[0] = mid + 1
with ib.else_scope():
hi[0] = mid
Cptr[i] = lo[0]
def searchsorted_ir_cpu(A, B, C, n):
ib = tvm.tir.ir_builder.create()
Aptr = ib.buffer_ptr(A)
Bptr = ib.buffer_ptr(B)
Cptr = ib.buffer_ptr(C)
with ib.for_range(0, n, name="i", kind="parallel") as i:
binary_search(ib, n, i, Aptr, Bptr, Cptr)
body = ib.get()
return body
def searchsorted_ir_gpu(A, B, C, n):
ib = tvm.tir.ir_builder.create()
Aptr = ib.buffer_ptr(A)
Bptr = ib.buffer_ptr(B)
Cptr = ib.buffer_ptr(C)
bx = te.thread_axis("blockIdx.x")
tx = te.thread_axis("threadIdx.x")
max_threads = 32
ib.scope_attr(bx, "thread_exten |
t", tvm.tir.indexdiv(n + max_threads - 1, max_threads))
ib.scope_attr(tx, "thread_extent", max_threads)
tid = bx * max_threads + tx
with ib.if_scope(tid < n):
binary_search(ib, n, tid, Aptr, Bptr, Cptr)
body = ib.get()
return body
n = 1024
dtype = "float32"
A = te.placeholder((n,), name="A", dtype=dtype)
B = te.placeholder((n,), name="B", dtype=dtype)
def check_target(target, ir):
if not tvm.testing.device_enabled(target):
return
C = te.extern(
A.shape,
[A, B],
lambda ins, outs: ir(ins[0], ins[1], outs[0], n),
name="searchsorted_ir",
dtype="int32",
)
s = te.create_schedule(C.op)
with tvm.transform.PassContext(opt_level=3):
func = tvm.build(s, [A, B, C], target)
dev = tvm.device(target, 0)
a_np = np.random.uniform(size=n).astype(A.dtype)
b_np = np.random.uniform(size=n).astype(B.dtype)
a_np = np.sort(a_np)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
func(a, b, c)
ref = np.searchsorted(a_np, b_np)
tvm.testing.assert_allclose(c.numpy(), ref)
check_target("llvm", searchsorted_ir_cpu)
check_target("cuda", searchsorted_ir_gpu)
check_target("nvptx", searchsorted_ir_gpu)
check_target("vulkan", searchsorted_ir_gpu)
@tvm.testing.requires_gpu
def test_dyn_shared():
n = te.size_var("n")
dtype = "float32"
A = te.placeholder((n,), name="A")
def test_device_ir(A, B):
n = A.shape[0]
ib = tvm.tir.ir_builder.create()
tx = te.thread_axis("threadIdx.x")
ib.scope_attr(tx, "thread_extent", n)
temp = ib.allocate(dtype, (n,), scope="shared.dyn")
Aptr = ib.buffer_ptr(A)
Bptr = ib.buffer_ptr(B)
temp[tx] = Aptr[tx]
depth = tvm.tir.log2(cast(n, "float32"))
with ib.for_range(0, cas |
t(tvm.tir.ceil(depth), n.dtype)) as i:
ib.emit(tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"])))
d = n >> (i + 1)
with ib.if_scope(tx < d):
temp[tx] += temp[tx + d]
Bptr[0] = temp[0]
return ib.get()
B = te.extern(
(1,),
[A],
lambda ins, outs: test_device_ir(ins[0], outs[0]),
name="reduce",
dtype=dtype,
)
s = te.create_schedule(B.op)
def check_target(target):
if not tvm.testing.device_enabled(target):
return
freduce = tvm.build(s, [A, B], target)
dev = tvm.device(target, 0)
for n in [512, 1024]:
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.zeros(1, dtype=B.dtype), dev)
freduce(a, b)
tvm.testing.assert_allclose(b.numpy()[0], np.sum(a.numpy()), 1e-4, 1e-4)
for target in ["cuda", "nvptx"]:
check_target(target)
if __name__ == "__main__":
test_prefetch()
test_if()
test_for()
test_cpu()
test_gpu()
test_while_vectorize()
test_while_collatz()
test_while_mandel()
test_while_binary_search()
test_dyn_shared() |
import pytest |
import tvm
from tvm.script |
import tir as T
def _check(original, transformed):
mod = tvm.IRModule.from_expr(original)
mod = tvm.tir.transform.LowerMatchBuffer()(mod)
mod = tvm.tir.transform.Simplify()(mod)
tvm.ir.assert_structural_equal(mod["main"], transformed)
def _check_fail(original):
mod = tvm.IRModule.from_expr(original)
with pytest.raises(tvm.TVMError):
mod = tvm.tir.transform.LowerMatchBuffer()(mod)
@T.prim_func
def buffer_load_store(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16, 16))
C = T.match_buffer(c, (16, 16))
for i, j, k in T.grid(4, 16, 8):
with T.block():
T.reads(C[i * 4 : i * 4 + 4, k * 2 : k * 2 + 2])
T.writes(A[i * 4 : i * 4 + 4, j, k * 2 : k * 2 + 2])
sub_A = T.match_buffer(
A[i * 4 : i * 4 + 4, j, k * 2 : k * 2 + 2], (4, 1, 2), offset_factor=1
)
sub_C = T.match_buffer(C[i * 4 : i * 4 + 4, k * 2 : k * 2 + 2], (4, 2), offset_factor=1)
for ii, kk in T.grid(4, 2):
sub_A[ii, 0, kk] += sub_C[ii, kk]
@T.prim_func
def transformed_buffer_load_store(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16, 16))
C = T.match_buffer(c, (16, 16))
for i, j, k in T.grid(4, 16, 8):
with T.block():
T.reads(C[i * 4 : i * 4 + 4, k * 2 : k * 2 + 2])
T.writes(A[i * 4 : i * 4 + 4, j, k * 2 : k * 2 + 2])
for ii, kk in T.grid(4, 2):
A[i * 4 + ii, j, k * 2 + kk] += C[i * 4 + ii, k * 2 + kk]
@tvm.ir.register_op_attr("tir.intrin_test", "")
def intrin_test(data, elem_offset, stride_0, stride_1, shape_0, shape_1):
return 0
@T.prim_func
def opaque_access(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (32, 64, 128))
B = T.match_buffer(b, (64, 64, 64))
for i, j, k in T.grid(2, 64, 8):
with T.block():
T.reads([])
T.writes(A[i * 16 : i * 16 + 16, j, k * 16 : k * 16 + 16])
sub_A = T.match_buffer(
A[i * 16 : |
i * 16 + 16, j, k * 16 : k * 16 + 16],
(16, 1, 16),
strides=[8192, 128, 1],
offset_factor=1,
)
T.evaluate(
intrin_test(
sub_A.data,
sub_A.elem_offset,
sub_A.strides[0],
sub_A.strides[1],
sub_A.shape[0],
sub_A.shape[1],
)
)
for i, j, k in T.grid(64, 2, 8):
with T.block():
Bs_0 = T.var("int32")
Bs_1 = T.var("int32")
T.reads([])
T.writes(B[i, j * 32 : j * 32 + 32, k * 8 : k * 8 + 8])
sub_B = T.match_buffer(
B[i, j * 32 : j * 32 + 32, k * 8 : k * 8 + 8],
(32, 8),
strides=[Bs_0, Bs_1],
offset_factor=1,
)
T.evaluate(
intrin_test(
sub_B.data,
sub_B.elem_offset,
sub_B.strides[0],
sub_B.strides[1],
sub_B.shape[0],
sub_B.shape[1],
)
)
@T.prim_func
def transformed_opaque_access(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (32, 64, 128))
B = T.match_buffer(b, (64, 64, 64))
for i, j, k in T.grid(2, 64, 8):
with T.block():
T.reads([])
T.writes(A[i * 16 : i * 16 + 16, j, k * 16 : k * 16 + 16])
T.evaluate(
intrin_test(
A.data,
i * 131072 + j * 128 + k * 16,
8192,
128,
16,
1,
)
)
for i, j, k in T.grid(64, 2, 8):
with T.block():
T.reads([])
T.writes(B[i, j * 32 : j * 32 + 32, k * 8 : k * 8 + 8])
T.evaluate(
intrin_test(
B.data,
i * 4096 + j * 2048 + |
k * 8,
64,
1,
32,
8,
)
)
@T.prim_func
def high_dim_opaque_access(a: T.handle) -> None:
A = T.match_buffer(a, (16, 32, 64))
for i, j, k in T.grid(16, 2, 4):
with T.block():
As_0 = T.var("int32")
As_1 = T.var("int32")
T.reads([])
T.writes(A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16])
sub_A = T.match_buffer(
A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
(16, 16),
strides=[As_0, As_1],
offset_factor=1,
)
T.evaluate(
intrin_test(
sub_A.data,
sub_A.elem_offset,
sub_A.strides[0],
sub_A.strides[1],
sub_A.shape[0],
sub_A.shape[1],
)
)
@T.prim_func
def transformed_high_dim_opaque_access(a: T.handle) -> None:
A = T.match_buffer(a, (16, 32, 64))
for i, j, k in T.grid(16, 2, 4):
with T.block():
T.reads([])
T.writes(A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16])
T.evaluate(
intrin_test(
A.data,
i * 2048 + j * 1024 + k * 16,
64,
1,
16,
16,
)
)
@T.prim_func
def high_dim_opaque_access_with_source_strides(a: T.handle) -> None:
A = T.match_buffer(a, (16, 32, 64), strides=[2576, 80, 1])
for i, j, k in T.grid(16, 2, 4):
with T.block():
As_0 = T.var("int32")
As_1 = T.var("int32")
T.reads([])
T.writes(A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16])
sub_A = T.match_buffer(
A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
(16, 16),
strides=[As_0, As_1], |
offset_factor=1,
)
T.evaluate(
intrin_test(
sub_A.data,
sub_A.elem_offset,
sub_A.strides[0],
sub_A.strides[1],
sub_A.shape[0],
sub_A.shape[1],
)
)
@T.prim_func
def transformed_high_dim_opaque_access_with_source_strides(a: T.handle) -> None:
A = T.match_buffer(a, (16, 32, 64), strides=[2576, 80, 1])
for i, j, k in T.grid(16, 2, 4):
with T.block():
T.reads([])
T.writes(A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16])
T.evaluate(
intrin_test(
A.data,
i * 2576 + j * 1280 + k * 16,
80,
1,
16,
16,
)
)
@T.prim_func
def recursive_match(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (64, 64, 64))
B = T.match_buffer(b, (64, 64, 64))
for i, j, k in T.grid(64, 4, 4):
with T.block():
T.reads([])
T.writes(
[
A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
B[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
]
)
As_0 = T.var("int32")
As_1 = T.var("int32")
sub_A = T.match_buffer(
A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
(16, 16),
strides=[As_0, As_1],
offset_factor=1,
)
sub_B = T.match_buffer(
B[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
(16, 16),
offset_factor=1,
)
for jj, kk in T.grid(4, 4):
with T.block():
T.reads([])
T.writes(
[
sub_A[jj * 4 : jj * 4 + 4, kk * 4 : |
kk * 4 + 4],
sub_B[jj * 4 : jj * 4 + 4, kk * 4 : kk * 4 + 4],
]
)
Ass_0 = T.var("int32")
Ass_1 = T.var("int32")
sub_sub_A = T.match_buffer(
sub_A[jj * 4 : jj * 4 + 4, kk * 4 : kk * 4 + 4],
(4, 4),
strides=[Ass_0, Ass_1],
offset_factor=1,
)
sub_sub_B = T.match_buffer(
sub_B[jj * 4 : jj * 4 + 4, kk * 4 : kk * 4 + 4],
(4, 4),
offset_factor=1,
)
T.evaluate(
intrin_test(
sub_sub_A.data,
sub_sub_A.elem_offset,
sub_sub_A.strides[0],
sub_sub_A.strides[1],
sub_sub_A.shape[0],
sub_sub_A.shape[1],
)
)
for jjj, kkk in T.grid(4, 4):
sub_sub_B[jjj, kkk] = 1
@T.prim_func
def transformed_recursive_match(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (64, 64, 64))
B = T.match_buffer(b, (64, 64, 64))
for i, j, k in T.grid(64, 4, 4):
with T.block():
T.reads([])
T.writes(
[
A[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
B[i, j * 16 : j * 16 + 16, k * 16 : k * 16 + 16],
]
)
for jj, kk in T.grid(4, 4):
with T.block():
T.reads([])
T.writes(
[
A[
i,
j * 16 + jj * 4 : j * 16 + jj * 4 + 4,
k * 16 + kk * 4 : k * 16 + kk * 4 + 4, |
],
B[
i,
j * 16 + jj * 4 : j * 16 + jj * 4 + 4,
k * 16 + kk * 4 : k * 16 + kk * 4 + 4,
],
]
)
T.evaluate(
intrin_test(
A.data,
i * 4096 + j * 1024 + jj * 256 + k * 16 + kk * 4,
64,
1,
4,
4,
)
)
for jjj, kkk in T.grid(4, 4):
B[i, j * 16 + jj * 4 + jjj, k * 16 + kk * 4 + kkk] = 1
@T.prim_func
def symbolic_match(a: T.handle, b: T.handle, n: T.int32, m: T.int32) -> None:
A = T.match_buffer(a, (n * m, m))
B = T.match_buffer(b, (n * 2, m * 4))
for i in range(0, n):
with T.block():
T.reads([])
T.writes([A[i * m : i * m + n, 0:m], B[i * n : i * n + 2, 0 : m * 4]])
Bs_0 = T.var("int32")
Bs_1 = T.var("int32")
sub_A = T.match_buffer(A[i * m : i * m + m, 0:m], (m, m), offset_factor=1)
sub_B = T.match_buffer(
B[i * n : i * n + 2, 0 : m * 4], (2, m * 4), strides=[Bs_0, Bs_1], offset_factor=1
)
for ii, jj in T.grid(m, m):
sub_A[ii, jj] = 1
for j in range(0, 4):
T.evaluate(
intrin_test(
sub_B.data,
sub_B.elem_offset,
sub_B.strides[0],
sub_B.strides[1],
sub_B.shape[0],
sub_B.shape[1],
)
)
@T.prim_func
def transformed_symbolic_match(a: T.handle, b: T.handle, n: T.int32, m: T.int32) -> None:
A = T.match_buffer(a, (n * m, m))
B = T.match_buffer(b, ( |
n * 2, m * 4))
for i in range(0, n):
with T.block():
T.reads([])
T.writes([A[i * m : i * m + n, 0:m], B[i * n : i * n + 2, 0 : m * 4]])
for ii, jj in T.grid(m, m):
A[i * m + ii, jj] = 1
for j in range(0, 4):
T.evaluate(
intrin_test(
B.data,
i * n * (m * 4),
m * 4,
1,
2,
m * 4,
)
)
@T.prim_func
def rank0_buffer(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (8, 8))
B = T.match_buffer(b, (8, 8))
for i, j in T.grid(8, 8):
with T.block():
T.reads([])
T.writes([A[i, j], B[i, j]])
sub_A = T.match_buffer(A[i, j], (), offset_factor=1)
sub_B = T.match_buffer(B[i, j], (), offset_factor=1)
sub_A[()] = 1
T.evaluate(
intrin_test(
sub_B.data,
sub_B.elem_offset,
0,
0,
0,
0,
)
)
@T.prim_func
def transformed_rank0_buffer(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (8, 8))
B = T.match_buffer(b, (8, 8))
for i, j in T.grid(8, 8):
with T.block():
T.reads([])
T.writes([A[i, j], B[i, j]])
A[i, j] = 1
T.evaluate(
intrin_test(
B.data,
i * 8 + j,
0,
0,
0,
0,
)
)
@T.prim_func
def fail_match_load(a: T.handle) -> None:
A = T.match_buffer(a, (8, 8))
for i, j in T.grid(8, 8):
with T.block():
T.reads(A[i, j])
T.writes([])
sub_A = T.match_buffer(A[i, j], (), elem_offset=0)
T.evaluate(sub_A |
[()])
@T.prim_func
def fail_match_store(a: T.handle) -> None:
A = T.match_buffer(a, (8, 8))
for i, j in T.grid(8, 8):
with T.block():
T.reads([])
T.writes(A[i, j])
sub_A = T.match_buffer(A[i, j], (), elem_offset=0)
sub_A[()] = 1
@T.prim_func
def fail_buffer_bind(a: T.handle) -> None:
A = T.match_buffer(a, (8, 8))
for i, j in T.grid(8, 2):
with T.block():
stride = T.var("int32")
sub_A = T.match_buffer(
A[i, j * 4 : j * 4 + 4], (1, 4), strides=[stride, stride], offset_factor=1
)
for jj in range(0, 4):
sub_A[i, j * 4 + jj] = 1
@T.prim_func
def fail_match_func_param(a: T.handle, m: T.handle, n: T.handle) -> None:
A = T.match_buffer(a, (8, 8))
for i, j in T.grid(8, 2):
with T.block():
sub_A = T.match_buffer(A[i, j * 4 : j * 4 + 4], (1, 4), strides=[m, n], offset_factor=1)
for jj in range(0, 4):
sub_A[i, j * 4 + jj] = 1
def test_buffer_load_store():
_check(buffer_load_store, transformed_buffer_load_store)
def test_opaque_access():
_check(opaque_access, transformed_opaque_access)
def test_high_dim_opaque_access():
_check(high_dim_opaque_access, transformed_high_dim_opaque_access)
_check(
high_dim_opaque_access_with_source_strides,
transformed_high_dim_opaque_access_with_source_strides,
)
def test_recursive_match():
_check(recursive_match, transformed_recursive_match)
def test_symbolic_match():
_check(symbolic_match, transformed_symbolic_match)
def test_rank0_buffer():
_check(rank0_buffer, transformed_rank0_buffer)
def test_fail_load_store():
_check_fail(fail_match_load)
_check_fail(fail_match_store)
def test_fail_buffer_bind():
_check_fail(fail_buffer_bind)
def test_fail_match_func_param():
_check_fail(fail_match_func_param)
if __name__ == "__main__":
test_buffer_load_store()
test_opaque_access()
test_high_d |
im_opaque_access()
test_recursive_match()
test_symbolic_match()
test_rank0_buffer()
test_fail_load_store()
test_fail_buffer_bind()
test_fail_match_func_param() |
import pytest |
import tvm
from tvm |
import te, ir |
import numpy as np
def test_const():
x = tvm.tir.const(1, "int32")
assert x.dtype == "int32"
assert isinstance(x, tvm.tir.IntImm)
def test_te_const():
x = tvm.te.const(1, "int32")
assert x.dtype == "int32"
assert isinstance(x, tvm.tir.IntImm)
def test_scalar_dtype_inference():
for data in [
True,
bool(1),
np.uint8(1),
np.uint16(1),
np.uint32(1),
np.uint64(1),
np.int8(1),
np.int16(1),
np.int32(1),
np.int64(1),
np.float16(1),
np.float32(1),
np.float64(1),
]:
assert tvm.tir.const(data).dtype == str(np.array(data).dtype)
assert tvm.tir.const(1).dtype == "int32"
assert tvm.tir.const(1.0).dtype == "float32"
for data in [
True,
bool(1),
np.uint8(1),
np.uint16(1),
np.uint32(1),
np.uint64(1),
np.int8(1),
np.int16(1),
np.int32(1),
np.int64(1),
np.float16(1),
np.float32(1),
np.float64(1),
]:
assert tvm.runtime.convert(data).dtype == str(np.array(data).dtype)
assert tvm.runtime.convert(1).dtype == "int32"
assert tvm.runtime.convert(1.0).dtype == "float32"
def test_make():
x = tvm.tir.const(1, "int32")
y = te.var("x")
z = x + y
assert isinstance(tvm.tir.max(x, y), tvm.tir.Max)
assert isinstance(tvm.tir.min(x, y), tvm.tir.Min)
def test_ir():
x = tvm.tir.const(1, "int32")
y = tvm.tir.IntImm("int32", 1)
z = x + y
stmt = tvm.tir.Evaluate(z)
assert isinstance(stmt, tvm.tir.Evaluate)
def test_ir2():
buf_size = te.var("size")
x = te.var("n")
storage_type = ir.PrimType("int32")
handle_type = ir.PointerType(storage_type)
array = te.var("array", handle_type)
buf = tvm.tir.decl_buffer([buf_size], "int32", data=array)
st = tvm.tir.BufferStore(buf, x + 1, [1])
assert isinstance(st, tvm.tir.BufferStore)
assert st.buffer == buf
assert st.buffer.data == array
def test_let |
():
x = te.var("x")
y = te.var("y")
stmt = tvm.tir.LetStmt(x, 10, tvm.tir.Evaluate(x + 1))
def test_cast():
x = te.var("x", dtype="float32")
y = x.astype("int32")
z = x.astype("float32x4")
assert isinstance(y, tvm.tir.Cast)
assert isinstance(z, tvm.tir.Broadcast)
assert z.lanes == 4
s = tvm.tir.StringImm("s")
with pytest.raises(tvm.error.TVMError) as cm:
s.astype("int")
assert "Can't cast a handle to other types" in str(cm.execption)
def test_attr():
x = te.var("x")
y = te.var("y")
stmt = tvm.tir.AttrStmt(y, "stride", 10, tvm.tir.Evaluate(x + 1))
assert stmt.node == y
a = tvm.runtime.convert(1)
assert a.value == 1
try:
a.no_field
assert False
except AttributeError:
pass
def test_basic():
a = te.var("a")
b = te.var("b")
c = a + b
assert str(c) == "(%s: int32 + %s: int32)" % (a.name, b.name)
def test_stmt():
x = tvm.tir.Evaluate(0)
tvm.tir.For(te.var("i"), 0, 1, tvm.tir.ForKind.SERIAL, x)
def test_dir():
x = te.var("x")
dir(x)
def test_dtype():
x = te.var("x")
assert x.dtype == "int32"
y = te.var("y")
assert (x > y).dtype == "bool"
def test_any():
x = te.var("x")
y = te.var("y")
z = te.var("z")
try:
t = x or x
assert False
except ValueError:
pass
try:
tvm.tir.any()
assert False
except ValueError:
pass
assert str(tvm.tir.any(x < y)) == "(%s: int32 < %s: int32)" % (x.name, y.name)
assert str(tvm.tir.any(x < y, x > z)) == "((%s: int32 < %s: int32) || (%s > %s: int32))" % (
x.name,
y.name,
x.name,
z.name,
)
assert str(
tvm.tir.any(x < y, y > z + 1, x < z * 2)
) == "(((%s: int32 < %s: int32) || (%s > (%s: int32 + 1))) || (%s < (%s*2)))" % (
x.name,
y.name,
y.name,
z.name,
x.name,
z.name,
)
def test_all():
x = te.var("x")
y = te.var("y")
z = te.v |
ar("z")
try:
t = x and x
assert False
except ValueError:
pass
try:
tvm.tir.all()
assert False
except ValueError:
pass
assert str(tvm.tir.all(x < y)) == "(%s: int32 < %s: int32)" % (x.name, y.name)
assert str(tvm.tir.all(x < y, x > z)) == "((%s: int32 < %s: int32) && (%s > %s: int32))" % (
x.name,
y.name,
x.name,
z.name,
)
assert str(
tvm.tir.all(x < y, y > z + 1, x < z * 2)
) == "(((%s: int32 < %s: int32) && (%s > (%s: int32 + 1))) && (%s < (%s*2)))" % (
x.name,
y.name,
y.name,
z.name,
x.name,
z.name,
)
def test_bitwise():
x = te.var("x")
y = te.var("y")
assert str(x << y) == "@tir.shift_left(x: int32, y: int32, dtype=int32)"
assert str(x >> y) == "@tir.shift_right(x: int32, y: int32, dtype=int32)"
assert str(x & y) == "@tir.bitwise_and(x: int32, y: int32, dtype=int32)"
assert str(x | y) == "@tir.bitwise_or(x: int32, y: int32, dtype=int32)"
assert str(x ^ y) == "@tir.bitwise_xor(x: int32, y: int32, dtype=int32)"
assert str(10 & x) == "@tir.bitwise_and(10, x: int32, dtype=int32)"
assert str(10 | x) == "@tir.bitwise_or(10, x: int32, dtype=int32)"
assert str(10 ^ x) == "@tir.bitwise_xor(10, x: int32, dtype=int32)"
assert str(10 >> x) == "@tir.shift_right(10, x: int32, dtype=int32)"
assert str(10 << x) == "@tir.shift_left(10, x: int32, dtype=int32)"
assert str(10 % x) == "floormod(10, x: int32)"
assert str(~x) == "@tir.bitwise_not(x: int32, dtype=int32)"
assert (tvm.tir.const(1, "int8x2") >> 1).dtype == "int8x2"
assert (x >> tvm.tir.const(1, "int32x2")).dtype == "int32x2"
assert (te.var("z", "int8x2") << tvm.tir.const(1, "int8x2")).dtype == "int8x2"
def test_float_bitwise():
t = tvm.tir.const(1.5, dtype="float32")
for test in [
lambda lhs, rhs: lhs << rhs,
lambda lhs, rhs: lhs >> rhs,
lambda lhs, rhs: lhs | rhs,
lambda lhs, rhs: lhs |
^ rhs,
lambda lhs, rhs: lhs & rhs,
]:
try:
test(t, 10.0)
assert False
except tvm.TVMError:
pass
try:
~t
assert False
except RuntimeError:
pass
def test_shift_bounds():
x = te.var("x")
for test in [lambda lhs, rhs: lhs << rhs, lambda lhs, rhs: lhs >> rhs]:
for testcase in [(x, -1), (x, 32)]:
try:
test(*testcase)
assert False
except tvm.TVMError:
pass
for testcase in [(x, 0), (x, 16), (x, 31)]:
test(*testcase)
def test_divide_by_zero():
for test in [
lambda lhs, rhs: tvm.tir.floormod(lhs, rhs),
lambda lhs, rhs: tvm.tir.floordiv(lhs, rhs),
lambda lhs, rhs: tvm.tir.truncmod(lhs, rhs),
lambda lhs, rhs: tvm.tir.truncdiv(lhs, rhs),
lambda lhs, rhs: tvm.tir.div(lhs, rhs),
]:
try:
test(tvm.tir.const(5, "int32"), tvm.tir.const(0, "int32"))
assert False
except tvm.TVMError:
pass
def test_infinity():
assert str(tvm.tir.infinity("float16")) == "inff16"
assert str(tvm.tir.infinity("float32")) == "inff32"
assert str(tvm.tir.infinity("float64")) == "inff64"
def test_isnan():
x = te.var("x", "float32")
assert str(tvm.tir.isnan(x)) == "@tir.isnan(x: float32, dtype=bool)"
assert str(tvm.tir.isnan(x).dtype) == "bool"
y = te.var("y", "float16")
assert str(tvm.tir.isnan(y)) == "@tir.isnan(cast(float32, y: float16), dtype=bool)"
z = te.var("z", "int32")
assert str(tvm.tir.isnan(z)) == "False"
k = te.var("k", "int8x2")
assert str(tvm.tir.isnan(k).dtype) == "uint1x2"
def test_equality():
a = te.var("a")
b = te.var("b")
c = a == b
assert not c
d = c != c
assert not d
def test_equality_string_imm():
x = "a"
y = tvm.tir.StringImm(x)
x == y.value
x == y
def test_prim_func():
x = te.var("x")
y = te.var("y")
b = tv |
m.tir.decl_buffer((x,), "float32")
stmt = tvm.tir.LetStmt(x, 10, tvm.tir.Evaluate(x + 1))
func = tvm.tir.PrimFunc([x, y, b], stmt)
func.astext()
assert func.buffer_map[func.params[2]].same_as(b)
assert len(func.buffer_map) == 1
f2 = func.with_attr({"calling_conv": 1, "tir.noalias": True})
assert f2.attrs["calling_conv"].value == 1
assert func.attrs is None
def test_vars():
x = tvm.tir.Var("xyz", "int8")
assert x.dtype == "int8"
ptype = tvm.ir.PointerType(tvm.ir.PrimType("float"))
x = tvm.tir.Var("xyz", ptype)
assert x.dtype == "handle"
assert x.type_annotation == ptype
assert isinstance(ptype.element_type, tvm.ir.PrimType)
def test_scoped_storage_vars():
dtype = "float"
storage_scope = "global.texture"
ptype = tvm.ir.PointerType(tvm.ir.PrimType(dtype), storage_scope)
x = tvm.tir.Var("xyz", ptype)
assert x.dtype == "handle"
assert x.type_annotation == ptype
assert x.type_annotation.storage_scope == storage_scope
assert isinstance(ptype.element_type, tvm.ir.PrimType)
def test_buffer_load_store():
b = tvm.tir.decl_buffer((10,), "float32")
x = tvm.tir.BufferLoad(b, [0])
assert isinstance(x, tvm.tir.BufferLoad)
assert x.dtype == "float32"
assert x.buffer == b
s = tvm.tir.BufferStore(b, 0.1, [0])
assert isinstance(s, tvm.tir.BufferStore)
s = tvm.tir.BufferRealize(b, [tvm.ir.Range(0, 1)], True, tvm.tir.Evaluate(0))
assert isinstance(s, tvm.tir.BufferRealize)
def test_intimm_cond():
x = tvm.runtime.convert(1)
y = tvm.runtime.convert(1)
s = {x}
assert y in s
assert x == y
assert x < 20
assert not (x >= 20)
assert x < 10 and y < 10
assert not tvm.runtime.convert(x != 1)
assert x == 1
def test_block_blockrealize():
x = tvm.tir.Var("x", "int32")
y = tvm.tir.Var("y", "int32")
vx = tvm.tir.IterVar((16, 16), "vx", 0)
vx_var = vx.var
vy = tvm.tir.IterVar((16, 16), "vy", 2)
vy_var = vy.var
A = tvm.tir.decl_buffer((16), |
"float32")
B = tvm.tir.decl_buffer((16, 16), "float32")
alloc_buffer = tvm.tir.decl_buffer((16, 16), "float32")
match_buffer = tvm.tir.decl_buffer((16, 16), "float32")
init_body = tvm.tir.BufferStore(A, 0.0, [vx_var])
body = tvm.tir.BufferStore(
A,
tvm.tir.BufferLoad(A, [vx_var]) + tvm.tir.BufferLoad(B, [vx_var, vy_var]),
[vx_var],
)
reads = [
tvm.tir.BufferRegion(
B, [tvm.ir.Range.from_min_extent(vx_var, 1), tvm.ir.Range.from_min_extent(vy_var, 1)]
)
]
writes = [tvm.tir.BufferRegion(A, [tvm.ir.Range.from_min_extent(vx_var, 1)])]
block_match_buffer = tvm.tir.MatchBufferRegion(
match_buffer, tvm.tir.BufferRegion(B, [tvm.ir.Range(0, 16), tvm.ir.Range(0, 16)])
)
block = tvm.tir.Block(
[vx, vy],
reads,
writes,
"block",
body,
init=init_body,
alloc_buffers=[alloc_buffer],
match_buffers=[block_match_buffer],
annotations={"attr_key": "attr_value"},
)
assert isinstance(block, tvm.tir.Block)
assert block.iter_vars[0] == vx
assert block.iter_vars[1] == vy
assert isinstance(block.reads[0], tvm.tir.BufferRegion)
assert block.reads[0].buffer == B
assert block.reads[0].region[0].min == vx_var
assert block.reads[0].region[1].min == vy_var
assert isinstance(block.writes[0], tvm.tir.BufferRegion)
assert block.writes[0].buffer == A
assert block.writes[0].region[0].min == vx_var
assert block.writes[0].region[0].extent == 1
assert block.name_hint == "block"
assert block.body == body
assert block.init == init_body
assert block.alloc_buffers[0] == alloc_buffer
assert block.match_buffers[0].buffer == match_buffer
assert isinstance(block.match_buffers[0].source, tvm.tir.BufferRegion)
assert block.match_buffers[0].source.buffer == B
assert block.match_buffers[0].source.region[0].min == 0
assert block.match_buffers[0].source.region[0].exte |
nt == 16
block_realize = tvm.tir.BlockRealize([x, y], tvm.tir.const(True, "bool"), block)
assert isinstance(block_realize, tvm.tir.BlockRealize)
assert block_realize.iter_values[0] == x
assert block_realize.iter_values[1] == y
assert block_realize.predicate == tvm.tir.const(True, "bool")
assert block_realize.block == block
str(block)
str(block_realize)
func = tvm.tir.PrimFunc([], block_realize)
output = func.astext()
assert output.find("meta[tir.BlockRealise]") == -1
assert output.find("bind") != -1
assert output.find("reads") != -1
assert output.find("writes") != -1
assert output.find("alloc_buffer") != -1
assert output.find("match_buffer") != -1
assert output.find("attr") != -1
assert output.find("with init()") != -1
def test_tir_allocate():
dtype = "int8"
storage_scope = "global"
ptype = tvm.ir.PointerType(tvm.ir.PrimType(dtype), storage_scope)
a = te.var("buffer", ptype)
allocate = tvm.tir.Allocate(
buffer_var=a,
dtype=dtype,
extents=[2, 2],
condition=tvm.get_global_func("tir.const_true")(dtype, None),
body=tvm.tir.Evaluate(2 + 1),
annotations={
"attr1": "foo",
"attr2": "bar",
},
)
assert allocate.buffer_var == a
assert allocate.dtype == "int8"
assert list(allocate.extents) == [2, 2]
assert allocate.annotations["attr1"] == "foo"
assert allocate.annotations["attr2"] == "bar"
func = tvm.tir.PrimFunc([], allocate)
output = func.astext()
assert (
output.find(
'allocate(buffer: Pointer(global int8), int8, [2, 2]), storage_scope = global, annotations = {"attr2": "bar", "attr1": "foo"})'
)
!= -1
)
if __name__ == "__main__":
pytest.main([__file__]) |
import tvm |
import tvm.testing
from tvm |
import tir
def test_tir_op_tvm_tuple():
x = tir.Var("x", dtype="float32")
y = tir.Var("y", dtype="float32")
z = tir.Var("z", dtype="float32")
expr = tir.tvm_tuple(x, y, z, 1, 2, 3)
assert expr.op.name == "tir.tvm_tuple"
def test_tir_op_tvm_struct_get():
x = tir.Var("x", dtype="handle")
expr = tir.tvm_struct_get(x, 1, 2, dtype="int32")
assert expr.op.name == "tir.tvm_struct_get"
def test_tir_op_tvm_struct_set():
x = tir.Var("x", dtype="handle")
expr = tir.tvm_struct_set(x, 1, 2, 3)
assert expr.op.name == "tir.tvm_struct_set"
def test_tir_op_address_of():
buffer = tir.decl_buffer((128), "float32")
expr = tir.address_of(buffer[0])
assert expr.op.name == "tir.address_of"
def test_tir_op_lookup_param():
expr = tir.lookup_param("p0")
assert expr.op.name == "tir.lookup_param"
def test_tir_op_reinterpret():
x = tir.Var("x", dtype="int32")
expr = tir.reinterpret("float32", x)
assert expr.op.name == "tir.reinterpret"
def test_tir_op_isnullptr():
x = tir.Var("x", dtype="int32")
expr = tir.isnullptr(x)
assert expr.op.name == "tir.isnullptr"
def test_tir_op_call_assume():
x = tir.Var("x", dtype="int32")
expr = tir.assume(cond=x)
assert expr.op.name == "tir.assume"
def test_tir_op_call_undef():
expr = tir.undef()
assert expr.op.name == "tir.undef"
def test_tir_op_call_likely():
x = tir.Var("x", dtype="int32")
expr = tir.likely(cond=x)
assert expr.op.name == "tir.likely"
def test_tir_op_tvm_thread_allreduce():
x = tir.Var("x", "int32")
buffer = tir.decl_buffer((128), "float32")
y = tir.Var("y", "handle")
z = tir.Var("z", "int32")
expr = tir.tvm_thread_allreduce(x, buffer[0], True, y, z)
assert expr.op.name == "tir.tvm_thread_allreduce"
def test_tir_op_type_annotation():
expr = tir.type_annotation("int32")
assert expr.op.name == "tir.type_annotation"
def test_tir_op_tvm_access_ptr():
buffer = tir.decl_buffer((128), "float32")
expr = tir.tvm_acces |
s_ptr("float32", buffer.data, 0, 1, 2)
assert expr.op.name == "tir.tvm_access_ptr"
def test_tir_op_tvm_throw_last_error():
expr = tir.tvm_throw_last_error()
assert expr.op.name == "tir.tvm_throw_last_error"
def test_tir_op_tvm_load_matrix_sync():
buffer = tir.decl_buffer((16, 16), "float32")
x = tir.Var("x", "handle")
expr = tir.tvm_load_matrix_sync(buffer.data, 16, 16, 16, 0, x, 128, "row_major")
assert expr.op.name == "tir.tvm_load_matrix_sync"
def test_tir_op_tvm_store_matrix_sync():
buffer = tir.decl_buffer((16, 16), "float32")
x = tir.Var("x", "handle")
expr = tir.tvm_store_matrix_sync(buffer.data, 16, 16, 16, 0, x, 128, "row_major")
assert expr.op.name == "tir.tvm_store_matrix_sync"
def test_tir_op_tvm_mma_sync():
buffer_0 = tir.decl_buffer((16, 16), "float32")
buffer_1 = tir.decl_buffer((16, 16), "float32")
buffer_2 = tir.decl_buffer((16, 16), "float32")
buffer_3 = tir.decl_buffer((16, 16), "float32")
expr = tir.tvm_mma_sync(buffer_0.data, 0, buffer_1.data, 0, buffer_2.data, 0, buffer_3.data, 0)
assert expr.op.name == "tir.tvm_mma_sync"
def test_tir_op_tvm_bmma_sync():
buffer_0 = tir.decl_buffer((16, 16), "float32")
buffer_1 = tir.decl_buffer((16, 16), "float32")
buffer_2 = tir.decl_buffer((16, 16), "float32")
buffer_3 = tir.decl_buffer((16, 16), "float32")
expr = tir.tvm_bmma_sync(buffer_0.data, 0, buffer_1.data, 0, buffer_2.data, 0, buffer_3.data, 0)
assert expr.op.name == "tir.tvm_bmma_sync"
def test_tir_op_tvm_fill_fragment():
buffer = tir.decl_buffer((16, 16), "float32")
expr = tir.tvm_fill_fragment(buffer.data, 16, 16, 16, 0, 0)
assert expr.op.name == "tir.tvm_fill_fragment"
def test_tir_op_ptx_mma():
buffer_a = tir.decl_buffer([32], "int4", scope="local")
buffer_b = tir.decl_buffer([16], "uint4", scope="local")
buffer_c = tir.decl_buffer([4], "int32", scope="local")
expr = tir.ptx_mma(
"int32",
"m8n8k32",
"row",
"col",
"int4", |
"uint4",
"int32",
buffer_a.data,
0,
buffer_b.data,
0,
buffer_c.data,
0,
False,
)
assert expr.op.name == "tir.ptx_mma"
def test_tir_op_ptx_mma_sp():
buffer_a = tir.decl_buffer([32], "int4", scope="local")
buffer_b = tir.decl_buffer([16], "uint4", scope="local")
buffer_c = tir.decl_buffer([4], "int32", scope="local")
buffer_d = tir.decl_buffer([1], "uint32", scope="local")
expr = tir.ptx_mma_sp(
"int32",
"m8n8k32",
"row",
"col",
"int4",
"uint4",
"int32",
buffer_a.data,
0,
buffer_b.data,
0,
buffer_c.data,
0,
buffer_d.data,
0,
0,
False,
)
assert expr.op.name == "tir.ptx_mma_sp"
def test_tir_op_mma_store():
x = tir.Var("x", dtype="int32")
y = tir.Var("y", dtype="int32")
buffer_w = tir.decl_buffer([16, 8], dtype="int32", scope="warp", offset_factor=1)
buffer = tir.decl_buffer(
[16, 16], dtype="int32", scope="global", offset_factor=1, strides=[x, y]
)
expr = tir.mma_store(
"int32",
16,
16,
buffer.access_ptr("w"),
buffer_w.data,
buffer_w.elem_offset,
x,
)
assert expr.op.name == "tir.mma_store"
def test_tir_op_mma_fill():
buffer_w = tir.decl_buffer([16, 8], dtype="int32", scope="warp", offset_factor=1)
expr = tir.mma_fill("int32", 8, buffer_w.data, buffer_w.elem_offset)
assert expr.op.name == "tir.mma_fill"
def test_op_ptx_ldmatrix():
buffer_shared = tir.decl_buffer([16, 16], "float16", scope="shared")
buffer_local = tir.decl_buffer([8], "float16", scope="local")
expr = tir.ptx_ldmatrix(
"float16", False, 4, ".b16", buffer_local.data, 0, buffer_shared.data, 0
)
assert expr.op.name == "tir.ptx_ldmatrix"
def test_op_ptx_cp_async():
buffer_shared = tir.decl_buffer([16, 16], "float16", scope="shared")
buffer_local = tir.decl_buffer([8], |
"float16", scope="local")
expr = tir.ptx_cp_async("float16", buffer_shared.data, 0, buffer_local.data, 0, 16)
assert expr.op.name == "tir.ptx_cp_async"
def test_op_ptx_commit_group():
expr = tir.ptx_commit_group()
assert expr.op.name == "tir.ptx_commit_group"
def test_op_ptx_wait_group():
expr = tir.ptx_wait_group(8)
assert expr.op.name == "tir.ptx_wait_group"
def test_tir_op_vectorlow():
buffer = tir.decl_buffer((4, 4), "int8", offset_factor=1)
vec = buffer.vload([0, 0], dtype="int8x16")
expr = tir.vectorlow("int8x8", vec)
assert expr.op.name == "tir.vectorlow"
def test_tir_op_vectorhigh():
buffer = tir.decl_buffer((4, 4), "int8", offset_factor=1)
vec = buffer.vload([0, 0], dtype="int8x16")
expr = tir.vectorhigh("int8x8", vec)
assert expr.op.name == "tir.vectorhigh"
def test_tir_op_vectorcombine():
buffer = tir.decl_buffer((4, 4), "int8", offset_factor=1)
vec = buffer.vload([0, 0], dtype="int8x16")
expr = tir.vectorcombine("int8x8", vec, vec)
assert expr.op.name == "tir.vectorcombine"
def test_tir_op_shift_left():
x = tir.Var("x", dtype="int32")
y = tir.Var("x", dtype="int32")
expr = tir.shift_left(x, y)
assert expr.op.name == "tir.shift_left"
def test_tir_op_shift_right():
x = tir.Var("x", dtype="int32")
y = tir.Var("x", dtype="int32")
expr = tir.shift_right(x, y)
assert expr.op.name == "tir.shift_right"
def test_tir_op_TVMBackendAllocWorkspace():
expr = tir.TVMBackendAllocWorkspace(0, 1, 2, 3, 4)
assert expr.op.name == "tir.TVMBackendAllocWorkspace"
def test_tir_op_TVMBackendFreeWorkspace():
buffer = tir.decl_buffer((128), "float32")
expr = tir.TVMBackendFreeWorkspace(0, 1, buffer.data)
assert expr.op.name == "tir.TVMBackendFreeWorkspace"
if __name__ == "__main__":
tvm.testing.main() |
import tvm
from tvm |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.