text
stringlengths
1
2.05k
import te def check_throws(f): try: f() except tvm.error.TVMError: pass else: raise AssertionError("Should have raised an exception but didn't.") def test_const_fold(): def check(f, *args): x = f(*[tvm.tir.const(x, "int32") for x in args]) y = f(*args) if not isinstance(x, (tvm.tir.IntImm,)) or x.value != int(y): raise ValueError("check error: %s vs %s " % (x, y)) tmod = tvm.tir.truncmod check(lambda x, y: x + y, 3, 4) check(lambda x, y: x * y, 3, 12) check(lambda x, y: x * y - 10, 3, 12) check(lambda x, y: x - tmod(y, 10), 3, 12) check(lambda x, y: x check(lambda x, y: x & y + 10, 112, 128) check(lambda x, y: x > y, 112, 128) check(lambda x, y: x < y, 112, 128) check(lambda x, y: x <= y, 112, 128) check(lambda x, y: x >= y, 112, 128) check(lambda x, y: (x | y) ^ 10, 112, 128) def test_const_fold2(): x = te.var("x") tmod = tvm.tir.truncmod tdiv = tvm.tir.truncdiv assert (x + 0).same_as(x) assert (0 + x).same_as(x) assert (x - 0).same_as(x) assert tmod(x, 1).value == 0 assert (x * 1).same_as(x) assert (1 * x).same_as(x) assert isinstance(tdiv(1, x), tvm.tir.Div) def test_const_fold3(): x = te.var("x") for val in [0, 1]: for func in [tvm.tir.all, tvm.tir.any]: check_throws(lambda: func(tvm.tir.const(val, "uint1"), x)) check_throws(lambda: func(x, tvm.tir.const(val, "uint1"))) for tvm_func, py_func in [ (tvm.tir.all, lambda a, b: a and b), (tvm.tir.any, lambda a, b: a or b), ]: for v1 in [0, 1]: for v2 in [0, 1]: assert tvm.ir.structural_equal( tvm_func(tvm.tir.const(v1, "uint1"), tvm.tir.const(v2, "uint1")), tvm.tir.const(py_func(v1, v2), "uint1"), ) x = te.var("x", "uint1") true = tvm.tir.const(1, "uint1") false = tvm.tir.const(0, "uint1") assert tvm.tir.all(x,
true).same_as(x) assert tvm.tir.all(true, x).same_as(x) assert tvm.tir.any(x, false).same_as(x) assert tvm.tir.any(false, x).same_as(x) assert tvm.tir.all(x, false).same_as(false) assert tvm.tir.all(false, x).same_as(false) assert tvm.tir.any(x, true).same_as(true) assert tvm.tir.any(true, x).same_as(true) def test_const_fold4(): x1 = tvm.tir.const(4, "int32") x2 = x1 + 5 tdiv = tvm.tir.truncdiv assert isinstance(x2, tvm.tir.IntImm) and x2.value == 9 x3 = tdiv(x2, 3) assert isinstance(x3, tvm.tir.IntImm) and x3.value == 3 x4 = x3 + 0.55 assert isinstance(x4, tvm.tir.FloatImm) and abs(x4.value - 3.55) < 1e-6 x5 = te.ceil(x4) assert isinstance(x5, tvm.tir.FloatImm) and x5.value == 4 x6 = x5.astype("int") assert isinstance(x6, tvm.tir.IntImm) and x6.value == 4, "x6={}".format(x6) y = (te.round((tvm.tir.const(6.5, "float32") - 1) / 1.5) + 2).astype("int") assert isinstance(y, tvm.tir.IntImm) and y.value == 6 def test_binary_dtype_match(): def verify_general_dtype_support(f, is_conditional=False): rules = [ [("bool", "int32"), "int32"], [("int32", "float32"), "float32"], [("int32", "int64"), "int64"], [("uint32", "int8"), "uint32"], [("uint32", "int32"), "uint32"], ] for (lhs_dtype, rhs_dtype), out_dtype in rules: lhs = te.var("lhs", dtype=lhs_dtype) rhs = te.var("rhs", dtype=rhs_dtype) out = f(lhs, rhs) if not is_conditional: assert out.dtype == out_dtype else: assert out.dtype == "bool" if hasattr(out, "a"): assert out.a.dtype == out_dtype assert out.b.dtype == out_dtype elif hasattr(out, "args"): assert out.args[0].dtype == out_dtype assert out.args[1].dtype == out_dtype else: raise ValueError("Unknown binary op format!"
) def verify_callop_float_only(f): for lhs_dtype in ["int32", "float32", "float64"]: for rhs_dtype in ["int32", "float32", "float64"]: lhs = te.var("lhs", dtype=lhs_dtype) rhs = te.var("rhs", dtype=rhs_dtype) if "float" not in lhs_dtype and "float" not in rhs_dtype: check_throws(lambda: f(lhs, rhs)) elif "float" in lhs_dtype: out = f(lhs, rhs) dtypes = [lhs_dtype, rhs_dtype] if "float64" in dtypes: target_dtype = "float64" elif "float32" in dtypes: target_dtype = "float32" else: target_dtype = "int32" assert out.dtype == target_dtype assert out.args[0].dtype == target_dtype assert out.args[1].dtype == target_dtype else: out = f(lhs, rhs) assert out.dtype == rhs_dtype assert out.args[0].dtype == rhs_dtype assert out.args[1].dtype == rhs_dtype verify_general_dtype_support(lambda a, b: a + b) verify_general_dtype_support(lambda a, b: a * b) verify_general_dtype_support(lambda a, b: a >= b, is_conditional=True) verify_general_dtype_support(lambda a, b: a <= b, is_conditional=True) verify_callop_float_only(lambda a, b: te.power(a, b)) assert tvm.tir.const(1) == tvm.tir.const(True) assert tvm.tir.const(2) != tvm.tir.const(True) def test_if_then_else(): cases = [ [(te.var("cond", dtype="bool"), "bool", "int32"), "int32"], [(True, "int32", "float32"), "float32"], [(False, "int32", "int64"), "int64"], [(te.var("cond", dtype="bool"), "uint32", "int32"), "uint32"], [(te.var("cond", dtype="int32"), "uint32", "int32"), "uint32"], ] for (cond, lhs_dtype, rhs_dtype), o
ut_dtype in cases: lhs = te.var("lhs", dtype=lhs_dtype) rhs = te.var("rhs", dtype=rhs_dtype) if cond is True or cond is False: out = tvm.tir.if_then_else(cond, lhs, rhs) out2 = tvm.tir.if_then_else(not cond, rhs, lhs) out3 = tvm.tir.if_then_else(not cond, lhs, rhs) assert tvm.ir.structural_equal(out, out2) == 1 if cond: assert tvm.ir.structural_equal(out, lhs.astype(out_dtype)) == 1 assert tvm.ir.structural_equal(out3, rhs.astype(out_dtype)) == 1 else: assert tvm.ir.structural_equal(out, rhs.astype(out_dtype)) == 1 assert tvm.ir.structural_equal(out3, lhs.astype(out_dtype)) == 1 elif cond.dtype == "bool": out = tvm.tir.if_then_else(cond, lhs, rhs) assert out.dtype == out_dtype assert out.args[1].dtype == out_dtype assert out.args[2].dtype == out_dtype elif cond.dtype != "bool": check_throws(lambda: tvm.tir.if_then_else(cond, lhs, rhs)) else: raise ValueError("Unknown combinations") if __name__ == "__main__": test_const_fold() test_const_fold2() test_const_fold3() test_const_fold4() test_binary_dtype_match() test_if_then_else()
import tvm from tvm.script
import tir as T
import numpy as np
import tvm.testing @T.prim_func def ptx_cp_async(A: T.Buffer[(32, 128), "float16"], B: T.Buffer[(32, 128), "float16"]) -> None: T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], "float16", scope="shared") T.reads(A[0:32, 0:128]) T.writes(B[0:32, 0:128]) for i in range(16): T.evaluate( T.ptx_cp_async( A_shared.data, tx * 128 + 8 * i, A.data, tx * 128 + 8 * i, 16, dtype="float16" ) ) T.evaluate(T.ptx_commit_group(dtype="")) T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): B[tx, i] = A_shared[tx, i] @tvm.testing.requires_cuda_compute_version(8) def test_ptx_cp_async(): f = ptx_cp_async mod = tvm.build(f, target="cuda") A_np = np.random.rand(32, 128).astype("float16") B_np = np.zeros((32, 128)).astype("float16") dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) mod(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), A_np) if __name__ == "__main__": test_ptx_cp_async()
import tvm from tvm.script
import tir as T
import numpy as np
import tvm.testing @T.prim_func def ptx_ldmatrix( A: T.Buffer[(16, 16), "float16"], B: T.Buffer[(16, 16), "float16"], num: T.int32, trans: T.uint8 ) -> None: T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([16, 16], "float16", scope="shared") A_local = T.alloc_buffer([8], "float16", scope="local") for i in range(8): A_shared[i * 2 + tx T.evaluate( T.ptx_ldmatrix( trans, num, ".b16", A_local.data, 0, A_shared.data, 16 * (tx % 16) + 8 * (tx dtype="float16", ) ) for k in range(2): for j in range(2): for i in range(2): B[8 * j + tx @tvm.testing.requires_cuda_compute_version(7, 5) def test_ptx_ldmatrix(): f = ptx_ldmatrix _, _, param_num, param_trans = f.params for num in [1, 2, 4]: for trans in [False, True]: mod = tvm.build(f.specialize({param_num: num, param_trans: trans}), target="cuda") A_np = np.random.rand(16, 16).astype("float16") A_mask_np = np.zeros_like(A_np) if num == 1: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T else: A_mask_np[:8, :8] = A_np[:8, :8] elif num == 2: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T A_mask_np[8:16, :8] = A_np[8:16, :8].T else: A_mask_np[:16, :8] = A_np[:16, :8] else: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T A_mask_np[8:16, :8] = A_np[8:16, :8].T A_mask_np[:8, 8:16] = A_np[:8, 8
:16].T A_mask_np[8:16, 8:16] = A_np[8:16, 8:16].T else: A_mask_np[:16, :16] = A_np[:16, :16] B_np = np.zeros((16, 16)).astype("float16") dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) mod(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), A_mask_np) if __name__ == "__main__": test_ptx_ldmatrix()
import sys
import pytest
import tvm from tvm.script
import tir as T
import numpy as np
import tvm.testing @T.prim_func def gemm_mma_m8n8k4_row_col_fp64pf64fp64(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [8, 4], dtype="float64") B = T.match_buffer(b, [8, 4], dtype="float64") C = T.match_buffer(c, [8, 8], dtype="float64") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([1], "float64", scope="local") MultiB = T.decl_buffer([1], "float64", scope="local") Accum = T.decl_buffer([2], "float64", scope="local") for i in range(2): Accum[i] = T.float64(0) MultiA[0] = A[(tx % 32) MultiB[0] = B[(tx % 32) T.evaluate( T.ptx_mma( "m8n8k4", "row", "col", "fp64", "fp64", "fp64", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="float64", ) ) for mma_accum_c_id in range(2): C[(tx % 32) @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m8n8k4_row_col_fp64pf64fp64(): sch = tvm.tir.Schedule(gemm_mma_m8n8k4_row_col_fp64pf64fp64) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [8, 4]).astype("float64") B_np = np.random.uniform(-1, 1, [8, 4]).astype("float64") C_np = np.zeros([8, 8]).astype("float64") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("float64"), B_np.astype("float64").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m8n8k4_row_row_fp16fp16fp16(a: T.handle, b: T.handle, c: T.handle): T
.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 4], dtype="float16") B = T.match_buffer(b, [4, 16], dtype="float16") C = T.match_buffer(c, [16, 16], dtype="float16") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([4], "float16", scope="local") MultiB = T.decl_buffer([4], "float16", scope="local") Accum = T.decl_buffer([8], "float16", scope="local") for i in range(8): Accum[i] = T.float32(0) for mma_multi_a_col in T.vectorized(4): MultiA[mma_multi_a_col] = A[ ((tx % 32) % 4) + (4 * ((((tx % 32) mma_multi_a_col, ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) % 4, mma_multi_b_col + (4 * ((tx % 32) ] T.evaluate( T.ptx_mma( "m8n8k4", "row", "row", "fp16", "fp16", "fp16", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="float16", ) ) for mma_accum_c_id in range(8): C[ ((tx % 32) % 4) + (4 * ((((tx % 32) mma_accum_c_id % 4 + (4 * ((tx % 32) % 16 ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(7) def test_gemm_mma_m8n8k4_row_row_fp16fp16fp16(): sch = tvm.tir.Schedule(gemm_mma_m8n8k4_row_row_fp16fp16fp16) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [16, 4]).astype("float16") B_np = np.random.uniform(-1, 1, [4, 16]).astype("float16") C_np = np.zeros([16, 16]).astype("float16") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm
, B_tvm, C_tvm) golden = np.matmul(A_np.astype("float16"), B_np.astype("float16")) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m8n8k4_row_row_fp16fp16fp32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 4], dtype="float16") B = T.match_buffer(b, [4, 16], dtype="float16") C = T.match_buffer(c, [16, 16], dtype="float32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([4], "float16", scope="local") MultiB = T.decl_buffer([4], "float16", scope="local") Accum = T.decl_buffer([8], "float32", scope="local") for i in range(8): Accum[i] = T.float32(0) for mma_multi_a_col in T.vectorized(4): MultiA[mma_multi_a_col] = A[ ((tx % 32) % 4) + (4 * ((((tx % 32) mma_multi_a_col, ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) % 4, mma_multi_b_col + (4 * ((tx % 32) ] T.evaluate( T.ptx_mma( "m8n8k4", "row", "row", "fp16", "fp16", "fp32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="float32", ) ) for mma_accum_c_id in range(8): C[ ((tx % 32) % 2) + ((mma_accum_c_id + 4 * ((tx % 32) + ((tx % 32) % 16 (tx % 32) % 4 + (tx % 32) % 16 + mma_accum_c_id % 2 + mma_accum_c_id ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(7) def test_gemm_mma_m8n8k4_row_row_fp16fp16fp32(): sch =
tvm.tir.Schedule(gemm_mma_m8n8k4_row_row_fp16fp16fp32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [16, 4]).astype("float16") B_np = np.random.uniform(-1, 1, [4, 16]).astype("float16") C_np = np.zeros([16, 16]).astype("float32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("float32"), B_np.astype("float32")) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m8n8k16_row_col_s8s8s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [8, 16], dtype="int8") B = T.match_buffer(b, [8, 16], dtype="int8") C = T.match_buffer(c, [8, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([4], "int8", scope="local") MultiB = T.decl_buffer([4], "int8", scope="local") Accum = T.decl_buffer([2], "int32", scope="local") for i in range(2): Accum[i] = T.int32(0) for mma_multi_a_col in T.vectorized(4): MultiA[mma_multi_a_col] = A[(tx % 32) for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[(tx % 32) T.evaluate( T.ptx_mma( "m8n8k16", "row", "col", "int8", "int8", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(2): C[(tx % 32) @tvm.testing.requires_nvcc_version(11) @tvm.testing.requires_cuda_compute_version(7, 5) def test_gemm_mma_m8n8k16_ro
w_col_s8s8s32(): sch = tvm.tir.Schedule(gemm_mma_m8n8k16_row_col_s8s8s32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-10, 10, [8, 16]).astype("int8") B_np = np.random.uniform(-10, 10, [8, 16]).astype("int8") C_np = np.zeros([8, 8]).astype("int32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("int32"), B_np.astype("int32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m8n8k16_row_col_s8u8s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [8, 16], dtype="int8") B = T.match_buffer(b, [8, 16], dtype="uint8") C = T.match_buffer(c, [8, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([4], "int8", scope="local") MultiB = T.decl_buffer([4], "uint8", scope="local") Accum = T.decl_buffer([2], "int32", scope="local") for i in range(2): Accum[i] = T.int32(0) for mma_multi_a_col in T.vectorized(4): MultiA[mma_multi_a_col] = A[(tx % 32) for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[(tx % 32) T.evaluate( T.ptx_mma( "m8n8k16", "row", "col", "int8", "uint8", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(2): C[(tx % 32) @tvm.testing.requires_nvcc_version(11) @tvm.testing.requires_cuda_compute_version(7, 5) def test_g
emm_mma_m8n8k16_row_col_s8u8s32(): sch = tvm.tir.Schedule(gemm_mma_m8n8k16_row_col_s8u8s32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-10, 10, [8, 16]).astype("int8") B_np = np.random.uniform(-10, 10, [8, 16]).astype("uint8") C_np = np.zeros([8, 8]).astype("int32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("int32"), B_np.astype("int32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m8n8k32_row_col_s4s4s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [8, 32], dtype="int4") B = T.match_buffer(b, [8, 32], dtype="int4") C = T.match_buffer(c, [8, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([8], "int4", scope="local") MultiB = T.decl_buffer([8], "int4", scope="local") Accum = T.decl_buffer([2], "int32", scope="local") for i in range(2): Accum[i] = T.int32(0) for mma_multi_a_col in T.vectorized(8): MultiA[mma_multi_a_col] = A[(tx % 32) for mma_multi_b_col in T.vectorized(8): MultiB[mma_multi_b_col] = B[(tx % 32) T.evaluate( T.ptx_mma( "m8n8k32", "row", "col", "int4", "int4", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(2): C[(tx % 32) @tvm.testing.requires_nvcc_version(11) @tvm.testing.requires_cuda_compute_version(
7, 5) def test_gemm_mma_m8n8k32_row_col_s4s4s32(): sch = tvm.tir.Schedule(gemm_mma_m8n8k32_row_col_s4s4s32) cuda_mod = tvm.build(sch.mod, target="cuda") ctx = tvm.cuda() A_tvm = tvm.nd.empty([8, 32], "int4", ctx) B_tvm = tvm.nd.empty([8, 32], "int4", ctx) C_tvm = tvm.nd.empty([8, 8], "int32", ctx) cuda_mod(A_tvm, B_tvm, C_tvm) @T.prim_func def gemm_mma_m8n8k32_row_col_s4u4s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [8, 32], dtype="int4") B = T.match_buffer(b, [8, 32], dtype="uint4") C = T.match_buffer(c, [8, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([8], "int4", scope="local") MultiB = T.decl_buffer([8], "uint4", scope="local") Accum = T.decl_buffer([2], "int32", scope="local") for i in range(2): Accum[i] = T.int32(0) for mma_multi_a_col in T.vectorized(8): MultiA[mma_multi_a_col] = A[(tx % 32) for mma_multi_b_col in T.vectorized(8): MultiB[mma_multi_b_col] = B[(tx % 32) T.evaluate( T.ptx_mma( "m8n8k32", "row", "col", "int4", "uint4", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(2): C[(tx % 32) @tvm.testing.requires_nvcc_version(11) @tvm.testing.requires_cuda_compute_version(7, 5) def test_gemm_mma_m8n8k32_row_col_s4u4s32(): sch = tvm.tir.Schedule(gemm_mma_m8n8k32_row_col_s4u4s32) cuda_mod = tvm.build(sch.mod, target="cuda") ctx = tvm.cuda() A_tvm = tvm.nd.empty([8, 32], "int4", ctx) B_tvm = tvm.nd.empty([8, 32], "uint4", ctx)
C_tvm = tvm.nd.empty([8, 8], "int32", ctx) cuda_mod(A_tvm, B_tvm, C_tvm) @T.prim_func def gemm_mma_m16n8k8_row_col_fp16fp16fp32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 8], dtype="float16") B = T.match_buffer(b, [8, 8], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([4], "float16", scope="local") MultiB = T.decl_buffer([2], "float16", scope="local") Accum = T.decl_buffer([4], "float32", scope="local") for i in range(4): Accum[i] = T.float32(0) for mma_multi_a_col in T.vectorized(4): MultiA[mma_multi_a_col] = A[ (tx % 32) ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) ] T.evaluate( T.ptx_mma( "m16n8k8", "row", "col", "fp16", "fp16", "fp32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="float32", ) ) for mma_accum_c_id in range(4): C[(tx % 32) mma_accum_c_id ] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k8_row_col_fp16fp16fp32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k8_row_col_fp16fp16fp32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [16, 8]).astype("float16") B_np = np.random.uniform(-1, 1, [8, 8]).astype("float16") C_np = np.zeros([16, 8]).astype("float32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_t
vm, C_tvm) golden = np.matmul(A_np.astype("float32"), B_np.astype("float32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k16_row_col_fp16fp16fp16(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 16], dtype="float16") B = T.match_buffer(b, [8, 16], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float16") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([8], "float16", scope="local") MultiB = T.decl_buffer([4], "float16", scope="local") Accum = T.decl_buffer([4], "float16", scope="local") for i in range(4): Accum[i] = T.float32(0) for mma_multi_a_col in range(8): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 2 + mma_multi_a_col % 2 + mma_multi_a_col ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 2 + mma_multi_b_col % 2 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m16n8k16", "row", "col", "fp16", "fp16", "fp16", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="float16", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k16_row_col_fp16fp16fp16(): sch = tvm.tir.Schedule(gemm_mma_m16n8k16_row_col_fp16fp16fp16) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform
(-1, 1, [16, 16]).astype("float16") B_np = np.random.uniform(-1, 1, [8, 16]).astype("float16") C_np = np.zeros([16, 8]).astype("float16") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("float16"), B_np.astype("float16").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k16_row_col_fp16fp16fp32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 16], dtype="float16") B = T.match_buffer(b, [8, 16], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([8], "float16", scope="local") MultiB = T.decl_buffer([4], "float16", scope="local") Accum = T.decl_buffer([4], "float32", scope="local") for i in range(4): Accum[i] = T.float32(0) for mma_multi_a_col in range(8): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 2 + mma_multi_a_col % 2 + mma_multi_a_col ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 2 + mma_multi_b_col % 2 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m16n8k16", "row", "col", "fp16", "fp16", "fp32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="float32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2
+ mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k16_row_col_fp16fp16fp32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k16_row_col_fp16fp16fp32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [16, 16]).astype("float16") B_np = np.random.uniform(-1, 1, [8, 16]).astype("float16") C_np = np.zeros([16, 8]).astype("float32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("float32"), B_np.astype("float32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k16_row_col_s8s8s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 16], dtype="int8") B = T.match_buffer(b, [8, 16], dtype="int8") C = T.match_buffer(c, [16, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([8], "int8", scope="local") MultiB = T.decl_buffer([4], "int8", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(8): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_a_col % 4, ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_b_col, ] T.evaluate( T.ptx_mma( "m16n8k16", "row", "col", "int8", "int8", "int32", MultiA.data, 0,
MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k16_row_col_s8s8s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k16_row_col_s8s8s32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-10, 10, [16, 16]).astype("int8") B_np = np.random.uniform(-10, 10, [8, 16]).astype("int8") C_np = np.zeros([16, 8]).astype("int32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("int32"), B_np.astype("int32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k16_row_col_s8u8s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 16], dtype="int8") B = T.match_buffer(b, [8, 16], dtype="uint8") C = T.match_buffer(c, [16, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([8], "int8", scope="local") MultiB = T.decl_buffer([4], "uint8", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(8): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_a_col % 4, ] for mma_multi_b_col in T.vectorized(4): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_
b_col, ] T.evaluate( T.ptx_mma( "m16n8k16", "row", "col", "int8", "uint8", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k16_row_col_s8u8s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k16_row_col_s8u8s32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-10, 10, [16, 16]).astype("int8") B_np = np.random.uniform(-10, 10, [8, 16]).astype("uint8") C_np = np.zeros([16, 8]).astype("int32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("int32"), B_np.astype("int32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k32_row_col_s8s8s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 32], dtype="int8") B = T.match_buffer(b, [8, 32], dtype="int8") C = T.match_buffer(c, [16, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([16], "int8", scope="local") MultiB = T.decl_buffer([8], "int8", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(16): MultiA[mma_multi_a_col] = A[
(tx % 32) (tx % 32) % 4 * 4 + mma_multi_a_col % 4 + mma_multi_a_col ] for mma_multi_b_col in range(8): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_b_col % 4 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m16n8k32", "row", "col", "int8", "int8", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k32_row_col_s8s8s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k32_row_col_s8s8s32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-10, 10, [16, 32]).astype("int8") B_np = np.random.uniform(-10, 10, [8, 32]).astype("int8") C_np = np.zeros([16, 8]).astype("int32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("int32"), B_np.astype("int32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k32_row_col_s8u8s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 32], dtype="int8") B = T.match_buffer(b, [8, 32], dtype="uint8") C = T.match_buffer(c, [16, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([16], "int8", scope="loc
al") MultiB = T.decl_buffer([8], "uint8", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(16): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_a_col % 4 + mma_multi_a_col ] for mma_multi_b_col in range(8): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 4 + mma_multi_b_col % 4 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m16n8k32", "row", "col", "int8", "uint8", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k32_row_col_s8u8s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k32_row_col_s8u8s32) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-10, 10, [16, 32]).astype("int8") B_np = np.random.uniform(-10, 10, [8, 32]).astype("uint8") C_np = np.zeros([16, 8]).astype("int32") ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(C_np, ctx) cuda_mod(A_tvm, B_tvm, C_tvm) golden = np.matmul(A_np.astype("int32"), B_np.astype("int32").T) C_numpy = C_tvm.numpy() tvm.testing.assert_allclose(golden, C_numpy, atol=1e-3, rtol=1e-3) @T.prim_func def gemm_mma_m16n8k64_row_col_s4s4s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 64], dtype="int4") B = T.match_buffer(b, [8, 64], dtype="int4") C = T.match_buffer(c, [16, 8], dtype="in
t32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([32], "int4", scope="local") MultiB = T.decl_buffer([16], "int4", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(32): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 8 + mma_multi_a_col % 8 + mma_multi_a_col ] for mma_multi_b_col in range(16): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 8 + mma_multi_b_col % 8 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m8n8k32", "row", "col", "int4", "int4", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k64_row_col_s4s4s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k64_row_col_s4s4s32) cuda_mod = tvm.build(sch.mod, target="cuda") ctx = tvm.cuda() A_tvm = tvm.nd.empty([16, 64], "int4", ctx) B_tvm = tvm.nd.empty([8, 64], "int4", ctx) C_tvm = tvm.nd.empty([16, 8], "int32", ctx) cuda_mod(A_tvm, B_tvm, C_tvm) @T.prim_func def gemm_mma_m16n8k64_row_col_s4u4s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 64], dtype="int4") B = T.match_buffer(b, [8, 64], dtype="uint4") C = T.match_buffer(c, [16, 8], dtype="int32") brow = T.env_thread("blockIdx.y"
) bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([32], "int4", scope="local") MultiB = T.decl_buffer([16], "uint4", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(32): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 8 + mma_multi_a_col % 8 + mma_multi_a_col ] for mma_multi_b_col in range(16): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 8 + mma_multi_b_col % 8 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m8n8k32", "row", "col", "int4", "uint4", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k64_row_col_s4u4s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k64_row_col_s4u4s32) cuda_mod = tvm.build(sch.mod, target="cuda") ctx = tvm.cuda() A_tvm = tvm.nd.empty([16, 64], "int4", ctx) B_tvm = tvm.nd.empty([8, 64], "uint4", ctx) C_tvm = tvm.nd.empty([16, 8], "int32", ctx) cuda_mod(A_tvm, B_tvm, C_tvm) @T.prim_func def gemm_mma_m16n8k256_row_col_b1b1s32(a: T.handle, b: T.handle, c: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 256], dtype="int1") B = T.match_buffer(b, [8, 256], dtype="int1") C = T.match_buffer(c, [16, 8], dtype="int32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x
") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) MultiA = T.decl_buffer([128], "int1", scope="local") MultiB = T.decl_buffer([64], "int1", scope="local") Accum = T.decl_buffer([4], "int32", scope="local") for i in range(4): Accum[i] = T.int32(0) for mma_multi_a_col in range(128): MultiA[mma_multi_a_col] = A[ (tx % 32) (tx % 32) % 4 * 32 + mma_multi_a_col % 32 + mma_multi_a_col ] for mma_multi_b_col in range(16): MultiB[mma_multi_b_col] = B[ (tx % 32) (tx % 32) % 4 * 32 + mma_multi_b_col % 32 + mma_multi_b_col ] T.evaluate( T.ptx_mma( "m16n8k256", "row", "col", "int1", "int1", "int32", MultiA.data, 0, MultiB.data, 0, Accum.data, 0, False, "xor", dtype="int32", ) ) for mma_accum_c_id in range(4): C[ (tx % 32) (tx % 32) % 4 * 2 + mma_accum_c_id % 2, ] = Accum[mma_accum_c_id] @tvm.testing.requires_cuda_compute_version(8) def test_gemm_mma_m16n8k256_row_col_b1b1s32(): sch = tvm.tir.Schedule(gemm_mma_m16n8k256_row_col_b1b1s32) cuda_mod = tvm.build(sch.mod, target="cuda") ctx = tvm.cuda() A_tvm = tvm.nd.empty([16, 256], "int1", ctx) B_tvm = tvm.nd.empty([8, 256], "int1", ctx) C_tvm = tvm.nd.empty([16, 8], "int32", ctx) cuda_mod(A_tvm, B_tvm, C_tvm) if __name__ == "__main__": tvm.testing.main()
import tvm from tvm.script
import tir as T
import numpy as np
import tvm.testing def gen_2in4_mask(m: int, n: int): assert n % 4 == 0 return np.array( [[np.sort(np.random.choice(4, 2, replace=False)) for _ in range(n ).astype("uint8") def get_dense_mat_by_mask(val, mask): m, n_chunks, _ = mask.shape val = val.reshape(m, n_chunks, 2) ret = np.zeros((m, n_chunks, 4)).astype(val.dtype) for i in range(m): for j in range(n_chunks): for k in range(2): ret[i, j, mask[i, j, k]] = val[i, j, k] return ret.reshape(m, n_chunks * 4) @T.prim_func def mma_sp_m16n8k16_f16f16f16(a: T.handle, b: T.handle, c: T.handle, _metadata: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 8], dtype="float16") B = T.match_buffer(b, [16, 8], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float16") metadata = T.match_buffer(_metadata, [8], dtype="uint32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) multi_a = T.decl_buffer([4], "float16", scope="local") multi_b = T.decl_buffer([4], "float16", scope="local") accum = T.decl_buffer([4], "float16", scope="local") meta_local = T.decl_buffer([1], "uint32", scope="local") for i in range(4): accum[i] = T.float16(0) for i in range(4): multi_a[i] = A[tx for i in range(4): multi_b[i] = B[tx % 4 * 2 + i % 2 + i meta_local[0] = metadata[tx T.evaluate( T.ptx_mma_sp( "m16n8k16", "row", "col", "fp16", "fp16", "fp16", multi_a.data, 0, multi_b.data, 0, accum.data, 0, meta_local.data, 0, 0, False, dtype="float16", ) ) for i in range(4): C[i @T.prim_func
def mma_sp_m16n8k16_f16f16f32(a: T.handle, b: T.handle, c: T.handle, _metadata: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 8], dtype="float16") B = T.match_buffer(b, [16, 8], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float32") metadata = T.match_buffer(_metadata, [8], dtype="uint32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) multi_a = T.decl_buffer([4], "float16", scope="local") multi_b = T.decl_buffer([4], "float16", scope="local") accum = T.decl_buffer([4], "float32", scope="local") meta_local = T.decl_buffer([1], "uint32", scope="local") for i in range(4): accum[i] = T.float16(0) for i in range(4): multi_a[i] = A[tx for i in range(4): multi_b[i] = B[tx % 4 * 2 + i % 2 + i meta_local[0] = metadata[tx T.evaluate( T.ptx_mma_sp( "m16n8k16", "row", "col", "fp16", "fp16", "fp32", multi_a.data, 0, multi_b.data, 0, accum.data, 0, meta_local.data, 0, 0, False, dtype="float32", ) ) for i in range(4): C[i @T.prim_func def mma_sp_m16n8k32_f16f16f16(a: T.handle, b: T.handle, c: T.handle, _metadata: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 16], dtype="float16") B = T.match_buffer(b, [32, 8], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float16") metadata = T.match_buffer(_metadata, [16], dtype="uint32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1)
T.launch_thread(tx, 32) multi_a = T.decl_buffer([8], "float16", scope="local") multi_b = T.decl_buffer([8], "float16", scope="local") accum = T.decl_buffer([4], "float16", scope="local") meta_local = T.decl_buffer([1], "uint32", scope="local") for i in range(4): accum[i] = T.float16(0) for i in range(8): multi_a[i] = A[(i % 4) for i in range(8): multi_b[i] = B[i meta_local[0] = metadata[tx T.evaluate( T.ptx_mma_sp( "m16n8k32", "row", "col", "fp16", "fp16", "fp16", multi_a.data, 0, multi_b.data, 0, accum.data, 0, meta_local.data, 0, 0, False, dtype="float16", ) ) for i in range(4): C[i @T.prim_func def mma_sp_m16n8k32_f16f16f32(a: T.handle, b: T.handle, c: T.handle, _metadata: T.handle): T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) A = T.match_buffer(a, [16, 16], dtype="float16") B = T.match_buffer(b, [32, 8], dtype="float16") C = T.match_buffer(c, [16, 8], dtype="float32") metadata = T.match_buffer(_metadata, [16], dtype="uint32") brow = T.env_thread("blockIdx.y") bcol = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(brow, 1) T.launch_thread(bcol, 1) T.launch_thread(tx, 32) multi_a = T.decl_buffer([8], "float16", scope="local") multi_b = T.decl_buffer([8], "float16", scope="local") accum = T.decl_buffer([4], "float32", scope="local") meta_local = T.decl_buffer([1], "uint32", scope="local") for i in range(4): accum[i] = T.float16(0) for i in range(8): multi_a[i] = A[(i % 4) for i in range(8): multi_b[i] = B[i meta_local[0] = metadata[tx T.evaluate( T.ptx_mma_sp( "m16n8k32", "row", "col", "fp1
6", "fp16", "fp32", multi_a.data, 0, multi_b.data, 0, accum.data, 0, meta_local.data, 0, 0, False, dtype="float32", ) ) for i in range(4): C[i @tvm.testing.requires_cuda_compute_version(8) def test_mma_sp_m16n8k16_f16(): def get_meta_m16n8k16_half(mask): assert mask.shape == (16, 4, 2) mask = mask.reshape(16, 8) ret = np.zeros((8,)).astype("uint32") for i in range(8): base = 1 for blk in range(2): for j in range(8): ret[i] |= int(mask[blk * 8 + i, j]) * base base = base << 2 return ret for out_dtype in ["float16", "float32"]: func = mma_sp_m16n8k16_f16f16f16 if out_dtype == "float16" else mma_sp_m16n8k16_f16f16f32 sch = tvm.tir.Schedule(func) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [16, 8]).astype("float16") B_np = np.random.uniform(-1, 1, [16, 8]).astype("float16") mask = gen_2in4_mask(16, 16) A_dense_np = get_dense_mat_by_mask(A_np, mask) C_np = np.matmul(A_dense_np, B_np).astype(out_dtype) meta = get_meta_m16n8k16_half(mask) ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(np.zeros_like(C_np), ctx) meta_tvm = tvm.nd.array(meta, ctx) cuda_mod(A_tvm, B_tvm, C_tvm, meta_tvm) tvm.testing.assert_allclose(C_tvm.numpy(), C_np, atol=1e-3, rtol=1e-3) @tvm.testing.requires_cuda_compute_version(8) def test_mma_sp_m16n8k32_f16(): def get_meta_m16n8k32_half(mask): assert mask.shape == (16, 8, 2) mask = mask.reshape(16, 2, 8) ret = np.zeros((8, 2)).astype("uint32") for i in range(8): for k in range(2): base = 1 for bl
k in range(2): for j in range(8): ret[i, k] |= int(mask[blk * 8 + i, k, j]) * base base = base << 2 return ret.reshape(16) for out_dtype in ["float16", "float32"]: func = mma_sp_m16n8k32_f16f16f16 if out_dtype == "float16" else mma_sp_m16n8k32_f16f16f32 sch = tvm.tir.Schedule(func) cuda_mod = tvm.build(sch.mod, target="cuda") A_np = np.random.uniform(-1, 1, [16, 16]).astype("float16") B_np = np.random.uniform(-1, 1, [32, 8]).astype("float16") mask = gen_2in4_mask(16, 32) A_dense_np = get_dense_mat_by_mask(A_np, mask) C_np = np.matmul(A_dense_np, B_np).astype(out_dtype) meta = get_meta_m16n8k32_half(mask) ctx = tvm.cuda() A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) C_tvm = tvm.nd.array(np.zeros_like(C_np), ctx) meta_tvm = tvm.nd.array(meta, ctx) cuda_mod(A_tvm, B_tvm, C_tvm, meta_tvm) tvm.testing.assert_allclose(C_tvm.numpy(), C_np, atol=1e-3, rtol=1e-3) if __name__ == "__main__": test_mma_sp_m16n8k16_f16() test_mma_sp_m16n8k32_f16()
import pytest
import sys
import tvm
import tvm.testing from tvm.script
import tir as T from tvm.tir.buffer
import Buffer from tvm.tir.function
import PrimFunc from tvm.tir.stmt
import Block def _check_func_signature_remap(lhs: PrimFunc, rhs: PrimFunc): assert lhs != rhs for x, y in zip(lhs.params, rhs.params): assert x != y assert lhs.buffer_map[x] != rhs.buffer_map[y] def _check_buffer_decl(lhs: Buffer, rhs: Buffer): assert lhs != rhs assert lhs.data != rhs.data def _check_block_signature_remap(lhs: Block, rhs: Block): assert lhs != rhs for x, y in zip(lhs.iter_vars, rhs.iter_vars): assert x != y assert x.var != y.var for x, y in zip(lhs.alloc_buffers, rhs.alloc_buffers): _check_buffer_decl(x, y) for x, y in zip(lhs.match_buffers, rhs.match_buffers): assert x != y _check_buffer_decl(x.buffer, y.buffer) def test_simple(): @T.prim_func def elementwise(A: T.Buffer[(128, 128), "float32"]): B = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] * 2.0 f1 = elementwise f2 = tvm.tir.stmt_functor.renew_defs(f1) tvm.ir.assert_structural_equal(f1, f2) _check_func_signature_remap(f1, f2) _check_block_signature_remap(f1.body.block, f2.body.block) assert f1.body.block.body.loop_var != f2.body.block.body.loop_var assert f1.body.block.body.body.loop_var != f2.body.block.body.body.loop_var def _get_block(f): return f.body.block.body.body.body.block _check_block_signature_remap(_get_block(f1), _get_block(f2)) def test_match_buffer(): @T.prim_func def func_match_buffer(A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"]): with T.block("root"): s = T.var("int32") e = T.var("int32") A0 = T.match_buffer( A[0:128, 0:128], shape=(128, 128), dtyp
e="float32", strides=[s, s], elem_offset=e, ) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A0[vi, vj] * 2.0 f1 = func_match_buffer f2 = tvm.tir.stmt_functor.renew_defs(f1) tvm.ir.assert_structural_equal(f1, f2) _check_func_signature_remap(f1, f2) _check_block_signature_remap(f1.body.block, f2.body.block) assert f1.body.block.body.loop_var != f2.body.block.body.loop_var def _get_block(f): return f.body.block block1 = _get_block(f1) block2 = _get_block(f2) _check_block_signature_remap(block1, block2) matched_buffer1 = block1.match_buffers[0].buffer matched_buffer2 = block2.match_buffers[0].buffer assert matched_buffer1.strides[0] != matched_buffer2.strides[0] assert matched_buffer1.strides[1] != matched_buffer2.strides[1] assert matched_buffer1.strides[0] == matched_buffer1.strides[1] assert matched_buffer2.strides[0] == matched_buffer2.strides[1] assert matched_buffer1.elem_offset != matched_buffer2.elem_offset def test_undefined_buffer(): @T.prim_func def access_alloc(): A_data = T.allocate([128], "float16", "global") A = T.buffer_decl(shape=[128], dtype="float16", data=A_data) T.evaluate(A.data) for i in range(128): A[i] = A[i] + T.float16(1.0) f1 = access_alloc f2 = tvm.tir.stmt_functor.renew_defs(f1) tvm.ir.assert_structural_equal(f1, f2) assert f1.body.buffer_var != f2.body.buffer_var def _get_buffer_store_buffer(f): return f.body.body[1].body.buffer _check_buffer_decl(_get_buffer_store_buffer(f1), _get_buffer_store_buffer(f2)) def test_symbolic_func(): @T.prim_func def symbolic_func(a: T.handle, b: T.handle, n: T.int32): m = T.var("int32") A = T.match_buffer(a, (n, m)) B = T.match_buffer(b, (n, m
* 2)) for i, j in T.grid(n, m): B[i, j * 2] = A[i, j] B[i, j * 2 + 1] = A[i, j] f1 = symbolic_func f2 = tvm.tir.stmt_functor.renew_defs(f1) tvm.ir.assert_structural_equal(f1, f2) if __name__ == "__main__": tvm.testing.main()
from typing
import List
import pytest
import tvm
import tvm.testing from tvm.tir.function
import TensorIntrin from tvm.tir.tensor_intrin.x86
import dot_product_16x4_u8i8i32_desc from tvm.tir.tensor_intrin.cuda
import ( WMMA_SYNC_16x16x16_f16f16f16_INTRIN, WMMA_SYNC_16x16x16_f16f16f32_INTRIN, ) from tvm.tir
import Evaluate, For, ForKind, IndexMap, Var, decl_buffer, floordiv, floormod, Schedule from tvm.tir.analysis
import expr_deep_equal from tvm.tir.schedule.analysis
import ( get_auto_tensorize_mapping_info, suggest_index_map, get_tensorize_loop_mapping, TensorizeInfo, ) from tvm.script
import tir as T from tvm.tir.stmt_functor
import pre_order_visit from tvm.meta_schedule.testing
import te_workload from tvm.te
import create_prim_func def _make_vars(*args: str) -> List[Var]: return [Var(arg, dtype="int32") for arg in args] def _make_loops(loop_vars: List[Var], extents: List[int]) -> List[For]: assert len(loop_vars) == len(extents) return [ For( loop_var=loop_var, min_val=0, extent=extent, kind=ForKind.SERIAL, body=Evaluate(0), ) for loop_var, extent in zip(loop_vars, extents) ] def test_suggest_index_map_simple(): i, j = _make_vars("i", "j") index_map = suggest_index_map( buffer=decl_buffer(shape=[8, 256]), indices=[ floordiv(i, 16) * 4 + floordiv(j, 16), floormod(i, 16) * 16 + floormod(j, 16), ], loops=_make_loops( loop_vars=[i, j], extents=[32, 64], ), predicate=True, ) expected_index_map = IndexMap.from_func( lambda x, y: [ floordiv(x, 4), floordiv(y, 16), floormod(x, 4), floormod(y, 16), ], ) assert index_map.is_equivalent_to(expected_index_map) def test_suggest_index_map_bijective(): i, j = _make_vars("i", "j") index_map = suggest_index_map( buffer=decl_buffer(shape=[8]), indices=[floormod(j, 4) * 2 + i], loops=_make_loops( loop_vars=[i, j], extents=[2, 32], ), predicate=True, ) expected_index_map = IndexMap.from_func( lambda x: [ floormod(x, 2), floordiv(x, 2), ], ) assert index_map.is_equivalent_to(expected_index_map) def test_suggest_index_map_winograd(): """use case in winograd conv where the indices are complicated""" fused_outer, i3_3_fused, i4_0, i4_1 = _make_vars("fused_outer", "i3_3_fused", "i4_0", "i4_1") eps = floordiv(fused_outer, 336) * 2 + floordiv(floormod(fused_outer, 16), 8) nu = floordiv(floormod(fused_outer, 336), 112) * 2 + floordiv(floormod(fused_outer, 8), 4)
co = floormod(fused_outer, 4) * 32 + i3_3_fused ci = (i4_0 * 32) + i4_1 buffer = decl_buffer(shape=[6, 6, 128, 128]) index_map = suggest_index_map( buffer=buffer, indices=[eps, nu, co, ci], loops=_make_loops( loop_vars=[fused_outer, i3_3_fused, i4_0, i4_1], extents=[1008, 32, 4, 32], ), predicate=True, ) expected_index_map = IndexMap.from_func( lambda i0, i1, i2, i3: ( floordiv(i0, 2), floordiv(i1, 2), floormod(i0, 2), floormod(((i1 * 4) + floordiv(i2, 32)), 8), floormod(i2, 32), floordiv(i3, 32), floormod(i3, 32), ) ) assert index_map.is_equivalent_to(expected_index_map) inverse_index_map = index_map.inverse(buffer.shape) expected_inverse_index_map = IndexMap.from_func( lambda i0, i1, i2, i3, i4, i5, i6: ( ((i0 * 2) + i2), ((i1 * 2) + floordiv(((i3 * 32) + i4), 128)), floormod(((i3 * 32) + i4), 128), ((i5 * 32) + i6), ) ) assert inverse_index_map.is_equivalent_to(expected_inverse_index_map) @tvm.script.ir_module class DenseVNNIModule: @T.prim_func def main( placeholder: T.Buffer[(1024, 1024), "uint8"], placeholder_1: T.Buffer[(64, 256, 16, 4), "int8"], compute: T.Buffer[(1024, 1024), "int32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() for i0, i1, i2 in T.grid(1024, 1024, 1024): with T.block("compute"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(placeholder[i, k], placeholder_1[j T.writes(compute[i, j]) with T.init(): compute[i, j] = 0 compute[i, j] = compute[i, j] + T.cast(placeholder[i, k], "int32") * T.cast( place
holder_1[j ) @tvm.script.ir_module class Conv2dNCHWcVNNIModule: @T.prim_func def main( placeholder: T.Buffer[(1, 4, 56, 56, 16), "uint8"], placeholder_1: T.Buffer[(16, 4, 1, 1, 4, 16, 4), "int8"], conv2d_NCHWc_int8: T.Buffer[(1, 16, 56, 56, 16), "int32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0, i1, i2, i3, i4, i5, i6, i7, i8, i9 in T.grid(1, 16, 56, 56, 16, 1, 1, 4, 4, 4): with T.block("conv2d_NCHWc_int8"): ( n, oc_chunk, oh, ow, oc_block, kh, kw, ic_outer, ic_f_inner, ic_s_inner, ) = T.axis.remap("SSSSSRRRRR", [i0, i1, i2, i3, i4, i5, i6, i7, i8, i9]) T.reads( placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner], ) T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block]) with T.init(): conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = 0 conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = conv2d_NCHWc_int8[ n, oc_chunk, oh, ow, oc_block ] + T.cast( placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], "int32" ) * T.cast( placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner], "int32", ) def collect_loops(prim_func): loops = [] def callback(node): if isinstance(node, tvm.tir.For): loops.append(node) return True pre_order_visit(prim_func.body, callback) return loops def test_get_tensorize_loop_mapping_dense_vnni():
s = Schedule(DenseVNNIModule) block = s.get_block("compute") info = get_tensorize_loop_mapping(s, block, dot_product_16x4_u8i8i32_desc) assert isinstance(info, TensorizeInfo) desc_loop_to_sref = dict((v, k) for k, v in info.loop_map.items()) desc_loops = collect_loops(dot_product_16x4_u8i8i32_desc) _, loop_j, loop_k = s.get_loops(block) assert desc_loops[0] in desc_loop_to_sref and desc_loops[1] in desc_loop_to_sref assert s.get(desc_loop_to_sref[desc_loops[0]]) == s.get(loop_j) assert s.get(desc_loop_to_sref[desc_loops[1]]) == s.get(loop_k) def test_get_tensorize_loop_mapping_conv2d_nchwc_vnni(): s = Schedule(Conv2dNCHWcVNNIModule) block = s.get_block("conv2d_NCHWc_int8") info = get_tensorize_loop_mapping(s, block, dot_product_16x4_u8i8i32_desc) desc_loop_to_sref = dict((v, k) for k, v in info.loop_map.items()) desc_loops = collect_loops(dot_product_16x4_u8i8i32_desc) _, _, _, _, i4, _, _, _, _, i9 = s.get_loops(block) assert desc_loops[0] in desc_loop_to_sref and desc_loops[1] in desc_loop_to_sref assert s.get(desc_loop_to_sref[desc_loops[0]]) == s.get(i4) assert s.get(desc_loop_to_sref[desc_loops[1]]) == s.get(i9) def test_get_tensorize_loop_mapping_matmul_mma(): @T.prim_func def matmul_16x16x16xf16f16f16_desc( A: T.Buffer((16, 16), "float16", align=64, offset_factor=1), B: T.Buffer((16, 16), "float16", align=64, offset_factor=1), C: T.Buffer((16, 16), "float16", align=64, offset_factor=1), ) -> None: with T.block("root"): T.reads(C[0:16, 0:16], A[0:16, 0:16], B[0:16, 0:16]) T.writes(C[0:16, 0:16]) for i, j, k in T.grid(16, 16, 16): with T.block("update"): vii, vjj, vkk = T.axis.remap("SSR", [i, j, k]) C[vii, vjj] = C[vii, vjj] + A[vii, vkk] * B[vjj, vkk] matmul = create_prim_func( te_workload.matmul_relu( n=512, m=512, k=512,
) ) s = Schedule(matmul) block = s.get_block("C") i0, i1, i2 = s.get_loops(block) desc_loops = collect_loops(matmul_16x16x16xf16f16f16_desc) for do_reorder in [False, True]: if do_reorder: s.reorder(i2, i0, i1) info = get_tensorize_loop_mapping(s, block, matmul_16x16x16xf16f16f16_desc) assert info is not None desc_loop_to_sref = dict((v, k) for k, v in info.loop_map.items()) for i in range(3): assert desc_loops[i] in desc_loop_to_sref assert s.get(desc_loop_to_sref[desc_loops[0]]) == s.get(i0) assert s.get(desc_loop_to_sref[desc_loops[1]]) == s.get(i1) assert s.get(desc_loop_to_sref[desc_loops[2]]) == s.get(i2) def test_get_tensorize_loop_mapping_padding_matmul(): matmul = create_prim_func( te_workload.matmul_relu( n=127, m=256, k=65, in_dtype="float16", out_dtype="float16", ) ) s = Schedule(matmul) block = s.get_block("C") desc = TensorIntrin.get(WMMA_SYNC_16x16x16_f16f16f16_INTRIN).desc info = get_tensorize_loop_mapping(s, block, desc, allow_padding=True) assert info is not None expected_padding = [1, 0, 15] actual_padding = info.block_iter_paddings assert actual_padding is not None assert len(actual_padding) == len(expected_padding) for actual, expected in zip(actual_padding, expected_padding): assert actual == expected def check_index_map(workload, block_name, intrin_name, expected_index_map): s = Schedule(workload) block = s.get_block(block_name) desc_func = TensorIntrin.get(intrin_name).desc info = get_auto_tensorize_mapping_info(s, block, desc_func) if expected_index_map is None: assert info is None return assert len(info.mappings) == 1 assert IndexMap.from_func(expected_index_map).is_equivalent_to(info.mappings[0]) def test_get_auto_tensorize_mapping_info_conv2d(): conv2d = create_prim_func(
te_workload.conv2d_nhwc(4, 16, 16, 64, 64, 3, 1, 1, in_dtype="float16", out_dtype="float32") ) check_index_map( conv2d, "conv2d_nhwc", WMMA_SYNC_16x16x16_f16f16f32_INTRIN, lambda n, h, w, c, rh, rw, rc: (n * 256 + h * 16 + w, c, rh * 192 + rw * 64 + rc), ) def test_get_auto_tensorize_mapping_info_conv2d_unit_batch(): conv2d = create_prim_func( te_workload.conv2d_nhwc(1, 16, 16, 64, 64, 3, 1, 1, in_dtype="float16", out_dtype="float32") ) check_index_map( conv2d, "conv2d_nhwc", WMMA_SYNC_16x16x16_f16f16f32_INTRIN, lambda n, h, w, c, rh, rw, rc: (n * 256 + h * 16 + w, c, rh * 192 + rw * 64 + rc), ) @pytest.mark.parametrize("b,m,n,k", [(1, 512, 512, 512), (16, 32, 32, 32)]) def test_get_auto_tensorize_mapping_info_batch_matmul(b, m, n, k): matmul = create_prim_func( te_workload.batch_matmul_nkkm(b, m, n, k, in_dtype="float16", out_dtype="float32") ) check_index_map( matmul, "Z", WMMA_SYNC_16x16x16_f16f16f32_INTRIN, lambda b, m, n, k: (b, m, n, k) ) @pytest.mark.parametrize( "n,m,k,expected", [ ( 512, 512, 512, lambda n, m, k: ( n, m, k, ), ), (1, 32, 32, lambda n, m, k: (n, m, k)), ], ) def test_get_auto_tensorize_mapping_info_matmul(n, m, k, expected): matmul = create_prim_func(te_workload.matmul(n, m, k, in_dtype="float16", out_dtype="float32")) check_index_map(matmul, "C", WMMA_SYNC_16x16x16_f16f16f32_INTRIN, expected) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule
import DepKind from tvm.tir.stmt_functor
import post_order_visit @T.prim_func def elementwise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j in T.grid(128, 128): with T.block("init"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = T.float32(0) for k in range(0, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def war_dependency(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 def _get_block(s: tir.ScheduleState, name_hint: str) -> tir.StmtSRef: result = None def f_visit(node): nonlocal result if isinstance(node, tvm.tir.Block) and node.name_hint == name_hint: result = node func = s.mod["main"] post_order_visit(func.body, f_visit) assert result is not None and isinstance(result, tvm.tir.Block) return s.get_sref(result) def test_elementwise_dependency(): s = tir.ScheduleState(elementwise, debug_mask="all") root = _get_block(
s, "root") block_b = _get_block(s, "B") block_c = _get_block(s, "C") (dep,) = s.get_block_scope(root).get_deps_by_src(block_b) assert dep.src.same_as(block_b) assert dep.dst.same_as(block_c) assert dep.kind == DepKind.RAW (dep,) = s.get_block_scope(root).get_deps_by_dst(block_c) assert dep.src.same_as(block_b) assert dep.dst.same_as(block_c) assert dep.kind == DepKind.RAW def test_matmul_dependency(): s = tir.ScheduleState(matmul, debug_mask="all") root = _get_block(s, "root") init = _get_block(s, "init") update = _get_block(s, "update") p0, p1 = s.get_block_scope(root).get_deps_by_src(init) assert p0.src.same_as(init) assert p0.dst.same_as(update) assert p1.src.same_as(init) assert p1.dst.same_as(update) assert (p0.kind == DepKind.RAW and p1.kind == DepKind.WAW) or ( p0.kind == DepKind.WAW and p1.kind == DepKind.RAW ) p0, p1 = s.get_block_scope(root).get_deps_by_dst(update) assert p0.src.same_as(init) assert p0.dst.same_as(update) assert p1.src.same_as(init) assert p1.dst.same_as(update) assert (p0.kind == DepKind.RAW and p1.kind == DepKind.WAW) or ( p0.kind == DepKind.WAW and p1.kind == DepKind.RAW ) def test_war_dependency(): s = tir.ScheduleState(war_dependency, debug_mask="all") root = _get_block(s, "root") block_c = _get_block(s, "C") block_b = _get_block(s, "B") (dep,) = s.get_block_scope(root).get_deps_by_src(block_c) assert dep.src.same_as(block_c) assert dep.dst.same_as(block_b) assert dep.kind == DepKind.WAR (dep,) = s.get_block_scope(root).get_deps_by_dst(block_b) assert dep.src.same_as(block_c) assert dep.dst.same_as(block_b) assert dep.kind == DepKind.WAR if __name__ == "__main__": tvm.testing.main()
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def single_elementwise(A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"]): for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 def test_blockize_outer(): @T.prim_func def after_blockize_outer( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"], ) -> None: with T.block("blockized_B"): vio = T.axis.spatial(1, 0) vjo = T.axis.spatial(1, 0) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 func = single_elementwise s = tir.Schedule(func, debug_mask="all") x, _ = s.get_loops(s.get_block("B")) s.blockize(x) tvm.ir.assert_structural_equal(s.mod["main"], after_blockize_outer) verify_trace_roundtrip(sch=s, mod=func) def test_blockize_inner(): @T.prim_func def after_blockize_inner( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"], ) -> None: for i in T.serial(128): with T.block("blockized_B"): vi = T.axis.spatial(128, i) vjo = T.axis.spatial(1, 0) for j in T.serial(128): with T.block("B"): vj = T.axis.remap("S", [j]) B[vi, vj] = A[vi, vj] * 2.0 func = single_elementwise s = tir.Schedule(func, debug_mask="all") _, y = s.get_loops(s.get_block("B")) s.blockize(y) tvm.ir.assert_structural_equal(s.mod["main"], after_blockize_inner) verify_trace_roundtrip(sch=s, mod=func) def test_two_elementwise_blockize_reverse_compute_at(): @T.prim_func def before_blockize_rca( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"], ) -> None: B = T.alloc_buffer([128, 128], dtype="f
loat32") for i, j in T.grid(8, 8): with T.block("B_o"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(B[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) for i_1, j_1 in T.grid(16, 16): with T.block("B"): vi_i, vj_i = T.axis.remap("SS", [i_1, j_1]) T.reads(A[vi * 16 + vi_i, vj * 16 + vj_i]) T.writes(B[vi * 16 + vi_i, vj * 16 + vj_i]) B[vi * 16 + vi_i, vj * 16 + vj_i] = A[vi * 16 + vi_i, vj * 16 + vj_i] * 2.0 for ax0, ax1 in T.grid(16, 16): with T.block("C"): vi = T.axis.spatial(128, i * 16 + ax0) vj = T.axis.spatial(128, j * 16 + ax1) T.reads(B[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def after_blockize_rca( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"], ) -> None: B = T.alloc_buffer([128, 128], dtype="float32") for i, j in T.grid(8, 8): with T.block("B_o"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(B[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) for i_1, j_1 in T.grid(16, 16): with T.block("B"): vi_i, vj_i = T.axis.remap("SS", [i_1, j_1]) T.reads(A[vi * 16 + vi_i, vj * 16 + vj_i]) T.writes(B[vi * 16 + vi_i, vj * 16 + vj_i]) B[vi * 16 + vi_i, vj * 16 + vj_i] = A[vi * 16 + vi_i, vj * 16 + vj_i] * 2.0 with T.block("C_o"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(C[vi
* 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) for ax0, ax1 in T.grid(16, 16): with T.block("C"): vi_i, vj_i = T.axis.remap("SS", [ax0, ax1]) T.reads(B[vi * 16 + vi_i, vj * 16 + vj_i]) T.writes(C[vi * 16 + vi_i, vj * 16 + vj_i]) C[vi * 16 + vi_i, vj * 16 + vj_i] = B[vi * 16 + vi_i, vj * 16 + vj_i] + 1.0 func = before_blockize_rca s = tir.Schedule(func, debug_mask="all") _, _, x, _ = s.get_loops(s.get_block("C")) s.blockize(x) tvm.ir.assert_structural_equal(s.mod["main"], after_blockize_rca) verify_trace_roundtrip(sch=s, mod=func) def test_two_elementwise_blockize_compute_at(): @T.prim_func def before_blockize_compute_at( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"], ) -> None: B = T.alloc_buffer([128, 128], dtype="float32") for i_0, j_0 in T.grid(8, 8): for ax0, ax1 in T.grid(16, 16): with T.block("B"): vi = T.axis.spatial(128, i_0 * 16 + ax0) vj = T.axis.spatial(128, j_0 * 16 + ax1) T.reads(A[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] * 2.0 with T.block("C_o"): vi_o, vj_o = T.axis.remap("SS", [i_0, j_0]) T.reads(B[vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16]) T.writes(C[vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16]) for i_1, j_1 in T.grid(16, 16): with T.block("C"): vi_i, vj_i = T.axis.remap("SS", [i_1, j_1]) T.reads(B[vi_o * 16 + vi_i, vj_o * 16 + vj_i]) T.writes(C[vi_o * 16 + vi_i, vj_o * 16 + vj_i]) C[vi_o * 16 + vi_i, vj_o * 16 + vj_i] = ( B[vi_o * 16 + vi_i, vj_o * 16 + vj_i] + 1.0
) @T.prim_func def after_blockize_compute_at( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"], ) -> None: B = T.alloc_buffer([128, 128], dtype="float32") for i_0, j_0 in T.grid(8, 8): with T.block("B_o"): vi_o, vj_o = T.axis.remap("SS", [i_0, j_0]) T.reads(A[vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16]) T.writes(B[vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16]) for ax0, ax1 in T.grid(16, 16): with T.block("B"): vi_i, vj_i = T.axis.remap("SS", [ax0, ax1]) T.reads(A[vi_o * 16 + vi_i, vj_o * 16 + vj_i]) T.writes(B[vi_o * 16 + vi_i, vj_o * 16 + vj_i]) B[vi_o * 16 + vi_i, vj_o * 16 + vj_i] = ( A[vi_o * 16 + vi_i, vj_o * 16 + vj_i] * 2.0 ) with T.block("C_o"): vi_o, vj_o = T.axis.remap("SS", [i_0, j_0]) T.reads(B[vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16]) T.writes(C[vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16]) for i_1, j_1 in T.grid(16, 16): with T.block("C"): vi_i, vj_i = T.axis.remap("SS", [i_1, j_1]) T.reads(B[vi_o * 16 + vi_i, vj_o * 16 + vj_i]) T.writes(C[vi_o * 16 + vi_i, vj_o * 16 + vj_i]) C[vi_o * 16 + vi_i, vj_o * 16 + vj_i] = ( B[vi_o * 16 + vi_i, vj_o * 16 + vj_i] + 1.0 ) func = before_blockize_compute_at s = tir.Schedule(func, debug_mask="all") _, _, x, _ = s.get_loops(s.get_block("B")) s.blockize(x) tvm.ir.assert_structural_equal(s.mod["main"], after_blockize_compute_at) verify_trace_roundtrip(sch=s, mod=func) def test_blockize_init_loops(): @T.prim_func def rowsum(A: T.B
uffer[(128, 128), "float32"], B: T.Buffer[(128,), "float32"]) -> None: for k, i in T.grid(128, 128): with T.block("B"): vk, vi = T.axis.remap("RS", [k, i]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def after_rowsum_blockize( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128,), "float32"], ) -> None: with T.block("blockized_B"): vko = T.axis.R(1, 0) vio = T.axis.S(1, 0) with T.init(): for i1 in T.serial(0, 128): with T.block("B_init"): vi_init = T.axis.S(128, i1) B[vi_init] = T.float32(0) for i0, i1_1 in T.grid(128, 128): with T.block("B"): vk, vi = T.axis.remap("RS", [i0, i1_1]) B[vi] = B[vi] + A[vi, vk] s = tir.Schedule(rowsum, debug_mask="all") k, _ = s.get_loops(s.get_block("B")) s.blockize(k) tvm.ir.assert_structural_equal(s.mod["main"], after_rowsum_blockize) verify_trace_roundtrip(sch=s, mod=rowsum) def test_blockize_outer_int64_shape(): @T.prim_func def single_elementwise_int64( A: T.Buffer[(T.int64(16), T.int64(128)), "float32"], B: T.Buffer[(T.int64(16), T.int64(128)), "float32"], ) -> None: for i0, j0, i1, j1 in T.grid(T.int64(1), T.int64(8), T.int64(16), T.int64(16)): with T.block("B"): vi = T.axis.S(T.int64(16), i0 * T.int64(16) + i1) vj = T.axis.S(T.int64(128), j0 * T.int64(16) + j1) B[vi, vj] = A[vi, vj] + 1.0 @T.prim_func def after_single_elementwise_int64_blockize( A: T.Buffer[(T.int64(16), T.int64(128)), "float32"], B: T.Buffer[(T.int64(16), T.int64(128)), "float32"], ) -> None: for i0, j0 in T.grid(T.int64(1), T.int64(8)): with T.block("B_o"): vi_o = T.axis.spatial(T.int64(1), T.in
t64(0)) vj_o = T.axis.spatial(T.int64(8), j0) for i1, j1 in T.grid(T.int64(16), T.int64(16)): with T.block("B"): vi_i, vj_i = T.axis.remap("SS", [i1, j1]) B[vi_i, vj_o * T.int64(16) + vj_i] = A[ vi_i, vj_o * T.int64(16) + vj_i ] + T.float32(1) s = tir.Schedule(single_elementwise_int64, debug_mask="all") _, _, i1, _ = s.get_loops(s.get_block("B")) s.blockize(i1) tvm.ir.assert_structural_equal(s.mod["main"], after_single_elementwise_int64_blockize) verify_trace_roundtrip(sch=s, mod=single_elementwise_int64) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def resize(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (1, 3, 40, 40)) B = T.match_buffer(b, (1, 3, 80, 80)) for i0, i1, i2, i3 in T.grid(1, 3, 80, 80): with T.block("A"): n, c, vi, vj = T.axis.remap("SSSS", [i0, i1, i2, i3]) B[n, c, vi, vj] = A[n, c, vi @T.prim_func def resize_cache_index( A: T.Buffer[(1, 3, 40, 40), "float32"], B: T.Buffer[(1, 3, 80, 80), "float32"] ) -> None: index_var_0 = T.alloc_buffer([80, 80], dtype="int32", strides=[1]) index_var_1 = T.alloc_buffer([80], dtype="int32", strides=[1]) for ax0, ax1 in T.grid(80, 80): with T.block("index_0"): v0 = T.axis.spatial(80, ax0) v1 = T.axis.spatial(80, ax1) T.reads() T.writes(index_var_0[v0, v1]) index_var_0[v0, v1] = v0 for ax0 in T.serial(80): with T.block("index_1"): v0 = T.axis.spatial(80, ax0) T.reads() T.writes(index_var_1[v0]) index_var_1[v0] = v0 for i0, i1, i2, i3 in T.grid(1, 3, 80, 80): with T.block("A"): n, c, vi, vj = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(A[n, c, vi T.writes(B[n, c, vi, vj]) B[n, c, vi, vj] = A[n, c, index_var_0[vi, vj], index_var_1[vj]] def test_inplace_cache_read(): sch = tvm.tir.Schedule(resize, debug_mask="all") block = sch.get_block("A") sch.cache_index(block, 0) tvm.ir.assert_structural_equal(resize_cache_index, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=resize) if __name__ == "__main__": tvm.testing.main()