text
stringlengths
1
2.05k
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def elementwise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def elementwise_shape_int64(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (T.int64(128), T.int64(128))) B = T.alloc_buffer((T.int64(128), T.int64(128))) C = T.match_buffer(c, (T.int64(128), T.int64(128))) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def func_nested_seq(b: T.handle, c: T.handle) -> None: A = T.alloc_buffer((128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("A"): vi, vj = T.axis.remap("SS", [i, j]) A[vi, vj] = 2.0 for i, j in T.grid(8, 8): for x, y in T.grid(16, 16): with T.block("B0"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) B[vi, vj] = 1.0 for x, y in T.grid(16, 16): with T.block("B1"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) B[vi, vj] = A[vi, vj] + B[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def access_under_scope(b: T.handle, c: T.handle) -> None: A = T.alloc_buffe
r((128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i0, j0 in T.grid(8, 8): with T.block("scope"): i, j = T.axis.remap("SS", [i0, j0]) for x, y in T.grid(16, 16): with T.block("A"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) A[vi, vj] = 1.0 for x, y in T.grid(16, 16): with T.block("B"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) B[vi, vj] = A[vi, vj] + 1.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def opaque_access(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128), dtype="float16") B = T.match_buffer(b, (128, 128), dtype="float16") C = T.match_buffer(c, (128, 128), dtype="float16") D = T.match_buffer(d, (128, 128), dtype="float16") for i, j in T.grid(128, 128): with T.block("load_store"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi, vj]) T.writes(D[vi, vj]) D[vi, vj] = A[vi, vj] for i, j in T.grid(8, 8): with T.block("opaque"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(B[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.evaluate( T.tvm_load_matrix_sync( B.data, 16, 16, 16, vi * 8 + vj, T.tvm_access_ptr( T.type_annotation(dtype="float16"), A.data, vi * 2048 + vj * 16, 128, 1, dtype="handle",
), 128, "row_major", dtype="handle", ) ) for i, j in T.grid(8, 8): with T.block("match_buffer"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(C[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) A0 = T.match_buffer( A[ vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16, ], (16, 16), "float16", strides=[128, 1], offset_factor=1, ) C0 = T.match_buffer( C[ vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16, ], (16, 16), "float16", strides=[128, 1], offset_factor=1, ) T.evaluate( T.tvm_load_matrix_sync( C0.data, 16, 16, 16, vi * 8 + vj, T.tvm_access_ptr( T.type_annotation(dtype="float16"), A0.data, A0.elem_offset, A0.strides[0], 1, dtype="handle", ), 128, "row_major", dtype="handle", ) ) @T.prim_func def func_multi_consumer() -> None: A = T.alloc_buffer((128)) B = T.alloc_buffer((128)) C = T.alloc_buffer((128)) for i in T.grid(8): for j in T.grid(16): with T.block("A"): vi = T.axis.S(128, i * 16 + j) A[vi] = 1.0 for j in T.grid(16): with T.block("B"): vi = T.axis.S(128, i * 16 + j) B[vi] = A[vi] +
1.0 for i in T.grid(128): with T.block("C"): vi = T.axis.S(128, i) C[vi] = A[vi] @T.prim_func def func_multi_producer() -> None: A = T.alloc_buffer((128)) B = T.alloc_buffer((128)) for i in range(128): with T.block("A0"): vi = T.axis.S(128, i) A[vi] = 1.0 for i in range(128): with T.block("A1"): vi = T.axis.S(128, i) A[vi] = 2.0 for i in range(128): with T.block("B"): vi = T.axis.S(128, i) B[vi] = A[vi] @T.prim_func def func_with_block_predicate() -> None: A = T.alloc_buffer((120)) B = T.alloc_buffer((120)) for i, j in T.grid(16, 8): with T.block("producer"): T.where(i * 8 + j < 120) ax = T.axis.S(120, i * 8 + j) A[ax] = 0.0 for i, j in T.grid(16, 8): with T.block("consumer"): T.where(i * 8 + j < 120) ax = T.axis.S(120, i * 8 + j) B[ax] = A[ax] + 1.0 @T.prim_func def inplace_func(data_io: T.Buffer[(64), "int32"]): data_1d = T.alloc_buffer([64], dtype="int32") for i0 in T.serial(64): with T.block("copy_in"): v0 = T.axis.remap("S", [i0]) data_1d[v0] = data_io[v0] for i0 in T.serial(1): with T.block("ext_call"): T.reads(data_1d[:64]) T.writes(data_1d[:64]) T.evaluate(T.call_extern("call_impl", data_1d.data, dtype="")) for i0 in T.serial(64): with T.block("copy_out"): v0 = T.axis.remap("S", [i0]) data_io[v0] = data_1d[v0] @T.prim_func def inplace_call(data_io: T.Buffer[(64), "int32"]): for i0 in T.serial(1): with T.block("ext_call"): T.reads(data_io[:64]) T.writes(data_io[:64]) T.evaluate(T.call_extern("call_impl", data_io.data, dtype="")) @T.prim_func def cache_read_nested_seq_target( B: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"] ) -> None: A = T.alloc_b
uffer([128, 128], dtype="float32") A_global = T.alloc_buffer([128, 128], dtype="float32") for i, j in T.grid(128, 128): with T.block("A"): vi, vj = T.axis.remap("SS", [i, j]) T.reads() T.writes(A[vi, vj]) A[vi, vj] = T.float32(2) for i, j in T.grid(8, 8): for x, y in T.grid(16, 16): with T.block("B0"): vi = T.axis.spatial(128, i * 16 + x) vj = T.axis.spatial(128, j * 16 + y) T.reads() T.writes(B[vi, vj]) B[vi, vj] = T.float32(1) for x, y in T.grid(16, 16): with T.block("B1"): vi = T.axis.spatial(128, i * 16 + x) vj = T.axis.spatial(128, j * 16 + y) T.reads(A[vi, vj], B[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] + B[vi, vj] for ax0, ax1 in T.grid(128, 128): with T.block("A_global"): v0, v1 = T.axis.remap("SS", [ax0, ax1]) T.reads(A[v0, v1]) T.writes(A_global[v0, v1]) A_global[v0, v1] = A[v0, v1] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A_global[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = A_global[vi, vj] * T.float32(2) @T.prim_func def cache_read_elementwise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) A_global = T.alloc_buffer((128, 128)) B_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("A_global"): vi, vj = T.axis.remap("SS", [i, j]) A_global[vi, vj] = A[vi, vj] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A_global[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("B_local"):
vi, vj = T.axis.remap("SS", [i, j]) B_local[vi, vj] = B[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B_local[vi, vj] + 1.0 @T.prim_func def cache_read_under_scope(b: T.handle, c: T.handle) -> None: A = T.alloc_buffer((128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) A_global = T.alloc_buffer((128, 128)) for i0, j0 in T.grid(8, 8): with T.block("scope"): i, j = T.axis.remap("SS", [i0, j0]) A_local = T.alloc_buffer((128, 128), scope="local") for x, y in T.grid(16, 16): with T.block("A"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) A[vi, vj] = 1.0 for x, y in T.grid(16, 16): with T.block("A_local"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) A_local[vi, vj] = A[vi, vj] for x, y in T.grid(16, 16): with T.block("B"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) B[vi, vj] = A_local[vi, vj] + 1.0 for i, j in T.grid(128, 128): with T.block("A_global"): vi, vj = T.axis.remap("SS", [i, j]) A_global[vi, vj] = A[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A_global[vi, vj] * 2.0 @T.prim_func def cache_read_opaque_access(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128), dtype="float16") B = T.match_buffer(b, (128, 128), dtype="float16") C = T.match_buffer(c, (128, 128), dtype="float16") D = T.match_buffer(d, (128, 128), dtype="float16") A_global = T.alloc_buffer((128, 128), dtype="float16") for i, j in T.grid(128,
128): with T.block("A_global"): vi, vj = T.axis.remap("SS", [i, j]) A_global[vi, vj] = A[vi, vj] for i, j in T.grid(128, 128): with T.block("load_store"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A_global[vi, vj]) T.writes(D[vi, vj]) D[vi, vj] = A_global[vi, vj] for i, j in T.grid(8, 8): with T.block("opaque"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A_global[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(B[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.evaluate( T.tvm_load_matrix_sync( B.data, 16, 16, 16, vi * 8 + vj, T.tvm_access_ptr( T.type_annotation(dtype="float16"), A_global.data, vi * 2048 + vj * 16, 128, 1, dtype="handle", ), 128, "row_major", dtype="handle", ) ) for i, j in T.grid(8, 8): with T.block("match_buffer"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A_global[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(C[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) A0 = T.match_buffer( A_global[ vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16, ], (16, 16), "float16", strides=[128, 1], offset_factor=1, ) C0 = T.match_buffer( C[ vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16, ], (16, 16), "float16", strides=[128
, 1], offset_factor=1, ) T.evaluate( T.tvm_load_matrix_sync( C0.data, 16, 16, 16, vi * 8 + vj, T.tvm_access_ptr( T.type_annotation(dtype="float16"), A0.data, A0.elem_offset, A0.strides[0], 1, dtype="handle", ), 128, "row_major", dtype="handle", ) ) @T.prim_func def cache_read_multi_consumer() -> None: A = T.alloc_buffer((128)) B = T.alloc_buffer((128)) C = T.alloc_buffer((128)) A_global = T.alloc_buffer((128)) for i in T.grid(8): for j in T.grid(16): with T.block("A"): vi = T.axis.S(128, i * 16 + j) A[vi] = 1.0 for j in T.grid(16): with T.block("A"): vi = T.axis.S(128, i * 16 + j) A_global[vi] = A[vi] for j in T.grid(16): with T.block("B"): vi = T.axis.S(128, i * 16 + j) B[vi] = A_global[vi] + 1.0 for i in T.grid(128): with T.block("C"): vi = T.axis.S(128, i) C[vi] = A_global[vi] @T.prim_func def cache_read_multi_consumer_target() -> None: A = T.alloc_buffer((128)) B = T.alloc_buffer((128)) C = T.alloc_buffer((128)) A_global = T.alloc_buffer((128)) for i in T.grid(8): for j in T.grid(16): with T.block("A"): vi = T.axis.S(128, i * 16 + j) A[vi] = 1.0 for j in T.grid(16): with T.block("B"): vi = T.axis.S(128, i * 16 + j) B[vi] = A[vi] + 1.0 for i in T.grid(128): with T.block("A"): vi = T.axis.S(128, i) A_global[vi] = A[vi]
for i in T.grid(128): with T.block("C"): vi = T.axis.S(128, i) C[vi] = A_global[vi] @T.prim_func def continuous_cache_read(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) B_shared = T.alloc_buffer((128, 128), scope="shared") B_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("B_shared"): vi, vj = T.axis.remap("SS", [i, j]) B_shared[vi, vj] = B[vi, vj] for i, j in T.grid(128, 128): with T.block("B_local"): vi, vj = T.axis.remap("SS", [i, j]) B_local[vi, vj] = B_shared[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B_local[vi, vj] + 1.0 @T.prim_func def block_predicate_cache_read() -> None: A = T.alloc_buffer([120], dtype="float32") B = T.alloc_buffer([120], dtype="float32") A_shared = T.alloc_buffer([120], dtype="float32", scope="shared") for i, j in T.grid(16, 8): with T.block("producer"): ax = T.axis.spatial(120, i * 8 + j) T.where(i * 8 + j < 120) A[ax] = T.float32(0) for ax0 in T.serial(120): with T.block("A_shared"): v0 = T.axis.spatial(120, ax0) A_shared[v0] = A[v0] for i, j in T.grid(16, 8): with T.block("consumer"): ax = T.axis.spatial(120, i * 8 + j) T.where(i * 8 + j < 120) B[ax] = A_shared[ax] + T.float32(1) @T.prim_func def cache_read_shape_int64(var_A: T.handle, var_C: T.handle) -> None: A = T.match_buffer(var_A, (T.int64(128), T.int64(128)), dtype="float32") C = T.match_buffer(var_C, (T.int64(128), T.int64(128)), dtype="float32") B = T.alloc_buffer([T
.int64(128), T.int64(128)], dtype="float32") A_global = T.alloc_buffer([T.int64(128), T.int64(128)], dtype="float32") for ax0, ax1 in T.grid(T.int64(128), T.int64(128)): with T.block("A_global"): v0, v1 = T.axis.remap("SS", [ax0, ax1]) T.reads(A[v0, v1]) T.writes(A_global[v0, v1]) A_global[v0, v1] = A[v0, v1] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A_global[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A_global[vi, vj] * T.float32(2) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = B[vi, vj] + T.float32(1) @T.prim_func def cache_read_inplace(data_io: T.Buffer[64, "int32"]) -> None: data_1d = T.alloc_buffer([64], dtype="int32") data_io_local = T.alloc_buffer([64], dtype="int32", scope="local") for ax0 in T.serial(64): with T.block("data_io_local"): v0 = T.axis.spatial(64, ax0) T.reads(data_io[v0]) T.writes(data_io_local[v0]) data_io_local[v0] = data_io[v0] for i0 in T.serial(64): with T.block("copy_in"): v0 = T.axis.spatial(64, i0) T.reads(data_io_local[v0]) T.writes(data_1d[v0]) data_1d[v0] = data_io_local[v0] for i0 in T.serial(1): with T.block("ext_call"): T.reads(data_1d[0:64]) T.writes(data_1d[0:64]) T.evaluate(T.call_extern("call_impl", data_1d.data, dtype="")) for i0 in T.serial(64): with T.block("copy_out"): v0 = T.axis.spatial(64, i0) T.reads(data_1d[v0]) T.writes(data_io[v0]) data_io[v0] = data_1d[v0] @T.prim_func def cache_inplace_buffer(data_io: T.Buffer[64, "int32"]) -> None: data_io_local = T.alloc_buffer([64], dtype="int32", scope="local") dat
a_io_global = T.alloc_buffer([64], dtype="int32") data_io_global_1 = T.alloc_buffer([64], dtype="int32") for ax0 in T.serial(64): with T.block("data_io_global"): v0 = T.axis.spatial(64, ax0) T.reads(data_io[v0]) T.writes(data_io_global[v0]) data_io_global[v0] = data_io[v0] for i0 in T.serial(1): for ax0 in T.serial(64): with T.block("data_io_local"): v0 = T.axis.spatial(64, ax0) T.reads(data_io_global[v0]) T.writes(data_io_local[v0]) data_io_local[v0] = data_io_global[v0] with T.block("ext_call"): T.reads(data_io_local[0:64]) T.writes(data_io_local[0:64]) T.evaluate(T.call_extern("call_impl", data_io_local.data, dtype="")) for ax0 in T.serial(64): with T.block("data_io_local"): v0 = T.axis.spatial(64, ax0) T.reads(data_io_local[v0]) T.writes(data_io_global_1[v0]) data_io_global_1[v0] = data_io_local[v0] for ax0 in T.serial(64): with T.block("data_io_global"): v0 = T.axis.spatial(64, ax0) T.reads(data_io_global_1[v0]) T.writes(data_io[v0]) data_io[v0] = data_io_global_1[v0] @T.prim_func def cache_write_elementwise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) B_global = T.alloc_buffer((128, 128), scope="local") C_local = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B_global"): vi, vj = T.axis.remap("SS", [i, j]) B_global[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = B_global[vi, vj] for i, j in T.grid(128, 128): with T.block("C_local"): vi, vj = T.axis.remap("SS", [i, j])
C_local[vi, vj] = B[vi, vj] + 1.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = C_local[vi, vj] @T.prim_func def cache_write_under_scope(b: T.handle, c: T.handle) -> None: A = T.alloc_buffer((128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) A_global = T.alloc_buffer((128, 128)) for i0, j0 in T.grid(8, 8): with T.block("scope"): i, j = T.axis.remap("SS", [i0, j0]) A_local = T.alloc_buffer((128, 128), scope="local") B_global = T.alloc_buffer((128, 128)) for x, y in T.grid(16, 16): with T.block("A_local"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) A_local[vi, vj] = 1.0 for x, y in T.grid(16, 16): with T.block("A"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) A_global[vi, vj] = A_local[vi, vj] for x, y in T.grid(16, 16): with T.block("B_global"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) B_global[vi, vj] = A_global[vi, vj] + 1.0 for x, y in T.grid(16, 16): with T.block("B_global"): vi = T.axis.S(128, i * 16 + x) vj = T.axis.S(128, j * 16 + y) B[vi, vj] = B_global[vi, vj] for i, j in T.grid(128, 128): with T.block("A_global"): vi, vj = T.axis.remap("SS", [i, j]) A[vi, vj] = A_global[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def cache_write_opaque_access(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128), dtype="float
16") B = T.match_buffer(b, (128, 128), dtype="float16") C = T.match_buffer(c, (128, 128), dtype="float16") D = T.match_buffer(d, (128, 128), dtype="float16") D_global = T.alloc_buffer((128, 128), dtype="float16") B_global = T.alloc_buffer((128, 128), dtype="float16") C_global = T.alloc_buffer((128, 128), dtype="float16") for i, j in T.grid(128, 128): with T.block("load_store"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi, vj]) T.writes(D_global[vi, vj]) D_global[vi, vj] = A[vi, vj] for i, j in T.grid(8, 8): with T.block("opaque"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(B_global[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.evaluate( T.tvm_load_matrix_sync( B_global.data, 16, 16, 16, vi * 8 + vj, T.tvm_access_ptr( T.type_annotation(dtype="float16"), A.data, vi * 2048 + vj * 16, 128, 1, dtype="handle", ), 128, "row_major", dtype="handle", ) ) for i, j in T.grid(8, 8): with T.block("match_buffer"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) T.writes(C_global[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) A0 = T.match_buffer( A[ vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16, ], (16, 16), "float16", strides=[128, 1], offset_factor=1, ) C0 = T.match_buf
fer( C_global[ vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16, ], (16, 16), "float16", strides=[128, 1], offset_factor=1, ) T.evaluate( T.tvm_load_matrix_sync( C0.data, 16, 16, 16, vi * 8 + vj, T.tvm_access_ptr( T.type_annotation(dtype="float16"), A0.data, A0.elem_offset, A0.strides[0], 1, dtype="handle", ), 128, "row_major", dtype="handle", ) ) for i, j in T.grid(128, 128): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = D_global[vi, vj] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = B_global[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = C_global[vi, vj] @T.prim_func def cache_write_multi_consumer() -> None: A = T.alloc_buffer((128)) B = T.alloc_buffer((128)) C = T.alloc_buffer((128)) A_global = T.alloc_buffer((128)) for i in T.grid(8): for j in T.grid(16): with T.block("A_global"): vi = T.axis.S(128, i * 16 + j) A_global[vi] = 1.0 for j in T.grid(16): with T.block("A"): vi = T.axis.S(128, i * 16 + j) A[vi] = A_global[vi] for j in T.grid(16): with T.block("B"): vi = T.axis.S(128, i * 16 + j) B[vi] = A[vi] + 1.0 for i in T.grid(128): with T.block("C"):
vi = T.axis.S(128, i) C[vi] = A[vi] @T.prim_func def continuous_cache_write(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) B_shared = T.alloc_buffer((128, 128), scope="shared") B_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B_local[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B_shared[vi, vj] = B_local[vi, vj] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = B_shared[vi, vj] for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def block_predicate_cache_write_intermediate_buf() -> None: A = T.alloc_buffer([120], dtype="float32") B = T.alloc_buffer([120], dtype="float32") A_shared = T.alloc_buffer([120], dtype="float32", scope="shared") for i, j in T.grid(16, 8): with T.block("producer"): ax = T.axis.spatial(120, i * 8 + j) T.where(i * 8 + j < 120) A_shared[ax] = T.float32(0) for ax0 in T.serial(120): with T.block("A_shared"): v0 = T.axis.spatial(120, ax0) A[v0] = A_shared[v0] for i, j in T.grid(16, 8): with T.block("consumer"): ax = T.axis.spatial(120, i * 8 + j) T.where(i * 8 + j < 120) B[ax] = A[ax] + 1.0 @T.prim_func def block_predicate_cache_write_output_buf() -> None: A = T.alloc_buffer([120], dtype="float32") B = T.alloc_buffer([120], dtype="float32") B_shared = T.alloc_buffer([120], dtype="float32", scope="shared") for i, j in T.grid(16, 8): with T.block("producer"): ax = T.axis.spatial
(120, i * 8 + j) T.where(i * 8 + j < 120) A[ax] = T.float32(0) for i, j in T.grid(16, 8): with T.block("consumer"): ax = T.axis.spatial(120, i * 8 + j) T.where(i * 8 + j < 120) B_shared[ax] = A[ax] + T.float32(1) for ax0 in T.serial(120): with T.block("B_shared"): v0 = T.axis.spatial(120, ax0) B[v0] = B_shared[v0] use_block_name = tvm.testing.parameter(by_dict={"block_obj": False, "block_name": True}) def test_cache_read_elementwise(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = sch.get_block("B") block_c = sch.get_block("C") if use_block_name: cached_a = sch.cache_read("B", "A", "global") cached_b = sch.cache_read("C", "B", "local") else: cached_a = sch.cache_read(block_b, 0, "global") cached_b = sch.cache_read(block_c, 0, "local") assert sch.get(cached_a) == sch.get(sch.get_block("A_global")) assert sch.get(cached_b) == sch.get(sch.get_block("B_local")) assert sch.get(block_b) == sch.get(sch.get_block("B")) assert sch.get(block_c) == sch.get(sch.get_block("C")) tvm.ir.assert_structural_equal(cache_read_elementwise, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise) def test_cache_read_under_scope(use_block_name): sch = tir.Schedule(access_under_scope, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = "C" if use_block_name else sch.get_block("C") sch.cache_read(block_b, 0, "local") sch.cache_read(block_c, 0, "global") tvm.ir.assert_structural_equal(cache_read_under_scope, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=access_under_scope) def test_cache_read_opaque_access(use_block_name): sch = tir.Schedule(opaque_access, debug_mask="all") block = "load_store" if use_block_name else sch.get_block("load_store") sch.cache_read(block, 0, "global") tvm.ir.assert_structural_equal(cache_read_opaque_acc
ess, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=opaque_access) def test_cache_read_location(use_block_name): sch = tir.Schedule(func_multi_consumer, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") sch.cache_read(block_b, 0, "global") tvm.ir.assert_structural_equal(cache_read_multi_consumer, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_multi_consumer) sch = tir.Schedule(func_multi_consumer, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = "C" if use_block_name else sch.get_block("C") sch.cache_read(block_b, 0, "global", consumer_blocks=[block_c]) tvm.ir.assert_structural_equal(cache_read_multi_consumer_target, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_multi_consumer) sch = tir.Schedule(func_multi_consumer, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = "C" if use_block_name else sch.get_block("C") sch.cache_read(block_b, 0, "global", consumer_blocks=[block_b, block_c]) tvm.ir.assert_structural_equal(cache_read_multi_consumer, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_multi_consumer) def test_continuous_cache_read(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.cache_read(block_c, 0, "shared") sch.cache_read(block_c, 0, "local") tvm.ir.assert_structural_equal(continuous_cache_read, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise) def test_cache_read_with_block_predicate(use_block_name): sch = tir.Schedule(func_with_block_predicate, debug_mask="all") block = "consumer" if use_block_name else sch.get_block("consumer") sch.cache_read(block, 0, "shared") tvm.ir.assert_structural_equal(block_predicate_cache_read, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_with_block_predicate) def test_cache_read_non_int32_shape(use_block_name)
: sch = tir.Schedule(elementwise_shape_int64, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") sch.cache_read(block_b, 0, "global") tvm.ir.assert_structural_equal(cache_read_shape_int64, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_shape_int64) def test_cache_read_fail_multi_producer(use_block_name): sch = tir.Schedule(func_multi_producer, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.cache_read(block_b, 0, "global") def test_cache_read_fail_index_out_of_bound(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.cache_read(block_b, 1, "global") def test_cache_read_fail_invalid_storage_scope(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.cache_read(block_b, 0, "test_scope") def test_inplace_cache_read(): sch = tvm.tir.Schedule(inplace_func, debug_mask="all") block = sch.get_block("copy_in") sch.cache_read(block, 0, "local", [block]) tvm.ir.assert_structural_equal(cache_read_inplace, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=inplace_func) def test_cache_inplace(): debug_mask = tvm.tir.schedule.state.ScheduleDebugMask.VERIFY_SREF_TREE sch = tvm.tir.Schedule(inplace_call, debug_mask=debug_mask) block = sch.get_block("ext_call") blocks = sch.cache_inplace(block, 0, "local") block = sch.cache_read(blocks[0], 0, "global", [blocks[0]]) block = sch.cache_write(blocks[1], 0, "global") tvm.ir.assert_structural_equal(cache_inplace_buffer, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=inplace_call, debug_mask=debug_mask) def test_cache_read_nested_seq(use_block_name): sch = tir.Schedule(func_nested_seq,
debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.cache_read(block_c, 0, "global", consumer_blocks=[block_c]) tvm.ir.assert_structural_equal(cache_read_nested_seq_target, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_nested_seq) def test_cache_write_elementwise(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = sch.get_block("B") block_c = sch.get_block("C") cached_b = sch.cache_write("B" if use_block_name else block_b, 0, "local") cached_c = sch.cache_write("C" if use_block_name else block_c, 0, "global") assert sch.get(cached_b) == sch.get(sch.get_block("B_local")) assert sch.get(cached_c) == sch.get(sch.get_block("C_global")) assert sch.get(block_b) == sch.get(sch.get_block("B")) assert sch.get(block_c) == sch.get(sch.get_block("C")) tvm.ir.assert_structural_equal(cache_write_elementwise, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise) def test_cache_write_under_scope(use_block_name): sch = tir.Schedule(access_under_scope, debug_mask="all") block_a = "A" if use_block_name else sch.get_block("A") block_b = "B" if use_block_name else sch.get_block("B") block_scope = sch.get_block("scope") sch.cache_write(block_a, 0, "local") sch.cache_write(block_b, 0, "global") sch.cache_write(block_scope, 0, "global") tvm.ir.assert_structural_equal(cache_write_under_scope, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=access_under_scope) def test_cache_write_opaque_access(use_block_name): sch = tir.Schedule(opaque_access, debug_mask="all") block_store = "load_store" if use_block_name else sch.get_block("load_store") block_opaque = "opaque" if use_block_name else sch.get_block("opaque") block_match_buffer = "match_buffer" if use_block_name else sch.get_block("match_buffer") sch.cache_write(block_store, 0, "global") sch.cache_write(block_opaque, 0, "global") sch.cache_write(block_match_buffer, 0, "global")
tvm.ir.assert_structural_equal(cache_write_opaque_access, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=opaque_access) def test_cache_write_location(use_block_name): sch = tir.Schedule(func_multi_consumer, debug_mask="all") block_a = "A" if use_block_name else sch.get_block("A") sch.cache_write(block_a, 0, "global") tvm.ir.assert_structural_equal(cache_write_multi_consumer, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_multi_consumer) def test_continuous_cache_write(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") sch.cache_write(block_b, 0, "shared") sch.cache_write(block_b, 0, "local") tvm.ir.assert_structural_equal(continuous_cache_write, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise) def test_cache_write_with_block_predicate(use_block_name): sch = tir.Schedule(func_with_block_predicate, debug_mask="all") block = "producer" if use_block_name else sch.get_block("producer") sch.cache_write(block, 0, "shared") tvm.ir.assert_structural_equal(block_predicate_cache_write_intermediate_buf, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_with_block_predicate) sch = tir.Schedule(func_with_block_predicate, debug_mask="all") block = "consumer" if use_block_name else sch.get_block("consumer") sch.cache_write(block, 0, "shared") tvm.ir.assert_structural_equal(block_predicate_cache_write_output_buf, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=func_with_block_predicate) def test_cache_write_fail_multi_producer(use_block_name): sch = tir.Schedule(func_multi_producer, debug_mask="all") block_a0 = "A0" if use_block_name else sch.get_block("A0") block_a1 = "A1" if use_block_name else sch.get_block("A1") with pytest.raises(tvm.tir.ScheduleError): sch.cache_write(block_a0, 0, "global") with pytest.raises(tvm.tir.ScheduleError): sch.cache_write(block_a1, 0, "glo
bal") def test_cache_write_fail_index_out_of_bound(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.cache_write(block_b, 1, "global") def test_cache_write_fail_invalid_storage_scope(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.cache_write(block_b, 0, "test_scope") if __name__ == "__main__": tvm.testing.main()
import pytest
import tvm
import tvm.testing from tvm
import te, tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def two_elementwise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def two_elementwise_after_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i in range(0, 128): for ax0, ax1 in T.grid(1, 128): with T.block("B"): vi = T.axis.S(128, i + ax0) vj = T.axis.S(128, ax1) B[vi, vj] = A[vi, vj] * 2.0 for j in range(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def blockized_1(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(8, 8): with T.block("C_outer"): vi_o, vj_o = T.axis.remap("SS", [i, j]) T.reads([B[ vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16, ]]) T.writes([C[ vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16 ]]) for i_i, j_i in T.grid(16, 16): with T.block("C_inner"): vi = T.axis.S(128, vi_o * 16 + i_i)
vj = T.axis.S(128, vj_o * 16 + j_i) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def blockized_after_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i0_0, i1_0 in T.grid(8, 8): for ax0, ax1 in T.grid(16, 16): with T.block("B"): vi = T.axis.S(128, i0_0 * 16 + ax0) vj = T.axis.S(128, i1_0 * 16 + ax1) B[vi, vj] = A[vi, vj] * 2.0 with T.block("C_outer"): vi_o, vj_o = T.axis.remap("SS", [i0_0, i1_0]) T.reads([B[ vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16, ]]) T.writes([C[ vi_o * 16 : vi_o * 16 + 16, vj_o * 16 : vj_o * 16 + 16 ]]) for i0_1, i1_1 in T.grid(16, 16): with T.block("C_inner"): vi = T.axis.S(128, vi_o * 16 + i0_1) vj = T.axis.S(128, vj_o * 16 + i1_1) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def blockized_2(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i_o, j_o in T.grid(8, 8): with T.block("B_outer"): vio, vjo = T.axis.remap("SS", [i_o, j_o]) T.reads([A[ vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16, ]]) T.writes([B[ vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16 ]]) for i_i, j_i in T.grid(16, 16): with T.block("B_inner"): vi = T.axis.S(128, vio * 16 + i_i) vj = T.axis.S(128, vjo * 16 + j_i) B[vi, vj] = A[vi, vj] * 2.0 for i_o, j_o, i_i, j_i in T.grid(4, 4, 32, 32): wi
th T.block("C"): vi = T.axis.S(128, i_o * 32 + i_i) vj = T.axis.S(128, j_o * 32 + j_i) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def blockized_2_after_reverse_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i_o, j_o in T.grid(8, 8): with T.block("B_outer"): vio, vjo = T.axis.remap("SS", [i_o, j_o]) T.reads([A[ vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16, ]]) T.writes([B[ vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16 ]]) for i_i, j_i in T.grid(16, 16): with T.block("B_inner"): vi = T.axis.S(128, vio * 16 + i_i) vj = T.axis.S(128, vjo * 16 + j_i) B[vi, vj] = A[vi, vj] * 2.0 for ax0, ax1 in T.grid(16, 16): with T.block("C"): vi = T.axis.S(128, i_o * 16 + ax0) vj = T.axis.S(128, j_o * 16 + ax1) T.reads([B[vi, vj]]) T.writes([C[vi, vj]]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def blockized_2_after_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i_o, j_o in T.grid(4, 4): for ax0, ax1 in T.grid(2, 2): with T.block("blockized_B"): vio = T.axis.S(8, i_o * 2 + ax0) vjo = T.axis.S(8, j_o * 2 + ax1) T.reads([A[ vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16, ]]) T.writes([B[ vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16, ]]) for i_i, j_i in T.grid(
16, 16): with T.block("B"): vi = T.axis.S(128, vio * 16 + i_i) vj = T.axis.S(128, vjo * 16 + j_i) B[vi, vj] = A[vi, vj] * 2.0 for i_i, j_i in T.grid(32, 32): with T.block("C"): vi = T.axis.S(128, i_o * 32 + i_i) vj = T.axis.S(128, j_o * 32 + j_i) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def cuda_matmul_0(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for i, j in T.grid(2048, 2048): with T.block("A_shared"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared[v0, v1] = A[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared[v0, v1] = B[v0, v1] for i, j in T.grid(2048, 2048): with T.block("A_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared_local[v0, v1] = A_shared[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared_local[v0, v1] = B_shared[v0, v1] for i, j, k in T.grid(2048, 2048, 2048): with T.block("C"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C_local[vi, vj] = 0.0 C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for by in T.thread_binding(0, 32, thread = "bloc
kIdx.y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for i, j in T.grid(4, 4): with T.block("C_local"): v0_4 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) v1_4 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) C[v0_4, v1_4] = C_local[v0_4, v1_4] @T.prim_func def cuda_matmul_0_after_compute_at(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for i, j in T.grid(2048, 2048): with T.block("A_shared"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared[v0, v1] = A[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared[v0, v1] = B[v0, v1] for i, j in T.grid(2048, 2048): with T.block("A_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared_local[v0, v1] = A_shared[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared_local[v0, v1] = B_shared[v0, v1] for by in T.thr
ead_binding(0, 32, thread = "blockIdx.y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for i, j, k in T.grid(4, 4, 2048): with T.block("C"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) vk = T.axis.R(2048, k) with T.init(): C_local[vi, vj] = 0.0 C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for i, j in T.grid(4, 4): with T.block("C_local"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) C[vi, vj] = C_local[vi, vj] @T.prim_func def cuda_matmul_1(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for i, j in T.grid(2048, 2048): with T.block("A_shared"): v0, v1 = T.axis.remap("SS
", [i, j]) A_shared[v0, v1] = A[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared[v0, v1] = B[v0, v1] for i, j in T.grid(2048, 2048): with T.block("A_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared_local[v0, v1] = A_shared[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared_local[v0, v1] = B_shared[v0, v1] for by in T.thread_binding(0, 32, thread = "blockIdx.y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for k_0 in T.serial(0, 256): for k_1 in T.unroll(0, 8): for _, i, j in T.grid(1, 4, 4): with T.block("C"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) vk = T.axis.R(2048, k_0 * 8 + k_1) with T.init(): C_local[vi, vj] = 0.0 C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for i, j in T.grid(4, 4): with T.block("C_local"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4
+ j) C[vi, vj] = C_local[vi, vj] @T.prim_func def cuda_matmul_2(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for i, j in T.grid(2048, 2048): with T.block("A_shared"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared[v0, v1] = A[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared[v0, v1] = B[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared_local"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared_local[v0, v1] = B_shared[v0, v1] for by in T.thread_binding(0, 32, thread = "blockIdx.y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for k_0 in T.serial(0, 256): for k_1 in T.unroll(0, 8): for i, j in T.grid(1, 4): with T.block("A_shared_local"): v0 = T.axis.S(2048, k_0 * 8 + k_1 + i) v1 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + j)
A_shared_local[v0, v1] = A_shared[v0, v1] for _, i, j in T.grid(1, 4, 4): with T.block("C"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) vk = T.axis.R(2048, k_0 * 8 + k_1) with T.init(): C_local[vi, vj] = T.float32(0) C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for i, j in T.grid(4, 4): with T.block("C_local"): v0 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) C[v0, v1] = C_local[v0, v1] @T.prim_func def cuda_matmul_3(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for i, j in T.grid(2048, 2048): with T.block("A_shared"): v0, v1 = T.axis.remap("SS", [i, j]) A_shared[v0, v1] = A[v0, v1] for i, j in T.grid(2048, 2048): with T.block("B_shared"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared[v0, v1] = B[v0, v1] for by in T.thread_binding(0, 32, thread = "blockIdx.
y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for k0 in T.serial(0, 256): for k1 in T.unroll(0, 8): for i, j in T.grid(1, 4): with T.block("A_shared_local"): v0 = T.axis.S(2048, k0 * 8 + k1 + i) v1 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + j) A_shared_local[v0, v1] = A_shared[v0, v1] for i, j in T.grid(1, 4): with T.block("B_shared_local"): v0 = T.axis.S(2048, k0 * 8 + k1 + i) v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) B_shared_local[v0, v1] = B_shared[v0, v1] for _, i, j in T.grid(1, 4, 4): with T.block("C"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) vk = T.axis.R(2048, k0 * 8 + k1) with T.init(): C_local[vi, vj] = T.float32(0) C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for i, j in T.grid(4, 4): with T.block("C_local
"): v0 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) C[v0, v1] = C_local[v0, v1] @T.prim_func def cuda_matmul_4(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for i, j in T.grid(2048, 2048): with T.block("B_shared"): v0, v1 = T.axis.remap("SS", [i, j]) B_shared[v0, v1] = B[v0, v1] for by in T.thread_binding(0, 32, thread = "blockIdx.y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for k0 in T.serial(0, 256): for i, j in T.grid(8, 64): with T.block("A_shared"): v0 = T.axis.S(2048, k0 * 8 + i) v1 = T.axis.S(2048, by * 64 + j) A_shared[v0, v1] = A[v0, v1] for k1 in T.unroll(0, 8): for i, j in T.grid(1, 4): with T.block("A_shared_local"):
v0 = T.axis.S(2048, k0 * 8 + k1 + i) v1 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + j) A_shared_local[v0, v1] = A_shared[v0, v1] for i, j in T.grid(1, 4): with T.block("B_shared_local"): v0 = T.axis.S(2048, k0 * 8 + k1 + i) v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) B_shared_local[v0, v1] = B_shared[v0, v1] for _, i, j in T.grid(1, 4, 4): with T.block("C"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) vk = T.axis.R(2048, k0 * 8 + k1) with T.init(): C_local[vi, vj] = 0.0 C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for i, j in T.grid(4, 4): with T.block("C_local"): v0 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) C[v0, v1] = C_local[v0, v1] @T.prim_func def cuda_matmul_5(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [2048, 2048], "float32") B = T.match_buffer(b, [2048, 2048], "float32") C = T.match_buffer(c, [2048, 2048], "float32") A_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") B_shared = T.alloc_buffer([2048, 2048], "float32", scope="shared") A_shared_local = T.alloc_buffer([2048
, 2048], "float32", scope="local") B_shared_local = T.alloc_buffer([2048, 2048], "float32", scope="local") C_local = T.alloc_buffer([2048, 2048], "float32", scope="local") for by in T.thread_binding(0, 32, thread = "blockIdx.y"): for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): for vy in T.thread_binding(0, 2, thread = "vthread.y"): for vx in T.thread_binding(0, 2, thread = "vthread.x"): for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): for k0 in T.serial(0, 256): for i, j in T.grid(8, 64): with T.block("A_shared"): v0 = T.axis.S(2048, k0 * 8 + i) v1 = T.axis.S(2048, by * 64 + j) A_shared[v0, v1] = A[v0, v1] for i, j in T.grid(8, 64): with T.block("B_shared"): v0 = T.axis.S(2048, k0 * 8 + i) v1 = T.axis.S(2048, bx * 64 + j) B_shared[v0, v1] = B[v0, v1] for k1 in T.unroll(0, 8): for i, j in T.grid(1, 4): with T.block("A_shared_local"): v0 = T.axis.S(2048, k0 * 8 + k1 + i) v1 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + j) A_shared_local[v0, v1] = A_shared[v0, v1] for i, j in T.grid(1, 4): with T.block("B_shared_local"): v0 = T.axis.S(2048, k0 * 8 + k1 + i)
v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) B_shared_local[v0, v1] = B_shared[v0, v1] for _, i, j in T.grid(1, 4, 4): with T.block("C"): vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) vk = T.axis.R(2048, k0 * 8 + k1) with T.init(): C_local[vi, vj] = 0.0 C_local[vi, vj] = C_local[vi, vj] + A_shared_local[vk, vi] * B_shared_local[vk, vj] for i, j in T.grid(4, 4): with T.block("C_local"): v0 = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) v1 = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) C[v0, v1] = C_local[v0, v1] @T.prim_func def tiled(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i_0, j_0, i_1, j_1 in T.grid(8, 8, 16, 16): with T.block("B"): vi = T.axis.S(128, i_0 * 16 + i_1) vj = T.axis.S(128, j_0 * 16 + j_1) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def tiled_after_reverse_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], "float32") B = T.alloc_buffer([128, 128], "float32") C = T.match_buffer(c, [128, 128], "float32") for i_0, j_0, i_1 in T.grid(8, 8, 16): for j_1 in T.serial(0, 16): with T.block("B"):
vi = T.axis.S(128, i_0 * 16 + i_1) vj = T.axis.S(128, j_0 * 16 + j_1) B[vi, vj] = A[vi, vj] * 2.0 for j_1 in T.serial(0, 16): with T.block("C"): vi = T.axis.S(128, i_0 * 16 + i_1) vj = T.axis.S(128, j_0 * 16 + j_1) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def tiled_trivial_binding(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [1, 128, 128], "float32") B = T.alloc_buffer([1, 128, 128], "float32") C = T.match_buffer(c, [1, 128, 128], "float32") for i_0, j_0, i_1, j_1 in T.grid(8, 8, 16, 16): with T.block("B"): vi = T.axis.S(128, i_0 * 16 + i_1) vj = T.axis.S(128, j_0 * 16 + j_1) B[0, vi, vj] = A[0, vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[0, vi, vj] = B[0, vi, vj] + 1.0 @T.prim_func def tiled_trivial_binding_after_reverse_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [1, 128, 128], "float32") B = T.alloc_buffer([1, 128, 128], "float32") C = T.match_buffer(c, [1, 128, 128], "float32") for i_0, j_0, i_1 in T.grid(8, 8, 16): for j_1 in T.serial(0, 16): with T.block("B"): vi = T.axis.S(128, i_0 * 16 + i_1) vj = T.axis.S(128, j_0 * 16 + j_1) B[0, vi, vj] = A[0, vi, vj] * 2.0 for j_1 in T.serial(0, 16): with T.block("C"): vi = T.axis.S(128, i_0 * 16 + i_1) vj = T.axis.S(128, j_0 * 16 + j_1) C[0, vi, vj] = B[0, vi, vj] + 1.0 @T.prim_func def factorized(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [16, 16, 16], "float32") B = T.match_buffer(b, [16], "float32") B_rf_local = T.alloc_buffer([16, 16], "float32", scope="local") for j in T.thread_binding(0, 16, thread = "blockIdx.x"): for i_o in T.thread_binding(0, 4, thread = "threadIdx.x"
): for i_i, k in T.grid(4, 16): with T.block("B_rf"): vi = T.axis.S(16, i_o * 4 + i_i) vj, vk = T.axis.remap("SR", [j, k]) with T.init(): B_rf_local[vi, vj] = 0.0 B_rf_local[vi, vj] = B_rf_local[vi, vj] + A[vj, vi, vk] for i, k in T.grid(16, 16): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + B_rf_local[vk, vi] @T.prim_func def factorized_after_reverse_compute_at(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [16, 16, 16], "float32") B = T.match_buffer(b, [16], "float32") B_rf_local = T.alloc_buffer([16, 16], "float32", scope="local") for j in T.thread_binding(0, 16, thread = "blockIdx.x"): for i_o in T.thread_binding(0, 4, thread = "threadIdx.x"): for i_i, k in T.grid(4, 16): with T.block("B_rf"): vi = T.axis.S(16, i_o * 4 + i_i) vj = T.axis.S(16, j) vk = T.axis.R(16, k) with T.init(): B_rf_local[vi, vj] = 0.0 B_rf_local[vi, vj] = B_rf_local[vi, vj] + A[vj, vi, vk] for k in T.serial(0, 4): with T.block("B"): vi = T.axis.S(16, j) vk = T.axis.R(16, i_o * 4 + k) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + B_rf_local[vk, vi] @T.prim_func def not_all_compact_data_flow(a: T.handle, c: T.handle): A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] for i, j in T.grid(128, 64): with T.block("C_1"): vi, vj = T.
axis.remap("SS", [i, j]) C[vi, vj * 2] = B[vi, vj * 2] + 1.0 with T.block("C_2"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj * 2 + 1] = B[vi, vj * 2 + 1] * 2.0 @T.prim_func def not_all_compact_data_flow_after_compute_at(a: T.handle, c: T.handle): A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 64): for t in range(2): with T.block("B"): vi = T.axis.S(128, i) vj = T.axis.S(128, j * 2 + t) B[vi, vj] = A[vi, vj] with T.block("C_1"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj * 2] = B[vi, vj * 2] + 1.0 with T.block("C_2"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj * 2 + 1] = B[vi, vj * 2 + 1] * 2.0 @T.prim_func def fail_subtree_compact_dataflow(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i in range(0, 128): for j in range(0, 64): with T.block("B_0"): vi = T.axis.S(128, i) vj = T.axis.S(128, j) B[vi, vj] = A[vi, vj] * 2.0 for j in range(0, 64): with T.block("B_1"): vi = T.axis.S(128, i) vj = T.axis.S(128, j + 64) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def fail_all_consumers_under_loop(a: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") D = T.match_buffer(d, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"):
vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 for i, j in T.grid(128, 128): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def fail_all_producers_under_loop(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.alloc_buffer((128, 128), "float32") D = T.match_buffer(d, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] + 1.0 for i, j in T.grid(128, 128): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = B[vi, vj] + C[vi, vj] @T.prim_func def read_out_of_bound(a: T.handle, c:T.handle) -> None: A = T.match_buffer(a, [16], "float32") B = T.alloc_buffer([16], "float32") C = T.match_buffer(c, [16], "float32") for i in T.serial(0, 16): with T.block("B"): v = T.axis.S(16, i) B[v] = A[v] for j in T.serial(0, 16): with T.block("C"): v = T.axis.S(16, j) T.reads(B[v : v + 2]) C[v] = T.if_then_else(v < 15, T.max(B[v], B[v + 1]), B[v], dtype="float32") @T.prim_func def read_out_of_bound_after_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [16], "float32") B = T.alloc_buffer([16], "float32") C = T.match_buffer(c, [16], "float32") for j in T.serial(0, 16): for i in T.serial(0, 2): with T.block("B"): v = T.axis.S(16, j + i) T.where(j + i < 16) B[v] = A[v] wi
th T.block("C"): v = T.axis.S(16, j) T.reads([B[v : v + 2]]) C[v] = T.if_then_else(v < 15, T.max(B[v], B[v + 1]), B[v], dtype="float32") @T.prim_func def multi_reduction(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(), "float32"]): B = T.alloc_buffer((16, ), dtype="float32") for i, k in T.grid(16, 16): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 0.0 B[vi] += A[vi, vk] for k in T.grid(16): with T.block("C"): vk = T.axis.remap("R", [k]) with T.init(): C[()] = 0.0 C[()] += B[vk] @T.prim_func def multi_reduction_after_compute_at( A: T.Buffer[(16, 16), "float32"], C:T.Buffer[(), "float32"], ): B = T.alloc_buffer((16, ), dtype="float32") for k in T.grid(16): for kk in T.grid(16): with T.block("B"): vi, vk = T.axis.remap("SR", [k, kk]) with T.init(): B[vi] = 0.0 B[vi] += A[vi, vk] with T.block("C"): vk = T.axis.remap("R", [k]) with T.init(): C[()] = 0.0 C[()] += B[vk] @T.prim_func def tiled_pooling_read_cache(a: T.handle, b: T.handle) -> None: X = T.match_buffer(a, [224, 224], dtype="float32") Y = T.match_buffer(b, [224, 224], dtype="float32") cache = T.alloc_buffer([224, 224], dtype="float32") for hh, ww in T.grid(224, 224): with T.block("cache"): h, w = T.axis.remap("SS", [hh, ww]) cache[h, w] = X[h, w] for hh_0, ww_0, hh_1, ww_1, khh, kww in T.grid(28, 28, 8, 8, 3, 3): with T.block("compute"): h = T.axis.spatial(224, hh_0 * 8 + hh_1) w = T.axis.spatial(224, ww_0 * 8 + ww_1) kh, kw = T.axis.remap("RR", [khh, kww]) with T.init(): Y[h, w] = 0.0 Y[h, w] = T.max(Y[h, w], T.if_then_else( T.likely(1 <= h + kh
, dtype="bool") and \ T.likely(h + kh < 225, dtype="bool") and \ T.likely(1 <= w + kw, dtype="bool") and \ T.likely(w + kw < 225, dtype="bool"), cache[h + kh - 1, w + kw - 1], 0.0, dtype="float32")) @T.prim_func def tiled_pooling_read_cache_after_compute_at(a: T.handle, b: T.handle) -> None: X = T.match_buffer(a, [224, 224], dtype="float32") Y = T.match_buffer(b, [224, 224], dtype="float32") cache = T.alloc_buffer([224, 224], dtype="float32") for hh_0, ww_0 in T.grid(28, 28): for ax0, ax1 in T.grid(10, 10): with T.block("cache"): h = T.axis.spatial(224, hh_0 * 8 - 1 + ax0) w = T.axis.spatial(224, ww_0 * 8 - 1 + ax1) T.where(1 <= hh_0 * 8 + ax0 and hh_0 * 8 + ax0 < 225 and 1 <= ww_0 * 8 + ax1 and ww_0 * 8 + ax1 < 225) cache[h, w] = X[h, w] for hh_1, ww_1, khh, kww in T.grid(8, 8, 3, 3): with T.block("compute"): h = T.axis.spatial(224, hh_0 * 8 + hh_1) w = T.axis.spatial(224, ww_0 * 8 + ww_1) kh, kw = T.axis.remap("RR", [khh, kww]) with T.init(): Y[h, w] = 0.0 Y[h, w] = T.max(Y[h, w], T.if_then_else( T.likely(1 <= h + kh, dtype="bool") and \ T.likely(h + kh < 225, dtype="bool") and \ T.likely(1 <= w + kw, dtype="bool") and \ T.likely(w + kw < 225, dtype="bool"), cache[h + kh - 1, w + kw - 1], 0.0, dtype="float32")) @T.prim_func def non_uniform_tiled_conv(x: T.Buffer[(1, 3, 100, 100), "float32"], w: T.Buffer[(16, 3, 3, 3), "float32"], y: T.Buffer[(1, 16, 98, 98), "float32"]) -> None: x_global = T.alloc_buffer([1, 3, 100, 100], dtype="float32") for ax0, ax1, ax2, ax3 in T.grid(1, 3, 100, 100): with T.block("cache"): v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0
, ax1, ax2, ax3]) x_global[v0, v1, v2, v3] = x[v0, v1, v2, v3] for h_o, w_o, n, c_o, h_i, w_i, c_i, kh, kw in T.grid(7, 7, 1, 16, 15, 15, 3, 3, 3): with T.block("compute"): nn = T.axis.spatial(1, 0) cc = T.axis.spatial(16, c_o) hh = T.axis.spatial(98, h_o * 15 + h_i) ww = T.axis.spatial(98, w_o * 15 + w_i) rc, rh, rw = T.axis.remap("RRR", [c_i, kh, kw]) T.where(h_o * 15 + h_i < 98 and w_o * 15 + w_i < 98) with T.init(): y[nn, cc, hh, ww] = T.float32(0) y[nn, cc, hh, ww] = y[nn, cc, hh, ww] + \ x_global[nn, cc @T.prim_func def non_uniform_tiled_conv_after_compute_at(x: T.Buffer[(1, 3, 100, 100), "float32"], w: T.Buffer[(16, 3, 3, 3), "float32"], y: T.Buffer[(1, 16, 98, 98), "float32"]) -> None: x_global = T.alloc_buffer([1, 3, 100, 100], dtype="float32") for h_o, w_o in T.grid(7, 7): for ax0, ax1, ax2 in T.grid(3, 17, 17): with T.block("cache"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(3, ax0) v2 = T.axis.spatial(100, h_o * 15 + ax1) v3 = T.axis.spatial(100, w_o * 15 + ax2) T.where(h_o * 15 + ax1 < 100 and w_o * 15 + ax2 < 100) x_global[v0, v1, v2, v3] = x[v0, v1, v2, v3] for n, c_o, h_i, w_i, c_i, kh, kw in T.grid(1, 16, 15, 15, 3, 3, 3): with T.block("compute"): nn = T.axis.spatial(1, 0) cc = T.axis.spatial(16, c_o) hh = T.axis.spatial(98, h_o * 15 + h_i) ww = T.axis.spatial(98, w_o * 15 + w_i) rc, rh, rw = T.axis.remap("RRR", [c_i, kh, kw]) T.where(h_o * 15 + h_i < 98 and w_o * 15 + w_i < 98) with T.init(): y[nn, cc, hh, ww] = T.float32(0) y[nn, cc, hh, ww] = y[nn, cc, hh, ww] + \
x_global[nn, cc @T.prim_func def concat_two_elemwise(x: T.Buffer[(16,), "float32"], y: T.Buffer[(8,), "float32"], T_concat: T.Buffer[(24,), "float32"]) -> None: T_add_1 = T.alloc_buffer([16], dtype="float32") T_add_2 = T.alloc_buffer([8], dtype="float32") for i in T.serial(16): with T.block("T_add_1"): ax = T.axis.spatial(16, i) T_add_1[ax] = x[ax] + T.float32(1) for i in T.serial(8): with T.block("T_add_2"): ax = T.axis.spatial(8, i) T_add_2[ax] = y[ax] + T.float32(2) for i in T.serial(24): with T.block("T_concat"): ax = T.axis.spatial(24, i) T_concat[ax] = T.if_then_else(16 <= ax, T_add_2[ax - 16], T_add_1[ax], dtype="float32") @T.prim_func def concat_two_elemwise_after_compute_at(x: T.Buffer[(16,), "float32"], y: T.Buffer[(8,), "float32"], T_concat: T.Buffer[(24,), "float32"]) -> None: T_add_1 = T.alloc_buffer([16], dtype="float32") T_add_2 = T.alloc_buffer([8], dtype="float32") for i in T.serial(24): with T.block("T_add_1"): ax = T.axis.spatial(16, i) T.where(i < 16) T_add_1[ax] = x[ax] + T.float32(1) with T.block("T_add_2"): ax = T.axis.spatial(8, i - 16) T.where(16 <= i) T_add_2[ax] = y[ax] + T.float32(2) with T.block("T_concat"): ax = T.axis.spatial(24, i) T_concat[ax] = T.if_then_else(16 <= ax, T_add_2[ax - 16], T_add_1[ax], dtype="float32") @T.prim_func def floordiv_and_floormod_indices(a: T.handle, b: T.handle) -> None: X = T.match_buffer(a, [16, 16]) Y = T.match_buffer(b, [256]) temp = T.alloc_buffer([16, 16]) for i, j in T.grid(16, 16): with T.block("A"): v_i, v_j = T.axis.remap("SS", [i, j]) temp[v_i, v_j] = X[v_j, v_i] + 1.0 for i in T.serial(0, 256):
with T.block("B"): v_i = T.axis.remap("S", [i]) Y[v_i] = temp[v_i @T.prim_func def floordiv_and_floormod_indices_after_reverse_compute_at(a: T.handle, b: T.handle) -> None: X = T.match_buffer(a, [16, 16], dtype="float32") Y = T.match_buffer(b, [256], dtype="float32") temp = T.alloc_buffer([16, 16], dtype="float32") for i in T.serial(0, 16): for j in T.serial(0, 16): with T.block("A"): v_i, v_j = T.axis.remap("SS", [i, j]) temp[v_i, v_j] = X[v_j, v_i] + T.float32(1) for ax0 in T.serial(0, 16): with T.block("B"): v_i = T.axis.spatial(256, i * 16 + ax0) Y[v_i] = temp[v_i @T.prim_func def tiled_repeat_op(x: T.Buffer[(4,), "float32"], T_repeat: T.Buffer[(64,), "float32"]) -> None: T_add = T.alloc_buffer([4], dtype="float32") for i0 in T.serial(4): with T.block("T_add"): ax0 = T.axis.spatial(4, i0) T_add[ax0] = x[ax0] + 1.0 for i0_0, i0_1 in T.grid(8, 8): with T.block("T_repeat"): ax0 = T.axis.spatial(64, i0_0 * 8 + i0_1) T_repeat[ax0] = T_add[ax0 @T.prim_func def tiled_repeat_op_after_compute_at(x: T.Buffer[(4,), "float32"], T_repeat: T.Buffer[(64,), "float32"]) -> None: T_add = T.alloc_buffer([4], dtype="float32") for i0_0 in T.serial(8): with T.block("T_add"): ax0 = T.axis.spatial(4, i0_0 T_add[ax0] = x[ax0] + T.float32(1) for i0_1 in T.serial(8): with T.block("T_repeat"): ax0 = T.axis.spatial(64, i0_0 * 8 + i0_1) T_repeat[ax0] = T_add[ax0 @T.prim_func def static_bound(A: T.Buffer[(32, 1), "float32"], C: T.Buffer[(32, 1), "float32"]) -> None: B = T.alloc_buffer((32, 1), "float32") for i, j in T.grid(32, 1): with T.block("B"): vi = T.axis.spatial(32, i) vj = T.axis.spatial(1, j) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(32, 32):
with T.block("C"): vi = T.axis.spatial(32, i) vj = T.axis.spatial(1, j) T.where(j < 1) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def static_bound_after_compute_at(A: T.Buffer[(32, 1), "float32"], C: T.Buffer[(32, 1), "float32"]) -> None: B = T.alloc_buffer((32, 1), "float32") for i in range(32): for ax0, ax1 in T.grid(1, 1): with T.block("B"): vi = T.axis.spatial(32, i + ax0) vj = T.axis.spatial(1, ax1) B[vi, vj] = A[vi, vj] * 2.0 for j in range(32): with T.block("C"): vi = T.axis.spatial(32, i) vj = T.axis.spatial(1, j) T.where(j < 1) C[vi, vj] = B[vi, vj] + 1.0 use_block_name = tvm.testing.parameter(by_dict={"block_obj": False, "block_name": True}) def test_compute_at_two_elementwise(use_block_name): sch = tir.Schedule(two_elementwise, debug_mask="all") block = "B" if use_block_name else sch.get_block("B") loop, _ = sch.get_loops("C" if use_block_name else sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(two_elementwise_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=two_elementwise) def test_compute_at_blockized_1(use_block_name): sch = tir.Schedule(blockized_1, debug_mask="all") block = sch.get_block("B") _, loop = sch.get_loops(sch.get_block("C_outer")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(blockized_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=blockized_1) def test_compute_at_blockized_2(use_block_name): sch = tir.Schedule(blockized_2, debug_mask="all") block = sch.get_block("B_outer") _, loop, _, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(blockized_2_after_compute_at, sch.mod["main"]) verify_tr
ace_roundtrip(sch=sch, mod=blockized_2) def test_compute_at_cuda_matmul_0(use_block_name): sch = tir.Schedule(cuda_matmul_0, debug_mask="all") block = sch.get_block("C") _, _, _, _, _, loop, _, _ = sch.get_loops(sch.get_block("C_local")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(cuda_matmul_0_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=cuda_matmul_0) def test_compute_at_cuda_matmul_1(use_block_name): sch = tir.Schedule(cuda_matmul_1, debug_mask="all") block = sch.get_block("A_shared_local") _, _, _, _, _, _, _, loop, _, _, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(cuda_matmul_2, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=cuda_matmul_1) def test_compute_at_cuda_matmul_2(use_block_name): sch = tir.Schedule(cuda_matmul_2, debug_mask="all") block = sch.get_block("B_shared_local") _, _, _, _, _, _, _, loop, _, _, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(cuda_matmul_3, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=cuda_matmul_2) def test_compute_at_cuda_matmul_3(use_block_name): sch = tir.Schedule(cuda_matmul_3, debug_mask="all") block = sch.get_block("A_shared") _, _, _, _, _, _, loop, _, _, _, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(cuda_matmul_4, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=cuda_matmul_3) def test_compute_at_cuda_matmul_4(use_block_name): sch = tir.Schedule(cuda_matmul_4, debug_mask="all") block = sch.get_block("B_shared") _, _, _, _, _, _, loop, _, _, _, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(cuda_matmul_5, sch.mod["main"]) verify_trace_roundtrip(sch=sch
, mod=cuda_matmul_4) def test_compute_at_reduction_block(use_block_name): sch = tir.Schedule(multi_reduction, debug_mask="all") block = sch.get_block("B") (loop,) = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=False) tvm.ir.assert_structural_equal(multi_reduction_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=multi_reduction) def test_compute_at_tiled_pooling_read_cache(use_block_name): sch = tir.Schedule(tiled_pooling_read_cache, debug_mask="all") compute = sch.get_block("compute") _, w_o, _, _, _, _ = sch.get_loops(compute) cache = sch.get_block("cache") sch.compute_at(cache, w_o) tvm.ir.assert_structural_equal(tiled_pooling_read_cache_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=tiled_pooling_read_cache) def test_compute_at_non_uniform_tiled_conv(use_block_name): sch = tir.Schedule(non_uniform_tiled_conv, debug_mask="all") compute = sch.get_block("compute") sch.compute_at(sch.get_block("cache"), sch.get_loops(compute)[1]) tvm.ir.assert_structural_equal(non_uniform_tiled_conv_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=non_uniform_tiled_conv) def test_compute_at_concat(use_block_name): sch = tir.Schedule(concat_two_elemwise, debug_mask="all") concat = sch.get_block("T_concat") add1 = sch.get_block("T_add_1") add2 = sch.get_block("T_add_2") axis = sch.get_loops(concat)[0] sch.compute_at(add1, axis) sch.compute_at(add2, axis) tvm.ir.assert_structural_equal(concat_two_elemwise_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=concat_two_elemwise) def test_compute_at_tiled_repeat_op(use_block_name): sch = tir.Schedule(tiled_repeat_op, debug_mask="all") outer_ax, _ = sch.get_loops(sch.get_block("T_repeat")) sch.compute_at(sch.get_block("T_add"), outer_ax) tvm.ir.assert_structural_equal(tiled_repeat_op_after_compute_at, sch.mod["main"]) verify_trace
_roundtrip(sch=sch, mod=tiled_repeat_op) def test_reverse_compute_at_tiled(use_block_name): sch = tir.Schedule(tiled, debug_mask="all") block = sch.get_block("C") _, _, loop, _ = sch.get_loops(sch.get_block("B")) sch.reverse_compute_at(block, loop, preserve_unit_loops=False) tvm.ir.assert_structural_equal(tiled_after_reverse_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=tiled) def test_reverse_compute_at_tiled_trivial_binding(use_block_name): sch = tir.Schedule(tiled_trivial_binding, debug_mask="all") block = sch.get_block("C") _, _, loop, _ = sch.get_loops(sch.get_block("B")) sch.reverse_compute_at(block, loop, preserve_unit_loops=False) tvm.ir.assert_structural_equal(tiled_trivial_binding_after_reverse_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=tiled_trivial_binding) def test_reverse_compute_at_blockized_2(use_block_name): sch = tir.Schedule(blockized_2, debug_mask="all") block = sch.get_block("C") _, loop = sch.get_loops(sch.get_block("B_outer")) sch.reverse_compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(blockized_2_after_reverse_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=blockized_2) def test_reverse_compute_at_factorized(use_block_name): sch = tir.Schedule(factorized, debug_mask="all") block = sch.get_block("B") _, loop, _, _ = sch.get_loops(sch.get_block("B_rf")) sch.reverse_compute_at(block, loop, preserve_unit_loops=False) tvm.ir.assert_structural_equal(factorized_after_reverse_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=factorized) def test_reverse_compute_at_floordiv_and_floormod_indices(use_block_name): sch = tir.Schedule(floordiv_and_floormod_indices, debug_mask="all") A = sch.get_block("A") B = sch.get_block("B") sch.reverse_compute_at(B, sch.get_loops(A)[0]) tvm.ir.assert_structural_equal( floordiv_and_floormod_indices_after_reverse_compute_at, sch.mod
["main"] ) verify_trace_roundtrip(sch=sch, mod=floordiv_and_floormod_indices) def test_read_out_of_bound(use_block_name): sch = tir.Schedule(read_out_of_bound, debug_mask="all") block = sch.get_block("B") (loop,) = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop) tvm.ir.assert_structural_equal(read_out_of_bound_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=read_out_of_bound) def test_compact_dataflow(use_block_name): sch = tir.Schedule(not_all_compact_data_flow, debug_mask="all") block = sch.get_block("B") _, loop = sch.get_loops(sch.get_block("C_1")) sch.compute_at(block, loop) tvm.ir.assert_structural_equal(not_all_compact_data_flow_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=not_all_compact_data_flow) def test_compute_at_simplify_static_bound(use_block_name): sch = tir.Schedule(static_bound, debug_mask="all") block = sch.get_block("B") loop, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=True) tvm.ir.assert_structural_equal(static_bound_after_compute_at, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=static_bound) def test_compute_at_non_perfect_channel_group(use_block_name): @T.prim_func def grouped_channel_bias( X: T.Buffer[(720, 8, 8), "float32"], Y: T.Buffer[(720, 8, 8), "float32"] ): B = T.alloc_buffer([45], dtype="float32", scope="") for i in T.grid(45): with T.block("init"): vi = T.axis.remap("S", [i]) B[vi] = vi for c_o, h, w, c_i in T.grid(2, 8, 8, 360): with T.block("compute"): hh, ww = T.axis.remap("SS", [h, w]) cc = T.axis.spatial(720, c_o * 360 + c_i) Y[cc, hh, ww] = X[cc, hh, ww] + B[cc @T.prim_func def grouped_channel_bias_non_perfect_tiled( X: T.Buffer[(720, 8, 8), "float32"], Y: T.Buffer[(720, 8, 8), "float32"] ): B = T.allo
c_buffer([45], dtype="float32") for c_o in range(2): for ax0 in range(23): with T.block("init"): vi = T.axis.spatial(45, c_o * 22 + ax0) B[vi] = vi for h, w, c_i in T.grid(8, 8, 360): with T.block("compute"): hh, ww = T.axis.remap("SS", [h, w]) cc = T.axis.spatial(720, c_o * 360 + c_i) Y[cc, hh, ww] = X[cc, hh, ww] + B[cc sch = tir.Schedule(grouped_channel_bias, debug_mask="all") loop = sch.get_loops(sch.get_block("compute"))[0] sch.compute_at(sch.get_block("init"), loop) tvm.ir.assert_structural_equal(sch.mod["main"], grouped_channel_bias_non_perfect_tiled) def test_fail_subtree_complete_block(use_block_name): sch = tir.Schedule(fail_subtree_compact_dataflow, debug_mask="all") block = sch.get_block("B_0") loop, _ = sch.get_loops(sch.get_block("C")) with pytest.raises(tvm.tir.ScheduleError, match="complete block"): sch.compute_at(block, loop) def test_fail_not_in_same_scope(use_block_name): sch = tir.Schedule(blockized_1, debug_mask="all") block = "B" if use_block_name else sch.get_block("B") loop, _ = sch.get_loops(sch.get_block("C_inner")) with pytest.raises(tvm.tir.ScheduleError, match="same block scope"): sch.compute_at(block, loop) def test_fail_loop_is_ancestor_of_block(use_block_name): sch = tir.Schedule(two_elementwise, debug_mask="all") block = "B" if use_block_name else sch.get_block("B") loop, _ = sch.get_loops(sch.get_block("B")) with pytest.raises(tvm.tir.ScheduleError, match="ancestor of block"): sch.compute_at(block, loop) def test_fail_output_block(use_block_name): sch = tir.Schedule(tiled, debug_mask="all") block = "C" if use_block_name else sch.get_block("C") loop, _, _, _ = sch.get_loops(sch.get_block("B")) with pytest.raises(tvm.tir.ScheduleError, match="output block"): sch.compute_at(block, loop) def test_fail
_all_consumers_under_loop(use_block_name): sch = tir.Schedule(fail_all_consumers_under_loop, debug_mask="all") block = "B" if use_block_name else sch.get_block("B") loop, _ = sch.get_loops(sch.get_block("C")) with pytest.raises(tvm.tir.ScheduleError, match="requires all the consumer"): sch.compute_at(block, loop) def test_fail_all_producers_under_loop(use_block_name): sch = tir.Schedule(fail_all_producers_under_loop, debug_mask="all") block = "D" if use_block_name else sch.get_block("D") loop, _ = sch.get_loops(sch.get_block("C")) with pytest.raises(tvm.tir.ScheduleError, match="requires all the producer"): sch.reverse_compute_at(block, loop) def test_compute_at_int64_loop(use_block_name): def _create_prim_func(): n = te.var("n", dtype="int64") m = te.var("m", dtype="int64") A = te.placeholder((n, m), name="A", dtype="float32") B = te.placeholder((n, m), name="B", dtype="float32") C = te.compute((n, m), lambda i, j: A[i, j] + B[i, j], name="C") D = te.compute((n, m), lambda i, j: C[i, j] + 1.0, name="D") return te.create_prim_func([A, B, D]) mod = _create_prim_func() sch = tir.Schedule(mod, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") block_d = "D" if use_block_name else sch.get_block("D") i, _ = sch.get_loops(block_d) sch.compute_at(block_c, i) verify_trace_roundtrip(sch=sch, mod=mod) def test_compute_at_to_index(): @T.prim_func def multi_producers_conv( data: T.Buffer[(1, 3, 224, 224), "int8"], w: T.Buffer[(16, 3, 7, 7), "int8"], conv: T.Buffer[(1, 16, 112, 112), "int32"], ) -> None: pad = T.alloc_buffer([1, 3, 230, 230], dtype="int8") wbuf = T.alloc_buffer([16, 3, 7, 7], dtype="int8") for i0, i1, i2, i3 in T.grid(1, 3, 230, 230): with T.block("pad"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(data[i0_1, i1_1, i
2_1 - 3, i3_1 - 3]) T.writes(pad[i0_1, i1_1, i2_1, i3_1]) pad[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( 3 <= i2_1 and i2_1 < 227 and 3 <= i3_1 and i3_1 < 227, data[i0_1, i1_1, i2_1 - 3, i3_1 - 3], T.int8(0), dtype="int8", ) for i0 in T.serial(1): for ax0, ax1, ax2, ax3 in T.grid(16, 3, 7, 7): with T.block("wbuf"): v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3]) T.reads(w[v0, v1, v2, v3]) T.writes(wbuf[v0, v1, v2, v3]) wbuf[v0, v1, v2, v3] = w[v0, v1, v2, v3] for i1, i2, i3, i4, i5, i6 in T.grid(16, 112, 112, 3, 7, 7): with T.block("conv"): nn, ff, yy, xx, rc, ry, rx = T.axis.remap( "SSSSRRR", [i0, i1, i2, i3, i4, i5, i6] ) T.reads(pad[nn, rc, yy * 2 + ry, xx * 2 + rx], wbuf[ff, rc, ry, rx]) T.writes(conv[nn, ff, yy, xx]) with T.init(): conv[nn, ff, yy, xx] = 0 conv[nn, ff, yy, xx] = conv[nn, ff, yy, xx] + T.cast( pad[nn, rc, yy * 2 + ry, xx * 2 + rx], "int32" ) * T.cast(wbuf[ff, rc, ry, rx], "int32") @T.prim_func def multi_producers_after_compute_at( data: T.Buffer[(1, 3, 224, 224), "int8"], w: T.Buffer[(16, 3, 7, 7), "int8"], conv: T.Buffer[(1, 16, 112, 112), "int32"], ) -> None: pad = T.alloc_buffer([1, 3, 230, 230], dtype="int8") wbuf = T.alloc_buffer([16, 3, 7, 7], dtype="int8") for i0 in T.serial(1): for ax0, ax1, ax2 in T.grid(3, 229, 229): with T.block("pad"): i0_1 = T.axis.spatial(1, 0) i1_1 = T.axis.spatial(3, ax0) i2_1 = T.axis.spatial(230, ax1) i3_1
= T.axis.spatial(230, ax2) T.reads(data[i0_1, i1_1, i2_1 - 3, i3_1 - 3]) T.writes(pad[i0_1, i1_1, i2_1, i3_1]) pad[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( 3 <= i2_1 and i2_1 < 227 and 3 <= i3_1 and i3_1 < 227, data[i0_1, i1_1, i2_1 - 3, i3_1 - 3], T.int8(0), dtype="int8", ) for ax0, ax1, ax2, ax3 in T.grid(16, 3, 7, 7): with T.block("wbuf"): v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3]) T.reads(w[v0, v1, v2, v3]) T.writes(wbuf[v0, v1, v2, v3]) wbuf[v0, v1, v2, v3] = w[v0, v1, v2, v3] for i1, i2, i3, i4, i5, i6 in T.grid(16, 112, 112, 3, 7, 7): with T.block("conv"): nn, ff, yy, xx, rc, ry, rx = T.axis.remap( "SSSSRRR", [i0, i1, i2, i3, i4, i5, i6] ) T.reads(pad[nn, rc, yy * 2 + ry, xx * 2 + rx], wbuf[ff, rc, ry, rx]) T.writes(conv[nn, ff, yy, xx]) with T.init(): conv[nn, ff, yy, xx] = 0 conv[nn, ff, yy, xx] = conv[nn, ff, yy, xx] + T.cast( pad[nn, rc, yy * 2 + ry, xx * 2 + rx], "int32" ) * T.cast(wbuf[ff, rc, ry, rx], "int32") sch = tir.Schedule(multi_producers_conv, debug_mask="all") block_c = sch.get_block("pad") axis = sch.get_loops("conv")[0] sch.compute_at(block_c, axis, index=-2) tvm.ir.assert_structural_equal(multi_producers_after_compute_at, sch.mod["main"]) def test_reverse_compute_at_to_index(): @T.prim_func def main(A: T.Buffer[(128, 128), "float32"], D: T.Buffer[(128, 128), "float32"]) -> None: B = T.alloc_buffer([128, 128], dtype="float32") C = T.alloc_buffer([128, 128], dtype="float32") for i_0, j_0, i_1 in T.grid(8,
8, 16): for j_1 in T.serial(16): with T.block("B"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spatial(128, j_0 * 16 + j_1) T.reads(A[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] * T.float32(2) for ax0 in T.serial(16): with T.block("C"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spatial(128, j_0 * 16 + ax0) T.reads(B[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = B[vi, vj] + T.float32(1) for i, j in T.grid(128, 128): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[vi, vj]) T.writes(D[vi, vj]) D[vi, vj] = B[vi, vj] + T.float32(1) @T.prim_func def main_reverse_compute_at( A: T.Buffer[(128, 128), "float32"], D: T.Buffer[(128, 128), "float32"] ) -> None: B = T.alloc_buffer([128, 128], dtype="float32") C = T.alloc_buffer([128, 128], dtype="float32") for i_0, j_0, i_1 in T.grid(8, 8, 16): for j_1 in T.serial(16): with T.block("B"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spatial(128, j_0 * 16 + j_1) T.reads(A[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] * T.float32(2) for ax0 in T.serial(16): with T.block("D"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spatial(128, j_0 * 16 + ax0) T.reads(B[vi, vj]) T.writes(D[vi, vj]) D[vi, vj] = B[vi, vj] + T.float32(1) for ax0 in T.serial(16): with T.block("C"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spati
al(128, j_0 * 16 + ax0) T.reads(B[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = B[vi, vj] + T.float32(1) sch = tir.Schedule(main, debug_mask="all") block_c = sch.get_block("D") axis = sch.get_loops("B")[2] sch.reverse_compute_at(block_c, axis, index=1) tvm.ir.assert_structural_equal(main_reverse_compute_at, sch.mod["main"]) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def elementwise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def elementwise_multi_producer_consumer(a: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) D = T.match_buffer(d, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 for i, j in T.grid(128, 128): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = B[vi, vj] + 2.0 + C[vi, vj] @T.prim_func def elementwise_multi_consumer_inlined(a: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) D = T.match_buffer(d, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 + 1.0 for i, j in T.grid(128, 128): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = A[vi, vj] * 2.0 + 2.0 + C[vi, vj] @T.prim_func def elementwise_standalone(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS",
[i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] + 1.0 @T.prim_func def elementwise_standalone_dce(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] + 1.0 @T.prim_func def elementwise_under_loop(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) for i in T.serial(0, 128): for j in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for j in T.serial(0, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def elementwise_inlined(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 + 1.0 @T.prim_func def fail_multi_reader_writer(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.alloc_buffer((128, 128)) D = T.match_buffer(d, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 C[vi, vj] = A[vi, vj] + 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = B[vi, vj] + C[vi, vj] @T.prim_func def elementwise_multi_reverse_loads(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128))
B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = (B[vi, vj] + 1.0) * (B[vi, vj] * 2.0) + 3.0 @T.prim_func def elementwise_multi_reverse_loads_inlined(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = (A[vi, vj] * 2.0 + 1.0) * (A[vi, vj] * 2.0 * 2.0) + 3.0 @T.prim_func def elementwise_reverse_affine_load( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(8, 32, 8, 8), "float32"] ) -> None: B = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j, k, l in T.grid(8, 32, 8, 8): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk, vl] = B[ ((((vi * 32) + vj) * 8 + vk) * 8 + vl) ((((vi * 32) + vj) * 8 + vk) * 8 + vl) % 128, ] @T.prim_func def elementwise_reverse_affine_load_inlined( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(8, 32, 8, 8), "float32"] ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) C[ (vj + vi * 128) (vj + vi * 128) ((vj + vi * 128) (vj + vi * 128) % 8, ] = ( A[vi, vj] * 2.0 ) @T.prim_func def elementwise_reverse_affine_load_unit_iter( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(8, 16, 1), "float32"], D: T.Buffer[(1, 8, 16, 128), "float32"], ) -> N
one: C = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 for i, j, k, l in T.grid(1, 8, 16, 128): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) D[vi, vj, vk, vl] = C[vj * 16 + vk, vl] + B[vj, vk, vi] @T.prim_func def elementwise_reverse_affine_load_unit_iter_inlined( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(8, 16, 1), "float32"], D: T.Buffer[(1, 8, 16, 128), "float32"], ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) D[0, vi @T.prim_func def elementwise_reverse_affine_load_unit_iter_simplified( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(8, 16, 1), "float32"], D: T.Buffer[(1, 8, 16, 128), "float32"], ) -> None: C = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 for i, j, k in T.grid(8, 16, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) D[0, vi, vj, vk] = C[vi * 16 + vj, vk] + B[vi, vj, 0] @T.prim_func def elementwise_reverse_affine_load_unit_iter_simplified_inlined( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(8, 16, 1), "float32"], D: T.Buffer[(1, 8, 16, 128), "float32"], ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) D[0, vi @T.prim_func def elementwise_reverse_affine_chain( A: T.Buffer[(128, 128), "float32"], D: T.Buffer[(1, 8, 16, 128), "float32"] ): B = T.alloc_buffer((128, 128)) C = T.alloc_buffer((8, 16, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j, k in T.grid(8, 16, 1
28): with T.block("C"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = B[vi * 16 + vj, vk] + 1.0 for i, j, k, l in T.grid(1, 8, 16, 128): with T.block("D"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) D[vi, vj, vk, vl] = C[vj, vk, vl] @T.prim_func def elementwise_reverse_affine_chain_inlined( A: T.Buffer[(128, 128), "float32"], D: T.Buffer[(1, 8, 16, 128), "float32"] ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) D[0, vi @T.prim_func def elementwise_multi_reverse_affine_load( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(8, 16, 128), "float32"], ) -> None: B = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j, k in T.grid(8, 16, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = B[vi * 16 + vj, vk] + B[vi * 16 + vj, vk] @T.prim_func def elementwise_multi_reverse_affine_load_inlined( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(8, 16, 128), "float32"], ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) C[vi @T.prim_func def elementwise_reverse_non_affine_load( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(8, 16, 128), "float32"] ) -> None: B = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j, k in T.grid(8, 16, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = B[vi * 16 + vj, vi * 16 + vj] @T.prim_func def opaque_access_load(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.
alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[0:128, 0:128]) T.writes(C[0:128, 0:128]) T.evaluate(B.access_ptr("r", extent=128)) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def opaque_access_store(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[0:128, 0:128]) T.writes(C[0:128, 0:128]) T.evaluate(B.access_ptr("r", extent=128)) T.evaluate(C.access_ptr("w", extent=128)) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def buffer_matched(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) Bb = T.match_buffer(B[vi : vi + 1, vj], (1, 1)) C[vi, vj] = Bb[0, 0] + 1.0 @T.prim_func def elementwise_predicate(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.g
rid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) T.where(B[i, j] < 10.0) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def elementwise_predicate_inlined(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) T.where(A[i, j] * 2.0 < 10.0) C[vi, vj] = A[vi, vj] * 2.0 + 1.0 @T.prim_func def elementwise_multi_loads(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + B[vi, vj + 1] + B[vi, vj + 2] @T.prim_func def elementwise_multi_loads_inlined(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 + A[vi, vj + 1] * 2.0 + A[vi, vj + 2] * 2.0 @T.prim_func def access_opaque_ptr_then_elemwise(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [1024]) B = T.match_buffer(b, [1024]) A_cache = T.alloc_buffer([1024]) BB = T.alloc_buffer([1024]) with T.block("opaque"): T.reads(A[0:512]) T.writes(A_cache[0:512]) T.evaluate(A.access_ptr("r", extent=512)) T.evaluate(A_cache.access_ptr("w", extent=512)) for i in range(512): with T.block("BB"): vi = T.axis.remap("S", [i]) BB[vi] = A_cache[vi] * 2.0 for i in range(512): with T.block("B"): vi = T.axis.remap("S", [i])
B[vi] = BB[vi] + 1.0 @T.prim_func def access_opaque_ptr_then_elemwise_inline(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [1024], dtype="float32") B = T.match_buffer(b, [1024], dtype="float32") A_cache = T.alloc_buffer([1024], dtype="float32") with T.block("opaque"): T.reads(A[0:512]) T.writes([A_cache[0:512]]) T.evaluate(A.access_ptr("r", extent=512)) T.evaluate(A_cache.access_ptr("w", extent=512)) for i in T.serial(0, 512): with T.block("B"): vi = T.axis.spatial(512, i) T.reads([A_cache[vi]]) T.writes([B[vi]]) B[vi] = A_cache[vi] * 2.0 + 1.0 @T.prim_func def matmul_relu(var_A: T.handle, var_B: T.handle, var_compute: T.handle) -> None: A = T.match_buffer(var_A, [512, 512], dtype="float32") B = T.match_buffer(var_B, [512, 512], dtype="float32") compute = T.match_buffer(var_compute, [512, 512], dtype="float32") C = T.alloc_buffer([512, 512], dtype="float32") for i0, i1, i2 in T.grid(512, 512, 512): with T.block("C"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads([C[i, j], A[i, k], B[k, j]]) T.writes([C[i, j]]) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] for i0, i1 in T.grid(512, 512): with T.block("compute"): i0_1, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads([C[i0_1, i1_1]]) T.writes([compute[i0_1, i1_1]]) compute[i0_1, i1_1] = T.max(C[i0_1, i1_1], T.float32(0)) @T.prim_func def inline_block_with_init( A: T.Buffer[(1, 512, 7, 7), "float32"], B: T.Buffer[(1, 512, 1, 1), "float32"], ) -> None: B_rf = T.alloc_buffer([1, 512, 1, 1, 49], dtype="float32") for i0, i1, i2, i3, i4, i5 in T.grid(1, 512, 1, 1, 49, 1): with T.block("tensor_rf"): vi4 = T.axis.spatial(49, i4) ax0 = T.axis.spatial(1, 0) ax1 = T.axis.spatial(512, i1)
ax2 = T.axis.spatial(1, 0) ax3 = T.axis.spatial(1, 0) with T.init(): B_rf[ax0, ax1, ax2, ax3, vi4] = T.float32(0) B_rf[ax0, ax1, ax2, ax3, vi4] = ( B_rf[ax0, ax1, ax2, ax3, vi4] + A[ ax0, ax1, ax2 * 7 + vi4 ax3 * 7 + vi4 % 7, ] ) for i0, i1 in T.grid(1, 512): for ax0, ax1, ax2, ax3, ax4 in T.grid(49, 1, 1, 1, 1): with T.block("tensor"): vi4, ax0_1 = T.axis.remap("RS", [ax0, ax1]) ax1_1 = T.axis.spatial(512, i1 + ax2) ax2_1, ax3_1 = T.axis.remap("SS", [ax3, ax4]) with T.init(): B[ax0_1, ax1_1, ax2_1, ax3_1] = T.float32(0) B[ax0_1, ax1_1, ax2_1, ax3_1] = ( B[ax0_1, ax1_1, ax2_1, ax3_1] + B_rf[ax0_1, ax1_1, ax2_1, ax3_1, vi4] ) @T.prim_func def exp_exp_opaque_access_with_tvm_access_ptr( lookup_table: T.Buffer[(1024,), "int8"], x: T.Buffer[(16,), "float16"], compute: T.Buffer[(16,), "float16"], ) -> None: compute_1 = T.alloc_buffer([16], dtype="float16") for i0 in T.serial(16): with T.block("compute"): i0_1 = T.axis.spatial(16, i0) T.reads(x[i0_1]) T.writes(compute_1[i0_1]) compute_1[i0_1] = T.exp(x[i0_1], dtype="float16") for i0 in T.serial(16): with T.block("compute_1"): i0_2 = T.axis.spatial(16, i0) T.reads(lookup_table[0:1024], compute_1[i0_2]) T.writes(compute[i0_2]) T.evaluate(lookup_table.access_ptr("r")) compute[i0_2] = T.exp( compute_1[i0_2], dtype="float16", ) @T.prim_func def exp_exp_opaque_access_with_tvm_access_ptr_inlined( lookup_table: T.Buffer[(1024,), "int8"], x: T.Buffer[(16,), "float16"], compute: T.Buffer[(16,), "float16"], ) -> None:
for i0 in T.serial(16): with T.block("compute_1"): i0_1 = T.axis.spatial(16, i0) T.reads(lookup_table[0:1024], x[i0_1]) T.writes(compute[i0_1]) T.evaluate(lookup_table.access_ptr("r")) compute[i0_1] = T.exp( T.exp(x[i0_1], dtype="float16"), dtype="float16", ) @T.prim_func def elementwise_overcomputed_producer( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(127, 127), "float32"] ) -> None: B = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(127, 127): with T.block("C"): cvi, cvj = T.axis.remap("SS", [i, j]) C[cvi, cvj] = B[cvi, cvj] + 1.0 @T.prim_func def elementwise_overcomputed_producer_reverse_inlined( A: T.Buffer[(128, 128), "float32"], C: T.Buffer[(127, 127), "float32"] ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.where(i < 127 and j < 127) C[vi, vj] = A[vi, vj] * 2.0 + 1.0 @T.prim_func def elementwise_producer_not_cover_consumer( A: T.Buffer[(128, 128), "float32"], D: T.Buffer[(256, 128), "float32"] ) -> None: B = T.alloc_buffer((128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(256, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = T.if_then_else(vi >= 128, B[vi - 128, vj], T.float32(0), dtype="float32") @T.prim_func def elementwise_predicate_producer(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((127, 128)) C = T.match_buffer(c, (127, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.
axis.remap("SS", [i, j]) T.where(i < 127) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(127, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def elementwise_predicate_producer_inlined(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (127, 128)) for i, j in T.grid(128, 128): with T.block("B"): T.where(i < 127) vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = A[vi, vj] * T.float32(2) + T.float32(1) @tvm.script.ir_module class Conv2dInt8_TensorCore_with_predicate: @T.prim_func def main(p0: T.Buffer[(16, 56, 56, 64), "int8"], p1: T.Buffer[(256, 1, 1, 64), "int8"], p2: T.Buffer[(1, 1, 1, 256), "int32"], p3: T.Buffer[(1, 1, 1, 256), "int32"], p4: T.Buffer[256, "int32"], p5: T.Buffer[256, "int32"], p6: T.Buffer[256, "int32"], p7: T.Buffer[(), "int32"], p8: T.Buffer[1, "int32"], p9: T.Buffer[(16, 56, 56, 256), "int32"], compute: T.Buffer[(16, 56, 56, 256), "int32"]): T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":1024}) compute_3 = T.alloc_buffer([16, 56, 56, 256], dtype="int32") conv2d_nhwc_reindex_shared = T.alloc_buffer([50176, 256], dtype="int32", scope="shared") conv2d_nhwc_reindex_shared_wmma_accumulator = T.alloc_buffer([50176, 256], dtype="int32", scope="wmma.accumulator") pad_temp_reindex_shared = T.alloc_buffer([50176, 64], dtype="int8", scope="shared") p1_reindex_shared = T.alloc_buffer([1, 1, 256, 64], dtype="int8", scope="shared") pad_temp_reindex_shared_wmma_matrix_a = T.alloc_buffer([50176, 64], dtype="int8", scope="wmma.matrix_a") p1_reindex_shared_wmma_matrix_b = T.alloc
_buffer([1, 1, 256, 64], dtype="int8", scope="wmma.matrix_b") for ax2_0_0_ax3_0_0_fused in T.thread_binding(32, thread="blockIdx.y"): for ax2_0_1_ax3_0_1_fused in T.thread_binding(196, thread="blockIdx.x"): for ax2_0_2_ax3_0_2_fused in T.thread_binding(4, thread="threadIdx.y"): for ax0_0, ax1_0, ax4_0_0 in T.grid(1, 1, 2): for ax0_ax1_fused in T.serial(1024): with T.block("pad_temp_reindex_shared"): v0 = T.axis.spatial(50176, ax2_0_0_ax3_0_0_fused v1 = T.axis.spatial(64, ax4_0_0 * 32 + ax0_ax1_fused % 32) T.reads(p0[v0 T.writes(pad_temp_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 16]], "meta_schedule.cooperative_fetch":4}) pad_temp_reindex_shared[v0, v1] = p0[v0 for ax0_ax1_ax2_ax3_fused in T.serial(2048): with T.block("p1_reindex_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(1, 0) v2 = T.axis.spatial(256, ax2_0_0_ax3_0_0_fused % 4 * 64 + ax0_ax1_ax2_ax3_fused v3 = T.axis.spatial(64, ax4_0_0 * 32 + ax0_ax1_ax2_ax3_fused % 32) T.reads(p1[v2, v0, v1, v3]) T.writes(p1_reindex_shared[v0, v1, v2, v3]) T.block_attr({"buffer_dim_align":[[0, 2, 32, 16]], "meta_schedule.cooperative_fetch":3}) p1_reindex_shared[v0, v1, v2, v3] = p1[v2, v0, v1, v3] for ax0_1, ax1_1, ax4_0_1 in T.grid(1, 1, 2): for ax0_0_1, ax1_0_1 in T.grid(1, 1):
with T.block("pad_temp_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(3136, ax2_0_0_ax3_0_0_fused v1_o = T.axis.spatial(4, ax4_0_0 * 2 + ax4_0_1) T.reads(pad_temp_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(pad_temp_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_s8_a"}) for ax0_1_1, ax1_1_1 in T.grid(16, 16): with T.block("pad_temp_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1_1, ax1_1_1]) T.reads(pad_temp_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(pad_temp_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) pad_temp_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = pad_temp_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0, ax1, ax2_0, ax3_0 in T.grid(1, 1, 2, 1): with T.block("p1_reindex_shared_wmma.matrix_b_o"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(1, 0) v2_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_fused % 4 * 4 + ax2_0_2_ax3_0_2_fused % 2 * 2 + ax2_0) v3_o = T.axis.spatial(4, ax4_0_0 * 2 + ax4_0_1) T.reads(p1_reindex_shared[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16])
T.writes(p1_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_s8_b_trans"}) for ax2_1, ax3_1 in T.grid(16, 16): with T.block("p1_reindex_shared_wmma.matrix_b"): v2_i, v3_i = T.axis.remap("SS", [ax2_1, ax3_1]) T.reads(p1_reindex_shared[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i]) T.writes(p1_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i]) p1_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i] = p1_reindex_shared[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i] for ax2_0_3, ax3_0_3, ax0_2, ax1_2, ax4_0_2, ax2_0_4, ax3_0_4 in T.grid(1, 1, 1, 1, 1, 1, 2): with T.block("conv2d_nhwc_o"): v0 = T.axis.reduce(1, 0) v1 = T.axis.reduce(1, 0) v2_o = T.axis.spatial(3136, ax2_0_0_ax3_0_0_fused v3_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_fused % 4 * 4 + ax2_0_2_ax3_0_2_fused % 2 * 2 + ax3_0_3 * 2 + ax3_0_4) v4_o = T.axis.reduce(4, ax4_0_0 * 2 + ax4_0_1 + ax4_0_2) T.reads(pad_temp_reindex_shared_wmma_matrix_a[v2_o * 16 : v2_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16], p1_reindex_shared_wmma_matrix_b[v0, v1, v3_o * 16 : v3_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16]) T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16]) T.block_attr({"me
ta_schedule.auto_tensorize":"wmma_sync_16x16x16_s8s8s32_trans", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_s32", "meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "warp_execution":1}) with T.init(): for ax2_1, ax3_1 in T.grid(16, 16): with T.block("conv2d_nhwc_init"): v2_i_init, v3_i_init = T.axis.remap("SS", [ax2_1, ax3_1]) T.reads() T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i_init, v3_o * 16 + v3_i_init]) conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i_init, v3_o * 16 + v3_i_init] = 0 for ax2_1, ax3_1, ax4_1 in T.grid(16, 16, 16): with T.block("conv2d_nhwc"): v2_i, v3_i, v4_i = T.axis.remap("SSR", [ax2_1, ax3_1, ax4_1]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i], pad_temp_reindex_shared_wmma_matrix_a[v2_o * 16 + v2_i, v4_o * 16 + v4_i], p1_reindex_shared_wmma_matrix_b[v0, v1, v3_o * 16 + v3_i, v4_o * 16 + v4_i]) T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i] = conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i] + T.cast(pad_temp_reindex_shared_wmma_matrix_a[v2_o * 16 + v2_i, v4_o * 16 + v4_i], "int32") * T.cas
t(p1_reindex_shared_wmma_matrix_b[v0, v1, v3_o * 16 + v3_i, v4_o * 16 + v4_i], "int32") for ax0_0, ax1_0 in T.grid(1, 2): with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator_o"): v0_o = T.axis.spatial(3136, ax2_0_0_ax3_0_0_fused v1_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_fused % 4 * 4 + ax2_0_2_ax3_0_2_fused % 2 * 2 + ax1_0) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_s32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) conv2d_nhwc_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0, ax1_0, ax1_1, ax1_2, ax1_3 in T.grid(32, 1, 4, 32, 2): with T.block("conv2d_nhwc_reindex_shared"): T.where(((ax1_0 * 4 + ax1_1) * 32 + ax1_2) * 2 + ax1_3 < 64) v0 = T.axis.spatial(50176, ax2_0_0_ax3_0_0_fused v1 = T.axis.spatial(256, ax2_0_0_ax3_0_0_fused % 4 * 64 + (ax1_0 * 256 + ax1_1 * 64 + ax1_2 * 2 + ax1_3)) T.reads(p7[()], conv2d_nhwc_reindex_shared[v0, v1], p2[0, 0,
0, v1], p3[0, 0, 0, v1], p4[v1], p5[v1], p6[v1], p8[0]) T.writes(compute_3[v0 compute_3[v0 for i0_12, i1_12, i2_12, i3_12 in T.grid(16, 56, 56, 256): with T.block("compute_4"): i0_13, i1_13, i2_13, i3_13 = T.axis.remap("SSSS", [i0_12, i1_12, i2_12, i3_12]) T.reads(compute_3[i0_13, i1_13, i2_13, i3_13], p9[i0_13, i1_13, i2_13, i3_13]) T.writes(compute[i0_13, i1_13, i2_13, i3_13]) compute[i0_13, i1_13, i2_13, i3_13] = T.max(T.min(compute_3[i0_13, i1_13, i2_13, i3_13] + T.q_multiply_shift(p9[i0_13, i1_13, i2_13, i3_13], 2101000910, 31, 0, dtype="int32"), 255), 0) use_block_name = tvm.testing.parameter(by_dict={"block_obj": False, "block_name": True}) def test_compute_inline_elementwise(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = sch.get_block("C") sch.compute_inline(block_b) tvm.ir.assert_structural_equal(elementwise_inlined, sch.mod["main"]) assert sch.get(block_c).name_hint == "C" verify_trace_roundtrip(sch=sch, mod=elementwise) def test_compute_inline_under_loop(use_block_name): sch = tir.Schedule(elementwise_under_loop, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = sch.get_block("C") sch.compute_inline(block_b) tvm.ir.assert_structural_equal(elementwise_inlined, sch.mod["main"]) assert sch.get(block_c).name_hint == "C" verify_trace_roundtrip(sch=sch, mod=elementwise_under_loop) def test_compute_inline_as_dce(use_block_name): sch = tir.Schedule(elementwise_standalone, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = sch.get_block("C") sch.compute_inline(block_b) tvm.ir.assert_structural_equal(elementwise_standalone_dce, sch.mod["main"]) assert sch.get(block_c).name_hint == "C" verify_trace_roundtri
p(sch=sch, mod=elementwise_standalone) def test_compute_inline_multi_consumer(use_block_name): sch = tir.Schedule(elementwise_multi_producer_consumer, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") block_c = sch.get_block("C") block_d = sch.get_block("D") sch.compute_inline(block_b) tvm.ir.assert_structural_equal(elementwise_multi_consumer_inlined, sch.mod["main"]) assert sch.get(block_c).name_hint == "C" assert sch.get(block_d).name_hint == "D" verify_trace_roundtrip(sch=sch, mod=elementwise_multi_producer_consumer) def test_compute_inline_fail_multi_writer(use_block_name): sch = tir.Schedule(fail_multi_reader_writer, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.compute_inline(block_b) def test_reverse_compute_inline_elementwise(use_block_name): sch = tir.Schedule(elementwise, debug_mask="all") block_b = sch.get_block("B") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert_structural_equal(elementwise_inlined, sch.mod["main"]) assert sch.get(block_b).name_hint == "B" verify_trace_roundtrip(sch=sch, mod=elementwise) def test_reverse_compute_inline_under_loop(use_block_name): sch = tir.Schedule(elementwise_under_loop, debug_mask="all") block_b = sch.get_block("B") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert_structural_equal(elementwise_inlined, sch.mod["main"]) assert sch.get(block_b).name_hint == "B" verify_trace_roundtrip(sch=sch, mod=elementwise_under_loop) def test_reverse_compute_inline_fail_as_dce(use_block_name): sch = tir.Schedule(elementwise_standalone, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.reverse_compute_inline(block_b) def test_reverse_compute_inline_fail_multi_pr
oducer(use_block_name): sch = tir.Schedule(elementwise_multi_producer_consumer, debug_mask="all") block_d = "D" if use_block_name else sch.get_block("D") with pytest.raises(tvm.tir.ScheduleError): sch.reverse_compute_inline(block_d) def test_reverse_compute_inline_fail_multi_reader(use_block_name): sch = tir.Schedule(fail_multi_reader_writer, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") with pytest.raises(tvm.tir.ScheduleError): sch.reverse_compute_inline(block_c) def test_reverse_compute_multi_reverse_loads(use_block_name): sch = tir.Schedule(elementwise_multi_reverse_loads, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert_structural_equal(elementwise_multi_reverse_loads_inlined, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_multi_reverse_loads) def test_reverse_compute_inline_affine_load(use_block_name): sch = tir.Schedule(elementwise_reverse_affine_load, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert_structural_equal(elementwise_reverse_affine_load_inlined, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_reverse_affine_load) def test_reverse_compute_inline_multi_affine_load(use_block_name): sch = tir.Schedule(elementwise_multi_reverse_affine_load, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert_structural_equal(elementwise_multi_reverse_affine_load_inlined, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_multi_reverse_affine_load) def test_reverse_compute_inline_affine_load_unit_iter(use_block_name): sch = tir.Schedule(elementwise_reverse_affine_load_unit_iter, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert
_structural_equal( elementwise_reverse_affine_load_unit_iter_inlined, sch.mod["main"] ) verify_trace_roundtrip(sch=sch, mod=elementwise_reverse_affine_load_unit_iter) def test_reverse_compute_inline_affine_load_unit_iter_simplified(use_block_name): sch = tir.Schedule(elementwise_reverse_affine_load_unit_iter_simplified, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(block_c) tvm.ir.assert_structural_equal( elementwise_reverse_affine_load_unit_iter_simplified_inlined, sch.mod["main"] ) verify_trace_roundtrip(sch=sch, mod=elementwise_reverse_affine_load_unit_iter_simplified) @pytest.mark.parametrize("reverse_order", [True, False]) def test_reverse_compute_inline_affine_chain(use_block_name, reverse_order): sch = tir.Schedule(elementwise_reverse_affine_chain, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") block_d = "D" if use_block_name else sch.get_block("D") if reverse_order: sch.reverse_compute_inline(block_d) sch.reverse_compute_inline(block_c) else: sch.reverse_compute_inline(block_c) sch.reverse_compute_inline(block_d) tvm.ir.assert_structural_equal(elementwise_reverse_affine_chain_inlined, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_reverse_affine_chain) def test_reverse_compute_fail_non_affine_load(use_block_name): sch = tir.Schedule(elementwise_reverse_non_affine_load, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") with pytest.raises(tvm.tir.ScheduleError): sch.reverse_compute_inline(block_c) def test_reverse_compute_fail_multi_reverse_loads(use_block_name): sch = tir.Schedule(elementwise_multi_loads, debug_mask="all") block_c = "C" if use_block_name else sch.get_block("C") with pytest.raises(tvm.tir.ScheduleError): sch.reverse_compute_inline(block_c) def test_opaque_access_load(use_block_name): sch = tir.Schedule(opaque_
access_load, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.compute_inline(block_b) def test_opaque_access_store(use_block_name): sch = tir.Schedule(opaque_access_store, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.compute_inline(block_b) def test_buffer_matched(use_block_name): sch = tir.Schedule(buffer_matched, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") with pytest.raises(tvm.tir.ScheduleError): sch.compute_inline(block_b) def test_output_block(use_block_name): sch = tir.Schedule(matmul_relu, debug_mask="all") block = sch.get_block("compute") with pytest.raises(tvm.tir.ScheduleError): sch.compute_inline(block) def test_compute_inline_predicate(use_block_name): sch = tir.Schedule(elementwise_predicate, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") sch.compute_inline(block_b) tvm.ir.assert_structural_equal(elementwise_predicate_inlined, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_predicate) def test_compute_inline_multi_loads(use_block_name): sch = tir.Schedule(elementwise_multi_loads, debug_mask="all") block_b = "B" if use_block_name else sch.get_block("B") sch.compute_inline(block_b) tvm.ir.assert_structural_equal(elementwise_multi_loads_inlined, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise_multi_loads) def test_compute_inline_with_opaque_access(use_block_name): """Test not rewrite opaque reads/writes after irrelavant compute inline""" sch = tir.Schedule(access_opaque_ptr_then_elemwise, debug_mask="all") BB = "BB" if use_block_name else sch.get_block("BB") sch.compute_inline(BB) tvm.ir.assert_structural_equal(access_opaque_ptr_then_elemwise_inline, sch.mod["main"]) def test_inline_block_with_init(): sch = tir.Sched
ule(inline_block_with_init, debug_mask="all") block = sch.get_block(name="tensor_rf", func_name="main") with pytest.raises(tvm.tir.ScheduleError): sch.compute_inline(block=block) def test_compute_inline_opaque_access_with_tvm_access_ptr(use_block_name): """Test opaque access with tvm_access_ptr after compute inline""" sch = tir.Schedule(exp_exp_opaque_access_with_tvm_access_ptr, debug_mask="all") compute = "compute" if use_block_name else sch.get_block("compute") sch.compute_inline(compute) tvm.ir.assert_structural_equal( exp_exp_opaque_access_with_tvm_access_ptr_inlined, sch.mod["main"] ) def test_reverse_compute_inline_overcomputed_producer(use_block_name): """Test reverse compute inline overcomputed producer""" sch = tir.Schedule(elementwise_overcomputed_producer, debug_mask="all") compute = "C" if use_block_name else sch.get_block("C") sch.reverse_compute_inline(compute) tvm.ir.assert_structural_equal( elementwise_overcomputed_producer_reverse_inlined, sch.mod["main"] ) def test_reverse_compute_inline_error_producer_not_cover_consumer(use_block_name): """Test reverse compute inline failure when the inlined block iter domains are not covered by its producer """ sch = tir.Schedule(elementwise_producer_not_cover_consumer, debug_mask="all") compute = "C" if use_block_name else sch.get_block("C") with pytest.raises(tvm.tir.ScheduleError): sch.reverse_compute_inline(compute) def test_reverse_compute_inline_producer_predicate_allowed(): """Test a case where reverse compute inline is allowed even though the producer has a non-trivial predicate. """ sch = tir.Schedule(elementwise_predicate_producer, debug_mask="all") sch.reverse_compute_inline(sch.get_block("C")) tvm.ir.assert_structural_equal(elementwise_predicate_producer_inlined, sch.mod["main"]) def test_reverse_compute_inline_producer_predicate_disallowed(): """Test reverse compute inline failure when the producer
has a non-trivial predicate that cannot be implied by the synthesized predicate of the new inlined block. """ sch = tir.Schedule(Conv2dInt8_TensorCore_with_predicate, debug_mask="all") with pytest.raises(tvm.tir.ScheduleError) as e: sch.reverse_compute_inline(sch.get_block("compute_4")) assert ( "that cannot be implied by the synthesized predicate True of the new inlined block" in str(e) ) if __name__ == "__main__": tvm.testing.main()
import numpy as np
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T def check_decompose_padding(origin, scheduled, expected, check_run=False): tvm.ir.assert_structural_equal(scheduled, expected) if check_run: in_buffer = origin.buffer_map[origin.params[0]] out_buffer = origin.buffer_map[origin.params[1]] in_shape = [int(_) for _ in in_buffer.shape] out_shape = [int(_) for _ in out_buffer.shape] x = tvm.nd.array(np.random.uniform(0, 64, in_shape).astype(in_buffer.dtype)) y0 = tvm.nd.array(np.zeros(out_shape).astype(out_buffer.dtype)) y1 = tvm.nd.array(np.zeros(out_shape).astype(out_buffer.dtype)) f_origin = tvm.build(origin) f_scheduled = tvm.build(scheduled) f_origin(x, y0) f_scheduled(x, y1) tvm.testing.assert_allclose(y0.numpy(), y1.numpy()) def test_1d_decompose_padding(): @T.prim_func def before_decompose(x: T.Buffer[128, "int32"], y: T.Buffer[140, "int32"]): for i in range(140): with T.block("block"): vi = T.axis.remap("S", [i]) y[vi] = T.if_then_else(vi >= 6 and vi < 134, x[vi - 6], 0, dtype="int32") @T.prim_func def after_decompose(x: T.Buffer[128, "int32"], y: T.Buffer[140, "int32"]): for i in T.serial(140): with T.block("block_pad_const"): vi = T.axis.spatial(140, i) T.reads() T.writes(y[vi]) y[vi] = 0 for i in T.serial(128): with T.block("block"): vi = T.axis.spatial(128, i) T.reads(x[vi]) T.writes(y[vi + 6]) y[vi + 6] = x[vi] sch = tir.Schedule(before_decompose, debug_mask="all") block = sch.get_block("block") sch.decompose_padding(block, sch.get_loops(block)[0]) check_decompose_padding(before_decompose, sch.mod["main"], after_decompose, check_run=False) @T.prim_func def sum_pool_2d( x: T.Buffer[(1, 16, 225, 225), "int8"], tensor: T.Buffer[(1, 16, 225, 225), "int8"] ): pad_temp = T.allo