text
stringlengths
1
2.05k
c_buffer([1, 16, 231, 231], dtype="int8") for i0, i1, i2, i3 in T.grid(1, 16, 231, 231): with T.block("pad_temp"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3]) pad_temp[ax0, ax1, ax2, ax3] = T.if_then_else( 3 <= ax2 and ax2 < 228 and 3 <= ax3 and ax3 < 228, x[ax0, ax1, ax2 - 3, ax3 - 3], T.int8(0), dtype="int8", ) for i0, i1, i2, i3, i4, i5 in T.grid(1, 16, 225, 225, 7, 7): with T.block("tensor"): ax0, ax1, ax2, ax3, rv0, rv1 = T.axis.remap("SSSSRR", [i0, i1, i2, i3, i4, i5]) with T.init(): tensor[ax0, ax1, ax2, ax3] = T.int8(0) tensor[ax0, ax1, ax2, ax3] = ( tensor[ax0, ax1, ax2, ax3] + pad_temp[ax0, ax1, ax2 + rv0, ax3 + rv1] ) def test_decompose_hw_padding_direct(): """Case 0. direct decompose""" @T.prim_func def pooling_decompose_0( x: T.Buffer[(1, 16, 225, 225), "int8"], tensor: T.Buffer[(1, 16, 225, 225), "int8"] ): pad_temp = T.alloc_buffer([1, 16, 231, 231], dtype="int8") for i0, i1, i2, i3 in T.grid(1, 16, 231, 231): with T.block("pad_temp_pad_const"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3]) pad_temp[ax0, ax1, ax2, ax3] = T.int8(0) for i0, i1, i2, i3 in T.grid(1, 16, 225, 225): with T.block("pad_temp"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3]) pad_temp[ax0, ax1, ax2 + 3, ax3 + 3] = x[ax0, ax1, ax2, ax3] for i0, i1, i2, i3, i4, i5 in T.grid(1, 16, 225, 225, 7, 7): with T.block("tensor"): ax0, ax1, ax2, ax3, rv0, rv1 = T.axis.remap("SSSSRR", [i0, i1, i2, i3, i4, i5]) with T.init(): tensor[ax0, ax1, ax2, ax3] = T.int8(0) tensor[ax0, ax1, ax2, ax3] = ( tensor[ax0, ax1, ax2, ax3] + pad_temp[ax0, ax1, ax2 + rv0, ax
3 + rv1] ) sch = tir.Schedule(sum_pool_2d, debug_mask="all") pad = sch.get_block("pad_temp") sch.decompose_padding(pad, sch.get_loops(pad)[0]) check_decompose_padding(sum_pool_2d, sch.mod["main"], pooling_decompose_0, check_run=True) def test_decompose_hw_padding_tiled(): """Case 1. tiling and then decompose""" @T.prim_func def pooling_decompose_1( x: T.Buffer[(1, 16, 225, 225), "int8"], tensor: T.Buffer[(1, 16, 225, 225), "int8"] ) -> None: pad_temp = T.alloc_buffer([1, 16, 231, 231], dtype="int8") for i0, i2_0, i3_0 in T.grid(1, 3, 3): for ax0, ax1, ax2 in T.grid(16, 81, 81): with T.block("pad_temp_pad_const"): ax0_1 = T.axis.spatial(1, 0) ax1_1 = T.axis.spatial(16, ax0) ax2_1 = T.axis.spatial(231, i2_0 * 75 + ax1) ax3 = T.axis.spatial(231, i3_0 * 75 + ax2) T.reads() T.writes(pad_temp[ax0_1, ax1_1, ax2_1, ax3]) pad_temp[ax0_1, ax1_1, ax2_1, ax3] = T.int8(0) for ax0, ax1, ax2 in T.grid(16, 81, 81): with T.block("pad_temp"): ax0_2 = T.axis.spatial(1, 0) ax1_2 = T.axis.spatial(16, ax0) ax2_2 = T.axis.spatial(225, i2_0 * 75 + ax1 - 3) ax3 = T.axis.spatial(225, i3_0 * 75 + ax2 - 3) T.where( 3 <= i2_0 * 75 + ax1 and i2_0 * 75 + ax1 < 228 and 3 <= i3_0 * 75 + ax2 and i3_0 * 75 + ax2 < 228 ) T.reads(x[ax0_2, ax1_2, ax2_2, ax3]) T.writes(pad_temp[ax0_2, ax1_2, ax2_2 + 3, ax3 + 3]) pad_temp[ax0_2, ax1_2, ax2_2 + 3, ax3 + 3] = x[ax0_2, ax1_2, ax2_2, ax3] for i1, i2_1, i3_1, i4, i5 in T.grid(16, 75, 75, 7, 7): with T.block("tensor"): ax0_
3, ax1_3 = T.axis.remap("SS", [i0, i1]) ax2_3 = T.axis.spatial(225, i2_0 * 75 + i2_1) ax3 = T.axis.spatial(225, i3_0 * 75 + i3_1) rv0, rv1 = T.axis.remap("RR", [i4, i5]) T.reads(pad_temp[ax0_3, ax1_3, ax2_3 + rv0, ax3 + rv1]) T.writes(tensor[ax0_3, ax1_3, ax2_3, ax3]) with T.init(): tensor[ax0_3, ax1_3, ax2_3, ax3] = T.int8(0) tensor[ax0_3, ax1_3, ax2_3, ax3] = ( tensor[ax0_3, ax1_3, ax2_3, ax3] + pad_temp[ax0_3, ax1_3, ax2_3 + rv0, ax3 + rv1] ) sch = tir.Schedule(sum_pool_2d, debug_mask="all") block = sch.get_block("tensor") pad = sch.get_block("pad_temp") n, c, h, w, kh, kw = sch.get_loops(block) ho, hi = sch.split(h, [3, 75]) wo, wi = sch.split(w, [3, 75]) sch.reorder(n, ho, wo, c, hi, wi, kh, kw) sch.compute_at(sch.get_block("pad_temp"), wo) sch.decompose_padding(pad, sch.get_loops(pad)[3]) check_decompose_padding(sum_pool_2d, sch.mod["main"], pooling_decompose_1, check_run=True) def test_decompose_hw_padding_tiled_and_lift_pad(): """Case 2. tiling and then decompose, lift const pad values to outer loop""" @T.prim_func def pooling_decompose_2( x: T.Buffer[(1, 16, 225, 225), "int8"], tensor: T.Buffer[(1, 16, 225, 225), "int8"] ) -> None: pad_temp = T.alloc_buffer([1, 16, 231, 231], dtype="int8") for i0, i2_0, i3_0, ax0, ax1, ax2 in T.grid(1, 3, 3, 16, 81, 81): with T.block("pad_temp_pad_const"): ax0_1 = T.axis.spatial(1, 0) ax1_1 = T.axis.spatial(16, ax0) ax2_1 = T.axis.spatial(231, i2_0 * 75 + ax1) ax3 = T.axis.spatial(231, i3_0 * 75 + ax2) T.reads() T.writes(pad_temp[ax0_1, ax1_1, ax2_1, ax3]) pad_temp[ax0_1, ax1_1, ax2_1, ax3] = T.int8(0) for i0, i2_0, i3_0 in T.grid(
1, 3, 3): for ax0, ax1, ax2 in T.grid(16, 81, 81): with T.block("pad_temp"): ax0_2 = T.axis.spatial(1, 0) ax1_2 = T.axis.spatial(16, ax0) ax2_2 = T.axis.spatial(225, i2_0 * 75 + ax1 - 3) ax3 = T.axis.spatial(225, i3_0 * 75 + ax2 - 3) T.where( 3 <= i2_0 * 75 + ax1 and i2_0 * 75 + ax1 < 228 and 3 <= i3_0 * 75 + ax2 and i3_0 * 75 + ax2 < 228 ) T.reads(x[ax0_2, ax1_2, ax2_2, ax3]) T.writes(pad_temp[ax0_2, ax1_2, ax2_2 + 3, ax3 + 3]) pad_temp[ax0_2, ax1_2, ax2_2 + 3, ax3 + 3] = x[ax0_2, ax1_2, ax2_2, ax3] for i1, i2_1, i3_1, i4, i5 in T.grid(16, 75, 75, 7, 7): with T.block("tensor"): ax0_3, ax1_3 = T.axis.remap("SS", [i0, i1]) ax2_3 = T.axis.spatial(225, i2_0 * 75 + i2_1) ax3 = T.axis.spatial(225, i3_0 * 75 + i3_1) rv0, rv1 = T.axis.remap("RR", [i4, i5]) T.reads(pad_temp[ax0_3, ax1_3, ax2_3 + rv0, ax3 + rv1]) T.writes(tensor[ax0_3, ax1_3, ax2_3, ax3]) with T.init(): tensor[ax0_3, ax1_3, ax2_3, ax3] = T.int8(0) tensor[ax0_3, ax1_3, ax2_3, ax3] = ( tensor[ax0_3, ax1_3, ax2_3, ax3] + pad_temp[ax0_3, ax1_3, ax2_3 + rv0, ax3 + rv1] ) sch = tir.Schedule(sum_pool_2d, debug_mask="all") block = sch.get_block("tensor") pad = sch.get_block("pad_temp") n, c, h, w, kh, kw = sch.get_loops(block) ho, hi = sch.split(h, [3, 75]) wo, wi = sch.split(w, [3, 75]) sch.reorder(n, ho, wo, c, hi, wi, kh, kw) sch.compute_at(sch.get_block("pad_temp"), wo) sch.decompose_padding(pad, sch.get_loops(pad)[0]) check_decompose_padding(sum
_pool_2d, sch.mod["main"], pooling_decompose_2, check_run=True) def test_decompose_hw_padding_non_perfect_tiled(): """Case 3. non-perfect tiling and then decompose""" @T.prim_func def pooling_decompose_3( x: T.Buffer[(1, 16, 225, 225), "int8"], tensor: T.Buffer[(1, 16, 225, 225), "int8"] ) -> None: pad_temp = T.alloc_buffer([1, 16, 231, 231], dtype="int8") for i0, i2_0, i3_0 in T.grid(1, 3, 3): for ax0, ax1, ax2 in T.grid(16, 86, 86): with T.block("pad_temp_pad_const"): ax0_1 = T.axis.spatial(1, 0) ax1_1 = T.axis.spatial(16, ax0) ax2_1 = T.axis.spatial(231, i2_0 * 80 + ax1) ax3 = T.axis.spatial(231, i3_0 * 80 + ax2) T.where(i2_0 * 80 + ax1 < 231 and i3_0 * 80 + ax2 < 231) T.reads() T.writes(pad_temp[ax0_1, ax1_1, ax2_1, ax3]) pad_temp[ax0_1, ax1_1, ax2_1, ax3] = T.int8(0) for ax0, ax1, ax2 in T.grid(16, 86, 86): with T.block("pad_temp"): ax0_2 = T.axis.spatial(1, 0) ax1_2 = T.axis.spatial(16, ax0) ax2_2 = T.axis.spatial(225, i2_0 * 80 + ax1 - 3) ax3 = T.axis.spatial(225, i3_0 * 80 + ax2 - 3) T.where( 3 <= i2_0 * 80 + ax1 and i2_0 * 80 + ax1 < 228 and 3 <= i3_0 * 80 + ax2 and i3_0 * 80 + ax2 < 228 and i2_0 * 80 + ax1 < 231 and i3_0 * 80 + ax2 < 231 ) T.reads(x[ax0_2, ax1_2, ax2_2, ax3]) T.writes(pad_temp[ax0_2, ax1_2, ax2_2 + 3, ax3 + 3]) pad_temp[ax0_2, ax1_2, ax2_2 + 3, ax3 + 3] = x[ax0_2, ax1_2, ax2_2, ax3] for i1, i2_1, i3_1, i4, i5 in T.grid(16, 80, 80, 7, 7): with T.block("tensor"): ax0_3,
ax1_3 = T.axis.remap("SS", [i0, i1]) ax2_3 = T.axis.spatial(225, i2_0 * 80 + i2_1) ax3 = T.axis.spatial(225, i3_0 * 80 + i3_1) rv0, rv1 = T.axis.remap("RR", [i4, i5]) T.where(i2_0 * 80 + i2_1 < 225 and i3_0 * 80 + i3_1 < 225) T.reads(pad_temp[ax0_3, ax1_3, ax2_3 + rv0, ax3 + rv1]) T.writes(tensor[ax0_3, ax1_3, ax2_3, ax3]) with T.init(): tensor[ax0_3, ax1_3, ax2_3, ax3] = T.int8(0) tensor[ax0_3, ax1_3, ax2_3, ax3] = ( tensor[ax0_3, ax1_3, ax2_3, ax3] + pad_temp[ax0_3, ax1_3, ax2_3 + rv0, ax3 + rv1] ) sch = tir.Schedule(sum_pool_2d, debug_mask="all") block = sch.get_block("tensor") pad = sch.get_block("pad_temp") n, c, h, w, kh, kw = sch.get_loops(block) ho, hi = sch.split(h, [None, 80]) wo, wi = sch.split(w, [None, 80]) sch.reorder(n, ho, wo, c, hi, wi, kh, kw) sch.compute_at(sch.get_block("pad_temp"), wo) sch.decompose_padding(pad, sch.get_loops(pad)[3]) check_decompose_padding(sum_pool_2d, sch.mod["main"], pooling_decompose_3, check_run=True) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j in T.grid(128, 128): with T.block("init"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = T.float32(0) for k in range(128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] def test_tir_schedule_error_detail(): sch = tir.Schedule(matmul, debug_mask="all", error_render_level="detail") with pytest.raises(tir.ScheduleError) as excinfo: sch.get_block("wrong_name") (msg,) = excinfo.value.args assert "Cannot find a block with the name: wrong_name" in msg def test_tir_schedule_error_fast(): sch = tir.Schedule(matmul, debug_mask="all", error_render_level="fast") with pytest.raises(tir.ScheduleError) as excinfo: sch.get_block("wrong_name") (msg,) = excinfo.value.args assert "Cannot find a block with the specified name" in msg def test_tir_schedule_error_none(): sch = tir.Schedule(matmul, debug_mask="all", error_render_level="none") with pytest.raises(tir.ScheduleError) as excinfo: sch.get_block("wrong_name") (msg,) = excinfo.value.args assert "(not rendered)" in msg def test_tir_schedule_attribute_error(): sch = tir.Schedule(matmul) with pytest.raises(AttributeError): sch.non_existent_field() if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def element_wise(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def element_wise_parallelized(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i0 in T.parallel(0, 128): for i1 in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i0, i1]) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def element_wise_i_bound(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i0 in T.thread_binding(0, 128, thread="threadIdx.x"): for i1 in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i0, i1]) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def element_wise_compute_at_split(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) for i in T.serial(0, 128): for j0 in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j0]) B[vi, vj] = A[vi, vj] * 2.0 for j1o, j1i in T.grid(32, 4): with T.block("C"): vi = T.axis.S(128, i) vj = T.axis.S(128, j1o * 4 + j1i) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def element_wise_compute_at_split_vectorized(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) for i in T.serial(0, 128): for j0 in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j0]) B[vi, vj] = A[vi, vj] * 2.
0 for j1o in T.serial(0, 32): for j1i in T.vectorized(0, 4): with T.block("C"): vi = T.axis.S(128, i) vj = T.axis.S(128, j1o * 4 + j1i) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def element_wise_split_predicate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) for i, j_0, j_1 in T.grid(128, 13, 10): with T.block("B"): T.where(j_0 * 10 + j_1 < 128) vi = T.axis.S(128, i) vj = T.axis.S(128, j_0 * 10 + j_1) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def element_wise_split_predicate_parallelized(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) for i in T.serial(0, 128): for j_0 in T.parallel(0, 13): for j_1 in T.serial(0, 10): with T.block("B"): T.where(j_0 * 10 + j_1 < 128) vi = T.axis.S(128, i) vj = T.axis.S(128, j_0 * 10 + j_1) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def element_wise_split_predicate_vectorized(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) for i in T.vectorized(0, 128): for j_0, j_1 in T.grid(13, 10): with T.block("B"): T.where(j_0 * 10 + j_1 < 128) vi = T.axis.S(128, i) vj = T.axis.S(128, j_0 * 10 + j_1) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def element_wise_compute_at_split_j0_j1o_bound(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) B = T.alloc_buffer((128, 128)) for i in T.serial(0, 128): for j0 in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j0]) B[vi, vj] = A[vi, vj] *
2.0 for j1o in T.thread_binding(0, 32, thread="threadIdx.x"): for j1i in T.serial(0, 4): with T.block("C"): vi = T.axis.S(128, i) vj = T.axis.S(128, j1o * 4 + j1i) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j, k in T.grid(128, 128, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def rowsum(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_unrolled(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i0 in T.unroll(0, 128): for i1 in T.serial(0, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i0, i1]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_not_quasi_affine(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 16): with T.block("B"): vi = T.axis.S(128, i) vk = T.axis.R(128, T.floordiv(k * k, 2)) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_not_compact_data_flow(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 16): with
T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vk] = 0.0 B[vk] = B[vk] + A[vi, vk] @T.prim_func def rowsum_cross_thread_reduction(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i0 in T.serial(0, 128): for i1 in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vk = T.axis.remap("SR", [i0, i1]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def opaque_block(a: T.handle) -> None: A = T.match_buffer(a, (16,)) for i in T.serial(0, 15): with T.block("opaque"): A[i + 1] = A[i + 1] + A[i] @T.prim_func def block_inside_init(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") for i in T.serial(0, 128): with T.block("outer"): vi = T.axis.S(128, i) with T.init(): for j in T.serial(0, 128): with T.block("init"): vj = T.axis.S(128, j) B[vi, vj] = 0.0 for k in T.serial(0, 128): for j in T.serial(0, 128): with T.block("inner"): vj, vk = T.axis.remap("SR", [j, k]) B[vi, vj] = B[vi, vj] + A[vi, vj, vk] @T.prim_func def thread_bound_block_inside_init(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") for i in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("outer"): vi = T.axis.S(128, i) with T.init(): for j in T.serial(0, 128): with T.block("init"): vj = T.axis.S(128, j) B[vi, vj] = 0.0
for k in T.serial(0, 128): for j in T.serial(0, 128): with T.block("inner"): vj, vk = T.axis.remap("SR", [j, k]) B[vi, vj] = B[vi, vj] + A[vi, vj, vk] @T.prim_func def decomposed_gemm( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ): local = T.alloc_buffer((16, 16), "float32") for i, j in T.grid(4, 4): for ii, jj in T.grid(4, 4): with T.block("init"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) local[vi, vj] = 0 for k, ii, jj in T.grid(16, 4, 4): with T.block("update"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) vk = T.axis.R(16, k) local[vi, vj] += A[vi, vk] * B[vj, vk] for ii, jj in T.grid(4, 4): with T.block("C"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) C[vi, vj] = local[vi, vj] @T.prim_func def decomposed_gemm_after_vectorize( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ): local = T.alloc_buffer((16, 16), "float32") for i, j in T.grid(4, 4): for ii, jj in T.grid(4, 4): with T.block("init"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) local[vi, vj] = 0 for k, ii, jj in T.grid(16, 4, 4): with T.block("update"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) vk = T.axis.R(16, k) local[vi, vj] += A[vi, vk] * B[vj, vk] for ii in range(4): for jj in T.vectorized(4): with T.block("C"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj)
C[vi, vj] = local[vi, vj] @T.prim_func def nested_block_bind( A: T.Buffer[(16, 16, 16, 16), "float32"], B: T.Buffer[(16, 16, 16), "float32"] ): for i, j in T.grid(16, 16): with T.block("outer"): vi, vj = T.axis.remap("SS", [i, j]) for k, l in T.grid(16, 16): with T.block("inner"): vk, vl = T.axis.remap("SR", [k, l]) with T.init(): B[vi, vj, vk] = 0.0 B[vi, vj, vk] = B[vi, vj, vk] + A[vi, vj, vk, vl] @T.prim_func def thread_bound_nested_block( A: T.Buffer[(16, 16, 16, 16), "float32"], B: T.Buffer[(16, 16, 16), "float32"] ) -> None: for i in T.serial(16): for j in T.thread_binding(16, thread="blockIdx.x"): with T.block("outer"): vi, vj = T.axis.remap("SS", [i, j]) for k in T.serial(16): for l in T.thread_binding(16, thread="threadIdx.x"): with T.block("inner"): vk, vl = T.axis.remap("SR", [k, l]) with T.init(): B[vi, vj, vk] = T.float32(0) B[vi, vj, vk] = B[vi, vj, vk] + A[vi, vj, vk, vl] @T.prim_func def nested_block_bind_after_cache_read( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16,), "float32"] ) -> None: for i in T.serial(16): with T.block("outer"): vi = T.axis.spatial(16, i) A_shared = T.alloc_buffer([1, 16], dtype="float32", scope="shared") for ax0, ax1 in T.grid(1, 16): with T.block("A_shared"): v0 = T.axis.spatial(16, vi + ax0) v1 = T.axis.spatial(16, ax1) A_shared[v0, v1] = A[v0, v1] for j in T.serial(16): with T.block("inner"): vj = T.axis.reduce(16, j) with T.init(): B[vi] = T.float32(0) B[vi] =
B[vi] + A_shared[vi, vj] @T.prim_func def thread_bound_nested_block_after_cache_read( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16,), "float32"] ) -> None: for i in T.thread_binding(16, thread="blockIdx.x"): with T.block("outer"): vi = T.axis.spatial(16, i) A_shared = T.alloc_buffer([1, 16], dtype="float32", scope="shared") for ax0, ax1 in T.grid(1, 16): with T.block("A_shared"): v0 = T.axis.spatial(16, vi + ax0) v1 = T.axis.spatial(16, ax1) A_shared[v0, v1] = A[v0, v1] for j in T.thread_binding(16, thread="threadIdx.x"): with T.block("inner"): vj = T.axis.reduce(16, j) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A_shared[vi, vj] @T.prim_func def decomposed_gemm_parallelize_init( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ) -> None: local = T.alloc_buffer([16, 16], dtype="float32") for i, j in T.grid(4, 4): for ii in T.serial(4): for jj in T.vectorized(4): with T.block("init"): vi = T.axis.spatial(16, i * 4 + ii) vj = T.axis.spatial(16, j * 4 + jj) T.reads() T.writes(local[vi, vj]) local[vi, vj] = 0 for k, ii, jj in T.grid(16, 4, 4): with T.block("update"): vi = T.axis.spatial(16, i * 4 + ii) vj = T.axis.spatial(16, j * 4 + jj) vk = T.axis.reduce(16, k) T.reads(local[vi, vj], A[vi, vk], B[vj, vk]) T.writes(local[vi, vj]) local[vi, vj] = local[vi, vj] + A[vi, vk] * B[vj, vk] for ii, jj in T.grid(4, 4): with T.block("C"): vi = T.axis.spatial(16, i * 4 + ii) vj = T.axis.spatial(16, j * 4
+ jj) T.reads(local[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = local[vi, vj] @T.prim_func def scatter_compute(A: T.Buffer[(16,), "float32"], B: T.Buffer[(16,), "float32"]): for i in T.grid(8): with T.block("first_half"): vi = T.axis.spatial(16, 8 + i) B[vi] = A[vi - 8] for i in T.grid(8): with T.block("last_half"): vi = T.axis.spatial(16, i) B[vi] = A[vi + 8] @T.prim_func def scatter_compute_parallelize( A: T.Buffer[(16,), "float32"], B: T.Buffer[(16,), "float32"] ) -> None: for i in T.parallel(8): with T.block("first_half"): vi = T.axis.spatial(16, 8 + i) T.reads(A[vi - 8]) T.writes(B[vi]) B[vi] = A[vi - 8] for i in T.parallel(8): with T.block("last_half"): vi = T.axis.spatial(16, i) T.reads(A[vi + 8]) T.writes(B[vi]) B[vi] = A[vi + 8] def test_parallel(): s = tir.Schedule(element_wise, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) s.parallel(i) tvm.ir.assert_structural_equal(s.mod["main"], element_wise_parallelized) verify_trace_roundtrip(s, mod=element_wise) def test_parallel_predicate(): s = tir.Schedule(element_wise_split_predicate, debug_mask="all") _, j, _ = s.get_loops(s.get_block("B")) s.parallel(j) tvm.ir.assert_structural_equal(s.mod["main"], element_wise_split_predicate_parallelized) verify_trace_roundtrip(s, mod=element_wise_split_predicate) def test_parallel_reduction_block_iter(): s = tir.Schedule(matmul, debug_mask="all") _, _, k = s.get_loops(s.get_block("C")) with pytest.raises(tvm.tir.ScheduleError): s.parallel(k) def test_parallel_not_quasi_affine(): s = tir.Schedule(rowsum_not_quasi_affine, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) with pytest.raises(tvm.tir.ScheduleError): s.parallel(i) def test_parallel_not_compact_data_flow
(): s = tir.Schedule(rowsum_not_compact_data_flow, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) with pytest.raises(tvm.tir.ScheduleError): s.parallel(i) def test_vectorize(): s = tir.Schedule(element_wise_compute_at_split, debug_mask="all") _, _, j1i = s.get_loops(s.get_block("C")) s.vectorize(j1i) tvm.ir.assert_structural_equal(s.mod["main"], element_wise_compute_at_split_vectorized) verify_trace_roundtrip(s, mod=element_wise_compute_at_split) def test_vectorize_predicate(): s = tir.Schedule(element_wise_split_predicate, debug_mask="all") i, _, _ = s.get_loops(s.get_block("B")) s.vectorize(i) tvm.ir.assert_structural_equal(s.mod["main"], element_wise_split_predicate_vectorized) verify_trace_roundtrip(s, mod=element_wise_split_predicate) def test_vectorize_opaque_block(): s = tir.Schedule(opaque_block, debug_mask="all") (i,) = s.get_loops(s.get_block("opaque")) with pytest.raises(tvm.tir.ScheduleError): s.vectorize(i) def test_unroll(): s = tir.Schedule(rowsum, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) s.unroll(i) tvm.ir.assert_structural_equal(s.mod["main"], rowsum_unrolled) verify_trace_roundtrip(s, mod=rowsum) def test_unroll_after_bind(): s = tir.Schedule(rowsum, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) s.bind(i, "blockIdx.x") s.unroll(i) tvm.ir.assert_structural_equal(s.mod["main"], rowsum_unrolled) verify_trace_roundtrip(s, mod=rowsum) def test_bind1(): s = tir.Schedule(element_wise, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) s.bind(i, "threadIdx.x") tvm.ir.assert_structural_equal(s.mod["main"], element_wise_i_bound) verify_trace_roundtrip(s, mod=element_wise) def test_bind2(): s = tir.Schedule(element_wise_compute_at_split, debug_mask="all") _, j0 = s.get_loops(s.get_block("B")) _, j1o, _ = s.get_loops(s.get_block("C")) s.bind(j0, "threadIdx.x") s.bind(j1o, "threadIdx.x") tvm.ir.
assert_structural_equal(s.mod["main"], element_wise_compute_at_split_j0_j1o_bound) verify_trace_roundtrip(s, mod=element_wise_compute_at_split) def test_bind_cross_thread_reduction(): s = tir.Schedule(rowsum, debug_mask="all") _, k = s.get_loops(s.get_block("B")) s.bind(k, "threadIdx.x") tvm.ir.assert_structural_equal(s.mod["main"], rowsum_cross_thread_reduction) verify_trace_roundtrip(s, mod=rowsum) def test_bind_not_cross_thread_reduction(): s = tir.Schedule(rowsum, debug_mask="all") _, k = s.get_loops(s.get_block("B")) with pytest.raises(tvm.tir.ScheduleError): s.bind(k, "blockIdx.x") def test_bind_after_bind(): s = tir.Schedule(element_wise, debug_mask="all") i, _ = s.get_loops(s.get_block("B")) s.bind(i, "blockIdx.x") s.bind(i, "threadIdx.x") tvm.ir.assert_structural_equal(s.mod["main"], element_wise_i_bound) verify_trace_roundtrip(s, mod=element_wise) def test_block_inside_init(): s = tir.Schedule(block_inside_init, debug_mask="all") (i,) = s.get_loops(s.get_block("outer")) s.bind(i, "threadIdx.x") tvm.ir.assert_structural_equal(s.mod["main"], thread_bound_block_inside_init) verify_trace_roundtrip(s, mod=block_inside_init) def test_vectorize_after_decompose(): s = tir.Schedule(decomposed_gemm, debug_mask="all") jj = s.get_loops(s.get_block("C"))[-1] s.vectorize(jj) tvm.ir.assert_structural_equal(s.mod["main"], decomposed_gemm_after_vectorize) verify_trace_roundtrip(s, mod=decomposed_gemm) def test_nested_block_bind(): s = tir.Schedule(nested_block_bind) block_outer = s.get_block("outer") block_inner = s.get_block("inner") _, j = s.get_loops(block_outer) _, l = s.get_loops(block_inner) s.bind(l, "threadIdx.x") s.bind(j, "blockIdx.x") tvm.ir.assert_structural_equal(s.mod["main"], thread_bound_nested_block) verify_trace_roundtrip(s, mod=nested_block_bind) def test_nexted_block_bind_after_cache_read(): s = tir.Schedule(nested_block_bind_after_cache_rea
d) block_outer = s.get_block("outer") block_inner = s.get_block("inner") (i,) = s.get_loops(block_outer) (j,) = s.get_loops(block_inner) s.bind(i, "blockIdx.x") s.bind(j, "threadIdx.x") tvm.ir.assert_structural_equal(s.mod["main"], thread_bound_nested_block_after_cache_read) verify_trace_roundtrip(s, mod=nested_block_bind_after_cache_read) def test_vectorize_init(): s = tir.Schedule(decomposed_gemm, debug_mask="all") init_blk = s.get_block("init") upd_blk = s.get_block("update") _, _, ii_0, jj_0 = s.get_loops(init_blk) _, _, k_1, ii_1, jj_1 = s.get_loops(upd_blk) s.vectorize(jj_0) tvm.ir.assert_structural_equal(s.mod["main"], decomposed_gemm_parallelize_init) verify_trace_roundtrip(s, mod=decomposed_gemm) def test_scatter_parallelize(): s = tir.Schedule(scatter_compute, debug_mask="all") first = s.get_block("first_half") last = s.get_block("last_half") (i_0,) = s.get_loops(first) (i_1,) = s.get_loops(last) s.parallel(i_0) s.parallel(i_1) tvm.ir.assert_structural_equal(s.mod["main"], scatter_compute_parallelize) verify_trace_roundtrip(s, mod=scatter_compute) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm.testing from tvm.tir.schedule
import BlockRV, Instruction, InstructionKind, LoopRV def test_inst_kind_get(): kind = InstructionKind.get("EnterPostproc") assert not kind.is_pure assert kind.name == "EnterPostproc" def test_inst_construct_1(): block = BlockRV() loop0 = LoopRV() loop1 = LoopRV() inst = Instruction( kind=InstructionKind.get("GetLoops"), inputs=[block], attrs=[], outputs=[loop0, loop1], ) assert str(inst) == "_, _ = sch.get_loops(block=_)" assert len(inst.inputs) == 1 assert len(inst.attrs) == 0 assert len(inst.outputs) == 2 assert inst.kind.same_as(InstructionKind.get("GetLoops")) assert inst.inputs[0].same_as(block) assert inst.outputs[0].same_as(loop0) assert inst.outputs[1].same_as(loop1) def test_inst_construct_2(): block = BlockRV() inst = Instruction( kind=InstructionKind.get("ComputeInline"), inputs=[block], attrs=[], outputs=[], ) assert str(inst) == "sch.compute_inline(block=_)" assert len(inst.inputs) == 1 assert len(inst.attrs) == 0 assert len(inst.outputs) == 0 assert inst.kind.same_as(InstructionKind.get("ComputeInline")) assert inst.inputs[0].same_as(block) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir, te from tvm.script
import tir as T from tvm.tir.schedule.schedule
import ScheduleError from tvm.tir.schedule.testing
import verify_trace_roundtrip from tvm.meta_schedule.testing
import te_workload @T.prim_func def matmul_before( A: T.Buffer[(128, 127), "float32"], B: T.Buffer[(127, 127), "float32"], C: T.Buffer[(128, 127), "float32"], ) -> None: A_shared = T.alloc_buffer((128, 127), "float32", scope="shared") B_shared = T.alloc_buffer((127, 127), "float32", scope="shared") C_shared = T.alloc_buffer((128, 127), "float32", scope="shared") for i0, i1 in T.grid(128, 127): with T.block("A"): i, j = T.axis.remap("SS", [i0, i1]) A_shared[i, j] = A[i, j] for i0, i1 in T.grid(127, 127): with T.block("B"): i, j = T.axis.remap("SS", [i0, i1]) B_shared[i, j] = B[i, j] for i0, i1, i2 in T.grid(128, 127, 127): with T.block("C_shared"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) with T.init(): C_shared[i, j] = T.float32(0) C_shared[i, j] = C_shared[i, j] + A_shared[i, k] * B_shared[k, j] for i0, i1 in T.grid(128, 127): with T.block("C"): i, j = T.axis.remap("SS", [i0, i1]) C[i, j] = C_shared[i, j] @T.prim_func def matmul_expected( A: T.Buffer[(128, 127), "float32"], B: T.Buffer[(127, 127), "float32"], C: T.Buffer[(128, 127), "float32"], ) -> None: A_shared_padded = T.alloc_buffer([128, 128], dtype="float32", scope="shared") B_shared_padded = T.alloc_buffer([128, 128], dtype="float32", scope="shared") C_shared_padded = T.alloc_buffer([128, 128], dtype="float32", scope="shared") for i0, i1 in T.grid(128, 128): with T.block("A"): i, j = T.axis.remap("SS", [i0, i1]) T.reads(A[i, j]) T.writes(A_shared_padded[i, j]) A_shared_padded[i, j] = T.if_then_else(j < 127, A[i, j], T.float32(0), dtype="float32") for i0, i1 in T.grid(128, 128): with T.block("B"): i, j = T.axis.remap("SS", [i0, i1]) T.reads(B[i, j]) T.writes(B_shared_padded[i, j]) B_shared_padded[i, j] = T.if_the
n_else( i < 127 and j < 127, B[i, j], T.float32(0), dtype="float32" ) for i0, i1, i2 in T.grid(128, 128, 128): with T.block("C_shared"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(A_shared_padded[i, k], B_shared_padded[k, j]) T.writes(C_shared_padded[i, j]) with T.init(): C_shared_padded[i, j] = T.float32(0) C_shared_padded[i, j] = ( C_shared_padded[i, j] + A_shared_padded[i, k] * B_shared_padded[k, j] ) for i0, i1 in T.grid(128, 127): with T.block("C"): i, j = T.axis.remap("SS", [i0, i1]) T.reads(C_shared_padded[i, j]) T.writes(C[i, j]) C[i, j] = C_shared_padded[i, j] def test_pad_matmul(): sch = tir.Schedule(matmul_before, debug_mask="all") C = sch.get_block("C_shared") sch.pad_einsum(C, [0, 1, 1]) tvm.ir.assert_structural_equal(matmul_expected, sch.mod["main"]) verify_trace_roundtrip(sch, mod=matmul_before) def test_pad_matmul_error_non_intermediate_buffer(): func = te.create_prim_func(te_workload.matmul(128, 127, 127)) sch = tir.Schedule(func, debug_mask="all") C = sch.get_block("C") with pytest.raises(ScheduleError): sch.pad_einsum(C, [0, 1, 1]) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def rowsum_blockized(a: T.handle, b: T.handle) -> None: B = T.match_buffer(b, [32, 4]) A = T.match_buffer(a, [32, 4, 128]) for i0, i2_0 in T.grid(32, 16): with T.block("blockized_B"): io, ko = T.axis.remap("SR", [i0, i2_0]) with T.init(): for i1 in T.serial(0, 4): with T.block("B_init"): ii_init = T.axis.S(4, i1) B[io, ii_init] = 0.0 for i1_1, i2_1 in T.grid(4, 8): with T.block("B"): ii = T.axis.S(4, i1_1) k = T.axis.R(128, ko * 8 + i2_1) B[io, ii] = B[io, ii] + A[io, ii, k] @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def matmul_decompose0(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j in T.grid(128, 128): with T.block("init"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = 0.0 for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def matmul_decompose1(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [32, 4, 128], elem_offset=0, align=64, offset_factor=1) B = T.match_buffer(b, [32, 4], elem_offset=0, align=64, offset_factor=1) for i0 in T.serial(0, 32): with T.block("blockized_B_init"): io = T.axis.S(32, i0)
for i1 in T.serial(0, 4): with T.block("B_init"): ii = T.axis.S(4, i1) B[io, ii] = T.float32(0) for i0, i2_o in T.grid(32, 16): with T.block("blockized_B_update"): io, ko = T.axis.remap("SR", [i0, i2_o]) for i1, i2_i in T.grid(4, 8): with T.block("B"): ii = T.axis.S(4, i1) k = T.axis.R(128, ko * 8 + i2_i) B[io, ii] = B[io, ii] + A[io, ii, k] @T.prim_func def matmul_decompose2(a: T.handle, b: T.handle, c: T.handle) -> None: C = T.match_buffer(c, [128, 128], elem_offset=0, align=64, offset_factor=1) B = T.match_buffer(b, [128, 128], elem_offset=0, align=64, offset_factor=1) A = T.match_buffer(a, [128, 128], elem_offset=0, align=64, offset_factor=1) for i0, i1 in T.grid(128, 128): with T.block("update_init"): vi_init, vj_init = T.axis.remap("SS", [i0, i1]) C[vi_init, vj_init] = T.float32(0) for i2 in T.serial(0, 128): with T.block("update_update"): vi, vj, vk = T.axis.remap("SSR", [i0, i1, i2]) C[vi, vj] = C[vi, vj] + (A[vi, vk] * B[vj, vk]) @T.prim_func def matmul_decompose_fail3(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, k, j in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def matmul_decompose4(a: T.handle, b: T.handle, c: T.handle) -> None: C = T.match_buffer(c, [128, 128], elem_offset=0, align=64, offset_factor=1) B = T.match_buffer(b, [128, 128], elem_offset=0, align=64, offset_factor=1) A = T.match_buffer(a, [128, 128], elem_offset=0, align=64, offset_factor=1) with T.block("root"):
T.reads([]) T.writes([]) for i0_0 in T.serial(0, 16): for i0_1_init, i1_init in T.grid(8, 128): with T.block("update_init"): vi_init = T.axis.S(128, i0_0 * 8 + i0_1_init) vj_init = T.axis.S(128, i1_init) C[vi_init, vj_init] = T.float32(0) for i0_1, i1, i2_0, i2_1 in T.grid(8, 128, 19, 7): with T.block("update_update"): T.where((((i2_0 * 7) + i2_1) < 128)) vi = T.axis.S(128, i0_0 * 8 + i0_1) vj = T.axis.S(128, i1) vk = T.axis.R(128, i2_0 * 7 + i2_1) C[vi, vj] = C[vi, vj] + (A[vi, vk] * B[vj, vk]) @T.prim_func def matmul_with_annotation(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j, k in T.grid(128, 128, 128): with T.block("update"): T.block_attr({"test_annotation": 1}) vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def matmul_decompose_with_annotation(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j in T.grid(128, 128): with T.block("init"): T.block_attr({"test_annotation": 1}) vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = 0.0 for i, j, k in T.grid(128, 128, 128): with T.block("update"): T.block_attr({"test_annotation": 1}) vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def colsum_with_vectorization(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 32], dtype="float32") B = T.match_buffer(b, [32], dtype
="float32") for k in T.serial(0, 128): for i in T.vectorized(0, 32): with T.block("B"): vk, vi = T.axis.remap("RS", [k, i]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vk, vi] @T.prim_func def colsum_decompose_with_vectorization(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 32], dtype="float32") B = T.match_buffer(b, [32], dtype="float32") for i in T.vectorized(0, 32): with T.block("B_init"): vi = T.axis.S(32, i) B[vi] = T.float32(0) for k in T.serial(0, 128): for i in T.vectorized(0, 32): with T.block("B"): vk, vi = T.axis.remap("RS", [k, i]) B[vi] = B[vi] + A[vk, vi] use_block_name = tvm.testing.parameter(by_dict={"block_obj": False, "block_name": True}) def test_reduction_decompose0(use_block_name): s = tir.Schedule(matmul, debug_mask="all") C = "update" if use_block_name else s.get_block("update") i, j, k = s.get_loops(C) s.decompose_reduction(C, i) tvm.ir.assert_structural_equal(matmul_decompose0, s.mod["main"]) verify_trace_roundtrip(s, mod=matmul) def test_reduction_decompose1(use_block_name): s = tir.Schedule(rowsum_blockized, debug_mask="all") blockized_B = "blockized_B" if use_block_name else s.get_block("blockized_B") io, ko = s.get_loops(blockized_B) s.decompose_reduction(blockized_B, io) tvm.ir.assert_structural_equal(matmul_decompose1, s.mod["main"]) verify_trace_roundtrip(s, mod=rowsum_blockized) def test_reduction_decompose2(): s = tir.Schedule(matmul, debug_mask="all") C = s.get_block("update") i, j, k = s.get_loops(C) s.decompose_reduction(C, k) tvm.ir.assert_structural_equal(matmul_decompose2, s.mod["main"]) verify_trace_roundtrip(s, mod=matmul) def test_reduction_decompose3(): s = tir.Schedule(matmul_decompose_fail3, debug_mask="all") C = s.get_block("update") i, j, k = s.get_loops(
C) with pytest.raises(tvm.tir.ScheduleError): s.decompose_reduction(C, k) def test_reduction_decompose4(): s = tir.Schedule(matmul, debug_mask="all") C = s.get_block("update") i, j, k = s.get_loops(C) io, ii = s.split(i, factors=[16, 8]) ko, ki = s.split(k, factors=[19, 7]) s.decompose_reduction(C, ii) tvm.ir.assert_structural_equal(matmul_decompose4, s.mod["main"]) verify_trace_roundtrip(s, mod=matmul) def test_reduction_decompose_with_annotation(): s = tir.Schedule(matmul_with_annotation, debug_mask="all") C = s.get_block("update") i, j, k = s.get_loops(C) s.decompose_reduction(C, i) tvm.ir.assert_structural_equal(matmul_decompose_with_annotation, s.mod["main"]) verify_trace_roundtrip(s, mod=matmul_with_annotation) def test_reduction_decompose_with_different_for_kind(): s = tir.Schedule(colsum_with_vectorization, debug_mask="all") B = s.get_block("B") k, _ = s.get_loops(B) B_init = s.decompose_reduction(B, k) tvm.ir.assert_structural_equal(s.mod["main"], colsum_decompose_with_vectorization) assert s.get(B).same_as(s.get(s.get_block("B_update"))) assert s.get(B_init).same_as(s.get(s.get_block("B_init"))) verify_trace_roundtrip(s, mod=colsum_with_vectorization) def test_decompose_reduction_ref_hash_check(): mod = tvm.IRModule.from_expr(matmul) mod_bak = mod hash_before = tvm.ir.structural_hash(mod_bak) s = tir.Schedule(mod["main"], debug_mask="all") C = s.get_block("update") i, j, k = s.get_loops(C) s.decompose_reduction(C, k) hash_after = tvm.ir.structural_hash(mod_bak) assert hash_before == hash_after if __name__ == "__main__": tvm.testing.main()
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.schedule
import ScheduleError from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def transpose_elementwise( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"] ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vj, vi] * 2.0 @T.prim_func def transpose_elementwise_reindex_read( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"] ) -> None: A_reindex = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("A_reindex"): vi, vj = T.axis.remap("SS", [i, j]) A_reindex[vi, vj] = A[vj, vi] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A_reindex[vi, vj] * 2.0 @T.prim_func def conv2d_nhwc( Input: T.Buffer[(1, 224, 224, 3), "float32"], Weight: T.Buffer[(7, 7, 3, 64), "float32"], Conv2d_nhwc: T.Buffer[(1, 112, 112, 64), "float32"], ) -> None: PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 230, 230, 3): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( ((((i1_1 >= 3) and (i1_1 < 227)) and (i2_1 >= 3)) and (i2_1 < 227)), Input[i0_1, (i1_1 - 3), (i2_1 - 3), i3_1], T.float32(0), dtype="float32", ) for i0, i1, i2, i3, i4, i5, i6 in T.grid(1, 112, 112, 64, 7, 7, 3): with T.block("conv2d_nhwc"): n, h, w, co, rh, rw, rc = T.axis.remap("SSSSRRR", [i0, i1, i2, i3, i4, i5, i6]) with T.init(): Conv2d_nhwc[n, h, w, co] = T.float32(0) Conv2d_nhwc[n, h, w, co] = Conv2d_nhwc[n, h, w, co] + ( PadInput[n, ((h * 2) + rh), ((w * 2) + rw), ((T.floordiv(co, 64) * 3) + rc)] * Weight[rh, rw, rc, co] ) @T.prim_func def conv
2d_nhwc_reindex_data( Input: T.Buffer[(1, 224, 224, 3), "float32"], Weight: T.Buffer[(7, 7, 3, 64), "float32"], Conv2d_nhwc: T.Buffer[(1, 112, 112, 64), "float32"], ) -> None: PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") ReindexInput = T.alloc_buffer([1, 112, 112, 7, 7, 3], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 230, 230, 3): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( ((((i1_1 >= 3) and (i1_1 < 227)) and (i2_1 >= 3)) and (i2_1 < 227)), Input[i0_1, (i1_1 - 3), (i2_1 - 3), i3_1], T.float32(0), dtype="float32", ) for i0, i1, i2, i3, i4, i5 in T.grid(1, 112, 112, 7, 7, 3): with T.block("ReindexInput"): n, h, w, rh, rw, rc = T.axis.remap("SSSSSS", [i0, i1, i2, i3, i4, i5]) ReindexInput[n, h, w, rh, rw, rc] = PadInput[n, ((h * 2) + rh), ((w * 2) + rw), rc] for i0, i1, i2, i3, i4, i5, i6 in T.grid(1, 112, 112, 64, 7, 7, 3): with T.block("conv2d_nhwc"): n, h, w, co, rh, rw, rc = T.axis.remap("SSSSRRR", [i0, i1, i2, i3, i4, i5, i6]) with T.init(): Conv2d_nhwc[n, h, w, co] = T.float32(0) Conv2d_nhwc[n, h, w, co] = Conv2d_nhwc[n, h, w, co] + ( ReindexInput[n, h, w, rh, rw, rc] * Weight[rh, rw, rc, co] ) @T.prim_func def conv2d_nhwc_reindex_weight( var_inputs: T.handle, var_weight: T.handle, var_conv2d_nhwc: T.handle ) -> None: inputs = T.match_buffer(var_inputs, [1, 224, 224, 3], dtype="float32") weight = T.match_buffer(var_weight, [7, 7, 3, 64], dtype="float32") conv2d_nhwc = T.match_buffer(var_conv2d_nhwc, [1, 112, 112, 64], dtype="float32") PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") weight_reindex = T.alloc_buffer([64, 7, 7, 3], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 230, 230, 3):
with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(inputs[i0_1, i1_1 - 3, i2_1 - 3, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( i1_1 >= 3 and i1_1 < 227 and i2_1 >= 3 and i2_1 < 227, inputs[i0_1, i1_1 - 3, i2_1 - 3, i3_1], T.float32(0), dtype="float32", ) for ax3, ax4, ax5, ax6 in T.grid(64, 7, 7, 3): with T.block("weight_reindex"): v3, v4, v5, v6 = T.axis.remap("SSSS", [ax3, ax4, ax5, ax6]) T.reads(weight[v4, v5, v6, v3]) T.writes(weight_reindex[v3, v4, v5, v6]) weight_reindex[v3, v4, v5, v6] = weight[v4, v5, v6, v3] for i0, i1, i2, i3, i4, i5, i6 in T.grid(1, 112, 112, 64, 7, 7, 3): with T.block("conv2d_nhwc"): n, h, w, co, rh, rw, rc = T.axis.remap("SSSSRRR", [i0, i1, i2, i3, i4, i5, i6]) T.reads( PadInput[n, h * 2 + rh, w * 2 + rw, co weight_reindex[co, rh, rw, rc], ) T.writes(conv2d_nhwc[n, h, w, co]) with T.init(): conv2d_nhwc[n, h, w, co] = T.float32(0) conv2d_nhwc[n, h, w, co] = ( conv2d_nhwc[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co * weight_reindex[co, rh, rw, rc] ) @T.prim_func def matmul( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: for i0, i1, i2 in T.grid(512, 512, 512): with T.block("matmul"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(C[i, j], A[i, k], B[k, j]) T.writes(C[i, j]) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] @T.prim_func def matmul_reindex_write( A: T.Buffer[(512, 512), "float32
"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: C_reindex = T.alloc_buffer([512, 512], dtype="float32") for i0, i1, i2 in T.grid(512, 512, 512): with T.block("matmul"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(C_reindex[i, j], A[i, k], B[k, j]) T.writes(C_reindex[i, j]) with T.init(): C_reindex[i, j] = T.float32(0) C_reindex[i, j] = C_reindex[i, j] + A[i, k] * B[k, j] for i0, i1 in T.grid(512, 512): with T.block("C_reindex"): v0, v1 = T.axis.remap("SS", [i0, i1]) T.reads(C_reindex[v0, v1]) T.writes(C[v0, v1]) C[v0, v1] = C_reindex[v0, v1] @T.prim_func def multiple_read(A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"]) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vj, vi] + A[vi, vj] @T.prim_func def mixed_dtype( p0: T.Buffer[(T.int64(2), 1280), "float16"], p1: T.Buffer[(1280, 1280), "float16"], T_matmul_NT: T.Buffer[(T.int64(2), 1280), "float16"], ) -> None: for i0, i1, i2 in T.grid(T.int64(2), 1280, 1280): with T.block("T_matmul_NT"): i = T.axis.spatial(T.int64(2), i0) j, k = T.axis.remap("SR", [i1, i2]) T.reads(p0[i, k], p1[j, k]) T.writes(T_matmul_NT[i, j]) with T.init(): T_matmul_NT[i, j] = T.float16(0) T_matmul_NT[i, j] = T_matmul_NT[i, j] + p0[i, k] * p1[j, k] @T.prim_func def mixed_dtype_reindex_write( p0: T.Buffer[(T.int64(2), 1280), "float16"], p1: T.Buffer[(1280, 1280), "float16"], T_matmul_NT: T.Buffer[(T.int64(2), 1280), "float16"], ) -> None: T_matmul_NT_reindex = T.alloc_buffer([T.int64(2), 1280], dtype="float16") for i0, i1, i2 in T.grid(T.int64(2), 1280, 1280): with T.block("T_matmul_NT"): i = T.axis.spatial(T.int64(2)
, i0) j, k = T.axis.remap("SR", [i1, i2]) T.reads(p0[i, k], p1[j, k]) T.writes(T_matmul_NT_reindex[i, j]) with T.init(): T_matmul_NT_reindex[i, j] = T.float16(0) T_matmul_NT_reindex[i, j] = T_matmul_NT_reindex[i, j] + p0[i, k] * p1[j, k] for ax0, ax1 in T.grid(T.int64(2), 1280): with T.block("T_matmul_NT_reindex"): v0 = T.axis.spatial(T.int64(2), ax0) v1 = T.axis.remap("S", [ax1]) T.reads(T_matmul_NT_reindex[v0, v1]) T.writes(T_matmul_NT[v0, v1]) T_matmul_NT[v0, v1] = T_matmul_NT_reindex[v0, v1] @T.prim_func def matmul_unit_dim( A: T.Buffer[(1, 512), "float32"], B: T.Buffer[(512, 1), "float32"], C: T.Buffer[(1, 1), "float32"], ) -> None: for i0, i1, i2 in T.grid(1, 1, 512): with T.block("matmul"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(C[i, j], A[i, k], B[k, j]) T.writes(C[i, j]) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] @T.prim_func def matmul_unit_dim_reindex_write( A: T.Buffer[(1, 512), "float32"], B: T.Buffer[(512, 1), "float32"], C: T.Buffer[(1, 1), "float32"], ) -> None: C_reindex = T.alloc_buffer([1, 1], dtype="float32") for i0, i1, i2 in T.grid(1, 1, 512): with T.block("matmul"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) T.reads(C_reindex[i, j], A[i, k], B[k, j]) T.writes(C_reindex[i, j]) with T.init(): C_reindex[i, j] = T.float32(0) C_reindex[i, j] = C_reindex[i, j] + A[i, k] * B[k, j] for i0, i1 in T.grid(1, 1): with T.block("C_reindex"): v0, v1 = T.axis.remap("SS", [i0, i1]) T.reads(C_reindex[v0, v1]) T.writes(C[v0, v1]) C[v0, v1] = C_reindex[v0, v1] use_block_name = tvm.testing.parameter(by_dict={"block_obj": False, "block_name": True}) use_bu
ffer_name = tvm.testing.parameter(by_dict={"buffer_index": False, "buffer_name": True}) def test_reindex_read_basic(use_block_name, use_buffer_name): sch = tir.Schedule(transpose_elementwise) block = "B" if use_block_name else sch.get_block("B") buf = "A" if use_buffer_name else ("read", 0) sch.reindex(block, buf) tvm.ir.assert_structural_equal(transpose_elementwise_reindex_read, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=transpose_elementwise) def test_conv2d_reindex_weight(use_block_name, use_buffer_name): sch = tir.Schedule(conv2d_nhwc) block = "conv2d_nhwc" if use_block_name else sch.get_block("conv2d_nhwc") buf = "Weight" if use_buffer_name else ("read", 1) sch.reindex(block, buf) tvm.ir.assert_structural_equal(conv2d_nhwc_reindex_weight, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=conv2d_nhwc) def test_conv2d_reindex_data(use_block_name, use_buffer_name): sch = tir.Schedule(conv2d_nhwc) block = "conv2d_nhwc" if use_block_name else sch.get_block("conv2d_nhwc") buf = "PadInput" if use_buffer_name else ("read", 0) sch.reindex(block, buf) tvm.ir.assert_structural_equal(conv2d_nhwc_reindex_data, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=conv2d_nhwc) def test_matmul_reindex_write(use_block_name, use_buffer_name): sch = tir.Schedule(matmul) block = "matmul" if use_block_name else sch.get_block("matmul") buf = "C" if use_buffer_name else ("write", 0) sch.reindex(block, buf) tvm.ir.assert_structural_equal(matmul_reindex_write, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=matmul) def test_reindex_fail_multiple_read(use_block_name, use_buffer_name): sch = tir.Schedule(multiple_read) block = "B" if use_block_name else sch.get_block("B") buf = "A" if use_buffer_name else ("read", 0) with pytest.raises(ScheduleError): sch.reindex(block, buf) def test_reindex_mixed_dtype(use_block_name, use_buffer_name): sch = tir.Schedule(mixed_dtype) block = "T_
matmul_NT" if use_block_name else sch.get_block("T_matmul_NT") buf = "T_matmul_NT" if use_buffer_name else ("write", 0) sch.reindex(block, buf) tvm.ir.assert_structural_equal(mixed_dtype_reindex_write, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=mixed_dtype) def test_matmul_unit_dim_reindex_write(use_block_name, use_buffer_name): sch = tir.Schedule(matmul_unit_dim) block = "matmul" if use_block_name else sch.get_block("matmul") buf = "C" if use_buffer_name else ("write", 0) sch.reindex(block, buf) tvm.ir.assert_structural_equal(matmul_unit_dim_reindex_write, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=matmul_unit_dim) if __name__ == "__main__": tvm.testing.main()
import sys
import pytest
import tvm
import tvm.testing from tvm
import tir from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def elementwise(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for i, j, k, l in T.grid(128, 128, 128, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_not_affine(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for i, j, k, l in T.grid(128, 128, 128, 8): with T.block("B"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) vl = T.axis.S(128, l * 16) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_dependent_loop(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for i in T.serial(0, 128): for j, k, l in T.grid(128, i, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_predicate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for i, j, k, l in T.grid(128, 128, 128, 128): with T.block("B"): T.where(i * 2097152 + j * 16384 + k * 128 + l < 100) vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_non_single_branch(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128)) C = T.alloc_buffer((128, 128, 128)) B = T.match_buffer(b, (128, 128, 128)) for i, j in T.grid(128, 128): for k in T.serial(0, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = A[vi, vj, v
k] * 2.0 for k in T.serial(0, 128): with T.block("B"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) B[vi, vj, vk] = C[vi, vj, vk] * 2.0 @T.prim_func def elementwise_with_loops_not_same_scope(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128)) B = T.match_buffer(b, (128, 128, 128)) for i, j in T.grid(128, 128): with T.block("A"): vi, vj = T.axis.remap("SS", [i, j]) for k in T.serial(0, 128): with T.block("B"): vk = T.axis.S(128, k) T.reads([A[vi, vj, vk]]) T.writes([B[vi, vj, vk]]) B[vi, vj, vk] = A[vi, vj, vk] * 2.0 @T.prim_func def elementwise_with_wrong_block_var_type(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128)) B = T.match_buffer(b, (128, 128, 128)) for i, j, k in T.grid(128, 128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) vk = T.axis.scan(128, k) T.reads([A[vi, vj, vk]]) T.writes([B[vi, vj, vk]]) B[vi, vj, vk] = A[vi, vj, vk] * 2.0 @T.prim_func def elementwise_reordered(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for l, j, k, i in T.grid(128, 128, 128, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_reordered2(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for k, j, i, l in T.grid(128, 128, 128, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_reordered_with_predicate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a,
(128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for l, j, k, i in T.grid(128, 128, 128, 128): with T.block("B"): T.where(i * 2097152 + j * 16384 + k * 128 + l < 100) vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def opaque_access(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [16, 16], "float32") B = T.match_buffer(b, [16, 16], "float32") for i, j in T.grid(16, 16): with T.block("A"): vi, vj = T.axis.remap("SS", [i, j]) T.reads([]) T.writes([A[0:16, 0:16]]) A[vi, vj] = 1 for i, j in T.grid(16, 16): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.reads([]) T.writes([B[0:16, 0:16]]) T.evaluate(T.tvm_fill_fragment(B.data, 16, 16, 16, 0, vi * 16 + vj, dtype="handle")) @T.prim_func def opaque_access_reorder(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [16, 16], "float32") B = T.match_buffer(b, [16, 16], "float32") for j, i in T.grid(16, 16): with T.block("A"): vi, vj = T.axis.remap("SS", [i, j]) T.reads([]) T.writes([A[0:16, 0:16]]) A[vi, vj] = 1 for j, i in T.grid(16, 16): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.reads([]) T.writes([B[0:16, 0:16]]) T.evaluate(T.tvm_fill_fragment(B.data, 16, 16, 16, 0, vi * 16 + vj, dtype="handle")) def test_reorder(): sch = tir.Schedule(elementwise, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) sch.reorder(l, i) tvm.ir.assert_structural_equal(elementwise_reordered, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise) def test_reorder2(): sch = tir.Schedule(elementwise, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) sch.re
order(k, i, l) tvm.ir.assert_structural_equal(elementwise_reordered2, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=elementwise) def test_reorder_with_opaque_access(): sch = tir.Schedule(opaque_access, debug_mask="all") block_a = sch.get_block("A") i, j = sch.get_loops(block_a) sch.reorder(j, i) block_b = sch.get_block("B") i, j = sch.get_loops(block_b) sch.reorder(j, i) tvm.ir.assert_structural_equal(opaque_access_reorder, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=opaque_access) def test_reorder_overlapped_access(): @T.prim_func def overlapped_access(A: T.Buffer[(14, 4), "float32"], B: T.Buffer[(14, 4), "float32"]): for v0, v1, v2 in T.grid(6, 4, 4): with T.block("block"): i = T.axis.spatial(14, v0 * 2 + v1) j = T.axis.spatial(4, v2) B[i, j] = A[i, j] + 1.0 @T.prim_func def overlapped_access_reorder(A: T.Buffer[(14, 4), "float32"], B: T.Buffer[(14, 4), "float32"]): for v0, v2, v1 in T.grid(6, 4, 4): with T.block("block"): i = T.axis.spatial(14, v0 * 2 + v1) j = T.axis.spatial(4, v2) B[i, j] = A[i, j] + 1.0 sch = tir.Schedule(overlapped_access, debug_mask="all") v0, v1, v2 = sch.get_loops(sch.get_block("block")) sch.reorder(v0, v2, v1) tvm.ir.assert_structural_equal(overlapped_access_reorder, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=overlapped_access) def test_reorder_with_partial_affineness(): @T.prim_func def non_affine_func(A: T.Buffer[(14, 4), "float32"], B: T.Buffer[(14, 4), "float32"]): for v0, v1, v2 in T.grid(6, 4, 4): with T.block("block"): i = T.axis.spatial(14, v0 * v0 + v1) j = T.axis.spatial(4, v2) B[i, j] = A[i, j] + 1.0 @T.prim_func def non_affine_func_reorder(A: T.Buffer[(14, 4), "float32"], B: T.Buffer[(14, 4), "float32"]): for v0, v2, v1
in T.grid(6, 4, 4): with T.block("block"): i = T.axis.spatial(14, v0 * v0 + v1) j = T.axis.spatial(4, v2) B[i, j] = A[i, j] + 1.0 sch = tir.Schedule(non_affine_func, debug_mask="all") v0, v1, v2 = sch.get_loops(sch.get_block("block")) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(v0, v2, v1) sch.reorder(v2, v1) tvm.ir.assert_structural_equal(non_affine_func_reorder, sch.mod["main"]) verify_trace_roundtrip(sch=sch, mod=non_affine_func) def test_reorder_with_cascade_tiled_ops(): @T.prim_func def cascade_pool_ops( x: T.Buffer[(1, 16, 112, 112), "float32"], y2: T.Buffer[(1, 16, 108, 108), "float32"] ) -> None: y1 = T.alloc_buffer([1, 16, 110, 110], dtype="float32") for n, c, h, w, kh, kw in T.grid(1, 16, 110, 110, 3, 3): with T.block("pool_0"): ax0, ax1, ax2, ax3, rv0, rv1 = T.axis.remap("SSSSRR", [n, c, h, w, kh, kw]) with T.init(): y1[ax0, ax1, ax2, ax3] = 0.0 y1[ax0, ax1, ax2, ax3] = y1[ax0, ax1, ax2, ax3] + x[ax0, ax1, ax2 + rv0, ax3 + rv1] for n, c, h, w, kh, kw in T.grid(1, 16, 108, 108, 3, 3): with T.block("pool_1"): ax0, ax1, ax2, ax3, rv0, rv1 = T.axis.remap("SSSSRR", [n, c, h, w, kh, kw]) with T.init(): y2[ax0, ax1, ax2, ax3] = 0.0 y2[ax0, ax1, ax2, ax3] = y2[ax0, ax1, ax2, ax3] + y1[ax0, ax1, ax2 + rv0, ax3 + rv1] @T.prim_func def cascade_pool_ops_tile_reordered( x: T.Buffer[(1, 16, 112, 112), "float32"], y2: T.Buffer[(1, 16, 108, 108), "float32"] ) -> None: y1 = T.alloc_buffer([1, 16, 110, 110], dtype="float32") for n, c, h_o in T.grid(1, 16, 27): for w, h_i, kh, kw in T.grid(110, 6, 3, 3): with T.block("pool_0"): ax0 = T.axis.spatial(1, 0) ax1 = T.axis.spatial(16, c) ax2 = T.ax
is.spatial(110, h_o * 4 + h_i) ax3, rv0, rv1 = T.axis.remap("SRR", [w, kh, kw]) with T.init(): y1[ax0, ax1, ax2, ax3] = 0.0 y1[ax0, ax1, ax2, ax3] = ( y1[ax0, ax1, ax2, ax3] + x[ax0, ax1, ax2 + rv0, ax3 + rv1] ) for h_i, w, kh, kw in T.grid(4, 108, 3, 3): with T.block("pool_1"): ax0 = T.axis.spatial(1, n) ax1 = T.axis.spatial(16, c) ax2 = T.axis.spatial(108, h_o * 4 + h_i) ax3, rv0, rv1 = T.axis.remap("SRR", [w, kh, kw]) with T.init(): y2[ax0, ax1, ax2, ax3] = 0.0 y2[ax0, ax1, ax2, ax3] = ( y2[ax0, ax1, ax2, ax3] + y1[ax0, ax1, ax2 + rv0, ax3 + rv1] ) sch = tvm.tir.schedule.Schedule(cascade_pool_ops) pool_0 = sch.get_block("pool_0") pool_1 = sch.get_block("pool_1") _, _, h, w, _, _ = sch.get_loops(pool_1) ho, _ = sch.split(h, factors=[None, 4]) sch.compute_at(pool_0, ho) _, _, _, h_i, w, _, _ = sch.get_loops(pool_0) sch.reorder(w, h_i) tvm.ir.assert_structural_equal(cascade_pool_ops_tile_reordered, sch.mod["main"], True) verify_trace_roundtrip(sch=sch, mod=cascade_pool_ops) def test_reorder_with_predicate(): sch = tir.Schedule(elementwise_predicate, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(l, i) def test_reorder_fail_with_multi_appearance_loops(): sch = tir.Schedule(elementwise, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(k, i, i) def test_reorder_fail_with_non_single_branch_loop(): sch = tir.Schedule(elementwise_non_single_branch, debug_mask="all") block_b = sch.get_block("B") i, j,
k = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(k, i) sch = tir.Schedule(elementwise_non_single_branch, debug_mask="all") block_b = sch.get_block("B") block_c = sch.get_block("C") i, j, k1 = sch.get_loops(block_b) _, _, k2 = sch.get_loops(block_c) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(k1, i, k2) def test_reorder_fail_with_loops_not_under_same_scope(): sch = tir.Schedule(elementwise_with_loops_not_same_scope, debug_mask="all") block_b = sch.get_block("B") block_a = sch.get_block("A") i, j = sch.get_loops(block_a) k = sch.get_loops(block_b)[0] with pytest.raises(tvm.tir.ScheduleError): sch.reorder(k, i) def test_reorder_fail_with_wrong_block_var_type(): sch = tir.Schedule(elementwise_with_wrong_block_var_type, debug_mask="all") block_b = sch.get_block("B") i, j, k = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(k, i) def test_reorder_fail_with_dependent_loops(): sch = tir.Schedule(elementwise_dependent_loop, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(l, i) def test_reorder_fail_not_affine_bindings(): sch = tir.Schedule(elementwise_not_affine, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError): sch.reorder(l, i) if __name__ == "__main__": tvm.testing.main()
import pytest
import tvm
import tvm.testing from tvm
import te, tir, topi from tvm.script
import tir as T from tvm.tir.schedule.testing
import verify_trace_roundtrip @T.prim_func def transformed_matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") C = T.match_buffer(c, [128, 128], dtype="float32") for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in T.grid(128, 128, 4, 8, 4): with T.block("update"): vi, vj = T.axis.remap("SS", [i0, i1]) vk = T.axis.R(128, i2_outer * 32 + i2_inner_outer * 4 + i2_inner_inner) T.reads([A[vi, vk], B[vj, vk]]) T.writes([C[vi, vj]]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + (A[vi, vk] * B[vj, vk]) @T.prim_func def transformed_matmul_with_let(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") C = T.match_buffer(c, [128, 128], dtype="float32") for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in T.grid(128, 128, 4, 8, 4): with T.block("update"): vi, vj = T.axis.remap("SS", [i0, i1]) vk = T.axis.R(128, i2_outer * 32 + i2_inner_outer * 4 + i2_inner_inner) T.reads([A[vi, vk], B[vj, vk]]) T.writes([C[vi, vj]]) with T.init(): C[vi, vj] = 0.0 v_C: T.float32 = C[vi, vj] + (A[vi, vk] * B[vj, vk]) C[vi, vj] = v_C @T.prim_func def matmul_rfactor(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") C = T.match_buffer(c, [128, 128], dtype="float32") C_rf = T.alloc_buffer([4, 128, 128], dtype="float32") for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in T.grid(128, 128, 4, 8, 4): with T.block("update_rf"): vi2_inner_inner = T.axis.S(4, i2_inner_inner) vi = T.axis.S(128, i0) vj = T.axis.S(128, i1) vi
2_outer = T.axis.R(4, i2_outer) vi2_inner_outer = T.axis.R(8, i2_inner_outer) with T.init(): C_rf[vi2_inner_inner, vi, vj] = 0.0 C_rf[vi2_inner_inner, vi, vj] = C_rf[vi2_inner_inner, vi, vj] + ( A[vi, (((vi2_outer * 32) + (vi2_inner_outer * 4)) + vi2_inner_inner)] * B[vj, (((vi2_outer * 32) + (vi2_inner_outer * 4)) + vi2_inner_inner)] ) for i0_1, i1_1, i2_inner_inner_1 in T.grid(128, 128, 4): with T.block("update"): vi2_inner_inner_1, vi_1, vj_1 = T.axis.remap("RSS", [i2_inner_inner_1, i0_1, i1_1]) with T.init(): C[vi_1, vj_1] = 0.0 C[vi_1, vj_1] = C[vi_1, vj_1] + C_rf[vi2_inner_inner_1, vi_1, vj_1] @T.prim_func def matmul_not_stage_pipeline(a: T.handle, b: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [256, 256]) B = T.match_buffer(b, [256, 256]) D = T.match_buffer(d, [256, 256]) C = T.alloc_buffer([256, 256]) for i, j, k in T.grid(128, 128, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] for i, j in T.grid(256, 256): with T.block("D"): vi, vj = T.axis.remap("SS", [i, j]) D[vi, vj] = C[vi, vj] @T.prim_func def matmul_not_same_buffer_access(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j, k in T.grid(128, 128, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vj, vi] = C[vj, vi] + A[vi, vk] * B[vk, vj] @T.prim_func def matmul_loop_multiple_children(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.m
atch_buffer(c, [128, 128]) D = T.match_buffer(d, [128, 128]) for k, i, j in T.grid(128, 128, 128): with T.block("C"): ck, ci, cj = T.axis.remap("RSS", [k, i, j]) with T.init(): C[ci, cj] = 0.0 C[ci, cj] = C[ci, cj] + A[ci, ck] * B[ck, cj] with T.block("D"): dk, di, dj = T.axis.remap("RSS", [k, i, j]) with T.init(): D[di, dj] = 0.0 D[di, dj] = D[di, dj] + B[di, dk] * A[dk, dj] @T.prim_func def square_sum(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) C = T.match_buffer(c, [16]) for b0, i0, j0 in T.grid(16, 256, 256): with T.block("C"): b, i, j = T.axis.remap("SRR", [b0, i0, j0]) with T.init(): C[b] = 0.0 C[b] = C[b] + A[b, i, j] * A[b, i, j] @T.prim_func def square_sum_rfactor(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) C = T.match_buffer(c, [16]) C_rf = T.alloc_buffer([16, 256]) for i0, i1, i2 in T.grid(16, 256, 256): with T.block("C_rf"): vi2, b, i = T.axis.remap("SSR", [i2, i0, i1]) with T.init(): C_rf[b, vi2] = 0.0 C_rf[b, vi2] = C_rf[b, vi2] + (A[b, i, vi2] * A[b, i, vi2]) for i0_1, i2_1 in T.grid(16, 256): with T.block("C"): vi2_1, b_1 = T.axis.remap("RS", [i2_1, i0_1]) with T.init(): C[b_1] = 0.0 C[b_1] = C[b_1] + C_rf[b_1, vi2_1] @T.prim_func def transformed_square_sum_square_root(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) D = T.match_buffer(d, [16]) C = T.alloc_buffer([16]) for i0, i1_i2_fused_outer, i1_i2_fused_inner in T.grid(16, 65536, 1): with T.block("C"): b = T.axis.S(16, i0) i = T.axis.R(256, T.floordiv(i1_i2_fused_outer, 256)) j = T.axis.R(256, T.floormod(i1_i2_fused_outer, 256)) T.reads([A[b, i, j]
]) T.writes([C[b]]) with T.init(): C[b] = 0.0 C[b] = C[b] + (A[b, i, j] * A[b, i, j]) for i0_1 in T.serial(0, 16): with T.block("D"): b_1 = T.axis.S(16, i0_1) T.reads([C[b_1]]) T.writes([D[b_1]]) D[b_1] = T.sqrt(C[b_1], dtype="float32") @T.prim_func def square_sum_square_root_rfactor(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) D = T.match_buffer(d, [16]) C = T.alloc_buffer([16]) C_rf = T.alloc_buffer([1, 16]) for i0, i1_i2_fused_outer, i1_i2_fused_inner in T.grid(16, 65536, 1): with T.block("C_rf"): vi1_i2_fused_inner, b = T.axis.remap("SS", [i1_i2_fused_inner, i0]) i = T.axis.R(256, T.floordiv(i1_i2_fused_outer, 256)) j = T.axis.R(256, T.floormod(i1_i2_fused_outer, 256)) with T.init(): C_rf[vi1_i2_fused_inner, b] = 0.0 C_rf[vi1_i2_fused_inner, b] = C_rf[vi1_i2_fused_inner, b] + (A[b, i, j] * A[b, i, j]) for i0_1, i1_i2_fused_inner_1 in T.grid(16, 1): with T.block("C"): vi1_i2_fused_inner_1, b_1 = T.axis.remap("RS", [i1_i2_fused_inner_1, i0_1]) with T.init(): C[b_1] = 0.0 C[b_1] = C[b_1] + C_rf[vi1_i2_fused_inner_1, b_1] for i0_2 in T.serial(0, 16): with T.block("D"): b_2 = T.axis.S(16, i0_2) D[b_2] = T.sqrt(C[b_2], dtype="float32") @T.prim_func def transformed_square_sum_square_root_factor_one_1(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) D = T.match_buffer(d, [16]) C = T.alloc_buffer([16]) for i0, i1_i2_fused_outer, i1_i2_fused_inner in T.grid(16, 65536, 1): with T.block("C"): b = T.axis.S(16, i0) i = T.axis.R(256, T.floordiv(i1_i2_fused_outer, 256)) j = T.axis.R(256, T.floormod(i1_i2_fused_outer, 256)) with T.init(): C[b] = 0.0 C[b] = C[
b] + (A[b, i, j] * A[b, i, j]) for i0_1 in T.serial(0, 16): with T.block("D"): b_1 = T.axis.S(16, i0_1) D[b_1] = T.sqrt(C[b_1], dtype="float32") @T.prim_func def square_sum_square_root_factor_one_1_rfactor( A: T.Buffer[(16, 256, 256), "float32"], D: T.Buffer[(16,), "float32"] ) -> None: C = T.alloc_buffer([16], dtype="float32") C_rf = T.alloc_buffer([1, 16], dtype="float32") for i0, i1_i2_fused_outer, i1_i2_fused_inner in T.grid(16, 65536, 1): with T.block("C_rf"): b = T.axis.spatial(16, i0) i = T.axis.reduce(256, i1_i2_fused_outer j = T.axis.reduce(256, i1_i2_fused_outer % 256) vi1_i2_fused_inner = T.axis.spatial(1, i1_i2_fused_inner) with T.init(): C_rf[vi1_i2_fused_inner, b] = T.float32(0) C_rf[vi1_i2_fused_inner, b] = C_rf[vi1_i2_fused_inner, b] + A[b, i, j] * A[b, i, j] for i0, i1_i2_fused_inner in T.grid(16, 1): with T.block("C"): b, vi1_i2_fused_inner = T.axis.remap("SR", [i0, i1_i2_fused_inner]) with T.init(): C[b] = T.float32(0) C[b] = C[b] + C_rf[vi1_i2_fused_inner, b] for i0_1 in T.serial(16): with T.block("D"): b_1 = T.axis.spatial(16, i0_1) D[b_1] = T.sqrt(C[b_1], dtype="float32") @T.prim_func def transformed_square_sum_square_root_factor_one_2(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) D = T.match_buffer(d, [16]) C = T.alloc_buffer([16]) for i0, i1_i2_fused_outer, i1_i2_fused_inner in T.grid(16, 1, 65536): with T.block("C"): b = T.axis.S(16, i0) i = T.axis.R(256, T.floordiv(i1_i2_fused_inner, 256)) j = T.axis.R(256, T.floormod(i1_i2_fused_inner, 256)) with T.init(): C[b] = 0.0 C[b] = C[b] + (A[b, i, j] * A[b, i, j]) for i0_1 in T.serial(0, 16): with T.block("D"): b_1 = T.axis.S(16, i0_1)
D[b_1] = T.sqrt(C[b_1], dtype="float32") @T.prim_func def square_sum_square_root_factor_one_2_rfactor( A: T.Buffer[(16, 256, 256), "float32"], D: T.Buffer[(16,), "float32"] ) -> None: C = T.alloc_buffer([16], dtype="float32") C_rf = T.alloc_buffer([16, 1], dtype="float32") for i0, i1_i2_fused_outer, i1_i2_fused_inner in T.grid(16, 1, 65536): with T.block("C_rf"): b = T.axis.spatial(16, i0) i = T.axis.reduce(256, i1_i2_fused_inner j = T.axis.reduce(256, i1_i2_fused_inner % 256) vi1_i2_fused_outer = T.axis.spatial(1, i1_i2_fused_outer) with T.init(): C_rf[b, vi1_i2_fused_outer] = T.float32(0) C_rf[b, vi1_i2_fused_outer] = C_rf[b, vi1_i2_fused_outer] + A[b, i, j] * A[b, i, j] for i0, i1_i2_fused_outer in T.grid(16, 1): with T.block("C"): b, vi1_i2_fused_outer = T.axis.remap("SR", [i0, i1_i2_fused_outer]) with T.init(): C[b] = T.float32(0) C[b] = C[b] + C_rf[b, vi1_i2_fused_outer] for i0_1 in T.serial(16): with T.block("D"): b_1 = T.axis.spatial(16, i0_1) D[b_1] = T.sqrt(C[b_1], dtype="float32") @T.prim_func def square_sum_with_annotation(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) C = T.match_buffer(c, [16]) for b0, i0, j0 in T.grid(16, 256, 256): with T.block("C"): T.block_attr({"test_annotation": 1}) b, i, j = T.axis.remap("SRR", [b0, i0, j0]) with T.init(): C[b] = 0.0 C[b] = C[b] + A[b, i, j] * A[b, i, j] @T.prim_func def square_sum_with_annotation_rfactor(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [16, 256, 256]) C = T.match_buffer(c, [16]) C_rf = T.alloc_buffer([16, 256]) for i0, i1, i2 in T.grid(16, 256, 256): with T.block("C_rf"): T.block_attr({"test_annotation": 1}) vi2, b, i = T.axis.remap("SSR", [i2, i0, i1])
with T.init(): C_rf[b, vi2] = 0.0 C_rf[b, vi2] = C_rf[b, vi2] + (A[b, i, vi2] * A[b, i, vi2]) for i0_1, i2_1 in T.grid(16, 256): with T.block("C"): T.block_attr({"test_annotation": 1}) vi2_1, b_1 = T.axis.remap("RS", [i2_1, i0_1]) with T.init(): C[b_1] = 0.0 C[b_1] = C[b_1] + C_rf[b_1, vi2_1] @T.prim_func def element_wise(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 @T.prim_func def rowsum(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_not_quasi_affine(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 16): with T.block("B"): vi = T.axis.S(128, i) vk = T.axis.R(128, T.floordiv(k * k, 2)) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_not_dominant(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, k in T.grid(128, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi, vk] = 0.0 B[vi, vk] = B[vi, vk] + A[vi, vk] @T.prim_func def rowsum_not_serial(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i in T.serial(0, 128): for k in T.parallel(0, 128): with T.block("B"):
vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_wrong_reduce_pattern1(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 1.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_wrong_reduce_pattern2(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): B[vi] = 0.0 B[vi] = B[vi] - A[vi, vk] @T.prim_func def rowsum_init_not_bufferstore(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for i, k in T.grid(128, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) with T.init(): v_init: T.float32 = T.float32(0) B[vi] = v_init B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_transformed(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128,)) for io, ii_ko_fused, ki in T.grid(32, 128, 4): with T.block("B"): vi = T.axis.S(128, io * 4 + T.floordiv(ii_ko_fused, 32)) vk = T.axis.R(128, T.floormod(ii_ko_fused, 32) * 4 + ki) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_zero_dim(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128]) B = T.match_buffer(b, []) for k0 in range(128): with T.block("B"): k = T.axis.R(128, k0) with T.init(): B[()] = 0.0 B[()] = B[()] + A[k] @T.prim_func de
f rowsum_zero_dim_rfactor(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128]) B = T.match_buffer(b, []) B_rf = T.alloc_buffer([128]) for i in range(128): with T.block("B_rf"): vi0 = T.axis.S(128, i) B_rf[vi0] = A[vi0] for i in range(128): with T.block("B"): vi0_1 = T.axis.R(128, i) with T.init(): B[()] = 0.0 B[()] = B[()] + B_rf[vi0_1] @T.prim_func def rowsum_predicate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i, k_0, k_1 in T.grid(128, 13, 10): with T.block("B"): T.where(k_0 * 10 + k_1 < 128) vi = T.axis.S(128, i) vk = T.axis.R(128, k_0 * 10 + k_1) with T.init(): B[vi] = 0.0 B[vi] = B[vi] + A[vi, vk] @T.prim_func def rowsum_predicate_rfactor(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") B_rf = T.alloc_buffer([128, 13], dtype="float32") for i, k_0, k_1 in T.grid(128, 13, 10): with T.block("B_rf"): vk_0, vi, vk_1 = T.axis.remap("SSR", [k_0, i, k_1]) T.where(k_0 * 10 + k_1 < 128) with T.init(): B_rf[vi, vk_0] = T.float32(0) B_rf[vi, vk_0] = B_rf[vi, vk_0] + A[vi, vk_0 * 10 + vk_1] for i, k_0 in T.grid(128, 13): with T.block("B"): vk_0, vi = T.axis.remap("RS", [k_0, i]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + B_rf[vi, vk_0] @T.prim_func def multiple_reduction_blocks(a: T.handle, f: T.handle) -> None: A = T.match_buffer(a, (16, 16, 16)) C = T.alloc_buffer((16, 16)) D = T.alloc_buffer((16, 16)) E = T.alloc_buffer((16, 16)) F = T.match_buffer(f, (16, 16)) for i in T.serial(0, 16): for j1 in T.serial(0, 16): for k1
o, k1i in T.grid(4, 4): with T.block("C"): ci, cj = T.axis.remap("SS", [i, j1]) ck = T.axis.R(16, k1o * 4 + k1i) with T.init(): C[ci, cj] = 0.0 C[ci, cj] = C[ci, cj] + A[ci, cj, ck] for k2o, k2i in T.grid(4, 4): with T.block("D"): di, dj = T.axis.remap("SS", [i, j1]) dk = T.axis.R(16, k2o * 4 + k2i) with T.init(): D[di, dj] = 0.0 D[di, dj] = D[di, dj] + A[di, dj, dk] + C[di, dj] for j2 in T.serial(0, 16): for k3o, k3i in T.grid(4, 4): with T.block("E"): ei, ej = T.axis.remap("SS", [i, j2]) ek = T.axis.R(16, k3o * 4 + k3i) with T.init(): E[ei, ej] = 0.0 E[ei, ej] = E[ei, ej] + A[ei, ej, ek] + D[ei, ej] for k4o, k4i in T.grid(4, 4): with T.block("F"): fi, fj = T.axis.remap("SS", [i, j2]) fk = T.axis.R(16, k4o * 4 + k4i) with T.init(): F[fi, fj] = 0.0 F[fi, fj] = F[fi, fj] + A[fi, fj, fk] + E[fi, fj] @T.prim_func def multiple_reduction_blocks_rfactor(a: T.handle, f: T.handle) -> None: A = T.match_buffer(a, [16, 16, 16]) C = T.alloc_buffer([16, 16]) D = T.alloc_buffer([16, 16]) E = T.alloc_buffer([16, 16]) F = T.match_buffer(f, [16, 16]) C_rf = T.alloc_buffer([16, 16, 4]) for i, j1, k1o, k1i in T.grid(16, 16, 4, 4): with T.block("C_rf"): vk1o, ci, cj, vk1i = T.axis.remap("SSSR", [k1o, i, j1, k1i]) with T.init(): C_rf[ci, cj, vk1o] = 0.0 C_rf[ci, cj, vk1o] = C_rf[ci, cj, vk1o] + A[ci, cj, ((vk1o * 4) + vk1i)] for i_1 in T.serial(0, 16): for j1_1 in T.serial(0, 16): for k1o_1 in T.serial(0, 4
): with T.block("C"): vk1o_1, ci_1, cj_1 = T.axis.remap("RSS", [k1o_1, i_1, j1_1]) with T.init(): C[ci_1, cj_1] = 0.0 C[ci_1, cj_1] = C[ci_1, cj_1] + C_rf[ci_1, cj_1, vk1o_1] for k2o, k2i in T.grid(4, 4): with T.block("D"): di, dj = T.axis.remap("SS", [i_1, j1_1]) dk = T.axis.R(16, k2o * 4 + k2i) with T.init(): D[di, dj] = 0.0 D[di, dj] = (D[di, dj] + A[di, dj, dk]) + C[di, dj] for j2 in T.serial(0, 16): for k3o, k3i in T.grid(4, 4): with T.block("E"): ei, ej = T.axis.remap("SS", [i_1, j2]) ek = T.axis.R(16, k3o * 4 + k3i) with T.init(): E[ei, ej] = 0.0 E[ei, ej] = (E[ei, ej] + A[ei, ej, ek]) + D[ei, ej] for k4o, k4i in T.grid(4, 4): with T.block("F"): fi, fj = T.axis.remap("SS", [i_1, j2]) fk = T.axis.R(16, k4o * 4 + k4i) with T.init(): F[fi, fj] = 0.0 F[fi, fj] = (F[fi, fj] + A[fi, fj, fk]) + E[fi, fj] @T.prim_func def rfactor_spatial_only( A: T.Buffer[(1, 512, 7, 7), "float32"], B: T.Buffer[(1, 512, 1, 1), "float32"], ) -> None: for _i0, i1, _i2, _i3, i4, _i5 in T.grid(1, 512, 1, 1, 49, 1): with T.block("acc"): ax0 = T.axis.spatial(1, 0) ax1 = T.axis.spatial(512, i1) ax2 = T.axis.spatial(1, 0) ax3 = T.axis.spatial(1, 0) rv0 = T.axis.reduce(7, i4 rv1 = T.axis.reduce(7, i4 % 7) T.reads(A[ax0, ax1, ax2 * 7 + rv0, ax3 * 7 + rv1]) T.writes(B[ax0, ax1, ax2, ax3]) with T.init(): B[ax0, ax1, ax2, ax3] = T.float32(0) B[ax0, ax1, ax2, ax3] = ( B[ax0, ax1
, ax2, ax3] + A[ax0, ax1, ax2 * 7 + rv0, ax3 * 7 + rv1] ) @T.prim_func def rfactor_spatial_only_after( A: T.Buffer[(1, 512, 7, 7), "float32"], B: T.Buffer[(1, 512, 1, 1), "float32"], ) -> None: B_rf = T.alloc_buffer([1, 512, 1, 1, 49], dtype="float32") for _i0, i1, _i2, _i3, i4, _i5 in T.grid(1, 512, 1, 1, 49, 1): with T.block("acc_rf"): vi4 = T.axis.spatial(49, i4) ax0 = T.axis.spatial(1, 0) ax1 = T.axis.spatial(512, i1) ax2 = T.axis.spatial(1, 0) ax3 = T.axis.spatial(1, 0) B_rf[ax0, ax1, ax2, ax3, vi4] = A[ax0, ax1, ax2 * 7 + vi4 for _i0, i1, _i2, _i3, i4, _i5 in T.grid(1, 512, 1, 1, 49, 1): with T.block("acc"): vi4 = T.axis.reduce(49, i4) ax0 = T.axis.spatial(1, 0) ax1 = T.axis.spatial(512, i1) ax2 = T.axis.spatial(1, 0) ax3 = T.axis.spatial(1, 0) with T.init(): B[ax0, ax1, ax2, ax3] = T.float32(0) B[ax0, ax1, ax2, ax3] = B[ax0, ax1, ax2, ax3] + B_rf[ax0, ax1, ax2, ax3, vi4] @T.prim_func def argmax_split( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.min_value("float32") v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmin_split_init_update_reordered( idx:
T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmin_v0: T.Buffer[(128,), "int32"], argmin_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmin"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmin_v0[i], argmin_v1[i]) with T.init(): argmin_v1[i] = T.max_value("float32") argmin_v0[i] = -1 v_argmin_v0: T.int32 = T.Select(argmin_v1[i] <= val[i, k], argmin_v0[i], idx[i, k]) v_argmin_v1: T.float32 = T.Select(argmin_v1[i] <= val[i, k], argmin_v1[i], val[i, k]) argmin_v1[i] = v_argmin_v1 argmin_v0[i] = v_argmin_v0 @T.prim_func def argmax_split_different_shape( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(256,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.min_value("float32") v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_split_different_indices( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0)
k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i + 1] = T.min_value("float32") v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i + 1] = v_argmax_v1 @T.prim_func def argmax_split_init_not_bufferstore( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 v1_init: T.float32 = T.min_value("float32") argmax_v1[i] = v1_init v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_split_init_buffer_duplicate( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v0[i]
= -1 v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_split_letstmt_fewer_than_init( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.min_value("float32") v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) @T.prim_func def argmax_split_letstmt_more_than_init( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0, i1_1 in T.grid(128, 4, 32): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_split_let_body_neither_seqstmt_nor_bufferstore( idx: T.Buffer[(128, 128),