text
stringlengths 1
2.05k
|
---|
class TestPaddedTransformOfInputCreatesAssumption(BasePaddingCompare):
"""Transformation of an input buffer places T.assume locally"""
pad_value = tvm.testing.parameter(42)
def before(A: T.Buffer[14, "int32"], B: T.Buffer[14, "int32"]):
for i in T.serial(14):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
def expected(A: T.Buffer[(4, 4), "int32"], B: T.Buffer[14, "int32"]):
for i, j in T.grid(4, 4):
with T.block("buffer_A_assumption"):
vi, vj = T.axis.remap("SS", [i, j])
T.evaluate(T.assume(not (vi == 3 and 2 <= vj) or A[vi, vj] == 42))
for i in T.serial(14):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi |
class TestPaddedTransformNonConstantValue(tvm.testing.CompareBeforeAfter):
"""Allow an expression to specify the pad value.
Like TestPaddedTransformIfThenElse, but the pad value depends on
the indices.
"""
@pytest.fixture
def transform(self):
def transform(mod):
sch = tir.Schedule(mod)
sch.transform_layout(
"block",
"B",
lambda i: [i
pad_value=lambda i, j: i + j,
)
return sch.mod
return transform
def before(A: T.Buffer[14, "int32"]):
B = T.alloc_buffer(14, "int32")
for i in T.serial(14):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
def expected(A: T.Buffer[14, "int32"]):
B = T.alloc_buffer([4, 4], "int32")
for i, j in T.grid(4, 4):
with T.block("block"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = T.if_then_else(
vi == 3 and 2 <= vj, vi + vj, A[vi * 4 + vj], dtype="int32"
)
@pytest.mark.xfail(reason="Not yet implemented") |
class TestPaddedTransformRepeatedBufferElement(tvm.testing.CompareBeforeAfter):
"""Allow an expression to specify the pad value.
Like TestPaddedTransformOfInputCreatesAssumption, but the pad
value depends on another portion of the buffer. In this case, the
padding at the end of A contains repeated elements from the
beginning of A.
"""
@pytest.fixture
def transform(self):
def transform(mod):
sch = tir.Schedule(mod)
A = sch.get(sch.get_block("block")).reads[0].buffer
sch.transform_layout(
"block",
"A",
lambda i: [i
pad_value=lambda i, j: A[(4 * i + j) % 14],
)
return sch.mod
return transform
def before(A: T.Buffer[14, "int32"]):
B = T.alloc_buffer(14, "int32")
for i in T.serial(14):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
def expected(A: T.Buffer[(4, 4), "int32"]):
for i, j in T.grid(4, 4):
with T.block("buffer_A_assumption"):
vi, vj = T.axis.remap("SS", [i, j])
T.evaluate(
T.assume(
not (vi == 3 and 2 <= vj)
or A[vi, vj] == A[((4 * vi + j) % 14)
)
)
B = T.alloc_buffer(14, "int32")
for i in T.grid(14):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi |
class TestPadValueMayNotReferenceOtherBuffer(tvm.testing.CompareBeforeAfter):
"""Allow an expression to specify the pad value.
Like TestPaddedTransformRepeatedBufferElement, but the pad value depends on
a different buffer, which is not allowed.
"""
@pytest.fixture
def transform(self):
def transform(mod):
sch = tir.Schedule(mod)
A = sch.get(sch.get_block("block")).reads[0].buffer
other = tir.decl_buffer(1, A.dtype, name="other")
sch.transform_layout(
"block",
"A",
lambda i: [i
pad_value=lambda i, j: other[0],
)
return sch.mod
return transform
def before(A: T.Buffer[14, "int32"]):
B = T.alloc_buffer(14, "int32")
for i in T.serial(14):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
expected = tvm.tir.schedule.schedule.ScheduleError |
class TestTransformLayoutWithVar(tvm.testing.CompareBeforeAfter):
"""Layout transform with dynamic parameter in transform"""
@pytest.fixture
def transform(self):
def transform(mod):
sch = tir.Schedule(mod)
n = sch.mod["main"].params[1]
sch.transform_layout(
"block",
"B",
lambda i: [i
pad_value=0,
)
return sch.mod
return transform
def before(A: T.Buffer[16, "int32"], n: T.int32):
B = T.alloc_buffer(16, "int32")
for i in T.serial(16):
with T.block("block"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
def expected(A: T.Buffer[16, "int32"], n: T.int32):
B = T.alloc_buffer([(-16 % n + 16)
for i, j in T.grid((-16 % n + 16)
with T.block("block"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = T.if_then_else(
-16 % n != 0
and (
(vj + vi * n)
and 16 % n <= (vj + vi * n) % n
),
0,
A[vj + vi * n],
dtype="int32",
)
if __name__ == "__main__":
tvm.testing.main() |
import sys |
import pytest |
import tvm |
import tvm.testing
from tvm |
import tir
from tvm.ir |
import IRModule
from tvm.script |
import tir as T
from tvm.tir.schedule.testing |
import verify_trace_roundtrip
@T.prim_func
def matmul(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, [128, 128])
B = T.match_buffer(b, [128, 128])
C = T.match_buffer(c, [128, 128])
for i, j in T.grid(128, 128):
with T.block("init"):
vi, vj = T.axis.remap("SS", [i, j])
C[vi, vj] = 0.0
for k in range(0, 128):
with T.block("update"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
@T.prim_func
def matmul_relu(a: T.handle, b: T.handle, d: T.handle) -> None:
A = T.match_buffer(a, (1024, 1024))
B = T.match_buffer(b, (1024, 1024))
C = T.alloc_buffer((1024, 1024))
D = T.match_buffer(d, (1024, 1024))
for i, j, k in T.grid(1024, 1024, 1024):
with T.block("matmul"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
for i, j in T.grid(1024, 1024):
with T.block("relu"):
vi, vj = T.axis.remap("SS", [i, j])
D[vi, vj] = T.max(C[vi, vj], 0.0)
@T.prim_func
def matmul_relu_ann1(a: T.handle, b: T.handle, d: T.handle) -> None:
A = T.match_buffer(a, (1024, 1024))
B = T.match_buffer(b, (1024, 1024))
C = T.alloc_buffer((1024, 1024))
D = T.match_buffer(d, (1024, 1024))
for i in T.serial(0, 1024, annotations={"test1": "aaa", "test4": {"arr": [0, 0], "key": 3}}):
for j in T.serial(0, 1024, annotations={"test2": 612, "test3": ["aa", 1]}):
for k in T.serial(0, 1024):
with T.block("matmul"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
for i, j in T.grid(1024, 1024):
with T.block("relu"):
vi, vj = T.axis.remap("SS", [i, j])
D[vi, vj] = T.max( |
C[vi, vj], 0.0)
@T.prim_func
def matmul_relu_ann2(a: T.handle, b: T.handle, d: T.handle) -> None:
A = T.match_buffer(a, (1024, 1024))
B = T.match_buffer(b, (1024, 1024))
C = T.alloc_buffer((1024, 1024))
D = T.match_buffer(d, (1024, 1024))
for i, j, k in T.grid(1024, 1024, 1024):
with T.block("matmul"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
T.block_attr({"test1": "aaa", "test4": {"arr": [0, 0], "key": 3}})
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
for i, j in T.grid(1024, 1024):
with T.block("relu"):
vi, vj = T.axis.remap("SS", [i, j])
T.block_attr({"test2": 0.22, "test3": ["aa", 1]})
D[vi, vj] = T.max(C[vi, vj], 0.0)
@tvm.script.ir_module
class ModuleWithMultipleFuncs:
@T.prim_func
def vector_add(
A: T.Buffer[128, "float32"],
B: T.Buffer[128, "float32"],
) -> None:
for i in range(128):
with T.block("init"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
@T.prim_func
def vector_add_2(
A: T.Buffer[128, "float32"],
B: T.Buffer[128, "float32"],
) -> None:
for i in range(128):
with T.block("init"):
vi = T.axis.remap("S", [i])
B[vi] = A[vi]
@T.prim_func
def tuple_reduction(data: T.Buffer[(4, 32), "float32"], T_add: T.Buffer[(4,), "float32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
with T.block("root"):
T.reads()
T.writes()
data_red_temp_v0 = T.alloc_buffer([4], dtype="float32")
data_red_temp_v1 = T.alloc_buffer([4], dtype="float32")
for i0, i1 in T.grid(4, 32):
with T.block("data_red_temp"):
ax0, k1 = T.axis.remap("SR", [i0, i1])
T.reads(data[ax0, k1])
T.writes(data_red_temp_v0[ax0], data_red_temp_v1[ax0])
with T.init(): |
data_red_temp_v0[ax0] = T.float32(0)
data_red_temp_v1[ax0] = T.float32(0)
v_data_red_temp_v0: T.float32 = data_red_temp_v0[ax0] + data[ax0, k1]
v_data_red_temp_v1: T.float32 = (
data_red_temp_v1[ax0] + data[ax0, k1] * data[ax0, k1]
)
data_red_temp_v0[ax0] = v_data_red_temp_v0
data_red_temp_v1[ax0] = v_data_red_temp_v1
for i0 in range(4):
with T.block("T_add"):
ax0 = T.axis.remap("S", [i0])
T.reads(data_red_temp_v0[ax0], data_red_temp_v1[ax0])
T.writes(T_add[ax0])
T_add[ax0] = data_red_temp_v0[ax0] + data_red_temp_v1[ax0]
use_block_name = tvm.testing.parameter(by_dict={"block_obj": False, "block_name": True})
def test_tir_schedule_creation():
sch_1 = tir.Schedule(matmul, debug_mask="all")
sch_2 = tir.Schedule(IRModule({"main": matmul}), debug_mask="all")
assert sch_1.mod["main"].same_as(sch_2.mod["main"])
assert sch_1.state.mod["main"].same_as(sch_2.state.mod["main"])
def test_tir_schedule_get_block():
sch = tir.Schedule(matmul, debug_mask="all")
block_rv = sch.get_block(name="update")
block_sref = sch.get_sref(block_rv)
block = sch.get(block_rv)
assert block.name_hint == "update"
assert block_sref.stmt.same_as(block)
assert sch.state.get_sref(block).same_as(block_sref)
assert block.same_as(matmul.body.block.body.body.body[1].body.block)
def test_tir_schedule_work_on():
sch = tir.Schedule(ModuleWithMultipleFuncs, debug_mask="all")
with pytest.raises(ValueError, match="does not know which function to be working on"):
sch.get_block(name="init")
sch.work_on(func_name="vector_add")
sch.get_block(name="init")
def test_tir_schedule_get_loops(use_block_name):
sch = tir.Schedule(matmul, debug_mask="all")
block = "update" if use_block_name else sch.get_block(n |
ame="update")
i, j, k = sch.get_loops(block)
assert sch.get(i).loop_var.name == "i"
assert sch.get(j).loop_var.name == "j"
assert sch.get(k).loop_var.name == "k"
def test_tir_schedule_copy_1(use_block_name):
sch_1 = tir.Schedule(matmul, debug_mask="all")
block_rv = sch_1.get_block(name="update")
i, j, k = sch_1.get_loops(block="update" if use_block_name else block_rv)
assert sch_1.get(i).loop_var.name == "i"
assert sch_1.get(j).loop_var.name == "j"
assert sch_1.get(k).loop_var.name == "k"
sch_2 = sch_1.copy()
assert sch_2.get(block_rv).name_hint == "update"
assert sch_2.get(i).loop_var.name == "i"
assert sch_2.get(j).loop_var.name == "j"
assert sch_2.get(k).loop_var.name == "k"
def test_tir_schedule_copy_2():
sch = tir.Schedule(mod=matmul, debug_mask="all")
i, j, k = sch.get_loops(sch.get_block("update"))
sch_copy = sch.copy()
assert not sch.get_sref(i).same_as(sch_copy.get_sref(i))
assert not sch.get_sref(j).same_as(sch_copy.get_sref(j))
assert not sch.get_sref(k).same_as(sch_copy.get_sref(k))
assert sch.get_sref(i).stmt.same_as(sch_copy.get_sref(i).stmt)
assert sch.get_sref(j).stmt.same_as(sch_copy.get_sref(j).stmt)
assert sch.get_sref(k).stmt.same_as(sch_copy.get_sref(k).stmt)
i_0, i_1 = sch.split(i, factors=[None, 64])
j_0, j_1 = sch_copy.split(j, factors=[None, 32])
assert sch.get_sref(i_0).stmt.extent == 2
assert sch.get_sref(i_1).stmt.extent == 64
with pytest.raises(IndexError):
sch_copy.get_sref(i_0)
with pytest.raises(IndexError):
sch_copy.get_sref(i_1)
with pytest.raises(IndexError):
sch.get_sref(j_0)
with pytest.raises(IndexError):
sch.get_sref(j_1)
assert sch_copy.get_sref(j_0).stmt.extent == 4
assert sch_copy.get_sref(j_1).stmt.extent == 32
verify_trace_roundtrip(sch, mod=matmul)
verify_trace_roundtrip(sch_copy, mod=matmul)
def test_tir_schedule_remove_rv():
sch = tir.Schedule(matmul, debug_mask |
="all")
block_rv = sch.get_block(name="update")
assert sch.get(block_rv).name_hint == "update"
sch.remove_rv(block_rv)
with pytest.raises(IndexError):
sch.get(block_rv)
def test_get_child_blocks():
s = tir.Schedule(matmul, debug_mask="all")
init = s.get_block("init")
update = s.get_block("update")
blocks = s.get_child_blocks(s.get_loops(init)[0])
assert len(blocks) == 2
assert s.get(init) == s.get(blocks[0])
assert s.get(update) == s.get(blocks[1])
root = s.get_block("root")
blocks = s.get_child_blocks(root)
assert len(blocks) == 2
assert s.get(init) == s.get(blocks[0])
assert s.get(update) == s.get(blocks[1])
def test_get_producers(use_block_name):
sch = tir.Schedule(mod=matmul_relu, debug_mask="all")
block = "relu" if use_block_name else sch.get_block("relu")
(producer,) = sch.get_producers(block)
assert tvm.ir.structural_equal(
sch.get_sref(producer).stmt,
sch.get_sref(sch.get_block("matmul")).stmt,
)
verify_trace_roundtrip(sch, mod=matmul_relu)
def test_get_producers_multiple_buffer_depdencies(use_block_name):
sch = tir.Schedule(mod=tuple_reduction, debug_mask="all")
block = "T_add" if use_block_name else sch.get_block("T_add")
(producer,) = sch.get_producers(block)
assert tvm.ir.structural_equal(
sch.get_sref(producer).stmt,
sch.get_sref(sch.get_block("data_red_temp")).stmt,
)
def test_get_consumers(use_block_name):
sch = tir.Schedule(mod=matmul_relu, debug_mask="all")
block = "matmul" if use_block_name else sch.get_block("matmul")
(consumer,) = sch.get_consumers(block)
assert tvm.ir.structural_equal(
sch.get_sref(consumer).stmt,
sch.get_sref(sch.get_block("relu")).stmt,
)
verify_trace_roundtrip(sch, mod=matmul_relu)
def test_get_consumers_multiple_buffer_depdencies(use_block_name):
sch = tir.Schedule(mod=tuple_reduction, debug_mask="all")
block = "data_red_temp" if use_block_name else sch.get_bl |
ock("data_red_temp")
(consumer,) = sch.get_consumers(block)
assert tvm.ir.structural_equal(
sch.get_sref(consumer).stmt,
sch.get_sref(sch.get_block("T_add")).stmt,
)
def test_annotate_unannotate_loop():
sch = tir.Schedule(mod=matmul_relu, debug_mask="all")
matmul = sch.get_block("matmul")
relu = sch.get_block("relu")
sch.annotate(sch.get_loops(matmul)[0], "test1", "aaa")
sch.annotate(sch.get_loops(matmul)[1], "test2", 612)
sch.annotate(sch.get_loops(matmul)[1], "test3", ["aa", 1])
sch.annotate(sch.get_loops(matmul)[0], "test4", {"arr": [0, 0], "key": 3})
tvm.ir.assert_structural_equal(sch.mod["main"], matmul_relu_ann1)
verify_trace_roundtrip(sch=sch, mod=matmul_relu)
sch.unannotate(sch.get_loops(matmul)[0], "test1")
sch.unannotate(sch.get_loops(matmul)[1], "test2")
sch.unannotate(sch.get_loops(matmul)[1], "test3")
sch.unannotate(sch.get_loops(matmul)[0], "test4")
verify_trace_roundtrip(sch=sch, mod=matmul_relu)
def test_annotate_unannotate_block():
sch = tir.Schedule(mod=matmul_relu, debug_mask="all")
matmul = sch.get_block("matmul")
relu = sch.get_block("relu")
sch.annotate(matmul, "test1", "aaa")
sch.annotate(relu, "test2", 0.22)
sch.annotate(relu, "test3", ["aa", 1])
sch.annotate(matmul, "test4", {"arr": [0, 0], "key": 3})
tvm.ir.assert_structural_equal(sch.mod["main"], matmul_relu_ann2)
verify_trace_roundtrip(sch=sch, mod=matmul_relu)
sch.unannotate(matmul, "test1")
sch.unannotate(relu, "test2")
sch.unannotate(relu, "test3")
sch.unannotate(matmul, "test4")
verify_trace_roundtrip(sch=sch, mod=matmul_relu)
if __name__ == "__main__":
tvm.testing.main() |
import tvm
from tvm.script |
import tir as T
@T.prim_func
def matmul(a: T.handle, b: T.handle, c: T.handle, n: T.int32) -> None:
m = T.var("int32")
A = T.match_buffer(a, [m, n])
B = T.match_buffer(b, [m, n])
C = T.match_buffer(c, [m, m])
for i, j, k in T.grid(m, m, n):
with T.block("update"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
@T.prim_func
def matmul_128(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, [128, 128])
B = T.match_buffer(b, [128, 128])
C = T.match_buffer(c, [128, 128])
for i, j, k in T.grid(128, 128, 128):
with T.block("update"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
@T.prim_func
def matmul_m_128(a: T.handle, b: T.handle, c: T.handle) -> None:
m = T.var("int32")
A = T.match_buffer(a, [m, 128])
B = T.match_buffer(b, [m, 128])
C = T.match_buffer(c, [m, m])
for i, j, k in T.grid(m, m, 128):
with T.block("update"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
@T.prim_func
def matmul_m_8x(a: T.handle, b: T.handle, c: T.handle) -> None:
x = T.var("int32")
m = T.var("int32")
A = T.match_buffer(a, [m, x * 8])
B = T.match_buffer(b, [m, x * 8])
C = T.match_buffer(c, [m, m])
for i, j, k in T.grid(m, m, x * 8):
with T.block("update"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
@T.prim_func
def element_wise(a: T.handle, c: T.handle) -> None:
m = T.var("int32")
n = T.var("int32")
A = T.match_buffer(a, (m, n), "float32")
C = T.match_buffer(c, (m, n), "float32") |
B = T.alloc_buffer((m, n), "float32")
for i, j in T.grid(m, n):
with T.block("B"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj] * 2.0
for i, j in T.grid(m, n):
with T.block("C"):
vi, vj = T.axis.remap("SS", [i, j])
C[vi, vj] = B[vi, vj] + 1.0
@T.prim_func
def element_wise_128_64(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (128, 64), "float32")
C = T.match_buffer(c, (128, 64), "float32")
B = T.alloc_buffer((128, 64), "float32")
for i, j in T.grid(128, 64):
with T.block("B"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj] * 2.0
for i, j in T.grid(128, 64):
with T.block("C"):
vi, vj = T.axis.remap("SS", [i, j])
C[vi, vj] = B[vi, vj] + 1.0
@T.prim_func
def element_wise_128_n(a: T.handle, c: T.handle) -> None:
n = T.var("int32")
A = T.match_buffer(a, (128, n), "float32")
C = T.match_buffer(c, (128, n), "float32")
B = T.alloc_buffer((128, n), "float32")
for i, j in T.grid(128, n):
with T.block("B"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj] * 2.0
for i, j in T.grid(128, n):
with T.block("C"):
vi, vj = T.axis.remap("SS", [i, j])
C[vi, vj] = B[vi, vj] + 1.0
@T.prim_func
def mem_copy(a: T.handle, b: T.handle, m: T.int32, n: T.int32, p: T.int32, q: T.int32) -> None:
A = T.match_buffer(a, (m, n), "float32", strides=[p, 1], elem_offset=q)
B = T.match_buffer(b, (m, n), "float32", strides=[p, 1], elem_offset=q)
for i, j in T.grid(m, n):
with T.block():
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj]
@T.prim_func
def mem_copy_16_16_8_4(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32", strides=[8, 1], elem_offset=4)
B = T.match_buffer(b, (16, 16), "float32", strides=[8, 1], elem_offset=4)
for i, j in T.grid(16, 16):
wi |
th T.block():
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj]
@T.prim_func
def mem_copy_m_n_p_n(a: T.handle, b: T.handle, m: T.int32, n: T.int32, p: T.int32) -> None:
A = T.match_buffer(a, (m, n), "float32", strides=[p, 1], elem_offset=n)
B = T.match_buffer(b, (m, n), "float32", strides=[p, 1], elem_offset=n)
for i, j in T.grid(m, n):
with T.block():
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj]
@T.prim_func
def param_in_arith_exprs(a: T.handle, b: T.handle) -> None:
n = T.var("int32")
A = T.match_buffer(a, [n
B = T.match_buffer(b, [n], "int32")
for i in range(n - 1):
with T.block():
vi = T.axis.S(n - 1, i)
B[vi] = A[vi
@T.prim_func
def param_in_arith_exprs_n_16(a: T.handle, b: T.handle) -> None:
n = T.var("int32")
A = T.match_buffer(a, [2, 8], "int32")
B = T.match_buffer(b, [16], "int32")
for i in range(15):
with T.block():
vi = T.axis.S(15, i)
B[vi] = A[vi
def test_specialize_nothing():
func = matmul.specialize({})
assert func.same_as(matmul)
def test_specialize_matmul():
a, _, _, n = matmul.params
func = matmul.specialize({a: tvm.tir.decl_buffer((128, 128))})
tvm.ir.assert_structural_equal(func, matmul_128)
func = matmul.specialize({n: 128})
tvm.ir.assert_structural_equal(func, matmul_m_128)
func = matmul.specialize({n: tvm.tir.Var("x", "int32") * 8})
tvm.ir.assert_structural_equal(func, matmul_m_8x)
def test_specialize_elemwise():
a, c = element_wise.params
C = element_wise.buffer_map[c]
func = element_wise.specialize({a: tvm.tir.decl_buffer((128, 64))})
tvm.ir.assert_structural_equal(func, element_wise_128_64)
func = element_wise.specialize({c: tvm.tir.decl_buffer((128, C.shape[1]))})
tvm.ir.assert_structural_equal(func, element_wise_128_n)
def test_specialize_mem_copy():
a, _, m, n, p, q = mem_copy.params
fun |
c = mem_copy.specialize({a: tvm.tir.decl_buffer((16, 16), strides=[8, 1], elem_offset=4)})
tvm.ir.assert_structural_equal(func, mem_copy_16_16_8_4)
func = mem_copy.specialize({n: 16, m: 16, p: 8, q: 4})
tvm.ir.assert_structural_equal(func, mem_copy_16_16_8_4)
func = mem_copy.specialize({q: n})
tvm.ir.assert_structural_equal(func, mem_copy_m_n_p_n)
def test_specialize_recursive_load():
pass
def test_specialize_with_const_folding():
b = param_in_arith_exprs.params[1]
func = param_in_arith_exprs.specialize({b: tvm.tir.decl_buffer([16])})
tvm.ir.assert_structural_equal(func, param_in_arith_exprs_n_16)
if __name__ == "__main__":
test_specialize_nothing()
test_specialize_matmul()
test_specialize_elemwise()
test_specialize_mem_copy()
test_specialize_recursive_load()
test_specialize_with_const_folding() |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
def test_ir_transform():
ib = tvm.tir.ir_builder.create()
n = te.var("n")
with ib.for_range(0, n, name="i") as i:
with ib.for_range(0, 10, name="j") as j:
x = tvm.tir.call_extern("int32", "TestA", i * 3 + j * 1)
ib.emit(tvm.tir.call_extern("int32", "TestB", x))
ib.emit(tvm.tir.call_extern("int32", "TestC", x))
body = ib.get()
builtin_call_extern = tvm.ir.Op.get("tir.call_extern")
def preorder(op):
if op.op.same_as(builtin_call_extern) and op.args[0].value == "TestC":
return tvm.tir.const(0, "int32")
return None
def postorder(op):
assert isinstance(op, tvm.tir.Call)
if op.op.same_as(builtin_call_extern) and op.args[0].value == "TestA":
return tvm.tir.call_extern("int32", "TestB", op.args[1] + 1)
return op
body = tvm.tir.stmt_functor.ir_transform(body, preorder, postorder, ["tir.Call"])
stmt_list = tvm.tir.stmt_list(body.body.body)
assert stmt_list[0].value.args[1].args[0].value == "TestB"
assert stmt_list[1].value.value == 0
if __name__ == "__main__":
test_ir_transform()
|
import tvm |
import numpy as np |
import pytest
from tvm |
import te
from tvm.runtime |
import ObjectPath
def consistent_equal(x, y, map_free_vars=False):
struct_equal0 = tvm.ir.structural_equal(x, y, map_free_vars)
struct_equal1 = tvm.ir.structural_equal(y, x, map_free_vars)
xhash = tvm.ir.structural_hash(x, map_free_vars)
yhash = tvm.ir.structural_hash(y, map_free_vars)
if struct_equal0 != struct_equal1:
raise ValueError(
"Non-commutative {} vs {}, sequal0={}, sequal1={}".format(
x, y, struct_equal0, struct_equal1
)
)
if struct_equal0 != (xhash == yhash):
raise ValueError(
"Inconsistent {} vs {}, sequal={}, xhash={}, yhash={}".format(
x, y, struct_equal0, xhash, yhash
)
)
return struct_equal0
def get_sequal_mismatch(x, y, map_free_vars=False):
mismatch_0 = tvm.ir.base.get_first_structural_mismatch(x, y, map_free_vars)
mismatch_1 = tvm.ir.base.get_first_structural_mismatch(y, x, map_free_vars)
if mismatch_0 is None and mismatch_1 is None:
return None
if (
mismatch_0 is None
or mismatch_1 is None
or mismatch_0[0] != mismatch_1[1]
or mismatch_0[1] != mismatch_1[0]
):
raise ValueError(
"Non-commutative {} vs {}, mismatch_0={}, mismatch_1={}".format(
x, y, mismatch_0, mismatch_1
)
)
return mismatch_0
def test_exprs():
x = tvm.tir.const(1, "int32")
y = tvm.tir.const(10, "int32")
vx = te.var("x")
vy = te.var("y")
vz = te.var("z")
zx = vx + vx
zy = vy + vy
assert consistent_equal(zx * zx, (vx + vx) * (vx + vx), map_free_vars=False)
with pytest.raises(ValueError):
tvm.ir.assert_structural_equal(x, y)
assert not consistent_equal(vx, vy)
assert consistent_equal(vx, vy, map_free_vars=True)
assert not consistent_equal(vx + vx, vy + vx, map_free_vars=True)
assert consistent_equal(vx + vy, vy + vx, map_free_vars=True)
assert consistent_equal(vx |
+ vy + vz, vy + vz + vx, map_free_vars=True)
assert not consistent_equal(vx + 1, vy + 1, map_free_vars=False)
assert consistent_equal(tvm.tir.Let(vx, 1, vx - 1), tvm.tir.Let(vy, 1, vy - 1))
assert consistent_equal(tvm.tir.Let(vx, 1, vx
assert consistent_equal(zx * zx, zx * zx)
assert consistent_equal(zx * zx, zy * zy, map_free_vars=True)
assert not consistent_equal(zx * zx, zy * zy, map_free_vars=False)
def test_prim_func():
x = te.var("x")
y = te.var("y")
func0 = tvm.tir.PrimFunc([x, y], tvm.tir.Evaluate(x + y))
func1 = tvm.tir.PrimFunc([x, y], tvm.tir.Evaluate(y + x))
assert not consistent_equal(func0, func1)
b = tvm.tir.decl_buffer((x,), "float32")
stmt = tvm.tir.LetStmt(x, 10, tvm.tir.Evaluate(x + 1))
func0 = tvm.tir.PrimFunc([x, y, b], stmt)
func1 = tvm.ir.load_json(tvm.ir.save_json(func0))
tvm.ir.assert_structural_equal(func0, func1)
data0 = tvm.nd.array([1, 2, 3])
data1 = tvm.nd.array([1, 2, 3])
func0 = func0.with_attr("data", data0)
func1 = func1.with_attr("data", data1)
mod0 = tvm.IRModule.from_expr(func0)
mod1 = tvm.IRModule.from_expr(func1)
tvm.ir.assert_structural_equal(mod0, mod1)
def test_prim_func_param_count_mismatch():
x = te.var("x")
y = te.var("y")
z = te.var("z")
func0 = tvm.tir.PrimFunc([x, y], tvm.tir.Evaluate(x))
func1 = tvm.tir.PrimFunc([x, y, z], tvm.tir.Evaluate(x))
lhs_path, rhs_path = get_sequal_mismatch(func0, func1)
expected_lhs_path = ObjectPath.root().attr("params").missing_array_element(2)
expected_rhs_path = ObjectPath.root().attr("params").array_index(2)
assert lhs_path == expected_lhs_path
assert rhs_path == expected_rhs_path
def test_prim_func_param_dtype_mismatch():
x = te.var("x")
y_0 = te.var("y", dtype="int32")
y_1 = te.var("z", dtype="float32")
func0 = tvm.tir.PrimFunc([x, y_0], tvm.tir.Evaluate(x))
func1 = tvm.tir.PrimFunc([x, y_1], tvm.tir.Evaluate(x))
lhs_path, |
rhs_path = get_sequal_mismatch(func0, func1)
expected_path = ObjectPath.root().attr("params").array_index(1).attr("dtype")
assert lhs_path == expected_path
assert rhs_path == expected_path
def test_prim_func_body_mismatch():
x_0 = te.var("x")
y_0 = te.var("y")
x_1 = te.var("x")
y_1 = te.var("y")
func0 = tvm.tir.PrimFunc([x_0, y_0], tvm.tir.Evaluate(x_0 + x_0))
func1 = tvm.tir.PrimFunc([x_1, y_1], tvm.tir.Evaluate(x_1 + y_1))
lhs_path, rhs_path = get_sequal_mismatch(func0, func1)
expected_path = ObjectPath.root().attr("body").attr("value").attr("b")
assert lhs_path == expected_path
assert rhs_path == expected_path
def test_array():
x = np.arange(10)
nx = tvm.nd.array(x)
ny = tvm.nd.array(x)
nz = tvm.nd.array(x.reshape(2, 5))
assert consistent_equal(nx, ny)
assert not consistent_equal(nx, nz)
def test_env_func():
@tvm.register_func("test.sequal.env_func")
def test(x):
return x + 1
x = tvm.ir.EnvFunc.get("test.sequal.env_func")
y = tvm.ir.EnvFunc.get("test.sequal.env_func")
assert consistent_equal(y, x)
def test_attrs():
x = tvm.ir.make_node("attrs.TestAttrs", axis=1, name="xx")
y = tvm.ir.make_node("attrs.TestAttrs", axis=1, name="xx")
z = tvm.ir.make_node("attrs.TestAttrs", axis=2, name="xx")
tvm.ir.assert_structural_equal(y, x)
assert not consistent_equal(y, z)
x = tvm.runtime.convert({"x": [1, 2, 3], "y": 2})
y = tvm.runtime.convert({"y": 2, "x": [1, 2, 3]})
z = tvm.runtime.convert({"y": 2, "x": [1, 2, 3, 4]})
assert consistent_equal(y, x)
assert not consistent_equal(y, z)
def test_stmt():
x = te.var("x")
y = te.var("y")
n = 128
A = te.placeholder((n, n), name="A")
B = te.placeholder((n, n), name="B")
ii = te.var("i")
jj = te.var("j")
Ab = tvm.tir.decl_buffer((n,), name="A")
n = te.var("n")
def func2():
ib = tvm.tir.ir_builder.create()
A = ib.buffer_ptr(Ab)
with ib.for_range(0, n, name="i" |
) as i:
A[i] = A[i] + 1
with ib.for_range(0, 10, name="j") as j:
A[j] = A[j] + 2
A[j] = A[j] + 2
return ib.get()
assert consistent_equal(func2(), func2())
def test_buffer_storage_scope():
x = te.var("x", dtype="handle")
buffer_local_0 = tvm.tir.decl_buffer((10, 10), "float32", scope="local")
buffer_local_1 = tvm.tir.decl_buffer((10, 10), "float32", scope="local")
buffer_global = tvm.tir.decl_buffer((10, 10), "float32")
buffer_empty = tvm.tir.decl_buffer((10, 10), "float32", scope="")
func0 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_local_0})
func1 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_local_1})
func2 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_global})
func3 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_empty})
assert consistent_equal(func0, func1)
assert consistent_equal(func2, func3)
assert not consistent_equal(func0, func2)
def test_buffer_map_mismatch():
x = te.var("x")
buffer_0 = tvm.tir.decl_buffer((10, 10))
buffer_0_clone = tvm.tir.decl_buffer((10, 10))
buffer_1 = tvm.tir.decl_buffer((10, 20))
func_0 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_0})
func_0_clone = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_0_clone})
func_1 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_1})
lhs_path, rhs_path = get_sequal_mismatch(func_0, func_1)
expected_path = (
ObjectPath.root().attr("buffer_map").map_value(x).attr("shape").array_index(1).attr("value")
)
assert lhs_path == expected_path
assert rhs_path == expected_path
assert get_sequal_mismatch(func_0, func_0_clone) is None
def test_buffer_map_length_mismatch():
x = te.var("x")
y = te.var("x")
buffer_0 = tvm.tir.decl_buffer((10, 10))
buffer_1 = tvm.tir.decl_buffer((10, 20))
func_0 = tvm.tir.PrimFunc([x], t |
vm.tir.Evaluate(x), buffer_map={x: buffer_0})
func_1 = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x), buffer_map={x: buffer_0, y: buffer_1})
lhs_path, rhs_path = get_sequal_mismatch(func_0, func_1)
expected_lhs_path = ObjectPath.root().attr("buffer_map").missing_map_entry()
assert lhs_path == expected_lhs_path
expected_rhs_path = ObjectPath.root().attr("buffer_map").map_value(y)
assert rhs_path == expected_rhs_path
def test_buffer_load_store():
b = tvm.tir.decl_buffer((10, 10), "float32")
x = tvm.tir.BufferLoad(b, [0, 1])
y = tvm.tir.BufferLoad(b, [0, 1])
z = tvm.tir.BufferLoad(b, [1, 2])
assert consistent_equal(y, x)
assert not consistent_equal(y, z)
i = tvm.tir.Var("x", "int32")
sx = tvm.tir.BufferStore(b, 0.1, [0, i])
sy = tvm.tir.BufferStore(b, 0.1, [0, i])
sz = tvm.tir.BufferStore(b, 0.1, [1, i])
assert consistent_equal(sy, sx)
assert not consistent_equal(sy, sz)
def test_while():
x = tvm.tir.Var("x", "int32")
y = tvm.tir.Var("y", "int32")
wx = tvm.tir.While(x > 0, tvm.tir.Evaluate(x))
wy = tvm.tir.While(y > 0, tvm.tir.Evaluate(y))
assert not consistent_equal(wx, wy)
assert consistent_equal(wx, wy, map_free_vars=True)
def test_while_condition_mismatch():
x = tvm.tir.Var("x", "int32")
w_0 = tvm.tir.While(x > 0, tvm.tir.Evaluate(x))
w_1 = tvm.tir.While(x < 0, tvm.tir.Evaluate(x))
lhs_path, rhs_path = get_sequal_mismatch(w_0, w_1)
expected_path = ObjectPath.root().attr("condition")
assert lhs_path == expected_path
assert rhs_path == expected_path
def test_while_body_mismatch():
x = tvm.tir.Var("x", "int32")
w_0 = tvm.tir.While(x > 0, tvm.tir.Evaluate(x))
w_1 = tvm.tir.While(x > 0, tvm.tir.Evaluate(x + 1))
lhs_path, rhs_path = get_sequal_mismatch(w_0, w_1)
expected_path = ObjectPath.root().attr("body").attr("value")
assert lhs_path == expected_path
assert rhs_path == expected_path
def test_seq_mismatch():
x = tvm.tir.Var("x", "int32")
seq_0 = tvm |
.tir.SeqStmt(
[
tvm.tir.Evaluate(x),
tvm.tir.Evaluate(x + 1),
tvm.tir.Evaluate(x + 2),
tvm.tir.Evaluate(x + 3),
]
)
seq_1 = tvm.tir.SeqStmt(
[
tvm.tir.Evaluate(x),
tvm.tir.Evaluate(x + 1),
tvm.tir.Evaluate(x + 99),
tvm.tir.Evaluate(x + 3),
]
)
lhs_path, rhs_path = get_sequal_mismatch(seq_0, seq_1)
expected_path = (
ObjectPath.root().attr("seq").array_index(2).attr("value").attr("b").attr("value")
)
assert lhs_path == expected_path
assert rhs_path == expected_path
def test_seq_mismatch_different_lengths():
x = tvm.tir.Var("x", "int32")
seq_0 = tvm.tir.SeqStmt(
[
tvm.tir.Evaluate(x),
tvm.tir.Evaluate(x + 1),
tvm.tir.Evaluate(x + 2),
tvm.tir.Evaluate(x + 3),
]
)
seq_1 = tvm.tir.SeqStmt([tvm.tir.Evaluate(x), tvm.tir.Evaluate(x + 1), tvm.tir.Evaluate(x + 3)])
lhs_path, rhs_path = get_sequal_mismatch(seq_0, seq_1)
expected_path = (
ObjectPath.root().attr("seq").array_index(2).attr("value").attr("b").attr("value")
)
assert lhs_path == expected_path
assert rhs_path == expected_path
def test_seq_length_mismatch():
x = tvm.tir.Var("x", "int32")
seq_0 = tvm.tir.SeqStmt(
[
tvm.tir.Evaluate(x),
tvm.tir.Evaluate(x + 1),
tvm.tir.Evaluate(x + 2),
tvm.tir.Evaluate(x + 3),
]
)
seq_1 = tvm.tir.SeqStmt([tvm.tir.Evaluate(x), tvm.tir.Evaluate(x + 1), tvm.tir.Evaluate(x + 2)])
lhs_path, rhs_path = get_sequal_mismatch(seq_0, seq_1)
expected_lhs_path = ObjectPath.root().attr("seq").array_index(3)
expected_rhs_path = ObjectPath.root().attr("seq").missing_array_element(3)
assert lhs_path == expected_lhs_path
assert rhs_path == expected_rhs_path
if __name__ == "__main__":
test_exprs()
test_prim_func()
test_attrs()
test_array()
test_env_func( |
)
test_stmt()
test_buffer_storage_scope()
test_buffer_load_store()
test_while() |
import sys |
import pytest |
import numpy as np |
import tvm |
import tvm.testing
from tvm |
import tir, te, TVMError
from tvm.script |
import tir as T
from tvm.arith |
import _ffi_api as _ffi_arith_api
from tvm.tir.schedule |
import _ffi_api as _ffi_schedule_api
@T.prim_func
def func_1(A: T.Buffer[(16,), "float32"], C: T.Buffer[(1,), "float32"]):
for i in T.serial(
0,
16,
):
with T.block():
B = T.alloc_buffer((1,), dtype="float32")
with T.block():
B[0] = A[i] * T.float32(2)
with T.block():
C[0] = C[0] + A[i] + B[0] + T.float32(1)
A[i] = B[0] + T.float32(1)
def verify_func_1(module):
a_np = np.random.randint(low=-128, high=127, size=(16,)).astype(np.float32)
c_np = np.zeros((1,), dtype=np.float32)
a = tvm.nd.array(a_np, device=tvm.cpu(0))
c = tvm.nd.array(c_np, device=tvm.cpu(0))
module(a, c)
tvm.testing.assert_allclose(c_np + np.sum(3 * a_np + 1), c.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np * 2 + 1, a.numpy(), rtol=1e-4)
@T.prim_func
def func_2(
C: T.Buffer[(1,), "float32"], A: T.Buffer[(16,), "float32"], D: T.Buffer[(2,), "float32"]
):
for i in T.serial(
0,
16,
):
with T.block():
B = T.alloc_buffer((1,), dtype="float32")
with T.block():
B[0] = A[i] * T.float32(2)
with T.block():
C[0] = C[0] + A[i] + B[0] + T.float32(1) + D[0]
A[i] = B[0] + T.float32(1) + D[1]
def verify_func_2(module):
a_np = np.random.randint(low=-128, high=127, size=(16,)).astype(np.float32)
d_np = np.random.randint(low=-128, high=127, size=(2,)).astype(np.float32)
c_np = np.zeros((1,), dtype=np.float32)
a = tvm.nd.array(a_np, device=tvm.cpu(0))
d = tvm.nd.array(d_np, device=tvm.cpu(0))
c = tvm.nd.array(c_np, device=tvm.cpu(0))
module(c, a, d)
tvm.testing.assert_allclose(c_np + np.sum(3 * a_np + 1 + d_np[0]), c.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np * 2 + 1 + d_np[1], a.numpy(), rtol=1e-4)
@T.prim_func
def func_3(
C: T.Buffer[(1,), "float32"],
A: T.Buffer[(16,), "float32"],
D: T.Buffer[(2,), "float32"],
E: T. |
Buffer[(16,), "float32"],
F: T.Buffer[(16,), "float32"],
):
for i in T.serial(
0,
16,
):
with T.block():
B = T.alloc_buffer((1,), dtype="float32")
with T.block():
B[0] = A[i] * T.float32(2)
with T.block():
E[i] = A[i]
F[i] = E[i] + 1.0
C[0] = C[0] + A[i] + B[0] + T.float32(1) + D[0]
A[i] = B[0] + T.float32(1) + D[1]
def verify_func_3(module):
a_np = np.random.randint(low=-128, high=127, size=(16,)).astype(np.float32)
d_np = np.random.randint(low=-128, high=127, size=(2,)).astype(np.float32)
c_np = np.zeros((1,), dtype=np.float32)
e_np = np.zeros((16,), dtype=np.float32)
f_np = np.zeros((16,), dtype=np.float32)
a = tvm.nd.array(a_np, device=tvm.cpu(0))
d = tvm.nd.array(d_np, device=tvm.cpu(0))
c = tvm.nd.array(c_np, device=tvm.cpu(0))
e = tvm.nd.array(e_np, device=tvm.cpu(0))
f = tvm.nd.array(f_np, device=tvm.cpu(0))
module(c, a, d, e, f)
tvm.testing.assert_allclose(c_np + np.sum(3 * a_np + 1 + d_np[0]), c.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np * 2 + 1 + d_np[1], a.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np, e.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np + 1, f.numpy(), rtol=1e-4)
@T.prim_func
def func_4(
C: T.Buffer[(1,), "float32"],
A: T.Buffer[(16,), "float32"],
F: T.Buffer[(16,), "float32"],
D: T.Buffer[(2,), "float32"],
E: T.Buffer[(16,), "float32"],
):
for i in T.serial(
0,
16,
):
with T.block():
B = T.alloc_buffer((1,), dtype="float32")
with T.block():
B[0] = A[i] * T.float32(2)
with T.block():
E[i] = A[i]
F[i] = E[i] + 1.0
C[0] = C[0] + A[i] + B[0] + T.float32(1) + D[0]
A[i] = B[0] + T.float32(1) + D[1]
def verify_func_4(module):
a_np = np.random.randint(low=-128, high=127, size=(16,)).astyp |
e(np.float32)
d_np = np.random.randint(low=-128, high=127, size=(2,)).astype(np.float32)
c_np = np.zeros((1,), dtype=np.float32)
e_np = np.zeros((16,), dtype=np.float32)
f_np = np.zeros((16,), dtype=np.float32)
a = tvm.nd.array(a_np, device=tvm.cpu(0))
d = tvm.nd.array(d_np, device=tvm.cpu(0))
c = tvm.nd.array(c_np, device=tvm.cpu(0))
e = tvm.nd.array(e_np, device=tvm.cpu(0))
f = tvm.nd.array(f_np, device=tvm.cpu(0))
module(c, a, f, d, e)
tvm.testing.assert_allclose(c_np + np.sum(3 * a_np + 1 + d_np[0]), c.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np * 2 + 1 + d_np[1], a.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np, e.numpy(), rtol=1e-4)
tvm.testing.assert_allclose(a_np + 1, f.numpy(), rtol=1e-4)
class TestPrimFuncs:
func, verify = tvm.testing.parameters(
[func_1, verify_func_1],
[func_2, verify_func_2],
[func_3, verify_func_3],
[func_4, verify_func_4],
)
def test_primfunc_call(self, func, verify):
target = tvm.target.Target("llvm")
func = tvm.build(func, target=target)
verify(func)
def test_te_extern_call(self, func, verify):
ir_mod = tvm.IRModule.from_expr(func.with_attr("global_symbol", "main"))
prim_func = ir_mod["main"]
input_tensors = create_input_tensors_for_primfunc(prim_func)
output = te.extern_primfunc(input_tensors, prim_func)
rt_prim_func = te.create_prim_func(tensors_from_extern_op(output, prim_func))
tvm.ir.assert_structural_equal(tvm.lower(prim_func), tvm.lower(rt_prim_func))
target = tvm.target.Target("llvm")
func = tvm.build(rt_prim_func, target=target)
verify(func)
def tensors_from_extern_op(extern, func):
if isinstance(extern, list):
output_tensors = extern
else:
output_tensors = [extern]
output_buffers = []
input_buffers = []
input_tensors = []
for ext in output_tensors:
output_buffers.extend(ext.op.output_placeholders) |
input_buffers.extend(ext.op.input_placeholders)
input_tensors.extend(ext.op.input_tensors)
input_binds = dict(zip(input_buffers, input_tensors))
output_binds = dict(zip(output_buffers, output_tensors))
buffer_to_tensor = {**input_binds, **output_binds}
ordered_tensors = []
for var in func.params:
buf = func.buffer_map[var]
ordered_tensors.append(buffer_to_tensor[buf])
return ordered_tensors
def create_input_tensors_for_primfunc(primfunc):
access_map = {k: tuple(v) for k, v in _ffi_arith_api.DomainTouchedAccessMap(primfunc).items()}
in_buffers = [buf for buf, access in access_map.items() if len(access[0])]
out_buffers = [buf for buf, access in access_map.items() if len(access[1])]
assert in_buffers, "PrimFunc has no input buffers"
assert out_buffers, "PrimFunc has no output buffers"
outputs = []
inplace = []
inputs = in_buffers
for obuf in out_buffers:
if obuf in in_buffers:
inplace.append(obuf)
else:
outputs.append(obuf)
if not outputs:
iobuf = inplace.pop()
inputs.remove(iobuf)
outputs = [iobuf]
def create_tensors(input_buffers):
tensors = []
for buf in input_buffers:
t = te.placeholder(buf.shape, dtype=buf.dtype, name=buf.name + "_placeholder")
tensors.append(t)
return tensors
return create_tensors(inputs)
if __name__ == "__main__":
sys.exit(pytest.main(sys.argv)) |
import pytest |
import tvm |
import tvm.testing
from tvm.ir.module |
import IRModule
from tvm |
import tir
from tvm.script |
import tir as T
def test_texture_scope():
@tvm.script.ir_module
class PlusOneMultTwo:
@T.prim_func
def main(a: T.handle, b: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, (128, 128, 4), dtype="float32", scope="global.texture")
B = T.alloc_buffer((128, 128, 4), dtype="float32", scope="global.texture")
C = T.match_buffer(b, (128, 128, 4), dtype="float32", scope="global.texture")
for block_idx in T.thread_binding(0, 128, thread="blockIdx.x"):
for thread_idx in T.thread_binding(0, 128, thread="threadIdx.x"):
for k in T.serial(4):
with T.block("B"):
vb, vt, vk = T.axis.remap("SSS", [block_idx, thread_idx, k])
B[vb, vt, vk] = A[vb, vt, vk] + T.float32(1)
for block_idx in T.thread_binding(0, 128, thread="blockIdx.x"):
for thread_idx in T.thread_binding(0, 128, thread="threadIdx.x"):
for k in T.serial(4):
with T.block("C"):
vb, vt, vk = T.axis.remap("SSS", [block_idx, thread_idx, k])
C[vb, vt, vk] = B[vb, vt, vk] * T.float32(2)
sch = tir.Schedule(PlusOneMultTwo, debug_mask="all")
def schedule_block(block):
_, _, inner = sch.get_loops(block)
sch.vectorize(inner)
schedule_block(sch.get_block("B"))
schedule_block(sch.get_block("C"))
target = tvm.target.Target("opencl")
mod = tvm.build(sch.mod["main"], target=target)
if __name__ == "__main__":
tvm.testing.main() |
import tvm
from tvm |
import topi
from tvm |
import te
def lower_stmt(sche, params, passfunc):
func = tvm.driver.build_module.schedule_to_module(sche, params, "main", None)["main"]
func = passfunc()(tvm.IRModule.from_expr(func))["main"]
stmt = func.body
return stmt
def test_promote():
def runpass(op, passfunc):
a = te.placeholder((100,), dtype="bfloat16")
b = te.placeholder((100,), dtype="bfloat16")
c = te.compute((100,), lambda i: op(a[i], b[i]))
s = te.create_schedule(c.op)
return lower_stmt(s, [a, b, c], passfunc)
def get_promoted(op):
a = te.placeholder((100,), dtype="bfloat16")
b = te.placeholder((100,), dtype="bfloat16")
c = te.compute(
(100,),
lambda i: topi.cast(op(topi.cast(a[i], "float"), topi.cast(b[i], "float")), "bfloat16"),
)
s = te.create_schedule(c.op)
func = tvm.driver.build_module.schedule_to_module(s, [a, b, c], "main", None)["main"]
return func.body
def test_promoted(op):
stmt = runpass(op, tvm.tir.transform.BF16Promote)
tvm.ir.assert_structural_equal(stmt, get_promoted(op))
test_promoted(topi.add)
test_promoted(topi.subtract)
test_promoted(topi.multiply)
test_promoted(topi.divide)
def test_eliminate():
def to32(v):
return topi.cast(v, "float")
def to16(v):
return topi.cast(v, "bfloat16")
def get_eliminated():
a = te.placeholder((100,), dtype="bfloat16")
b = te.placeholder((100,), dtype="bfloat16")
c = te.compute(
(100,),
lambda i: to16(
topi.add(
to32(
to16(
topi.add(
to32(a[i]),
to32(b[i]),
)
)
),
to32(
to16(
topi.add(
to32(a[i]), |
to32(b[i]),
)
)
),
)
),
)
s = te.create_schedule(c.op)
stmt = lower_stmt(s, [a, b, c], tvm.tir.transform.BF16CastElimination)
return stmt
def get_target():
a = te.placeholder((100,), dtype="bfloat16")
b = te.placeholder((100,), dtype="bfloat16")
c = te.compute(
(100,),
lambda i: to16(
topi.add(
topi.add(
to32(a[i]),
to32(b[i]),
),
topi.add(
to32(a[i]),
to32(b[i]),
),
)
),
)
s = te.create_schedule(c.op)
func = tvm.driver.build_module.schedule_to_module(s, [a, b, c], "main", None)["main"]
return func.body
tvm.ir.assert_structural_equal(get_eliminated(), get_target())
def test_legalize():
def to32(v):
uint32_v = topi.cast(v, "uint32")
uint32_v = tvm.tir.call_intrin(
"uint32", "tir.shift_left", uint32_v, tvm.tir.const(16, "uint32")
)
return tvm.tir.call_intrin("float32", "tir.reinterpret", uint32_v)
def to16(v):
uint32_v = tvm.tir.call_intrin("uint32", "tir.reinterpret", v)
rounding_bias = tvm.tir.call_intrin(
"uint32", "tir.shift_right", uint32_v, tvm.tir.const(16, "uint32")
)
rounding_bias = tvm.tir.call_intrin(
"uint32", "tir.bitwise_and", rounding_bias, tvm.tir.const(1, "uint32")
)
rounding_bias = rounding_bias + tvm.tir.const(0x7FFF, "uint16")
uint32_v = uint32_v + rounding_bias
uint32_v = tvm.tir.call_intrin(
"uint32", "tir.shift_right", uint32_v, tvm.tir.const(16, "uint32")
)
return topi.cast(uint32_v, "uint16")
def check(fcompute_before, fcompute_after):
a = te.placeholder((100,), dty |
pe="bfloat16", name="A")
b = te.placeholder((100,), dtype="bfloat16", name="B")
c = te.compute((100,), fcompute_before(a, b), name="C")
s = te.create_schedule(c.op)
stmt = lower_stmt(s, [a, b, c], tvm.tir.transform.BF16Legalize)
a = te.placeholder((100,), dtype="uint16", name="A")
b = te.placeholder((100,), dtype="uint16", name="B")
c = te.compute((100,), fcompute_after(a, b), name="C")
s = te.create_schedule(c.op)
func = tvm.driver.build_module.schedule_to_module(s, [a, b, c], "main", None)["main"]
tvm.ir.assert_structural_equal(stmt, func.body)
def orig1(a, b):
return lambda i: a[i] + b[i] + a[99 - i] + b[99 - i]
def after1(a, b):
return lambda i: to16(to32(a[i]) + to32(b[i]) + to32(a[99 - i]) + to32(b[99 - i]))
def orig2(a, b):
return lambda i: a[i] * b[i] + a[99 - i] * b[99 - i] + a[i]
def after2(a, b):
return lambda i: to16(
to32(a[i]) * to32(b[i]) + to32(a[99 - i]) * to32(b[99 - i]) + to32(a[i])
)
check(orig1, after1)
check(orig2, after2)
if __name__ == "__main__":
test_promote()
test_eliminate()
test_legalize() |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
def test_for():
dev_type = te.var("dev_type")
def device_context(dev_id):
ctx = tvm.tir.call_extern("handle", "device_context", dev_type, dev_id)
return tvm.tir.Call("handle", "tir.tvm_thread_context", [ctx])
ib = tvm.tir.ir_builder.create()
n = te.var("n")
A = ib.allocate("float32", n, name="A", scope="global")
with ib.for_range(0, n, name="i") as i:
ib.emit(tvm.tir.call_extern("int32", "fadd", device_context(0), A.asobject().data))
with ib.for_range(0, 10, name="j") as j:
ib.emit(tvm.tir.call_extern("int32", "fadd", device_context(1), A.asobject().data))
ib.emit(tvm.tir.call_extern("int32", "fadd", device_context(0), A.asobject().data))
body = ib.get()
mod = tvm.IRModule({"func": tvm.tir.PrimFunc([dev_type, n], body)})
mod = tvm.tir.transform.CombineContextCall()(mod)
assert mod["func"].body.value.dtype == "handle"
assert mod["func"].body.body.value.dtype == "handle"
if __name__ == "__main__":
test_for()
|
import hashlib |
import tvm
from tvm |
import auto_scheduler, te, topi
from tvm.ir.base |
import save_json
from tvm.ir.module |
import IRModule
from tvm.script |
import tir as T
def test_cse():
z1 = te.var("z1")
z2 = te.var("z2")
z3 = te.var("z3")
i1 = te.var("i1")
i2 = te.var("i2")
x = te.var("x")
y = te.var("y")
a = te.var("a")
b = te.var("b")
dtype = "int32"
buffer = tvm.tir.decl_buffer((50,), dtype)
body = tvm.tir.LetStmt(
z1,
1,
tvm.tir.LetStmt(
z2,
2,
tvm.tir.SeqStmt(
[
tvm.tir.BufferStore(buffer, z1 + z2, [i1]),
tvm.tir.LetStmt(
x,
1,
tvm.tir.LetStmt(
y,
1,
tvm.tir.LetStmt(
a,
(x + y) + (z1 + z2),
tvm.tir.LetStmt(
b, (x + y) + z3, tvm.tir.BufferStore(buffer, a + b, [i2])
),
),
),
),
]
),
),
)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i1, i2, z3], body))
body = tvm.tir.transform.CommonSubexprElimTIR()(mod)
tvm.transform.PrintIR()(body)
body = body["main"].body
assert body.var.name == "z1"
assert body.value == 1
body = body.body
assert body.var.name == "z2"
assert body.value == 2
assert isinstance(body.body, tvm.tir.LetStmt)
body = body.body
cse_var_1 = body.var
assert body.var.name == "cse_var_1"
assert tvm.ir.structural_equal(body.value, z1 + z2)
assert isinstance(body.body, tvm.tir.SeqStmt)
body = body.body
assert isinstance(body[0], tvm.tir.BufferStore)
assert isinstance(body[1], tvm.tir.LetStmt)
body = body[1]
assert body.var.name == "x"
assert body.value == 1
body = body.body
assert body.var.name == |
"y"
assert body.value == 1
assert isinstance(body.body, tvm.tir.LetStmt)
body = body.body
cse_var_2 = body.var
assert body.var.name == "cse_var_2"
assert tvm.ir.structural_equal(body.value, x + y)
body = body.body
body.var.name == "a"
assert tvm.ir.structural_equal(body.value, cse_var_2 + cse_var_1)
body = body.body
body.var.name == "b"
assert tvm.ir.structural_equal(body.value, cse_var_2 + z3)
assert isinstance(body.body, tvm.tir.BufferStore)
def test_cse_ifNode_1():
b = te.var("b")
i1 = te.var("i1")
i2 = te.var("i2")
i3 = te.var("i3")
y = te.var("y")
z = te.var("z")
dtype = "int32"
buffer = tvm.tir.decl_buffer((50,), dtype)
body = tvm.tir.LetStmt(
b,
1,
tvm.tir.IfThenElse(
b,
tvm.tir.SeqStmt(
[tvm.tir.BufferStore(buffer, y + z, [i1]), tvm.tir.BufferStore(buffer, y + z, [i2])]
),
tvm.tir.BufferStore(buffer, y, [i3]),
),
)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i1, i2, i3, y, z], body))
body = tvm.tir.transform.CommonSubexprElimTIR()(mod)
tvm.transform.PrintIR()(body)
body = body["main"].body
assert body.var.name == "b"
assert body.value == 1
assert isinstance(body.body, tvm.tir.IfThenElse)
body = body.body
assert isinstance(body.then_case, tvm.tir.LetStmt)
body = body.then_case
assert body.var.name == "cse_var_1"
assert tvm.ir.structural_equal(body.value, y + z)
def test_cse_ifNode_2():
b = te.var("b")
i1 = te.var("i1")
i2 = te.var("i2")
i3 = te.var("i3")
y = te.var("y")
z = te.var("z")
dtype = "int32"
buffer = tvm.tir.decl_buffer((50,), dtype)
body = tvm.tir.LetStmt(
b,
1,
tvm.tir.IfThenElse(
b,
tvm.tir.SeqStmt(
[ |
tvm.tir.BufferStore(buffer, y + z, [i1]),
tvm.tir.BufferStore(buffer, y, [i2]),
]
),
tvm.tir.BufferStore(buffer, y + z, [i3]),
),
)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i1, i2, i3, y, z], body))
body = tvm.tir.transform.CommonSubexprElimTIR()(mod)
tvm.transform.PrintIR()(body)
body = body["main"].body
assert isinstance(body, tvm.tir.LetStmt)
assert body.var.name == "cse_var_1"
assert tvm.ir.structural_equal(body.value, y + z)
def test_cse_cascade():
i1 = te.var("i1")
i2 = te.var("i2")
i3 = te.var("i3")
x = te.var("x")
y = te.var("y")
z = te.var("z")
dtype = "int32"
buffer = tvm.tir.decl_buffer((50,), dtype)
body = tvm.tir.SeqStmt(
[
tvm.tir.BufferStore(buffer, (x + y) + z, [i1]),
tvm.tir.BufferStore(buffer, (x + y) + z, [i2]),
tvm.tir.BufferStore(buffer, (x + y), [i3]),
]
)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i1, i2, i3, x, y, z], body))
body = tvm.tir.transform.CommonSubexprElimTIR()(mod)
tvm.transform.PrintIR()(body)
body = body["main"].body
assert isinstance(body, tvm.tir.LetStmt)
cse_var_2 = body.var
assert body.var.name == "cse_var_2"
assert tvm.ir.structural_equal(body.value, (x + y))
body = body.body
assert isinstance(body, tvm.tir.LetStmt)
cse_var_1 = body.var
assert body.var.name == "cse_var_1"
assert tvm.ir.structural_equal(body.value, cse_var_2 + z)
body = body.body
assert isinstance(body, tvm.tir.SeqStmt)
assert isinstance(body[0], tvm.tir.BufferStore)
assert isinstance(body[1], tvm.tir.BufferStore)
assert isinstance(body[2], tvm.tir.BufferStore)
store1 = body[0]
store2 = body[1]
store3 = body[2]
assert tvm.ir.structural_equal(store1.value, cse_var_1)
assert tvm.ir.structural_equal(store2.value, cse_var_1 |
)
assert tvm.ir.structural_equal(store3.value, cse_var_2)
def test_no_normalization_without_commoning():
x = te.var("x")
y = te.var("y")
z = te.var("z")
a = te.var("a")
body = tvm.tir.LetStmt(a, x + (y + z), tvm.tir.Evaluate(a))
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([x, y, z], body))
body = tvm.tir.transform.CommonSubexprElimTIR(identify_equiv_terms=True)(mod)
tvm.transform.PrintIR()(body)
body = body["main"].body
assert body.var.name == "a"
assert tvm.ir.structural_equal(body.value, x + (y + z))
@T.prim_func
def func_distributivity(i1: T.int32, i2: T.int32, x: T.int32, y: T.int32, z: T.int32) -> None:
B = T.buffer_decl((50,), "int32")
B[i1] = x * (y + z)
B[i2] = x * y + x * z
@T.prim_func
def func_distributivity_expected(
i1: T.int32, i2: T.int32, x: T.int32, y: T.int32, z: T.int32
) -> None:
B = T.buffer_decl((50,), "int32")
cse_var_1 = T.var("int32")
with T.let(cse_var_1, x * y + x * z):
B[i1] = cse_var_1
B[i2] = cse_var_1
@T.prim_func
def func_associativity(i1: T.int32, i2: T.int32, x: T.int32, y: T.int32, z: T.int32) -> None:
B = T.buffer_decl((50,), "int32")
B[i1] = (x + y) + z
B[i2] = x + (y + z)
@T.prim_func
def func_associativity_expected(
i1: T.int32, i2: T.int32, x: T.int32, y: T.int32, z: T.int32
) -> None:
B = T.buffer_decl((50,), "int32")
cse_var_1 = T.var("int32")
with T.let(cse_var_1, (x + y) + z):
B[i1] = cse_var_1
B[i2] = cse_var_1
def _check(original, transformed):
func = original
mod = tvm.IRModule.from_expr(func)
body = tvm.tir.transform.CommonSubexprElimTIR(identify_equiv_terms=True)(mod)
tvm.transform.PrintIR()(body)
tvm.ir.assert_structural_equal(body["main"], transformed)
def test_semantic_equiv_distributivity():
_check(func_distributivity, func_distributivity_expected)
def test_semantic_equiv_associativity():
_check(func_associativity, func_associativity_expected)
def test_det |
erministic_cse(): |
import random
"""Test deterministic allocation of CSE vars
We expect something like
result = (x + 1) + (x + 2) + (x + 3) + (x + 1) + (x + 2) + (x + 3)
-->
cse_var_3 = (x + 1)
cse_var_2 = (x + 2)
cse_var_1 = (x + 3)
result = cse_var_3 + cse_var_2 + cse_var_1 + cse_var_3 + cse_var_2 + cse_var_1
"""
NUM_TERMS = 10
REPEATS = 10
x = te.var("x")
result = te.var("result")
offsets = sorted([i + 1 for i in range(NUM_TERMS)])
inc1 = [(x + offsets[i]) for i in range(NUM_TERMS)]
inc2 = [(x + offsets[i]) for i in range(NUM_TERMS)]
expression = x
for add in inc1 + inc2:
expression = expression + add
let_stmt = tvm.tir.LetStmt(result, expression, tvm.tir.Evaluate(result))
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([x], let_stmt))
initial_hash = None
for _ in range(REPEATS):
body = tvm.tir.transform.CommonSubexprElimTIR()(mod)
body = body["main"]
json_val = save_json(body)
json_hash = hashlib.sha256(json_val.encode()).hexdigest()
if initial_hash is None:
initial_hash = json_hash
assert json_hash == initial_hash
LOG_LINE = '{"i": [["[\\"conv2d_layer\\", 1, 7, 7, 512, 512, 3, 3, [1, 1], [1, 1]]", \
"llvm -keys=cpu -mcpu=broadwell -num-cores=2", \
[8, 64, 64, 0, 0, 0, 0, 0], "", 1, []], [[], [["CI", 5], \
["SP", 3, 0, 1, [1, 1, 1], 1], ["SP", 3, 4, 512, [1, 32, 16], 1], \
["SP", 3, 8, 7, [7, 1, 1], 1], ["SP", 3, 12, 7, [1, 1, 1], 1], \
["SP", 3, 16, 512, [1], 1], ["SP", 3, 18, 3, [1], 1], ["SP", 3, 20, 3, [3], 1], \
["RE", 3, [0, 4, 8, 12, 1, 5, 9, 13, 16, 18, 20, 2, 6, 10, 14, 17, 19, 21, 3, 7, \
11, 15]], ["FSP", 6, 0, 1, 2], ["FSP", 6, 3, 2, 2], ["FSP", 6, 6, 3, 2], \
["FSP", 6, 9, 4, 2], ["RE", 6, [0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11]], \
["CA", 3, 6, 7], ["CA", 1, 6, 5], ["FU", 6, [0, 1, 2, 3, 4, 5]], ["AN", 6, 0, |
3], \
["PR", 3, 0, "auto_unroll_max_step$512"], ["AN", 1, 3, 2], ["AN", 3, 21, 2], \
["AN", 6, 6, 2]]]], "r": [[0.0331129], 0, 0.900362, 1647464342], "v": "v0.6"}\n'
@auto_scheduler.register_workload
def conv2d_layer(N, H, W, CO, CI, KH, KW, stride, padding):
data = te.placeholder((N, CI, H, W), name="data")
kernel = te.placeholder((CO, CI, KH, KW), name="kernel")
bias = te.placeholder((1, CO, 1, 1), name="bias")
conv = topi.nn.conv2d_nchw(data, kernel, stride, padding, dilation=1, out_dtype="float32")
out = topi.nn.relu(conv + bias)
return [data, kernel, bias, out]
def test_deterministic_cse_2():
inp, inr = auto_scheduler.measure_record.load_record_from_string(LOG_LINE)
inp = auto_scheduler.measure.recover_measure_input(inp, rebuild_state=True)
initial_hash = None
for _ in range(10):
sch, args = inp.task.compute_dag.apply_steps_from_state(inp.state)
ir_module = tvm.lower(sch, args)
primfunc = ir_module["main"]
json_str = save_json(primfunc)
new_hash = hashlib.sha256(json_str.encode("utf-8")).hexdigest()
if initial_hash is None:
initial_hash = new_hash
assert new_hash == initial_hash
if __name__ == "__main__":
test_cse()
test_cse_ifNode_1()
test_cse_ifNode_2()
test_cse_cascade()
test_no_normalization_without_commoning()
test_semantic_equiv_distributivity()
test_semantic_equiv_associativity()
test_deterministic_cse()
test_deterministic_cse_2() |
import tvm |
import tvm.testing
from tvm |
import te
from tvm.script |
import tir as T
def _check(original, transformed):
func = original
mod = tvm.IRModule.from_expr(func)
mod = tvm.tir.transform.CompactBufferAllocation()(mod)
mod = tvm.tir.transform.Simplify()(mod)
transformed = tvm.tir.transform.Simplify()(tvm.IRModule.from_expr(transformed))["main"]
tvm.ir.assert_structural_equal(mod["main"], transformed)
@T.prim_func
def elementwise_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(C[i, 0:16])
B = T.alloc_buffer((16, 16), "float32")
for j in range(0, 16):
with T.block():
T.reads(A[i, j])
T.writes(B[i, j])
B[i, j] = A[i, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads(B[i, j])
T.writes(C[i, j])
C[i, j] = B[i, j] * 2.0
@T.prim_func
def compacted_elementwise_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(C[i, 0:16])
B = T.alloc_buffer((1, 16), "float32")
for j in range(0, 16):
with T.block():
T.reads(A[i, j])
T.writes(B[0, j])
B[0, j] = A[i, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads(B[0, j])
T.writes(C[i, j])
C[i, j] = B[0, j] * 2.0
@T.prim_func
def unschedulable_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16]) |
T.writes(C[i, 0:16])
B = T.alloc_buffer((16, 16), "float32")
for j in range(0, 16):
T.evaluate(T.call_extern("dummy_extern_function", B.data, dtype="int32"))
B[i, j] = A[i, j] + 1.0
for j in range(0, 16):
C[i, j] = B[i, j] * 2.0
@T.prim_func
def param_buffer_access_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (20, 20), "float32")
B = T.match_buffer(c, (20, 20), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(B[i, 0:16])
for j in range(0, 16):
with T.block():
T.reads(A[i, j])
T.writes(B[i, j])
B[i, j] = A[i, j] + 1.0
@T.prim_func
def shared_mem_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i0 in T.thread_binding(0, 2, thread="blockIdx.x"):
for i1 in T.thread_binding(0, 2, thread="vthread"):
for i2 in T.thread_binding(0, 4, thread="threadIdx.x"):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, 0:16])
T.writes(C[i0 * 8 + i1 * 4 + i2, 0:16])
B = T.alloc_buffer((16, 16), "float32", scope="shared")
for j in range(0, 16):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, j])
T.writes(B[i0 * 8 + i1 * 4 + i2, j])
B[i0 * 8 + i1 * 4 + i2, j] = A[i0 * 8 + i1 * 4 + i2, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads(B[i0 * 8 + i1 * 4 + i2, j])
T.writes(C[i0 * 8 + i1 * 4 + i2, j])
C[i0 * 8 + i1 * 4 + i2, j] = B[i0 * 8 + i1 * 4 + i2, j] * 2.0
@T.prim_func
def compacted_shared_mem_func(a: T.handle, c: T.handle) -> Non |
e:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i0 in T.thread_binding(0, 2, thread="blockIdx.x"):
for i1 in T.thread_binding(0, 2, thread="vthread"):
for i2 in T.thread_binding(0, 4, thread="threadIdx.x"):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, 0:16])
T.writes(C[i0 * 8 + i1 * 4 + i2, 0:16])
B = T.alloc_buffer((8, 16), "float32", scope="shared")
for j in range(0, 16):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, j])
T.writes(B[i1 * 4 + i2, j])
B[i1 * 4 + i2, j] = A[i0 * 8 + i1 * 4 + i2, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads(B[i1 * 4 + i2, j])
T.writes(C[i0 * 8 + i1 * 4 + i2, j])
C[i0 * 8 + i1 * 4 + i2, j] = B[i1 * 4 + i2, j] * 2.0
@T.prim_func
def warp_mem_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i0 in T.thread_binding(0, 2, thread="blockIdx.x"):
for i1 in T.thread_binding(0, 2, thread="vthread"):
for i2 in T.thread_binding(0, 4, thread="threadIdx.x"):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, 0:16])
T.writes(C[i0 * 8 + i1 * 4 + i2, 0:16])
B = T.alloc_buffer((16, 16), "float32", scope="warp")
for j in range(0, 16):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, j])
T.writes(B[i0 * 8 + i1 * 4 + i2, j])
B[i0 * 8 + i1 * 4 + i2, j] = A[i0 * 8 + i1 * 4 + i2, j] + 1.0
for j in range(0, 16):
with T.block(): |
T.reads(B[i0 * 8 + i1 * 4 + i2, j])
T.writes(C[i0 * 8 + i1 * 4 + i2, j])
C[i0 * 8 + i1 * 4 + i2, j] = B[i0 * 8 + i1 * 4 + i2, j] * 2.0
@T.prim_func
def compacted_warp_mem_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i0 in T.thread_binding(0, 2, thread="blockIdx.x"):
for i1 in T.thread_binding(0, 2, thread="vthread"):
for i2 in T.thread_binding(0, 4, thread="threadIdx.x"):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, 0:16])
T.writes(C[i0 * 8 + i1 * 4 + i2, 0:16])
B = T.alloc_buffer((4, 16), "float32", scope="warp")
for j in range(0, 16):
with T.block():
T.reads(A[i0 * 8 + i1 * 4 + i2, j])
T.writes(B[i2, j])
B[i2, j] = A[i0 * 8 + i1 * 4 + i2, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads(B[i2, j])
T.writes(C[i0 * 8 + i1 * 4 + i2, j])
C[i0 * 8 + i1 * 4 + i2, j] = B[i2, j] * 2.0
@T.prim_func
def symbolic_func(a: T.handle, c: T.handle, n: T.int32) -> None:
A = T.match_buffer(a, (n * 8,), "float32")
C = T.match_buffer(c, (n * 8,), "float32")
for i in range(0, n):
with T.block():
T.reads(A[i * 8 : i * 8 + 8])
T.writes(C[i * 8 : i * 8 + 8])
B = T.alloc_buffer((n * 8,), "float32")
for j in range(0, 8):
with T.block():
T.reads(A[i * 8 + j])
T.writes(B[i * 8 + j])
B[i * 8 + j] = A[i * 8 + j] + 1.0
for j in range(0, 8):
with T.block():
T.reads(B[i * 8 + j])
T.writes(C[i * 8 + j]) |
C[i * 8 + j] = B[i * 8 + j] * 2.0
@T.prim_func
def compacted_symbolic_func(a: T.handle, c: T.handle, n: T.int32) -> None:
A = T.match_buffer(a, (n * 8,), "float32")
C = T.match_buffer(c, (n * 8,), "float32")
for i in range(0, n):
with T.block():
T.reads(A[i * 8 : i * 8 + 8])
T.writes(C[i * 8 : i * 8 + 8])
B = T.alloc_buffer((T.min(n, 1) * 8,), "float32")
for j in range(0, 8):
with T.block():
T.reads(A[i * 8 + j])
T.writes(B[j])
B[j] = A[i * 8 + j] + 1.0
for j in range(0, 8):
with T.block():
T.reads(B[j])
T.writes(C[i * 8 + j])
C[i * 8 + j] = B[j] * 2.0
@T.prim_func
def complex_func(a: T.handle, c: T.handle, n: T.int32) -> None:
A = T.match_buffer(a, (8, 8), "float32")
C = T.match_buffer(c, (8, 8), "float32")
for i in range(0, 8):
with T.block():
T.reads(A[0, 8])
T.writes(C[0, 8])
B = T.alloc_buffer((8, 8), "float32")
for j in range(0, 4):
with T.block():
D = T.alloc_buffer((8, 8), "float32")
T.reads(A[i, j])
T.writes(B[i, j])
for k in range(4, 8):
D[k, j] = 1.0
for k in range(2, 4):
B[i, j] = A[i, j] + D[k, j]
for j in range(3, 5):
with T.block():
T.reads(B[i, j])
T.writes(C[i, j])
C[i, j] = B[i, j]
for j in range(6, 8):
with T.block():
T.reads(B[i, j])
T.writes(C[i, j])
C[i, j] = B[i, j]
@T.prim_func
def compacted_complex_func(a: T.handle, c: T.handle, n: T.int32) -> None:
A = T.match_buffer(a, (8, 8), "float32")
C = T.match_buffer(c, (8, 8), "float32")
f |
or i in range(0, 8):
with T.block():
T.reads(A[0, 8])
T.writes(C[0, 8])
B = T.alloc_buffer((1, 8), "float32")
for j in range(0, 4):
with T.block():
D = T.alloc_buffer((6, 1), "float32")
T.reads(A[i, j])
T.writes(B[0, j])
for k in range(4, 8):
D[k - 2, 0] = 1.0
for k in range(2, 4):
B[0, j] = A[i, j] + D[k - 2, 0]
for j in range(3, 5):
with T.block():
T.reads(B[0, j])
T.writes(C[i, j])
C[i, j] = B[0, j]
for j in range(6, 8):
with T.block():
T.reads(B[0, j])
T.writes(C[i, j])
C[i, j] = B[0, j]
@T.prim_func
def match_buffer_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16))
C = T.match_buffer(c, (16, 16))
for i in range(0, 16):
with T.block():
A0 = T.match_buffer(A[i, 0:16], (16))
C0 = T.match_buffer(C[i, 0:16], (16))
B = T.alloc_buffer((16, 16))
with T.block():
B0 = T.match_buffer(B[i, 0:16], (16))
for j in range(0, 16):
with T.block():
A1 = T.match_buffer(A0[j], ())
B1 = T.match_buffer(B0[j], ())
B1[()] = A1[()] + 1.0
for j in range(0, 16):
with T.block():
C1 = T.match_buffer(C0[j], ())
B2 = T.match_buffer(B[i, j], ())
C1[()] = B2[()] * 2.0
@T.prim_func
def compacted_match_buffer_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16))
C = T.match_buffer(c, (16, 16))
for i in range(0, 16):
with T.block():
A0 = T.match_buffer(A[i, 0:16], (16))
C0 = T.match_buffer(C[i, 0 |
:16], (16))
B = T.alloc_buffer((1, 16))
with T.block():
B0 = T.match_buffer(B[0, 0:16], (16))
for j in range(0, 16):
with T.block():
A1 = T.match_buffer(A0[j], ())
B1 = T.match_buffer(B0[j], ())
B1[()] = A1[()] + 1.0
for j in range(0, 16):
with T.block():
C1 = T.match_buffer(C0[j], ())
B2 = T.match_buffer(B[0, j], ())
C1[()] = B2[()] * 2.0
@T.prim_func
def storage_align_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(C[i, 0:16])
B = T.alloc_buffer((16, 16), "float32")
for j in range(0, 16):
with T.block():
T.reads(A[i, j])
T.writes(B[i, j])
T.block_attr({"buffer_dim_align": [[0, 0, 16, 15]]})
B[i, j] = A[i, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads(B[i, j])
T.writes(C[i, j])
C[i, j] = B[i, j] * 2.0
@T.prim_func
def compacted_storage_align_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(C[i, 0:16])
B = T.alloc_buffer((1, 16), strides=(31, 1), dtype="float32")
for j in range(0, 16):
with T.block():
T.reads(A[i, j])
T.writes(B[0, j])
T.block_attr({"buffer_dim_align": [[0, 0, 16, 15]]})
B[0, j] = A[i, j] + 1.0
for j in range(0, 16):
with T.block( |
):
T.reads(B[0, j])
T.writes(C[i, j])
C[i, j] = B[0, j] * 2.0
@T.prim_func
def padding_pattern_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (20, 20), "float32")
with T.block():
B = T.alloc_buffer((20, 20), dtype="float32")
for i, j in T.grid(16, 16):
with T.block():
B[i, j] = A[i, j]
for i, j in T.grid(20, 20):
with T.block():
C[i, j] = T.if_then_else(
2 <= i and i < 18 and 2 <= j and j < 18,
B[i - 2, j - 2],
0.0,
dtype="float32",
)
@T.prim_func
def compacted_padding_pattern_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, [16, 16], dtype="float32")
C = T.match_buffer(c, [20, 20], dtype="float32")
with T.block():
B = T.alloc_buffer([16, 16], dtype="float32")
for i, j in T.grid(16, 16):
with T.block():
B[i, j] = A[i, j]
for i, j in T.grid(20, 20):
with T.block():
C[i, j] = T.if_then_else(
2 <= i and i < 18 and 2 <= j and j < 18, B[i - 2, j - 2], 0.0, dtype="float32"
)
@T.prim_func
def padding_pattern_inlined(a: T.handle, b: T.handle) -> None:
X = T.match_buffer(a, [224, 224], dtype="float32")
Y = T.match_buffer(b, [224, 224], dtype="float32")
cache = T.alloc_buffer([224, 224], dtype="float32")
for h, w in T.grid(224, 224):
with T.block("cache"):
cache[h, w] = X[h, w]
for h, w, kh, kw in T.grid(224, 224, 3, 3):
with T.block("compute"):
Y[h, w] = T.max(
Y[h, w],
T.if_then_else(
T.likely(1 <= h + kh, dtype="bool")
and T.likely(h + kh < 225, dtype="bool")
and T.likely(1 <= w + kw, dtype="bool")
and T.li |
kely(w + kw < 225, dtype="bool"),
cache[h + kh - 1, w + kw - 1],
0.0,
dtype="float32",
),
)
@T.prim_func
def compacted_padding_pattern_inlined(
X: T.Buffer[(224, 224), "float32"], Y: T.Buffer[(224, 224), "float32"]
) -> None:
cache = T.alloc_buffer([224, 224], dtype="float32")
for h, w in T.grid(224, 224):
with T.block("cache"):
cache[h, w] = X[h, w]
for h, w, kh, kw in T.grid(224, 224, 3, 3):
with T.block("compute"):
Y[h, w] = T.max(
Y[h, w],
T.if_then_else(
T.likely(1 <= h + kh, dtype="bool")
and T.likely(h + kh < 225, dtype="bool")
and T.likely(1 <= w + kw, dtype="bool")
and T.likely(w + kw < 225, dtype="bool"),
cache[h + kh - 1, w + kw - 1],
0.0,
dtype="float32",
),
)
@T.prim_func
def mem_access_in_branch_func(a: T.handle) -> None:
A = T.match_buffer(a, (224, 224), "float32")
with T.block():
B1 = T.alloc_buffer((224, 224), dtype="float32")
B2 = T.alloc_buffer((224, 224), dtype="float32")
B3 = T.alloc_buffer((224, 224), dtype="float32")
B4 = T.alloc_buffer((224, 224), dtype="float32")
for i in range(0, 224):
for j in range(0, 224):
with T.block():
if i < 112 and j < 112:
B1[i, j] = A[i, j] * 2.0
else:
B2[i, j] = A[i, j] + 3.0
for i in range(0, 224):
for j in range(0, 224):
with T.block():
if i < 112 or j < 112:
B3[i, j] = A[i, j] * 2.0
else:
B4[i, j] = A[i, j] + 3.0
@T.prim_func
def compacted_mem_access_in_branch_func(a: T.handle) -> None:
A = T.match_buffer(a, [224, 224], dtype=" |
float32")
with T.block():
B1 = T.alloc_buffer([112, 112], dtype="float32")
B2 = T.alloc_buffer([224, 224], dtype="float32")
B3 = T.alloc_buffer([224, 224], dtype="float32")
B4 = T.alloc_buffer([112, 112], dtype="float32")
for i, j in T.grid(224, 224):
with T.block():
if i < 112 and j < 112:
B1[i, j] = A[i, j] * 2.0
else:
B2[i, j] = A[i, j] + 3.0
for i, j in T.grid(224, 224):
with T.block():
if i < 112 or j < 112:
B3[i, j] = A[i, j] * 2.0
else:
B4[i - 112, j - 112] = A[i, j] + 3.0
@T.prim_func
def opaque_access_annotated_func(a: T.handle) -> None:
A = T.match_buffer(a, (1024,), "float32")
with T.block():
B = T.alloc_buffer((1024,), dtype="float32")
C = T.alloc_buffer((1024,), dtype="float32")
for i in range(0, 512):
with T.block():
T.reads([])
T.writes([])
T.evaluate(T.call_extern("opaque_extern_function", A.data, B.data, dtype="int32"))
B[i] = A[i]
with T.block():
T.reads([B[i]])
T.writes([C[i : i + 9]])
T.evaluate(T.call_extern("opaque_extern_function", B.data, C.data, dtype="int32"))
C[i] = B[i]
@T.prim_func
def compacted_opaque_access_annotated_func(a: T.handle) -> None:
A = T.match_buffer(a, (1024,), "float32")
with T.block():
B = T.alloc_buffer((1024,), dtype="float32")
C = T.alloc_buffer((520,), dtype="float32")
for i in range(0, 512):
with T.block():
T.reads([])
T.writes([])
T.evaluate(T.call_extern("opaque_extern_function", A.data, B.data, dtype="int32"))
B[i] = A[i]
with T.block(): |
T.reads([B[i]])
T.writes([C[i : i + 9]])
T.evaluate(T.call_extern("opaque_extern_function", B.data, C.data, dtype="int32"))
C[i] = B[i]
@T.prim_func
def sparse_read_cache(
A_data: T.Buffer[(819,), "float32"],
B: T.Buffer[(128,), "float32"],
A_indptr: T.Buffer[(129,), "int32"],
A_indices: T.Buffer[(819,), "int32"],
) -> None:
for i in T.serial(128):
with T.block("rowsum_outer"):
T.reads(
A_indptr[i : i + 1],
A_data[A_indptr[i] + 0 : A_indptr[i] + (A_indptr[i + 1] - A_indptr[i])],
)
T.writes(B[i])
with T.block("rowsum_init"):
T.reads()
T.writes(B[i])
B[i] = T.float32(0)
for k in T.serial(A_indptr[i + 1] - A_indptr[i]):
with T.block():
T.reads(A_indptr[i], A_data[A_indptr[i] + k], B[i])
T.writes(B[i])
A_data_local = T.alloc_buffer([819], dtype="float32", scope="local")
with T.block("A_data_cache_read"):
T.reads(A_indptr[i], A_data[A_indptr[i] + k])
T.writes(A_data_local[A_indptr[i] + k])
A_data_local[A_indptr[i] + k] = A_data[A_indptr[i] + k]
with T.block("rowsum_inner"):
T.reads(B[i], A_indptr[i], A_data[A_indptr[i] + k])
T.writes(B[i])
B[i] = B[i] + A_data_local[A_indptr[i] + k]
@T.prim_func
def compacted_sparse_read_cache(
A_data: T.Buffer[(819,), "float32"],
B: T.Buffer[(128,), "float32"],
A_indptr: T.Buffer[(129,), "int32"],
A_indices: T.Buffer[(819,), "int32"],
) -> None:
for i in T.serial(128):
with T.block("rowsum_outer"):
T.reads(
A_indptr[i : i + 1],
A_data[A_indptr[i] + 0 : A_indptr[i] + 0 + (A_indptr[i + 1] - A_indptr[i])],
)
T |
.writes(B[i])
with T.block("rowsum_init"):
T.reads()
T.writes(B[i])
B[i] = T.float32(0)
for k in T.serial(A_indptr[i + 1] - A_indptr[i]):
with T.block():
T.reads(A_indptr[i], A_data[A_indptr[i] + k], B[i])
T.writes(B[i])
A_data_local = T.alloc_buffer([1], dtype="float32", scope="local")
with T.block("A_data_cache_read"):
T.reads(A_indptr[i], A_data[A_indptr[i] + k])
T.writes(A_data_local[T.min(A_indptr[i] + k, 0)])
A_data_local[T.min(A_indptr[i] + k, 0)] = A_data[A_indptr[i] + k]
with T.block("rowsum_inner"):
T.reads(B[i], A_indptr[i], A_data[A_indptr[i] + k])
T.writes(B[i])
B[i] = B[i] + A_data_local[T.min(A_indptr[i] + k, 0)]
@T.prim_func
def narrow_shape(A: T.Buffer[(10,), "float32"], B: T.Buffer[(10,), "float32"]) -> None:
B_cache = T.alloc_buffer(10, "float32")
for j in T.serial(3):
for k in T.serial(4):
with T.block("B_cache"):
T.where(j * 4 + k < 10)
B_cache[j * 4 + k] = B[j]
for i in T.serial(10):
A[i] = B_cache[i] + T.float32(1)
@T.prim_func
def compacted_narrow_shape(A: T.Buffer[(10,), "float32"], B: T.Buffer[(10,), "float32"]) -> None:
B_cache = T.alloc_buffer([10], dtype="float32")
for j, k in T.grid(3, 4):
with T.block("B_cache"):
T.where(j * 4 + k < 10)
T.reads(B[j])
T.writes(B_cache[j * 4 + k])
B_cache[j * 4 + k] = B[j]
for i in T.serial(10):
A[i] = B_cache[i] + T.float32(1)
def test_elementwise():
_check(elementwise_func, compacted_elementwise_func)
def test_unschedulable_block():
_check(unschedulable_func, unschedulable_func)
def test_param_access():
_check(param_buffer_access_func, param_buf |
fer_access_func)
def test_shared_mem():
_check(shared_mem_func, compacted_shared_mem_func)
def test_warp_mem():
_check(warp_mem_func, compacted_warp_mem_func)
def test_symbolic():
_check(symbolic_func, compacted_symbolic_func)
def test_complex():
_check(complex_func, compacted_complex_func)
def test_match_buffer():
_check(match_buffer_func, compacted_match_buffer_func)
def test_lower_te():
x = te.placeholder((1,))
y = te.compute((1,), lambda i: x[i] + 2)
s = te.create_schedule(y.op)
orig_mod = tvm.driver.build_module.schedule_to_module(s, [x, y])
mod = tvm.tir.transform.CompactBufferAllocation()(orig_mod)
tvm.ir.assert_structural_equal(mod, orig_mod)
def test_storage_align():
_check(storage_align_func, compacted_storage_align_func)
def test_padding_pattern():
_check(padding_pattern_func, compacted_padding_pattern_func)
def test_padding_pattern_inlined():
_check(padding_pattern_inlined, compacted_padding_pattern_inlined)
def test_mem_access_in_branch_func():
_check(mem_access_in_branch_func, compacted_mem_access_in_branch_func)
def test_opaque_access_annotated_func():
_check(opaque_access_annotated_func, compacted_opaque_access_annotated_func)
def test_sparse_read_cache():
_check(sparse_read_cache, compacted_sparse_read_cache)
def test_narrow_shape():
_check(narrow_shape, compacted_narrow_shape)
def test_compact_with_let_binding():
@T.prim_func
def func_with_let_binding():
A = T.alloc_buffer((64, 8), "float32")
B = T.alloc_buffer((64, 8), "float32")
C = T.alloc_buffer((8, 8), "float32")
for rk in range(64):
for rii, rjj in T.grid(8, 8):
C[rii, rjj] = T.float32(0)
for riijj in T.serial(8 * 8):
rii: T.int32 = riijj
rjj: T.int32 = riijj % 8
C[rii, rjj] += A[rk, rii] * B[rk, rjj]
_check(func_with_let_binding, func_with_let_binding)
@T.prim_func
def func_with_non_index_let_bin |
ding():
A = T.alloc_buffer((64), "float32")
x1 = T.call_extern("get", dtype="float16")
x2 = T.call_extern("get", dtype="float32")
x3 = T.call_extern("get", dtype="float64")
x4 = T.call_extern("get", dtype="uint8")
x5 = T.call_extern("get", dtype="int32x16")
x6 = T.call_extern("get", dtype="handle")
x7 = T.call_extern("get", dtype="")
for rk in range(64):
A[rk] = T.call_extern("load_ptr", x1, x2, x3, x4, x5, x6, x7, dtype="float32")
_check(func_with_non_index_let_binding, func_with_non_index_let_binding)
def test_compact_spatial_tiled_pad_and_pooling():
@T.prim_func
def spatial_tiled_pad_and_pooling(
X: T.Buffer[(64, 112, 112), "int32"], Y: T.Buffer[(64, 56, 56), "int32"]
) -> None:
for h_o, w_o in T.grid(14, 14):
with T.block():
X_cache = T.alloc_buffer([112, 112, 64], dtype="int32")
for ax0, ax1, ax2 in T.grid(64, 9, 9):
with T.block("cache"):
T.where(1 <= h_o * 8 + ax1 and 1 <= w_o * 8 + ax2)
T.reads(X[ax0, h_o * 8 - 1 + ax1, w_o * 8 - 1 + ax2])
T.writes(X_cache[h_o * 8 - 1 + ax1, w_o * 8 - 1 + ax2, ax0])
X_cache[h_o * 8 - 1 + ax1, w_o * 8 - 1 + ax2, ax0] = X[
ax0, h_o * 8 - 1 + ax1, w_o * 8 - 1 + ax2
]
for h_i, w_i, kh, kw, c in T.grid(4, 4, 3, 3, 64):
with T.block("compute"):
T.reads(
X_cache[(h_o * 4 + h_i) * 2 + kh - 1, (w_o * 4 + w_i) * 2 + kw - 1, c]
)
T.writes(Y[h_o * 4 + h_i, w_o * 4 + w_i, c])
if kh == 0 and kw == 0:
Y[h_o * 4 + h_i, w_o * 4 + w_i, c] = 0
Y[h_o * 4 + h_i, w_o * 4 + w_i, c] = T.max(
Y[h_o * 4 + h_i, w_o * 4 + w_i, c], |
T.if_then_else(
T.likely(1 <= (h_o * 4 + h_i) * 2 + kh, dtype="bool")
and T.likely((h_o * 4 + h_i) * 2 + kh < 113, dtype="bool")
and T.likely(1 <= (w_o * 4 + w_i) * 2 + kw, dtype="bool")
and T.likely((w_o * 4 + w_i) * 2 + kw < 113, dtype="bool"),
X_cache[
(h_o * 4 + h_i) * 2 + kh - 1,
(w_o * 4 + w_i) * 2 + kw - 1,
c,
],
0,
dtype="int32",
),
)
@T.prim_func
def compacted_spatial_tiled_pad_and_pooling(
X: T.Buffer[(64, 112, 112), "int32"], Y: T.Buffer[(64, 56, 56), "int32"]
) -> None:
for h_o, w_o in T.grid(14, 14):
with T.block():
T.reads(X[0:64, h_o * 8 - 1 : h_o * 8 + 8, w_o * 8 - 1 : w_o * 8 + 8])
T.writes(Y[h_o * 4 : h_o * 4 + 4, w_o * 4 : w_o * 4 + 4, 0:64])
X_cache = T.alloc_buffer([9, 9, 64], dtype="int32")
for ax0, ax1, ax2 in T.grid(64, 9, 9):
with T.block("cache"):
T.where(1 <= h_o * 8 + ax1 and 1 <= w_o * 8 + ax2)
T.reads(X[ax0, h_o * 8 + ax1 - 1, w_o * 8 + ax2 - 1])
T.writes(
X_cache[
h_o * 8 + ax1 - T.max(0, h_o * 8 - 1) - 1,
w_o * 8 + ax2 - T.max(0, w_o * 8 - 1) - 1,
ax0,
]
)
X_cache[
h_o * 8 + ax1 - T.max(0, h_o * 8 - 1) - 1,
w_o * 8 + ax2 - T.max(0, w_o * 8 - 1) - 1,
ax0,
] = |
X[ax0, h_o * 8 + ax1 - 1, w_o * 8 + ax2 - 1]
for h_i, w_i, kh, kw, c in T.grid(4, 4, 3, 3, 64):
with T.block("compute"):
T.reads(
X_cache[
h_o * 8 + h_i * 2 + kh - T.max(0, h_o * 8 - 1) - 1,
w_o * 8 + w_i * 2 + kw - T.max(0, w_o * 8 - 1) - 1,
c,
]
)
T.writes(Y[h_o * 4 + h_i, w_o * 4 + w_i, c])
if kh == 0 and kw == 0:
Y[h_o * 4 + h_i, w_o * 4 + w_i, c] = 0
Y[h_o * 4 + h_i, w_o * 4 + w_i, c] = T.max(
Y[h_o * 4 + h_i, w_o * 4 + w_i, c],
T.if_then_else(
T.likely(1 <= h_o * 8 + h_i * 2 + kh, dtype="bool")
and T.likely(1 <= w_o * 8 + w_i * 2 + kw, dtype="bool"),
X_cache[
h_o * 8 + h_i * 2 + kh - T.max(0, h_o * 8 - 1) - 1,
w_o * 8 + w_i * 2 + kw - T.max(0, w_o * 8 - 1) - 1,
c,
],
0,
dtype="int32",
),
)
_check(spatial_tiled_pad_and_pooling, compacted_spatial_tiled_pad_and_pooling)
def test_complex_case_1():
"""Meta-schedule matmul case for compact shared A, B matrix"""
@T.prim_func
def func(A: T.Buffer[(960, 770), "float32"], B: T.Buffer[(770, 2304), "float32"], C: T.Buffer[(960, 2304), "float32"]) -> None:
for bx in T.thread_binding(144, thread="blockIdx.x"):
for vx in T.thread_binding(2, thread="vthread.x"):
for tx_p in T.thread_binding(256, thread="threadIdx.x"):
with T.block():
for k_ |
0 in T.serial(193):
with T.block():
A_shared = T.alloc_buffer([960, 770], dtype="float32", scope="shared")
B_shared = T.alloc_buffer([770, 2304], dtype="float32", scope="shared")
for _u in T.serial(1):
for tx in T.thread_binding(256, thread="threadIdx.x"):
for vec in T.vectorized(3):
with T.block("A_shared"):
T.where(bx
A_shared[bx
for _u in T.serial(1):
for tx in T.thread_binding(256, thread="threadIdx.x"):
for vec in T.vectorized(4):
with T.block("B_shared"):
T.where(k_0 * 4 + ((_u * 256 + tx) * 4 + vec)
B_shared[k_0 * 4 + (_u * 1024 + tx * 4 + vec)
for k_1, i_3, j_3, k_2, i_4, j_4 in T.grid(1, 8, 1, 4, 2, 2):
with T.block("update_update"):
C[(((bx
@T.prim_func
def compacted_func(A: T.Buffer[(960, 770), "float32"], B: T.Buffer[(770, 2304), "float32"], C: T.Buffer[(960, 2304), "float32"]) -> None:
for bx in T.thread_binding(144, thread="blockIdx.x"):
for vx in T.thread_binding(2, thread="vthread.x"):
for tx_p in T.thread_binding(256, thread="threadIdx.x"):
with T.block():
for k_0 in T.serial(193):
with T.block():
A_shared = T.alloc_buffer([128, 4], dtype="float32", scope="shared")
B_shared = T.alloc_buffer([4, 128], dtype="float32", scope="shared" |
)
for v_u in T.serial(1):
for tx in T.thread_binding(256, thread="threadIdx.x"):
for vec in T.vectorized(3):
with T.block("A_shared"):
T.where(bx
A_shared[(tx * 3 + vec)
for v_u in T.serial(1):
for tx in T.thread_binding(256, thread="threadIdx.x"):
for vec in T.vectorized(4):
with T.block("B_shared"):
T.where(k_0 * 4 + tx
B_shared[tx
for k_1, i_3, j_3, k_2, i_4, j_4 in T.grid(1, 8, 1, 4, 2, 2):
with T.block("update_update"):
C[bx
_check(func, compacted_func)
def test_compact_dependent_buffer_indices():
"""Check the upper bound on different indices could be independently estimated."""
@T.prim_func
def diagonal_access():
for i in range(8):
with T.block():
A = T.alloc_buffer((256, 256), "float32")
for j, k in T.grid(8, 8):
with T.block():
T.where(j * 8 + k < 60)
A[i * 64 + j * 8 + k, i * 64 + j * 8 + k] = 1.0
@T.prim_func
def diagonal_access_compacted() -> None:
for i in T.serial(8):
with T.block():
A = T.alloc_buffer([60, 60], dtype="float32")
for j, k in T.grid(8, 8):
with T.block():
T.where(j * 8 + k < 60)
A[j * 8 + k, j * 8 + k] = 1.0
_check(diagonal_access, diagonal_access_compacted)
def test_compact_dependent_buffer_indices_of_packed_mat |
mul():
"""Check the outer dimension of the packed M-dim should be compacted to 1 wrt split condition."""
@T.prim_func
def nonuniform_packed_matmul_write_cache(
A: T.Buffer[(1020, 64), "float32"],
B: T.Buffer[(1000, 64), "float32"],
C: T.Buffer[(1020, 1000), "float32"],
):
for i0, i1 in T.grid(4, 1):
with T.block():
C_local2 = T.alloc_buffer([4, 1, 16, 1000, 16], dtype="float32", scope="local")
C_local1 = T.alloc_buffer([1020, 1000], dtype="float32", scope="local")
for ax0, ax1, ax2 in T.grid(255, 1000, 64):
with T.block("matmul"):
if ax2 == 0:
C_local1[i0 * 255 + ax0, ax1] = 0
C_local1[i0 * 255 + ax0, ax1] = (
C_local1[i0 * 255 + ax0, ax1] + A[i0 * 255 + ax0, ax2] * B[ax1, ax2]
)
for ax0, ax1 in T.grid(255, 1000):
with T.block("st1"):
C_local2[
(i0 * 255 + ax0)
0,
(i0 * 255 + ax0) % 255
ax1,
(i0 * 255 + ax0) % 255 % 16,
] = C_local1[i0 * 255 + ax0, ax1]
for ax0, ax1, ax2 in T.grid(16, 16, 1000):
with T.block("st2"):
T.where(ax0 * 16 + ax1 < 255)
C[i0 * 255 + (ax0 * 16 + ax1), i1 * 1000 + ax2] = C_local2[
(i0 * 255 + ax0 * 16 + ax1)
0,
(i0 * 255 + ax0 * 16 + ax1) % 255
i1 * 1000 + ax2,
(i0 * 255 + ax0 * 16 + ax1) % 255 % 16,
]
@T.prim_func
def nonuniform_packed_matmul_write_cache_compacted(
A: T.Buffer[(1020, 64), "float32"],
B: T.Buffer[(1000, 64), "float32"],
C |
: T.Buffer[(1020, 1000), "float32"],
) -> None:
for i0, i1 in T.grid(4, 1):
with T.block():
C_local2 = T.alloc_buffer([1, 1, 15, 1000, 16], dtype="float32", scope="local")
C_local1 = T.alloc_buffer([255, 1000], dtype="float32", scope="local")
for ax0, ax1, ax2 in T.grid(255, 1000, 64):
with T.block("matmul"):
if ax2 == 0:
C_local1[ax0, ax1] = 0
C_local1[ax0, ax1] = (
C_local1[ax0, ax1] + A[i0 * 255 + ax0, ax2] * B[ax1, ax2]
)
for ax0, ax1 in T.grid(255, 1000):
with T.block("st1"):
C_local2[0, 0, ax0
for ax0, ax1, ax2 in T.grid(16, 16, 1000):
with T.block("st2"):
T.where(ax0 * 16 + ax1 < 255)
C[i0 * 255 + ax0 * 16 + ax1, ax2] = C_local2[
(ax0 * 16 + ax1)
0,
(ax0 * 16 + ax1) % 255
ax2,
(ax0 * 16 + ax1) % 255 % 16,
]
_check(nonuniform_packed_matmul_write_cache, nonuniform_packed_matmul_write_cache_compacted)
if __name__ == "__main__":
tvm.testing.main() |
import tvm
from tvm |
import tir, te
from tvm.script |
import tir as T
def _check(original, transformed):
func = original
mod = tvm.IRModule.from_expr(func)
mod = tvm.tir.transform.ConvertBlocksToOpaque()(mod)
mod = tvm.tir.transform.Simplify()(mod)
tvm.ir.assert_structural_equal(mod["main"], transformed)
@T.prim_func
def elementwise_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(C[i, 0:16])
B = T.alloc_buffer((16, 16), "float32")
for j in range(0, 16):
with T.block():
vi = T.axis.S(16, i)
vj = T.axis.S(16, j)
B[vi, vj] = A[vi, vj] + 1.0
for j in range(0, 16):
with T.block():
vi = T.axis.S(16, i)
vj = T.axis.S(16, j)
C[vi, vj] = B[vi, vj] * 2.0
@T.prim_func
def substituted_elementwise_func(a: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
C = T.match_buffer(c, (16, 16), "float32")
for i in range(0, 16):
with T.block():
T.reads(A[i, 0:16])
T.writes(C[i, 0:16])
B = T.alloc_buffer([16, 16], "float32")
for j in range(0, 16):
with T.block():
T.reads([A[i, j]])
T.writes([B[i, j]])
B[i, j] = A[i, j] + 1.0
for j in range(0, 16):
with T.block():
T.reads([B[i, j]])
T.writes([C[i, j]])
C[i, j] = B[i, j] * 2.0
def test_elementwise():
_check(elementwise_func, substituted_elementwise_func)
def test_lower_te():
x = te.placeholder((1,))
y = te.compute((1,), lambda i: x[i] + 2)
s = te.create_schedule(y.op)
orig_mod = tvm.driver.build_module.schedule_to_module(s, [x, y])
mod = tvm.tir.transform.ConvertBlo |
cksToOpaque()(orig_mod)
tvm.ir.assert_structural_equal(mod, orig_mod) |
class TestErrorIfPredicateUsesBlockVariables(tvm.testing.CompareBeforeAfter):
transform = tvm.tir.transform.ConvertBlocksToOpaque()
def before(A: T.Buffer[8, "int32"]):
for i in T.serial(8):
with T.block():
vi = T.axis.remap("S", [i])
T.where(vi < 6)
T.evaluate(0)
expected = tvm.TVMError
if __name__ == "__main__":
tvm.testing.main() |
import pytest |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.