text
stringlengths
1
2.05k
import tvm from tvm.script
import tir as T from tvm.tir
import stmt_functor @T.prim_func def fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2(placeholder_30: T.handle, placeholder_31: T.handle, placeholder_32: T.handle, T_cast_8: T.handle) -> None: T.func_attr({"global_symbol": "fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2", "tir.noalias": True}) placeholder_33 = T.match_buffer(placeholder_30, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_34 = T.match_buffer(placeholder_31, [3072], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_35 = T.match_buffer(placeholder_32, [16], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_9 = T.match_buffer(T_cast_8, [12544], dtype="int16", elem_offset=0, align=64, offset_factor=1) PaddedInput_3 = T.decl_buffer([150528], "int16") for i0_i1_fused_3 in T.parallel(0, 28): for i2_3, i3_3 in T.grid(28, 192): PaddedInput_3[(((i0_i1_fused_3*5376) + (i2_3*192)) + i3_3) ] = placeholder_33[(((i0_i1_fused_3*5376) + (i2_3*192)) + i3_3)] for ax0_ax1_fused_ax2_fused_3 in T.parallel(0, 784): for ax3_2 in T.serial(0, 16): Conv2dOutput_3 = T.decl_buffer([1], "int32") Conv2dOutput_3[0] = 0 for rc_3 in T.serial(0, 192): Conv2dOutput_3[0] = (Conv2dOutput_3[0] + (T.cast(PaddedInput_3[((ax0_ax1_fused_ax2_fused_3*192) + rc_3)], "int32")*T.cast(placeholder_34[((rc_3*16) + ax3_2)], "int32"))) T_cast_9[((ax0_ax1_fused_ax2_fused_3*16) + ax3_2)] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_3[0] + placeholder_35[ax3_2]), 1764006585, 31, -7, dtype="int32"), 255), 0), "uint8"), "int16") def test_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2(): primfunc = fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2 mod = tvm.IRModule.from_expr(primfunc) mod = tvm.tir.transform.ConvertForLoopsToSerial()(mod) def verify_serial_loops(stmt): if isinstance(stmt, tvm.tir.For): assert stmt.kind =
= tvm.tir.ForKind.SERIAL for _, primfunc in mod.functions.items(): stmt_functor.post_order_visit(primfunc.body, verify_serial_loops) if __name__ == "__main__": pytest.main([__file__])
import tvm from tvm
import te tvm.ir.register_op_attr("tir.cop.coproc_sync", "TGlobalSymbol", "coproc_sync") tvm.ir.register_op_attr("tir.cop.coproc_read_barrier", "TGlobalSymbol", "coproc_readb") tvm.ir.register_op_attr("tir.cop.coproc_write_barrier", "TGlobalSymbol", "coproc_writeb") tvm.ir.register_op_attr("tir.cop.coproc_dep_push", "TGlobalSymbol", "coproc_dep_push") tvm.ir.register_op_attr("tir.cop.coproc_dep_pop", "TGlobalSymbol", "coproc_dep_pop") def test_coproc_sync(): @tvm.register_func("tvm.info.mem.global.cache") def meminfo_cache(): return tvm.ir.make_node( "MemoryInfo", unit_bits=8, max_simd_bits=32, max_num_bits=128, head_address=tvm.tir.call_extern("handle", "global_cache"), ) ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") with ib.for_range(0, n, name="i") as i: A[i] = A[i] + 1 with ib.for_range(0, 8, name="k") as k: with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_scope", 1) A[j] = A[j + k * 10] + 2 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body body = stmt.body.body blist = tvm.tir.stmt_list(body) assert blist[1].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_read_barrier")) assert blist[1].value.args[3].value == 80 assert blist[-2].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_sync")) assert blist[-1].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_write_barrier")) assert blist[-1].value.args[3].value == 10 def test_coproc_sync2(): ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") ty = te.thread_axis("cthread") A = ib.allocate("float32", 128, name="A") ib.scope_attr(ty, "virtual_thread", 2) with ib.new_scope(): ib.scope_attr(cp
, "coproc_scope", 2) A[ty] = 0.0 with ib.for_range(0, n, name="i") as i: with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 1) A[ty] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[ty] = 1.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body def test_coproc_sync3(): def __check_list(tvm_array, py_list): for ti, li in zip(tvm_array, py_list): if ti.value != li: return False return True ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, n, name="i") as j: with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 1) A[i] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[i] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 3) A[0] = 0.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body slist = tvm.tir.stmt_list(stmt[0].body) push_st = slist[2] slist = tvm.tir.stmt_list(slist[-1]) pop_st = slist[0].body[0] assert push_st.value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_dep_push")) assert __check_list(push_st.value.args, [2, 3]) assert pop_st.value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_dep_pop")) assert __check_list(pop_st.value.args, [2, 3]) if __name__ == "__main__": test_coproc_sync() test_coproc_sync2() test_coproc_sync3()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_decorate_device(): x = te.var("x") mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x))) stmt = tvm.tir.transform.DecorateDeviceScope()(mod)["main"].body assert stmt.attr_key == "device_scope" if __name__ == "__main__": test_decorate_device()
import numpy as np
import tvm from tvm
import tir from tvm.script
import tir as T
import tvm.testing @tvm.script.ir_module class Module4: @T.prim_func def constant1(a: T.handle) -> None: A = T.match_buffer(a, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=(10), dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] @T.prim_func def constant2(a: T.handle) -> None: A = T.match_buffer(a, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=(10), dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] @T.prim_func def constant3(a: T.handle) -> None: A = T.match_buffer(a, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 2, 3, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=(10), dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] def test_const_extraction(): mod = tvm.tir.transform.ExtractPrimFuncConstants()(Module4) constants = mod.attrs["constants"] assert len(constants) == 2 def _visit(stmt): if isinstance(stmt, tvm.tir.AllocateConst): assert np.array_equal(stmt.data.numpy(), constants[int(stmt.irmod_storage_idx)].numpy()) for n, f in mod.functions.items(): tvm.tir.stmt_functor.post_order_visit(f.body, _visit) tvm.lower(mod) if __name__ == "__main__": tvm.testing.main()
import tvm
import tvm.testing from tvm
import te from tvm.script
import tir as T
class BaseCompare(tvm.testing.CompareBeforeAfter): transform = tvm.transform.Sequential( [ tvm.tir.transform.FlattenBuffer(), tvm.tir.transform.Simplify(), ] )
class TestElementwise(BaseCompare): """2-d buffers are flattened to 1-d""" def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for i in T.serial(0, 16): B_new = T.decl_buffer([1, 16], "float32") for j in T.serial(0, 16): B_new[0, j] = A[i, j] + 1.0 for j in T.serial(0, 16): C[i, j] = B_new[0, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, (16, 16), dtype="float32", data=A.data) T.preflattened_buffer(C, (16, 16), dtype="float32", data=C.data) for i in T.serial(0, 16): B_new_data = T.allocate([16], "float32", scope="global") B_new = T.buffer_decl([16], "float32", scope="global", data=B_new_data) for j in T.serial(0, 16): B_new[j] = A[((i * 16) + j)] + 1.0 for j in T.serial(0, 16): C[((i * 16) + j)] = B_new[j] * 2.0
class TestElementwiseWithoutDeclBuffer(BaseCompare): """2-d buffers are flattened to 1-d Like TestElementwise, but the TIR doesn't have the DeclBuffer node. The T.buffer_decl declaration applies only during the parsing the TVMScript, and doesn't occur in the TIR itself. In this case, the allocation should be assumed to be targeting flat memory, and should be flattened to a 1-d allocation. """ def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for i in T.serial(0, 16): B_new_data = T.allocate([1, 16], "float32", "global") B_new = T.buffer_decl([1, 16], "float32", data=B_new_data) for j in T.serial(0, 16): B_new[0, j] = A[i, j] + 1.0 for j in T.serial(0, 16): C[i, j] = B_new[0, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, (16, 16), dtype="float32", data=A.data) T.preflattened_buffer(C, (16, 16), dtype="float32", data=C.data) for i in T.serial(0, 16): B_new_data = T.allocate([16], "float32", "global") B_new = T.buffer_decl(16, "float32", data=B_new_data) for j in T.serial(0, 16): B_new[j] = A[((i * 16) + j)] + 1.0 for j in T.serial(0, 16): C[((i * 16) + j)] = B_new[j] * 2.0
class TestGPU(BaseCompare): """Buffer flattening may have indices based on GPU thread vars""" def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): i0 = T.env_thread("blockIdx.x") i1 = T.env_thread("threadIdx.x") i2 = T.env_thread("vthread") T.launch_thread(i0, 4) T.launch_thread(i1, 2) T.launch_thread(i2, 2) B = T.decl_buffer([1, 16], "float32", scope="local") for j in range(0, 16): B[0, j] = A[i0 * 4 + i1 * 2 + i2, j] + 1.0 for j in range(0, 16): C[i0 * 4 + i1 * 2 + i2, j] = B[0, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, (16, 16), dtype="float32", data=A.data) T.preflattened_buffer(C, (16, 16), dtype="float32", data=C.data) i0 = T.env_thread("blockIdx.x") i1 = T.env_thread("threadIdx.x") i2 = T.env_thread("vthread") T.launch_thread(i0, 4) T.launch_thread(i1, 2) T.launch_thread(i2, 2) B_data = T.allocate([16], "float32", scope="local") B = T.buffer_decl([16], "float32", scope="local", data=B_data) for j in range(0, 16): B[j] = A[i0 * 64 + i1 * 32 + i2 * 16 + j] + 1.0 for j in range(0, 16): C[i0 * 64 + i1 * 32 + i2 * 16 + j] = B[j] * 2.0
class TestSymbolic(BaseCompare): """Dynamically-sized arrrays are flattened""" def before(a: T.handle, c: T.handle, n: T.int32, m: T.int32) -> None: A = T.match_buffer(a, (n, m), "float32") C = T.match_buffer(c, (n, m), "float32") for i in range(0, n): B = T.decl_buffer([m], "float32") for j in range(0, m): B[j] = A[i, j] + 1.0 for j in range(0, m): C[i, j] = B[j] * 2.0 def expected(a: T.handle, c: T.handle, n: T.int32, m: T.int32) -> None: A = T.match_buffer(a, n * m, "float32") C = T.match_buffer(c, n * m, "float32") T.preflattened_buffer(A, (n, m), "float32", data=A.data) T.preflattened_buffer(C, (n, m), "float32", data=C.data) for i in range(0, n): B_data = T.allocate([m], "float32", scope="global") B = T.buffer_decl([m], "float32", scope="global", data=B_data) for j in range(0, m): B[j] = A[i * m + j] + 1.0 for j in range(0, m): C[i * m + j] = B[j] * 2.0
class TestMultiAlloc(BaseCompare): """If multiple allocations occur, all are flattened.""" def before(A: T.Buffer[(4, 32), "float32"], D: T.Buffer[(4, 32), "float32"]): for i, j in T.grid(4, 32): B = T.decl_buffer((4, 32), "float32", scope="global") C = T.decl_buffer((4, 32), "float32", scope="global") B[i, j] = A[i, j] + 1.0 C[i, j] = A[i, j] + B[i, j] D[i, j] = C[i, j] * 2.0 def expected(A: T.Buffer[128, "float32"], D: T.Buffer[128, "float32"]): T.preflattened_buffer(A, (4, 32), "float32", data=A.data) T.preflattened_buffer(D, (4, 32), "float32", data=D.data) for i, j in T.grid(4, 32): B_data = T.allocate([128], "float32", scope="global") B = T.buffer_decl([128], "float32", scope="global", data=B_data) C_data = T.allocate([128], "float32", scope="global") C = T.buffer_decl([128], "float32", scope="global", data=C_data) B[i * 32 + j] = A[i * 32 + j] + 1.0 C[i * 32 + j] = A[i * 32 + j] + B[i * 32 + j] D[i * 32 + j] = C[i * 32 + j] * 2.0
class TestStrided(BaseCompare): """Indices for flattened buffers use the specified striding.""" def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for i0 in T.serial(4): B = T.decl_buffer([4, 17], "float32") B_1 = T.buffer_decl([4, 16], dtype="float32", data=B.data, strides=[17, 1]) for i1, j in T.grid(4, 16): B_1[i1, j] = A[i0 * 4 + i1, j] + 1.0 for i1, j in T.grid(4, 16): C[i0 * 4 + i1, j] = B_1[i1, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, [16, 16], dtype="float32", data=A.data) T.preflattened_buffer(C, [16, 16], dtype="float32", data=C.data) for i0 in T.serial(0, 4): B_new_data = T.allocate([68], "float32", scope="global") B_new = T.buffer_decl([68], "float32", scope="global", data=B_new_data) for i1 in T.serial(0, 4): for j in T.serial(0, 16): B_new[i1 * 17 + j] = A[i0 * 64 + i1 * 16 + j] + 1.0 for i1 in T.serial(0, 4): for j in T.serial(0, 16): C[i0 * 64 + i1 * 16 + j] = B_new[i1 * 17 + j] * 2.0
class TestBoolean(BaseCompare): """Boolean buffers should be replaced by a backing int8 array""" def before(A: T.Buffer[10, "bool"], B: T.Buffer[10, "bool"]) -> None: for i0 in T.serial(10): B[i0] = A[i0] def expected(A: T.Buffer[10, "int8"], B: T.Buffer[10, "int8"]) -> None: T.preflattened_buffer(A, [10], dtype="bool", data=A.data) T.preflattened_buffer(B, [10], dtype="bool", data=B.data) for i0 in T.serial(10): B[i0] = T.cast(T.cast(A[i0], "bool"), "int8")
class TestLowerTE(BaseCompare): """FlattenBuffer should do nothing on TE-based functions""" def before(self): x = te.placeholder((1,)) y = te.compute((1,), lambda i: x[i] + 2) s = te.create_schedule(y.op) mod = tvm.driver.build_module.schedule_to_module(s, [x, y]) return mod["main"] expected = before
class TestFlattenInsideBlock(BaseCompare): """Flattening access inside a block flattens the accessed region.""" def before(): A = T.alloc_buffer([32, 32]) for i, j in T.grid(32, 32): with T.block("block"): T.reads(A[i, j]) T.evaluate(A[i, j]) def expected(): A = T.alloc_buffer([1024]) for i, j in T.grid(32, 32): with T.block("block"): T.reads(A[i * 32 + j]) T.evaluate(A[i * 32 + j])
class TestNoChangeTo2DPhysicalBuffer(BaseCompare): """Flattening preserves axis separators.""" def before(): A = T.alloc_buffer([32, 32], axis_separators=[1]) for i, j in T.grid(32, 32): T.evaluate(A[i, j]) expected = before
class TestFlattenAllocBufferWithAxisSeparators(BaseCompare): """Flattening preserves axis separators""" def before(): A = T.alloc_buffer([2, 3, 5, 7, 11, 13], axis_separators=[3]) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0, i1, i2, i3, i4, i5]) def expected(): A = T.alloc_buffer([30, 1001], axis_separators=[1]) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0 * 15 + i1 * 5 + i2, i3 * 143 + i4 * 13 + i5])
class TestFlattenDeclBufferWithAxisSeparators(BaseCompare): """Flattening preserves axis separators Like TestFlattenAllocBufferWithAxisSeparators, but the allocations is done using Allocate/DeclBuffer, rather than through BlockNode::alloc_buffers. """ def before(): A = T.decl_buffer([2, 3, 5, 7, 11, 13], axis_separators=[3]) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0, i1, i2, i3, i4, i5]) def expected(): A_data = T.allocate([30, 1001], dtype="float32", scope="global") A = T.buffer_decl( [30, 1001], dtype="float32", scope="global", axis_separators=[1], data=A_data ) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0 * 15 + i1 * 5 + i2, i3 * 143 + i4 * 13 + i5]) def test_lower_2d_physical_memory(): """Axis separators should preserve 2-d buffers through lowering. A catch-all test to ensure that defining axis_separators is sufficient to maintain non-flat buffer descriptions through all lowering steps. """ @T.prim_func def func(): buf = T.alloc_buffer( [1, 1], dtype="int32", scope="global", axis_separators=[1], ) buf[0, 0] = 0 lowered = tvm.lower(func)["main"] assert isinstance(lowered.body, tvm.tir.Allocate) assert list(lowered.body.extents) == [1, 1], ( "Non-flat buffer allocations, " "marked by axis_separators, " "flattened to flat memory allocation." ) if __name__ == "__main__": tvm.testing.main()
import pytest
import tvm from tvm.script
import tir as T
import tvm.testing def test_annotate_entry_func_single_primfunc(): @tvm.script.ir_module class MockModule: @T.prim_func def func1(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: if i == 5: A[i] = 0.0 mod = MockModule assert mod assert mod["func1"].attrs is None after = tvm.tir.transform.AnnotateEntryFunc()(mod) assert ( after["func1"].attrs and "tir.is_entry_func" in after["func1"].attrs and after["func1"].attrs["tir.is_entry_func"] ) @tvm.script.ir_module class MockModule: @T.prim_func def func1(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: if i == 5: A[i] = 0.0 @T.prim_func def func2(A: T.Buffer[(32,), "float32"]): for i in T.serial(32): if i == 15: if i == 15: A[i] = 0.0 @pytest.mark.xfail def test_annotate_entry_func_multiple_primfunc(): mod = MockModule assert mod assert mod["func1"].attrs is None assert mod["func2"].attrs is None after = tvm.tir.transform.AnnotateEntryFunc()(mod) def test_bind_target(): mod = MockModule assert mod target = tvm.target.Target("cuda") assert mod["func1"].attrs is None assert mod["func2"].attrs is None after = tvm.tir.transform.BindTarget(target)(mod) assert after["func1"].attrs and "target" in after["func1"].attrs assert after["func1"].attrs["target"] == target assert after["func2"].attrs and "target" in after["func2"].attrs assert after["func2"].attrs["target"] == target def test_filter_primfunc(): mod = MockModule assert mod mod["func1"] = mod["func1"].with_attr("temp", "test1") mod["func2"] = mod["func2"].with_attr("temp", "test2") def checker_filter_out_none(func: tvm.tir.PrimFunc): return (func.attrs is not None) and ("temp" in func.attrs) after
= tvm.tir.transform.Filter(checker_filter_out_none)(mod) assert len(after.functions) == 2 assert checker_filter_out_none(after["func1"]) assert checker_filter_out_none(after["func2"]) def checker_filter_out_one(func: tvm.tir.PrimFunc): return (func.attrs is not None) and ("temp" in func.attrs) and func.attrs["temp"] == "test1" after = tvm.tir.transform.Filter(checker_filter_out_one)(mod) assert len(after.functions) == 1 assert checker_filter_out_one(after["func1"]) def checker_filter_out_both(func: tvm.tir.PrimFunc): return (func.attrs is not None) and ("invalid_attr" in func.attrs) after = tvm.tir.transform.Filter(checker_filter_out_both)(mod) assert len(after.functions) == 0 if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import tir
import tvm.testing from tvm.script
import tir as T from tvm.tir.transform
import HoistExpression, HoistedConditionals, HoistedLetBindings class BaseBeforeAfter: hoisted_conditionals = tvm.testing.parameter(HoistedConditionals.All) hoisted_let_bindings = tvm.testing.parameter(HoistedLetBindings.All) def test_hoist(self, hoisted_conditionals, hoisted_let_bindings): before = self.before before_mod = tvm.IRModule.from_expr(before) config = { "tir.HoistExpression": { "hoisted_conditionals": hoisted_conditionals.value, "hoisted_let_bindings": hoisted_let_bindings.value, } } with tvm.transform.PassContext(config=config): after_mod = tvm.tir.transform.HoistExpression()(before_mod) after = after_mod["main"] expected = self.expected try: tvm.ir.assert_structural_equal(after, expected) except ValueError as err: script = tvm.IRModule({"expected": expected, "after": after, "before": before}).script() raise ValueError( f"Function after simplification did not match expected:\n{script}" ) from err
class TestHoistToTop(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.IfElseStmt, HoistedConditionals.All, ) @T.prim_func def before(A: T.Buffer[(16,), "float32"], n: T.int32): for i in T.serial(16): if n != 0: A[i] = 0.0 @T.prim_func def expected(A: T.Buffer[(16,), "float32"], n: T.int32): if n != 0: for i in T.serial(16): A[i] = 0.0
class TestSuppressHoistIfElse(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.Never, HoistedConditionals.IfElseExpr, ) @T.prim_func def before(A: T.Buffer[(16,), "float32"], n: T.int32): for i in T.serial(16): if n != 0: A[i] = 0.0 expected = before
class TestHoistBlockVar(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): i = T.env_thread("threadIdx.x") T.launch_thread(i, 128) for j in T.serial(16): if i < 32: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(128, 16), "float32"], n: T.int32): i = T.env_thread("threadIdx.x") T.launch_thread(i, 128) if i < 32: for j in T.serial(16): A[i, j] = 0.0
class TestSuppressHoistBlockVar(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.UsingBlockVar ) @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): if i < 32: for j in T.serial(16): A[i, j] = 0.0 expected = before
class TestHoistAcrossBlockVar(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): if n == 0: for j in T.serial(16): A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") if n == 0: T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): for j in T.serial(16): A[i, j] = 0.0
class TestSuppressHoistAcrossBlockVar(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.UsingBlockVar ) @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): for j in T.serial(16): if n == 0: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) if n == 0: for i in T.thread_binding(0, 128, thread="threadIdx.x"): for j in T.serial(16): A[i, j] = 0.0
class TestHoistToMiddle(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): if i < 3: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 3: for j in T.serial(4): A[i, j] = 0.0
class TestHoistWithLet(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): condition = i < 3 if condition: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): condition = i < 3 if condition: for j in T.serial(4): A[i, j] = 0.0
class TestHoistDisableLet(BaseBeforeAfter): """As TestHoistWithLet, but forbid hoisting of LetStmt Because the condition depends on the let binding, it should no longer be hoisted. """ hoisted_let_bindings = tvm.testing.parameter(HoistedLetBindings.Never) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): condition = i < 3 if condition: A[i, j] = 0.0 expected = before
class TestHoistIfElse(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): if i < 3: A[i, j] = 0.0 else: A[i, j] = 1.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 3: for j in T.serial(4): A[i, j] = 0.0 else: for j in T.serial(4): A[i, j] = 1.0
class TestHoistSequentialAssign(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"], B: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): if i < 3: A[i, j] = 0.0 B[i, j] = 0.0 else: A[i, j] = 1.0 B[i, j] = 1.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"], B: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 3: for j in T.serial(4): A[i, j] = 0.0 B[i, j] = 0.0 else: for j in T.serial(4): A[i, j] = 1.0 B[i, j] = 1.0
class TestHoistMultiIf(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): for k in T.serial(4): if j < 3: if i < 2: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0
class TestHoistComplexConditional(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j, k in T.grid(4, 4, 4): if j < 3 and i < 2: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0
class TestSuppressSplittingConditional(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.BooleanExpression ) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j, k in T.grid(4, 4, 4): if j < 3 and i < 2: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): if j < 3 and i < 2: for k in T.serial(4): A[i, j] = 0.0
class TestHoistMultiIfElse(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): for k in T.serial(4): if j < 3: if i < 2: A[i, j] = 0.0 else: A[i, j] = 1.0 else: if i < 2: A[i, j] = 2.0 else: A[i, j] = 3.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 else: for k in T.serial(4): A[i, j] = 2.0 else: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 1.0 else: for k in T.serial(4): A[i, j] = 3.0
class TestHoistMultiIfElseDifferentBranches(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): for k in T.serial(4): if j < 3: if i < 2: A[i, j] = 0.0 else: A[i, j] = 1.0 else: if i < 1: A[i, j] = 2.0 else: A[i, j] = 3.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: if i < 1: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 else: for k in T.serial(4): A[i, j] = 2.0 else: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 else: for k in T.serial(4): A[i, j] = 3.0 else: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 1.0 else: for k in T.serial(4): A[i, j] = 3.0
class TestHoistIfElseExpr(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): A[i, j] = T.if_then_else(i < 2, 1.0, 2.0, dtype="float32") @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): A[i, j] = 1.0 else: for j in T.serial(4): A[i, j] = 2.0
class TestSuppressHoistIfElseExpr(TestHoistIfElseExpr): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.IfElseExpr ) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): A[i, j] = T.if_then_else(i < 2, 1.0, 2.0, dtype="float32") expected = before
class TestHoistLetExpr(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): x = T.var("float32") A[i, j] = T.Let(x, T.cast(i + 1, "float32"), 5.0 * x + T.cast(j, "float32")) @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): x = T.cast(i + 1, "float32") for j in T.serial(4): A[i, j] = 5.0 * x + T.cast(j, "float32")
class TestSuppressHoistLetExpr(BaseBeforeAfter): hoisted_let_bindings = tvm.testing.parameter( HoistedLetBindings.All & ~HoistedLetBindings.LetExpr ) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): x = T.var("float32") A[i, j] = T.Let(x, T.cast(i + 1, "float32"), 5.0 * x + T.cast(j, "float32")) expected = before if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import te from tvm
import relay
import numpy as np
import pytest from tvm.testing
import enabled_targets var_list = [] def verify_structure(stmt, expected_struct): node_dict = {} struct = {} def _extract_vars(op): global var_list if isinstance(op, tvm.tir.Var): var_list.append(op.name) def _visit(op): key = op if isinstance(op, tvm.tir.IfThenElse): global var_list tvm.tir.stmt_functor.post_order_visit(op.condition, _extract_vars) val = [(op.then_case, op.else_case), ("tir.IfThenElse", tuple(var_list))] var_list.clear() elif isinstance(op, tvm.tir.For): val = [(op.body,), ("tir.For", op.loop_var.name)] elif isinstance(op, tvm.tir.AttrStmt): val = [(op.body,), ("tir.AttrStmt", op.attr_key, int(op.value))] else: return node_dict[key] = val tvm.tir.stmt_functor.post_order_visit(stmt, _visit) for key, val in node_dict.items(): struct[val[1]] = tuple( node_dict[child][1] if child in node_dict else None for child in val[0] ) assert struct == expected_struct, "Structure mismatch: expect %s but got %s" % ( expected_struct, struct, ) var_list.clear() def _opaque_eval(var): return tvm.tir.Evaluate(tvm.tir.call_extern("int32", "dummy", var)) def test_hoist_top_for(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") data = ib.pointer("float32", name="data") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i < 2)): ib.emit(_opaque_eval(m)) with ib.else_scope(): ib.emit(_opaque_eval(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.For", "j"): (("tir.For",
"k"),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), ("tir.For", "j")), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_hoist_multi_var_if(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") data = ib.pointer("float32", name="data") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i + j < 2)): ib.emit(_opaque_eval(m)) with ib.else_scope(): ib.emit(_opaque_eval(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_mod = tvm.tir.transform.HoistIfThenElse()(mod) new_stmt = new_mod["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("i", "j")): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (("tir.IfThenElse", ("i", "j")),), ("tir.For", "i"): (("tir.For", "j"),), } verify_structure(new_stmt, expected_struct) def test_hoist_no_match_for(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") data = ib.pointer("float32", name="data") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: data[i * 3 + j] = data[i * 3 + j] + 0.5 with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i < 2)): ib.emit(_opaque_eval(m)) with ib.else_scope(): ib.emit(_opaque_eval(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("i",)): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (None,), ("tir.For", "i"): (("tir.Fo
r", "j"),), } verify_structure(new_stmt, expected_struct) def test_no_else(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i < 2)): ib.emit(_opaque_eval(m)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.For", "j"): (("tir.For", "k"),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_attr_stmt(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(tvm.tir.any(i < 4, j >= 8)): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.5 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("i", "j")): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (("tir.IfThenElse", ("i", "j")),), ("tir.For", "i"): (("tir.For", "j"),), ("tir.AttrStmt", "thread_extent", 64): (("tir.
For", "i"),), ("tir.AttrStmt", "thread_extent", 32): (("tir.AttrStmt", "thread_extent", 64),), } verify_structure(new_stmt, expected_struct) def test_nested_for(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") with ib.for_range(0, 5, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.if_scope(i >= 3): data[i * 3 + j] = data[i * 3 + j] + 0.5 with ib.for_range(0, 15, "k") as k: with ib.for_range(0, 20, "l") as l: with ib.if_scope(tvm.tir.any(i < 4, j >= 8)): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 2 with ib.else_scope(): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 1.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "l"): (None,), ("tir.For", "k"): (("tir.For", "l"),), ("tir.IfThenElse", ("i", "j")): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (None,), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_if_block(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") n = te.var("n") with ib.for_range(0, 5, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.if_scope(i >= 3): data[i * 3 + j] = data[i * 3 + j] + 0.5 with ib.for_range(0, 15, "k") as k: with ib.for_range(0, 20, "l") as l: with ib.if_scope(tvm.tir.any(i < 4, j >= 8)): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 2 with ib.else_scope(): data[i * 3 + j + k + l] = data[i *
3 + j + k + l] * 1.5 with ib.if_scope(j < 5): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] - 1 with ib.for_range(0, 5, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 15, "k") as k: with ib.if_scope(n >= 3): data[i * 3 + j + k] = data[i * 3 + j + k] + 0.6 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.IfThenElse", ("i", "j")): (None, None), ("tir.IfThenElse", ("j",)): (None, None), ("tir.For", "l"): (None,), ("tir.For", "k"): (None,), ("tir.For", "j"): (("tir.For", "j"),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), ("tir.IfThenElse", ("n",)): (("tir.For", "j"), None), } verify_structure(new_stmt, expected_struct) def test_multi_if(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") with ib.for_range(0, 10, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 10, "k") as k: with ib.if_scope(3 <= i): with ib.if_scope(3 <= j): data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_mod = tvm.tir.transform.HoistIfThenElse()(mod) new_stmt = new_mod["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("j",)): (("tir.For", "k"), None), ("tir.For", "j"): (("tir.IfThenElse", ("j",)),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_no_hoisting_1(): ib = tvm.tir.ir_builder.create() data = ib.pointe
r("float32", name="data") n = te.var("n") with ib.for_range(0, 10, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 10, "k") as k: with ib.if_scope(k <= 3): data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_2(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") n = te.var("n") x = te.var("x") with ib.for_range(0, 10, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 10, "k") as k: with ib.if_scope(i <= 3): data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.3 data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) @pytest.mark.xfail(reason="Inconsistent thread_extent", strict=True) def test_no_hoisting_3(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx
.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) ib.scope_attr(bx, "thread_extent", dshape_inner[1]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_4(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt)
with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) @pytest.mark.xfail(reason="Inconsistent thread_extent", strict=True) def test_no_hoisting_5(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: ib.scope_attr(bx, "thread_extent", dshape_inner[1]) with ib.for_range(0, n, "k") as k: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_6(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_
range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + k) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_7(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.if_scope((tx + j) < 9): with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + k) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_hoisting_block_scope_1(): n = te.size_var("n") m = te.size_var("m") A = te.placeholder
((n, m), name="A") k = te.reduce_axis((0, m), "k") B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B") s = te.create_schedule(B.op) ko, ki = s[B].split(B.op.reduce_axis[0], factor=16) BF = s.rfactor(B, ki) xo, xi = s[B].split(s[B].op.axis[0], factor=32) s[B.op].bind(xo, te.thread_axis("blockIdx.x")) s[B.op].bind(xi, te.thread_axis("threadIdx.y")) s[B].bind(s[B].op.reduce_axis[0], te.thread_axis("threadIdx.x")) s[BF].compute_at(s[B], s[B].op.reduce_axis[0]) mod = tvm.driver.build_module.schedule_to_module(s, [A, B], "main", None) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.RemoveNoOp()(mod) stmt = mod["main"].body new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_2(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.RemoveNoOp()(mod)
stmt = mod["main"].body new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) @pytest.mark.xfail(reason="Inconsistent thread_extent", strict=True) def test_hoisting_block_scope_3(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) ib.scope_attr(bx, "thread_extent", dshape_inner[1]) with ib.for_range(0, n, "k") as k: with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_4(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") AA = te.compute((n,), lambda *i: A(*i), name="A") BB =
te.compute((n,), lambda *i: B(*i), name="B") T = te.compute(A.shape, lambda *i: AA(*i) + BB(*i), name="T") C = te.compute(A.shape, lambda *i: T(*i), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) xo1, xo2 = s[C].split(xo, factor=13) s[C].parallel(xo2) s[C].pragma(xo1, "parallel_launch_point") s[C].pragma(xo2, "parallel_stride_pattern") s[C].pragma(xo2, "parallel_barrier_when_finish") s[C].vectorize(xi) mod = tvm.driver.build_module.schedule_to_module(s, [A, B, C], "main", None) mod = tvm.tir.transform.Simplify()(mod) stmt = mod["main"].body new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_5(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data", scope="global") l = te.var("l") m = te.var("m") n = te.var("n") g = te.var("g") ib.scope_attr(data, "storage_scope", "global") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(data[g] < 3): data[9 * j + 3 * j * k] = data[9 * j + 3 * j * k] + 0.3 with ib.else_scope(): data[9 * j + 3 * j * k] = data[9 * j + 3 * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) stmt = new_stmt mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} )
: new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_hoisting_block_scope_6(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + n) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_7(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + i) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j
* k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) @pytest.mark.skip() def test_hoisting_op_conv(): dtype = "float32" dshape = (1, 80, 73, 73) kshape = (192, 80, 3, 3) padding = (1, 1) groups = 1 dilation = (1, 1) kernel_size = (3, 3) channels = 192 scale = 1 x = relay.var("x", shape=dshape, dtype=dtype) w = relay.var("w", shape=kshape, dtype=dtype) y = relay.nn.conv2d( x, w, padding=padding, dilation=dilation, groups=groups, channels=channels, kernel_size=kernel_size, ) func = relay.Function([x, w], y) mod = tvm.IRModule() mod["main"] = func mod = relay.transform.InferType()(mod) data = np.random.uniform(-scale, scale, size=dshape).astype(dtype) kernel = np.random.uniform(-scale, scale, size=kshape).astype(dtype) params = {"w": tvm.nd.array(kernel)} for target, dev in enabled_targets(): with tvm.transform.PassContext(opt_level=3): lib = relay.build_module.build(mod, target=target, params=params) m = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) x = np.random.uniform(size=dshape) data_tvm = tvm.nd.array(data) m.set_input("x", data_tvm) m.run() e = m.module.time_evaluator("run", dev, number=300, repeat=3) t1 = e(data_tvm).results t1 = np.array(t1) * 1000 print("{} ms".format(t1.mean())) with tvm.transform.PassContext( opt_level=3, config={"tir.HoistIfThenElse": {"support_block_sc
ope_hosting": True}} ): lib = relay.build_module.build(mod, target=target, params=params) m = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) x = np.random.uniform(size=dshape) data_tvm = tvm.nd.array(data) m.set_input("x", data_tvm) m.set_input(**params) m.run() e = m.module.time_evaluator("run", dev, number=300, repeat=3) t2 = e(data_tvm).results t2 = np.array(t2) * 1000 print("{} ms".format(t2.mean())) tvm.testing.assert_allclose(t1.mean(), t2.mean(), atol=1, rtol=1e-1) if __name__ == "__main__": pytest.main([__file__])
import tvm
import tvm.testing from tvm
import te from tvm.driver.build_module
import schedule_to_module def test_copy2d(): m = te.var("m") l = te.var("l") A = te.placeholder((m, l), name="A") B = te.compute((m, l), lambda i, j: A[i, j], name="B") s = te.create_schedule(B.op) s[B].pragma(B.op.axis[0], "memcpy") bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) func = tvm.te.schedule.SchedulePostProcToPrimFunc([A, B], stmt, None) mod = tvm.IRModule.from_expr(func) mod = tvm.tir.transform.StorageFlatten(64)(mod) def cb(src, dst, pad_before, pad_after, pad_value): assert dst.strides[0] == l assert dst.strides[1].value == 1 assert src.strides[0] == l assert tuple(src.shape) == (m, l) return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body def test_copy_pad(): m = te.var("m") l = te.var("l") A = te.placeholder((m, l), name="A") B = te.compute( (m + 2, l), lambda i, j: tvm.tir.if_then_else(tvm.tir.all(i >= 1, i < m + 1), A[i - 1, j], 1.0), name="B", ) s = te.create_schedule(B.op) s[B].pragma(B.op.axis[0], "memcpy") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) def cb(src, dst, pad_before, pad_after, pad_value): tvm.testing.assert_prim_expr_equal(src.elem_offset, 0) assert pad_before[0].value == 1 assert pad_before[1].value == 0 assert pad_after[0].value == 1 assert pad_after[1].value == 0 assert pad_value.value == 1.0 return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body def test_single_point_test(): A = te.placeholder((1,), name="A") B = te.compute((1,), lambda i: A[i], name="B") s = te.create_schedule(B.op) s[B].pragma(B.op.axis[0], "memcpy") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) def cb(src, dst, pad_before, pad_after, pad_value):
tvm.testing.assert_prim_expr_equal(src.elem_offset, 0) tvm.testing.assert_prim_expr_equal(dst.elem_offset, 0) tvm.testing.assert_prim_expr_equal(src.strides[0], 1) tvm.testing.assert_prim_expr_equal(dst.strides[0], 1) return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body def test_copy_pad_split(): m = 4 * 3 A = te.placeholder((m,), name="A") Apad = te.compute( (m + 2,), lambda i: tvm.tir.if_then_else(tvm.tir.all(i >= 1, i <= m), A[i - 1], 0.0), "Apad" ) B = te.compute((m,), lambda i: Apad[i] + Apad[i + 1] + Apad[i + 2]) s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=4) s[Apad].compute_at(s[B], xo) s[Apad].pragma(s[Apad].op.axis[0], "memcpy") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod._move()) mod = tvm.tir.transform.Simplify()(mod._move()) def cb(src, dst, pad_before, pad_after, pad_value): assert dst.elem_offset.value == 0 tvm.testing.assert_prim_expr_equal(src.elem_offset, tvm.te.max(xo * 4, 1) - 1) rpad_before = tvm.te.max(1 - xo * 4, 0) rpad_after = tvm.te.max(xo * 4 - 7, 0) tvm.testing.assert_prim_expr_equal(pad_before[0], rpad_before) tvm.testing.assert_prim_expr_equal(pad_after[0], rpad_after) tvm.testing.assert_prim_expr_equal(src.shape[0], 6 - rpad_before - rpad_after) return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body if __name__ == "__main__": test_copy2d() test_copy_pad() test_copy_pad_split() test_single_point_test()
import tvm from tvm
import te def test_double_buffer(): dtype = "int64" n = 100 m = 4 tx = te.thread_axis("threadIdx.x") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") ib.scope_attr(tx, "thread_extent", 1) with ib.for_range(0, n) as i: B = ib.allocate("float32", m, name="B", scope="shared") with ib.new_scope(): ib.scope_attr(B.asobject().data, "double_buffer_scope", 1) with ib.for_range(0, m) as j: B[j] = A[i * 4 + j] with ib.for_range(0, m) as j: C[j] = B[j] + 1 stmt = ib.get() mod = tvm.IRModule({"db": tvm.tir.PrimFunc([A.asobject(), C.asobject()], stmt)}) opt = tvm.transform.Sequential( [tvm.tir.transform.InjectDoubleBuffer(), tvm.tir.transform.Simplify()] ) with tvm.transform.PassContext(config={"tir.InjectDoubleBuffer": {"split_loop": 2}}): mod = opt(mod) stmt = mod["db"].body assert isinstance(stmt.body, tvm.tir.Allocate) assert list(stmt.body.extents) == [m * 2] f = tvm.tir.transform.ThreadSync("shared")(mod)["db"] count = [0] def count_sync(op): if isinstance(op, tvm.tir.Call) and op.op.same_as(tvm.ir.Op.get("tir.tvm_storage_sync")): count[0] += 1 tvm.tir.stmt_functor.post_order_visit(f.body, count_sync) assert count[0] == 4 if __name__ == "__main__": test_double_buffer()
import tvm from tvm.script
import tir as T
import numpy as np
import tvm.testing def count_cp_async(stmt): num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Call) and str(n.op) == "tir.ptx_cp_async": num_alloc[0] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) return num_alloc[0] def generate_global_to_shared_vectorized_copy(dtype, vector_size): num_iters = 128 vector_size_expr = tvm.runtime.convert(vector_size) @T.prim_func def ptx_global_to_shared_copy( A: T.Buffer[(32, 128), dtype], B: T.Buffer[(32, 128), dtype] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], dtype, scope="shared") T.reads(A[0:32, 0:128]) T.writes(B[0:32, 0:128]) T.attr("default", "async_scope", 1) for i in T.serial(num_iters): for j in T.vectorized(vector_size): A_shared[tx, i * vector_size_expr + j] = A[tx, i * vector_size_expr + j] T.evaluate(T.ptx_commit_group(dtype="")) T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): B[tx, i] = A_shared[tx, i] return ptx_global_to_shared_copy @T.prim_func def ptx_global_to_shared_copy_fp32x1( A: T.Buffer[(32, 128), "float32"], B: T.Buffer[(32, 128), "float32"] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], "float32", scope="shared") T.reads(A[0:32, 0:128]) T.writes(B[0:32, 0:128]) T.attr("default", "async_scope", 1) for i in T.serial(128): A_shared[tx, i] = A[tx, i] T.evaluate(T.ptx_commit_group(dtype=""))
T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): B[tx, i] = A_shared[tx, i] @T.prim_func def ptx_global_to_shared_dyn_copy_fp16x8( A: T.Buffer[(32, 128), "float16"], B: T.Buffer[(32, 128), "float16"], C: T.Buffer[(32, 128), "float16"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], "float16", scope="shared.dyn") B_shared = T.alloc_buffer([32, 128], "float16", scope="shared.dyn") T.reads(A[0:32, 0:128], B[0:32, 0:128]) T.writes(C[0:32, 0:128]) T.attr("default", "async_scope", 1) for i in T.serial(16): for j in T.vectorized(8): A_shared[tx, i * 8 + j] = A[tx, i * 8 + j] B_shared[tx, i * 8 + j] = B[tx, i * 8 + j] T.evaluate(T.ptx_commit_group(dtype="")) T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): C[tx, i] = A_shared[tx, i] + B_shared[tx, i] @tvm.testing.requires_cuda def test_inject_async_copy(): for dtype, vec_size in [("float16", 8), ("float16", 4), ("float32", 4), ("float32", 1)]: if vec_size == 1: f = ptx_global_to_shared_copy_fp32x1 else: f = generate_global_to_shared_vectorized_copy(dtype, vec_size) mod = tvm.IRModule.from_expr(f) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) mod = tvm.tir.transform.FlattenBuffer()(mod) if vec_size > 1: mod = tvm.tir.transform.VectorizeLoop()(mod) mod = tvm.tir.transform.InjectPTXAsyncCopy()(mod) assert count_cp_async(mod["main"].body) == 1 if not tvm.testing.is_ampere_or_newer(): continue with tvm.transform.PassContext(config={"tir.use_async_copy": 1}): mod = tvm.build(tvm.IRModule.from_expr(f), target="cuda")
A_np = np.random.rand(32, 128).astype(dtype) B_np = np.zeros((32, 128)).astype(dtype) dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) mod(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), A_np) @tvm.testing.requires_cuda def test_inject_async_copy_shared_dyn(): f = ptx_global_to_shared_dyn_copy_fp16x8 mod = tvm.IRModule.from_expr(f) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) mod = tvm.tir.transform.FlattenBuffer()(mod) mod = tvm.tir.transform.VectorizeLoop()(mod) mod = tvm.tir.transform.MergeDynamicSharedMemoryAllocations()(mod) mod = tvm.tir.transform.InjectPTXAsyncCopy()(mod) assert count_cp_async(mod["main"].body) == 2 if not tvm.testing.is_ampere_or_newer(): return with tvm.transform.PassContext(config={"tir.use_async_copy": 1}): mod = tvm.build(tvm.IRModule.from_expr(f), target="cuda") A_np = np.random.rand(32, 128).astype("float16") B_np = np.random.rand(32, 128).astype("float16") C_np = np.zeros((32, 128)).astype("float16") dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) C_nd = tvm.nd.array(C_np, device=dev) mod(A_nd, B_nd, C_nd) tvm.testing.assert_allclose(C_nd.numpy(), A_np + B_np) if __name__ == "__main__": test_inject_async_copy() test_inject_async_copy_shared_dyn()
import tvm
import tvm.script from tvm.script
import tir as T from tvm
import te from tvm
import topi from tvm.driver.build_module
import get_binds
import numpy as np