text
stringlengths 1
2.05k
|
---|
import pytest
def _tile_nd(s, tensor, tile):
outer_indices = []
inner_indices = []
for i, size in enumerate(tile):
outer, inner = s[tensor].split(tensor.op.axis[i], size)
outer_indices.append(outer)
inner_indices.append(inner)
s[tensor].reorder(*outer_indices, *inner_indices)
return outer_indices, inner_indices
@tvm.tir.transform.prim_func_pass(opt_level=0)
def remove_rolling_buffer_attr(func, mod, ctx):
def unwrap(node):
if isinstance(node, tvm.tir.AttrStmt) and node.attr_key == "rolling_buffer_scope":
return node.body
else:
return node
return func.with_body(
tvm.tir.stmt_functor.ir_transform(
func.body, None, postorder=unwrap, only_enable=["tir.AttrStmt"]
)
)
@tvm.tir.transform.prim_func_pass(opt_level=0)
def verify_no_rolling_buffer_attr(func, mod, ctx):
def verify(node):
if isinstance(node, tvm.tir.AttrStmt):
assert node.attr_key != "rolling_buffer_scope", "Failed to lower rolling buffers"
tvm.tir.stmt_functor.post_order_visit(func.body, verify)
return func
def _verify_schedule(sch, inputs, output):
user_pass_lists = [
[(0, remove_rolling_buffer_attr), (0, verify_no_rolling_buffer_attr)],
[(0, tvm.tir.transform.InjectRollingBuffer()), (0, verify_no_rolling_buffer_attr)],
]
built_funcs = []
for user_pass_list in user_pass_lists:
with tvm.transform.PassContext(config={"tir.add_lower_pass": user_pass_list}):
built_funcs.append(tvm.build(sch, inputs + [output]))
outputs = []
ctx = tvm.cpu(0)
input_data = []
for tensor in inputs:
shape = [i.value for i in tensor.shape]
input_data.append(
tvm.nd.array(np.random.randint(low=-100, high=100, size=shape).astype("int8"), ctx)
)
shape = [i.value for i in output.shape]
out = tvm.nd.array(np.zeros(shape, dtype="int8"), ctx)
for func in built_funcs:
func(*input_data, out)
output |
s.append(out.numpy())
np.testing.assert_equal(outputs[0], outputs[1])
@pytest.mark.parametrize("tile_shape", [(1, 4, 8, 16), (1, 8, 7, 11), (1, 8, 3, 8), (1, 7, 5, 3)])
def test_tile_shapes(tile_shape):
A = te.placeholder((1, 12, 14, 16), name="A", dtype="int8")
pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_b = topi.nn.pool2d(pool_a, (3, 5), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
sch = tvm.te.create_schedule([pool_b.op])
oi, ii = _tile_nd(sch, pool_b, tile_shape)
sch[pool_a].compute_at(sch[pool_b], oi[-1])
sch[pool_a].rolling_buffer()
_verify_schedule(sch, [A], pool_b)
def test_implied_split():
A = te.placeholder((1, 12, 12, 16), name="A", dtype="int8")
pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_b = topi.nn.pool2d(pool_a, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
sch = tvm.te.create_schedule([pool_b.op])
n, h, w, c = pool_b.op.axis
oi, ii = sch[pool_b].split(w, 4)
sch[pool_a].compute_at(sch[pool_b], oi)
sch[pool_a].rolling_buffer()
_verify_schedule(sch, [A], pool_b)
@pytest.mark.parametrize("kernel_shape", [(1, 1), (3, 3)])
def test_upscale(kernel_shape):
output_shape = (1, 24, 24, 16)
input_shape = (
output_shape[0],
output_shape[1]
output_shape[2]
output_shape[3],
)
A = te.placeholder(input_shape, name="A", dtype="int8")
pool_a = topi.nn.pool2d(A, kernel_shape, (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_b = topi.nn.pool2d(
pool_a, kernel_shape, (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC"
)
upscale = te.compute((1, 24, 24, 16), lambda nn, hh, ww, cc: pool_b[nn, hh
sch = tvm.te.create_schedule([upscale.op])
oi, ii = _tile_nd(sch, upscale, (1, 5, 5, 16))
sch[pool_b].compute_at(sch[upscale], oi[-1])
sch[pool_b].rolling_buffer()
sch[pool_a].compute_at(sch[upscale], oi[-1])
sch[pool_a].rolling |
_buffer()
_verify_schedule(sch, [A], upscale)
@pytest.mark.parametrize("tile_shape", [(1, 4, 8, 16), (1, 8, 7, 11), (1, 8, 3, 8), (1, 7, 5, 3)])
def test_3_tiled_poolings(tile_shape):
A = te.placeholder((1, 14, 14, 16), name="A", dtype="int8")
pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_b = topi.nn.pool2d(pool_a, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_c = topi.nn.pool2d(pool_b, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
sch = tvm.te.create_schedule([pool_c.op])
oi, ii = _tile_nd(sch, pool_c, tile_shape)
sch[pool_b].compute_at(sch[pool_c], oi[-1])
sch[pool_b].rolling_buffer()
sch[pool_a].compute_at(sch[pool_c], oi[-1])
sch[pool_a].rolling_buffer()
_verify_schedule(sch, [A], pool_c)
@pytest.mark.parametrize("tile_shape", [(1, 4, 8, 16), (1, 8, 7, 11), (1, 8, 3, 8), (1, 7, 5, 3)])
def test_tiled_added_poolings(tile_shape):
A = te.placeholder((1, 12, 12, 16), name="A", dtype="int8")
B = te.placeholder((1, 14, 14, 16), name="A", dtype="int8")
pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_b = topi.nn.pool2d(B, (5, 5), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
add = topi.add(pool_a, pool_b)
pool_c = topi.nn.pool2d(add, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
sch = tvm.te.create_schedule([pool_c.op])
oi, ii = _tile_nd(sch, pool_c, tile_shape)
sch[add].compute_at(sch[pool_c], oi[-1])
sch[add].rolling_buffer()
sch[pool_b].compute_at(sch[pool_c], oi[-1])
sch[pool_b].rolling_buffer()
sch[pool_a].compute_at(sch[pool_c], oi[-1])
sch[pool_a].rolling_buffer()
_verify_schedule(sch, [A, B], pool_c)
@pytest.mark.parametrize("make_rolling", [(0, 0), (1, 0), (0, 1), (1, 1)])
def test_mixed_buffers(make_rolling):
A = te.placeholder((1, 14, 14, 16), name="A", dtype="int8")
pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", lay |
out="NHWC")
pool_b = topi.nn.pool2d(pool_a, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
pool_c = topi.nn.pool2d(pool_b, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC")
sch = tvm.te.create_schedule([pool_c.op])
oi, ii = _tile_nd(sch, pool_c, (1, 4, 8, 16))
sch[pool_b].compute_at(sch[pool_c], oi[-1])
if make_rolling[0]:
sch[pool_b].rolling_buffer()
sch[pool_a].compute_at(sch[pool_c], oi[-1])
if make_rolling[1]:
sch[pool_a].rolling_buffer()
_verify_schedule(sch, [A], pool_c)
@tvm.script.ir_module
class PreRollingBuffer:
@T.prim_func
def main(A: T.handle, tensor: T.handle) -> None:
T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True})
tensor_2 = T.buffer_decl([1, 10, 12, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1)
A_1 = T.match_buffer(A, [1, 12, 14, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1)
tensor_1 = T.match_buffer(tensor, [1, 8, 8, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1)
T.realize(tensor_1[0:1, 0:8, 0:8, 0:16], "")
for ax1_outer in T.serial(0, 2):
T.realize(tensor_2[0:1, (ax1_outer*4):((ax1_outer*4) + 6), 0:12, 0:16], "")
T.attr(tensor_2, "rolling_buffer_scope", True)
for ax1 in T.serial(0, 6):
for ax2 in T.serial(0, 12):
for ax3 in T.serial(0, 16):
tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3] = T.int8(0)
for dh in T.serial(0, 3):
for dw in T.serial(0, 3):
tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3] = T.max(tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3], A_1[0, ((ax1 + (ax1_outer*4)) + dh), (ax2 + dw), ax3])
for ax1_inner in T.serial(0, 4):
for ax2_inner in T.serial(0, 8):
for ax3_inner in T.serial(0, 16):
ten |
sor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.int8(0)
for dh_1 in T.serial(0, 3):
for dw_1 in T.serial(0, 5):
tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.max(tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner], tensor_2[0, ((ax1_inner + (ax1_outer*4)) + dh_1), (ax2_inner + dw_1), ax3_inner])
__tvm_meta__ = None
@tvm.script.ir_module
class PostRollingBuffer:
@T.prim_func
def main(A: T.handle, tensor: T.handle) -> None:
T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True})
tensor_2 = T.buffer_decl([1, 10, 12, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1)
A_1 = T.match_buffer(A, [1, 12, 14, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1)
tensor_1 = T.match_buffer(tensor, [1, 8, 8, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1)
T.realize(tensor_1[0:1, 0:8, 0:8, 0:16], "")
T.realize(tensor_2[0:1, 0:6, 0:12, 0:16], "")
for ax1_outer in T.serial(0, 2):
for ax1 in T.serial(0, 6):
for ax2 in T.serial(0, 12):
for ax3 in T.serial(0, 16):
if T.likely(((ax1_outer < 1) or (ax1 >= 2)), dtype='bool') :
tensor_2[0, T.floormod((ax1 + (ax1_outer*4)), 6), ax2, ax3] = T.int8(0)
for dh in T.serial(0, 3):
for dw in T.serial(0, 3):
if T.likely(((ax1_outer < 1) or (ax1 >= 2)), dtype='bool'):
tensor_2[0, T.floormod((ax1 + (ax1_outer*4)), 6), ax2, ax3] = T.max(tensor_2[0, T.floormod((ax1 + (ax1_outer*4)), 6), ax2, ax3], A_1[0, ((ax1 + (ax1_outer*4)) + dh), (ax2 + dw), ax3])
for ax1_inner in T.serial(0, 4):
for ax2_inner in T.serial(0, 8):
for ax3_inner in T.serial(0, 1 |
6):
tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.int8(0)
for dh_1 in T.serial(0, 3):
for dw_1 in T.serial(0, 5):
tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.max(tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner], tensor_2[0, T.floormod(((ax1_inner + (ax1_outer*4)) + dh_1), 6), (ax2_inner + dw_1), ax3_inner])
__tvm_meta__ = None
def test_rolling_buffer_ir_transform():
mod = PreRollingBuffer
mod = tvm.tir.transform.InjectRollingBuffer()(mod)
script = mod.script(show_meta=True)
mod = tvm.script.from_source(script)
tvm.ir.assert_structural_equal(mod["main"], PostRollingBuffer["main"], True)
if __name__ == "__main__":
pytest.main([__file__]) |
import sys |
import numpy as np |
import pytest |
import tvm |
import tvm.testing |
import tvm.tir.tensor_intrin.cuda
from tvm |
import TVMError, te, tir
from tvm.meta_schedule.testing |
import te_workload
from tvm.script |
import tir as T
from tvm.testing.tir |
import mma_schedule
from tvm.tir.tensor_intrin.cuda |
import (
LDMATRIX_16x16_A_DYN_INTRIN,
LDMATRIX_16x16_B_DYN_INTRIN,
MMA_f16f16f32_INTRIN,
MMA_fill_16x16_f32_INTRIN,
MMA_store_16x16_f32_global_INTRIN,
shared_16x16_to_ldmatrix_32x8_layout,
)
def _check(original, transformed):
func = original
mod = tvm.IRModule.from_expr(func)
mod = tvm.tir.transform.InjectSoftwarePipeline()(mod)
mod = tvm.tir.transform.Simplify()(mod)
tvm.ir.assert_structural_equal(mod["main"], transformed, True)
def _check_error(func):
mod = tvm.IRModule.from_expr(func)
with pytest.raises(ValueError):
tvm.tir.transform.InjectSoftwarePipeline()(mod)
@T.prim_func
def trivial_pipeline(A: T.Buffer[(16, 1), "float32"], C: T.Buffer[(16, 1), "float32"]):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0, 1, annotations={"software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1]}
):
with T.block():
T.reads(A[tx, i])
T.writes(C[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, i])
C[tx, i] = B[tx, 0] + T.float32(1)
@T.prim_func
def transformed_trivial_pipeline(
A: T.Buffer[(16, 1), "float32"], C: T.Buffer[(16, 1), "float32"]
) -> None:
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0])
T.writes(C[tx, 0])
B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, 0])
T.writes(B[0, tx, 0])
B[0, tx, 0] = A[tx, 0] * T.float32(2)
with T.block():
T.reads()
T.writes()
T.evalu |
ate(0)
with T.block():
T.reads(B[0, tx, 0])
T.writes(C[tx, 0])
C[tx, 0] = B[0, tx, 0] + T.float32(1)
def gen_simple_compute(num_stages):
@T.prim_func
def simple_compute(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, num_stages],
"software_pipeline_order": [0, 1],
},
):
with T.block("compute"):
T.reads(A[tx, i])
T.writes(C[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, i])
C[tx, i] = B[tx, 0] + T.float32(1)
return simple_compute
@T.prim_func
def transformed_simple_compute(
A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
with T.block():
T.reads([A[tx, 0:16]])
T.writes([C[tx, 0:16]])
B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads([A[tx, 0]])
T.writes([B[0, tx, 0]])
B[0, tx, 0] = A[tx, 0] * T.float32(2)
with T.block():
T.reads([A[tx, 1:16], B[0:2, tx, 0]])
T.writes([B[0:2, tx, 0], C[tx, 0:15]])
for i in T.serial(0, 15):
with T.block():
T.reads([A[tx, i + 1]])
T.writes([B[(i + 1) % 2, tx, 0 |
]])
B[(i + 1) % 2, tx, 0] = A[tx, i + 1] * T.float32(2)
with T.block():
T.reads([B[i % 2, tx, 0]])
T.writes([C[tx, i]])
C[tx, i] = B[i % 2, tx, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, 0]])
T.writes([C[tx, 15]])
C[tx, 15] = B[1, tx, 0] + T.float32(1)
@T.prim_func
def simple_compute_with_other_annotation(
A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1],
"software_pipeline_order": [0, 1],
"pragma_loop_partition_hint": True,
},
):
with T.block("compute"):
T.reads(A[tx, i])
T.writes(C[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, i])
C[tx, i] = B[tx, 0] + T.float32(1)
@T.prim_func
def transformed_simple_compute_with_other_annotation(
A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
with T.block():
T.reads([A[tx, 0:16]])
T.writes([C[tx, 0:16]])
B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads([A[tx, 0]])
T.writes([B[0, tx, 0]])
B[0, tx, 0] = A[tx, 0] * T.float32(2)
with T.block():
T.reads([A[tx, 1:16], B[0:2, tx, 0]])
T.wr |
ites([B[0:2, tx, 0], C[tx, 0:15]])
for i in T.serial(
0,
15,
annotations={"pragma_loop_partition_hint": True},
):
with T.block():
T.reads([A[tx, i + 1]])
T.writes([B[(i + 1) % 2, tx, 0]])
B[(i + 1) % 2, tx, 0] = A[tx, i + 1] * T.float32(2)
with T.block():
T.reads([B[i % 2, tx, 0]])
T.writes([C[tx, i]])
C[tx, i] = B[i % 2, tx, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, 0]])
T.writes([C[tx, 15]])
C[tx, 15] = B[1, tx, 0] + T.float32(1)
@T.prim_func
def three_stage_compute(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1, 2],
"software_pipeline_order": [0, 1, 2],
},
):
with T.block("compute"):
T.reads(A[tx, i])
T.writes(D[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
C = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, 0])
C[tx, 0] = B[tx, 0] + T.float32(2)
with T.block():
T.reads(C[tx, 0])
T.writes(D[tx, i])
D[tx, i] = C[tx, 0] + T.float32(1)
@T.prim_func
def transformed_three_stage_compute(
A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]
) -> |
None:
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0:16])
T.writes(D[tx, 0:16])
B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
C = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, 0:2], B[0:2, tx, 0])
T.writes(B[0:2, tx, 0], C[0:2, tx, 0])
for i in T.unroll(2):
with T.block():
T.reads(A[tx, i])
T.writes(B[0:2, tx, 0])
B[i, tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.where(i == 1)
T.reads(B[0:2, tx, 0])
T.writes(C[0:2, tx, 0])
C[(i + 1) % 2, tx, 0] = B[(i + 1) % 2, tx, 0] + T.float32(2)
with T.block():
T.reads(A[tx, 2:16], B[0:2, tx, 0], C[0:2, tx, 0])
T.writes(B[0:2, tx, 0], C[0:2, tx, 0], D[tx, 0:14])
for i in T.serial(14):
with T.block():
T.reads(A[tx, i + 2])
T.writes(B[0:2, tx, 0])
B[i % 2, tx, 0] = A[tx, i + 2] * T.float32(2)
with T.block():
T.reads(B[0:2, tx, 0])
T.writes(C[0:2, tx, 0])
C[(i + 1) % 2, tx, 0] = B[(i + 1) % 2, tx, 0] + T.float32(2)
with T.block():
T.reads(C[0:2, tx, 0])
T.writes(D[tx, i])
D[tx, i] = C[i % 2, tx, 0] + T.float32(1)
with T.block():
T.reads(B[0:2, tx, 0], C[0:2, tx, 0])
T.writes(C[0:2, tx, 0], D[tx, 14:16])
for i in T.unroll(2):
with T.block():
T.where(i < 1)
T.reads(B[0:2, tx, 0]) |
T.writes(C[0:2, tx, 0])
C[(i + 1) % 2, tx, 0] = B[(i + 1) % 2, tx, 0] + T.float32(2)
with T.block():
T.reads(C[0:2, tx, 0])
T.writes(D[tx, i + 14])
D[tx, i + 14] = C[i, tx, 0] + T.float32(1)
@T.prim_func
def dag_interleaving(
A: T.Buffer[(16, 16), "float32"],
B: T.Buffer[(16, 16), "float32"],
C: T.Buffer[(16, 16), "float32"],
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 0, 0, 0, 1],
"software_pipeline_order": [0, 2, 1, 3, 4],
},
):
with T.block():
T.reads(A[tx, i])
T.writes(C[tx, i])
AS = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
BS = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
AL = T.alloc_buffer((1, 1), dtype="float32", scope="local")
BL = T.alloc_buffer((1, 1), dtype="float32", scope="local")
with T.block():
T.reads(A[tx, i])
T.writes(AS[tx, 0])
AS[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(AS[tx, 0])
T.writes(AL[0, 0])
AL[0, 0] = AS[tx, 0]
with T.block():
T.reads(B[tx, i])
T.writes(BS[tx, 0])
BS[tx, 0] = B[tx, i] + T.float32(2)
with T.block():
T.reads(BS[tx, 0])
T.writes(BL[0, 0])
BL[0, 0] = BS[tx, 0]
with T.block():
T.reads(AL[0, 0], BL[0, 0])
T.writes(C[tx, i])
C[tx, i] = AL[0, 0] * BL[0, 0]
@T.prim_func
def transformed_dag_interleaving(
A: T.Buffer[(16, 16) |
, "float32"],
B: T.Buffer[(16, 16), "float32"],
C: T.Buffer[(16, 16), "float32"],
) -> None:
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0:16], B[tx, 0:16])
T.writes(C[tx, 0:16])
AS = T.alloc_buffer([16, 1], dtype="float32", scope="shared")
BS = T.alloc_buffer([16, 1], dtype="float32", scope="shared")
AL = T.alloc_buffer([2, 1, 1], dtype="float32", scope="local")
BL = T.alloc_buffer([2, 1, 1], dtype="float32", scope="local")
with T.block():
T.reads(A[tx, 0], B[tx, 0], AS[tx, 0], BS[tx, 0])
T.writes(AS[tx, 0], BS[tx, 0], AL[0, 0, 0], BL[0, 0, 0])
with T.block():
T.reads(A[tx, 0])
T.writes(AS[tx, 0])
AS[tx, 0] = A[tx, 0] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(BS[tx, 0])
BS[tx, 0] = B[tx, 0] + T.float32(2)
with T.block():
T.reads(AS[tx, 0])
T.writes(AL[0, 0, 0])
AL[0, 0, 0] = AS[tx, 0]
with T.block():
T.reads(BS[tx, 0])
T.writes(BL[0, 0, 0])
BL[0, 0, 0] = BS[tx, 0]
with T.block():
T.reads(
A[tx, 1:16], B[tx, 1:16], AS[tx, 0], BS[tx, 0], AL[0:2, 0, 0], BL[0:2, 0, 0]
)
T.writes(AS[tx, 0], BS[tx, 0], AL[0:2, 0, 0], BL[0:2, 0, 0], C[tx, 0:15])
for i in T.serial(15):
with T.block():
T.reads(A[tx, i + 1])
T.writes(AS[tx, 0])
AS[tx, 0] = A[tx, i + 1] * T.float32(2)
with T.block():
T.reads(B[tx, i + 1])
T.writes(BS[tx, 0])
BS[tx, 0] = B[tx, i + 1] + T.float32( |
2)
with T.block():
T.reads(AS[tx, 0])
T.writes(AL[(i + 1) % 2, 0, 0])
AL[(i + 1) % 2, 0, 0] = AS[tx, 0]
with T.block():
T.reads(BS[tx, 0])
T.writes(BL[(i + 1) % 2, 0, 0])
BL[(i + 1) % 2, 0, 0] = BS[tx, 0]
with T.block():
T.reads(AL[i % 2, 0, 0], BL[i % 2, 0, 0])
T.writes(C[tx, i])
C[tx, i] = AL[i % 2, 0, 0] * BL[i % 2, 0, 0]
with T.block():
T.reads(AL[1, 0, 0], BL[1, 0, 0])
T.writes(C[tx, 15])
C[tx, 15] = AL[1, 0, 0] * BL[1, 0, 0]
@T.prim_func
def nested_pipeline_simple(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1, 1, 1],
"software_pipeline_order": [0, 1, 2, 3],
},
):
with T.block():
T.reads(A[tx, i, 0:16])
T.writes(C[tx, i, 0:16])
A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared")
for j in T.serial(0, 16):
with T.block():
T.reads(A[tx, i, j])
T.writes(A_shared[tx, 0, j])
A_shared[tx, 0, j] = A[tx, i, j]
for j in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1],
"software_pipeline_order": [0, 1],
},
):
with T.block():
T.reads(A_shared[tx, 0, j])
T.writes(C[tx, i, j])
B = |
T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A_shared[tx, i, j])
T.writes(B[tx, i, 0])
B[tx, i, 0] = A_shared[tx, 0, j] * T.float32(2)
with T.block():
T.reads(B[tx, i, 0])
T.writes(C[tx, i, j])
C[tx, i, j] = B[tx, i, 0] + T.float32(1)
@T.prim_func
def transformed_nested_pipeline_simple(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
with T.block():
T.reads([A[tx, 0:16, 0:16]])
T.writes([C[tx, 0:16, 0:16]])
A_shared = T.alloc_buffer([2, 16, 1, 16], dtype="float32", scope="shared")
B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared")
with T.block():
T.reads([A[tx, 0, 0:16]])
T.writes([A_shared[0, tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, 0, j]])
T.writes([A_shared[0, tx, 0, j]])
A_shared[0, tx, 0, j] = A[tx, 0, j]
with T.block():
T.reads([A[tx, 1:16, 0:16], A_shared[0:2, tx, 0:15, 0:16], B[0:2, tx, 0:15, 0]])
T.writes([A_shared[0:2, tx, 0, 0:16], B[0:2, tx, 0:15, 0], C[tx, 0:15, 0:16]])
for i in T.serial(0, 15):
with T.block():
T.reads([A[tx, i + 1, 0:16]])
T.writes([A_shared[(i + 1) % 2, tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, i + 1, j]])
T.writes([A_shared[(i + 1) % 2, tx, 0, j]])
A_shared[(i + 1) % 2, tx, 0, |
j] = A[tx, i + 1, j]
with T.block():
T.reads([A_shared[i % 2, tx, i, 0]])
T.writes([B[0, tx, i, 0]])
B[0, tx, i, 0] = A_shared[i % 2, tx, 0, 0] * T.float32(2)
with T.block():
T.reads([A_shared[i % 2, tx, i, 1:16], B[0:2, tx, i, 0]])
T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_shared[i % 2, tx, i, j + 1]])
T.writes([B[(j + 1) % 2, tx, i, 0]])
B[(j + 1) % 2, tx, i, 0] = A_shared[
i % 2, tx, 0, j + 1
] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, i, 0]])
T.writes([C[tx, i, j]])
C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, i, 0]])
T.writes([C[tx, i, 15]])
C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1)
with T.block():
T.reads([A_shared[1, tx, 15, 0:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]])
with T.block():
T.reads([A_shared[1, tx, 15, 0]])
T.writes([B[0, tx, 15, 0]])
B[0, tx, 15, 0] = A_shared[1, tx, 0, 0] * T.float32(2)
with T.block():
T.reads([A_shared[1, tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_shared[1, tx, 15, j + 1]])
T.writes([B[(j + 1) % 2, t |
x, 15, 0]])
B[(j + 1) % 2, tx, 15, 0] = A_shared[1, tx, 0, j + 1] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, 15, 0]])
T.writes([C[tx, 15, j]])
C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, 15, 0]])
T.writes([C[tx, 15, 15]])
C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1)
@T.prim_func
def nested_pipeline_prefetch_inner(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 0, 1, 1],
"software_pipeline_order": [0, 2, 1, 3],
},
):
with T.block():
T.reads(A[tx, i, 0:16])
T.writes(C[tx, i, 0:16])
A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared")
for j in T.serial(0, 16):
with T.block():
T.reads(A[tx, i, j])
T.writes(A_shared[tx, 0, j])
A_shared[tx, 0, j] = A[tx, i, j]
for j in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1],
"software_pipeline_order": [0, 1],
},
):
with T.block():
T.reads(A_shared[tx, 0, j])
T.writes(C[tx, i, j])
B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A_shared[tx, i, j])
T.writes(B[tx, i, 0]) |
B[tx, i, 0] = A_shared[tx, 0, j] * T.float32(2)
with T.block():
T.reads(B[tx, i, 0])
T.writes(C[tx, i, j])
C[tx, i, j] = B[tx, i, 0] + T.float32(1)
@T.prim_func
def transformed_nested_pipeline_prefetch_inner(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
with T.block():
T.reads([A[tx, 0:16, 0:16]])
T.writes([C[tx, 0:16, 0:16]])
A_shared = T.alloc_buffer([2, 16, 1, 16], dtype="float32", scope="shared")
B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared")
with T.block():
T.reads([A[tx, 0, 0:16], A_shared[0, tx, 0, 0]])
T.writes([A_shared[0, tx, 0, 0:16], B[0, tx, 0, 0]])
with T.block():
T.reads([A[tx, 0, 0:16]])
T.writes([A_shared[0, tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, 0, j]])
T.writes([A_shared[0, tx, 0, j]])
A_shared[0, tx, 0, j] = A[tx, 0, j]
with T.block():
T.reads([A_shared[0, tx, 0, 0]])
T.writes([B[0, tx, 0, 0]])
B[0, tx, 0, 0] = A_shared[0, tx, 0, 0] * T.float32(2)
with T.block():
T.reads([A[tx, 1:16, 0:16], A_shared[0:2, tx, 0:16, 0:16], B[0:2, tx, 0:15, 0]])
T.writes([A_shared[0:2, tx, 0, 0:16], B[0:2, tx, 0:16, 0], C[tx, 0:15, 0:16]])
for i in T.serial(0, 15):
with T.block():
T.reads([A[tx, i + 1, 0:16]])
T.writes([A_shared[(i + 1) % 2, tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block(): |
T.reads([A[tx, i + 1, j]])
T.writes([A_shared[(i + 1) % 2, tx, 0, j]])
A_shared[(i + 1) % 2, tx, 0, j] = A[tx, i + 1, j]
with T.block():
T.reads([A_shared[i % 2, tx, i, 1:16], B[0:2, tx, i, 0]])
T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_shared[i % 2, tx, i, j + 1]])
T.writes([B[(j + 1) % 2, tx, i, 0]])
B[(j + 1) % 2, tx, i, 0] = A_shared[
i % 2, tx, 0, j + 1
] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, i, 0]])
T.writes([C[tx, i, j]])
C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1)
with T.block():
T.reads([A_shared[(i + 1) % 2, tx, i + 1, 0]])
T.writes([B[0, tx, i + 1, 0]])
B[0, tx, i + 1, 0] = A_shared[(i + 1) % 2, tx, 0, 0] * T.float32(2)
with T.block():
T.reads([B[1, tx, i, 0]])
T.writes([C[tx, i, 15]])
C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1)
with T.block():
T.reads([A_shared[1, tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]])
with T.block():
T.reads([A_shared[1, tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_shared[1, tx, 15, j + 1]])
T.writes([B[(j + 1) % 2, tx, 15, 0] |
])
B[(j + 1) % 2, tx, 15, 0] = A_shared[1, tx, 0, j + 1] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, 15, 0]])
T.writes([C[tx, 15, j]])
C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, 15, 0]])
T.writes([C[tx, 15, 15]])
C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1)
@T.prim_func
def nested_pipeline_interleaving(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 0, 0, 1, 1],
"software_pipeline_order": [0, 2, 3, 1, 4],
},
):
with T.block():
T.reads(A[tx, i, 0:16])
T.writes(C[tx, i, 0:16])
A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared")
A_local = T.alloc_buffer((1, 1, 16), dtype="float32", scope="local")
for j in T.serial(0, 16):
with T.block():
T.reads(A[tx, i, j])
T.writes(A_shared[tx, 0, j])
A_shared[tx, 0, j] = A[tx, i, j]
for j in T.serial(0, 16):
with T.block():
T.reads(A_shared[tx, 0, j])
T.writes(A_local[0, 0, j])
A_local[0, 0, j] = A_shared[tx, i, j]
for j in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1],
"software_pipeline_order": [0, 1],
},
):
with T.block():
T.reads(A_ |
local[0, 0, j])
T.writes(C[tx, i, j])
B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A_local[tx, i, j])
T.writes(B[tx, i, 0])
B[tx, i, 0] = A_local[0, 0, j] * T.float32(2)
with T.block():
T.reads(B[tx, i, 0])
T.writes(C[tx, i, j])
C[tx, i, j] = B[tx, i, 0] + T.float32(1)
@T.prim_func
def transformed_nested_pipeline_interleaving(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
with T.block():
T.reads([A[tx, 0:16, 0:16]])
T.writes([C[tx, 0:16, 0:16]])
A_shared = T.alloc_buffer([16, 1, 16], dtype="float32", scope="shared")
A_local = T.alloc_buffer([1, 1, 16], dtype="float32", scope="local")
B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared")
with T.block():
T.reads([A[tx, 0, 0:16], A_shared[tx, 0, 0:16], A_local[tx, 0, 0]])
T.writes([A_shared[tx, 0, 0:16], A_local[0, 0, 0:16], B[0, tx, 0, 0]])
with T.block():
T.reads([A[tx, 0, 0:16]])
T.writes([A_shared[tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, 0, j]])
T.writes([A_shared[tx, 0, j]])
A_shared[tx, 0, j] = A[tx, 0, j]
with T.block():
T.reads([A_shared[tx, 0, 0:16]])
T.writes([A_local[0, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A_shared[tx, 0, j]])
T.writes([A |
_local[0, 0, j]])
A_local[0, 0, j] = A_shared[tx, 0, j]
with T.block():
T.reads([A_local[tx, 0, 0]])
T.writes([B[0, tx, 0, 0]])
B[0, tx, 0, 0] = A_local[0, 0, 0] * T.float32(2)
with T.block():
T.reads(
[
A[tx, 1:16, 0:16],
A_local[tx, 0:16, 0:16],
B[0:2, tx, 0:15, 0],
A_shared[tx, 0, 0:16],
]
)
T.writes(
[
A_shared[tx, 0, 0:16],
B[0:2, tx, 0:16, 0],
C[tx, 0:15, 0:16],
A_local[0, 0, 0:16],
]
)
for i in T.serial(0, 15):
with T.block():
T.reads([A[tx, i + 1, 0:16]])
T.writes([A_shared[tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, i + 1, j]])
T.writes([A_shared[tx, 0, j]])
A_shared[tx, 0, j] = A[tx, i + 1, j]
with T.block():
T.reads([A_local[tx, i, 1:16], B[0:2, tx, i, 0]])
T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_local[tx, i, j + 1]])
T.writes([B[(j + 1) % 2, tx, i, 0]])
B[(j + 1) % 2, tx, i, 0] = A_local[0, 0, j + 1] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, i, 0]])
T.writes([C[tx, i, j]])
C[tx, i, j] = B[j % 2, tx, i, |
0] + T.float32(1)
with T.block():
T.reads([A_shared[tx, 0, 0:16]])
T.writes([A_local[0, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A_shared[tx, 0, j]])
T.writes([A_local[0, 0, j]])
A_local[0, 0, j] = A_shared[tx, i + 1, j]
with T.block():
T.reads([A_local[tx, i + 1, 0]])
T.writes([B[0, tx, i + 1, 0]])
B[0, tx, i + 1, 0] = A_local[0, 0, 0] * T.float32(2)
with T.block():
T.reads([B[1, tx, i, 0]])
T.writes([C[tx, i, 15]])
C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1)
with T.block():
T.reads([A_local[tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]])
with T.block():
T.reads([A_local[tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_local[tx, 15, j + 1]])
T.writes([B[(j + 1) % 2, tx, 15, 0]])
B[(j + 1) % 2, tx, 15, 0] = A_local[0, 0, j + 1] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, 15, 0]])
T.writes([C[tx, 15, j]])
C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, 15, 0]])
T.writes([C[tx, 15, 15]])
C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1)
@T.prim_func
def nested_pipeline_double_buffer(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffe |
r[(16, 16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 0, 0, 1, 1],
"software_pipeline_order": [0, 2, 3, 1, 4],
},
):
with T.block():
T.reads(A[tx, i, 0:16])
T.writes(C[tx, i, 0:16])
A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared")
A_local = T.alloc_buffer((1, 1, 16), dtype="float32", scope="local")
for j in T.serial(0, 16):
with T.block():
T.reads(A[tx, i, j])
T.writes(A_shared[tx, 0, j])
A_shared[tx, 0, j] = A[tx, i, j]
for j in T.serial(0, 16):
with T.block():
T.block_attr({"double_buffer_scope": 0})
T.reads(A_shared[tx, 0, j])
T.writes(A_local[0, 0, j])
A_local[0, 0, j] = A_shared[tx, i, j]
for j in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1],
"software_pipeline_order": [0, 1],
},
):
with T.block():
T.reads(A_local[0, 0, j])
T.writes(C[tx, i, j])
B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A_local[tx, i, j])
T.writes(B[tx, i, 0])
B[tx, i, 0] = A_local[0, 0, j] * T.float32(2)
with T.block():
T.reads(B[tx, i, 0])
T.writes(C[tx, i, j])
C[tx, i, j] = B[tx, i, |
0] + T.float32(1)
@T.prim_func
def transformed_nested_pipeline_double_buffer(
A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"]
) -> None:
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
with T.block():
T.reads([A[tx, 0:16, 0:16]])
T.writes([C[tx, 0:16, 0:16]])
A_shared = T.alloc_buffer([16, 1, 16], dtype="float32", scope="shared")
A_local = T.alloc_buffer([2, 1, 1, 16], dtype="float32", scope="local")
B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared")
with T.block():
T.reads([A[tx, 0, 0:16], A_shared[tx, 0, 0:16], A_local[0, tx, 0, 0]])
T.writes([A_shared[tx, 0, 0:16], A_local[0, 0, 0, 0:16], B[0, tx, 0, 0]])
with T.block():
T.reads([A[tx, 0, 0:16]])
T.writes([A_shared[tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, 0, j]])
T.writes([A_shared[tx, 0, j]])
A_shared[tx, 0, j] = A[tx, 0, j]
with T.block():
T.reads([A_shared[tx, 0, 0:16]])
T.writes([A_local[0, 0, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A_shared[tx, 0, j]])
T.writes([A_local[0, 0, 0, j]])
T.block_attr({"double_buffer_scope": 0})
A_local[0, 0, 0, j] = A_shared[tx, 0, j]
with T.block():
T.reads([A_local[0, tx, 0, 0]])
T.writes([B[0, tx, 0, 0]])
B[0, tx, 0, 0] = A_local[0, 0, 0, 0] * T.float32(2)
with T.block():
T.reads(
[
A[tx, 1:16, 0:16],
A_local[0:2, tx, 0:16, 0:16], |
B[0:2, tx, 0:15, 0],
A_shared[tx, 0, 0:16],
]
)
T.writes(
[
A_shared[tx, 0, 0:16],
B[0:2, tx, 0:16, 0],
C[tx, 0:15, 0:16],
A_local[0:2, 0, 0, 0:16],
]
)
for i in T.serial(0, 15):
with T.block():
T.reads([A[tx, i + 1, 0:16]])
T.writes([A_shared[tx, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A[tx, i + 1, j]])
T.writes([A_shared[tx, 0, j]])
A_shared[tx, 0, j] = A[tx, i + 1, j]
with T.block():
T.reads([A_local[i % 2, tx, i, 1:16], B[0:2, tx, i, 0]])
T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_local[i % 2, tx, i, j + 1]])
T.writes([B[(j + 1) % 2, tx, i, 0]])
B[(j + 1) % 2, tx, i, 0] = A_local[i % 2, 0, 0, j + 1] * T.float32(
2
)
with T.block():
T.reads([B[j % 2, tx, i, 0]])
T.writes([C[tx, i, j]])
C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1)
with T.block():
T.reads([A_shared[tx, 0, 0:16]])
T.writes([A_local[(i + 1) % 2, 0, 0, 0:16]])
for j in T.serial(0, 16):
with T.block():
T.reads([A_shared[tx, 0, j]]) |
T.writes([A_local[(i + 1) % 2, 0, 0, j]])
T.block_attr({"double_buffer_scope": 0})
A_local[(i + 1) % 2, 0, 0, j] = A_shared[tx, i + 1, j]
with T.block():
T.reads([A_local[(i + 1) % 2, tx, i + 1, 0]])
T.writes([B[0, tx, i + 1, 0]])
B[0, tx, i + 1, 0] = A_local[(i + 1) % 2, 0, 0, 0] * T.float32(2)
with T.block():
T.reads([B[1, tx, i, 0]])
T.writes([C[tx, i, 15]])
C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1)
with T.block():
T.reads([A_local[1, tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]])
with T.block():
T.reads([A_local[1, tx, 15, 1:16], B[0:2, tx, 15, 0]])
T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]])
for j in T.serial(0, 15):
with T.block():
T.reads([A_local[1, tx, 15, j + 1]])
T.writes([B[(j + 1) % 2, tx, 15, 0]])
B[(j + 1) % 2, tx, 15, 0] = A_local[1, 0, 0, j + 1] * T.float32(2)
with T.block():
T.reads([B[j % 2, tx, 15, 0]])
T.writes([C[tx, 15, j]])
C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1)
with T.block():
T.reads([B[1, tx, 15, 0]])
T.writes([C[tx, 15, 15]])
C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1)
@T.prim_func
def simple_compute_incorrect_reorder(
A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": |
[0, 1, 1],
"software_pipeline_order": [0, 2, 1],
},
):
with T.block():
T.reads(A[tx, i])
T.writes(D[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
C = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, 0])
C[tx, 0] = B[tx, 0] + T.float32(2)
with T.block():
T.reads(C[tx, 0])
T.writes(D[tx, i])
D[tx, i] = C[tx, 0] + T.float32(1)
@T.prim_func
def simple_compute_conflicting_order(
A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(
0,
16,
annotations={
"software_pipeline_stage": [0, 1, 1],
"software_pipeline_order": [0, 1, 1],
},
):
with T.block():
T.reads(A[tx, i])
T.writes(D[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
C = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, 0])
C[tx, 0] = B[tx, 0] + T.float32(2)
with T.block():
T.reads(C[tx, 0])
T.writes(D[tx, i])
D[tx, i] = C[tx, 0] + T.float32(1)
@T.prim_func
def simple_compute_missing_annotation(
A: T.Bu |
ffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in T.serial(0, 16, annotations={"software_pipeline_stage": [0, 1]}):
with T.block():
T.reads(A[tx, i])
T.writes(C[tx, i])
B = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(B[tx, 0])
B[tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(B[tx, 0])
T.writes(C[tx, i])
C[tx, i] = B[tx, 0] + T.float32(1)
def test_simple_compute():
_check(gen_simple_compute(1), transformed_simple_compute)
def test_simple_compute_with_other_annotation():
_check(simple_compute_with_other_annotation, transformed_simple_compute_with_other_annotation)
def test_trivial_pipeline():
_check(trivial_pipeline, transformed_trivial_pipeline)
def test_three_stage_compute():
_check(three_stage_compute, transformed_three_stage_compute)
def test_dag_interleaving():
_check(dag_interleaving, transformed_dag_interleaving)
def test_nest_pipeline_simple():
_check(nested_pipeline_simple, transformed_nested_pipeline_simple)
def test_nest_pipeline_prefetch_inner():
_check(nested_pipeline_prefetch_inner, transformed_nested_pipeline_prefetch_inner)
def test_nest_pipeline_interleaving():
_check(nested_pipeline_interleaving, transformed_nested_pipeline_interleaving)
def test_nest_pipeline_double_buffer():
_check(nested_pipeline_double_buffer, transformed_nested_pipeline_double_buffer)
def test_error_reorder():
_check_error(simple_compute_incorrect_reorder)
def test_error_conflicting_order():
_check_error(simple_compute_conflicting_order)
def test_error_missing_annotation():
_check_error(simple_compute_missing_annotation)
def test_simple_compute_async():
mod = tvm.IRModule.from_expr(gen_s |
imple_compute(1))
sch = tvm.tir.Schedule(mod)
_, loop = sch.get_loops(sch.get_block("compute"))
sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0])
mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod)
@T.prim_func
def ref(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]):
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0:16])
T.writes(C[tx, 0:16])
B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, 0])
T.writes(B[0, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
B[T.FloorMod(0, 2), tx, 0] = A[tx, 0] * T.float32(2)
with T.block():
T.reads(A[tx, 1:16], B[0:2, tx, 0])
T.writes(B[0:2, tx, 0], C[tx, 0:15])
for i in T.serial(15):
with T.block():
T.where(i + 1 < 16)
T.reads(A[tx, i + 1])
T.writes(B[(i + 1) % 2, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
B[(i + 1) % 2, tx, 0] = A[tx, i + 1] * T.float32(2)
with T.block():
T.where(i + 1 - 1 < 16)
T.reads(B[(i - 1 + 1) % 2, tx, 0])
T.writes(C[tx, i - 1 + 1])
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 1):
C[tx, i - 1 + 1] = B[(i - 1 + 1) % 2, tx, 0] + T.float32(1)
with T.block():
T.reads(B[T.Flo |
orMod(15, 2), tx, 0])
T.writes(C[tx, 15])
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 0):
C[tx, 15] = B[T.FloorMod(15, 2), tx, 0] + T.float32(1)
tvm.ir.assert_structural_equal(mod["main"], ref, True)
mod = tvm.IRModule.from_expr(gen_simple_compute(3))
sch = tvm.tir.Schedule(mod)
_, loop = sch.get_loops(sch.get_block("compute"))
sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0])
mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod)
@T.prim_func
def ref(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]) -> None:
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0:16])
T.writes(C[tx, 0:16])
B = T.alloc_buffer([4, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, 0:3])
T.writes(B[0:3, tx, 0])
for i in T.unroll(3):
with T.block():
T.where(i < 16)
T.reads(A[tx, i])
T.writes(B[i % 4, tx, 0])
T.attr(0, "async_commit_queue_scope", 0)
T.attr(0, "async_scope", 1)
B[i % 4, tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.reads(A[tx, 3:16], B[0:4, tx, 0])
T.writes(B[0:4, tx, 0], C[tx, 0:13])
for i in T.serial(13):
with T.block():
T.where(i + 3 < 16)
T.reads(A[tx, i + 3])
T.writes(B[(i + 3) % 4, tx, 0])
T.attr(0, "async_commit_queue_scope", 0)
T.attr(0, "async_scope", 1) |
B[(i + 3) % 4, tx, 0] = A[tx, i + 3] * T.float32(2)
with T.block():
T.where(i + 3 - 3 < 16)
T.reads(B[0:4, tx, 0])
T.writes(C[tx, i - 3 + 3])
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 3):
C[tx, i - 3 + 3] = B[(i - 3 + 3) % 4, tx, 0] + T.float32(1)
with T.block():
T.reads(B[0:4, tx, 0])
T.writes(C[tx, 13:16])
for i in T.unroll(3):
with T.block():
T.where(i + 16 - 3 < 16)
T.reads(B[0:4, tx, 0])
T.writes(C[tx, i - 3 + 16])
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 2 - i):
C[tx, i - 3 + 16] = B[(i - 3 + 16) % 4, tx, 0] + T.float32(1)
tvm.ir.assert_structural_equal(mod["main"], ref, True)
def test_async_producer_interleaving():
@T.prim_func
def simple_compute(
A: T.Buffer[(16, 16), "float32"],
B: T.Buffer[(16, 16), "float32"],
C: T.Buffer[(16, 16), "float32"],
):
for tx in T.thread_binding(0, 16, thread="threadIdx.x"):
for i in range(16):
with T.block("compute"):
T.reads(A[tx, i])
T.writes(C[tx, i])
A_shared = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
B_shared = T.alloc_buffer((16, 1), dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, i])
T.writes(A_shared[tx, 0])
A_shared[tx, 0] = A[tx, i]
with T.block():
T.reads(B[tx, i]) |
T.writes(B_shared[tx, 0])
B_shared[tx, 0] = B[tx, i]
with T.block():
T.reads(A_shared[tx, 0], B_shared[tx, 0])
T.writes(C[tx, i])
C[tx, i] = A_shared[tx, 0] + B_shared[tx, 0]
mod = tvm.IRModule.from_expr(simple_compute)
sch = tvm.tir.Schedule(mod)
_, loop = sch.get_loops(sch.get_block("compute"))
sch.annotate(loop, ann_key="software_pipeline_stage", ann_val=[0, 0, 3])
sch.annotate(loop, ann_key="software_pipeline_order", ann_val=[0, 2, 1])
sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0])
mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod)
@T.prim_func
def ref(
A: T.Buffer[(16, 16), "float32"],
B: T.Buffer[(16, 16), "float32"],
C: T.Buffer[(16, 16), "float32"],
) -> None:
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0:16], B[tx, 0:16])
T.writes(C[tx, 0:16])
A_shared = T.alloc_buffer([4, 16, 1], dtype="float32", scope="shared")
B_shared = T.alloc_buffer([4, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, 0:3], B[tx, 0:3])
T.writes(A_shared[0:3, tx, 0], B_shared[0:3, tx, 0])
for i in T.unroll(3):
with T.block():
T.where(i < 16)
T.reads(A[tx, i], B[tx, i])
T.writes(A_shared[i % 4, tx, 0], B_shared[i % 4, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
A_shared[i % 4, tx, 0] = A[tx, i]
with T.attr(0, "async_scope", 1):
B_shared[i % 4, tx, 0] = B[tx, i] |
with T.block():
T.reads(A[tx, 3:16], A_shared[0:4, tx, 0], B_shared[0:4, tx, 0], B[tx, 3:16])
T.writes(A_shared[0:4, tx, 0], C[tx, 0:13], B_shared[0:4, tx, 0])
for i in T.serial(13):
with T.block():
T.where(i + 3 < 16)
T.reads(A[tx, i + 3])
T.writes(A_shared[(i + 3) % 4, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
A_shared[(i + 3) % 4, tx, 0] = A[tx, i + 3]
with T.block():
T.where(i + 3 - 3 < 16)
T.reads(A_shared[0:4, tx, 0], B_shared[0:4, tx, 0])
T.writes(C[tx, i - 3 + 3])
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 5):
C[tx, i - 3 + 3] = (
A_shared[(i - 3 + 3) % 4, tx, 0]
+ B_shared[(i - 3 + 3) % 4, tx, 0]
)
with T.block():
T.where(i + 3 < 16)
T.reads(B[tx, i + 3])
T.writes(B_shared[(i + 3) % 4, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
B_shared[(i + 3) % 4, tx, 0] = B[tx, i + 3]
with T.block():
T.reads(A_shared[0:4, tx, 0], B_shared[0:4, tx, 0])
T.writes(C[tx, 13:16])
for i in T.unroll(3):
with T.block():
T.where(i + 16 - 3 < 16)
T.reads(A_share |
d[0:4, tx, 0], B_shared[0:4, tx, 0])
T.writes(C[tx, i - 3 + 16])
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 2 - i):
C[tx, i - 3 + 16] = (
A_shared[(i - 3 + 16) % 4, tx, 0]
+ B_shared[(i - 3 + 16) % 4, tx, 0]
)
tvm.ir.assert_structural_equal(mod["main"], ref, True)
def test_three_stage_compute_two_stage_async():
mod = tvm.IRModule.from_expr(three_stage_compute)
sch = tvm.tir.Schedule(mod)
_, loop = sch.get_loops(sch.get_block("compute"))
sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0, 1])
mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod)
@T.prim_func
def ref(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]) -> None:
for tx in T.thread_binding(16, thread="threadIdx.x"):
with T.block():
T.reads(A[tx, 0:16])
T.writes(D[tx, 0:16])
B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
C = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared")
with T.block():
T.reads(A[tx, 0:2], B[0:2, tx, 0])
T.writes(B[0:2, tx, 0], C[0:2, tx, 0])
for i in T.unroll(2):
with T.block():
T.where(i < 16)
T.reads(A[tx, i])
T.writes(B[i % 2, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
B[i % 2, tx, 0] = A[tx, i] * T.float32(2)
with T.block():
T.where(i == 1 and i - 1 < 16)
T.reads |
(B[(i + 1) % 2, tx, 0])
T.writes(C[(i + 1) % 2, tx, 0])
with T.attr(0, "async_commit_queue_scope", 1):
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 1):
with T.attr(0, "async_scope", 1):
C[(i - 1) % 2, tx, 0] = B[
(i - 1) % 2, tx, 0
] + T.float32(2)
with T.block():
T.reads(A[tx, 2:16], B[0:2, tx, 0], C[0:2, tx, 0])
T.writes(B[0:2, tx, 0], C[0:2, tx, 0], D[tx, 0:14])
for i in T.serial(14):
with T.block():
T.where(i + 2 < 16)
T.reads(A[tx, i + 2])
T.writes(B[i % 2, tx, 0])
with T.attr(0, "async_commit_queue_scope", 0):
with T.attr(0, "async_scope", 1):
B[(i + 2) % 2, tx, 0] = A[tx, i + 2] * T.float32(2)
with T.block():
T.where(i + 2 - 1 < 16)
T.reads(B[(i + 1) % 2, tx, 0])
T.writes(C[(i + 1) % 2, tx, 0])
with T.attr(0, "async_commit_queue_scope", 1):
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 1):
with T.attr(0, "async_scope", 1):
C[(i - 1 + 2) % 2, tx, 0] = B[
(i - 1 + 2) % 2, tx, 0
] + T.float32(2)
with T.block():
T.where(i + 2 - 2 < |
16)
T.reads(C[0:2, tx, 0])
T.writes(D[tx, i - 2 + 2])
with T.attr(0, "async_wait_queue_scope", 1):
with T.attr(0, "async_wait_inflight_count", 1):
D[tx, i - 2 + 2] = C[(i - 2 + 2) % 2, tx, 0] + T.float32(1)
with T.block():
T.reads(B[0:2, tx, 0], C[0:2, tx, 0])
T.writes(C[0:2, tx, 0], D[tx, 14:16])
for i in T.unroll(2):
with T.block():
T.where(i + 16 - 1 < 16)
T.reads(B[(i + 1) % 2, tx, 0])
T.writes(C[(i + 1) % 2, tx, 0])
with T.attr(0, "async_commit_queue_scope", 1):
with T.attr(0, "async_wait_queue_scope", 0):
with T.attr(0, "async_wait_inflight_count", 0 - i):
with T.attr(0, "async_scope", 1):
C[(i - 1 + 16) % 2, tx, 0] = B[
(i - 1 + 16) % 2, tx, 0
] + T.float32(2)
with T.block():
T.where(i + 16 - 2 < 16)
T.reads(C[0:2, tx, 0])
T.writes(D[tx, i - 2 + 16])
with T.attr(0, "async_wait_queue_scope", 1):
with T.attr(
0,
"async_wait_inflight_count",
T.if_then_else(i + 16 - 1 < 16, 1, 0, dtype="int32"),
):
D[tx, i - 2 + 16] = C[(i - 2 + 16) % 2, tx, 0] + T.float32(1)
tvm.ir.assert_structural_equal(mod["main"], ref, True)
N = K = M = 4096
def get_mma_schedule():
i_factors, |
j_factors, k_factors = [1, 32, 1, 4, 2], [16, 2, 4, 1, 2], [128, 2, 1]
def index_map(i, j):
return (
i
j
*shared_16x16_to_ldmatrix_32x8_layout(i % 16, j % 16),
)
workload = te.create_prim_func(
te_workload.matmul(N, M, K, in_dtype="float16", out_dtype="float32")
)
return mma_schedule(
workload,
16,
"float16",
False,
i_factors,
j_factors,
k_factors,
index_map,
index_map,
index_map,
LDMATRIX_16x16_A_DYN_INTRIN,
LDMATRIX_16x16_B_DYN_INTRIN,
MMA_f16f16f32_INTRIN,
MMA_fill_16x16_f32_INTRIN,
MMA_store_16x16_f32_global_INTRIN,
"shared.dyn",
)
def build_and_run(sch):
if tvm.testing.is_ampere_or_newer():
with tvm.transform.PassContext(config={"tir.use_async_copy": 1}):
f = tvm.build(sch.mod["main"], target="cuda")
dev = tvm.device("cuda", 0)
a_np = np.random.uniform(size=(N, K)).astype("float16")
b_np = np.random.uniform(size=(K, M)).astype("float16")
c_np = np.dot(a_np.astype("float32"), b_np.astype("float32"))
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros((N, M), dtype="float32"), dev)
f(a, b, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-3)
@tvm.testing.requires_cuda
def test_async_pipelined_mma_gemm_simple():
sch = get_mma_schedule()
k0 = sch.get_loops(sch.get_block("C_o_update"))[3]
sch.annotate(k0, ann_key="software_pipeline_stage", ann_val=[0, 0, 3])
sch.annotate(k0, ann_key="software_pipeline_order", ann_val=[0, 1, 2])
sch.annotate(k0, ann_key="software_pipeline_async_stages", ann_val=[0])
seq = tvm.transform.Sequential(
[
tvm.tir.transform.PlanAndUpdateBufferAllocationLocation(),
tvm.tir.transform.ConvertBlocksToOpaque(),
tvm.tir.transform.UnifyThreadBinding(),
tvm.tir.transfor |
m.LowerMatchBuffer(),
tvm.tir.transform.InjectSoftwarePipeline(),
]
)
mod = seq(sch.mod)
pipeline = mod["main"].body.block.body.body.body.body.body.block.body[1].block.body
prologue, body, epilogue = pipeline
commit_queue_scope = prologue.block.body.body.block.body
assert len(commit_queue_scope.body) == 2
assert commit_queue_scope.value == 0
commit_queue_scope = body.block.body.body[0].block.body
assert len(commit_queue_scope.body) == 2
assert commit_queue_scope.value == 0
assert body.block.body.body[1].block.body.body.attr_key == "async_wait_inflight_count"
assert body.block.body.body[1].block.body.body.value == 3
assert epilogue.block.body.body.block.body.body.attr_key == "async_wait_inflight_count"
assert str(epilogue.block.body.body.block.body.body.value) == "(2 - i2_0_0: int32)"
build_and_run(sch)
@tvm.testing.requires_cuda
def test_async_nested_pipeline_mma_gemm_ideal_annotation():
sch = get_mma_schedule()
k0 = sch.get_loops(sch.get_block("C_o_update"))[3]
k1 = sch.get_loops(sch.get_block("C_o_update"))[4]
sch.annotate(k0, ann_key="software_pipeline_stage", ann_val=[0, 0, 2, 3, 3])
sch.annotate(k0, ann_key="software_pipeline_order", ann_val=[0, 1, 3, 2, 4])
sch.annotate(k0, ann_key="software_pipeline_async_stages", ann_val=[0])
sch.annotate(k1, ann_key="software_pipeline_stage", ann_val=[0, 0, 1])
sch.annotate(k1, ann_key="software_pipeline_order", ann_val=[0, 1, 2])
seq = tvm.transform.Sequential(
[
tvm.tir.transform.PlanAndUpdateBufferAllocationLocation(),
tvm.tir.transform.ConvertBlocksToOpaque(),
tvm.tir.transform.UnifyThreadBinding(),
tvm.tir.transform.LowerMatchBuffer(),
tvm.tir.transform.InjectSoftwarePipeline(),
]
)
mod = seq(sch.mod)
pipeline = mod["main"].body.block.body.body.body.body.body.block.body[1].block.body
prologue, body, epilogue = pipeline
commit_queue_scope = prol |
ogue.block.body.body[0].block.body
assert len(commit_queue_scope.body) == 2
assert commit_queue_scope.value == 0
assert prologue.block.body.body[1].block.body.body.attr_key == "async_wait_inflight_count"
assert prologue.block.body.body[1].block.body.body.value == 2
commit_queue_scope = body.block.body.body[0].block.body
assert len(commit_queue_scope.body) == 2
assert commit_queue_scope.value == 0
assert body.block.body.body[1].block.body.body.attr_key == "async_wait_inflight_count"
assert body.block.body.body[1].block.body.body.value == 2
assert str(epilogue.block.body.body[0].block.body.body.value) == "(1 - i2_0_0: int32)"
build_and_run(sch)
if __name__ == "__main__":
tvm.testing.main() |
import tvm |
import tvm.testing
from tvm |
import te
from tvm.script |
import tir as T
vthread_name = tvm.testing.parameter("vthread", "cthread")
def test_vthread(vthread_name):
dtype = "int64"
n = 100
m = 4
nthread = 2
def get_vthread(name):
tx = te.thread_axis(name)
ty = te.thread_axis(name)
ib = tvm.tir.ir_builder.create()
A = ib.pointer("float32", name="A")
C = ib.pointer("float32", name="C")
with ib.for_range(0, n) as i:
ib.scope_attr(tx, "virtual_thread", nthread)
ib.scope_attr(ty, "virtual_thread", nthread)
B = ib.allocate("float32", m, name="B", scope="shared")
B[i] = A[i * nthread + tx]
bbuffer = B.asobject()
ib.emit(
tvm.tir.call_extern(
"int32",
"Run",
bbuffer.access_ptr("r"),
tvm.tir.call_intrin("int32", "tir.tvm_context_id"),
)
)
C[i * nthread + tx] = B[i] + 1
return ib.get()
if vthread_name == "vthread":
B_expected_alloc = m * nthread
elif vthread_name == "cthread":
B_expected_alloc = m * nthread * nthread
stmt = tvm.tir.transform.InjectVirtualThread()(
tvm.IRModule.from_expr(tvm.tir.PrimFunc([], get_vthread(vthread_name)))
)["main"]
assert list(stmt.body.body.extents) == [B_expected_alloc]
def test_vthread_extern(vthread_name):
dtype = "int64"
n = 100
m = 4
nthread = 2
def get_vthread(name):
tx = te.thread_axis(name)
ty = te.thread_axis(name)
ib = tvm.tir.ir_builder.create()
with ib.for_range(0, n) as i:
ib.scope_attr(tx, "virtual_thread", nthread)
ib.scope_attr(ty, "virtual_thread", nthread)
A = ib.allocate("float32", m, name="A", scope="shared")
B = ib.allocate("float32", m, name="B", scope="shared")
C = ib.allocate("float32", m, name="C", scope="shared")
abuffer = A.asobject()
bbuffer = B.asobject() |
cbuffer = C.asobject()
A[tx] = tx + 1.0
B[ty] = ty + 1.0
ib.emit(
tvm.tir.call_extern(
"int32",
"Run",
abuffer.access_ptr("r"),
bbuffer.access_ptr("r"),
cbuffer.access_ptr("rw"),
)
)
return ib.get()
if vthread_name == "vthread":
A_expected_alloc = m * nthread
elif vthread_name == "cthread":
A_expected_alloc = m * nthread * nthread
C_expected_alloc = m * nthread * nthread
stmt = tvm.tir.transform.InjectVirtualThread()(
tvm.IRModule.from_expr(tvm.tir.PrimFunc([], get_vthread(vthread_name)))
)["main"]
assert list(stmt.body.body.extents) == [A_expected_alloc]
assert list(stmt.body.body.body.body.extents) == [C_expected_alloc]
def test_vthread_if_then_else():
nthread = 2
tx = te.thread_axis("vthread")
ib = tvm.tir.ir_builder.create()
A = ib.pointer("float32", name="A")
with ib.for_range(0, 100) as i:
ib.scope_attr(tx, "virtual_thread", nthread)
B = ib.allocate("float32", 128, name="B", scope="shared")
with ib.if_scope(i == 0):
B[i] = A[i * nthread + tx]
with ib.else_scope():
B[i] = A[i * nthread + tx] + 1
with ib.if_scope(i == 0):
B[i] = A[i * nthread + tx] + 2
stmt = ib.get()
stmt = tvm.tir.transform.InjectVirtualThread()(
tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
)["main"]
assert stmt.body.body.body[0].else_case != None
assert stmt.body.body.body[1].else_case == None
def test_vthread_simplified():
"""Indices resulting from vthread injection should simplified
This ensures that downstream passes that check for Ramp nodes do
not need to each simplify the indices.
"""
@T.prim_func
def before_func():
vthread = T.env_thread("vthread")
T.launch_thread(vthread, 4)
B_data = T.allocate([4] |
, "int32", scope="shared")
B = T.buffer_decl([4], "int32", data=B_data, scope="shared")
B[0:4] = T.broadcast(vthread, 4)
@T.prim_func
def expected_func():
B_data = T.allocate([16], "int32", scope="shared")
B = T.buffer_decl([16], "int32", data=B_data, scope="shared")
B[T.Mul(0, 4) : T.Mul(0, 4) + 4] = T.broadcast(0, 4)
B[T.Mul(1, 4) : T.Mul(1, 4) + 4] = T.broadcast(1, 4)
B[T.Mul(2, 4) : T.Mul(2, 4) + 4] = T.broadcast(2, 4)
B[T.Mul(3, 4) : T.Mul(3, 4) + 4] = T.broadcast(3, 4)
before_mod = tvm.IRModule.from_expr(before_func)
after_mod = tvm.tir.transform.InjectVirtualThread()(before_mod)
after_func = after_mod["main"]
tvm.ir.assert_structural_equal(after_func, expected_func)
def test_vthread_vectorized():
"""Use of vthread is compatible with vector allocations"""
@T.prim_func
def before_func():
vthread = T.env_thread("vthread")
T.launch_thread(vthread, 4)
B_data = T.allocate([4], "int32", "shared")
B = T.buffer_decl([4], "int32", data=B_data, scope="shared")
B[0:4] = T.broadcast(vthread, 4)
@T.prim_func
def expected_func():
B_data = T.allocate([4], "int32x4", "shared")
B = T.buffer_decl([4], "int32x4", data=B_data, scope="shared")
B[T.Mul(0, 4) / 4] = T.broadcast(0, 4)
B[T.Mul(1, 4) / 4] = T.broadcast(1, 4)
B[T.Mul(2, 4) / 4] = T.broadcast(2, 4)
B[T.Mul(3, 4) / 4] = T.broadcast(3, 4)
before_mod = tvm.IRModule.from_expr(before_func)
intermediate_mod = tvm.tir.transform.InjectVirtualThread()(before_mod)
after_mod = tvm.tir.transform.StorageRewrite()(intermediate_mod)
after_func = after_mod["main"]
tvm.ir.assert_structural_equal(after_func, expected_func)
if __name__ == "__main__":
tvm.testing.main() |
import pytest |
import tvm |
import tvm.testing
from tvm |
import te |
import numpy as np
def collect_visit(stmt, f):
ret = []
tvm.tir.stmt_functor.post_order_visit(stmt, lambda x: ret.append(f(x)))
return ret
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_llvm(index_a, index_b):
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
C = te.compute(A.shape, lambda i: A[i + index_a] + B[i + index_b], name="C")
s = te.create_schedule(C.op)
tgt = "llvm"
tgt_host = "llvm"
stmt = tvm.lower(s, [A, B, C], simple_mode=True)
print(stmt)
tgt = tvm.target.Target(tgt, tgt_host)
fadd = tvm.build(s, [A, B, C], target=tgt, name="myadd")
dev = tvm.device(tgt.kind.name, 0)
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=1024).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(1024, dtype=C.dtype), dev)
fadd(a, b, c)
@tvm.testing.requires_llvm
def test_in_bounds_llvm():
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
C = te.compute(A.shape, lambda i: A[i] + B[i], name="C")
s = te.create_schedule(C.op)
tgt = "llvm"
tgt_host = "llvm"
stmt = tvm.lower(s, [A, B, C], simple_mode=True)
tgt = tvm.target.Target(tgt, tgt_host)
fadd = tvm.build(s, [A, B, C], target=tgt, name="myadd")
dev = tvm.device(tgt.kind.name, 0)
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=1024).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(1024, dtype=C.dtype), dev)
fadd(a, b, c)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_vectorize_llvm(nn, index_a, index_b):
n = tvm.runtime.convert(nn)
a = te.placeholder((n), name="a")
b = te.placeholder((n), name="b")
c = te.compute((n,), lambda i: a[i + index_a] + b[i + index_b], name="c")
s = te.create_schedule(c.op)
xo, xi = s[c].split(c.op.axis[0], factor=8)
s[c].parallel(xo)
s[c] |
.vectorize(xi)
tgt = "llvm"
tgt_host = "llvm"
stmt = tvm.lower(s, [a, b, c], simple_mode=True)
tgt = tvm.target.Target(tgt, tgt_host)
f = tvm.build(s, [a, b, c], target=tgt, name="myaddvec")
dev = tvm.cpu(0)
n = nn
a = tvm.nd.array(np.random.uniform(size=(n)).astype(a.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(n)).astype(a.dtype), dev)
c = tvm.nd.array(np.zeros(n, dtype=c.dtype), dev)
f(a, b, c)
@tvm.testing.requires_llvm
def test_in_bounds_vectorize_llvm():
n = 512
lanes = 2
A = te.placeholder((n,), name="A", dtype="float32x%d" % lanes)
B = te.compute((n,), lambda i: A[i], name="B")
C = te.compute((n,), lambda i: B[i] + tvm.tir.const(1, A.dtype), name="C")
s = te.create_schedule(C.op)
xo, xi = s[C].split(C.op.axis[0], nparts=2)
_, xi = s[C].split(xi, factor=2)
s[C].parallel(xo)
s[C].vectorize(xi)
s[B].compute_at(s[C], xo)
xo, xi = s[B].split(B.op.axis[0], factor=2)
s[B].vectorize(xi)
lowered_func = tvm.lower(s, [A, C], "llvm", simple_mode=False)
f = tvm.build(s, [A, C], "llvm")
dev = tvm.cpu(0)
a = tvm.nd.empty((n,), A.dtype).copyfrom(
np.random.uniform(size=[n] + ([] if lanes == 1 else [lanes]))
)
c = tvm.nd.empty((n,), C.dtype, dev)
f(a, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1)
@tvm.testing.requires_llvm
def test_in_bounds_loop_partition_basic_llvm():
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(32,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(32,)).astype(B.dtype), dev)
t = tvm.nd.empty((32,), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm |
@pytest.mark.xfail
def test_out_of_bounds_loop_partition_basic_llvm(index_a, index_b):
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i + index_a] + B[i + index_b])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(32,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(32,)).astype(B.dtype), dev)
t = tvm.nd.empty((32,), T.dtype, dev)
f(a, b, t)
def test_in_bounds_const_loop_partition_ir():
def check_attr_stmt(x):
if (
isinstance(x, tvm.tir.AttrStmt)
and x.attr_key == "buffer_bound"
and tvm.ir.structural_equal(x.value.args, [n])
):
return True
return False
def check_branch_stmt(x):
if isinstance(x, tvm.tir.IfThenElse):
return True
return False
def assert_bound_instrumentation(stmt, f, nums):
count = 0
for i in collect_visit(stmt, f):
if i is True:
count = count + 1
assert count == nums
def collect_branch_stmt(x):
if isinstance(x, tvm.tir.IfThenElse):
branch_collector.append(x)
n = 21
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
with tvm.transform.PassContext(
config={
"tir.instrument_bound_checkers": True,
"tir.LoopPartition": {"partition_const_loop": True},
}
):
mod = tvm.driver.lower(s, [A, B, T], name="main")
stmt = mod["main"].body
assert_bound_instrumentation(stmt, check_attr_stmt, 2 * 3)
assert_bound_instrumentation(stmt, check_branch_stmt, 2)
branch_co |
llector = list()
collect_visit(stmt, collect_branch_stmt)
assert len(branch_collector) == 2
@tvm.testing.requires_llvm
def test_in_bounds_const_loop_partition_llvm():
with tvm.transform.PassContext(
config={
"tir.instrument_bound_checkers": True,
"tir.LoopPartition": {"partition_const_loop": True},
}
):
n = 21
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(n,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(n,)).astype(B.dtype), dev)
t = tvm.nd.empty((n,), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_const_loop_partition_llvm(index_a, index_b):
with tvm.transform.PassContext(
config={
"tir.instrument_bound_checkers": True,
"tir.LoopPartition": {"partition_const_loop": True},
}
):
n = 21
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i + index_a] + B[i + index_b])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(n,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(n,)).astype(B.dtype), dev)
t = tvm.nd.empty((n,), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
def test_in_bounds_conv_llvm(loop_tiling=False):
HSTR = WSTR = 1
in_channel = 128
kernel_height = kernel_width = 3 |
out_channel = 64
batch_size = 1
in_height = in_width = 64
out_height = out_width = in_height - kernel_height + 1
data = te.placeholder((batch_size, in_channel, in_height, in_width), name="data")
kernel = te.placeholder((kernel_height, kernel_width, in_channel, out_channel), name="kernel")
ic = te.reduce_axis((0, in_channel), name="ic")
kh = te.reduce_axis((0, kernel_height), name="kh")
kw = te.reduce_axis((0, kernel_width), name="kw")
conv = te.compute(
(batch_size, out_channel, out_height, out_width),
lambda n, oc, oh, ow: te.sum(
data[n, ic, oh * HSTR + kh, ow * WSTR + kw] * kernel[kh, kw, ic, oc], axis=[ic, kh, kw]
),
name="conv2d",
)
s = te.create_schedule(conv.op)
n, oc, oh, ow = conv.op.axis
if loop_tiling:
oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16)
lowered_func = tvm.lower(s, [data, kernel, conv], simple_mode=True)
dev = tvm.cpu(0)
f = tvm.build(s, [data, kernel, conv], "llvm")
data_input = tvm.nd.array(
np.random.uniform(size=(batch_size, in_channel, in_height, in_width)).astype("float32"), dev
)
kernel_input = tvm.nd.array(
np.random.uniform(size=(kernel_height, kernel_width, in_channel, out_channel)).astype(
"float32"
),
dev,
)
conv_out = tvm.nd.empty((batch_size, out_channel, out_height, out_width), "float32", dev)
f(data_input, kernel_input, conv_out)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_conv_llvm(data_offsets, kernel_offsets, loop_tiling=False):
HSTR = WSTR = 1
in_channel = 128
kernel_height = kernel_width = 3
out_channel = 64
batch_size = 1
in_height = in_width = 64
out_height = out_width = in_height - kernel_height + 1
data = te.placeholder((batch_size, in_channel, in_height, in_width), name="data")
kernel = te.placeholder((kernel_height, kernel_width, in_channel, out_channel), name="kernel")
ic = te.reduce_axis((0, in_channel), name |
="ic")
kh = te.reduce_axis((0, kernel_height), name="kh")
kw = te.reduce_axis((0, kernel_width), name="kw")
conv = te.compute(
(batch_size, out_channel, out_height, out_width),
lambda n, oc, oh, ow: te.sum(
data[
n + data_offsets[0],
ic + data_offsets[1],
oh * HSTR + kh + data_offsets[2],
ow * WSTR + kw + data_offsets[3],
]
* kernel[
kh + kernel_offsets[0],
kw + kernel_offsets[1],
ic + kernel_offsets[2],
oc + kernel_offsets[3],
],
axis=[ic, kh, kw],
),
name="conv2d",
)
s = te.create_schedule(conv.op)
n, oc, oh, ow = conv.op.axis
if loop_tiling:
oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16)
lowered_func = tvm.lower(s, [data, kernel, conv], simple_mode=True)
dev = tvm.cpu(0)
f = tvm.build(s, [data, kernel, conv], "llvm")
data_input = tvm.nd.array(
np.random.uniform(size=(batch_size, in_channel, in_height, in_width)).astype("float32"), dev
)
kernel_input = tvm.nd.array(
np.random.uniform(size=(kernel_height, kernel_width, in_channel, out_channel)).astype(
"float32"
),
dev,
)
conv_out = tvm.nd.empty((batch_size, out_channel, out_height, out_width), "float32", dev)
f(data_input, kernel_input, conv_out)
@tvm.testing.requires_llvm
def test_in_bounds_tensors_with_same_shapes1D_llvm():
n = te.size_var("n")
k = te.size_var("k")
m = te.size_var("m")
A = te.placeholder((n,), name="A")
B = te.placeholder((k,), name="B")
T = te.compute((m,), lambda i: A[i] * B[i])
s = te.create_schedule(T.op)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(32,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(32,)).astype(B.dtype), |
dev)
t = tvm.nd.empty((32,), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_tensors_with_diff_shapes1D_llvm(a_shape, b_shape, c_shape):
n = te.size_var("n")
k = te.size_var("k")
m = te.size_var("m")
A = te.placeholder((n,), name="A")
B = te.placeholder((k,), name="B")
T = te.compute((m,), lambda i: A[i] * B[i])
s = te.create_schedule(T.op)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(a_shape,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(b_shape,)).astype(B.dtype), dev)
t = tvm.nd.empty((c_shape,), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
def test_in_bounds_tensors_with_same_shapes2D_llvm():
n = te.size_var("n")
k = te.size_var("k")
m = te.size_var("m")
A = te.placeholder((n, n), name="A")
B = te.placeholder((k, k), name="B")
T = te.compute((m, m), lambda i, j: A[i][j] * B[i][j])
s = te.create_schedule(T.op)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(32, 32)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(32, 32)).astype(B.dtype), dev)
t = tvm.nd.empty((32, 32), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_tensors_with_diff_shapes2D_llvm(a_shape, b_shape, c_shape):
n = te.size_var("n")
k = te.size_var("k")
m = te.size_var("m")
A = te.placeholder((n, n), name="A")
B = te.placeholder((k, k), name="B")
T = te.compute((m, m), lambda i, j: A[i][j] * B[i][j])
s = te.create_schedule(T.op)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(a_shape[0], a_shape[1])).astype(A.d |
type), dev)
b = tvm.nd.array(np.random.uniform(size=(b_shape[0], b_shape[1])).astype(B.dtype), dev)
t = tvm.nd.empty((c_shape[0], c_shape[1]), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
def test_in_bounds_tensors_with_same_shapes3D_llvm():
n = te.size_var("n")
k = te.size_var("k")
m = te.size_var("m")
A = te.placeholder((n, n, n), name="A")
B = te.placeholder((k, k, k), name="B")
T = te.compute((m, m, m), lambda i, j, p: A[i][j][p] * B[i][j][p])
s = te.create_schedule(T.op)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(np.random.uniform(size=(32, 32, 32)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(32, 32, 32)).astype(B.dtype), dev)
t = tvm.nd.empty((32, 32, 32), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_tensors_with_diff_shapes3D_llvm(a_shape, b_shape, c_shape):
n = te.size_var("n")
k = te.size_var("k")
m = te.size_var("m")
A = te.placeholder((n, n, n), name="A")
B = te.placeholder((k, k, k), name="B")
T = te.compute((m, m, m), lambda i, j, p: A[i][j][p] * B[i][j][p])
s = te.create_schedule(T.op)
lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False)
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, T], "llvm")
a = tvm.nd.array(
np.random.uniform(size=(a_shape[0], a_shape[1], c_shape[2])).astype(A.dtype), dev
)
b = tvm.nd.array(
np.random.uniform(size=(b_shape[0], b_shape[1], b_shape[2])).astype(B.dtype), dev
)
t = tvm.nd.empty((c_shape[0], c_shape[1], c_shape[2]), T.dtype, dev)
f(a, b, t)
@tvm.testing.requires_llvm
@pytest.mark.xfail
def test_out_of_bounds_tensors_with_zero_shape_op_with_not_zero_shape_llvm():
n = 64
A = te.placeholder((n,), name="A")
scale = te.placeholder((), name="scale")
k = te.reduce_axis((0, n), name="k")
C = te.compute((), lambda: te.sum(A[k |
+ k + k] * scale, axis=k), name="C")
D = te.compute((), lambda: C + 1)
s = te.create_schedule(D.op)
stmt = tvm.lower(s, [A, scale, D], simple_mode=True)
f = tvm.build(s, [A, scale, D], "llvm")
dev = tvm.cpu(0)
a = tvm.nd.array(np.random.randint(0, 2, size=(n,)).astype(A.dtype), dev)
sc = tvm.nd.array(np.random.randint(0, 2, size=()).astype(scale.dtype), dev)
d = tvm.nd.empty((), D.dtype, dev)
f(a, sc, d)
d_np = np.sum(a.numpy()) * sc.numpy() + 1
tvm.testing.assert_allclose(d.numpy(), d_np)
if __name__ == "__main__":
with tvm.transform.PassContext(
config={
"tir.instrument_bound_checkers": True,
}
):
test_out_of_bounds_tensors_with_zero_shape_op_with_not_zero_shape_llvm()
test_in_bounds_llvm()
test_out_of_bounds_llvm(1, 0)
test_out_of_bounds_llvm(0, 1)
test_out_of_bounds_llvm(1, 1)
test_out_of_bounds_llvm(10000, 0)
test_out_of_bounds_llvm(0, 10000)
test_out_of_bounds_llvm(10000, 10000)
test_out_of_bounds_llvm(-1, 0)
test_out_of_bounds_llvm(0, -1)
test_out_of_bounds_llvm(-1, -1)
test_out_of_bounds_llvm(-10000, 0)
test_out_of_bounds_llvm(0, -10000)
test_out_of_bounds_llvm(-10000, -10000)
test_in_bounds_vectorize_llvm()
test_out_of_bounds_vectorize_llvm(1024, 1000, 0)
test_out_of_bounds_vectorize_llvm(1024, 0, 10000)
test_out_of_bounds_vectorize_llvm(1024, -1000, 0)
test_out_of_bounds_vectorize_llvm(1024, 0, -10000)
test_in_bounds_const_loop_partition_llvm()
test_out_of_bounds_const_loop_partition_llvm(1, 0)
test_out_of_bounds_const_loop_partition_llvm(0, 1)
test_out_of_bounds_const_loop_partition_llvm(-1, 0)
test_out_of_bounds_const_loop_partition_llvm(0, -1)
test_in_bounds_loop_partition_basic_llvm()
test_out_of_bounds_loop_partition_basic_llvm(32, 0) |
test_out_of_bounds_loop_partition_basic_llvm(0, 32)
test_out_of_bounds_loop_partition_basic_llvm(-32, 0)
test_out_of_bounds_loop_partition_basic_llvm(0, -32)
test_in_bounds_conv_llvm()
test_out_of_bounds_conv_llvm([1, 0, 0, 0], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 1, 0, 0], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 1, 0], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 1], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([-1, 0, 0, 0], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, -1, 0, 0], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, -1, 0], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, -1], [0, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [1, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 1, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 1, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, 1])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [-1, 0, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, -1, 0, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, -1, 0])
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, -1])
test_in_bounds_conv_llvm(True)
test_out_of_bounds_conv_llvm([1, 0, 0, 0], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 1, 0, 0], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 1, 0], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 1], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([-1, 0, 0, 0], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, -1, 0, 0], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, -1, 0], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, -1], [0, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [1, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 1, 0, 0], True)
test_out_o |
f_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 1, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, 1], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [-1, 0, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, -1, 0, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, -1, 0], True)
test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, -1], True)
test_out_of_bounds_tensors_with_diff_shapes1D_llvm(32, 64, 64)
test_out_of_bounds_tensors_with_diff_shapes1D_llvm(64, 32, 64)
test_out_of_bounds_tensors_with_diff_shapes2D_llvm([64, 64], [32, 32], [64, 64])
test_out_of_bounds_tensors_with_diff_shapes2D_llvm([32, 32], [64, 64], [64, 64])
test_out_of_bounds_tensors_with_diff_shapes3D_llvm([64, 64, 64], [32, 32, 32], [64, 64, 64])
test_out_of_bounds_tensors_with_diff_shapes3D_llvm([32, 32, 32], [64, 64, 64], [64, 64, 64])
test_in_bounds_tensors_with_same_shapes1D_llvm()
test_in_bounds_tensors_with_same_shapes2D_llvm()
test_in_bounds_tensors_with_same_shapes3D_llvm()
test_in_bounds_const_loop_partition_ir() |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import tvm
from tvm import tir, ir
def test_convert_ssa():
dtype = "int32"
zero = tir.const(0)
nop = tir.Evaluate(zero)
var_type = ir.PointerType(ir.PrimType(dtype))
v = tir.Var("i1", var_type)
buf = tir.decl_buffer([16], dtype=dtype, data=v)
let = tir.LetStmt(v, v, nop)
load = tir.Evaluate(tir.BufferLoad(buf, [zero]))
seq = tir.SeqStmt([let, let, load])
func = tir.PrimFunc([], seq)
mod = tvm.IRModule({"main": func})
mod = tir.transform.InjectVirtualThread()(
mod
) # Use pass InjectVirtualThread to invoke ConvertSSA
if __name__ == "__main__":
pytest.main([__file__])
|
import tvm
from tvm |
import te
def test_coproc_lift():
ib = tvm.tir.ir_builder.create()
n = te.var("n")
cp = te.thread_axis((0, 1), "cop")
value = tvm.tir.StringImm("xxx")
A = ib.allocate("float32", n, name="A", scope="global")
with ib.for_range(0, n, name="i") as i:
with ib.for_range(0, 10, name="j") as j:
ib.scope_attr(cp, "coproc_uop_scope", value)
A[i] = A[i] + 1
with ib.if_scope(i.equal(0)):
with ib.for_range(0, 10, name="j") as j:
ib.scope_attr(cp, "coproc_uop_scope", value)
A[j] = A[j] + 2
A[j] = A[j] + 3
A[j] = A[j] + 3
body = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body))
body = tvm.tir.transform.LiftAttrScope("coproc_uop_scope")(mod)["main"]
assert body.body.body.node == cp
ib = tvm.tir.ir_builder.create()
A = ib.allocate("float32", n, name="A", scope="global")
with ib.for_range(0, n, name="i") as i:
with ib.for_range(0, 10, name="j") as j:
A[j] = A[j] + 1
with ib.for_range(0, 10, name="j") as j:
ib.scope_attr(cp, "coproc_uop_scope", value)
A[i] = A[i] + 1
with ib.for_range(0, 10, name="j") as j:
ib.scope_attr(cp, "coproc_uop_scope", value)
A[i] = A[i] + 2
body = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body))
body = tvm.tir.transform.LiftAttrScope("coproc_uop_scope")(mod)["main"]
assert body.body.body.body[1].node == cp
assert len(body.body.body.body) == 2
if __name__ == "__main__":
test_coproc_lift() |
import tvm |
import tvm.testing
from tvm |
import te
from tvm.ir.module |
import IRModule
from tvm.script |
import tir as T |
import numpy
def collect_visit(stmt, f):
ret = []
tvm.tir.stmt_functor.post_order_visit(stmt, lambda x: ret.append(f(x)))
return ret
def test_basic():
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt))
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"]
assert not any(collect_visit(stmt.body.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse)))
assert any(collect_visit(stmt.body.body[1], lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_const_loop():
n = 21
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_no_unroll_loop():
n = 21
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
xo, xi = s[T].split(T.op.axis[0], factor=4)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(
config={
"tir.LoopPartition": { |
"partition_const_loop": True,
"no_unroll_loop_with_extent_one": True,
}
}
):
mod = tvm.tir.transform.LoopPartition()(mod)
mod = tvm.tir.transform.Simplify()(mod)
stmt = tvm.tir.transform.RemoveNoOp()(mod)["main"].body
assert sum(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.For))) == 4
def test_multi_loop():
ib = tvm.tir.ir_builder.create()
m = te.size_var("m")
n = te.size_var("n")
with ib.for_range(0, 4, "i") as i:
with ib.for_range(0, n, "j") as j:
with ib.for_range(0, m, "k") as k:
with ib.if_scope(ib.likely(i * m + j + k < n)):
ib.emit(tvm.tir.Evaluate(m))
with ib.else_scope():
ib.emit(tvm.tir.Evaluate(n))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n, m], stmt))
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_multi_if():
ib = tvm.tir.ir_builder.create()
m = te.size_var("m")
n = te.size_var("n")
with ib.for_range(0, 4, "i") as i:
with ib.for_range(0, n, "j") as j:
with ib.for_range(0, m, "k") as k:
with ib.if_scope(ib.likely(i * m + j + k < n)):
ib.emit(tvm.tir.Evaluate(m))
with ib.else_scope():
ib.emit(tvm.tir.Evaluate(n))
with ib.if_scope(ib.likely(i * m + j - k < n)):
ib.emit(tvm.tir.Evaluate(m))
with ib.else_scope():
ib.emit(tvm.tir.Evaluate(n))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_thread_axis(): |
m = te.size_var("m")
l = te.size_var("l")
A = te.placeholder((m, l), name="A")
B = te.compute((m, l), lambda i, j: A[i, j] + 3, name="B")
s = te.create_schedule(B.op)
s[B].set_scope("shared")
num_thread = 16
xo, xi = s[B].split(B.op.axis[0], 32)
xi0, xi1 = s[B].split(xi, nparts=num_thread)
s[B].bind(xi0, te.thread_axis("threadIdx.x"))
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"]
assert not any(collect_visit(stmt.body.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_vectorize():
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
bias = te.size_var("bias", dtype="float32")
scale = te.size_var("scale", dtype="float32")
C = te.compute(A.shape, lambda *i: A(*i) + B(*i) * scale + bias, name="C")
s = te.create_schedule(C.op)
num_thread = 32
bx, x = s[C].split(C.op.axis[0], factor=num_thread * 4)
tx, x = s[C].split(x, nparts=num_thread)
_, x = s[C].split(x, factor=4)
s[C].bind(bx, te.thread_axis("blockIdx.x"))
s[C].bind(tx, te.thread_axis("threadIdx.x"))
s[C].vectorize(x)
stmt = tvm.lower(s, [A, B], name="main")["main"]
body = stmt.body.body.body.body
assert x.var.name not in str(body.condition)
assert any(collect_visit(body.then_case, lambda x: isinstance(x, tvm.tir.Ramp)))
def test_condition():
ib = tvm.tir.ir_builder.create()
m = te.size_var("m")
n = te.size_var("n")
with ib.for_range(0, tvm.tir.truncdiv(n + 3, 4), "i") as i:
with ib.for_range(0, 4, "j") as j:
ib.emit(tvm.tir.Evaluate(tvm.tir.Select(ib.likely(i * 4 + j < n), m, n)))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, n], stmt))
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.trans |
form.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt[0], lambda x: isinstance(x, tvm.tir.Select)))
def test_condition_EQ():
ib = tvm.tir.ir_builder.create()
m = te.size_var("m")
n = te.size_var("n")
with ib.for_range(0, 10, "i") as i:
ib.emit(tvm.tir.Evaluate(tvm.tir.Select(ib.likely(tvm.tir.EQ(i, 5)), m, n)))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, n], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt[0], lambda x: isinstance(x, tvm.tir.Select)))
def test_thread_axis2():
n = tvm.runtime.convert(4096)
m = te.size_var("m")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
C = te.compute(A.shape, lambda i: A[i] + B[i], name="C")
s = te.create_schedule(C.op)
num_thread = 32
bx, x = s[C].split(C.op.axis[0], factor=32)
tx, x = s[C].split(x, nparts=num_thread)
_, x = s[C].split(x, factor=m)
s[C].bind(bx, te.thread_axis("blockIdx.x"))
s[C].bind(tx, te.thread_axis("threadIdx.x"))
stmt = tvm.lower(s, [A, B], name="main")["main"]
for_body = stmt.body.body.body.body[0]
assert "threadIdx" not in str(for_body.extent)
def test_everything_during_deduction():
m = te.size_var("m")
n = te.size_var("n")
ib = tvm.tir.ir_builder.create()
with ib.for_range(0, n, "i") as i:
with ib.for_range(0, 32, "j") as j:
with ib.if_scope(ib.likely(tvm.tir.truncdiv(i, j) < m)):
ib.emit(tvm.tir.Evaluate(m))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, n], stmt))
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert isinstance(stmt.body.body, tvm.tir.IfThenElse)
def test_single_likely():
n = 60
A = te.placeholder |
((n,), name="A")
B = te.placeholder((n,), name="B")
T = te.compute((n,), lambda i: A[i] + B[i])
s = te.create_schedule(T.op)
x = T.op.axis[0]
xo, xi = s[T].split(x, factor=16)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_multi_likely():
n = 94
m = 62
A = te.placeholder((n, m), name="A")
B = te.placeholder((n, m), name="B")
T = te.compute((n, m), lambda i, j: A[i, j] + B[i, j])
s = te.create_schedule(T.op)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
x, y = T.op.axis
xo, xi = s[T].split(x, factor=16)
yo, yi = s[T].split(y, factor=16)
s[T].reorder(xo, yo, xi, yi)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_oneD_pool():
m = te.size_var("m")
ib = tvm.tir.ir_builder.create()
data = ib.pointer("float32", name="A")
out = ib.pointer("float32", name="A")
with ib.for_range(0, 16, "ow") as ow:
with ib.for_range(0, 3, "kw") as kw:
with ib.if_scope(ib.likely(ow > 0)):
with ib.if_scope(ib.likely(ow < 15)):
out[ow] = tvm.te.max(out[ow], data[ow + kw - 1])
with ib.for_range(0, 16, "ow") as ow:
with ib |
.for_range(0, 3, "kw") as kw:
with ib.if_scope(ib.likely(ow < 1)):
with ib.if_scope(ib.likely(kw > 0)):
out[ow] = tvm.te.max(out[ow], data[ow + kw - 1])
with ib.for_range(0, 16, "ow") as ow:
with ib.for_range(0, 3, "kw") as kw:
with ib.if_scope(ib.likely(ow > 14)):
with ib.if_scope(ib.likely(kw < 2)):
out[ow] = tvm.te.max(out[ow], data[ow + kw - 1])
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, data, out], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_cce_loop_1():
ib = tvm.tir.ir_builder.create()
dtype = "float16"
n = 514
m = 514
_A = te.placeholder((n * m,), name="A")
Ab = tvm.tir.decl_buffer((n * m,), dtype, name="A")
A = ib.buffer_ptr(Ab)
_B = te.placeholder((n * m,), name="B")
Bb = tvm.tir.decl_buffer((n * m,), dtype, name="B")
B = ib.buffer_ptr(Bb)
with ib.for_range(0, 11, name="i") as i:
with ib.for_range(0, 160, name="j") as j:
with ib.if_scope(ib.likely(((i * 160) + j) < 1600)):
A[(i + 1) * m + j + 1] = (
B[(i) * m + j + 1] + B[(i + 1) * m + j + 1] + B[(i + 2) * m + j + 1]
)
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab, Bb], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_cce_loop_2():
ib = tvm.tir.ir_builder.create()
len = 112
tile = 32
loop = (len + tile - 1)
with ib. |
for_range(0, loop, "i") as i:
head = i * tile
with ib.if_scope(ib.likely(head + tile > len)):
tail = len
ib.emit(tvm.tir.call_extern("float32", "cce_intrisic", head, tail))
with ib.else_scope():
tail = head + tile
ib.emit(tvm.tir.call_extern("float32", "cce_intrisic", head, tail))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_cce_loop_3():
ib = tvm.tir.ir_builder.create()
loop1 = 4
loop2 = 9998
tile = 39991
with ib.for_range(0, loop2, "i") as i:
with ib.for_range(0, loop1, "j") as j:
head1 = i
head2 = j
with ib.if_scope(ib.likely(head1 * loop1 + head2 < tile)):
ib.emit(tvm.tir.call_extern("float16", "cce_intrisic", head1))
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_conv_tiling():
HSTR = WSTR = 1
in_channel = 128
kernel_height = kernel_width = 3
out_channel = 64
batch_size = 1
in_height = in_width = 64
out_height = out_width = in_height - kernel_height + 1
data = te.placeholder((batch_size, in_channel, in_height, in_width), name="data")
kernel = te.placeholder((kernel_height, kernel_width, in_channel, out_channel), name="kernel")
ic = te.reduce_axis((0, in_channel), name="ic")
kh = te.reduce_axis((0, kernel_height), name="kh")
kw = te |
.reduce_axis((0, kernel_width), name="kw")
conv = te.compute(
(batch_size, out_channel, out_height, out_width),
lambda n, oc, oh, ow: te.sum(
data[n, ic, oh * HSTR + kh, ow * WSTR + kw] * kernel[kh, kw, ic, oc], axis=[ic, kh, kw]
),
name="conv2d",
)
s = te.create_schedule(conv.op)
n, oc, oh, ow = conv.op.axis
oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16)
bounds = tvm.te.schedule.InferBound(s)
stmt = tvm.te.schedule.ScheduleOps(s, bounds)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt))
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.LoopPartition()(mod)
stmt = tvm.tir.transform.Simplify()(mod)["main"].body
assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse)))
def test_multilevel_splitting_with_indivisble_factors():
from tvm |
import topi
A = te.placeholder((130,), dtype="float32")
B = topi.nn.relu(A)
s = te.create_schedule(B.op)
(y,) = s[B].op.axis
(yo, yi) = s[B].split(y, factor=8)
(yoo, yoi) = s[B].split(yo, factor=16)
s[B].reorder(yoo, yoi, yi)
s[B].unroll(yi)
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
lowered_body = tvm.lower(s, [A, B], name="x")["x"].body
def visit_stmt(op):
return isinstance(op, tvm.tir.Max)
num_max = collect_visit(lowered_body, visit_stmt)
assert num_max.count(True) == 10
def test_double_splitting_with_indivisible_factors():
m = 48
dtype = "float32"
A = te.placeholder((m,), name="A", dtype=dtype)
C = te.compute((m,), lambda i: A[i], name="C")
D = te.compute((m,), lambda i: C[i], name="D")
s = te.create_schedule(D.op)
co, ci = s[C].split(C.op.axis[0], factor=10)
do, di = s[D].split(D.op.axis[0], 32)
s[C].compute_at(s[D], do)
target = "llvm"
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
f = tvm.lower(s, [A, C, D], name="fadd1", simple_mode=False)
func = tvm.build(f, target=target)
top_produce = f["fadd1"].body
assert not any(collect_visit(top_produce, lambda x: isinstance(x, tvm.tir.IfThenElse)))
dev = tvm.device(target, 0)
a = tvm.nd.array(
numpy.ones(
m,
).astype(dtype),
dev,
)
c = tvm.nd.array(
numpy.zeros(
m,
).astype(dtype),
dev,
)
d = tvm.nd.array(
numpy.zeros(
m,
).astype(dtype),
dev,
)
func(a, c, d)
tvm.testing.assert_allclose(c.numpy(), a.numpy(), rtol=1e-5)
tvm.testing.assert_allclose(d.numpy(), a.numpy(), rtol=1e-5)
def test_simple_rfactor():
K = 16 * 4 + 4
k = te.reduce_axis((0, K), "k")
A = te.placeholder((1, K), name="A")
B = te.compute((1,), lambda b: te.sum(A[b, k], axis |
=k), name="B")
s = te.create_schedule(B.op)
ko, _ = s[B].split(s[B].op.reduce_axis[0], 16)
BF = s.rfactor(B, ko, 0)
s.normalize()
bounds = tvm.te.schedule.InferBound(s)
stmt1 = tvm.te.schedule.ScheduleOps(s, bounds)
mod1 = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt1))
stmt1 = tvm.tir.transform.Simplify()(mod1)["main"].body
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod2 = tvm.tir.transform.LoopPartition()(mod1)
stmt2 = tvm.tir.transform.Simplify()(mod2)["main"].body
assert not tvm.ir.structural_equal(stmt1.body, stmt2.body)
@T.prim_func
def partitioned_concat(
A: T.Buffer[(16,), "float32"], B: T.Buffer[(16,), "float32"], C: T.Buffer[(32,), "float32"]
) -> None:
T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True})
T.preflattened_buffer(A, [16], data=A.data)
T.preflattened_buffer(B, [16], data=B.data)
T.preflattened_buffer(C, [32], data=C.data)
for i in T.serial(0, 16):
C[i] = A[i]
for i in T.serial(0, 16):
C[i + 16] = B[i + 16]
def test_explicit_partition_hint():
A = te.placeholder((16,), name="A")
B = te.placeholder((16,), name="B")
C = te.compute((32,), lambda i: te.if_then_else(i < 16, A[i], B[i]), name="C")
s = te.create_schedule(C.op)
s.normalize()
s[C].pragma(s[C].op.axis[0], "loop_partition_hint", True)
mod = tvm.driver.build_module.schedule_to_module(s, [A, B, C], "main", None)
with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}):
mod = tvm.tir.transform.StorageFlatten(64)(mod)
mod = tvm.tir.transform.LoopPartition()(mod)
mod = tvm.tir.transform.Simplify()(mod)
assert tvm.ir.structural_equal(mod["main"], partitioned_concat)
def partition_from_scheduled_tir(prim_func, pass_cfg):
with tvm.transform.PassContext(config=pass_cfg):
mod = IRModule.from_expr(prim_func)
mod = tvm.tir.tran |
sform.LowerOpaqueBlock()(mod)
mod = tvm.tir.transform.FlattenBuffer()(mod)
mod = tvm.tir.transform.LoopPartition()(mod)
mod = tvm.tir.transform.Simplify()(mod)
mod = tvm.tir.transform.RemoveNoOp()(mod)
return mod
@T.prim_func
def partitioned_concat_3(
placeholder: T.Buffer[(50176,), "int8"],
placeholder_1: T.Buffer[(25088,), "int8"],
placeholder_2: T.Buffer[(25088,), "int8"],
T_concat: T.Buffer[(100352,), "int8"],
) -> None:
T.preflattened_buffer(placeholder, [1, 64, 28, 28], "int8", data=placeholder.data)
T.preflattened_buffer(placeholder_1, [1, 32, 28, 28], "int8", data=placeholder_1.data)
T.preflattened_buffer(placeholder_2, [1, 32, 28, 28], "int8", data=placeholder_2.data)
T.preflattened_buffer(T_concat, [1, 128, 28, 28], "int8", data=T_concat.data)
for i1, i2, i3 in T.grid(64, 28, 28):
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3]
for i1, i2, i3 in T.grid(32, 28, 28):
T_concat[i1 * 784 + i2 * 28 + i3 + 50176] = placeholder_1[i1 * 784 + i2 * 28 + i3]
for i1, i2, i3 in T.grid(32, 28, 28):
T_concat[i1 * 784 + i2 * 28 + i3 + 75264] = placeholder_2[i1 * 784 + i2 * 28 + i3]
@T.prim_func
def concat_func_3(
placeholder: T.Buffer[(50176,), "int8"],
placeholder_1: T.Buffer[(25088,), "int8"],
placeholder_2: T.Buffer[(25088,), "int8"],
T_concat: T.Buffer[(100352,), "int8"],
) -> None:
T.preflattened_buffer(placeholder, (1, 64, 28, 28), "int8", data=placeholder.data)
T.preflattened_buffer(placeholder_1, (1, 32, 28, 28), "int8", data=placeholder_1.data)
T.preflattened_buffer(placeholder_2, (1, 32, 28, 28), "int8", data=placeholder_2.data)
T.preflattened_buffer(T_concat, (1, 128, 28, 28), "int8", data=T_concat.data)
for i1 in T.serial(128, annotations={"pragma_loop_partition_hint": 1}):
for i2, i3 in T.grid(28, 28):
if 96 <= i1:
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder_2[i1 * 784 + i2 * 28 + i3 - 75264] |
if 64 <= i1 and i1 < 96:
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder_1[i1 * 784 + i2 * 28 + i3 - 50176]
if i1 < 64:
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3]
def test_condition_mutually_exclusive():
mod = partition_from_scheduled_tir(
concat_func_3, {"tir.LoopPartition": {"partition_const_loop": True}}
)
assert tvm.ir.structural_equal(mod["main"], partitioned_concat_3)
def test_loop_partition_unroll_hint():
@T.prim_func
def main(A: T.Buffer[150528, "int8"], B: T.Buffer[25088, "int8"]) -> None:
T.preflattened_buffer(A, [1, 3, 224, 224], "int8", data=A.data)
T.preflattened_buffer(B, [1, 224, 7, 16], "int8", data=B.data)
for ax0 in T.serial(
112,
annotations={"pragma_loop_partition_hint": True},
):
for ax1, ax2, ax3 in T.grid(224, 7, 16):
if 3 <= ax0 * 2 + ax2 and ax0 * 2 + ax2 < 227 and ax3 < 3:
B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax0 * 2 + ax2 - 3]
@T.prim_func
def partitioned_main(A: T.Buffer[150528, "int8"], B: T.Buffer[25088, "int8"]) -> None:
T.preflattened_buffer(A, [1, 3, 224, 224], dtype="int8", data=A.data)
T.preflattened_buffer(B, [1, 224, 7, 16], dtype="int8", data=B.data)
for ax1, ax2, ax3 in T.grid(224, 7, 16):
if 3 <= ax2 and ax3 < 3:
B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax2 - 3]
for ax1, ax2, ax3 in T.grid(224, 7, 16):
if 1 <= ax2 and ax3 < 3:
B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax2 - 1]
for ax0, ax1, ax2, ax3 in T.grid(109, 224, 7, 16):
if ax3 < 3:
B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax0 * 2 + ax2 + 1]
for ax1, ax2, ax3 in T.grid(224, 7, 16):
if ax2 < 5 and ax3 < 3:
B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + |
ax1 * 224 + ax2 + 219]
mod = partition_from_scheduled_tir(
main,
{
"tir.LoopPartition": {
"partition_const_loop": True,
"unroll_loop_with_partition_hint_no_interval": True,
}
},
)
mod = tvm.tir.transform.UnrollLoop()(mod)
mod = tvm.tir.transform.RemoveNoOp()(mod)
mod = tvm.tir.transform.Simplify()(mod)
assert tvm.ir.structural_equal(mod["main"], partitioned_main)
def test_loop_partition_keep_loop_annotations():
@T.prim_func
def before(A: T.Buffer[160, "int32"], B: T.Buffer[160, "int32"]) -> None:
for i in T.serial(
160,
annotations={"pragma_loop_partition_hint": True, "key": "value"},
):
if i < 10:
B[i] = A[i] + 1
elif 10 <= i and i < 150:
B[i] = A[i] + 2
else:
B[i] = A[i] + 3
@T.prim_func
def after(A: T.Buffer[160, "int32"], B: T.Buffer[160, "int32"]) -> None:
T.preflattened_buffer(A, [160], dtype="int32", data=A.data)
T.preflattened_buffer(B, [160], dtype="int32", data=B.data)
for i in T.serial(10, annotations={"key": "value"}):
B[i] = A[i] + 1
for i in T.serial(140, annotations={"key": "value"}):
B[i + 10] = A[i + 10] + 2
for i in T.serial(10, annotations={"key": "value"}):
B[i + 150] = A[i + 150] + 3
mod = partition_from_scheduled_tir(
before,
{
"tir.LoopPartition": {
"partition_const_loop": True,
}
},
)
assert tvm.ir.structural_equal(mod["main"], after)
def test_loop_partition_with_unit_loop_in_condition():
@T.prim_func
def before(
placeholder: T.Buffer[(50176,), "int8"],
placeholder_1: T.Buffer[(25088,), "int8"],
placeholder_2: T.Buffer[(25088,), "int8"],
T_concat: T.Buffer[(100352,), "int8"],
) -> None:
for k in range(1, annotations={"preserve_unit_loop": True |
}):
for i1 in T.serial(128, annotations={"pragma_loop_partition_hint": 1}):
for i2, i3 in T.grid(28, 28):
if 96 <= k * 128 + i1:
T_concat[k * i1 * 784 + i2 * 28 + i3] = placeholder_2[
i1 * 784 + i2 * 28 + i3 - 75264
]
if 64 <= k * 128 + i1 and k * 128 + i1 < 96:
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder_1[
i1 * 784 + i2 * 28 + i3 - 50176
]
if k * 128 + i1 < 64:
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3]
@T.prim_func
def after(
placeholder: T.Buffer[50176, "int8"],
placeholder_1: T.Buffer[25088, "int8"],
placeholder_2: T.Buffer[25088, "int8"],
T_concat: T.Buffer[100352, "int8"],
) -> None:
T.preflattened_buffer(placeholder, [50176], dtype="int8", data=placeholder.data)
T.preflattened_buffer(placeholder_1, [25088], dtype="int8", data=placeholder_1.data)
T.preflattened_buffer(placeholder_2, [25088], dtype="int8", data=placeholder_2.data)
T.preflattened_buffer(T_concat, [100352], dtype="int8", data=T_concat.data)
for _ in T.serial(1, annotations={"preserve_unit_loop": True}):
for i1, i2, i3 in T.grid(64, 28, 28):
T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3]
for i1, i2, i3 in T.grid(32, 28, 28):
T_concat[i1 * 784 + i2 * 28 + i3 + 50176] = placeholder_1[i1 * 784 + i2 * 28 + i3]
for i1, i2, i3 in T.grid(32, 28, 28):
T_concat[i2 * 28 + i3] = placeholder_2[i1 * 784 + i2 * 28 + i3]
mod = partition_from_scheduled_tir(
before,
{
"tir.LoopPartition": {
"partition_const_loop": True,
}
},
)
assert tvm.ir.structural_equal(mod["main"], after)
if __name__ == "__main |
__":
tvm.testing.main() |
import sys |
import pytest |
import tvm |
import tvm.testing
from tvm |
import te
from tvm.script |
import tir as T
def _check(original, transformed):
mod = tvm.IRModule.from_expr(original)
mod = tvm.tir.transform.LowerCrossThreadReduction()(mod)
tvm.ir.assert_structural_equal(mod["main"], transformed, True)
def _check_fail(original):
mod = tvm.IRModule.from_expr(original)
with pytest.raises(ValueError):
tvm.tir.transform.LowerCrossThreadReduction()(mod)
@T.prim_func
def loop_split(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, [128, 128], dtype="float32")
B = T.match_buffer(b, [128], dtype="float32")
for i, ko in T.grid(128, 4):
for ki in T.thread_binding(0, 32, thread="threadIdx.x"):
with T.block("B"):
vi = T.axis.S(128, i)
vk = T.axis.R(128, ko * 32 + ki)
T.reads([A[vi, vk]])
T.writes([B[vi]])
with T.init():
B[vi] = T.float32(0)
B[vi] = B[vi] + A[vi, vk]
@T.prim_func
def lowered_loop_split(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, [128, 128], dtype="float32")
B = T.match_buffer(b, [128], dtype="float32")
reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local")
normal_reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local")
for i in T.serial(0, 128):
for ki in T.thread_binding(0, 32, thread="threadIdx.x"):
with T.block("B_in_thread_init"):
T.reads([])
T.writes([normal_reduce_temp0[0]])
normal_reduce_temp0[0] = T.float32(0)
for ko in T.serial(0, 4):
with T.block("B_normal_reduction"):
vi = T.axis.S(128, i)
vk = T.axis.R(128, ko * 32 + ki)
T.reads([A[vi, vk]])
T.writes([normal_reduce_temp0[0]])
normal_reduce_temp0[0] = normal_reduce_temp0[0] + A[vi, vk]
with T.block("B_cross_thread_reduction"):
T.reads([normal_reduce_te |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.